
.A--AD95 425 RAND CORP SANTA MONICA CA F/6 5/2
MATCHING AND ABSTRACTION IN KNOWLEDGE SYSTEMS(U)
JAN 80 F HAYES-ROTH

UNCLASSIFIED RAN/P64140

'Pilllllum
iilfl///i



MATCHING AND ABSTRACTION IN KNOWLEDGE SYSTEMS

Frederick Hayes-Roth

January 198"

..... ...........'..... P.6440
i Dl':. i f\2.. ..-



The Rand Paper Series

Papers are issued by The Rand Corporation as a service to its professional staff.

Their purpose is to facilitate the exc' ige of ideas among those who share the

author's resear(h interests; Papr are not reports prepared in fulfillment of

Rand's contracts or grants. Vie"s expressed in a Paper a-e thc author's own, and

are not necessarily shared by Ra ci or its research sponsors.

The Rand Corporation
Santa Monica, California 90400



I -iii o

PREFACE

This briefing was presented at the Symposium on Artificial Intelligence

in Information Science during the 1979 Annual Meeting of the American

Society for Information Science (ASIS) in Minneapolis. It covers several

areas of common interests to both AI and information science.
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MATCHING AND ABSTRACTION IN KNOWLEDGE SYSTEMS

INTRODUCTION

We all suspect that there may be only a few simple but

central problems in Information Science. Perhaps, if we could

just solve those problems, we would attain the utopian image that

motivated us in our earliest days of involvement in this field.

But, of course, we cannot really solve any of these hard

problems; instead we must resign ourselves to engineering

moderate improvements in existing technologies. And that's why

you hear so many details about the engineering aspects of what we

are trying to do.

The first problem is creating what I'll call a "Knowledge

System," putting into the computer what people have variously

called knowledge, or representations of interesting

relationships, or expertise, like what a word means, or how it

ought to generate inferences. The second one is getting the

system to work. The first problem is a human and theoretical

limitation; the second is an engineering limitation.

And the third problem is a methodological one. Most of the

interesting problems that humans solve are not solved by

following a particular algorithm deterministically to some

simple solution. Rather, solutions are usually selected from a

large set of possible, more or less "good" answers to a question;

that is, a simple question to retrieve some information usually

produces a number of partially correct responses, and that

produces a requirement to search a set of alternatives for the
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preferred ones.

A central theoretical problem common to the two fields of

Artificial Intelligence (AI) and Information Science (IS)

concerns the question of partial matching: How do I compare one

thing to another thing? That is, what is the structure of

ambiguity?

Ambiguity, say in the comparison of two things, arises

because there are many ways to see two things as being similar.

I'll conjecture for you today that this problem is one of the few

core problems in this general area. To establish that, I'll go

through a number of examples, and try to give you an intuitive

sense, if not a formal understanding, of the issues.
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MATCHING AND ABSTRACTION IN
KNOWLEDGE SYSTEMS

KNOWLEDGE SYSTEMS AND DATA REPRESENTATION

ROLES 01 PAR 1
IAL MATCHING

* INFORMATION RETRIEVAL

e GENERALIZATION AND INDUCTION

0 INTERPRETAIION

H IERARCHIE1S AND ABSTRACTION

FIGURE 1

I want to relate this problem of matching to abstraction.

In particular, I want to convey the idea that hierarchies, as we

have known, play a crucial role in structuring knowledge and in

enabling us to solve many knowledge-related problems, such as

getting knowledge in and getting it out of the system. I'll talk

about the use of partial matching and information retrieval, and

how it relates to generalization and induction, and how we can

use partial matches to interpret data, or interpret a query, etc.

And then I'll wind up by discussing some of the key research

issues.

The kinds of databases we use are called knowledge-based

systems, or just knowledge systems. These systems are usually

computer languages for writing descriptions of objects,

descriptions of how they relate to one another, and some
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inference rules that describe what kind of inferences to draw

when you find an object of a certain sort or in some relationship

of interest. Then the problem arises of which inferences to

draw, given that you have only a finite amount of time.
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KNOWLEDGE SYSTEMS AND DATA REPRESENTATION

OBJECTS

THE ENTERPRISE IS A CARRIER WHOSE LENGTH IS I000m

AND WHOSE CREW SIZE IS 5000 AND . . .

