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Bubble oscillations of large amplitude
Joseph B. Keller and Michael Miksis
Departments of Mathematics and Mechanical Engineering. Stanford University. Stanford. California 94305
(Received 7 December 1979; accepted for publication 21 April 1980)

A new equation is derived for large amplitude forced radial oscillations of a bubble in an incident sound field.
It includes the effects of acoustic radiation, as in Keller and Kolodner's equation, and the effects of viscosity
and surface tension, as in the modified Rayleigh equation due to Plesset, Noltingk and Neppirs, and
Poritsky. The free and forced periodic solutions are computed numerically. For large bubbles, such as
underwater explosion bubbles, the free oscillations agree with those obtained by Keller and Kolodner. For
small bubbles, such as cavitation bubbles, with small or intermediate forcing amplitudes, the results agree
with those calculated by Lauterbom from the modified Rayleigh equation of Plesset et al. For large forcing
amplitudes that equation yielded unsatisfactory results whereas the new equation yields quite satisfactory
ones.

PACS numbers: 43.30.Jx, 43.30.Gv. 43.30.Lz, 43.25.Yw

INTRODUCTION agreement with his for small and intermediate forcing
amplitudes, but not for his largest one. In that case

A gas bubble in a liquid performs forced radial os- his results suffer from the defects mentioned above,
cillations when a sound wave impinges upon it. Large while ours are satisfactory for this and even for larger
amplitudes result when the acoustic frequency is at or forcing amplitudes. We have also examined the small
near the bubble's natural frequency, or certain rational amplitude oscillations by the method of averaging, fol-
multiples of it. Since these large oscillations can be lowing the procedure used by Prosperetti7 on the equa-
important in cavitation, we have reexamined them by tion of Plesset et al., but we shall not present that an-
using a new equation which takes account of the acoustic alysis here.
radiation from the bubble. The previous detailed and

careful calculations by Lauterborn' did not take account 1. FORMULATION
of this radiation, and they sometimes yielded unrea-
sonably large amplitudes which did not lie on smooth We wish to determine a(t). the radius at time t of a
curves, or they failed to converge to a periodic solu- spherical bubble of gas and vapor in a fluid of infinite
tion. Our method does not have these defects. extent. We assume that the pressure Pb(a) within the

Oscillations of large bubbles were originally analyzed bubble is uniform and is the sum of the constant vapor
by Rayleigh assuming that the surrounding liquid is in- pressure p. and the gas pressure ka--r:
compressible and inviscid, that the bubble remains
spherical, and that surface tension is negligible. PIes- pb(a)=p, +ka . (1.1)

set,2 Noltingk and Neppiras,3 and Poritsky' modified Here k is a constant determined by the quantity and type
this equation to include the effects of viscosity, surface of gas, and } is the adiabatic exponent of the gas. This
tension, and an incident sound wave, and it was this pressure pb(a) exceeds the pressure p(r,l) in the fluid
modified equation which Lauterborni solved. A differ- at r = a by the effect of the surface tension a and the
ent modification was made by Keller and Kolodner,5  normal component of viscous stress:
who included the effects of acoustic radiation by treat- 2a 4 (1
ing the surrounding liquid as slightly compressible. p,(a)=p(a,1)+- L ,(,t) - (1.2)
The same method was used by Epstein and Keller ' to a 3 a

derive equations for one- and two-dimensional bubbles, Here 0(r,i) is the velocity potential of the fluid motion,
for which there are no analogues of the Rayleigh equa- assumed to be spherically symmetric, and ) is the co-
tion. We shall combine these modifications to derive efficient of viscosity of the fluid. In addition the velo-
a new equation for the bubble radius. It includes the ef- city at of the bubble surface must equal the velocity of
fects of acoustic radiation, viscosity, surface tension the fluid at the surface:
and an incident sound wave. (1.3)

To solve this new equation we shall first study its
free oscillations. As is to be expected, the trajectories The velocity potential , the pressure p. and the den-

in the phase plane are similar to those in the absence sity p(r, t) of the fluid must satisfy conservation of

of viscosity and surface tension unless the viscosity is ste aru
very large. The oscillations of a particular underwater
explosion bubble are found to be the same as those cal- Pt+ ,P, + pAO= 0, (1.4)
culated by Keller and Kolodner, which agree well with P(0+0,)+p=( 4 4/3)(A) (1.5)
experiment.

