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Bubble oscillations of large amplitude

Joseph B. Keller and Michael Miksis
Depar ts of Mathematics and Mech

ical Engineering. Stanford University, Stanford, California 94305
(Received 7 December 1979; accepted for publication 21 April 1980)

A new equation is derived for large amplitude forced radial oscillations of a bubble in an incident sound field.
It includes the effects of acoustic radiation, as in Keller and Kolodner's equation, and the effects of viscosity
and surface tension, as in the modified Rayleigh equation due to Plesset, Noltingk and Neppiras, and
Poritsky. The free and forced periodic solutions are computed numerically. For large bubbles, such as
underwater explosion bubbles, the free oscillations agree with those obtained by Keller and Kolodner. For
small bubbles, such as cavitation bubbles, with small or intermediate forcing amplitudes, the results agree
with those calculated by Lauterbomn from the modified Rayleigh equation of Plesset et al. For large forcing
amplitudes that equation yielded unsatisfactory results whereas the new equation yields quite satisfactory

ones.

PACS numbers: 43.30.Jx, 43.30.Gv, 43.30.Lz, 43.25.Yw

INTRODUCTION

A gas bubble in a liquid performs forced radial os-
cillations when a sound wave impinges upon it. Large
amplitudes result when the acoustic frequency is at or
near the bubble’s natural frequency, or certain rational
multiples of it. Since these large oscillations can be
important in cavitation, we have reexamined them by
using a new equation which takes account of the acoustic
radiation from the bubble. The previous detailed and
careful calculations by Lauterborn' did not take account
of this radiation, and they sometimes yielded unrea-
sonably large amplitudes which did not lie on smooth
curves, or they failed to converge to a periodic solu-
tion. Our method does not have these defects.

Oscillations of large bubbles were originally analyzed
by Rayleigh assuming that the surrounding liquid is in-
compressible and inviscid, that the bubble remains
spherical, and that surface tension is negligible. Ples-
set,? Noltingk and Neppiras,® and Poritsky’ modified
this equation to inciude the effects of viscosity, surface
tension, and an incident sound wave, and it was this
modified equation which Lauterborn' solved. A differ-
ent modification was made by Keller and Kolodner?
who included the effects of acoustic radiation by treat-
ing the surrounding liquid as slightly compressible.
The same method was used by Epstein and Keller® to
derive equations for one- and two-dimensional bubbles,
for which there are no analogues of the Rayleigh equa-
tion. We shall combine these modifications to derive
a new equation for the bubble radius. It includes the ef-
fects of acoustic radiation, viscosity, surface tension
and an incident sound wave.

To solve this new equation we shail first study its
free oscillations. As is to be expected, the trajectories
in the phase plane are similar to those in the absence
of viscosity and surface tension unless the viscosity is
very large. The oscillations of a particular underwater
explosion bubble are found to be the same as those cal-
culated by Keller and Kolodner,” which agree well with
experiment.

Then we solve the equation numerically for one of
the three bubbles studied by Lauterborn,' with various
forcing amplitudes. Our resuits are in very close

agreement with his for small and intermediate forcing
amplitudes, but not for his largest one. In that case
his results suffer from the defects mentioned above,
while ours are satisfactory for this and even for larger
forcing amplitudes. We have also examined the small
amplitude oscillations by the method of averaging, fol-
lowing the procedure used by Prosperetti’ on the equa-
tion of Plesset ef al., but we shall not present that an-
alysis here.

I. FORMULATION

We wish to determine a{(/), the radius at time ¢ of a
spherical bubble of gas and vapor in a fluid of infinite
extent. We assume that the pressure p,(a) within the
bubble is uniform and is the sum of the constant vapor
pressure p, and the gas pressure ka™":

pyla)=p, +ka™>" . (1.1)

Here k is a constant determined by the quantity and type
of gas, and y is the adiabatic exponent of the gas. This
pressure p,(a) exceeds the pressure p(r.f) in the fluid
at r = a by the effect of the surface tension o and the
normal component of viscous stress:

pri@r=pia,+ 22225 (0,0 2420 “’"’). (1.2)
a 3 a

Here ¢(r,!) is the velocity potential of the fluid motion,
assumed to be spherically symmetric, and n is the co-
efficient of viscosity of the fluid. In addition the velo-
city a; of the bubble surface must equal the velocity of
the fluid at the surface:

a,=¢.a,l). (1.3)