ENTERPRISE

IS A
CARRIER

CIRE SIZE LENGTH

INFERENCE RULES

IF THERE IS A CARRIER WHOSE LENGTH IS GREATER THAN 800 m

ANO .',HMS iA'jGE IS UNKNOWVN, IHEN ET Ifif RAN;E

T0 [{XE frlles

FIGURE 2

At Rand we have a few programming languages for non-

computer-expert people to use, where they can write descriptions

like the one in this figure: "The Enterprise is a carrier whose

length is 1000 meters and whose crew size is 5000 men." In

the computer, that turns into a graph structure with a node, and

various links, where every link has an attribute type, such as a

name, and then a value.

The systems actually solve problems by having encoded in

them some human expertise about how to draw inferences. For

example, if there's a carrier whose length is greater than 800

meters, and whose range is unknown, then set the range to 1000

miles. If I wanted to figure out the carrier s range, I could

either apply this rule to all data instances in the database, or

I could work backwards to see if the premises for this conclusion
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are justified.

People are now finding hierarchies to be quite useful.

That's not surprising, because through all time, people have been

trying to use hierarchies. What is unusual is that these

programming systems for creating knowledge-based systems now are

providing natural structures for creating hierarchies, are

simplifing the description of the knowledge of the world, and are

simplifying the number of rules that one has to create because

one can state general inference procedures quite generally if

they apply to many lower-level members of a hierarchy.
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KNOWLEDGE BASES

OBJECTS
I1I, MES'SAGES. HEADERS, SENDER. RECIPIENT, DATE. BODY

PARA(;RAPHV KEY\VORDS MEANING

RELATIONS

SUBJECT VE RR OB IECT
A PART-Of B
SIZE DEFAULIS-IU MEDIUM

HIERARCHIES: IS-A, PART-OF, HAS

OS G VERNVI .1

-l / I\ ARC I I'\ .i'API -()I

F XEUlI IVE i G[ I ATURE JHDI( 1ARY

IS-A / PART-OF/ \ PARt -Of

l'X - C I CH'i!F q',AT

IS-A/ \.<,-A

j I rE S CARTER FORT) TSV.,' IF E ,.,-. - -  '  
- '' VF lI

IS-A
ROSLYNN

FIGURE 3

Let me just give you an example: This figure is a graph

representation of part of what you would say if you wanted to

describe the government. You would say that there are three

parts of the U.S. government: the Executive, the Legislative,

and the Judiciary. The President is an executive who is part of

the U.S. government. Carter is President now; he has a wife;

Roslynn is a wife.

These three kinds of relations (is-a, part-of, and has) go a

long way toward simplifying a great many descriptions of the

world. And people have devised quite simple algebraic rules for

how to solve such general questions as: "Is Roslynn part of the

U.S. government?" Or: "Is Carter part of the U.S. government?"

Or, if one wants to say something about all parts of the U 3.

government, knowing whether those inferences apply to tlese
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things.

At Rand we are generating a program called ROSIE that is

intended for wide military use (and we hope domestic agencies of

the government will use it,too) for putting in their knowledge of

the world, putting in some rules they would like the computer to

apply routinely, and having it apply them. We find that once

we get people started with this kind of system, non-programmers

can keep it up to date and extend it.
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2 ga hy Z -

with'

tatta OJIS

2 Plan,

plot , 3 a

A LAVIN IS A MOWiN AREA OR PLOT PLANTED WITH GRASS OR SIMILAR PLANTS

A MOWER IS A MACHINE THAI CUTS GRASS, GRAIN OR HAY

FIGURE 4

This figure is from a previous project that I did with Dave

McDonald at Carnegie-Mellon. Our goal was to avoid completely

the programming problem, if we could. So we created a system to

create these kinds of hierarchical networks, essentially, by

directly parsing the American Heritage Dictionary definitions.