5 Then we solve the equation numerically for one of P(P) (1.6)

the three bubbles studied by Lauterborn,' with various We seek a, p, p, and 0 satisfying (1.1)-(1.6) given their
forcing amplitudes. Our results are in very close initial values.
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1I. SIMPLIFICATION~~a,, -a(a, - )
To solve these equations, we first divide (1.5) by p 1 3 4M a 2 o \

and then integrate it with respect to r from r to infinity = a+ aA(a)-Ca,+ "
to obtain the modified Bernoulli equation P a

1 I"'-I +4aaA'1(a) + 21~' 4 ~f~ (3.4)
- (V j (4A 3)jP-(AP)'Ir=0. (212% + .,' (21

Equation (3.4) is a nonlinear second-order ordinary
Here , is the constant pressure at r= , and we have differential equation for the bubble radius a(t). If we
assumed that ' tends to zero at r= -. Next we diVer- set jA=aY=q = 0 in it, we obtain the corresponding Eq.
entiate 2.1) with respect to I and write p Pp,C p-, C. (12)of Keller andKolodner. ' If instead we divide by c
where c2 =p, and c is the sound speed: and letc become infinite, we obtainthe Rayleigh equa-

4i f" tion for a bubble in an incompressible liquid, as mod-
O(tt4 ore>? t J ,p'2(),+j!AIr= 0. (2.2) ifiedbyPlesset2 andotherstoincludesurfacetension

and viscosity. That is the equation which was solved
Then we use (1.4) in (2.2) to eliminate P,. divide by (.2 by Lauterborn' with 2r-'g"(/) replaced byp'P sinwf.
and obtain In order to solve (3.4) we must specify.,; and the initial
v*o -2 values of a and a,. Then (1.3) yieldsf, (3.3)yields 4

and 2.5 yields p./,/
=~ .- ,O+ (4i, 3) f +)P p In order to specify g we suppose that the bubble is in

an incident sound field with velocity potential +(x.f).
(2.3) where x= 0 is the center of the bubble. The spherically

To simplify (2.3) we omit the right side, assuming symmetric part of 4, is of the form ;--'IAI:( r (')
that it is small compared to the terms on the left side, + h(I -r c) 1. If 4 is regular at x=0 then h=-, and we
and set c= constant. For a nearly incompressible fluid have
('2 is large and 1), is small, which tends to justify these

assumptions. As a consequence we obtain the wave 41(x.4)= .'.,I r c) _(I -r c)j+ 4(x./). (3.5)

equation The unsymmetric part 4', must vanish at x = 0. so if we
- -. ', = 0. (2.4) let x and r tend to zero in (3.5) we get

To simplify (2.1) we set p= constant in it and obtain 4'(0.t)= 2cg'(/) . (3.6)

p(r./)-pf. -) 2',,5,2)+ (4, 3).A. (2.5) This relation determines X'(1) in t, rms of the incident
potential 4' evaluated at the position of the center of the

Thus the simplification consists in replacing (1.4) and bubble. Differentiating (3.6) yields
(1.5) by (2.4) and (2.5). 2g"()=c4,(O,/I) . (3.7)

III. DERIVATION OF THE ORDINARY DIFFEREN- This expression is what is needed in the last term in
TIAL EQUATION (3.4).

We now use (2.5) for p in (1.2) and write that condi- As an example, let us suppose that the incident field

tion in the form is a plane wave with angular frequency w and pressure
amplitude P. Then 4(x,t)= -(P pw)cosw(l -x 'c) and

