
P A0A-094 930 DEPARTMENT OF DEFENSE WASHINGTON DC F/6 9/2

JUN soMILITARY STANDARD JOVIAL (J73).(U)

UNCLASSIFIED DODMIL-STD-1569BjEEEEEE
-i ffllflfmflffl.flf

lmhEohhhhmhEmhI
omhEohEEmhhEmhE
EhomhEEohEohEEI
EEmhhhEEEmhEEE
EhEEEEmhmhhhhI

MIL-STD15893 (USAF)
J; 06 june 1980

SUPERSEDING

V. L VEL'MILSTD1589A:(UAF) 4

I. MLITARY ANDARD

JOVIAL (73)r

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED]

cm) IFSC IPSC I

LI- U-S GOVERNMENT PRINING OPPICK 190-60-121/3624 I

81 2 11 219

MIL-STD-15891 (USAF)
6 June -ISM, -

DEPAR24MT OF THE AIR FORCE
Washington, D. C. 20330

JOVIAL (J73)

MIL-STD-15893 (USAF)

1. This military standard is for use by the Department of the Air
Force to the extent specified in APR 300-10.

2. Reco=ended corrections, additions or deletions should be add-
ressed to Headquarters Air Force Systems Comand, ATTV: XIF,
Andrew* APB, NY 20334.

Custodian Preparing Activity

Air Force - 02 Air Force - 17

i

ii

. ._

MIL-STD-1589B (USAF)
N06 June 1980

I.

PREFACE

This document is the revised MIL-STD-1589B Draft (USAF) definition

of the upgraded J73 JOVIAL programming language. The sections are

organized in a top-down manner. The first section describes the

interactions between the modules of the complete program so that in

subsequent sections the structures of the language can be described (to
the extent possible) without reference to their interaction with other
structures.

Most sections are divided into separate parts entitled 4Syntaz,"
* Semantics, 6 and hConstraints.0 The *SyntaxO descriptions define the
grammar of the language in a modified BNF notation. The 6Semantics8
discussions define the meaning of constructs that satisfy the Syntax and
Constraints. The 6ConstraintsO discussions enumerate non-syntactic

requirements that must be met in order for the given constructs to be
legal. The intent is that the Syntax, Semantics, and Constraints not be
redundant with each other.- e.g., the Semantics sections do not normally

repeat something that should be obvious from the Syntax, neither do they
repeat stipuls-tions that are listed as Constraints.

Some of the designated Constraints apply at compile time, and
others pertain to errors that are not detectable until the compiled
program is executed. In order to conform to this standard, a J73
compiler must detect compile-time errors, but it is not required to
generate code for run-time checks. .j

The Appendix provides a cross-reference index to constructs that
appear in the Syntax. For each construct, the index gives the number of
the section where that construct is defined and the numbers of the
sections where that construct is used in a definiton.

The following metalanguage conventions have been observed in this
document:

1. Terminal symbols, i.e., those which actually appear in a
program are written in upper case. For example:

BEGIN
END
STATIC

2. Non-terminal symbols, i.e., those which represent groups of
terminal symbols are written in lower case and enclosed
between < and >. If any non-terminal symbol is longer than

j :j~vQ~eword, the words are separated by a hyphen. For example:

UK-4 K
,''- "'iii

MIL-STD-15891(USAF)
06 June 1980

<compool-module>

<ordinary-table-body>

3. The following special symbols are used in the metalanguage.

::, means "is defined as." For example,

<a> ::- <b <c>

where <a is defined as the string followed by
the string <c>. Definitions that do not fit on one
line may extend to the next line or lines.

I The I symbol indicates that what follows is an
alternate choice of definition for the non-terminal
to the left of the ::- symbol. For example,

<a> ::- Wb I <c>

where <a> is defined as either the string or
the string <c>.

[] If a string may optionally be present, it is
enclosed between (and]. For example,

<a> [> c

where <a> is defined as either the string <c> or
the string followed by the string <c>.

4. The following symbols have metalinguistic meaning when
appended to a non-terminal:

... One or more instances of the string represented by

non-terminal

,,.. One or more instances separated by a comma

:... One or more instances separated by a colon

For example:

<a>... Represents a single <a> or any sequence of <a>'s
(e.g., (a> or <a> <a> or <a> <a> <a) <a> etc.)

1<a)...] Represents the null string or any sequence of <a>'s

<a>,.. Represents a single <a> or any length sequence of
<a>'s separated by commas (e.g., <a> or <a>,<a> or

iv

........

MIL-STD-1589B (USAF)
06 June 1980

<a>,<a),<a> etc.)

5. If a non-terminal appearing on the right side of the ::- is
not defined in that same sub-section, the number of the
sub-section where it is defined appears in parentheses in the
right margin.

6. in a "Semantics" or "Constraints" section, non-terminal
symbols are enclosed between < and > when the usage refers to
constructs occurring in a "syntax" section or when the
specific J73 meaning might be confused with generalized
programming usage.

Throughout this document, the symbols used for the prime, the
quotation mark, and a blank are as follows:

1. Prime

2. Quotation mark "

3. Blank space

/

A -

-¢;-.v,

I _

MIL-STD-1589B (USAFY
06 June 1980 -

vi

MIL-STD-1589D (USAF)
N 06 June 1980

TABLE OF CONTENTS

Page

1.0 Global Concepts 1

1.1 The Complete Program 1
1.2 Modules 1

1.2.1 Compool Modules 1
1.2.2 Procedure Modules 2
1.2.3 Main Program Modules 3
1.2.4 Conditional Compilation 4

1.3 Scope of Names 4
1.4 Implementation Parameters 5

2.0 Declarations 12

2.1 Data Declarations 13

2.1.1 Item Declarations 14

2.1.1.1 Integer Type Descriptions 15
2.1.1.2 Floating Type Descriptions 16
2.1.1.3 Fixed Type Descriptions 18
2.1.1.4 Bit Type Descriptions 20
2.1.1.5 Character Type Descriptions 21
2.1.1.6 Status Type Descriptions 21
2.1.1.7 Pointer Type Descriptions 23

2.1.2 Table Declarations 24

2.1.2.1 Table Dimension Lists 25
2.1.2.2 Table Structure 27
2.1.2.3 Ordinary Table Entries 28
2.1.2.4 Specified Table Entries 30

2.1.3 Constant Declarations 33
2.1.4 Block Declarations 34
2.1.5 Allocation of Data Objects 35
2.1.6 Initialization of Data Objects 36

2.2 Type Declarations 38
2.3 Statement Name Declarations 41
2.4 Define Declarations 41

vii

. vI.

MIL-STD-1589B (USAF)
06 June 1980

2.4.1 Define Calls 43

2.5 External Declarations 45

2.5.1 DEF Specifications 45

2.5.2 REF Specifications 47

2.6 Overlay Declarations 48
2.7 Null Declarations 50

3.0 Procedures and Functions 51

3.1 Procedures 52
3.2 Functions 53
3.3 Parameters of Procedures and Functions 55
3.4 Inline Procedures and Functions 58
3.5 Machine-Specific Procedures and Functions 59

4.0 Statements 61

4.1 Assignment Statements 62

4.2 Loop Statements 63
4.3 IF Statements 66
4.4 CASE Statements 67
4.5 Procedure Call Statements 69
4.6 RETURN Statements 71
4.7 GOTO Statements 71
4.8 EXIT Statements 72
4.9 STOP Statements 72
4.10 ABORT Statements 73

5.0 Formulas 74

5.1 Numeric Formulas 76

5.1.1 Integer Formulas 76

5.1.2 Floating Formulas 78
5.1.3 Fixed Formulas 80

5.2 Bit Formulas 83

5.2.1 Relational Expressions 85
5.2.2 Boolean Formulas 87

5.3 Character Formulas 87
5.4 Status Formulas 88
5.5 Pointer Formulas 88

viii7

MIL-STD-1589B (USAF)
-. 06 June 1980

5.6 Table Formulas 90

6.0 Data References 91

6.1 Variables 91
6.2 Named Constants 96
6.3 Function Calls 97

6.3.1 LOC Function 98
6.3.2 NEXT Function 99
6.3.3 BIT Function 100
6.3.4 BYTE Function 101
6.1.3 Shift Functions 101
6.3.6 ABS Function 102
6.3.7 Sign Function 102
6.3.8 Size Functions 103
6.3.9 Bounds Functions 104
6.3.10 NWDSEN Function 105
6.3.11 Status Inverse Functions 105

7.0 Type Matching and Conversions 107

8.0 Basic Elements 116

8.1 Characters 116
8.2 Symbols 118

8.2.1 Names 118
8.2.2 Reserved Words 119
8.2.3 Operators 120

8.2.4 Separators 122

8.3 Literals 123

8.3.1 Numeric Literals 123
8.3.2 Bit Literals 125
8.3.3 Boolean Literals 128
8.3.4 Character Literals 128
8.3.5 Pointer Literals 128

8.4 Comments 129
8.5 Blanks 129

9.0 Directives 130

ix

MIL-STD-1589B (USAF)
06 June 1980

9.1 Compool Directives 131

9.2 Text Directives 132

9.2.1 Copy Directives 132

9.2.2 Skip, Begin, and End Directives 133

9.3 Linkage Directives 133

9.4 Trace Directives 134

9.5 Interference Directives 135

9.6 Reducible Directives 136

9.7 Listing Directives 137

9.7.1 Source-listing Directives 137

9.7.2 Define-listing Directives 137

9.8 Register Directives 138

9.9 Expression Evaluation Order Directives 139

9.10 Initialization Directives 139

9.11 Allocation Order Directives 140

APPENDIX- CROSS REFERENCE INDEX
142

xo

/ '"

-

MIL-STD-1589B (USAF)

06 June 1980

1.0 GLOBAL CONCEPTS

1.1 THE COMPLETE PROGRAM

Synta:

<complete-program> :- <module>...

<module> :: <compool-module> (1.2.1)

I <procedure-module> (1.2.2)

<main-program-module> (1.2.3)

Semantics:

A <complete-program> of the J73 language gives the complete
specification of a computational algorithm to be performed. A
<complete-program> consists of a group of one or more <modules> that are
compilable separately and which may be subsequently bound together for
execution as a unit. A <module> is the smallest entity in the language
that may be separately compiled.

A <complete-program> may contain zero or more <compool-modules> and
zero or more <procedure-modules>.

Constraint:

A <complete-program> must contain exactly one <main-program-
module>.

Note:

A compiler may accept a file containing more than one <module>, but
it is not required to do so. If it does accept such a file, it must
process each <module> as though it had been submitted separately.

1.2 MODULES

1.2.1 COMPOOL MODULES

Syntax:

<compool-module> :: START (<directive>...J (9.0)
COMPOOL <compool-name>
[<compool-declaration>...] (2.0)
[<directive>...J (9.0)
TERM

. . ..__ __ I ?-.

MIL-STD-1589B (USAF)
06 June 190"

<compool-name> ::= <name> (8.2.1)

Semantics:

<Compool-modules> provide a means of declaring data objects, types,
and subroutines that are to be made external - i.e., that are
potentially available to other <modules> in the <complete-program>.
Another <module> may access the names declared in a given
<compool-module> by use of a <compool-directive> (see Section 9.1) that
names the given compool or by use of external declarations (see Section
2.5).

A <compool-module> may contain <compool-directives> that narie other
<compool-modules>.

By appropriate use of <def-specifications> and <ref-specifications>
within <compool-declarations>, a user can control whether physical
allocation takes place within the <compool-module> itself or within the
accessing <module> (see Section 2.5).

1.2.2 PROCEDURE MODULES

Syntax:

<procedure-module> ::- START
[<declaration>...] (2.0)
[<non-nested-subroutine>...]
[<directive>.t. (9.0)
TERM

<non-nested-subroutine ::m [<directive>..] (9.0)
[DEF] <subroutine-definition> (3.0)

Semantics:

<Procedure-modules> provide a means of separately compiling
subroutines that specify portions of the actions of the <complete-
program>.

If a <subroutine-definition> is preceded by DEF, that subroutine
may be invoked from within the <main-program-module> or from within
another <procedure-module>, provided that the referencing module
contains an appropriate <ref-specification> for the subroutine or
accesses a compool containing such a specification.

<Non-nested-subroutines> defined without a DEF may be invoked only
from within the <procedure-module> or <main-program-module> in which

2 I.-

MIL-STD-1589B (USAF)
"L 06 June 1980

they are defined. Similarly, all declarations in a <procedure-module>
apply only within that <procedure-module> (unless they are
<external-declarations> - see Section 2.5).

1.2.3 MAIN PROGRAM MODULES

Syntax:

<main-program-module> ::- START [<directive>,..] (9.0)
PROGRAM
<program-name>
[<directive>...] (9.0)
<program-body>
[<non-nested-subroutine>...] (1.2.2)
[<directive>...] (9.0)
TERM

<program-name> ::- <name> (8.2.1)

<program-body> ::- <statement> (4.0)

I BEGIN [(<declaration>...] (2.0)
<statement>... (4.0)
[<subroutine-definition>...] (3.0)
[<directive>... 1 (9.0)
[<label>...] END (4.0)

Semantics:

The body of a <main-program-module> is executed at the start of a
<complete-program>. When execution of the body is complete, execution
of the <complete-program> is complete. Unless the <complete-program>
consists of a single <main-program-module>, the <main-program-module>
will contain one or more <compool-directives>, references to
externally-declared data, and/or calls of DEF'd subroutines in other
modules.

Declarations in a <main-program-module> may be external or
internal. If a <non-nested-subroutine> has a DEF, it may be invoked
either locally or from within a <procedure-module>, provided that the
referencing module contains an appropriate <ref-specification> for the
subroutine or accesses a compool containing such a specification. If it
does not have a DEF, it can be invoked only from within the module in
which it is defined.

3

f4

ItIL-STD-1589B (USAF)
06 June 1980

Constraints:

The <program-body> must contain at least one non-null statement
(e.g., STOP).

1.2.4 CONDITIONAL COMPILATION

Two methods are provided for conditionally suppressing generation
of object code for portions of a JOVIAL module.

The !SKIP, !BEGIN, and lEND directives (see Section 9.2.2) permit
almost complete suppression of processing of suppressed source. The
only processing done for suppressed source is to scan for the
terminating tEND directive. Therefore the suppressed source may contain
errors and/or statements incompatible with other module source without
affecting compilation.

The IF and CASE statements (see Sections 4.3 and 4.4) permit
suppression of generation of object code. Source for this suppressed
object code must be correct since it is subject to the same validity
checks and processing of directives as other source code. Only code
that is unconditionally unreachable is suppressed so this conditional
compilation must produce the same results as if the code was generated.
Segments of code which are unreachable due to values of <if-statement>
<boolean-formulas> or <case-selector-formulas> which are
<compile-time-formulas> and which do not contain <labels> are always
suppressed. Implementations may choose to do a more complete analysis
and also suppress other recognized unreachable code.

1.3 SCOPE OF NAMES

<Procedure-modules> and the <main-program-module> can contain
subroutines (i.e., procedures and functions) nested to any depth. Each
subroutine, as well as the <program-body> and the <main-program-module>
or <procedure-module> itself, establishes a region or scope for which a
name's declaration is active and in which the <name> can be used. The
scope of a <name> is that region of the <complete-program> within which
that <name> has a single meaning.

A name declared with a DEF or REF (see Section 2.5) is considered
to be external; all other names are internal. An external <name> can be
used in any module of the <complete-program>, except within a scope
containing an internal name with the same spelling. An internal name
can be used only within the subroutine, <procedure-module>, or
<main-program-module> within which that name is declared, but not within
an enclosed scope containing a <name> with the same spelling.

4I

MIL-STD-1589B (USAF)
06 June 1980

The (name> of a subroutine belongs to the scope in which that
subroutine is declared or defined.

For any given compilation, all names made available from referenced
<compool-modules> (see Section 9.1), as well ab the name of the <module>
being compiled and all <compool-names>, belong to the same scope,
referred to as compool scope, which is considered to enclose the scope
established by the <procedure-module>, <main-program-module>, or
<compool-module> being compiled.

System-defined names (e.g., machine-specific subroutines,
implementation parameters) belong to system scope, which encloses the
compool scope. Such names may be redefined by the programmer.

These rules ensure that any two names with the same spelling but

with distinct scopes are regarded as if they were different names.

Constraints:

No two names having the same scope may have the same spelling.
(This .constraint does not prevent two tables with different
<table-names> to be declared in the same scope using the same
<table-type-name>. See Sections 2.1.2 and 2.2.)

No two external names may have the same spelling.

1.4 IMPLEMENTATION PARAMETERS

Syntax:

<integer-machine-
parameter> : BITSINBYTE

I BITSINWORD

I LOCSINWORD

I BYTEPOS
(<compile-time-integer-formula>) (5.1.1)

BYTES INWORD

I BITSINPOINTER

I INTPRECISION

I FLOATPRECISION

5

- C C.

MIL-STD-1589B (USAF)
06 June 1980

IFIXEDPRECISION

IFLOATRADIX

I IMPLFLOATPRECISION
(<precision>)(2.1.1.2)

I IHPLFIXEDPRECIS ION
(<scale-specifier) (2.1.1.3)
<fraction-specifier)(2.1.1.3)

IMIILINTSIZE

C<integer-size>)(2.1.1.1)

IMAXFLOATPRECISION

IMAXFIXEDPRECISION

IMAXINTSIZE

H AXBYTES

H AXBITS

I AXINT (<integer-size>)(2.1.1.1)

I ININT (<integer-size>)(2.1.1.1)

IMAXTABLESIZE

I AXSTOP

IMINSTOP

IMAXSIGDIGITS

IMINSIZE (
<compile-time-integer-formula>)(5.1.1)

I INFRACTION (
<compile-time-floating-formula>)(5.1 .2)

IMINSCALE
(compile-time-floating-formula>)(5.1.2)

IMINRELPRECISION (
<compile-time-floating-formula)(5.1.2)

6

MIL-STD-1589B (USAF)
06 June 1980

<float ing-machine-

parameter> .". MAXFLOAT (<precision>) (2.1.1.2)

I MINFLOAT (<precision>) (2.1.1.2)

1 FLOATRELPRECISION
(<precision>) (2.1.1.2)

I FLOATUNDERFLOW
(<precision>) (2.1.1.2)

<fixed-machine-
parameter> :: MAXFIXED (<scale-specifier> , (2.1.1.3)

<fraction-specifier>) (2.1.1.3)

I MINFIXED (<scale-specifier> , (2.1.1.3)

<fraction-specifier>) (2.1.1.3)

Semantics:

The machine on which a J73 program runs contains an array of memory
cells. These cells are grouped or partitioned into the following units
for purposes of the language specification.

1. Bit - The smallest unit of storage (can contain one of two
values, which are represented by zero and one)

2. Byte - A group of one or more consecutive bits that is capable
of holding a single character of information

3. Word - A memory partition of one or more consecutive bits that
serves as the unit of allocation of data storage

4. Address Unit - The machine dependent unit used to identify an
address or location in memory

The number of bits per byte, word, and address varies from
implementation to implementation, and these quantities affect the
representation and behavior of data in the language. Machine parameters
are constants that describe these implementation-dependent differences.
The values of these constants must be specified as part of the
implementation of a J73 compiler on any computer. These names can then
be referenced by a user to access the values associated with that
implementation.

The size of an <integer-machine-parameter> is the size of an
<integer-literal> having that value. The attributes of a <floating-
machine-parameter> or <fixed-machine-parameter> are as specified by its
<precision> or its <scale-specifier> and <fraction-specifier>. The

7

MIL-STD-1589B (USAF)
06 June 1980

values of the implementation parameters are as follows:

BITSINBYTE Number of bits in a byte

BITSINWORD Number of bits in a word

LOCSINWORD Number of locations (address units)
in a word

BYTEPOS(PP) A permitted <starting-bit> value for
character strings that cross word
boundaries. PP is any integer value
between 0 and BYTESINWORD-1,
inclusive and BYTEPOS(PP)
BYTEPOS(PP+I).

BYTESINWORD Number of complete bytes in a word

BITSINPOINTER Number of bits used for a pointer

value

INTPRECISION The number of bits that an
implementation supplies to hold the
value of an integer item (exclusive
of sign, if any) when no
<integer-size> is specified by the
programmer.

