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ERRATUM

r '," Equation (13) of this paper does not follow ..,t

from (12). The correct Equation (13) is: "

O1 2 e +-cos-I (Irl cos )" "-'

The remainder of the paper is completely

unaffected.
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ABSTRACT

The Thouless conjecture relating energy level

shifts as a function of boundary conditions to con-

ductance is shown to be incorrect in detail in the

one-dimensional chain, though qualitatively correct:

the dimensionless conductances defined by scattering

theory and by Thouless' conjecture are functions of

each other.
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THE THOULESS CONJECTURE FOR A ONE-DIMENSIONAL CHAIN

P. W. Anderson* and P. A. Lee

Bell Laboratories

Murray Hill, New Jersey 07974

D. Thouless t 1 has proposed a relationship between quantum conductivity of an electron

system, density of states, and a parameter describing the average sensitivity of state energies to

boundary conditions. We give his argument shortly.

In the course of a detailed study, using the scattering theory of conductance, of scaling of

the conductance in a Id chain system 2 ), we tried to demonstrate explicitly the connection

proposed by Thouless. We did indeed find that the conductance G is a function of Thouless'

parameter

<6E>gr= (1)
9,-<AE>

where n(E), the density of states, is < I/A E > and <6 E > is a geometric mean of the

energy level shifts caused by a reversal of the phase of the boundary conditions from periodic

to antiperiodic. (This reversal is along the direction of current flow: in other, transverse,

directions the boundary conditions are considered irrelevant so long as they are kept fixed).

But for this particular case, the function seems to differ from that proposed by Thouless, i.e., to

be proportional to the square, not the first power.

Thouless gives two arguments for this relationship,' both rather heuristic and relying on

macroscopic limits: one from the Kubo formula and one a rather qualitative one based on the

uncertainty principle. We give the latter which is, to our minds, more convincing. (A recent

study of the Kubo formula(3 ) shows that it contains localization information in a rather obscure

form, and must be handled with care.)

We imagine a wave-packet of electrons started off on one side of a block of material of
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length L. In so far as the material has a conductivity, at some length scale L >> I .... the

wave-packet will exhibit classical diffusive behavior, we suppose. At first this diffusion takes

place as though the other side of the block were nonexistent, and independently of boundary

conditions; but after diffusion to the other end, one will begin to see a difference in the

reflection of the diffused packet depending on boundary conditions, i.e., at a time

t L - L 2  (2)

where D is the diffusion constant.

What happens at time tD can be assumed, by the uncertainty principle, to involve energy

level changes "h6b, - 1/D. Thus it is supposed that

W'D< 6E. > 2- it -..-.V
L2

By the Einstein relationship - in this case a trivial balancing of conduction versus diffusion

currents in the presence of an electric field - we derive -

o"e 2  dn .
dE

but in a sample of size Ld, d the dimensionality,

dn <--L> L d
dE AE

so that

<6E> <L > d2 ! (3)

AE e 2  
-e 23

(3) is what we have called the Thouless conjecture.

Neither the uncertainty principle 'argument about energy levels nor the macroscopic,

statistical limit defining tD is quite rigorous, so we attempted to verify Eq. (3) in a system we

think can solve exactly, the Id linear random chain. In this system a nearly rigorous theory of

conductivity exists based on the scattering theory definition of conductance,

t 
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G - e T/R (4)

where T and R are the quantum reflection and transmission coefficients of the sample

considered as a scatterer of Id waves along a channel, considered to be connected to perfectly

transmitting, infinite reservoirs to left and right (see Fig. 1). Eq. (4) does not contain any

eigenvalue information, but the S-matrix which determines T and R is related to the

eigenvalue problem under periodic boundary conditions because it also determines the *transfer

matrix' M which relates wave-function amplitudes at left and right hand ends of the sample.

A second way in which S is related to energy eigenvalues is that the density of states in a

given length of chain is equal to 1 times the rate of change in the scattering phase-shifts with
21r

energy. Putting these two relations together, it turns out we can relate the eigenvalue spectrum

to the magnitudes of t and r.

Let us now make these relationships precise. The scattering matrix S may be written in

terms of the in-going and out-going channels on left and right, iL JR ,OLOR, as

o Si (5)

with

S (6)

(We confine ourselves to time-reversal invariant scatterers for which S is symmetric: S S

so that

oL - L +tf'R

OR - tiL + r.'iR (Sa)

(see Fig. I). In Eq. (4) T It 2 and R- Ir 2 - Ir' 2 . Eq. (Sa) can be solved for the

amplitudes in the R channels in terms of the L ones

R -M L iR -MfL (7)
,.9 IL
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Here we have chosen the representation so that diagonal channels represent waves going in the

same direction, for reasons which will become clear.