1 . 4t . 2o7 (3.7) yields
A(a)=-(f,-IP' --A0,+2a, at r=a(t). (3.1)

• ,2g"(/)= PWp1 sinit. (3.8)

Here (a) is the pressure difference times p-: We now substitute (3.8) into (3.4) to obtain

(a)= p-"p,(a) -P. I=p"[ka-"*+p. -p. . (3.2) W

- -(4 a(a, -c
Next we write the general solution of (2.4), with. and g 32
arbitrary functions, as .1 3 ~a

s-a~1 4L _ A...('

r,I)= r'f( -r )r'tA(/+r ). (3.3) = 2 G pa pa

Then we use (3.3) in (3.1) to obtain an equation for a(t). + an,.'(a)(+ L Ilsin ) (3.9)
In doing so we also use (3.3) in (1.3) to eliminate f. In
this way we obtain This is the equation we shall solve. In the Appendix it

is rewritten in dimensionless variables.

2 9 P ) + c" IV. ANALYSIS OF THE EQUATION

(3.3') When I'= 0, (3.9) reduces to the autonomous equation
for the free oscillations of a bubble. This equation can

Now we take the time derivative of (3.3') and use (3.1) be analyzed in the phase plane with coordinates a and a,.
to eliminate 6,. In this way we obtain It has one unstable critical point, a saddle, at a= 0,
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~~w lo -- w

a~c(31 - 1) and a second critical point at the equili- 5, using the appropriate parameter values. The results
briurn configuration a= It, It= =0, where a, is a root of are indistinguishable from those given in that figure,

which were computed with a= A=0. This was to be ex-
2a p~.-.(t1~=0. 4.1) pected since the dimensionless forms of or and p~ are so

Linearization shows that this point is a stable spiral if small in that case.

w~0 anAsal oei~0, whr 0~i ie The periodic solution of the linearized form of (3.9)
with P* 0Ois

kp, C C PC where

Us 0l ~ 0 and the equilibrium point is a spiral. (a, 4
However if the fluid is extremely viscous it will be a APC ~~w
stable node. When w() is real the linearized solution
near equilibrium is. with A and 0 constants. 2aMAa0  ~(a)~

aA) I, Aepi-(4 a A'(a) \pa, C C /

x [2(a,.± )}'cos(w0,/+ 8). 4.3) As c--, A tends to A. given by

This describes a damped oscillation around equilibrium. A., = (-aw2 .'tl)2 (4.6)

For the nonlinear equation (3.9) with P= 0. when ol a l.

-0 the trajectories in the phase plane are similar to We can make A-, agree with A by replacing pi in (4.6) by
those for (T M 0, which are shown in Ref. 5. We have a certain complex effective viscosity. Alternatively we
also solved (3.9) numerically with P =0 for the case of can make IA- I agree with IAlI by replacing A in (4.6)
the underwater explosion bubble treatcd in Fig. 7 of Ref. by the real quantity Ii., defined by

2

F FIG. 1. Frequency response curves
'ii for a bubble in water with equilf-

3 i
10.9 Ibrium radius a. =10 j~m In incident

1.) I Isound waves of amplitudes P= 0.4,
4 i 0.7, 0.8, and 0.9 bar. The ordinate

1 I ~is (am-a)e and the abscissa
I i I is ww/o. The curves are computed

I II I Ifrom (3.49) and w"o is given by Eq.
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FIG. 3. Amplitude of the sublarmonic response as a function of the amplitude of the incident sound wave for w/goo0 2 and w/'w * 3.

a.= 10-3 CM, since acoustic radiation is most important
.'tff a + W- "ae 2 + A'(a,)+ -L for it.