FLOATPRECISION The number of bits that an
implementation supplies to hold the
value of the mantissa of a floating
point item (exclusive of the sign
bit) when no <precision> is specified
by the programmer

FIXEDPRECISION The number of bits that an
implementation supplies to hold the
value of a fixed item (exclusive of
the sign bit) when no <fraction-
specifier> is supplied by the
programmer

FLOATRADIX Base of the floating point
representation, specified as an
integer

IZIPLFLOATPRECISION(II) Number of bits (not including the
sign bit) in the mantissa of the
representation for a floating point

8

MIL-STD-1589B (USAF)
06 June 1980

value whose specified precision is II

IMPLFI.XEDPRECISION(SS,FF) The number of bits (excluding sign
bit) an implementation uses to
represent an unpacked fixed item with
scale SS and fraction FF. This value
also determines the accuracy of fixed
formula results.

tMPLINTSIZE(II) The number of bits (excluding sign
bit) an implementation uses to
represent an unpacked S or U item
with specified size II.

MAXFLOATPRECISION Maximum specifiable precision
supported by an implementation for a
<floating-item-description)

MAXFIXEDPRECISION Maximum value supported by an
implementation for the sum of the
scale and fraction specifiers in a
<fixed-item-description)

MAXINTSIZE Maximum specifiable size (not
including the sign bit) supported by
an implementation for signed and
unsigned integers

MAXBYTES Maximum value supported by an
implementation for a
<character-size>; must not exceed
MAXBITS/BITSINBYTE

MAXBITS Maximum value supported by an
implementation for a <bit-size>; the
maximum value of words per entry in a
table is MAXBITS/BITSINWORD, and the
maximum BITSIZE of a table entry is
MAXBITS

MAXINT(SS) Maximum integer value representable
in SS+1 bits (including sign bit)

MININT(SS) Minimum signed integer value
representable in SS+I bits (including
sign bit), using the implementation's
method of representing negative
numbers

9

I.i

I
MIL-STD-1589B (USAF)
06 June 1980

MAXTABLESIZE The maximum number of words an
implementation permits a table to
occupy.

MAXSTOP Maximum specifiable value for an
<integer-formula> in a <stop-
statement> (see Section 4.9)

MINSTOP Minimum specifiable value for an
<integer-formula> in a <stop-
statement> (see Section 4.9)

MAXSIGDIGITS The maximum number of significant
digits an implementation will process
for a fixed or floating point literal
(see Section 8.3.1)

MINSIZE(II) The minimum value of SS such that II
is less than or equal to MAXINT(SS)
and greater than or equal to
MININT(SS)

MINFRACTION(AA) The minimum value of FF such that
2**(-FF) is less than or equal to AA.
The value of AA must be greater than
zero.

MINSCALE(AA) The minimum value of SS such that

2**SS is greater than AA. The value
of AA must be greater than zero.

MINRELPRECISION(FF) The minimum value of PP such that
FLOATRELPRECISION(PP) is less than or
equal to FF. The value of FF must be
greater than or equal to
FLOATRELPRECISION
(MAXFLOATPRECISION).

MAXFLOAT(PP) Maximum floating point value using
only the first PP mantissa bits
(excluding sign) of the
implementation's floating point
representation whose actual mantissa
length is IMPLFLOATPRECISION(PP). PP
must be greater than zero and not
exceed MAXFLOATPRECISION.

MINFLOAT(PP) Minimum floating point value
representable in exactly PP mantissa

10

.1

MIL-STD-1589B (USAF)
06 June 1980

bits, (excluding sign) and using the
implementation's method of
representing negative numbers. PP
must be greater than zero and not
exceed MAXFLOATPRECISION.

FLOATRELPECISION(PP) Let FRPI be the smallest floating
point value greater than 1.0 using
the first PP bits (excluding sign) of
the implementation's representation
for floating point values.
FLOATRELPRECISION(PP) equals FRPI -
1.0. PP must be greater than zero
and not exceed MAXFLOATPRECISION.

FLOATUNDERFLOW(PP) The smallest positive floating point
value using exactly PP mantissa bits
(excluding sign) and such that both
FLOATUNDERFLOW(PP) and
-FLOATUNDERFLOW(PP) are representable
as floating point values

MAXFIXED(SS,FF) Maximum fixed value representable in
SS+FF+I bits (including sign bit)

MINFIXED(SS,FF) Minimum fixed value representable in
SS+FF+I bits (including sign bit),
using the implementation's method for
representing negative values

4 Note:

A FIXEDRADIX implementation parameter is not provided since fixed
point values are represented using radix 2 (see Section 2.1.1.3).

11

MIL-STD-1589B (USAF)
06 June 1980

2.0 DECLARATIONS

Syntax:

<declaration> ::" <data-declaration) (2.1)

< (type-declaration> (2.2)

I <subroutine-declaration> (3.0)

I <statement-name-declaration> (2.3)

1 <define-declaration> (2.4)

I <external-declaration> (2.5)

1 <overlay-declaration> (2.6)

1 <inline-declaration> (3.4)

<null-declaration> (2.7)

BEGIN <declaration>...
END

I <directive> <declaration> (9.0)

<compool-declaration> : <: (external-declaration> (2.5)

<constant-declaration> (2.1.3) .1
<type-declaration> (2.2)

<define-declaration> (2.4)

<overlay-declaration> (2.6)

<null-declaration> (2.7)

BEGIN <compool-declaration>...
END

<directive> (9.0)
<compool-declaration>

Semantics:

<Declarations> associate <names> with programer-supplied meanings.

12

MIL-STD-1589B (USAF)
06 June 1980

A <compool-declaration> is a <declaration> that appears in a

<compool-module>.

Constraints

Except for <statement-names>, names of subroutines, type names in
<pointer-item-descriptions>, and formal parameter names, a name may not
be used prior to the point at which a <declaration> for that name
appears.

2.1 DATA DECLARATIONS

Syntax:

<data-declaration> :- <item-declaration> (2.1.1)

I <table-declaration> (2.1.2)

<constant-declaration> (2.1.3)

I (block-declaration> (2.1.4)

Semantics:

<Data-declarations> declare <data-names> and their attributes.
Three kinds of data structures exist in J73:

1. Item - A simple data object of the language. An item is a
variable of a pre-defined or programmer-defined type having no
constituents.

2. Table - An aggregate data object consisting of a collection of
one or more items, or an array of such collections. The
collection of items is called an entry. An entire entry in a
table is selected by the use of the table name, together with
a sequence of indices ("subscripts") if the table is arrayed.
An item within an entry is selected by the use of the item
name and the appropriate number of subscripts.

3. Block - A group of items and tables and other blocks to which
is allocated a contiguous area of storage.

Additionally, an item or table may be declared to be CONSTANT, in
which case its value cannot be changed during execution. A constant
item must be given an ilitial value by means of an <item-preset>.
Blocks, items, or tables (other than constants) can specify, by means of
an <allocation-specifier>, the allocation permanence of the storage
associated with their names. Non-constant items and tables can

13

MIL-STD-1589B (USAF)
06 June 1980

optionally be given initial values by means of <item-presets> or
<table-presets>.

The value of an uninitialized data object is undefined until it
receives a value in an executable statement.

Declarations associate a <name) with a type. A type determines the
set of values that an object can have and the operations that can be
performed on those values. Types are grouped into related sets called
type classes. Examples of type classes are signed integer, unsigned
integer, float, and bit. Types within a type class are distinguished by
the values of certain properties known as attributes. For example, S 3
is a particular type within type class S with a value of 3 for the
integer size attribute. Rules concerning type matching are found in
Section 7.0.

2.1.1 ITEM DECLARATIONS

Syntax:

<item-declaration> :: ITEM <item-name>
(<allocation-specifier>] (2.1.5)
<item-type-description>
[<item-preset>] ; (2.1.6)

<item-name> ::- <name> (8.2.1)

<item-type-description> : <integer-type-description> (2.1.1.1)

<floating-type-description> (2.1.1.2)

<fixed-type-description> (2.1.1.3)

<bit-type-description> (2.1.1.4)

<character-type-descriptiou> (2.1.1.5)

<status-type-description> (2.1.1.6)

<pointer-type-description> (2.1.1.7)

Semantics:

<Item-declarations> declare items. Items are used as variables to
retain values in a J73 program. Allocation for items declared in
<item-declarations> will be such that no items share a word.

14

- a
MIL-STD-1589B (USAF)
06 June 1980

The <item-type-description> establishes the type of an item.

The <allocation-specifier> establishes the allocation permanence of
items which are not enclosed in blocks. This allocation permanence is
automatic if the declaration is in a subroutine and the
<allocation-specifier> is omitted, otherwise it is STATIC (see Section
2.1.5). Items enclosed in blocks inherit the allocation permanence of
the enclosing block.

The <item-preset>, if present, specifies an initial value for the

item.

Constraints:

Only items having STATIC allocation (explicitly or by default) may
contain an <item-preset>.

Declarations of items that are <formal-input-parameters> or
<formal-output-parameters> (see Section 3.3) must not contain an
<allocation-specifier> or <item-preset>.

An <item-declaration> withJn a block must not contain an
<allocation-specifier>.

2.1 .I .I INTEGER TYPE DESCRIPTIONS

Syntax:

<integer-type- : <integer-item-description>
description>

I <integer-type-name>

<integer-item- ::= S [<round-or-truncate>j (2.1.1.2)
description> [<integer-size>]

I U [<round-or-truncate>] (2.1.1.2)
[<integer-size>]

<integer-size> : <compile-time-integer-formula> (5.1.1)

<integer-type-name> :- <item-type-name> (2.2)

Semantics:

An <integer-type-description> is used to specify a signed integer
type or an unsigned integer type. S specifies a signed integer type; U
specifies an unsigned integer type.

15

MIL-STD-1589B (USAF)
06 June 1980

The <integer-size> attribute specifies the minimum number of bits
of storage required to hold the maximum value of the integer (excluding
the sign, if any). If (integer-size> in omitted, it defaults to
INTPRECISION. The number of bits allocated for signed integers will be
at least <integer-size>+1, and for unsigned integers will be at least
<integer-size>.

The value set for a signed integer type with size SS is MININT(SS)
through MAXINT(SS). The value set for an unsigned integer type with
size SS is 0 through MAXINT(SS).

The <round-or-truncate> attribute specifies truncation or rounding
is to occur when a value is converted to an integer type. If R is
specified, rounding will occur. If T is specified, truncation towards
minus infinity will occur. If Z is specified, truncation towards zero
will occur. If the attribute is omitted, truncation in an
implementation-dependent manner will occur.

Constraints:

The maximum value that can be specified for <integer-size> is
MAXINTSIZE, an implementation parameter.

<Integer-size> must be greater than zero.

An <integer-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains an <integer-type-description> (see
Section 2.2).

Notes:

An implementation may choose MAXINTSIZE > BITSINWORD-1.

The <round-or-truncate> option has a use only when an
<integer-item-description> is used in an <integer-conversion> (see
Section 7.0).

2.1.1.2 FLOATING TYPE DESCRIPTIONS

Syntax:

<floating-type-description> :: <f loating-item-description>

I <floating-type-name>

<floating-item-description> ::- F [<round-or-truncate>]
(<precision>]

16

- - - J

MIL-STD-1589B (USAF)
06 June 1980

<round-or-truncate> :

I , T

I , Z

<precision> : - <compile-time-integer-formula>(5.1.1)

<floating-type-name> ::- <item-type-name> (2.2)

Semantics:

A <floating-type-description> is used to specify a floating type.
The <precision> attribute specifies the minimum number of bits of
storage required to hold the value of the mantissa. If <precision> is
omitted, it defaults to FLOATPRECISION, an implementation parameter.

The <round-or-truncate> attribute is used to specify whether
truncation or rounding is to occur when a value of a floating type with
a greater <precision> is assigned to an item of this type. If R is
specified, rounding will occur. If T is specified, truncation towards
minus infinity will occur. If Z is specified, truncation towards zero
will occur. If the attribute is omitted, truncation in an
implementation-dependent manner will occur. Rounding and truncation
take place with respect to the implemented precision of the floating
type. (Note: IMPLFLOATPRECISION(PP) is an implementation parameter
defining what precision is provided when precision PP is specified.)

The value set for a floating type with <precision> PP is
MINFLOAT(PP) through -FLOATUNDERFLOW(PP), 0, and FLOATUNDERFLOW(PP)
through MAXFLOAT(PP).

Constraints:

The maximum value that can be specified for <precision> is
MAXFLOATPRECISION, an implementation parameter.

<Precision> must be greater than zero.

A <floating-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains a <floating-type-description> (see
Section 2.2).

Note:

Since a <floating-type-description> specifies only the minimum
precision required, an implementation is free to support only one or two
levels of implemented precision. Which implemented precision level
represents a floating type depends on the value of the specified

17

MIL-STD-1589B (USAF)
06 June 1980

precision. The implemented precision must never be less than the
specified precision. Since an implementation may provide more than the
specified precision, it is consistent to round or truncate a represented
value only if converting from a longer to a shorter implemented
precision.

2.1.1.3 FIXED TYPE DESCRIPTIONS

Syntax:

<fixed-type-description> :: <fixed-item-description)

I <fixed-type-name)

<fixed-item-description> ::- A [<round-or-truncate>] (2.1.1.2)
<scale-specifier>
(, <fraction-specifier>]

<scale-specifier> ::= <compile-time-integer-formula>(5.1.1)

<fraction-specifier> :: <compile-time-integer-formula>(5.1.1)

<fixed-type-name> ::- <item-type-name> (2.2)

Semantics:

A <fixed-type-description> is used to specify a fixed point numeric
type. If SS is the value of the <scale-specifier> and FF is the value
of the <fraction-specifier>, then SS+FF is the minimum number of bits in
the representation, excluding the sign bit. When SS and FF are both
positive, SS specifies the number of bits to the left of the binary
point (excluding the sign bit) and FF the minimum number of bits to the
right (see Note below). When SS is negative, the binary point is
assumed to be ABS(SS) bits to the left of the first (non-sign) bit of
the representation. Similarly, when FF is negative, the least
significant bit of the representation is no more than ABS(FF) bits to
the left of the binary point.

The (nominal) precision of a fixed point type is the sum of its
scale and fraction specifier. The implemented precision may be greater
than the nominal bits required. If <fraction-specifier> is omitted, the
fixed point type has a default precision given by FIXEDPRECISION, an
implementation parameter, and the implied value of the omitted
<fraction-specifier> is FIXEDPRECISION-SS, where SS is the <scale-
specifier>.

If FF is a fixed point item declared with a default
<fraction-specifier>, then FIXEDPRECISION - BITSIZE(REP(FF))-l.

18

MIL-STD-1589B (USAF)
06 June 1980

The <round-or-truncate> attribute specifies truncation or rounding
is to occur when a value is converted to a fixed point type. If R is
specified, rounding will occur. If T is specified, truncation towards
minus infinity will occur. If Z is specified, truncation towards zero
will occur. If the attribute is omitted, truncation in an
implementation-dependent manner will occur. Rounding and truncation
take place with respect to the implemented precision of the fixed type
(see Note below).

The value set of a fixed point type with scale SS and fraction FF

is MINFIXED(SS,FF) through MAXFIXED(SS,FF).

Constraints:

The sum of the scale and fraction specifiers (i.e., the nominal
precision) must be greater than zero and must not exceed
MAXFIXEDPRECISION, an implementation parameter.

The value of <scale-specifier> must lie in the range -127 through
+127.

A <fixed-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains a <fixed-type-description> (see
Section 2.2).

Notes:

The set of exactly representable fixed point values is determined
by a fixed type's scale and fraction specifiers. A <fraction-
specifier> value, FF, means fixed point values must be represented with
a precision greater than or equal to 2**(-FF). A <scale-specifier>
value, SS, means the maximum representable value is at least 2**SS -
2**(-FF) and less than 2**SS.

An implementation is permitted to support more than one level of
implemented precision for fixed point types. For computational
purposes, values will be represented using the smallest implemented
precision level (e.g., one word or two words) consistent with the
value's nominal precision. For storage purposes in packed tables, a
fixed point value need occupy no more than the number of bits specified
by the nominal precision plus one bit for the sign.

IMPLFIXEDPRECISION(SS,FF) is an implementation parameter defining
what precision is provided for an unpacked fixed point item when nominal
precision SS+FF is specified. In addition, the implemented precision of
a packed item (i.e., an item in a specified table, packed ordinary
table, or a tight table) as well as an unpacked item is given by
BITSIZE(REP(FI))-I, where FI is the fixed point item.

19

HIL-STD-1589B (USAF)
,. 06 June 1980

The implemented precision of a fixed item is the number of bits
(excluding sign bit) used to store the item. Assignments to such items
round or truncate with respect to this precision, which is never less
than the specified precision. Rounding or truncation can change a fixed
point value only if the implemented precision is shortened.

It should be noted that specifying R, T, or Z in an Item
declaration only affects the conversion of literal values (see Section
8.3.1) and assignments of fixed point values when the stored
representation of the value is shorter thaen the representation used for
computations.

2.1.1.4 BIT TYPE DESCRIPTIONS

Syntax:

<bit-type-description> : : <bit-item-description>

I <bit-type-name>

<bit-item-description> ::- B [<bit-size>]

<bit-size> : :- <compile-time-integer-formula> (5.1.1)

4 <bit-type-name> :: <item-type-name> (2.2)

Semantics:

A <bit-type-description> is used to specify a bit string type. The
<bit-size) attribute specifies the number of bits in the string. If
<bit-size> is omitted it defaults to 1.

Constraints:

The maximum value that can be specified for <bit-size> is MAXBITS,
an implementation parameter. The minimum value that can be specified
for <bit-size> is one.

A <bit-type-name) must be an <item-type-name> declared in an
<item-type-declaration> that contains a <bit-type-description> (see
Section 2.2).

20

MIL-STD-1589B (USAF)
06 June 1980

2.1.1.5 CHARACTER TYPE DESCRIPTIONS

Syntax:

<character-type-description> ::- <character-item-description>

I <character-type-name>

<character-item-description> ::- C [<character-size>]

<character-size> :- <compile-time-integer-formula>(5.1.1)

<character-type-name> ::- <item-type-name> (2.2)

Semantics:

A <character-type-description> is used to specify a fixed-length
character string type. The <character-size> attribute specifies the
number of characters in the string. If <character-size> is omitted it
defaults to 1.

Constraints:

The maximum value that can be specified for <character-size> is
MAXBYTES, an implementation parameter. The minimum value that can be
specified for <character-size> is one.

A <character-type-name> must be an <item-type-name> declared in an*1n
<item-type-declaration> that contains a <character-type-description>
(see Section 2.2).

2.1.1.6 STATUS TYPE DESCRIPTIONS

Syntax:

<status-type-description> :- <status-item-description>

I <status-type-name>

<status-item-description> :- STATUS [<status-size>]
(<status-list>)

<status-list> ::- <default-sublist>

I [<default-sublist> ,]
<specified-sublist>,...

21

III I-

MIL-STD-1589B (USAF)
06 June 1980

<default-sublist> : <status-constant>,...

<specified-sublist> :: <status-list-index>

<status-constant>,...

<status-list-index> :: <compile-time-integer-formula> (5.1.1)

<status-constant> ::- V (<status>)

<status> : <: (name> (8.2.1)

I <letter> (8.1)

I <reserved-word> (8.2.2)

<status-type-name> : : <item-type-name> (2.2)

<status-size> : :- <compile-time-integer-formula> (5.1.1)

Semantics:

A <status-type-description> is used to specify a status type. The
<status-list> Is used to define the value set of the type, which
consists of a set of named <status-constants>. These named
<status-constants> are considered to be the logical values of the status
type. Associated with each logical value is a representational value,
i.e., how the value is actually represented internally. If the
<status-list> contains only a <default-sublist>, the status type is said
to have a default representation. The <status-constants> in the
<default-sublist> will be assigned representational values 0 through N-I
(where N is the number of <status-constants> in the sublist) in the
order in which they are specified in the list. The <status-constants>
in each <specified-sublist> will be assigned representational values
<status-list-index> through <status-list-index> + N-I (where N is the
number of <status-constants> in the sublist) in the order in which they
are specified.

For a given <status-list>, the value of any <status-constant> is
considered to be greater than the value of another <status-constant>
having a lower representational value.

<Status-size> specifies the minimum number of bits to be allocated
to hold the status value (excluding the sign bit, if any). If it is
omitted, it defaults to the minimum needed for the representation as an
integer value. If the representation of the lowest-valued
<status-constant> in the list is less than zero, signed integer
representation will be used; otherwise, unsigned integer representation
will be used.

22

_ _

- U -

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

The <status-constants> must be unique within the <status-list>.