These two definitions were two of the word senses of a lawn

and a mower, out of that dictionary. The kinds of research

problems we were studying were "So, what's a lawnmower?" for

example; or, in general, how could one extend a knowledge base,

either by taking in the cumulative human wisdom as recorded in

such great books as the dictionary, or by synthesizing new

meanings by means of some general search processes through such

knowledge bases. We wll return to this problem in a little

while.
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INFORMATION RETRIEVAL

QUERY IS A SET OF OBJECTS, VARIABLES AND RELATIONS

REPUES ARE A SET OF OBJECTS AND RELATIONS THAT PARTIALLY

MATCH THE QUERY

FIGURE 5

Now let me tell you why I think partial matching is one of

the key theoretical issues. I look at information retrieval as a

partial matching problem, where a query in Artificial

Intelligence terms would be represented as a set of relations

among a set of objects, which may have somu variables that are to

be instantiated, such as: "Who is the President of the U.S.?"

That might be described as a graph, where you have President of

U.S. as the known part of the graph, and you want to find all the

instances in the data base that contain that incomplete graph.

The replies are the things in the data base that partially match

the query. A good reply is something that satisfies all the

constraints that the query entails, but you may not always be

able to do that.



CHURL JOVIE

FIGURE 6

I want to give you another example to demonstrate that there

are many different answers depending on what the question is.

Suppose I have a data base with two birds, a churl and a jovie.

I don't care what kind of description you would propose that I

have in there, but let's suppose we had the two in Figure 6. A

typical human problem, and one which is an analog of the general

information retrieval problem, is to identify something when only

part of it is present.
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CHURL CHURL
OR OR

JOVIE ? JOVIE ?

FIGURE 7

Given that these parts are the same size, the same

orientation, and the same scale as the two original items that

contain them, there are many ways to solve this problem. If any

one of these attributes varies from the original, there are no

good ways to solve this partial-matching problem.
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DESIRABLE PROPERTIES OF ANY MODEL

I)) PART RECOGNIZABILITY ICLASSIFIABILITY

A PART OF AN EXAMPLE CAN BE AS RECOGNIZABLE
I CLASSIFIABLE ) AS A WHOLE

12) ATTRIBUTE COMBINATION EFFECT

A PART CAN BE RECOGNIZED I CLASSIFIED BECAUSE
SOME COMBINATION OF ITS ATTRIBUTES IS STORED
I DIAGNOSTIC 1

(31 PART-WHOLE CONTINUITY
ASSUMING THAT THE SAME MECHANISM UNDERLIES

RECOGNITION (CLASSIFICATION) OF SMALL, MEDIUM.
OR LARGE PARTS,

AN EXAMPLE CAN BE RECOGNIZED ( CLASSIFIED I
BECAUSE SOME COMBINATION OF ITS ATTRIBUTES
IS STORED (DIAGNOSTIC)

(41 STRENGTH EFFECT

CONFIDENCE IN RECOGNITION ( CLASSIFICATION ) JUDGMENTS
IS RELATED TO MEMORY REPRESENTATION STRENGTH AND
STRENGTH INCREASES WITH PRESENTATION FREQUENCY

FIGURE 8

Part of what we've been doing is just confirming our

intuition that human information processing satisfies what you

might take to be some trivial, but intuitively desirable,

properties. I hope some of these things sound trivial to you,

but in fact most of the psychological literature mirrors

information systems algorithms by trying to short-circuit the

complexity of dealing with arbitrary configurations of partial

descriptions of objects in order to do "look up."

M EI
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ASSUMPTIONS OF THE PROPERTY-SET MODEL

* (PARI R[COGNI/ABI[lIY, A1IRIBUIL COMBINA II0'.