Figure 1 shows our frequency response diagram for

-a,(, . ," +four values of the incident pressure amplitude: P. 0.4,
(pa,((n.)+ '(a)]+O(c 2) (4.7) 0.7, 0.8, and 0.9 bar. It corresponds to Lauterborn's

Fig. 3. For P= 0.4 bar our curve and his appear to be

An approximate form of (4.7) appropriate for high fre- identical, while for P= 0.7 bar they are also identical

quencies, .nt = A+ pa.3 2/4 c , was derived by Devin,4 except for the ultraharmonic resonance of order 5/2

Chapman and Plesset' and Prosperetti. °  which occurs in his curve at about w 0w= 0.37, but is
absent in ours. To see how this difference arises, we
shall consider the radius time curve a(L) for P- 0.7 bar

V. NUMERICAL SOLUTIONS and w/o = 0.37 in both the incompressible and com-
pressible cases. Figure 2(a) shows the steady state or

In solving (3.9) numerically we shall follow the pro- periodic oscillation in the incompressible case and
cedure used by Lauterborn' on the corresponding equa- Fig. 2(b) shows some early oscillations in the compres-
tion for an incompressible fluid, in order to show that sible case. We note that the two curves are somewhat
the differences in results ar due to differences in the similar. However as time goes on, in the compressible
equations, and not due to differences in methods of case the shape of the oscillation changes to the periodic
solution. Thus we start with a bubble at rest at its form shown in Fig. 2(c), which does not contain the 5 2
equilibrium radius, i.e. a(0)=0,a(0)=a,. Then for ultraharmonic.
given P and w, we follow the solution until it becomes
periodic, and plot (a.. - a,), a, vs w, o. The constants Our response curve for P- 0.8 bar is very similar to
are chosen to represent a bubble in water at 200 C with that for P- 0.7 bar, but it is quite different from Lau-
a static pressure p. = I bar and a polytropic exponent terborn's curve. His incompressible result and our
y - 1.33. Thus p=o 0. 9 9 8 g/cm , a= 72.5 dyn cm, ; compressible one are similar for wJ/to,>0.6, but not for
a 0.01 g 'cm s, p.m 0.0233 bar and c = 1.484 x 10" cm,,s. w/'o< 0.6. The incompressible result shows many
We shall study Lauterborn's largest bubble, for which peaks corresponding to harmonic and ultraharmonic

632 J. Acoust. Soc. Am., Vol. 68, No. 2, August 1980 J. B. Keller and M. Miksis: Bubble oscillations of large amplitude 632



reson~ances. at somec frequencies the amplitudes were We now introduce these variables into (3.4) and then
too large it) fit in the figure. and at some frequencies omit the bars to obtain
no periodic solution was obtained. The compressible
result always yielded periodic solutions with amplitudes -'(', 2~=+jl3)x~l
which fit into the figure, and some harmionic and ultra-
harmonic resonances. 13X2 I, U

For I'= 0.9 bar our result is again similar to that [or2 x x

P= 0.8 bar, but w ith more resonances. We computed it
only for x~ e., -0.5 to save computer time, since the os- + / (A2)
cillation went through many cycles before beconming
periodic. In the same way we obtain from (4.1)

In fig. 1 we also see a subharnionic resonance at 4- = 14 IT. (A3)
t,=2. This resonance did not occur for small values

of P'. but instead there is a threshold value which P' i-ust Sinmilarly we get from (3.9)
exceed in order for it to appear. This threshold plit -

nomenon is shown in Fig. 3. For x x,= 2 we find [hat -,i (,c)j=1+ xj[(1 - 3))kx"' -1I
2

the threshold value of Phles between 0.20 and 0.22 oar
while Lauterborn found it to be between 0.1 and 0.15 3LI__

bar. Similarly for -e .,,, 3 the compressible threshold2 x x

lies between 1.9 and 1.94 bar while in the incompres-
sible case Lauterborn found it to be between 1.3 and 4 uL iw(+! (A4)
1.5 bar. Thus in both cases the inclusion of compres-C

sibilitv increases the threshold, as one might expect.
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