The <status-list-indices> within a <status-list> must be specified
such that all the <status-constants> in the <status-list> receive unique
representational values.

The value specified in <status-size> must be greater than or equal

to the minimum needed for the representation of the status values and
less than or equal to MAXINTSIZE.

The representation of a status value cannot be less than MININT
(BITSINWORD-1) and it cannot exceed MAXINT(BITSINWORD-1).

A <status-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains a <status-type-description> (see
Section 2.2).

Note:

The use of a <name> in a <status> does not constitute a declaration
of the <name> or a reference to a declared <name>. having the same
spelling. Within a given scope, a <status> <name> and a declared <name>
can have the same spelling and no conflict will result.

2.1.1.7 POINTER TYPE DESCRIPTIONS

Syntax:

<pointer-type-description> :: <pointer-item-description>

I <pointer-type-name>

<pointer-item-description> ::=P (<type-name>]

<pointer-type-name> :: <item-type-name> (2.2)

<type-name> : <item-type-name> (2.2)

I <table-type-name> (2.2Y

I <block-type-name> (2.2)

Semantics:

A <pointer-type-description> is used to specify a pointer type. If
the <pointer-item-description> contains a <type-name>, then the pointer

23

t '

I4L-STD-15893 (USAF)
06 June 1980

being specified is a typed pointer. If the <type-name> is omitted, then
the pointer is an untyped pointer.

A typed pointer contains the address of a data object of the type
specified by the <type-name>. The object being pointed to may be
obtained by dereferencing the pointer (see Section 6.1).

An untyped pointer contains the address of a data object of any
type. However, such a pointer must be converted to a typed pointer (see
Section 7.0) before it may be dereferenced or assigned to a typed
pointer.

Constraint:

A <pointer-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains a <pointer-type-description> (see
Section 2.2).

2.1.2 TABLE DECLARATIONS

Syntax:

<table-declaration> ::m TABLE <table-name>
[<allocation-specifier>] (2.1 .5)
[<dmension-list>1 (2.1.2.1)
table-description>

<table-description> : :- [<structure-specifier>] (2.1.2.2)
<entry-specifier>

I <table-type-name> (2.2)

(<table-preset>] ; (2.1.6)

<entry-specifier> : :- <ordinary-entry-specifier> (2.1.2.3)

I <specified-entry-specifier> (2.1.2.4)

<table-name> ::- <name> (8.2.1)

Semantics:

<Table-declarations> declare named aggregate data objects. The
presence of a <dimension-list> indicates that the table is an arrayed
collection of entries. The <dimension-list> specifies the range of
indices of the array.

The <allocation-specifier> establishes the allocation permanence of
tables which are not enclosed in blocks. This allocation permanence is

24

-fA

MIL-STD-1589B (USAF)
06 June 1980

automatic if the declaration is in a subroutine and the
<allocation-specifler> is omitted, otherwise it is STATIC (see Section
2.1.5). Tables enclosed in blocks inherit the allocation permanence of
the enclosing block.

The <table-description> describes the contents of the table either
with a <table-type-name> (see Section 2.2) or with an <entry-specifier>.
Two or more tables may be declared in the same scope using the same
<table-type-name>, and no name conflicts of the contained items will
result, provided the <table-names> are different. Items in tables
declared with a <table-type-name> can only be accessed using pointers to
the tables (see Section 6.1).

A table may either be an ordinary table, in which only the logical
structure is described (see Section 2.1.2.3) or a specified table, in
which the detailed physical layout of the table is described (see
Section 2.1.2.4).

A <structure-specifier> is used to specify the representation of
entries in a dimensioned table (see Section 2.1.2.2).

The <table-preset>, if present, specifies initial values for the
table components. For <table-descriptions> containing an <entry-
specifier> rather than a <table-type-name>, the <table-preset> is part
of the <entry-specifier> (see Section 2.1.2.3 and 2.1.2.4).

Constraints:

Only tables having STATIC allocation (explicitly or by default) may
contain a <table-preset>.

Tables that are <formal-input-parameters> or <formal-output-
parameters> (see Section 3.3) must not contain an <allocation-specifier>
or <table-preset>.

A <table-declaration> within a block must not contain an
<allocation-specifier>.

A dimensioned <table-declaration> must not contain a <table-type-

name> whose declaration also contains a <dimension-list>.

A <structure-specifier> in an undimensioned table is prohibited.

2.1.2.1 TABLE DIMENSION LISTS

Syntax:

25

I.=

MIL-STD-1589B (USAF)
06 June 1980

<dimension-list> ::- (<dimension>,...)

<dimension> : :m (<lower-bound-option>]
<upper-bound>

I *

<lower-bound-option> :: <lower-bound>

<lower-bound> : :- <compile-time-integer-formula> (5.1 .1)

I <compile-time-status-formula> (5.4)

<upper-bound> : : < (compile-time-integer-formula> (5.1.1)

I <compile-time-status-formula> (5.4)

Semantics:

A <dimension-list> specifies that a table is an array. Each
<dimension> specifies the range of values for that dimension. If the
<lower-bound> is omitted, it defaults to zero if the <upper-bound> is an
integer; if the <upper-bound> is a status value, it defaults to the
first <status-constant> in the status type of the <upper-bound>.

A <dimension> of * that appears with a formal parameter means the
bounds will be determined from the actual parameter on each invocation.
(Note that in accordance with Sections 6.3.9 and 6.1, bounds of *
dimensions range from 0 to NN-i, where NN is the number of elements in
the corresponding dimension of the actual parameter, regardless of what
the lower and upper bounds values are for the actual parameter or
whether the bound has an integer or status type.)

Constraints:

Only status types with default representations may be used in
<dimensions>.

The <lower-bound> must be less than or equal to the <upper-bound>.

The <lower-bound> and <upper-bound> must both be status formulas

of the same type or both be integer formulas.

The maximum number of <dimensions> is seven.

A <dimension> of * may be used only with a table formal parameter.

If any <dimension> of a table formal parameter is specified as *,
they all must be specified as *.

26

MIL-STD-15893 (USAF)
06 June 1980

The number of words occupied by a table must not exceed
MAXTABLESIZE.

2.1.2.2 TABLE STRUCTURE

Syntax:

<structure-specifier> : := PARALLEL

I T (<bits-per-entry>]

<bits-per-entry> ::- <compile-time-integer-formula> (5.1.1)

Semantics:

Dimensioned tables can have a parallel or serial structure. In
addition, a serial table may be tightly structured. The
<structure-specifier> specifies the table structure.

A <structure-specifier> PARALLEL indicates parallel structure. For
tables with parallel structure, the first word (word 0) of each entry is
allocated consecutively, then word one, etc. An omitted

-- <structure-specifier> or one with T indicates serial structure. For
tables with a serial structure, all words of the first entry are

, - allocated consecutively, then all words of the next entry, etc. Entries
in both parallel and serial tables are arranged such that the rightmost
indices vary fastest, from the lower bound to the upper bound.

A <structure-specifier> of T indicates tight structure (in addition
to serial structure). Tight structure defines the allocation of storage
between entries in a dimensioned (ordinary or specified) table, whereas
packing (see Section 2.1.2.3) defines the allocation of storage within
an entry of an ordinary table. Tight structure indicates that multipl-
entries of a dimensioned table are to be stored within a single word
such that no entry crosses a word boundary. <Bits-per-entry> specifies
the number of bits each entry is to occupy. If it is omitted, it will
default to the minimum number of bits needed to store the entry.

Entries in tightly-structured tables are right-justified in the
bits allotted.

Entries in tables without a <structure-specifier> of T shall not

share a word.

Constraints:

<Bits-per-entry> must be equal to or greater than the minimum
number of bits needed to store the entry.

27

__ __ __ _ __ __ _ __ __ _ _ -W-aZ-Z

MIL-STD-1589B (USAF)
06 June 1980

The explicit or default value of <bits-per-entry> must be less than

or equal to BITSINWORD.

Items in a parallel table must not cross word boundaries.

A parallel table must contain a <dimensio-list>.

2.1.2.3 ORDINARY TABLE ENTRIES

Syntax.

(ordinary-entry-
specifier> :-[(packing--specifier>J

(item-type-description) (2.1 .1)
[<table-preset>] ; (2.1.6)

[<packing-specifier> I
[<table-preset>] ; (2.1.6)
<ordinary-table-body>

(packing-specifier> :-N

M

ID

(ordinary-table-body> :-<ordinary-table-item-declaration)

IBEGIN
<ordinary-table-options>...
END

<ordinary-table-item-
declaration> :=ITEM <table-item-name>

(item-type-description) (2.1.1)
[<packing-specifier>]
[<table-presec>J (2.1.6)

<table-item-name> :: <name> (8.2.1)

<ordinary-table-options> < ordinary-table-item-declaration)

< directive> (9.0)

I<null-declaration) (2.7)

28

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

An <ordinary-entry-specifier> is used to specify the contents of an
entry of an ordinary table.

No allocation order is implied by the order of items in the
<ordinary-table-options> unless the <ordinary-table-options> contains an
<order-directive>. If an <order-directive> is not in effect,
(ordinary-table-options> will be reordered, if necessary, to reduce the
storage occupied by an entry, consistent with the <packing-specifier>.
Tables having the same type will have the same representation.

The <packing-specifier> specifies the density with which items are
allocated within an entry. The following three degrees of packing can
be specified:

1. N indicates that the items are not packed. No items share a
word.

2. M indicates a density of packing that can be between N and D.
The exact meaning is implementation-dependent, and is
specified to be an effective compromise between space usage
and accessing ease.

3. D indicates dense packing. Items are allocated adjacent bits
in a word with the following exceptions:

a. Non-character items one word or longer start on a
word boundary. Shorter non-character items do not
cross word boundaries.

b. Each byte of a character item which crosses a word
boundary must be allocated on a byte boundary. An
implementation may (but need not) allocate the bytes
of other character items on byte boundaries.

A <packing-specifier> preceding an <ordinary-table-body> in an
<ordinary-entry-specifier> applies to all items in the <ordinary-
table-body> that do not themselves include a <packing-specifier> in
their declaration.

Default packing for a tightly-structured table (see Section
2.1.2.2) is D; for all other tables, it is N.

The value of unallocated bits in an <ordinary-entry-specifier> is
implementation-dependent.

The <table-preset>, if present, specifies initial values for the
table entries.

29

Nor,

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

Only tables having STATIC allocation (implicitly or explicitly) may
contain a <table-preset>.

Declaration of table <formal-input-parameters> or
<formal-output-parameters> (see Section 3.3) must not contain
<table-presecs>.

If a <table-preset> precedes the <ordinary-table-body>, none of the
<ordinary-table-item-declarations> in the <ordinary-table-body> can
contain a <table-preset>.

An <ordinary-entry-specifier> used in a <table-type-declaration>
(see Section 2.2) must not contain a <table-preset>.

An <ordinary-table-options> must contain at least one <ordinary-
table-item-declaration>.

A <packing-specifier> of N is permitted in tightly-structured
table only if the table entry contains only one item.

The number of words allocated for a table entry must not exceed
MAXBITS/BITSINWORD.

2.1.2.4 SPECIFIED TABLE ENTRIES

Syntax:

<specified-entry-
specifier> :: <words-per-entry>

<specified-item-description>
[<table-preset>] ; (2.1.6)

I <words-per-entry>
[<table-preset>] ; (2.1.6)
<specified-table-body>

<words-per-entry> :: W [<entry-size>]

Iv

<entry-size> : <compile-time-integer-formula> (5.1.1)

<specified-itemr-
description> ::= <item-type-description> POS (2.1.1)

(<location-specifier>)

30

MIL-STD-1589B (USAF)
06 June 1980

<location-specifier> :: <starting-bit>
<starting-word>

<starting-bit> :: <compile-time-integer-formula> (5.1.1)

I *

<starting-word> :: < <compile-time-integer-formula> (5.1.1)

<specified-table-body> :: <specified-table-item-declaration>

I BEGIN
<specified-table-options>...
END

<specified-table-item-
declaration> ::= ITEM <table-item-name> (2.1.2.3)

<specified-item-description>
[<table-preset>] ; (2.1.6)

<specified-table> :: <specified-table-item-declaration>
options>

I <directive>
(9.0)

- I <null-declaration> (2.7)

Semantics:

A <specified-entry-specifier> is used to specify the contents of an
entry of a specified table.

<Words-per-entry> specifies the size of (i.e, number of words in)
each entry in the table. <Words-per-entry> containing a W indicates a
fixed-length-entry specified table whereas V indicates a
variable-length-entry specified table. In a fixed-length-entry
specified table, <entry-size> (if present) specifies the number of words
allocated to each entry in the table. In a tightly-structured table (in
which <entry-size> must be omitted), the size of the entry is determined
from the <structure-specifier>. In a variable-length-entry specified
table, each entry is allocated one word.

The <location-specifier> specifies the physical location of the
item from the start of the entry. <Starting-word> indicates at which
word of the entry, starting from zero, the item is to start, and
<starting-bit> indicates at which bit in the word, starting from zero at
the leftmost part of the word, the item is to start. In the case of
entries in tightly structured tables, <starting-bit> is considered to be
relative to the start of the entry. A <starting-bit> of * indicates

31

I

.,,.

MIL-STD-1589B (USAF)
06 June 1980

that the item should occupy the same amount of storage and be aligned in
the same way it would if it were allocated outside a table, in order to
ensure efficient access to the item. These rules apply to both
fixed-length-entry and to variable-length-entry specified tables.
Consequently, in a variable-length-entry table, reference to an item
with subscript NN will reference that item relative to the start of the
NNth entry, where each entry is considered to be one word long (i.e., a
subscript of NN does not refer to the NNth logical entry in that table).
It is entirely up to the programer to keep track of the actual length
of logical entries in such tables.

The <table-preset>, if present, specifies initial values for the
table entries.

The value of unallocated bits in a <specified-table-entry> is
implementation-dependent.

Constraints:

<Entry-size> must be omitted on tightly-structured tables and must
be present otherwise.

<Entry-size> must be greater than zero and less than or equal to
MAXBITS/BITSINWORD.

<Starting-word> must be non-negative. For items in tables with
entry sizes specified by <entry-size>, <starting-word> plus number of
words occupied by the item must not exceed <entry-size>. For tightly
structured tables <starting-word> must be zero.

<Starting-bit> must be non-negative and must not cause item
position to violate other positioning constraints. For non-tightly
structured tables it must also be less than BITSINWORD. For tightly
structured tables <starting-bit> plus number of bits occupied by the
item must not exceed <bits-per-entry>.

Only tables having STATIC allocation (implicitly or explicitly) may
contain a <table-preset>.

Tables that are <formal-input-parameters> or
<formal-output-parameters> (see Section 3.3) must not contain a
<table-preset>.

If a <table-preset> precedes the <specified-table-body>, none of
the <specified-table-item-declarations> in the <specified-table-body>
can contain a <table-preset>. If any part of an item in a
<specified-table-body> overlaps any part of another item in the table
body, only one of the items can be preset.

32

MIL-STD-1589B (USAF)
06 June 1980

A (specified-entry-specifier> used in a <table-type-declaration>
(see Section 2.2) must not contain a <table-preset>.

A <specified-table-options> must contain at least one <specified-
table-item-declaration>.

Non-character items whose size is one word or less cannot cross a
word boundary. Character items, regardless of length, may start on any
byte boundary, i.e., any value of the machine parameter BYTEPOS. Any
<starting-bit> value is permitted for character items that do not cross
word boundaries.

An implementation may restrict legal <starting-bit> values for
pointer items that are irltialized.

Variable-length-entry specified tables must contain a
<specified-table-body>, and they cannot contain <table-presets> or
<structure-specifiers>.

2.1.3 CONSTANT DECLARATIONS

Syntax:

<constant-declaration> ::- CONSTANT ITEM
<constant-item-name>
<item-type-description> (2.1.1)
<item-preset> ; (2.1.6)

I CONSTANT TABLE
<constant-table-name>
[<dimension-list>] (2.1.2.1)
<table-description> (2.1.2)

<constant-item-name> := <name> (8.2.1)

<constant-table-name> ::= <name> (8.2.1)

Semantics:

A <constant-declaration> creates an item or table whose value must
be set by means of an <item-preset> or <table-preset> and whose value
cannot be changed during execution of a program. The value of a
constant Item whose type class is not pointer can be used in a
<compile-time-formula> (see Section 5.0). The value of a constant table
or an item within a constant table may not be used in a
<compile-time-formula>.

33

MIL-STD-1589B (USAF)
06 June 1980

Physical storage will be allocated for all <constant-declarations>
that are in <block-declarations>.

The allocation permanence of all allocated <constant-declarations>

is considered to be STATIC, even if the declarations appear in a

<subroutine-definition>.

2.1.4 BLOCK DECLARATIONS

Syntax:

<block-declaration> ::- BLOCK (block-name>
(<allocation-specifier>] ; (2.1.5)
<block-body-part>

I BLOCK <block-name>
(<allocation-specifier>] (2.1.5)

<block-type-name> (2.2)
[<block-preset>] ; (2.1.6)

<block-name> :- <name> (8.2.1)

<block-body-part> : <null-declaration> (2.7)

I <data-declaration> (2.1)

I BEGIN
<block-body-options>...
END (9.0)

<block-body-options> ::- <data-declaration> (2.1)

I <overlay-declaration> (2.6)

I <directive> (9.0)

I <null-declaration> (2.7)

Semantics:

A <block-declaration> declares a group of items, tables, and other

blocks that are to be allocated in a contiguous area of storage. No

allocation order is implied by the order of the declarations within a

block unless the <block-body-options> contains an <order-directive>. If

an <order-directive> is not in effect, <block-body-options> will be

reordered, if necessary, to improve accessibility.

34

i
MIL-STD-1589B (USAF)
06 June 1980

The <allocation-specifier> establishes the allocation permanence of
blocks which are not enclosed in blocks. This allocation permanence is
automatic if the declaration is in a subroutine and the
<allocation-specifier> is omitted, otherwise it is STATIC (see Section
2.1.5). Blocks enclosed in blocks inherit the allocation permanence of
the enclosing block.

The <block-declaration> describes the contents of tha block either
with a <block-type-name> (see Section 2.2) or with a <block-body-part>.
The <block-body-part> contains explicit declarations of all, the
components of the block.

The <block-preset>, if present, specifies initial values for the
block components. For <block-declarations> containing a <block-body-
part> rather than a <block-type-name>, initial values may be specified
with <block-presets>, <table-presets> and <item-presets> on the
components themselves.

Constraints:

Only blocks having STATIC allocation (explicitly or by default) may
contain a <block-preset> or a <data-declaration> containing an <item-
preset>, <table-preset> or <block-preset>.

If a <constant-declaration> is in a block, the block must have
STATIC allocation (explicitly or by default).

<Data-declarations> within a block must not contain an <allocation-
specifier>.

Blocks that are <formal-input-parameters> or <formal-output-
parameters> (see Section 3.3) must not contain an <allocation-

specifier>, a <block-preset> or a <data-declaration> with an
<item-preset>, <table-preset>, or <block-preset>.

Components of blocks declared with a <block-type-name> may be
accessed only by using pointers to the blocks.

2.1.5 ALLOCATION OF DATA OBJECTS

Syntax:

<allocation-specifier> ::- STATIC

Semantics:

Allocation of storage for a data object can be STATIC or automatic.
STATIC allocation means that the data object is to exist throughout the

35

MIL-STD-1589B (USAF)
06 June 1980

entire execution of the program. Automatic allocation is applicable
only to data declared within subroutines and means that the data object
need only exist while the subroutine is executing (i.e., values are not
necessarily preserved between calls). Automatic is the default
allocation for data declared in subroutines and cannot be explicitly
specified. STATIC is the default for data not declared in subroutines
and can be explicitly specified both inside and outside of subroutines.

The treatment of STATIC data in a concurrent processing environment
is implementation-dependent with respect to which data, if any, are
shared among processes.

2.1.6 INITIALIZATION OF DATA OBJECTS

Syntax:

<item-preset> : <item-preset-value>

<item-preset-value> :: <compile-time-formula> (5.0)

I <loc-function> (6.3.1)

<table-preset> - <table-preset-list>

<table-preset-list> :: <default-preset-sublist>

I [<default-preset-sublist> ,]
<specified-preset-sublist>,...

<default-preset-sublist> :: <preset-values-option>,...

<specified-preset-
sublist> :- <preset-index-specifier>

<preset-values-option>,...

<preset-index-specifier> :: POS (<constant-index>,...)