Solving (5a) for iR,oR, we get

r

Mk

Here it is useful to use unitarity of the S-matrix to simplify. Unitarity gives, of course,

r 12 + It P Ir'T + 1112 - I

but also the orthogonality relation is

n* .+ tr'* 0;

i.e.,

r -- __

(and also t -

so that

-- -t +V 12, 1 (8)

Thus

I r

M 1r (9)
t* 1

Note that M is Hermitian in the sense that M - M with diagonal elements interchanged.

This is adequate to ensure diagonalizability with a unitary transformation.

Eigenvalues of the periodic problem in which the scatterer S is repeated can be calculated

by inserting the inputs of M into its outputs, i.e.,
• " :"' " d
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M - XP.

The eigenvalues of M a-e the solutions of

1 1* 1

X Re ± /(Re-) 2 -! (10)

Thouless' formula can be applied in two different versions: one may relate the conductance

either to the energies of two "band edge" points at which

X 1, Re- -±1

(Corresponding to periodic and antiperiodic boundary conditions) or to the "effective mass

curvature' at the edge of the band --- obtained by setting

X- = 7 << 1. (01)

Before discussing these quantities, let us work out the other relationship, that between E

and the eigenvalues e'Oi of S. Here Oj are the two scattering phase shifts which must

characterize a two-by-two S matrix. To calculate these

(r-e t ,) (r-ei#,) - t2

e 2i#- e to(r+r ") + rr' - 12 0

Again, we use the unitarity relations (8):

e~i  -- e '(r+r" - - 0

or

e 2 '' -e '' (r-+rj+-+ 0 (12)

If we write

r - jr le'"); r' - Ir le'('

we find that

| .
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01l-6+0 02-0-0; (13)

as is not unexpected: the two phase shifts are those of the two reflected waves. As it must be,

the sum of the phase shifts

4, + 02 = 20

is representation invariant: 0 is determined by the choice of origin, but

__] ae
<--> - n (E)

8 E

the density of states contained in the scatterer, (for spherical scatterers this is the Friedet (4)

theorem) so 6 must be an invariant. This is also closely related to the transmission phase shift

by

r ee f - _ t ,.e C-2iq

6= 0 + 2 (14)2

where

S= It le2'  (15)

Thus also

M- > - rn(E) (16)

Now we are in a position to derive the relationship. We note that - is non-negative
dE

(otherwise it would never be a suitable density of states, and also there is a theorem of

scattering theory) while I t I cannot vanish (see Ref. 2), and is :5 1, in fact, in all reasonable

cses < 1. Thus l/t follows a path rotating constantly outside the unit circle in the complex

plane as a tunction of energy, and if we are already in the scaling region where fairly large

numbers of incoherent scatterers are present, and the region contains many wavelengths,

<I t I> doesn't vary as we, traverse very many circuits so any amplitude increase must be

followed by a decrease and vice versa. In fact, we have verified that the distribution of I t

'i
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calculated elsewheret2 would not lead to a substantial effect on the Thouless conjecture. We

therefore assume It I constant and calculate the enerey shifts as a function of 0. That is,

6E 6(17)
AE

since there are two states for ever' rotation of 2-r. 6 is the angular shift defined by either of

the two methods:

O - I' - -

or

(6). -2--()

with 17 defined in Eq. (II). We have now that

implies that

Re- -4- 1
t

cos +• -I --- _ 1

( 2sin- It I (19

For small t this is equivalent to

sin#, 60 = 2111

6, 2t -2 11
sin~e V 1-TT

-. 21-±1
r

Similarly, evaluating 1!2 (10) gives

6,,
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cos. = Re(') .cosi
I I

Tt- 2

b 12 sin

= 21-I (20)
r

Remrark--bly, frem (4), (19) and (20) we find that

2 bE .2
(21

G 20F i AE (1

(Using the curvature definition which Thouless remarks is more exact for large G; for the one

involving sign change in the boundary conditions (20) fails for rather special 1-dimensional

reasons in this extreme limit.) It is clear that Thouless' conjecture is qualitatively borne out,

that is E/AE is a good measure of the dimensionless conductance, going through unity at the

crossover from local to extended; but the detailed numerical correlation is not right. This is

not serious in the local limit (the localization length differs by a factor 2 only) but is

disturbing in the extended one where one could expect the diffusion arguments to work.

The one-dimensional chain is a very special case and we see no obvious reason why these

results should apply directly to real systems quasimacroscopic in more than one dimension. In

particular, the eigenvalues of S obey much the same rules for a large system, but the

eigenfunctions of M and those of S are not at all the same - they are related by a random

unitary transformation in channel space. It is not clear how the motions of the two sets of

eigenvalues are related to each other. It is surprising but true that Id localization of G is

almost precisely comparable in the two cases(5 ); but the same need not be true of the Thouless

conjecture..

[It is a pleasure to submit a paper to a volume in honor of my old friend, Ryogo Kubo.

Among the many valuable things I learned long ago from him was the important lesson that

today's formal, mathematical results may lie at the heart of tomorrow's physics; it is in this

spirit I submit this. PWAJ
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Figure Captions

Fig. 1: Resistive sample as a scatterer
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