EFFECT, AND PARI-VVHOLL CONTINUITY)

-THE ELEMENTS Of THE MEMORY REPRESENTATIONS FOR
PRESENTED EXAMPLES ARE COMBINATIONS OF SIMUL-
TANEOWSLY OCCURRING ATTRIBUTES (PROPERTY-SETS)

* (STRENGTH EFFECT)

- THE STRENGTHS OF PROPERTY-,ES IN MEMORY ARE
INCRfASING FUNCTIONS OF ifEIR FREQUENCY AND
SALIENCY IN PRESENTED ITEMS

FIGURE 9

We find that people are very good at recognizing a whole

from a part. They accomplish this by dealing with a combination

of attributes as if it were a configuration, that is, they don't

treat things independently. The more information you give them

the better, and the more familiar they are with something the

better they get, too. In our research we develop computer

programs and models of people which mirror such capabilities, and

then try to solve the ensuing problems. Some of these programs

require extraordinary amounts of computer time.
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PARTIAL AND BEST MATCHES

AhA'kA, 11uN A 8 -. UMMON (OMPOUNNTs Of DLsRIPTIONS A AND B

A A - b 'RUPLR|ILS TRUL UF A ONLY

6 A . B PRUPLRTILS IRUL Of B ONLY

'ARIIAL iA " A S A A I, A A * B 8 A *

FIGURE 10

Now I want to talk about what goes technically under the

term of sub-graph homomorphism, which I'll simply call a partial

match. The basic idea here that if I have two representations of

some information, say "A" and "B", I am often interested in

,.omparing them. The comparison of major interest, which I'll

call "A" * "B", is a description of everything common to the two

initial descriptions. Now, as we get into these general,

structured knowledge bases, we see that there's more than one

answer, more than one way to hold up a graph and "embed" it

within inother graph.

You can do some interesting things with this simple

comparison operator. You can use the commonalities to induce new

concepts, abstractions, and generalizations. You can even make

use of the residuals," the properties of the initial
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descriptions that are uniquely associated with only one of the

two items compared. These residuals induce interesting

structures over the data base. So, when I refer to a partial

match in general, I may occasionally emphasize either the best

mdtch between the two compared structures or their corresponding

residuals.
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(a) (bl

EI ii UEl I f:ill [i

(c) Cd)

(a) Example 1
(b) Example 1 Example 2
(c) Example 1 * Example 2 * Example 3
(d) Example 1 Example 2 * Example 3 * Example 4

FIGURE 11

In 1906 a psychologist by the name of Sir Francis Galton

used the technology of his day, which was photography, to form a

general theory of how human beings learn and recognize things.

He called it a composite photograph theory. The problem he was

trying to solve was this: How is it that I can recognize a face,

regardless of the aspect, or angle of the face, or distance; how

is it that I build up a composite template to recognize people's

faces from multiple views? His theory was that each person's

face might be represented as a photographic transparency. The

photographic transparencies would be overlaid, superimposed,

homologously, until only the commonalities would emerge.

This figure shows a sequence of superpositions of

descriptions of something, like a transparency of a face. By

superimposing them, the common characteristics should evolve.
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Here I'm using features, which are present, and representing them

as simply transparent. Things that are absent are represented as

black. Galton's theory was that if the brain could somehow

magically superimpose these things, over time, their

commonalities would emerge to define the "pattern."

if
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BASIC USES OF PARTIAL MATCHES

* ABSTRACTING COMMONALITIES AND IDENTIFYING DIFFERENCES
SEVERAL EXAMPLES ARE COMPARED FOR

CONCEPT LEARNING
PATTIRN DISCOVLRY
RULE INDUCTION
PRLDICAIt DISCOVLRY
ANALO(,I AL RfA()NIN((

" PATTERN RECOGNITION AND CLASSIFICATION BY CONSTRAINT

SATISFACTION

DAIA DEPLkIhI l A,<IAL ,IA[i tiL) It' PYu[OhYPL IL u1 R iW(10

, OMMONALIIL'H - AII,)ILD CONSTRAIrT

RL >IDOJAL. - N IhLL LRROR DL';IAl!i,

* INTERPRETATION OF DATA IN A SYSTEM OF FRAMES
%MI TIPLL ALTlRNATIVF (NTrRURFIA!IF. -A A h

AR[ PLAbI RU

vARIOL INIiRPRLIAIIO% Aki -'. % PRLAIj:
IN( ONS I SILNI

DATA DESCRIPTION PAREIAC MA lI F ' .'v 0HA:
,YSIEM O1 ILOTLPLAILA IRAMlLN

OVLRALL INTERPRETAIION I> 61.:l ;A1,' . k jt . JAI,'
AND MLLTILEVL FRAME S',,TL'