<constant-index> ::- <compile-time-integer-formula> (5.1.1)

<compile-time-status-formula> (5.4)

<preset-values-option> :- [<item-preset-value>]

I <repetition-count>
(<preset-values-option>,...)

<repetition-count> :: <compile-time-integer-formula> (5.1.1)

36

MIL-STD-1589B (USAF)
06 June 1980

<block-preset> ::- <block-preset-list>

<block-preset-list> :: <block-preset-values-option),...

<block-preset-values- :: <preset-values-option>
option>

I (<table-preset-list>)]

I [(<block-preset-list>)]

Semantics:

Items, tables, and blocks with STATIC allocation can be given
initial values by means of <item-presets>, <table-presets>, and
<block-presets>, respectively. Furthermore, constant items and tables
must be given initial values with <item-presets> and <table-presets>.
Initial values are values of the variables after a module has been
loaded but prior to any dynamic reference to the variables. They do not
imply any provision for later restoring values to the initial state.

An <item-preset> specifies an initial value for an item.

A <table-preset> specifies a list of initial values. If the
<table-preset> occurs on an item within an entry of a table, the
<table-preset> specifies values only for that item. If the table is
dimensioned, the <table-preset> for the item, if present, may specify a
list of values to initialize that item in each entry of the dimensioned
table.

If the <table-preset> occurs on an entry of a table, the
<table-preset> specifies values for all items within that entry. If the
table is dimensioned, the <table-preset> specifies values for all the
items in each entry of the dimensioned table. Assuming the entry has N
items in it, the first N values in the <table-preset> are initial values
for the N items in the first entry of the table (in the order in which
the declarations appear), the second N values in the <table-preset> are
initial values for the N items in the second entry of the table, etc.

Entries within a dimensioned table are normally initialized in
order, the first entry being the one with the lowest value of each
dimension index, and proceeding with the rightmost indices increasing
most rapidly. This is the procedure followed when a <default-preset-
sublist> is specified. If a <specified-preset-sublist> is used,
initialization using the values in the sublist will start with the entry
whose indices are specified in the <preset-index-specifier> and will
proceed with the rightmost indices increasing most rapidly.

A <repetition-count> can be used as a shorthand to specify the
number of consecutive repetitions of the sequence of <preset-values-

37

1<

MIL-STD-1589B (USAF)
06 June 1980

options> enclosed in the parentheses following the <repetition-count>.

If a value is omitted in the <table-preset>, the item corresponding
to the omitted value will remain uninitialized and cannot be given an
initial value elsewhere in the preset.

A <block-preset> is used only to initialize a block declared with a
<lock-type-name>. The <block-preset-list> specifies initial values for
the items, tables and blocks contained within the block in the order of
their declaration. A parenthesized <table-preset-list> is used to
initialize a contained table and a parenthesized <block-preset-list> is
used to initialize a contained block. An omitted entry from the list
indicates that the cbrresponding item, table, or block will remain
uninitialized.

Constraints:

The type of each value in an <item-preset>, <table-preset> or
<block-preset> must match or be implicitly convertible to the type of
the data object being initialized (see Section 7.0).

The <preset-index-specifiers> within a <table-preset> must be
specified such that no bit position is initialized more than once and
the bounds of the table are not exceeded.

The value of the <repetition-count> must not be negative.

An item must noo be initialized more than once by initializing
another item that overlaps it.

The type of each <constant-index> in a <preset-index-specifier>
must match the type of the bounds of the corresponding dimension in the
<dimension-list> of the declaration of the table.

The number of <constant-indices> in a <preset-index-specifier> must
be the same as the number of <dimensions> in the table's
<dimension-list>.

If the argument of a <loc-function> used as a preset value is a
<named-variable>, it must be a <data-name> for an object whose
allocation permanence is STATIC, either explicitly or by default.

38

54

MIL-STD-1589B (USAF)
06 June 1980

2.2 TYPE DECLARATIONS

Syntax:

<type-declaration> :- <item-type-declaration>

I <table-type-declaration>

I <block-type-declaration>

<item-type-declaration> ::- TYPE <item-type-name>
<item-type-description> ; (2.1.1)

<item-type-name> :: < (name> (8.2.1)

<table-type-declaration> ::- TYPE <table-type-name>
TABLE <table-type-specifier>

<table-type-specifier> ::- [<dimension-list>] (2.1.2.1)
[<structure-specifier>] (2.1.2.2)
[<like-option>]
<entry-specifier> (2.1.2)

I [<dimension-list>] (2.1.2.1)

<table-type-name>

<table-type-name> :: < (name> (8.2.1)
<like-option> ::- LIKE (table-type-name>

<block-type-declaration> ::- TYPE <block-type-name>
BLOCK <block-body-part> (2.1.4)

<block-type-name> ::- <name> (8.2.1)

Semantics:

A <type-declaration> is used to give a name to a type
specification.

An <item-type-declaration> associates the <item-type-name> with the
<item-type-description>.

A <table-type-declaration> associates the <table-type-name> with
the <table-type-specifier>.

If a <like-option> is specified, the entry being described consists
of the items in the type named in the <like-option> together with the
items in the <entry-specifier>. The physical positioning of items in

39 i

MIL-STD-1589B (USAF)
06 June 1980

the <like-option) relative to the start of the entry is fixed at the
time the <like-option> type name is declared and is not changed by its
use as a <like-option>. If the type named in the <like-option) contains
a <dimension-specifier>, it applies to the entire <table-type-
specifier>. If the table is an ordinary table, the <packing-specifier>,
if present, only applies to the items in the <entry-specifier>, not to
the items obtained from the <like-option>. If the table is a specified
table, the <words-per-entry> in the <entry-specifier>, if present,
specifies the total size of the entry including the items obtained from
the <like-option>. If the <table-type-declaration) contains a
<structure-specifier> of T, <bits-per-entry> specifies the total number
of bits the entry is to occupy including items obtained from the
<like-option>. If (bits-per-entry> is omitted it will default to the
minimum number of bits needed to store the entry, including items
obtained from the <like-option>.

The physical representation of a table type is fixed by the type
declaration. All objects allocated with such a type name will have the
same representation. In particular, the position of table items in a
<like-option> is not modified by the occurrence of a <packing-specifier>
or <order-directive> in the <entry-specifier>. However, unused space in
the portion described by the <like-option> can be occupied by table
items given in a packed <entry-specifier>.

A <block-type-declaration> associates the <block-type-name) with
the <block-body-part).

For type matching purposes, a type name is considered to be an
abbreviation for its associated <item-type-description>,
<table-type-specifier>, or <block-body-part>, in any context except
within a <pointer-item-description>.

Constraints:

The <item-type-description>, <table-type-specifier>, or block-
body-part> in a <type-declaration> must not contain an <item-preset>,
<table-preset>, or <block-preset>.

A <block-body-part> in a <block-type-declaration> cannot contain
<constant-declarations>.

If a <table-type-specifier> contains a <dimension-list>, then it
must not contain a <table-type-name> (either directly or in a <like-
option)) whose <table-type-declaration> contains a <dimension-list>.

Tables may be characterized as parallel, serial, tight, ordinary,
variable-length-entry, and specified. The characterizations of the
table type in a <like-option> must be the same as those of the
<table-type-declaration> in which the <like-option> appears.

40

-J

MIL-STD-1589B (USAF)
06 June 1980

<Words-per-entry> of the <table-type-specifier> must not specify a
value that is less than <words-per-entry> of the type name specified in
a <like-option>.

The (explicit or default) number of bits per entry in a
<table-type-specifier> having tight structure must not be less than the
number of bits per entry of the type name specified in a <like-option>.

A <table-type-name> must be a <name> declared in a
<table-type-declaration>.

A <block-type-name> must be a <name> declared in a
<block-type-declaration>.

Note:

A <table-type-name>, <item-type-name>, or <block-type-name> must
not be a formal parameter name or an actual parameter name.

2.3 STATEMENT NAME DECLARATIONS

Syntax:

<statement-name-declaration> :- LABEL
<statement-name>,... ; (4.0)

Semantics:

A <statement-name-declaration> is used to explicitly declare a
<statement-name>. Ordinarily,. a <statement-name> is implicitly declared
by its use in a <label>. An explicit <statement-name-declaration>,
however, must be used for statement name <formal-input-parameters>, for
statement names that are the same as <define-names> declared in an
enclosing scope, and for external <statement-name-declarations>.

Constraints:

The <statement-names> in a <statement-name-declaration> must either
be <formal-input-parameters> to the subroutine containing the
<statement-name-declaration> or else must be used in <labels> in the
immediate scope containing the <statement-name-declaration> (i.e., not
including nested scopes).

41

MIL-STD-1589B (USAF)
06 June 1980

2.4 DEFINE DECLARATIONS

Syntax:

<define-declaration> ::= DEFINE <define-name>

<definition-part>

<define-name> := <name> (8.2.1)

<definition-part> : : [<formal-define-parameter-list>]
<define-string> ;

<formal-define-parameter-
-list> : (<formal-define-parameter>,...)

<formal-define-parameter> : <letter> (8.1)

<define-string> : " [<character>...J " (8.1)

Semantics:

A <define-declaration> is used to associate a name with a (possibly
parameterized) text string, the <define-string>. The <define-string>
will be substituted for the <define-name> when the <define-name> is used
in a <define-call> (see Section 2.4.1).

The <formal-define-parameter-list> is used to declare
<formal-define-parameters>. These parameters receive values from
<actual-define-parameters> in each <define-call> (see Section 2.4.1).
The values are substituted in the <define-string> wherever the
<formal-define-parameters> are referenced. Reference to a
<formal-defIne-parameter> within the <define-string> is indicated by
preceding the parameter name with an exclamation point. Such parameter
references can occur anywhere within the <define-string> and, by
appropriate juxtaposition, can be used to create new symbols.

Within the <define-string>, the quotation mark (") and exclamation
point (1) can be used as simple characters by doubling them. A
<define-string> is terminated by the first undoubled quotation mark,
regardless of the lexical context in which the undoubled quotation mark
appears.

As with other <names>, a <define-name> is known in the scope
containing its declaration and may be redeclared in an inner scope.

The <define-string> may contain <define-calls>. Such calls will be
expanded for each substitution of the <define-string>, using the
definition active in the scope of the <define-call>.

42

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

A <comment> delimited by quotation marks must not occur in a
<define-declaration> between the <define-name> and the <define-string>.

Circular <define-declarations> as the result of <define-strings>
containing <define-calls> are not allowed.

The same <letter> must not appear more than once in any
<formal-define-parameter-list>.

2.4.1 DEFINE CALLS

Syntax:

<define-call> :: <define-name> (2.4)
[<actual-define-parameter-list>]

<actual-define-parameter- ::- (<actual-define-parameter>,...)
list>

<actual-define-parameter> :: [(character>... 1 (8.1)

I " [<character>...] " (8.1)

Semantics:

A <define-call> is used to cause textual substitution to occur. A
<define-call> is processed as follows:

1. The characters comprising <actual-define-parameters> are
substituted for the corresponding <formal-define-parameters>
in the <define-string> associated with the <define-name>.

2. The resulting <define-string> logically replaces the
<define-call>.

3. The substituted <define-string> is scanned from its beginning
to determine what <symbols> it contains; these <symbols> are
processed as though they had appeared in the orginal text at
the point of the replaced <define-call>.

Note that the substituted source text may be found to contain
<define-calls> and these are processed in the same manner.

If an <actual-define-parameter> is omitted, a null string will be
substituted for the <formal-define-parameter>. If the number of
<formal-define-parameters> exceeds the number of
<actual-define-parameters>, null strings will be substituted for the

43

MIL-STD-1589B (USAF)
06 June 1980

trailing <formal-define-parameters>.

If an <actual-define-parameter> consists of characters enclosed in
quotation marks, all the enclosed characters are substituted. The

quotation mark (") must be doubled within an actual parameter enclosed
in quotes.

If an <actual-define-parameter> does not contain enclosing
quotation marks, the characters substituted are the first non-blank
character and subsequent characters ending at, but not including, either
(1) the first right parenthesis that is not balanced by a left
parenthesis that is part of the <actual-define-parameter>, or (2) the
first comma that is not between such balanced parentheses.

<Define-calls> are not recognized in <comments> and <character-
literals>.

Constraints:

The <actual-define-parameter-list> must not be omitted if the
corresponding <define-declaration> contains a <formal-define-parameter-
list>.

The number of <actual-define-parameters> must not be greater than
the corresponding number of <formal-define-parameters>.

A <define-call> cannot be juxtaposed with surrounding symbols so as
to create new symbols after substitution.

A <define-call> must not be used as the <name> being declared
within a declaration.

A <define-call> must not be used as a <formal-input-parameter> or
<formal-output-parameter> within a <procedure-heading> or <function-
heading>.

The same <letter> must not appear more than once in any
<formal-define-parameter-list>.

Note:

The define-listing directives (see Section 9.7.2) allow programmer
control over whether the source program listing contains the expanded
string, the define invocation, or both, for <define-calls>.

Examples:

DEFINE FOO(A) "BAZ !AFAZ IA";
DEFINE BAR "RELLO";

44

HIL-STD-1589B (USAF)
06 June 1980

DEFINE DARFAZ "GOODBYE";
DEFINE HELLOFAZ "NOT USED";
FOO(BAR)

The result of the <define-call>, FOO(BAR), after substituting f or the
formal parameter IA is BAZ BARFAZ BAR, and after rescanning this string,
the final result Is BAZ GOODBYE HELLO.

DEFINE HAKEDEF(N, S) "DEFINE IN ""..IS"11"%
MAKEDEF(NEV, HELLO);

The result is DEFINE NEW "HELLO"; , i.e., a new <define-declaration>.

2.5 EXTERNAL DECLARATIONS

Syntax:

<external-declaration> : <def-specification) (2.5.1)

I<ref-specification> (2.5.2)

Semantics:

<External-declarations> declare (names) that are potentially known
in other <modules> of the <complete-program>. Such names are said to be
external.

Constraint:

Formal parameter names cannot be declared external.

2.5.1 DEF SPECIFICATIONS

Syntax:

<def-specification) <simple-def>

I<compound-def>

(simple-def> :-DEF
<def-specification-choice>

<compound-def> :-DEF '%EGIN
<def-)ecification-choice>...
END

45

MIL-STD-1589B (USAF)
06 June 1980

<def-specification-choice> :: <null-declaration> (2.7)

I <data-declaration> (2.1)

I <def-block-instantiation>

I <statement-name-declaration> (2.3)

I <directive> (9.0)
<def-specification-choice>

<def-block-instantiation> ::- BLOCK INSTANCE

<block-name> ; (2.1.4)

Semantics:

<Def-specifications> enable data objects to be declared that are
potentially available via <ref-specifications> and/or <compool-
directives> for use in other <modules>. Physical storage will be
allocated for these objects.

Either a <def-block-instantiation> or a <block-declaration> may be
used in a <def-specification> to create a block with external scope.
However, in order for a <def-block-instantiation> to be meaningful, a
<ref-specification> containing a <block-declaration> having the same
<block-name> must exist, either in that <module> or in a
<compool-module> that is referenced via a <compool-directive>. Preset
information used in the creation of a block declared with a
<def-block-instantiation> will be obtained from the corresponding
<ref-specification>.

A <statement-name-declaration> in a <def-specification> makes the
addresses of the designated statements available as linkage information
in the environment of the <complete-program> but does not make these
names available as targets of out-of-scope GOTO statements (see Section
4.7).

Constraints:

A data declaration in a <def-specification> and a corresponding
declaration in a <ref-specification> must agree in name, type, and all
attributes. However, a compiler will perform this check across <module>
boundaries only if a connection is established between the <modules> via
a <compool-directive>.

External data must have STATIC allocation, either explicitly or
implicitly.

46

V

MIL-STD-1589B (USAF)
06 June 1980

The <data-declaration> in a <def-specification> cannot be a
<constant-declaration>. (This constraint does not prevent <constant-
declarations> from appearing in <block-declarations> in <def-
specifications>.)

2.5.2 REF SPECIFICATIONS

Syntax:

<ref-specification> ::- <simple-ref>

I <compound-ref>

<simple-ref> ::- REF
<ref-specification-choice>

<compound-ref> - REF BEGIN
<ref-specification-choice>...
END

<ref-specification-choice> ::- <null-declaration> (2.7)

I <data-declaration> (2.1)

I <subroutine-declaration> (3.0)

I (directive> (9.0)
<ref-specification-choice>

< (statement-name-declaration> (2.3)

Semantics:

A <ref-specification> enables a <module> to reference a <name>
whose <def-specification> is in another <module>.

Physical storage for external names occurs in the <module>
containing the <def-specification> and not in the <module> containing
the <ref-specification>.

A <ref-specification> for a <name> may appear in a <compool-module>
and the corresponding DEF in another <module>. In that case, the <name>
will be available for use in any other module of the <complete-program>,
provided that the referencing module has the appropriate
<compool-directive>. The compiler will enforce the requirement that the
DEF and the REF specifications agree, provided the <module> containing
the DEF has the appropriate <compool-directive>. Alternatively, the
<ref-specification> may appear in the accessing <module> directly

47

...

MIL-STD-1589B (USAF)
06 June 1980

instead of in a compool (bypassing the compool entirely), but in this
case it will be beyond the compiler's ability to check for compatibility
between the DER and the REF specifications. When <ref-specifications>
are used outside of compools to gain access to external names, the
programeer is entirely responsible for the correct usage of those names.

For <data-declarations> in a <def-specification> that is in a
<compool-module>, no <ref-specification> is necessary if the accessing
module has a <compool-directive> that causes that data to be imported
(see Section 9.1).

Constraints:

For every <data-declaration> in a <ref-specification>, there must
exist a corresponding declaration in a <daf-specification>. For every
<subroutine-declaration> in a <ref-specification>, there must exist in
some <procedure-module> or <main-program-module) a corresponding
<procedure-definition> preceded by DEF.

In ' a <ref-specification>, presets are illegal in
<item-declarations> and <table-declarations> and are optional in
<block-declarations>. A <ref-specification> that contains presets can
be used only in conjunction with a <def-block-instantiation>.

A <data-declaration> in a <ref-specification> cannot be a
<constant-declaration>. (This constraint does not prevent
<constant-declarations) from appearing in <block-declarations) In
<ref-specifications>).

2.6 OVERLAY DECLARATIONS

Syntax:

<overlay-declaration> ::- OVERLAY
[<absolute-address>]
<overlay-expression> ;

<absolute-address> ::= POS (<overlay-address>)

<overlay-address> : <compile-time-integer-formula> (5.1.1)

<overlay-expression> :: <overlay-string>: ...

<overlay-string> ::- <overlay-element>,...

<overlay-element> :: <spacer>

48

* -- . -

HIL-STD-1589B (USAF)
06 June 1980

I <data-name>

I (<overlay-expression>)

<spacer> :: W U <compile-time-integer-formula> (5.1.1)

<data-name> .'- <item-name> (2.1.1)

I <table-name> (2.1.2)

I <block-name> (2.1.4)

Semantics:

An <overlay-declaration> is used to specify any or all of the
following:

1) that data objects are to have a specific allocation order

2) that certain data objects are to occupy the same memory
locations as other data objects

3) that certain data objects are to be allocated at a particular
absolute memory location

The <overlay-elements> in an <overlay-string) are allocated memory
locations in the order of their appearance in the strin~g. The memory
locations allocated to the elements of an <overlay-string> that appears

to the left of a colon in an <overlay-expression) are overlayed with the
space allocated to the elements of the <overlay-string> that appears to
the right of the colon.

The <overlay-address> specifies an absolute memory location at
which allocation of the <overlay-expression> begins. The meaning of an

overlay address is machine dependent.

A <spacer> in an <overlay-string> specifies a number of words to be
skipped during allocation.

Constraints:

The allocation permanence of all data objects in an
<overlay-declaration> must be the same (i.e., all STATIC or all
automatic).

An <overlay-declaration> within a <block-declaration> or
<block-type-declaration> must not reference data names declared outside
the block or block type or within nested blocks.

49

MIL-STD-1589D (USAF)
06 June 1980

An <overlay-declaration) outside a <block-declaration> or
<block-type-declaration) must not reference data names declared within a
block or block type.

An <overlay-declaration) within a <block-declaration> or
<block-type-declaration> must not include an <absolute-address>.

A <block-declaration> or <block-type-declaration> must not include
an <overlay-declaration> if an <order-directive> is in effect for the
block or block type.

Declarations for all <data-names> in an <overlay-declaration> must
precede the <overlay-declaration>, and all must be in the same scope.