The velocity potential ¢, the pressure p. and the den-
sity p(r,1) of the fluid must satisfy conservation of
mass, the Navier~Stokes equation, and the equation of
state,which are

P+ O,p,+pAG=0, (1.4)
o(d,,+ ¢,0,,)+p,=(4u/3)(A0),, (1.5)
p=pip). (1.8)

We seek a, p, p, and ¢ satisfying (1.1)~(1.6) given their
initial values.
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1. SIMPLIFICATION

To solve these equations, we first divide (1.5) by p
and then integrate it with respect to » from » to infinity
to obtain the modified Bernoulli equation

, LI i S
-, _§(§;+-/ o) Il[) -(4# 3)-/ n (A(b)'(h‘:o. (2.1)
» r

Here p, is the constant pressure at »=«<, and we have
assumed that ¢ tends to zero at »= =, Next we dilfer-
entiate (2.1) with respect to [ and write p,=p_p,=cp,.
where ¢“=p_and ¢ is the sound speed:

s oo 4 ° .
Bypt B+ g ‘+-?“f Ip'(ae), }dr=0. (2.2)
Then we use (1.4) in (2.2) to eliminate p,. divide by ¢*

and obtain

0, -2

=2 ((.",(.')"-# (4 3)f [pMad), I, rlr) +p0, p.

(2.3)
To simplify (2.3) we omit the right side, assuming

that it is small compared to the terms on the left side,
and set ¢ = constant. For a nearly incompressible fluid
¢? is large and p, is small, which tends to justify these
assumptions. As a consequence we obtain the wave
equation

oy, =d0=0. (2.4)
To simplify (2.1) we set p=constant in it and obtain

pr N =py ~pldrg+ 32+ (du 3ae. {2.5)

Thus the simplification consists in replacing (1.4) and
(1.5) by (2.4) and (2.5).

IIt. DERIVATION OF THE ORDINARY DIFFEREN-
TIAL EQUATION

We now use (2.5) for p in (1.2) and write that condi-
tion in the form

1 , 4
.\(a):-m,-érbﬁ;“g‘»,q.z—z. at r=a(t). (3.1)

Here A(a) is the pressure difference times p™:
Ala)=p ' pyla) =p.]=p (ka4 p, —p.]. (3.2)

Next we write the general solution of (2.4), with f and g
arbitrary functions, as

Oy N=r"ll=r e)rrull+r ¢). (3.3)

Then we use (3.3) in (3.1) to obtain an equation for a{t).
In doing 80 we also use (3.3) in (1.3) to eliminate f. In
this way we obtain

aAm)-arn,=(~4h(a.l)-lnn;‘*4—“«,42—”- e+ 2.
2 I} » c

(3.3")

Now we take the time derivative of (3.3') and use (3.1)
to eliminate &,. In this way we obtain
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a,,(%-—a(a,-('))

=la’:+ a,Ala) -('(gaf+ fua, 20 A(a))

a, 20
2 2 pa  pa
+aaA'(a)+ 2(l+g(-.‘)g"</+g). (3.4)

Equation (3.4) is a nonlinear second-order ordinary
differential equation for the bubble radius a{/). If we
set L=0=,4=0in it, we obtain the corresponding Eq.
(12) of Keller and Kolodner.® If instead we divide by ¢
and let ¢ become infinite, we obtainthe Rayleigh equa-
tion for a bubble in an incompressible liquid, as mod-
ified by Plesset” and others to include surface tension
and viscosity. That is the equation whichwas solved
by Lauterborn' with 2¢ ¢ ”(/) replaced by p™'P sinu¥.
Inorder to solve (3.4) we must specify g and the initial
valuesofnand a,. Then(1.3)yields;, (3.3)yields &
and 2.5 yields p.

In order to specify ; we suppose that the bubble is in
an incident sound field with velocity potential &(x, /),
where x=0 is the center of the bubble. The spherically
symmetric part of ¢ is of the form » 'Ju(/+» )

+ il =y ¢)). If @ is regular at x=0 then /= —; and we
have

Sx, D=y g+ =gl =1 Y+ dy(x.1). (3.5)

The unsymmetric part ¢, must vanish at x=0, so if we
let x and » tend to zero in (3.5) we get

®(0.1)=2¢"" (1), (3.6)

This relation determines g’(/) in t.rms of the incident
potential ¢ evaluated at the position of the center of the
bubble. Differentiating (3.6) yields

26"(1)=c®(0.1). (3.7)

This expression is what is needed in the last term in
(3.4).