FIGURE 12

But again, real problems arise. How do you get two

structures to line up with one another? How do you orient them?

You almost have to solve the problem of what's common to the face

before you know what the face is. But, we've made some progress.

I'm going to try and review some of that for you, and give you

some examples of how these abstracted commonalities help define

new concepts, and perhaps even define some rules that you could

use in general. I might give you multiple examples of how you'd

want a system to behave, and what inferences to draw on what

case. The system would pull out the right inferences, because it

would generalize the rule. I'll talk about discovering some new

predicates to compact a data base that has several things which

partially match with one another, and, to the extent I can, I'll

talk about pattern recognition.
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ANALOGICAL INTERPRETATION IN MERLIN
INTERPRET A AS A SPECIAL KIND OF A B

A A 9

CAN VVE USE A TENNIS BALL AS A MAKESHIFT BASEBALL ?

5 $ q BASEBALL

LIGHTSOLID

FUZ MODERATELY
. .. HEAVY

LEATHER

FIGURE 13

One nice example comes out of the Artificial Intelligence

literature, which was done by Moore and Newell of Carnegie-

Mellon. It's a system called Merlin. They were interested in

the partial matching of two concepts to find out, for example, in

what sense a "trailer" could be a "house," or whether a "human

being" can be seen as a "work horse" (that is, the general

problem of how to look at one concept as an instance of another).

This is a problem of partial matching. The Moore and Newell

approach helps illuminate some general properties.

When I played the sub-'bhan version of sandlot baseball, we

used a tennis ball instead of a hardball because a hardball was

very dangerous. This suggested an example for today's meeting:

How could you interpret a tennis ball as a hardball? In what

sense is a tennis ball a kind of baseball? Merlin proposes to



-21-

look at a tennis ball as one concept, and a baseball as another

concept, and then to find ways in which they are similar. The

dictionary says that they are both around three inches, they are

both spheroid shapes, they are both hit forcefully in games, but

the game for a tennis ball is tennis, whereas the game for a

baseball is baseball. The structure of a tennis ball is hollow,

whereas the structure of a baseball is solid. One is covered in

leather, the other in fabric, etc.

This show us that if you have in your knowledge base the

definition of one concept in terms of relations and attribute

values of other concepts, hierarchically, that is, many of these

terms are concepts which themselves have refined definitions in

the dictionary.

Once you have a structure where everything is encoded in

terms of other things, you can often get very good, very fast

matches by lining up the two concepts on their shared types of

attributes, and then treating the residuals (that is the things

that are different about them) as variations on that conceptual

theme. For example, you find that a tennis ball might work as a

makeshift baseball, as long as the fact that it is designed for

tennis is not critical. As long as none of these differences is

critical, the substitution is okay.

Merlin also allows you to recurse on this problem. If you

want to know how the fuzzy cover compares with the leather one,

you would ask the same type of comparison question recursively.

One key idea is that if the knowledge is structured

hierarchically, you get a partial match on some of the concepts

that line up, and then you can recursively compare the residuals
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by partial matching.

Of course, no one's going to tell you if the solution you

find is "good enough"; that question is exogenous to this kind of

problem.
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INDUCTIVE INFERENCE

ABSTRACI - INER - S[ORE MODEL.

EXAMPLES ASSO( IAED RESPONSES

Y

INDUCE AND STORE RULES

A : B X
C *D - Y

FIGURE 14

Partial matching is also used in a certain kind of inductive

inference.

