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ABSTRACT " r/

An examination of the Rayleigh-B~nard convection experi-

ment shows that the defining features of long range order

and spontaneous symmetry breaking, as they occur in equilibrium

transitions, are also observed far from equilibrium. The

broken symmetry is not, as has been suggested, translational

invariance, but rather a discrete symmetry under velocity

reversal. Some experimental consequences of these observa-

tions are outlined.
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1. Introduction

Instabilities occurring far from equilibrium exhibit features

reminiscent of equilibrium phase transitions. Divergent correlation

lengths , order parameters with a singular dependence on external

conditions, 2 ,3 ,4 and critical slowing down1 ,3 ,4 have been observed,

and associated critical exponents measured, in a variety of systems

far from equilibrium. Theoretically, non-equilibrium transitions

have been described5 using a Ginzburg-Landau theory analogous to

that of equilibrium transitions. Other parallels between equilibrium

and non-equilibrium phenomena have also been drawn.
6 '7 '8

In particular it has been claimed 7 '8 that a transition from a

homogeneous to an inhomogeneous state, for example the onset of a

roll pattern at the first convective instability9 , constitutes the

spontaneous breaking of translational symmetry. Since spontaneous

symmetry breaking occurs in equilibrium systems, it is claimed that

this breaking of translational symmetry is another important

similarity between equilibrium and non-equilibrium phenomena.

10
It has been pointed out , however, that, as opposed to say

crystallization, the structures which occur far from equilibrium

are always determined by boundary conditions: in a convection cell,

for instance, there is always an integral number of rolls. Further

it is noted that no consequences of broken symmetry such as rigidity
1 0 '1 1

and Goldstone modes have been observed in these structures far from

equilibrium. The conclusion is reached that1 0 '1 1 ' 1 2 the observations

of broken symmetry far from equilibrium are superficial and "there

exists neither a theoretical nor an experimental basis for deciding
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whether or not dissipative systems13 have structural properties

analogous to equilibrium ones".

The purpose of this paper is twofold. Firstly it is pointed

out, through a consideration of the Rayleigh-Benard convection

experiment, that the central, defining features of long range order

and spontaneous symmetry breaking, as they occur in equilibrium

systems, are also observed far from equilibrium. The symmetry

which is observed to be broken is not translational symmetry but

rather a discrete symmetry under velocity reversal. Secondly, some

experimental consequences of this observation are outlined.

In Section 2 the meanings of the terms long range order and

spontaneous symmetry breaking, as applied not only to equilibrium

systems but also to systems far from equilibrium, are carefully

specified. The Rayleigh-Benard convection experiment is then

examined in Section 3 to show that at both the first and the second

instability, long range order and spontaneous symmetry breaking

occur. In the final section, a comparison with equilibrium systems

is given, the question of translational symmetry is addressed and

some experimental consequences of symmetry breaking far from

equilibrium are outlined.

2. Long Range Order and Spontaneous Symmetry Breaking

Given the disagreements in the literature mentioned above over
.4

whether or not spontaneous symmetry breaking has been observed far

from equilibrium, it is important to be clear about what one means

by this term.
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In equilibrium physics, the term is used to describe, roughly

speaking, the onset of a state which breaks, in an organized way

over a macroscopic scale, a symmetry of the microscopic dynamics,

in a way which is not pre-determined by the experimental arrangement.

Many symmetry breaking transitions in equilibrium physics can

be described in terms of a local dynamical variable which can vary

in space and time. Examples are the magnetization density in

magnetic transitions and the phase of the wavefunction in super-

conducting and superfluid transitions. Many non-equilibrium systems

also exhibit transitions describeable in terms of a local dynamical

variable, for example fluid velocity in hydrodynamic systems and

concentration in chemical systems.

Spontaneous symmetry breaking can therefore be defined a

little more precisely as follows.

If the microscopic dynamics are invariant under some trans-

formations of the dynamical variable, these transformations will be

referred to as symmetry transformations. A dynamical field v(x,t)

will be defined as the deviation of a dynamical variable from the

value which is invariant under all the symmetry transformations.

Long range order can then be defined as the existence of a

macroscopic space-time domain D and a dynamical field v(x,t), such

that v(x,t) is non-zero somewhere in D and is periodic over D in at

least one space or time dimension. "Periodic" will be taken to
"4 1

include "constant" as the simplest case. 14 This definition of

long range order implies, through the definition of v(x,t), the

"* breaking of a symmetry.

'7
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Two configurations of a dynamical field v(x,t) in D, describing

long range order, will be said to be symmetric if they can be

mapped onto each other by symmetry transformations.