As an example, let us suppose that the incident field
is a plane wave with angular frequency w and pressure
amplitude P. Then &(x,!)= -(P pw)cosw(/ =xc) and
(3.7) yields

2¢"(1)=FPep™tsinwi , (3.8)
We now substitute (3.8) into (3.4) to obtain

4
ol =t =0)
4pua R 2

1 3 m [\
=En§+ a,Ala) —p(-iaf+ WIJ i .)(u))

+aa, N (a)+ 1+ 4 Esinw r+2Y, (3.9)
¢t ¢ n «

This is the equation we shall solve. In the Appendix it
is rewritten in dimensionless variables.

IV. ANALYSIS OF THE EQUATION

When P’= 0, (3.9} reduces to the autonomous equation
for the free oscillations of a bubble. This equation can
be analyzed in the phase plane with coordinates a and a,.
It has one unstable critical point, a saddle. at a=0,
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a,=¢ (3r ~1) and a second critical point at the equili-
brium configuration a=a,, a,=0, where a, is a root of

20 pa,-Ala,)=0. (4.1)

Linearization shows that this point is a stable spiral if
w%>0 and A stable node if w%<0, where w} is given

44 20
Wwi=14 Iadad ¥ BN =
= oo ) (300 22)
4 A ,A' 2z 4 271
_(_i_ (a,) a,8(a ))]{469#__&)] . (4.2)

pa, c ¢ oc
Usually «?>0 and the equilibrium point is a spiral.
However if the fluid is extremely viscous it will be a

stable node. When w, is real the linearized solution
near equilibrium is, with A and 6 constants,

at -ue=Aexp{-(ﬂ‘__:\£’g_)_” 1)
pa, ¢ I
-1
X [2 (al,+ %C—L)] cos{w,/+ 8). 4.3)

This describes a damped oscillation around equilibrium.

For the nonlinear equation (3.9) with =0, when w?
> 0 the trajectories in the phase plane are similar to
those for o= =0, which are shown in Ref. §. We have
also solved (3.9) numerically with P =0 for the case of

the underwater explosion bubble treated in Fig. 7 of Ref.

5, using the appropriate parameter values. The results
are indistinguishable from those given in that figure,
which were computed with o= =0. This was to be ex-
pected since the dimensionless forms of ¢ and ¢ are so
small in that case.

The periodic solution of the linearized form of (3.9)
with P# 0 is

n(l)-a;%[m[A expliw(t+c™a,)], (4.4)
where
A= [— (ae+ iﬁ)w’
pc

NETSECAREVES W) o
c pa

pa, ¢ 2
(4.5)
As ¢ -, A tends to A, given by
20 4urw\!
= - 2_. ’ ——
A, ( a,w’ - a'(a,) pa§+ pa. ) . (4.6)

We can make 4, agree with A by replacing u in (4.6) by
a certain complex effective viscosity. Alternatively we
can make |A,| agree with |A| by replacing u in (4.6)
by the real quantity u,, defined by

FIG. 1. Frequency response curves
for a bubble in water with equili-
brium radius a, =10 um in incident
sound waves of amplitudes P=0.4,
0.7, 0.8, and 0.9 bar, The ordinate
is (@, —a,)/a, and the abscissa

i8 w/wp. The curves are computed
from (3.49) and w, is given by Eq.
4.2),
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FIG. 3. Amplitude of the subharmonic response as a function of the amplitude of the incident sound wave for w/wq=2 and w/wq=3.

1 20
oy = B+ E[paf(a,w% A'(a)+ IR)

-pa.(A(a.>+ a.A'<a.>)]+ 0(c™) (4.7)

An approximate form of (4.7) appropriate for high fre-
quencies, . = k+palw’ 4c, was derived by Devin,*
Chapman and Plesset® and Prosperetti.'®

V. NUMERICAL SOLUTIONS

In solving (3.9) numerically we shall follow the pro-
cedure used by Lauterborn' on the corresponding equa-
tion for an incompressible fluid, in order to show that
the differences in results are due to differences in the
equations, and not due to differences in methods of
solution. Thus we start with a bubble at rest at its
equilibrium radius, i.e. a,(0)=0,a(0)=a,. Then for
given Pand w, we follow the solution until it becomes
periodic, and plot (a_,, ~a,)/a, v8 w w,. The constants
are chosen to represent a bubble in water at 20° C with
a static pressure p_ =1 bar and a polytropic exponent
y=1.33. Thus p=0.998 g/cm*, 0=72.5dyn.cm, u
=0.01 g'cm.8, p,=0.0233 bar and c = 1.484x 10* cm/s.
We shall study Lauterborn’s largest bubble, for which

832 J. Acoust. Soc. Am., Vol. 88, No. 2, August 1980

a,= 10 cm, since acoustic radiation is most important
for it.