Suppose I have multiple examples: "A" and "B" here are both

supposed to entail some inference "X" or some response "X." And

I have "C" and "D," both of which are supposed to lead you to the

same response, namely "Y." The inductive theory we've been

developing proposes that the best kind of generalization you can

make would be that anything that has the commonalities of both A

and B ought to lead to the response X. That's what I have in

this figure: A * B --- > X, and similarly for C * D --- > Y. This

kind of theory can be embellished, but here I'll only give you an

example of the way it's used.
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TRANSFORMATION AND PRODUCTION RULE LEARNING
THINK R L IXPRLSS - HEAR'SPEAK

S SAME

,P V, V 'THEBOYVAANS

THE 2~ VP HI INI V TO DR I NK'
BOY WANTS - U''" . .%- /"

THT BOY DRINK III LIHINK7

EXAMPLES - -
S3  SAME S4

VPs 'vI' "THE TALL GIRL
NP3  S PLANNED TO GO

H NP4 , SKIING IN
HE ~ I ~ I, V VERMONT"
ALL PLANN ED0 1 1 "1 ANNE 1) VROT

TH TALL GO SKIING IN 0 (10 SKIININ
GIRL VERMONT VERMONTS SAME N SV v

*VP, PV
RULE NP S NP (EQUI-NOUN PHRASE

VP V DELETION)
NP NEj VP

X 7 TO •

FIGURE 15

We have used this kind of theory in an experiment on the

induction of transformational grammar rules--not because we are

interested in transformational grammar rules, but because it is a

set of rules that many people have studied. For example, you

might have a deep structure representation of a sentence, like,

"The boy wants the boy to drink," meaning, "The boy wants that

the boy [should] drink." One of the rules of transformational

grammar, the equi-noun phrase deletion rule, says that the

sentence should be re-written as, "The boy wants to drink."

Now, you might have another sentence which says, "The tall

girl planned to go skiing in Vermont" in its before and after

forms. And if you superimpose these graphs on each other and

pull out the best partial match, what you get is a rule that

looks like this, where the residuals, like "the tall girl" versus
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"the boy" are replaced by general variables, free variables, to

be instantiated by any corresponding noun phrase in a new

sentence that fits that slot. You can induce a variety of rules

like that if you spend a lot of computer time.
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PREDICATE DISCOVERY

CORRESPONDING RESIDUAL VALUES FROM PARTIALLY COMPARABLE SITUATIONS
IDENTIFY NEW PREDICATES

EXAMPLES

BECAUSE JOHN IS SO TALL, IT IS DIFFICULT TO FIND CLOTHES THAT FIT HIM.

BECAUSE MARY IS SO SHORT, IT IS HARD TO GET CLOTHES THAT CAN FIT HER.

BECAUSE JOANNE IS SO FAT, IT IS IMPOSSIBLE TO GET APPAREL THAT IS THE
RIGHT SIZE.

BECAUSE TOM IS SO SKINNY. IT IS NOT POSSIBLE TO FIND CLOTHES THAT
ARE SUITABLE.

1ARIIAL IAII

BEL(AL i U I', , V I I> W 1r) X

RESIDUALS NEW PREDICATES

U: )JOHN, MARY, JOANNE, TOM NAME

V: TALL, SHORT, FAT, SKINNY: BODY SIZE

W: )DIFFICULT, HARD, IMPOSSIBLE, NOT POSSIBLE} DIFFICULTY

X: IFIND CLOTHES THAT CAN FIT HIMI (FIND CLOTHES FIT)
IGET CLOTHES THAT CAN FIT HER I /

. . . IFIND, GET: )CLOTHES, APPAREL ...

FIGURE 16

Another application, rather than using the commonalities of

compared sentences, would focus on the corresponding differences,

for example, "the tall girl" versus "the boy," once you had lined

up the two structures. If you do this, you can discover new

predicates and can probably compress a great deal of language and

generate a lot of syntactic structures for various sub-

specialities of scientific fields.