<Overlay-declarations> cannot be used to specify more than one
physical location to any data object.

Names of formal parameters cannot be used in

<overlay-declarations>.

If an <overlay-address> is specified, all <data-names> used in the
<overlay-expression) must have an (explicit or default) allocation
permanence of STATIC.

Note:

A <data-name> in an <overlay-declaration> cannot be declared in a

<constant-declaration>.

2.7 NULL DECLARATIONS

Syntax:

<null-declaration>

I BEGIN END

Semantics:

A <null-declaration> has no semantic effect.

50

__ __M MIL-STD-1589B (USAF)
; 06 June 1980

3.0 PROCEDURES AND FUNCTIONS

Syntax:

<subroutine-declaration> :- <procedure-declaration) (3.1)

I <function-declaration) (3.2)

<subroutine-definition> : : (procedure-definition> (3.1)

I <function-definition> (3.2)

I <directive> (9.0)
<subroutine-definition>

Semantics:

Subroutines describe algorithms that may be executed from more than
one place in a <complete-program>. A subroutine is either a procedure,
which is invoked by a <procedure-call-statement>, or a function, which
is invoked by a <function-call>.

A <subroutine-definition> contains the executable code for the
subroutine, in addition to declarations for all local data and formal
parameters, as well as definitions of any nested subroutines. A
<subroutine-definition> is said to define the subroutine.

A <subroutine-declaration>, on the other hand, is said to declare
the subroutine. A <subroutine-declaration> contains the heading of the
subroutine and <declarations> for the formal parameters, but it contains
no executable code. A <subroutine-declaration> is required in a
<ref-specification> for each subroutine that is invoked in a module
other than the module containing its definition (see Section 2.5). A
<subroutine-declaration> is also required in two other situations: (1)
when a subroutine name is declared as a formal parameter (see Section
3.3),, and (2) when the name of the subroutine is the same as a
<define-name> in an enclosing scope. It is not necessary to provide a
<subroutine-declaration> if the subroutine is invoked only in the
<module> where it is defined and if its name is not passed as a
parameter or used in an enclosing scope as a <define-name>.

Constraints:

The <procedure-heading> or <function-heading> of a <subroutine-
declaration> and that of the corresponding <subroutine-definition> must
have identical attributes, and the parameters (both input and output)
must agree in number, type, and order. (This constraint will be
enforced only when the declaration is known in the scope of the
definition.) Also, the subroutine name in the declaration and

MIL-STD-1589B (USAF)
06 June 1980

definition must be the same (unless the <subroutine-declaration> is for
a formal parameter).

3.1 PROCEDURES

Syntax:

<procedure-declaration> :: < (procedure-heading> ;
<declaration> (2.0)

<procedure-definition> ::- <procedure-heading>
[<directive>...] (9.0)
<procedure-body>

<procedure-heading> ::= PROC
<procedure-name>
[<subroutine-attribute>]
[<formal-parameter-list>] (3.3)

<subroutine-attribute> ::= REC

I RENT

<procedure-name> ::- <nqme> (8.2.1)

<procedure-body> :: <subroutine-body>

<subroutine-body> ::- <statement> (4.0)

I BEGIN [<declaration>...] (2.0)
<statement>... (4.0)
(<subroutine-definition>...] (3.0)
[<directive>...] (9.0)
[<label>...] END (4.0)

Semantics:

The <procedure-heading> in a <procedure-declaration> may contain a
<formal-parameter-list>, which specifies the names that are used in the
<procedure-body> to refer to the corresponding arguments supplied by
each call of the procedure. The syntax, semantics, and constraints for
a procedure's <formal-parameter-list> are the same as for a function's
<formal-parameter-list>, and are presented in Section 3.3.

The differences between a <procedure-declaratlon> and a
<procedure-definition> are described in Section 3.0.

A <subroutine-attribute> of REC indicates that the subroutine is
potentially recursive, i.e., that at run time, an invocation of the

52

IMIL-STD-1589B (USAF)
06 June 1980

subroutine may be dynamically nested within another invocation of it.
If REC is present, physical allocation of locally-declared automaticdata will occur dynamically. The data will be allocated and deallocated

when the subroutine is entered and exited, respectively. This assures
that separate copies of the local data will exist for each successive
call in the recursive chain. Locally-declared STATIC data, however,
will be allocated once, and the same storage will be used for all calls
of that subroutine throughout the <complete-program>.

A <subroutine-attribute> of RENT indicates that the subroutine is
re-entrant and may therefore be executed concurrently in a concurrent
processing environment. A recursive subroutine is also re-entrant.

If execution of the <procedure-body> is completed without executing
a RETURN statement, an ABORT statement, or a GOTO statement whose target
in the name of a formal parameter, an implicit RETURN statement is
executed.

Constraints:

A <procedure-declaration> can contain no <declarations> other than
those for the procedure's formal parameters. <Declarations> of local
data appear only in the procedure's definition.

A procedure must not be invoked recursively if it is not declared
REC.

A procedure must not be invoked re-entrantly if it is not declared
RENT or REC.

A <subroutine-body> must contain at least one non-null <statement>
(e.g., RETURN).

3.2 FUNCTIONS

Syntax:

<function-declaration> ::- <function-heading> ;
<declaration> (2.0)

<function-definition> :: <function-heading> ;
[<directive>...] (9.0)
<function-body>

<function-heading> ::- PROC <function-name>
[<subroutine-attribute>] (3.1)
[<formal-parameter-list>] (3.3)
<item-type-description> (2.1.1)

53

HIL-STD-1589B (USAF)

06 June 1980

<function-name> :: <name> (8.2.1)

<function-body> :: <subroutine-body> (3.1)

Semantics:

The differences between a <function-declaration> and a
<function-definition> are described in Section 3.0.

The <item-type-description> specifies the type of the return value
of the function. Within the body of the function, the name of the
function may be assigned to as a variable in an assignment statement.
When the function is exited, the most recent value assigned to the
<function-name> is used as the value of the function. The return value
is considered to be allocated as automatic storage (see Section 2.1.5).

Use of the <function-name> in a <formula> within the body of the
function is a recursive invocation of the function. Within the body of
the function, the <function-name> may also be used as an
<actual-input-parameter> in a subroutine call when the corresponding
<formal-input-parameter> is a <function-name> (see Section 3.3).

The <function-heading> in a <function-declaration> or <function-
definition> may contain a <formal-parameter-list>, which specifies the
names that are used in the <function-body> to refer to the corresponding
arguments supplied by each call of the function. The syntax, semantics,
and constraints for a function's <formal-parameter-list> are the same as
for a procedure's <formal-parameter-list>, and are presented in Section
3.3.

The inclusion of an <item-type-description> in the heading of a
subroutine indicates that the subroutine is a function.

The <subroutine-attributes> of REC and RENT apply to functions in
the same way as for procedures (see Section 3.1).

If execution of the <function-body> is completed without executing
a RETURN statement, an ABORT statement, or a GOTO statement whose target
is the name of a formal parameter, an implicit RETURN statement is
executed.

Constraints:

The <function-name> may not be used as an
<actual-output-parameter>.

The <function-name> is not declarable as a <name> within the
function body.

54

MIL-STD-1589B (USAF)
06 June 1980

A <function-declaration> can contain no <declarations> other than
those for the functions formal parameters. <Declarations> of local data
appear only in the function's definition.

A function must not be invoked recursively if it is not declared
REC.

A function must not be invoked re-entrantly if it is not declared
RENT or REC.

The <function-name> must be assigned a value before the function is
exited.

3.3 PARAMETERS OF PROCEDURES AND FUNCTIONS

Syntax:

<formal-parameter-list> :: ([<formal-input-parameter>,...]
[: <formal-output-parameter>,...])

<formal-input-parameter> ::= [<parameter-binding>]
<input-parameter-name>

<formal-output-parameter>::- [<parameter-binding>]
<output-parameter-name>

<parameter-binding> ::= BYVAL

I BYREF

I BYRES

<input-parameter-name> :: < (data-name> (2.6)

I <statement-name> (4.0)

I <subroutine-name>

<output-parameter-name> :- <data-name> (2.6)

<subroutine-name> : <procedure-name>

I <function-name> (3.2)

Semantics:

Parameters permit subroutines to have locally-declared <names> that
correspond to entities whose values can be different for different

55

r

MIL-STD-1589B (USAF)

06 June 1980

calls.

<Formal-input-parame tars> and <formal-output-parameters> constitute
the formal parameters of the subroutine. When the subroutine is
invoked, the formal parameters are associated with a corresponding list
of actual parameters supplied in the subroutine call (see Section 4.5).

<Formal-input-parameters> transfer values into the
<subroutine-body> from the corresponding <actual-input-parameters>.
<Formal-output-parameters> transfer values into the <subroutine-body>
and also transfer values from the <subroutine-body> back to the
corresponding <actual-output-parameters>.

If a formal parameter is a <data-name> it may be bound to the
corresponding actual parameter in any of the following ways: by
reference, by value, by result, or by value-result. Reference binding
means that the actual parameter and the formal parameter denote the same
physical object. Any change in the value of the formal parameter
entails an immediate change in the value of the actual parameter and
vice-versa. Value-result binding means that the formal parameter
denotes a separate data object, assigned the value of the actual
parameter on entry to the subroutine, and used to assign its value to
the actual parameter on normal exit from the subroutine. Since it is a
separate data object there is no interaction between it and the actual
parameter during execution of the subroutine. Value binding is similar
except the actual parameter is not modified on exit from the subroutine.
Result binding leaves the value of the formal parameter undefined on
entry to the subroutine but is otherwise like value-result binding.

Standard rules for types of binding indicate the effect normally
required:

Reference binding shall be used for blocks, tables, and for
entries of all except tight tables.

Value binding shall be used for input items and tight table
entries.

Value-result binding shall be used for output items and tight table
entries.

Explicit <parameter-binding> specification affects these rules as
follows:

BYREF - reference binding is required. If the actual parameter
cannot be passed by reference (such as a badly aligned
table item), the compiler shall allocate a temporary

56

MIL-STD-1589B (USAF)
06 June 1980

variable, use value or value-result binding as
appropriate to pass the parameter between its actual
location and the temporary variable, and pass the
temporary variable by reference to the subroutine.

BYVAL - reference is prohibited. The parameter shall be passed

by value or value-result as appropriate.

BYRES - result binding is required.

An implementation may optimize binding methods provided it
guarantees required results both in parameters passed and in side
effects, if any.

If the <formal-input-parameter> is a <statement-name>, a GOTO

statement with that name as a target will cause the subroutine to be
exited without setting any of the value-result parameters. Execution
will resume at the statement named in the actual parameter as though the
GOTO statement had been executed at the point of the subroutine call.

If the <formal-input-parameter> is a <subroutine-name> the <name>
of the corresponding actual parameter determines which <subroutine-
definition> to associate with the formal parameter's
<subroutine-declaration> on each call. A call to that subroutine via
the formal parameter <name> will be treated as if the corresponding
actual parameter subroutine had been called from the same environment in
which <subroutine-name> was originally specified as an
<actual-input-parameter>.

The order of evaluation of actual parameters is unspecified.

In the absence of an <interference-directive>, no interference is
assumed within the subroutine between actual parameter data and formal
table or block parameters, or between actual parameters and variables
accessed directly from within the subroutine.

Constraints:

The same name must not appear more than once in any
<formal-parameter-list>.

A <formal-input-parameter> cannot be used in a context in which its
value can be altered (e.g., as a target in an <assignment-statement>).

Names of data declared as formal parameters must not be used in
<overlay-declarations>.

Declarations of formal parameters must not contain <allocation-
specifiers> or presets.

57

A

MIL-STD-1589B (USAF)
06 June 1980

<External-declarations> of formal parameters are not permitted.

The <subroutine-definition> (and <subroutine-declaration>, if one
is present) must contain an explicit <declaration> for each <name> in
the <formal-parameter-list>.

For any subroutine call, the number of formal and actual input
parameters must be the same, and the number of formal and actual output
parameters must be the same.

Declarations of formal parameters cannot be <constant-declarations>
or <type-declarations>.

For all table parameters, the types of the formal parameters and
those of the corresponding actual parameters must be equivalent (see
Section 7.0). This requirement extends to the types and associated
attributes of all components, and their allocation order. For all item
parameters, the rules for implicit attribute conversion apply (see
Section 7.0). Block parameters match under the following conditions:
(1) the type and textual order of the components match exactly; (2) an
!ORDER directive is either present in both <block-body-parts> or absent
in both <block-body-parts>; and (3) <overlay-declarations> in both
blocks have the same effect.

The actual parameter corresponding to a formal input parameter
<statement-name> must be a <statement-name>. The actual parameter
corresponding to a formal input parameter <subroutine-name> must be the
name of a subroutine. Parameter types and return value types of formal
and actual subroutines must match exactly.

BYRES binding must not be specified for input parameters.

3.4 INLINE PROCEDURES AND FUNCTIONS

Syntax:

<inline-declaration> : INLINE
<subroutine-name>,... ; (3.1)

Semantics:

An <inline-declaration> causes the object code for the bodies of
each of the designated subroutines to be inserted at the point of every
call of that subroutine within the scope containing the
<inline-declaration>. This will be done instead of inserting code for
calling a remote subroutine body.

58

MIL-STD-1589B (USAF)
06 June 1980

The effect of the <inline-declaration> extends for just the name
scope in which the <inline-declaration> appears. It does not affect
calls appearing in enclosing scopes.

If any actual parameters to inline subroutines are constants,
inline expansion may cause some formulas in the <subroutine-bodies> to
become evaluable at compile time. Compile-time evaluation of these
formulas will be performed and any corresponding error messages will be
generated as though the programmer had written those formulas directly.
Except for the effects of compile-time evaluation, the semantics of
inline subroutine expansion are identical to the semantics of the
normal, remote subroutine call mechanism.

Inline subroutines may themselves contain (possibly inline)
subroutine calls, but they may not contain nested subroutine
definitions.

Inline subroutine names may be used as actual parameters, but a
call to the matching formal parameter name will result in a closed
rather than inline invocation (even if the actual parameter is an inline
subroutine).

Constraints:

Names of subroutines whose definitions appear in another module

cannot be used in <Inline-declarations).

Formal parameters cannot be declared to be inline..

It is illegal to have an inline subroutine invocation of a
subroutine that is already being expanded inline.

Formal parameters of inline subroutines cannot be used in contexts
where the syntax requires a compile-time formula.

3.5 MACHINE-SPECIFIC PROCEDURES AND FUNCTIONS

Semantics:

Each compiler implementation may provide a set of procedures and
functions that are intrinsically recognized by the compiler. These
procedures and functions shall typically encompass operations that are
not directly provided by the language. They may be implemented as
subroutines or via inline code, whichever is suitable. The use of
inline code is particularly suitable as a vehicle for invoking single
machine instructions which are peculiar to the target machine.

59

MIL-STD-1589B (USAF)
06 June 1980

In general, a subroutine will be provided for machine instructions
whose execution would otherwise be unobtainable through the language.
It is not intended that every target machine instruction be supported as
a machine-specific procedure or function. Subroutines will, however, be
provided for machine-specific instructions whose meaning is not
expressible in the language (e.g., "load status word", "test condition
code"), as well as instructions for which a J73 subroutine could be
written but which are directly implemented by target-machine
instructions (e.g., "sine", "matrix multiply", or "rotate length-32
bitatring", etc.). Such subroutines will be defined at system scope and
hence their names will be ?edefinable in inner scopes. Such subroutines
will be invoked in the same way as other subroutines (see Sections 4.5
and 6.3). The particular parameters to such subroutines are
subroutine-dependent.

Implementation requirements for each such subroutine include
specification of the operation to be performed and of the rules for each
formal parameter, including both its JOVIAL attributes and how it is
used. The compiler shall generate code to use the parameters and
perform the specified operation.

60

/4S

MIL-STD-1589B (USAF)
06 June 1980

4.0 STATEMENTS

Syntax:

<statement> : [<directive> ...] [<label> ...] (9.0)

<simple-statement>

I(<directive>...] [<label> ...] (9.0)
<compound-statement>

<simple-statement> :-<assignment-statement> (4.1)

I<loop-statement> (4.2)

I<if-statement> (4.3)

<case-statement> (4.4)

(procedure-call-statement> (4.5)

(return-statement> (4.6)

I goto-statement> (4.7)

(exit-statement> (4.8)

(stop-statement> (4.9)

I<abort-statement> (4.10)

i null-statement>

IBEGIN ((label>...]

END

<label> :-<statement-name>

<statement-name> <: name> (8.2.1)

<compound-statement> S: EGIN <statement> ...
[<directive>...]1 (9.0)
[<label> ...] END

61

MIL-STD-15893 (USAF)
i: 06 June 1980 "

Semantics:

<Statements> are the means by which computational algorithms are

specified. They control the execution of the <complete-program>.

A <compound-statement> permits a sequence of <statements> to be

used in contexts requiring a single <statement>.

A <null-statement> results in no operation.

A <label) is used to attach a <statement-name> to a <statement>. A
<label> that is attached to the END of a <compound-statement> or
<null-statement> is treated as if a no operation <statement> followed
the <label>.

4.1 ASSIGNMENT STATEMENTS

Syntax:

<assignment-statement> ::- <variable-list>
<formula> ; (5.U)

<variable-list) ::= <variable>,... (6.1)

Semantics-

An <assignment-statement> causes the value of the <formula> to the
right of the equal sign to be assigned to the <variables> to the left of

the equal sign.

In performing the assignment, the <formula> is evaluated first.
Then, the leftmost variable is evaluated and the value of the formula is
assigned to that variable. Next, the second-to-the-left variable is

evaluated and the value of the formula is assigned to it. This sequence
of evaluations continues until the list of variables is exhausted. If
necessary and permitted (see Section 7.0), the value of the formula is

implicitly converted to the type of the variable being assigned to. For
numeric values, the value is rounded or truncated according to the
<round-or-truncate> attribute of each variable being assigned to (see
Sections 2.1.1.2 and 2.1.1.3).

Constraints:

The type of the <formula> must match or be implicitly convertible
to that of each of the <variables> according to the rules given in
Section 7.0.

62

MIL-STD-1589B (USAF)
06 June 1980

All <variables> in the <variable-list> must be of the same type

class.

None of the <variables> may be <formal-input-parameters>.

Note:

Assignment semantics and constraints apply to presets (Section
2.1.6), assignments to <control-items> in <loop-statements> (Section
4.2), and some types of actual/formal parameter correspondence (Section
3.3).

Since the implemented precision of packed fixed point table items
may be less than the implemented precision of an unpacked item having
the same fixed type, and since rounding and truncation are performed
with respect to implemented precision, assignment to packed table items
may change the value being assigned (see Section 7.0).

4.2 LOOP STATEHENTS

Syntax:

<loop-statement> :: <loop-type>
<controlled-statement>

(loop-type> :: <while-clause>

I <for-clause>

<controlled-statement) : <statement>

<while-clause> : WHILE <boolean-formula> ; (5.2.2)
<for-clause> :: FOR <control-item>

<control-clause>

<control-item> :: <control-variable>

I <control-letter>

<control-variable> :: <item-name> (2.11)

<control-letter> : C: <letter> (8.1)

<control-clause> : <initial-value>
[<continuation>]

63

MIL-STD-15893 (USAF)
06 June 1980

<initial-value> ::- <formula> (5.0)

<continuation> : <by-or-then phrase>
[<while-phrase>]

<while-phrase>
[<by-or-then-phrase>I

<by-or-then-phrase> : <by-phrase>

I <then-phrase>

<by-phrase> ::= BY (by-formula>

<by-formula> : <numeric-formula> (5.1)

<then-phrase> ::- THEN <formula> (5.0)

<while-phrase> ::- WHILE <boolean-formula> (5.2.2)

Semantics:

A <loop-statement> provides for the iterative execution of a
statement.

If the <while-clause> form of the <loop-statement> is used, the
<controlled-statement> 1i executed until the value of the
<boolean-formula> becomes FALSE. The <boolean-formula> is evaluated
before each iteration.

If the <for-clause> form is used, the value of <control-item>
determines the number of iterations. If the <control-item> is an
<Item-name>, its type is as specified in its <declaration>, and that
<item-name> may be used for purposes other than loop control before and
after the loop. After execution of the loop concludes, the value of the
<item-name> is the last value it received in the <loop-statement>. If
the <control-item> is a <letter>, the <for-clause> constitutes an
implicit declaration of the <control-item>, and its value is
inaccessible prior to the start of the <loop-statement> and after the
<loop-statemenC) concludes. Its type is that of the <initial-value>.
Its scope is the <loop-statement> itself; hence, another loop statement
may use the same <letter> as a <control-item> (except as prohibited in
Constraints) and no conflict will result.