Figure 1 shows our frequency response diagram for
four values of the incident pressure amplitude: P=0.4,
0.7, 0.8, and 0.9 bar. It corresponds to Lauterborn’s
Fig. 3. For P=0.4 bar our curve and his appear to be
identical, while for P=0.7 bar they are also identical
except for the ultraharmonic resonance of order 5/2
which occurs in his curve at about w/w,=0.37, but is
absent in ours. To see how this difference arises, we
shall consider the radius time curve a(f) for P=0.7 bar
and w/w,=0.37 in both the incompressible and com-
pressible cases. Figure 2(a) shows the steady state or
periodic oscillation in the incompressible case and
Fig. 2(b) shows some early oscillations in the compres-
gible case. We note that the two curves are somewhat
similar. However as time goes on, in the compressible
case the shape of the oscillation changes to the periodic
form shown in Fig. 2(c), which does not contain the 5.2
uitraharmonic.

Our response curve for P=0.8 bar i8 very similar to
that for P=0.7 bar, but it is quite different from Lau-
terborn’s curve. His incompressible result and our
compressible one are similar for w/w,>0.6, but not for
w/w,< 0.6, The incompressible result shows many
peaks corresponding to harmonic and ultraharmonic

J. B. Keller and M. Miksis: Bubble oscillations of large amplitude 832
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resonances, at some frequencies the amplitudes were
too large to fit in the figure. and at some frequencies
no periodic solution was obtained. The compressible
result always yielded periodic solutions with amplitudes
which fit into the figure, and some harmonic ang ultra-
harmonic resonances.

For /’= 0.9 bar our result is again similar to that for
£=0.8 bar, but with more resonances. We computed it
only for « w, - 0.5 to save computer time, since the os-
cillation went through many cycles before becoming
periodic.

In Fig. 1 we also see a subharmonic resonance at
«,= 2. This resonance did not occur for small values
of I’ but instead there is a threshold value which P’ rrust
exceed in order for it to appear. This threshold phe -
nomenon is shown in Fig. 3. For « «,=2 we find that
the threshold value of Flies between 0.20 and 0.22 par
while Lauterborn found it to be between 0.1 and 0.15
bar. Similarly for » « =3 the compressible threshold
lies between 1.9 and 1.94 bar while in the incompres-
sible case Lauterborn found it to be between 1.3 and
1.5 bar. Thus in both cases the inclusion of compres-
sibility increases the threshold, as one might expect.

ACKNOWLEDGMENT

Supported by the Office of Naval Research, the Na-
tional Science Foundation. the Air Force Office of
Scientific Research and the Army Research Office.

APPENDIX

In terms of the equilibrium radius a, which satisfies
4.1), we define dimensionless variables as follows:

vEaoa,, rEyoa,.,
Puzhe=py. L =p, P50,

a=da,p, MY, k=k pal,

(A1)
=2 ap. F=olp /,n)llz 57, 810-~821 (1975),
. 8. Devin, J. Acoust. Soc. Am. 31, 1654-1667 (1959).
v=4au alpp) i G = p Y R *R. B. Chapman and M. S, Plesset, J. Basic. Eng. 93, 373
376 (1971).
&= walp pu)'“ . 194, Prosperetti, J. Acoust. Soc, Am. 61, 17-27 (1977).
(& s |
l? (- - “7{——
, 0
i O
} ——
DLl D m—
“Lvoration/
[ Avail(xbility Codes
iAvail and/or
Digt Special
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We now i1ntroduce these variables into (3.4) and then
omit the bars to obtain

.3
Vel =y —(')]='—‘24+,\',[(1 =3x8 =1

V.

».L;.,,
=1q

kx4 l)

. IX
S (7

In the same way we obtain from (4.1)
k=140, (A3)

Similarly we get from (3.9)

Vel =v(v, —1')}:%4-;‘,[(1 -3 8T~ 1)

.2

+ (l+£‘)&sinw(l+‘-\;). (A4)
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