This figure lists a number of sentences to show what happens

when you partially match them, without even the benefit of having

a grammar, and to show that by lining up the commonalities, a

grammar rapidly emerges over this small set. You could also

apply it more generally to larger domains.

Let's line up these words and try to maximize some

goodness-of-fit measure among them. What we get is a match that
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says, "Well, notice that they all have 'because' and they also

have 'something is so,' 'it is something to x'." These are the

corresponding places in the sentences that have different

residuals. Now, note that each one of these correspondences

defines what may not already be a concept in your computer

language, but is apparently an implicit concept in English. I

don't know what to call them, necessarily, but I'll just take the

illustration a little further. A useful kind of inference for a

system that is trying to assimilate all this knowledge and

restructure its data base would be that category U is a set of

names, because they are all names. Category V is something about

body size. W describes some degree of difficulty; but in fact,

more examples would cause this concept to be weakened to some

expression of "ease" or "facility."

Notice here that I have large structures that don't

correspond to any simple category. So now, as in Merlin, we'll

recursively apply partial matching, and we get a structure like

category X, "Find clothes that fit," where these are now

secondary predicates, which are induced. "Find" and "get" are

instances of this general category. We can see many

combinatorial issues arising when we try to explore all these

alternatives in building an actual system.

It's hard for people to express all of this type of

knowledge for a computterized database, because each one of these

ambiguous category structures of language is more or less

important, depending on what one is interested in. And that's

why we want to get away from hand-crafting particular meanings in

terms of complex computer programs. We would rather have this
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kind of induction happen dynamically, in the context of a problem

that has to be solved, where we can bring to bear all the

relevant experiences through partial matching. That's a real

wish. How might that happen?
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SYNTHESIS OF NOVEL SEMANTIC INTERPRETATIONS

PROBLEM: INTERPRET A NOVEL PHRASE (LA WN MOWER) GIVEN ONLY CONSTITUENT MEANINGS

SOLUTION; PARTIAL-MATCH THE CONSTITUENT MEANINGS AND EXPRESS THE RESULT VERBALLY

similar
plants grain

or 0 grass 0 hay

wt 10 or that
OnVr r ' n cuts

a , 2 A,' achine
area A
orpltV

METHOD. PERFORM INTERSECTION SEARCH OF SEMANTIC NET

RESULT: A LAWN MOWER IS A MACHINE THAT CUTS GRASS OR SIMILAR PLANTS

FIGURE 17

We frequently encounter suggestions to exploit intersection

searches in knowledge networks. Loosely speaking, a path between

two points may define the solution or the meaning of the

relationship between them. That is exactly the method used in

our dictionary task. First, we created these hierarchies: "A

lawn is a mown area planted with grass or similar plants," and

the mower definition was, "a machine that cuts hay, grain, or

grass." Remember we created this by just reading the dictionary,

and now we want to ask, "What's a lawn mower?" We did this more

generally for noun-noun phrases, adjective-noun phrases,

subject-verb-object phrases. The general idea was to find a

meaningful way in which one thing could modify another one,

constrained only by the fact that in certain English phrases, the

syntax constrains one component to apply to another, rather than
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vice versa.

We used a method which was a generalization of something

Fiksel and Bower had published for a totally different purpose,

to create a parallel automata for information retrieval to answer

queries. We started search processes at the node for "lawn" and

"mower" (not on the figure) and then searched in all possible

directions looking for a meaningful intersection. We came up

with the intersection shown, and used a few simple algebraic

rules that specified how to transform this kind of intervening

path into a simpler expression, and in turn, how to paraphrase

that expression in English.

We built a completely lexically based language understanding

system for a very small portion of English. No conceptual

primitives were entered in the system, and the main method was to

compare examples by partial matching over these structures. Thus

we find "A lawn mower is a machine that cuts grass, or similar

plants."