The actions of the <loop-statement> with a <for-clause> are as
specified by the following algorithm:

Step 1: The <initial-value> is evaluated and assigned to the
<control-item>.

64-

MIL-STD-1589B (USAF)

06 June 1980

Step 2: The <boolean-formula> in the <while-phrase> (if
present) is evaluated. If it is FALSE, execution of
the <loop-statement> concludes.

Step 3: The <controlled-statement> is executed.

Step 4: The formula in the <by-or-then-phrase> (if present)
is evaluated. The value for the <by-formula> (if
present) is added to the <control-item>. The value
of the <then-formula> (if present) is assigned to
the <control-item>. Execution continues at Step 2.

The <control-item> may be used in a <formula> in the <control-
clause> and in the <controlled-statement>.

Execution of the <loop-statement> concludes if control is passed to
another statement by means of a GOTO, RETURN, EXIT, STOP, or ABORT
statement.

Constraints:

If the <control-item> is a <letter>, it must not be used in the
<controlled-statement> or <control-clause> in any context in which its
value can be altered (e.g., as an <actual-output-parameter> or as a
target in an <assignment-statement>). If the <control-item> is an
<item-name>, assignments to It in the <controlled-statement> are not
prohibited, but will result in a warning message.

A <label> in a <controlled-statement> cannot be used as the
<statement-name> in a <goto-statement> or <abort-phrase> that is outside
the <controlled-statement> or as an <actual-input-parameter> in a
subroutine invocation that is outside the <controlled-statement>.

The <initial-value>, <by-formula> and <then-formula> must match or
be implicitly convertible to the type of the <control-item> (see Section
7.0). Further, the sum of the <by-formula> and the <control-item> must
match or be implicitly convertible to the type of the <control-item>.
The <Initial-value> cannot be of type table.

The <by-formula> (if present) must have type and value such that it
may be legally added to the <control-item> according to the rules of
Sections 5.1.1, 5.1.2, and 5.1.3.

If the <control-item> is a <control-letter>, the <initial-value>
must not be a <status-constant> that belongs to more than one type
(unless the <status-constant> is disambiguated by an explicit conversion
- see Section 7).

The <control-letter> in a <loop-statement> may not be the same as

65

MIL-STD-1589B (USAF)
06 June 1980

the <control-letter> of any enclosing <loop-statement>.

A <bit-formula> cannot be implicitly converted to the
<boolean-formula> in a <while-phrase>.

4.3 IF STATEMENTS

Syntax:

<if-statement> ::- IF <boolean-formula> ; (5.2.2)
<conditional-statement>
[<else-clause>]

<conditional-statement> :: <statement> (4.0)

<else-clause> [:- <directive>...] (9.0)
ELSE <statement> (4.0)

Semantics:

An <if-statement> provides for conditional execution of a statement
depending on the value of its <boolean-formula>.

If the value of the <boolean-formula> is TRUE, the
<conditional-statement> is executed and the <statement> in the ELSE
clause (if any) is not executed.

If the value of the <boolean-formula> is FALSE, the <statement> in
the <else-clause> (if present) is executed rather than the
<conditional-statement>. In the event of nested <if-statements>, an
ELSE associates with the innermost unmatched IF.

If the <boolean-formula> has a value that is known at compile time,
conditional compilation (see Section 1.2.4) will occur.

Constraints:

<Labels> throughout a scope must be unique, even if portions of the
text within the scope are unselected as a result of conditional
compilation.

<Directives> preceding ELSE must be text directives (Section 9.2)
or listing directives (Section 9.7).

A <bit-formula> cannot be implicitly converted to the

66

WOMEN-

MIL-STD-15893 (UISAF)
06 June 1980

<boolean-formula) in an <if-statement>.

Note:

<Labels> in the <conditional-statement> and. In the (else-clause>

are in the same scope as the <if-statement> itself.

4.4 CASE STATEMENTS

Syntax:

<case-statement> :: CASE
<case-selector-formula>;
(<directive> ...]1 (9.0)
BEGIN <case-body>
[<label>...1 END (4.0)

<case-selector-formula) : <integer-formula> (5.1.1)

I (it-formula> (5.2)

I character-formula> (5.3)

I<status-formula> (5.4)

<case-body> : <case-alternative>...

<case-alternative> :u (<directive>... J(9.0)
(case-index-group)
<statement> (4.0)
(FALLTHRUI

I <default-option>

<default-option> :: [<directive>...] (9.0)
(DEFAULT)
<statement> (4.0)
(FALLTHRU I

<case-index-group> :- ((case-index>,...)

<case-index) < compile-time-integer-formula> (5.1.1)

I<compile-time-bit-formula> (5.1 .2)

I compile-time-character- (5.1.3)

formula)

67

MIL-STD-1589B (USAF)
06 June 1980

I <compile-tme-status-formula> (5.4)

I <lover-bound> : (2.1.2.1)
<upper-bound> (2.1.2.1)

Semantics:

Whereas an <if-statement> provides for the optional execution of
either of two statements, a <case-statement> provides for a choice of
executing one or more of a number of statements. (The possible choices
are represented by the various (case-alternatives>).

The particular <case-alternative> is selected according to the
value of <case-selector-formula>. Several values of the <case-selector-
formula> may select the same <case-alternative>..

With the exception of the <default-option>, each <case-alternative>
is headed by a <case-index-group> that designates the possible values of
the <case-selector-formula> that after being implicitly converted (if
necessary) to the type of the <case-selector-formula>, cause that
particular <case-alternative> to be selected for execution. Each
<case-index) can designate either a single value or, for integer and
status selector types, a closed range of values bounded by <lower-bound>
and <upper-bound>.

If the value of the <case-selector-formula> does not correspond to -'

a <case-index> value, the <statement> in the <default-option> is
executed.

If FALLTHRU is not present after a selected <statement>, execution
of the <case-statement> concludes after that <statement> is executed.
If FALLTEMU is present after the selected <statement>, the <statement>
in the textually-succeeding <case-alternative> is then executed.
Control continues to "fall through" to subsequent <case-alternatives>,
until a case-alternative with no FALLTHRU is executed or until the END
of the <case-statement> has been reached.

If the value of the <case-selector-formula> is known at compile
time, conditional compilation (see Section 1.2.4) will occur for all
unselected alternatives that cannot be reached via FALLTHRU semantics.

Constraints:

No two <case-alternatives> within the same <case-statement> can be
associated with identical (case-index values.

If a <default-option> is not present, the value of the
<case-selector-formula> must be represented by a (case-index).

68

-~ -

9I

MIL-STD-1589B (USAF)

06 June 1980

The types of each formula in a <case-index> must match or be
implicitly convertible to that of the <case-selector-formula> according
to the rules given in Section 7.0.

If the <case-selector-formula> is a <status-formula>, a
<case-index> specifying lower and upper bounds is legal only if the
status-type has the default representation (see Section 2.1.1.6).

The <upper-bound> in a <case-index> must be greater than or equal
to the <lower-bound>.

<Directives> preceding DEFAULT or <case-index-groups> must be text
directives (Section 9.27) or listing directives (Section 9.7).

Within a <case-statement>, at most one <default-option> may be used

as a <case-alternative>.

Note:

<Labels> in the <default-option> and in the <case-alternatives> are
in the same scope as the <case-statement> itself. Consequently, control
can be transferred into or between case statements.

4.5 PROCEDURE CALL STATEMENTS

Syntax:
<procedure-call-

statement> ::= <user-defined-procedure-call>

I <machine-specific-procedure-call>
<user-defined-procedure-

call> ::- <procedure-name> (3.1)
[<actual-parameter-list>]
[<abort-phrase>]

<actual-parameter-list> :- ([<actual-input-parameter>,..].
: <actual-output-parameter>,...])

<actual-input-parameter> ::- <formula> (5.0)

I <statement-name> (4.0)

I <function-name> (3.2)

I <procedure-name> (3.1)

69

.~~ ~~~ ~ ~ ~~~~ -r--

MIL-STD-1589B (USAF)

06 June 1980

I <block-name) (2.1.4)

1 <block-dereference> (6.1)

1 <nested-block>

<nested-block> :- <block-nam> (2.1.4)
(<block-dereference>] (6.1)

<actual-output-
parameter> ::- <variable> (6.1)

I <block-name> (2.1.4)

I <block-dereference> (6.1)

I <nested-block>

<abort-phrase> ::= ABORT <statement-name> (4.0)

<machine-specific-
procedure-call> :: <procedure-name) (3.1)

[<actual-parameter-list>] ;

Semantics:

A <procedure-call-statement> causes invocation of a procedure and
the association of formal parameters with actual parameters according to
the rules given in Section 3.3.

A <user-defined-procedure-call> causes invocatior of a procedure
defined in a <procedure-definition>. The <abort-phrase> is for use in
connection with <abort-statements>. Its semantics are explained in
Section 4.10.

A <machine-specific-procedure-call> causes invocation of a machine-
specific procedure (see Section 3.5).

A <nested-block> is a block contained in another block. If the
<block-name> was declared in a <block-type-declaration>, the <block-
dereference> references the particular block from which the nested block
is to be obtained.

Constraints:

Actual parameters in the <procedure-call-statement> must match the
formal parameters of the called procedure in number, kind, and parameter
list position, according to the rules given in Section 3.3.

70

* Af

MIL-STD-15893 (USAF)
06 June 1980

The <statement-name> in an <abort-phrase> or
<actual-input-parameter> must be known in the scope in which the
<procedure-call-statement> appears, but It must not name a statement
that is in another module or in an enclosing subroutine or that was in
unselected text in conditional compilation. It cannot be the name of a
statement that is in a <controlled-scatement> unless the
<procedure-call-statement> itself is within that same
<controlled-statement>.

4.6 RETURN STATE ENTS

Syntax:

<return-statement> : RETURN

Semantics:

The effect of a <return-statement> is to terminate the execution of
a subroutine, set any parameters that have value-result semantics, and
return control to the point following the invocation of the subroutine.
If the <return-statement> is in a <function-body>, the current value of
the <function-name> becomes the value of the function call.

If the subroutine containing the <return-statement> is nested
within any enclosing sukroutines, only the innermost subroutine is
terminated.

Constraint:

The <return-statement> can appear only within the body of a
subroutine.

4.7 GOTO STATEMENTS

Syntax:

<goto-statement> :- GOTO <statement-name> ; (4.0)

Semantics:

A <goto-statement> causes control to be transferred to the
statement named by the specified <statement-name>.

When the <statement-name> is a formal statement-name parameter, the
effect of a <goto-statement> is equivalent to returning from the current
subroutine invocation without setting value-result parameters and then
executing a <goto-statement> at the point of the subroutine's

71

* -.. p.•

MIL-STD-1589B (USAF)
06 June 1980

invocation.

Constraints:

The <statement-name> must be known in the scope in which the
<goto-statement> appears. Further, the <statement-name> must not be the
<label> of a statement that is in an enclosing subroutine or in another
module. It cannot be the <label> of a statement in a
<controlled-statement> unless the <goto-statement> is itself within that
same <controlled-statement>.

4.8 EXIT STATEMENTS

Syntax:

<exit-statement> :: EXIT

Semantics:

An <exit-statement> causes execution of the immediately enclosing
<loop-statement> to terminate. Its effect is the same as a GOTO
statement that transfers control out of the <controlled-statement> to
the point following the end of the <loop-statement>.

Constraint:

The <exit-statement> can appear only in a <controlled-statement>.

4.9 STOP STATEMENTS

Syntax:

<stop-statement> ::- STOP [<integer-formula>] ; (5.1.1)

Semantics:

A <stop-statement> causes execution of the <complete-program> to
terminate. If a <stop-statement> is executed within a
<subroutine-body>, the value-result <actual-output-parameters> of any
subroutine whose call is still active will not be set.

The value of the optional <integer-formula> in a <stop-statement>
is made available to the environment in which the J73 program is
executing, where its semantics are implementation-dependent. Absence of
an <integer-formula> implies the value is not determined.

72

- -__,_. ..____ . .. •. " ;

MIL-STD-1589B (USAF)
06 June 1980

Constraint:

The range of legal values of the <integer-formula> is MINSTOP
through MAXSTOP.

4.10 ABORT STATEMNTS

Syntax:

<abort-statement> ::- ABORT

Semantics:

When an (abort-statement> is executed, control passes to the
statement named in the <abort-phrase> of the most recently executed,
currently active <procedure-call-statement> that has an <abort-phrase.
All intervening subroutine invocations are terminated, and value-result
parameters of such subroutines are not set. If there is no
currently-active <procedure-call-statement) that has an <abort-phrase>,
the effect of the <abort-statement> is the same as STOP.

73

MIL-STD-1589B (USAF)
06 June 1980

5.0 FORMULAS

Syntax:

<formula> ::= <numeric-formula> (5.1)

I <bit-formula> (5.2)

I <character-formula> (5.3)

<status-formula> (5.4)

<pointer-formula> (5.5)

<table-formula> (5.6)

<compile-time-formula> :: <compile-time-numeric-formula> (5.1)

<compile-time-bit-formula> (5.2)

<compile-time-character-formula> (5.3)

<compile-time-status-formula> (5.4)

I <compile-time-pointer-formula> (5.5)

Semantics:

<Formulas> represent values. Each <formula> has associated with it
a type class and appropriate attributes.

A <compile-time-formula> is a <formula> whose value is computed and
used at compile time.

All compile-time computations are performed using the range and
precision parameters of the target machine.

The following constructions yield values at compile time.

I. Data declared in <constant-item-declarations>, except for
constant items whose type class is pointer.

2. The functions LBOUND, FIRST, and LAST, regardless of
their arguments; the function UBOUND, provided its
argument is not a table with * dimensions; the functions
NEXT, BIT, BYTE, SHIFTL, SHIFTR, ABS, and SGN, provided
their arguments are known at compile time; the function
NWDSEN, provided its argument does not contain a

74

.- .. L . . _ : ., ' - " i - " -
" "

. : - -' ' ,L . ' ,. --,,"- ,

MIL-STD-1589B (USAF)
06 June 1980

reference to a name whose declaration is not completed

prior to the point at which the function appears; the
functions BITSIZE, BYTESIZE, and WORDSIZE, provided (1)
their arguments are known at compile time, (2) their
arguments do not contain references to names whose
declarations are not completed prior to the points at
which the functions appear, and (3) their arguments are
not blocks and are not tables with * dimensions.

3. All operator-operand combinations other than
dereferencing, indexing, and assignment, provided the
operands have values Chat are known at compile time.

4. All type conversions except REP, provided the value of

the <formula> being converted is known at compile time.

5. All machi~e parameters.

6. All <status-constants>.

7. All <literals>.

The following values are not known at compile time:

1. Constant items whose type class is pointer.

2. Constant tables and their components.

3. All data declared without the word CONSTANT.

4. The LOC function, regardless of its argument; the
function UBOUND, if its argument is a table with *
dimensions; the functions NEXT, BIT, BYTE, SHIFTL,
SHIFTR, ABS, and SGN, if they have one or more arguments
whose values are not known at compile time; the function
NWDSEN, if its argument is a name whose declaration is
not completed prior to the point at which the function
appears; the functions BITSIZE, BYTESIZE, and WORDSIZE,
if (1) their arguments have values that are not known at
compile time, (2) their arguments contain references to
names whose declarations are not completed prior to the
points at which the functions appear, or (3) their
arguments are blocks or tables with * dimensions.

5. All operator-operand combinations that have one or more
evaluated operands whose values are not known at compile
time.

75

MIL-STD-1 5893 (USAF)

06 June 1980 Anvauarveat stten> .*r-im

6. The REP conversion.

8. Drfrneorsubscripted values.

Any value known atcmietime ayalsobeudasarntm
value.

51NUMERIC FORMULAS

Syntax:

<numeric-formula> :: <integer-formula> (5.1.1)

I<floating-formula> (5.1 .2)

I<fixed-formula> (5.1.3)

<compile-time-numeric-formula>: :- <compile-time-integer-formula> (5.1.1)

1 (compile-time-floating-formula>(5.1 .2)

<compile-time-fixed-formula> (5.1.3)

Semantics:

A <numeric-formula> represents a numeric value.

A <compile-time-numeric-formula> represents a numeric value that is
known at compile time (see Section 5.0).

5.1.1 INTEGER FORMULAS

Syntax:

<integer-formula> [w <sign>] <integer-term> (8.3.1)

I<integer-formula>
<plus-or-minus) (8.2.3)
<integer-term>

<integer-term> :-<integer-factor>

I (integer-term>
(multiply-divide-or-mod> (8.2.3)
<integer-factor>

76

MIL-STD-1589B (USAF)
06 June 1980

<integer-factor> : <integer-primary>

< (integer-factor> **

<integer-primary>

<integer-primary> ::- <integer-literal> (8.3.1)

<integer-machine-
parameter> (1.4)

<integer-variable>

<named-integer-cons tant>

<integer-function-call>

(<integer-formula>)

<integer-conversion> (7.0)
(<formula)) (5.0)

<integer-variable> ::- <variable> (6.1)

<named-integer-constant> ::= <named-constant> (6.2)

<integer-function-call> ::- 4function-call> (6.3)

<compile-time-integer-formula> ::- <integer-formula>

Semantics:

An <integer-formula> represents a value whose type class is
integer, i.e., S or U.

The integer operators are +, -, M / HOD, and **, which denote
addition, subtraction, multiplication, division, modulus, and
exponentiation, respectively.

The type of a formula composed of an integer operator and two
operands is S NN-I, where MN is the actual number of bits that would be
supplied by the implementation for a signed an integer
<item-declaration> whose size attribute is the larger of the size
attributes of the two operands. The type of an <integer-formula>
consisting of a <sign> and an <integer-term> is S MN-I, where N is the
actual number of bits that would be supplied for a signed integer
<item-declaration) whose size attribute is that of the <integer-term>.

The quotient of two integers is first computed exactly and then
truncated to an integer result. Truncation will be toward zero.

77

I-

MIL-STD-1589B (USAF)
06 June 1980

The modulus of two integers, AA MOD BB, is equivalent to AA -

(MA/BB)*BB.

the value produced by integer exponentiation to a positive power is
the same as that produced by repeated multiplication.

The value produced by integer exponentiation to a uegative power is
I / (base ** abs (power)) and in most cases is zero.

Constraints:

The value of an <integer-formula> with size attribute SS must lie
in the range MININT(SS) through MAXINT(SS).

An <integer-variable>, <named-integer-constant>, or <integer-
function-call> must be an integer (S or U) type.

A <compile-time-integer-formula> must be an <integer-formula> whose
value is known at compile-time (see Sectiop 5.0).

The right operand of / and MOD must be non-zero.

Note:

R and T used in an explicit conversion (see Section 7.0) do not
affect the value of integer division.

5.1.2 FLOATING FORMULAS

Syntax:

<floating-formula> :: (<sign>] <floating-term> (8.3.1)

I <floating-formula>
<plus-or-minus> (8.2.3)
<floiting-term>

<floating-term> ::- <floating-factor>

I <floating-term>
<multiply-or-divide> (8.2.3)
<floating-factor>

<floating-factor> ::- <floating-primary>

I <floating-factor>
** <floating-primary>

78

MIL-STD-1589B (USAF)
06 June 1980

I <floating-factor>
* <integer-primary> (5.1.1)

<floating-primary> ::- <floating-literal> (8.3.1)

I <floating-machine-paraueter>(1.4)

I <floating-variable>

I <named-floating-constant>

I <floating-function-call>

(<floating-formula>)

I <floating-conversion> (7.0)
(<formula>) (5.0)

<floating-variable> :: < variable> (6.1)

<named-floating-constant> :: <named-constant> (6.2)

<floating-function-call> : :- <function-call> (6.3)

<compile-time-floating-formula>::- <floating-formula>

Semantics:

A <floating-formula> represents a value whose type class is float.

The floating operators are +, -, *, /, and **, which denote
addition, subtraction, multiplication, division, and exponentiation
respectively. In exponentiation with a <floating-factor>, a floating
value is produced in all cases.

The precision attribute of a <floating-formula> is that of the
formula's most precise floating operand. The operand of a
<floating-conversion> is first computed according to the default rules,
and then converted to the specified floating type (see Section 7.0).