Symmetric external conditions, with respect to a given long

range order are those at which the system can have different but

symmetric configurations of the long range order, depending on the

way the external conditions were achieved.

A system will be said to exhibit spontaneous symmetry breaking

if it exhibits long range order under symmetric external conditions.

Equilibrium phenomena represent special cases in the above

definitions since the time dependence of v(x,t) is the most trivial:

v(x,t) is independent of t in equilibrium systems. In an equilibrium

ferromagnetic, for instance, the symmetry is under rotations of

magnetization vectors; the invariant value is zero; the dynamical

field is the magnetization; it acquires a non-zero value which is

constant in space and time over macroscopic scales; two different

directions of magnetization are related by the symmetry trans-

* formation; the symmetric external conditions are those with zero

applied uniform field; and different directions of magnetization can

be obtained by reducing fields pointing in different directions

to zero.

These definitions of long range order and spontaneous symmetry

breaking can now be applied to a non-equilibrium experiment: The

Rayleigh-Benard convection cell.

i'
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3. Rayleigh-Benard Convection

Rayleigh-Benard convection9 is the flow of a fluid contained

between horizontal thermally conducting plates, and heated from

below. The Rayleigh number Ra is proportional to the temperature

difference between the plates. For small R the fluid is at resta

and heat is transferred solely by conduction. At a critical value

Rc of Ra a transition or instability occurs to a flow pattern

consisting of convection rolls. This flow pattern is constant in

time. For low values of the Prandtl number (ratio of kinematic

viscosity to thermal diffusivity), a second transition occurs at a

higher value of Ra, to a flow consisting of transverse oscillations

of the rolls.

3.1 The First Instability

The microscopic dynamics are invariant under the reversal of

the components of all velocities azimuthal to the convection

rolls. There is nothing in the equations of motion which prefers

one direction of roll flow over the other. The symmetric value of this

velocity component is zero and so the actual value is a dynamical

field.

Once the transition has occurred the value of this dynamical

field is constant in D, along a roll and in time. The system thus

exhibits long range order.

• By directly inducing a roll pattern with either sense of

azimuthal flow and then letting the external conditions revert to

those described above, with long range order present, the rolls can

be formed with either sense, at the same external conditions. These

A
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two configurations are symmetric and the system thus exhibits

spontaneous symmetry breaking.

3.2 The Second Instability

The microscopic dynamics are invariant under reversing the

component of all velocities transverse to the rolls. That flow

component is therefore a dynamical field.

Its value, once the second instability has occurred, oscillates

periodically in D, in space along a roll, and in time. The system

thus exhibits a new long range order.

By changing the way the system is prepared, the sense of the

transverse velocities as observed over any finite interval of time,

can be reversed, and these two configurations are symmetric. The

standard external conditions are thus symmetric and the system

exhibits a second spontaneous symmetry breaking.

Thus the defining features of long range order and spontaneous

symmetry breaking, as they occur in equilibrium, are also observed

far from equilibrium, at a transition to a stationary state, and

also at a transition to a time-dependent state.

4. Comments and Experimental Consequences

4.1 Comparison with Equilibrium Models

In the transitions just discussed, the fundamental symmetry

.4 breaking, which defined the dynamical field, was the breaking of a

discrete symmetry between two configurations. Thus, in this respect,

the transitions are similar to phase transitions in Ising models.

Further, the first instability led to a v(x,t) which was constant
'1
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in time and in one spatial direction. Thus the system at the first

instability is like Ising models with ferromagnetic interactions

in two of their dimensions. If one considers moving in space from

one roll or vortex to the next, however, one encounters oscillations

in space. Thus, the first transition is like those of Ising models

with competing ferromagnetic and antiferromagnetic bonds along one

spatial direction. An example of such a model is the ANNNI model

which has an oscillatory magnetic ordering in one direction, and

ferromagnetic ordering in the other directions.

The state which arises after the second instability has

oscillations in time and in two space dimensions. It is thus

analogous to the equilibrium ordered phase of an Ising model with

oscillatory order in three dimensions.

4.2 The Transition to Inhomogeneity

As remarked in the Introduction, the onset of inhomogeneity,

such as occurs at the first instability of both the convection

experiment and the Couette Taylor flow system, has been described
2'9

as a spontaneous symmetry breaking transition. The translational

symmetry of the near equilibrium state is said to be broken by the onset

for example of convection rolls and Taylor vortices respectively.