Now it doesn't work for everything, but it worked for a

suprisingly large number of things. We never really ran up

against what I would call fundamental obstacles.
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THE PARTIAL MATCH ADMISSIBILITY CRITERION

THE MORE SIMILAR A AND B ARE,

THE FASTER THE PARTIAL MATCH SHOULD BE

V(~lW(X .Ry: N~a:x)

( ix, P Q~c.d)
W(x, yJ

FIGURE 18

In the time remaining I want to discuss some of the

interesting problems that remain to be solved. The partial match

admissibility criterion is one. Suppose you have a good

algorithm for a partial match. One thing it ought to satisfy is

this test: If I give you two things to compare, the more similar

they are the faster your algorithm should be.

For example, if you have a spelling corrector on a computer

system, when you type in a word it's supposed to tell you what

the right word is. The more similar the input is to a correct

word, the faster the corrector should be. I can imagine writing

a special-purpose program for that. But in information retrieval

systems in general, where a query consists of several keys and

the answer is found by taking the inverted indexes for each key

and intersecting them, you get just the opposite performance. I



-32-

don't have the solution to that; I came today in the hope that

somebody here would give me the answer.
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HIERARCHIES AND ABSTRACTION

- SOME OBSERVATIONS -

HIGHER-LEVEL CONCEPTS MAY BE INFERRED BY PARTIAL MATCHING

<CATEGORIES OF FUNCTIONALLY SUBSTITUTABLE ENTITIES>

THESE ABSTRACTIONS REFORMULATE THE DATA-BASE

/HIGHER-LEVEL, LESS PRIMITIVE CODES>

<DATA REDUCTION>

MATCHES EXPLOIT THE HIERARCHY TO SPEED SEARCH

<HIGH-LEVEL CODE MATCHES OCCUR FIRST>

<FEWER CHANCE HITS ON COMMON ATTRIBUTES>

FIGURE 19

Actually, we do have some ideas. One is that partial

matches must be structured to run over a hierarchical data base--

and it's the hierarcnies in part that give you the speed. At

the risk of oversimplifying, let me address some overall

conclusions of this research area.

The first observation that I want to leave you with is that

we can use this idea of partial matching to infer higher-level

concepts, such as those predicates I was talking about earlier,

like "fit" and "name." Those were just the types of things that

Merlin used in order to go faster in its comparisons. These new

concepts were categories of functionally substitutable entities.

We found that we could substitute this or that and still have the

same general structure. Second, once I had found those concepts,

I could recode my entire knowledge base to have all these
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additional relations. I would then have higher-level

descriptions than I started with, that is, each predicate would

be more restricted in applicability, even though the higher-level

terms would also have lower-level descriptors below it. In turn,

these high-level predicates could produce a data reduction

factor, typical to taxonomies.

The third point is to use this hierarchy to speed the

search, as in the example I gave you earlier. High-level coding

helps you in many ways. It is just the opposite from most of

psychological theorizing that says, "I understand things in terms

of primitive concepts; I break high-level codes down to digest

them." With the approach discussed here, you go the other way

around. You work dynamically, comparing the current situation to

all of your relevant experience, but at the highest possible

level of description. This I have described elsewhere as "wait-

and-see" inference. It seems eminently reasonable, functionally

powerful, and--with today's machines--extraordinarily slow.
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THE KEY RESEARCH ISSUES

0 F 'D I I fHF KV.1f'LEDGE RE PRESE'TATIOMS

* K,% , - T ',( , KT -. E , T 1' P L IF , S E A R C H E S

FIGURE 20

What are we working on now? We are trying to represent more

knowledge than we can currently put into our computers, and we

are trying to create programs that everybody can use to generate

some big knowledge bases, as in a legal reasoning project at

Rand. We are trying to create for civil justice research a

complete description of all laws, legal rules, and their

application in a body of actual cases. That's a large order, so

we are currently restricting ourselves to a very small area of

law.

Once you get this knowledge in the computer, the key is to

decide what kind of search problem you need to solve. Then you

need to reformulate it, so that you've already pulled out the

common generalizations that can speed up the essential search

processes. As to improved hardware, I'm hedging my bets because i1
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it may be practically infeasible for a large class of problems.

I think improved algorithms may be a far better bet for most of

the major problems of immediate interest.
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