For floating exponentiations whose right operand is an
<integer-primary>, the result is -(ABS (left operand) ** right
operand) if left operand is negative and right operand is odd; (ABS (
left operand) ** right operand) in all other cases.

Constraints:

79

MIL-STD-1589D (USAF)
06 June 1980

The value of a <floating-formula> with precision PP must lie in the
range FLOATUNDERFLOW (II) through HAXFLOAT (I) or the range MINFLOAT
(II) through -FLOATUNDERFLOW (II) or be zero, where 11 -

IDPWLFLOATPRECISION(PP).

A <floating-variable>, <named-floating-constant>, or <floating-
function-call) must be a floating type.

A <compile-time-floating-formula> must be a <floating-formula>
whose value is known at compile time (see Section 5.0).

For exponentiations where the right operand is a
<floating-primary>, the left operand must not be negative.

Exponeutiation of an integer base to a floating power cannot be
performed. Either the base must be converted to floating or the power
must be converted to integer.

The divisor must be non-zero.

Note:

The round or truncate attribute associated with variables or
constant names does not affect the computation of floating formula
results. Floating formulas are evaluated in an implementation-dependent
manner with respect to how exact results are approximated to the
implemented precision.

5.1.3 FIXED FORMULAS

Syntax:

<fixed-formula> :: [<ssgn>) <fixed-term> (8.3.1)

I <fixed-formula>
<plus-or-minus> (8.2.3)
<fixed-term>

<fixed-term> ::- <fixed-factor>

<fixed-term>

<fixed-factor>

I <integer-term (5.1.1)
<fixed-factor>

I <fixed-term>

<multiply-or-divide> (8.2.3)

80

U

MIL-STD-1589B (USAF)
06 June 1980

<integer-factor> (5.1.1)

<fixed-factor> ::- <fixed-literal) (8.3.1)

<fixed-machine-parameter> (1.4)

<fixed-variable>

<named-fixed-constant>

<fixed-function-call>

i <fixed-formula>)

<fixed-conversion> (7.0)
(<fixed-term>

<fixed-factor>

I <fixed-conversion> (7.0)

(<integer-term> /
$ <fixed-factor>)

I <fixed-conversion> (7.0)
(<formula>) (5.0)

<fixed-variable> .:- <variable> (6.1)

<named-fixed-constant> :: <named-constant> (6.2)

<fixed-function-call> ::- <function-calnt (6.3)

<compile-time-fixed-formula> ::- (fixed-formula>

Semantics:

A <fixed-formula> represents a fixed point value.

The fixed point operators are +, -, *, and /, which denote
addition, subtraction, multiplication, and division, respectively. The
rules specifying the result type of these operators guarantee that, in

general, exact results are produced. The specific rules are given below
for each operator. In these rules, Sn, Fn, and Pn refer to the scale,
fraction part, and precision of an operand or result and n is 1, 2, or R
to indicate the first operand, second operand, or result, respectively.

For addition and subtraction, the default type of the result is:

SR - Si - S2

FR - Max (FIF2)

81

MIL-STD-1589B (USAF)
06 June 1980

PR - Max (PI,P2)

For multiplication, there are two cases:

1. When one operand is an integer, the result scale and
precision is that produced by successive addition, i.e.,

SR - So
PR - Pa
FP - Fa

where Sa, Fa, and Pa represent the scale, fraction, and
precision values of the fixed point operand.

2. When both operands are fixed point types, the type of the
resulc is:

SR Si + S2
PR - Pl + P2
FR - Fl + F2

If PR is larger than MAXFIXEDPRECISION or if SR does not lie in the
range - 127 through + 127, then the product must be explicitly converted
to a valid fixed point scale and precision (see Section 7.0).

For division, there are also two cases:

1. When dividing a fixed point value by an integer, the
scale and precision of the result are the scale and
precision of the numerator. Truncation will be toward
zero.

2. When both operands are fixed point values or when an
integer is divided by a fixed point value, the result is
exact and must be explicitly converted to a programmer
specified scale and precision (see Section 7.0).

The default result type of a <fixed-formula> containing a <sign> as
a prefix operator is the type of the operand.

The result type of a <fixed-factor> that is a <fixed-variable>,
<named-fixed-constant>, or <fixed-function-call> is the type specified
in their respective variable, constant, or function declarations.

The type of a <fixed-literal> is contextually determined (see
Section 8.3.1).

The result type of a <fixed-formula> enclosed in parentheses is the
type of the enclosed <fixed-formula>.

82

o " -

MIL-STD-1589B (USAF)

06 June 1980

The result type of a <fixed-factor> containing a <fixed-conversion>
is the type specified by the <fixed-conversion>. If the operand of the
<fixed-conversion> is a <fixqd-term> or <fixed-formula>, the infix or
unary operator is evaluated exactly, and the mathematically-defined
result is converted to the specified fixed type.

Constraints:

Except for the operand of a <fixed-conversion>, the value of a
<fixed-formula> whose scale is SS and whose fraction attribute is FF
must lie in the range MINFIXED(SS,PP-SS) through MAXFIXED(SS,PP-SS),
where PP - IMPLFIXEDPRECISION (SS,FF).

A <fixed-variable>, <named-fixed-constant>, and <fixed-function-
call> must have been declared as fixed types.

Operands of fixed point addition or subtraction must have identical
scales.

A <compile-time-fixed-formula> must be a <fixed-formula> whose
value is known at compile time (see Section 5.0).

The divisor must be non-zero.

Note:

MOD and ** are not defined for fixed point operands.

5.2 BIT FORMULAS

Syntax:

<bit-formula> :- <logical-operand>
[<logical-continuation>]

I NOT <logical-operand>

<logical-operand> :- <bit-primary>

<relational-expression> (5.2.1)

<bit-primary> ::- <bit-literal> (8.3.2)

I <boolean-literal> (8.3.3)

I <bit-variable>

83

MIL-STD-1589B (USAF)
06 June 1980

I <named-bit-constant>

I <bit-funccion-call>

I (<bit-formula>)

I <bit-conversion> (7.0)
(<formula>) (5.0)

<logical-continuation> : <and-continuation>...

[<or-continuation>...

I <xor-continuation>...

I <eqv-continuation>...

<and-continuation> :: AND (logical-operand>

<or-continuation> :- OR <logical operand>

<xor-continuation> :: XOR <logical-operand>

<eqv-continuation> ::= EQV (logical-operand>

<bit-variable> : : <variable> (6.1)

<named-bit-constant> ::- <named-constant> (6.2)

<bit-function-call> ::= <function-call> (6.3)

<compile-time-bit-formula> : <bit-formula>

Semantics:

A <bit-formula> represents a value whose type class is bit. Its
size is the number of bits comprising its value.

If the <bit-formula> is composed of <logical-operands> and one or
more of the logical operators AND, OR, XOR, and EQV, the size of the
result is the size of the longest operand. Shorter operands are padded
on the left with zeros as necessary. Note that the syntax requires
explicit parentheses for all <bit-formulas> containing two or more of
these operators, unless the operators are identical.

NOT produces a value that is the logical complement of its operand.
AND, OR (inclusive or), XOR (exclusive or), and EQV (equivalence)
perform their usual logical function on their two operands on a
bit-by-bit basis. If both operands have a size of one bit and the value

84

MIL-STD-15893 (USAF)

06 June 1980

of the left operand is such that the result of the operator can be
determined, evaluation is "short-circuited", i.e., the right operand
will not be evaluated and need only satisfy semantic constraints that
can always, even in the most general case, be verified without
evaluating the operand (e.g., the operand need not satisfy the division
by zero constraint if it is not evaluated).

Constraints:

A <bit-variable> must be a <variable> whose type class is bit.

A <named-bit-constant> must be a <named-constant> whose type class
is bit.

A <bit-function-call> must be a <function-call> whose result value
is bit.

A <compile-time-bit-formula> must be a <bit-formula> whose value is

known at compile time (see Section 5.0).

5.2.1 RELATIONAL EXPRESSIONS

Syntax:

<relational-expression> ::= <integer-formula> (5.1.1)
<relational-operator> (8.2.3)
<integer-formula> (5.1.1)

<floating-formula> (5.1.2)
<relational-operator> (8.2.3)
<floating-formula> (5.1.2)

<fixed-formula> (5.1.3)
<relational-operator> (8.2.3)
<fixed-formula> (5.1.3)

<character-formula> (5.3)
<relational-operator> (8.2.3)
<character-formula> (5.3)

<status-formula> (5.4)
<relational-operator> (8.2.3)
<status-formula> (5.4)

<bit-primary> (5.2)
<equal-or-not-equal-operator> (8.2.3)
<bit-primary> (5.2)

85

MIL-STD-1589B (USAF)
06 June 1980

I <pointer-formula> (5.5)
<relational-operator> (8.2.3)
<pointer-formula> (5.5)

Semantics:

A <relational-expression> represents a value obtained by comparing
two formulas using a <relational-operator>. Its type class is B and its
size is one bit.

The relational operators, - (equal), 0 (not equal), < (less than),
> (greater than), <- (less than or equal), and >- (greater than or
equal), carry their usual meanings.

Character comparisons will be made on the basis of the collating
sequence of the character set used in a given implementation.

Status comparisons will be made on the basis of the representation
of the status values.

Pointer comparisons will be made on a target-machine-dependent
basis.

For bit and character operands, the shorter will be implicitly
converted to the type of the longer as described in Section 7.0.

Constraints:

When both operands are <status-constants>, at least one must be
unambiguously associated with a single status type.

When the two operands are <status-formulas>, their types must be
identical.

When the two operands are <pointer-formulas>, their types must be
identical or one must be an untyped pointer.

When both operands are <fixed formulas>, there must exist a type to
which both operands are implicitly convertible.

2 5.2.2 BOOLEAN FORMULAS

86

7.04 3 DEPARTMENT OF DEFENSE WASHINGTON DC /92

JN 80MILITARY STANDARD JOVIAL (J73).(U)

UNCLASSIFIED DOD-MIL-STD-1589B ML

2-2ffllflflllffllmE~hNEESIS~
EEEmihEomhElohhhE
EMhEEEEEEMhhEE
EEEEEEMMhhMhhEI
- M ENDMMMM

.I
MIL-STD-1589B (USAF)
06 June 1980

Syntax:

<boolean-formula> ::- <bit-formula> (5.2)

Semantics:

A <boolean-formula> is a <bit-formula> whose size is one bit. It
has the value TRUE if the value of the bit is one and FALSE otherwise.

Constraints:

In contexts syntactically requiring a <boolean-formula>
(<If-statements>, <while-phrases>, and <trace-controls>), a
<bit-formula> cannot be implicitly converted to a <boolean-formula>.

5.3 CHARACTER FORMULAS

Syntax:

<character-formula> ::- <character-literal> (8.3.4)

<character-variable>

<named-character-constant>

<character-function-call>

(<character-formula>)

<character-conversion> (7.0)
(<formula>) (5.0)

<character-variable> :: <variable> (6.1)

<named-character-constant> : <named-constant> (6.2)

<character-function-call> :: <function-call> (6.3)

<compile-time-character-formula> : : <character-formula>

Semantics:

A <character-formula) represents a value whose type class is
character. Its size is the number of bytes comprising its value.

87

a

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

A <character-variable> must be a <variable> whose type class is
character.

A <named-character-constant> must be a <named-constant> whose type
class is character.

A <character-function-call> must be a <function-call> whose result
value is character.

A <compile-time-character-formula> must be a <character-formula>
whose value is known at compile time (see Section 5.0).

5.4 STATUS FORMULAS

Syntax:

<status-formula> :: <status-constant> (2.1.1.6)

<status-variable>

. <named-status-constant>

<status-function-call>

(<status-formula>)

<status-conversion> (7.0)
(<formula>) (5.0)

<status-variable> ::= <variable> (6.1)

<named-status-constant> ::- <named-constant> (6.2)

<status-function-call> ::- <function-call> (6.3)

<compile-time-status-formula> : : (status-formula>

Semantics:

A <status-formula> represents a value whose type class is status.

Constraints:

A <status-variable> must be a <variable> whose type class is
status.

88

SWAM-

MIL-STD-1589B (USAF)
06 June 1980

A <named-status-constant> must be a <named-constant> whose type
class is status.

A <status-function-call> must be a <function-call> whose result
value is status.

A <compile-time-status-formla> must be a <status-formula> whose
value Is known at compile time (see Section 5.0).

5.5 POINTER FORMULAS

Syntax:

<pointer-formula> ::= <pointer-literal> (8.3.5)

<pointer-variable>

<named-pointer-constant>

<pointer-function-call>

(<pointer-formula>)

<pointer-conversion> (7.0)
(<formula>) (5.0)

<pointer-variable> ::- <variable> (6.1)

<named-pointer-constant> ::- <named-constant> (6.2)

<pointer-function-call> ::= <function-call> (6.3)

<compile-time-pointer-formula> : <pointer-formula>

Semantics:

A <pointer-formula> represents a value whose type class is pointer.

Constraints:

A <pointer-variable> must be a <variable> whose type class is
pointer.

A <named-pointer-constant> must be a <named-constant> whose type
class is pointer.

A <pointer-function-call> must be a <function-call> whose result
value is pointer.

89 ii

&l':

MIL-STD-15893 (USAF)
06 June 1980

A <compile-time-pointer-formula> must be a <pointer-formula> whose
value in known at compile time (see Section 5.0).

5.6 TABLE FORMULAS

Syntax:

<table-formula> :: <table-variable>

I <named-table-constant>

I (<table-formula>)

I <table-conversion> (7.0)
(<formula>) (5.0)

<table-variable> : <variable> (6.1)

<named-table-constant> :- <named-constant> (6.2)

Semantics:

A <table-formula> represents a value whose type class is table.

Constraints:

A <table-variable> must be a <variable> whose type class is table.

A <named-table-constant> must be a <named-constant> whose type
class is table.

90

MIL-STD-1589B (USAF)
06 June 1960

6.0 DATA REFERENCES

6.1 VARIABLES

Syntaz:

<variable> :-<named-variable>

I bit-functionk-variable>

<byte-function-variable>

I<rep-function-variable>

< function-name> (3.2)

<named-variable> :: <item>

I<table>

I<table-item>

i <table-entry>

I<block-item>

I (lock-table>
I<block-table-item>

<block-table-entry)

<item> ie-ae(21)

I<item-dereference>

<table> :-<table-name> (2.1.2)

< table-dc ref erence>

(table-item> :-<table-item-name> (2.1.2.3)
[<subscript>]I
[<table-dereference>)

<table-entry> :-<table-name> (2.1.2)
(suibscript>

I table-dereference>
<subscript>

91

MIL-STD-1589B (USAF)
06 June 1980

(block-its.> :- <item-name>(21)
[<block-dereference) I

<block-table> ::n <table-name> (2.1.2)
[<block-do ref erence> I

*<block-table-item> :- <table-item-name> (2.1.2.3)
[<subscript>]I
(<biock-de reference> I

<lc-table-entry> :- <al-name> (2.1.2)

<subscript>
(<block-derefeience> I

<block-dereference> : - <dereference>

<item-dereference> : - <dereference>

<table-dereference> :z- <dereference>

<dereference> @ <pointer-item-name>

I@ (<pointer-formula> (5.5)

<pointer-item-name> :- <item-name>(21)

I<table-item-name> (2.1.2.3)

I<constant-item-name> (2.1.3)

<subscript> ::w (<index>,...)(51)

<index> :- <integer-formula>(51)

I<status-formula> (5.4)

(bit-function-variable> :: BIT (<bit-variable> , (5.2)
<fbit> ,<nbit>)(6.3.3)

<byte-function-variable> :- BYTE (
<character-variable> *(5.3)

<fbyte> , <nbyte>)(6.3.4)

<rep-function-variable) : <rep-conversion> (7.0)
C <named-variable>)

92

HIL-STD-1589B (USAF)
06 June 1980

Semantics:

A <variable> designates a data object whose value can be changed by
assignment. A <named-variable> designates a data object whose value can
be used in a formula and changed by assignment. A <dereference>
designates the data object whose address is contained in the
<pointer-item-name> or <pointer-formula> of the <dereference>.

An <item> variable designates either an object declared in an item
declaration or an object pointed to by a typed pointer whose type-name
attribute is an item type. In the latter case the item is referenced
with an <item-deraference> (i.e., the pointer is dereferenced to obtain
the item).

A <table> variable designates either an object declared in a table
declaration or an object pointed to by a typed pointer whose type-name
attribute is a table type. In the latter case the table is referenced
with a <table-dereference> (i.e., the pointer is dereferenced to obtain
the table). The type class of a <table> is table.

A <table-item> variable designates an item component of a table.
If the table is dimensioned, the subscript indicates from which entry
the item is to be obtained. If <table-item-name> was declared in a
<table-type-declaration> (rather than a <table-item-declaration>) the
<table-dereference> references the particular table from which the item
is to be obtained.

A <table-entry> variable designates an entry in a dimensioned
table. The table is referenced either with a <table-name> or with a
<table-dereference>.

The type class of a <table-entry> is table for entries declared
with an <ordinary-table-body>, <specified-table-body>, or
<table-type-name>, and otherwise is the type specified by the underlying
<item-type-description>. (Note that <table-entry> is syntactically a
subscripted <table-name> or <cable-dereference>.)

If the type class of a particular <table-entry> is not table, any
operation or intrinsic function except LOC, NWDSEN, and REP applied to
that entry is interpreted as applying to the item whose type class and
attributes are given by the underlying <item-type-description>. LOC,
NWDSEN, and REP are interpreted as applying to the entire physical space
occupied by the object, including filler bits preceding or following the
item.

A <block-item) variable designates an item component of a block.
If the <item-name> was declared in a <block-type-declaration>, the
<block-dereference> references the particular block from which the item
is to be obtained.

93

.oa

MIL-STD-1589B (USAF)
06 June 1980

A <block-table> variable designates a table component of a block.
If the <table-name> was declared in a. <block-type-declaration>, the
<block-dereference> references the particular block from which the table
is to be obtained.

A <block-table-item> variable designates an item component of a
table which is itself a component of a block. If the table is
dimensioned, the subscript indicates from which entry the item is to be
obtained. If the <table-item-name> was declared in a <block-type-
declaration, the <block-dereference> references the particular block
from which the item is to be obtained. (Note that if the
<table-item-name> was declared in a <table-type-declaration), it cannot
be obtained as a <block-table-item> variable but must be obtained as a
<table-item> variable with a <table-dereference>.)

A <block-table-entry> variable designates an entry in a dimensioned
table which is contained in a block. If the <table-name> was declared
in a <block-type-declaration>, the <block-dereference> references the
particular block from which the table entry is to be obtained.

A <bit-function-variable> is the use of the BIT function in an
assignment context (i.e., the target of an assignment statement or an
actual output parameter) to designate that a specified substring of the
<bit-variable> is to be used as a variable. <Fbit> indicates the
starting bit and <nbit> indicates the size of the substring. Bits are
numbered from the left beginning with zero.

A <byte-function-variable> is the use of the BYTE function in an
assignment context (i.e., a target of an assignment statement or an
actual output parameter) to designate that a specified substring of the
<character-variable> is to be used as a variable. <Fbyte> indicates the
starting character and <nbyte> indicates the size of the substring.
Characters are numbered from the left beginning with zero.

A <rep-function-variable> is the use of the <rep-conversion> in an
assignment context (i.e., the target of an assignment statement or an
actual output parameter) to designate that the <named-variable> is to be
treated as a bit string variable whose size is the number of bits of
storage actually occupied by the <named-variable>.

Constraints:

A <subscript> must be present in a <table-item> or
<block-table-item> if the type of the table is dimensioned.

A <subscript> in a <table-item>, <table-entry>, <block-table-item>,
or <block-table-entry> must contain the same number of <indices> as
there are <dimensions> in the <dimension-list> of the declaration of the

94

MIL-STD-1589B (USAF)
06 June 1980

table's type. Furthermore, the type of each <index> must be the same as
the type of the corresponding <dimension> and the value of each index
aust be within the bounds specified for that dimension. If the
designated table is a formal parameter and the <dimensions> were
specified as *, the indices must be <integer-formulas> (even if bounds
of an actual parameter on a particular invocation are of status type),
and the value of each index must be in the range 0 through NN-1, where
NN is the number of elements in that dimension of the actual parameter.

If the <table-item-name> in a <table-item> was declared in a
<table-type-declaration>, the *<table-item> must contain a <table-
dereference> whose pointer is of the appropriate type.

If the <item-name> in a <block-item> was declared in a
<block-type-declaration>, the <block-item> must contain a <block-
dereference> whose pointer is of the appropriate type.