The finite size of these experiments means that there is in

fact no translational symmetry there to be broken. In a freezing

transition, one speaks of breaking translational symmetry even

though all experiments have a finite size. The difference is that

freezing will occur in volumes with an arbitrarily large number,
fo
for instance Avagadro's number, of unit cells. The effect of the
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boundaries can thus be made negligibly small compared to bulk

effects. This is not the case in the Rayleigh-Benard and Couette

Taylor experiments. These experiments are typically done at a

small number (roughly 4 to 400) of unit cells (convection rolls

or Taylor vortices). Further, there is evidence 15 ,9 that, as the

number of unit cells reaches around 100, the whole pattern becomes

unstable. It has been claimed12 that in such systems fluctuations

are expected to destroy the long range order in the infinite system.

Thus there is no translational symmetry to be broken. Connected

with this is the fact that different states, related to each other

by translations (see §2), are not observed. Thus these transitions far

from equilibrium do not constitute spontaneously broken translational

symmetry.

It was shown in §3 however that, underlying this inhomogeneity

in the Rayleigh-Benard experiment is a spontaneously broken

discrete symmetry.

4.3 Experimental Consequences: The Effect of Symmetry Breaking

Boundary Conditions

When an external field breaks the symmetry associated with an

equilibrium symmetry-breaking transition, this transition becomes

rounded instead of sharp.

Now certain boundary effects in the Rayleigh-Be'ard and the
w 1alr6 smohn17

Couette Taylor experiments are known to produce a smoothing or

rounding of the respective instabilities. This rounding can be

understood'7 in terms of extra terms introduced by the boundaries

into the corresponding amplitude equations.

Symmetry considerations, and the comparison with equilibrium
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transitions, give a simple qualitative explanation, however. These

end effects are known to induce convection rolls (vortices in the

Couette Taylor system) even quite close to equilibrium. In inducing

these rolls (vortices), which simply grow smoothly in amplitude as

the driving is increased, the ends are selecting a sense of roll

(vortex) flow velocity, and hence breaking the symmetry of the

transition: symmetry under reversal of this velocity. From experi-

ence with equilibrium transitions with a symmetry breaking field

applied, one therefore expects that the transitions are rounded,

as observed.

A stronger test of these symmetry arguments, however, would be

to use them predictively, rather than descriptively.

A prediction can be obtained as follows. The symmetry arguments

depend not on the magnitude of the boundary effects, but on whether

or not their sense is such as to break the symmetry associated with

the transition. Consider then two rectangular convection cells,

A and B, with aspect ratio equal to a small odd integer, say 3. Let

cell A have a small amount of heat flowing in one face and an equal

flow out of the opposite face,where these two faces are parallel to

the length of the convection rolls (Figure la). Let cell B be

identical except that the sense of one of the side wall heat flows

,. is reversed, its magnitude remaining constant, so that on both sides,

heat is flowing in, say, at equal rates (Figure l b).

'7
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The effect of heat flowing in (out) at a side wall is to

induce, even for Ra < R c, a roll with fluid flow upward (downward)

at the wall. If at larger Ra a roll pattern fills the cell, one

can consider how the two possible senses of azimuthal flow compare

with that of the boundary rolls. This can most simply be seen in a

diagram. In Figure 2 the senses of the boundary roll flow are

indicated by arrows outside the boundary. For an odd number of

rolls, cells A and B have the possibilities shown in Figures 2a and

2b respectively. (The sense of flow is always observed to alternate

from one roll to the next.)

In cell A, Flow 1 coincides with the boundary induced flow at

both boundaries, while Flow 2 is opposite to the induced flow at

both boundaries. Thus in cell A the boundary effects break the

symmetry between Flows 1 and 2. In cell B18 , Flow 1 coincides with

the induced flow on the left hand boundary and is opposite to that

on the right hand boundary. Flow 2 is opposite to the induced flow

at the left boundary and coincides with that at the right boundary.
V'

In a rectangular cell, there is nothing to distinguish left from

right and the symmetry between Flow 1 and Flow 2 is therefore not

broken in cell B.

The comparison with equilibrium symmetry breaking then predicts

II
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the following. In cell A the boundary effects will round the

transition, while in cell B they will not and, although the magnitudes

of heat flow are the same as for cell A, the transition will

remain sharp.

Perhaps the simplest parallel equilibrium case is that of an

Ising antiferromagnet. A staggered field breaks the symmetry and

smooths out the transition. A uniform field does not break the

symmetry and, although T is reduced, a sharp transition remains.

4.4 Conclusion

An examination of the Rayleigh-Benard convection experiment

has shown that the first two instabilities exhibit, far from

equilibrium, the onset of long range order and the spontaneous

breaking of a discrete symmetry. An experimental prediction

based on this observation has been outlined.
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