A reference to a <table-item> must not access storage outside the
bounds of the table containing that <table-item>.

If the <table-name> in a <block-table> or <block-table-entry> was
declared in a <block-type-declaration>, the <block-table> or
<block-table-entry> must contain a <block-dereference> whose pointer is
of the appropriate type.

If the <table-item-name> in a <block-table-item> was declared in a
<block-type-declaration>, the <block-table-item> must contain a
<block-dereference> whose pointer is of the appropriate type.

<Fbit> and <nbit> must not designate a substring beyond the bounds
of the (bit-variable>. <Nbit> must be greater than zero.

<Fbyte> and <nbyte> must not designate a substring beyond the
bounds of the <character-variable>. <Nbyte> must be greater than zero.

A <function-name> can be used as a <variable> only within the body
of a function having that <function-name>, and then only as the
left-hand side of an assignment statement. The other valid uses of
<function-name> are described in Sention 3.2.

A pointer to an undimensioned parallel or tight table type cannot
be used in a <dereference>.

The value of a pointer used in a <dereference> must be in the
implementation-defined set of valid values for pointers of its type. A
pointer whose value is NULL cannot be dereferenced.

95

MIL-STD-1589B (USAF)
06 June 1980

6.2 NAMED CONSTANTS

SVnc ax:

<named-constant> ::- <constant-item-name> (2.1.3)

I <constant-table-name> (2.1.3)

I <constant-table-item-name>
(<subscript>] (6.1)

I <constant-table-name> (2.1.3)
<subscript> (6.1)

I <control-letter> (4.2)

<constant-table-item-name> :- <table-item-name> (2.1.2.3)

Semantics:

A <named-constant> designates a constant data object whose value
can be used in a formula but cannot be changed.

A <constant-item-name> designates an object declared in a constant
item declaration.

A <constant-table-name> designates an object declared in a constant
table declaration.

A <constant-table-item-name> designates an item component of a
constant table. If the table is dimensioned, the <subscript> indicates
from which entry the item is to be obtained.

A <constant-table-name> followed by a <subscript) designates an
entry in a dimensioned constant table.

A <control-letter> designates an object created in a <for-clause>
whose <control-item> is a single letter.

Constraints:

A <subscript> must follow a <constant-table-item-name> if the table
is dimensioned.

A <subscript> following a <constant-table-item-name> or <constant-
table-name> must contain the same number of <indices> as there are
<dimensions> I the <dimension-list> in the declaration of the table.
Furthermore, the type of each <index> must be the same as the type of
the corresponding <dimension> and the value of each <index> must be

96

MIL-STD-1589B (USAF)
06 June 1980

within the bounds specified for that <dimension>.

Constant tables and itis selected from constant tables via

subscripts cannot be used as compile-time values.

A <control-letter> may be referenced only within the

<controlled-statemleft> of a <loop-statement> whose <for-clause> created

that <control-constant>.

6.3 FUNCTION CALLS

Syntax:

<function-call> :-<user-defined-functiofl-call>

<intrinsic-function-call>

I <machinespecific-functionlcall>

<user-defifled-fufctioncall>: <function-name) (3.2)
I <actual-parameter-list>] (4.5)

<intrinsic-functioflcall> :-<bc-function) (6.3.1)

<next-functiOn) (6.3.2)

<bit-function) (6.3.3)

I<byte-functiOn> (6.3.4)

I<shift-fuflction> (6.3.5)

I<abs-functior) (6.3.6)

I<sign-functiOn> (6.3.7)

<size-function) (6.3.8)

<bounds-function) (6.3.9)

I <nwdsen-function> (6.3.10)

I<status-inverse-functiOn) (6.3.11)

<machine-specif ic-function-
call>: <f unctiotrnama> (3.2)

[<actual-parameter-list>J (4.5)

97

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

Execution of a <function-call> causes invocation of a function.
Any actual parameters are bound to the corresponding formal parameters
as described in Section 3.3.

A <user-defined-function-call> causes invocation of a function
defined in a <function-definition>. The type of the value returned by
the function is the type specified by the <item-type-description> in the
<function-heading> of the <function-definition>.

An <intrinsic-function-call> causes invocation of a language-
defined function. A description of the language-defined functions is
contained in the following sections. The type of the value returned by
each function is described in the corresponding section.

A <machine-specific-function-call> causes invocation of a
machine-specific function (see Section 3.5).

Constraints:

Actual parameters in the <function-call> must match the formal
parameters of the called function in number, type, and parameter list
position according to the rules given in Section 3.3.

6.3.1 LOC FUNCTION

Syntax:

<ioc-function> ::- LOC (<ioc-argument>)

<loc-argument> :: <named-variable> (6.1)

<block-name> (2.1.4)

<statement-name> (4.0)

<procedure-name> (3.1)

<function-name> (3.2)

<block-dereference> (6.1)

Semantics:

The LOC function can be applied to the <loc-argument> to obtain
the machine address of the word in which the <loc-argument> is ,tored.
If the <loc-argument> is a <named-variable> or <block-name> that was

98

MIL-STD-1589B (USAF)
06 June 1980

declared with a <type-name> TT, the type of the value returned by the
LOC function is P TT (i.e., a typed pointer). Otherwise, the type of
the value .eturned by the LOC function is P (i.e., an untyped pointer).

If the <loc-argument> is a <statement-name>, <procedure-name>, or
<function-name> the <loc-function> yields an untyped pointer whose value
is the machine address used to access the designated statement or
subroutine.

Constraints:

The LOC of a subroutine whose name appears in an
<inline-declaration>, or of a <statement-name> whose definition appears
in such a subroutine, is implementation-defined.

Note:

The LOC function cannot be applied to an intrinsic function.

6.3.2 NEXT FUNCTION

Syntax:

<next-function> ::- NEXT (
<next-argument>
<increment-amount>)

<next-argument> ::= <pointer-formula> (5.5)

I <status-formula> (5.4)

<increment-amount> :- <integer-formula> (5.1.1)

Semantics:

If the <next-argument> is a <pointer-formula>, the value returned
by the NEXT function is the arithmetic sum of the representation of the
<pointer-formula> plus the <increment-amount> * LOCSINWORD (i.e., the
<pointer-formula> is treated as an integer). The type of the value
returned is a pointer of the same type as the <next-argument>.

If the <next-argument> is a <status-formula> and the value of the
<increment-amount> is N, the value returned by the NEXT function is the
Nth successor (or predecessor if N is negative) of the value of the
<status-formula> in this <status-lit>. The type of the value is the
same as the type of the <next-argument>.

99

-- .6

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

The <next-argument> cannot be a <status-constant> that belongs to
more than one status type (unless explicitly disambiguated with a
<status-conversion)), nor can it be the <pointer-literal> NULL.

The type of the <status-formula> must be a status type with a
default representation.

When the <next-argument> is a <status-formula>, the
<increment-amount> must not cause the NEXT function to return a value
out of range of the type of the <next-argument>.

The value of the <pointer-formula> and the value of the pointer
result must be in the implementation-defined set of valid values for
pointers of its type.

Note:

The value of the <next-argument> may be negative.

6.3.3 BIT FUNCTION

Syntax:

<bit-function) :: BIT (<bit-formula> , (5.2)
<fbit> , <nbit>)

<fbit> :: <integer-formula> (5.1.1)

<nbit> : : <integer-formula> (5.1.1)

Semantics:

The BIT function selects a designated substring from the
<bit-formula>. <Fbit> indicates the starting bit and <nbit> indicates
the size of the substring. Bits are numbered from the left beginning
with zero. The type of the value returned is a bit string of the same
size as the <bit-formula>. The designated substring is right justified
in the result and padded on the left with zero bits as necessary to fill
the size.

Constraints:

<Fbit> and <nbit> must not designate a substring beyond the bounds
of the <bit-formula>. <Nbit> must be greater than zero.

100

/ . ..

MIL-STD-1589B (USAF)
06 June 1980

6.3.4 BYTE FUNCTION

Syntax:

<byte-function> : : BYTE (<character-formula) , (5.3)
<fbyte> , <nbyte>)

<fbyte> ::= <integer-formula) (5.1.1)

<nbyte> : : <integer-formula> (5.1.1)

Semantics:

The BYTE function selects a designated substring from the
<character-formula>. <Fbyte> indicates the starting character and
<nbyte> indicates the size of the substring. Characters are numbered
from the left beginning with zero. The type of the value returned is a
character string of the same size as the <character-formula>. The
designated substring is left justified in the result, and padded on the
right with blanks as necessary to fill the size.

Constraints:

<Fbyte> and <nbyte> must not designate a substring beyond the
bounds of the <character-formula>. <Nbyte> must be greater than zero.

6.3.5 SHIFT FUNCTIONS

Syntax:

<shift-function> : <shift-direction>
(<bit-formula>
<shift-count>) (5.2)

<shift-direction> ::- SHIFTL

I SHIFTR

<shift-count> ::- <integer-formula> (5.1.1)

Semantics:

The SHIFTL function performs a logical left shift of the
<bit-formula> by the number of positions indicated by <shift-count>.
The SHIFTR function performs a logical right shift of the <bit-formula>
by the number of positions indicated by <shift-count>. In both cases,
vacated bits are filled with zeros and bits shifted out are lost. If
the <shift-count> is greater than or equal to the size of the

101

a * -,, - . ,. _' 'l ' i
-

. . . , t, _ . .

IL-STD-1589B (USAF)
06 June 1980

<bit-formula>, the result is a bit string with all zero bits. The type
of the value returned by a <shift-function> is the same as the type of
the <bit-formula>.

Constraints:

The value of <shift-count> must be non-negative and less than or
equal to MAXBITS.

6.3.6 ABS FUNCTION

Syntax:

<abs-function> ::- ABS (<numeric-formula>) (5.1)

Semantics:

The ABS function produces a value that is the absolute value of the
<numeric-formula>. The result is equivalent to - <numeric-formula> if
<numeric-formula> is negative and equivalent to + <numeric-formula>
otherwise.

6.3.7 SIGN FUNCTION

Syntax:*

<sign-function> : SGN (<numeric-formula>) (5.1)

Semantics:

The SGN function returns a value according to the following rules:

Numeric Formula Value

> 0 +1
-0 0
< 0 -1

The type of the value is S i.

102

MIL-STD-1589B (USAF)
06 June 1980

6.3.8 SIZE FUNCTIONS

Syntax:

<size-function> : size-type>
(<size-argument>)

<size-type> :: BITSIZE

1 BYTESIZE

IWORDSIZE

<size-argument> :-<formula> (5.0)

< block-name> (2.1.4)

< type-name>(.1.)

Semantics:

The BITSIZE, BYTESIZE and WORDSIZE functions return the logical
size of the <size-argument> in bits, bytes, and words respectively. The
type of the value returned is S ?AXINTSIZE. The logical BITSIZE of each
data type in the language will be described below. The logical BYTESIZE
is equal to BITSIZE/BITSINBYTE if BITSIZE MOD BITSINBYTE - 0 and
BITSIZE/BITSINBYTE+1 otherwise. Similarly, the logical WORDSIZE is
equal to BITSIZE/BITSINWORD if BITSIZE MOD BITSINWORD - 0 and
BITSIZE/BITSINWORD+1 otherwise.

Bit: The BITSIZE of an object of type B NN is NN

Integer: The BITSIZE of an object of type U NN is NN and S NN
is NN4-1

Fixed: The BITSIZE of an object of type A MM, NN is

Float: The BITSIZE of a float object is the number of bits
of storage the object actually occupies.

Character:The BITSIZE of an object of type C NW is
NN*BITSINBYTE.

Pointer: The BITSIZE of a pointer object is BITSINPOINTER.

Status: The BITSIZE of a status object is the <status-size>.
if (status-size> was specified, the BITSIZE is specified in
the object's (status-item-description>. if no (status-size>

103

-J7

MIL-STD-1589B (USAF)
06 June 1980

was specified, the BITSIZE is minimum number of bits of
storage needed to represent objects of that type.

Table: The BITSIZE of a table or table entry that is not
tightly structured is the number of bits from the leftmost bit
of the first word occupied by the table or table entry to the
rightmost bit of the last word occupied by the table or table
entry. The BITSIZE of a tightly structured table entry is

<bits-per-entry>. The BITSIZE of a tightly structured table
is the number of bits from the leftmost bit of the first word
occupied by the table to the rightmost bit of the last entry,
where the last entry occupies <bits-per-entry> bits. Note:
the BITSIZE of a <table-entry> whose type class is not table
is the BITSIZE of the item specified by the underlying
<item-type-description>.

Block: The BITSIZE of a block is NN * BITSINWORD, where IN
is the number of words the block occupies.

Constraints:

A BITSIZE function must not be applied to a table whose size in
words exceeds MAXINT(MAXINTSIZE)/BITSINWORD.

A BYTESIZE function must not be applied to a table whose size in
words exceeds MAXINT(MAXINTSIZE)/BYTESINWORD.

6.3.9 BOUNDS FUNCTIONS

Syntax:

<bounds-function> :- <which-bound>
(<table-name> , (2.1.2)
<dimension-number>)

<which-bound> :: LBOUND

I UBOUND

<dimension-number> :- <compile-time-integer-formula> (5.1.1)

Semantics:

The LBOUND function returns the lower bound of the specified
dimension of the designated table. The UBOUND function returns the
upper bound of the specified dimension of the designated table. A
<dimension-number> of zero refers to the leftmost <dimension> in that
table's <dimension-list>; a <dimension-number> of one designates the

104

MIL-STD-1589B (USAF)
06 June 1980

next-to-leftmost <dimension> in the list, etc. The type of the returned
value will either be an integer type or a status type depending on the
declaration of the designated table. If the table is a formal parameter
with a * dimension, the type will always be integer, LBOUND will always
return zero, and UBOUND will return NN-I, where NN is the number of
elements in that dimension of the actual parameter.

Constraints:

The <dimension-number> must be greater than or equal to 0 and less
than the number of dimensions in the designated table.

6.3.10 NWDSEN FUNCTION

Syntax:

<nwdsen-function> :: NWDSEN (<nwdsen-argument>)

<nwdsen-argument> :: <table-name> (2.1.2)

I <table-type-name> (2.2)

Semantics:

The NWDSEN function returns the number of words of storage
allocated to each entry in the named table or table type. The return
type is S with default size.

6.3.11 STATUS INVERSE FUNCTIONS

Syntax:

<status-inverse-function> ::- FIRST (
<status-inverse-argumen:>)

I LAST (

<status-inverse-argument>)

<status-inverse-argument> ::- <status-formula> (5.4)

1 <status-type-name> (2.1.1.6)

Semantics:

The FIRST function gives the value of the lowest-valued
<status-constant> in the <status-list> associated with the
<status-inverse-argument>. The LAST function gives the value of the

105

MIL-STD-15893 (USAF)
06 June 1980 -

highest-valued <status-constant> in the <status-list> associated with
the (status-inverue-arguuent>.

The return value has the type indicated by the
(utatus-inverse-arguent>.

106

MIL-STD-1589B (USAF)
i / 06 June 1980

7.0 TYPE MATCHING AND TYPE CONVERSIONS

Syntax:

<bit-conversion> : <bit-type-conversion>

I <rep-conversion>

<bit-type-conversion> ::- (* <bit-type-description> *) (2.1.1.4)

I <bit-type-name> (2.1.1.4)

I B

<integer-conversion> ::- (* <integer-type-description> *) (2.1.1.1)

I <integer-type-name> (2.1.1.1)

I S

I U

<floating-conversion> :: (* <floating-type-description> *) (2.1.1.2)

I <floating-type-name> (2.1•1•2)

I F

<fixed-conversion> ::- (* <fixed-type-description> *) (2.1.1.3)

I <fixed-type-name> (2.1.1.3)

<character-conversion> :: (* <character-type-description> *)(2.1.1.5)

I <character-type-name> (2.1.1.5)

I C

<status-conversion> :: (* <status-type-name> *) (2.1.1.6)

I <status-type-name> (2.1.1.6)

<pointer-conversion> ::- (* <pointer-type-description> *) (2.1.1.7)

I <pointer-type-name> (2.1.1.7)

I P

107

MIL-STD-1589B (USAF)
06 June 1980

<table-conversion) ::- (* <table-type-name> *) (2.1.2)

I <table-type-name> (2.1.2)

<rep-conversion) :: REP

Semantics:

In Section 2.1, the definition of type was given. In some cases,
implicit conversions will be performed to achieve type equivalence. In
this section, for each type class, rules wll be given regarding when
two types are the same, when an object of one type will be implicitly
converted to another type, and when and how an object of one type can be
explicitly converted to another type. Implicit conversions will never
be performed on arguments to explicit conversions or when the types of
the data objects are required to match exactly. With all the
conversions (both implicit and explicit), if the value produced after
conversion is not in the range of values of the type being converted to,
the conversion is illegal.

For purposes of type equivalence, a user-defined <type-name> is
considered an abbreviation for its specification.

A <formula) may be explicitly converted to another type by
enclosing it in parentheses and preceding it with appropriate
conversion. Note that if the conversion does not consist of a single
letter or name, it must be enclosed in (* and *).

Omitted attribute specifiers in type conversions imply the same
default values as for declarations of those types.

Type equivalence and conversion rules for each of the J73 type
classes are as follows:

Bit (B)

Type Equivalence: Two bit types are equivalent if their size
attributes are equal.

Implicit Conversions: A bit string will be implicitly converted to a
bit string with a different size attribute,
with truncation on the left or padding with
zeros on the left. Implicit truncation is not
permitted when the syntax requires a
<boolean-formula>.

Explicit Conversions: Any data object -except a block may be
explicitly converted to a bit string with a
<bit-conversion). A (bit-conversion) may be

108

Now-/"

MIL-STD-1589B (USAF)
06 June 1980

either a <bit-type-conversion> or a
<rep-conversion>.

A <bit-type-conversion> to a type B NN takes
the rightmost NN bits of the data object's
representation. If there are fever than NN
bits, the object will be padded on the left
with zeroes. The default value for NN is 1. A
<bit-type-conversion> may be applied to a data
object of any type. If the object being
converted I* a table or table entry, all
"filler" bits (i.e., bits that contribute to
the size of the table but that are not part of
the component objects' sizes as declared) are
included in the string. If the object to be
converted is of type class character, filler
bits between bytes and unused bytes following
the end of the string are not included.

A <rep-conversion> provides a means of
obtaining the representation of a data object.
A <rep-conversion> treats a data object as a
bit string whose size is the number of bits
actually occupied by the object. This includes
all filler bits and the bits in the unused (but
allocated) bytes following the ends of
character strings. For all objects whose type
class is table, the number of bits in the bit
string is the same as the BITSIZE of the
object. For all <table-entries> whose type
class is not table, the number of bits in the
bit string is the total number of bits
(including filler bits) in the table entry. A
<rep-conversion> can appear in the target of an
assignment statement (see Section 6.1). A
<rep-conversion> can be applied to
<named-variables> only; further, it cannot be
applied to tables declared with * dimensions,
to entries in parallel tables, or to tables
whose size in bits exceeds MAXBITS.

Integer (S and U)

Type Equivalence: Two integer types are equivalent if they are
both S or U and if their size attributes are
equal.

Implicit Conversions: An integer type will be implicitly converted to
any other integer type.

109

/ .

MIL-STD-1589B (USAF)
06 June 1980

Explicit Conversions: An <integer-conversion> is used to explicitly

convert a data object to an integer type. The
conversion can be applied to objects of bit,
integer, fixed, float, and pointer only.

A bit string will be treated as representing
the value of the integer type if the size of
the bit string is less than or equal to the
BITSIZZ of the integer type. Otherwise, the
conversion is illegal. If the size of the bit
string is less than the BITSIZE of the integer
type, the bitstring will be padded on the left
with zeroes.

An integer, fixed, or floating data object will
be converted to the integer type, with
truncation or rounding if specified.

Converting a pointer to an integer type is
equivalent to first converting the pointer to
type B BITSINPOINTER and then converting the
bit string to integer.

Floating (F)

Type Equivalence: Two floating types are equivalent if their
precision attributes are equal.

Implicit Conversions: A floating type will be implicitly converted to
a floating type of the same or greater
P-erision regardless of the round-or-truncate
attribute. A <real-literal> will be implicitly
treated as a <floating-literal> in the contexts
specified in Section 8.3.1. (Implicit floating
conversions do not change numeric values
although they may cause a change in how the
value is represented.)

Explicit Conversions: A <floating-conversion> is used to explicitly
convert a data object to a floating data type.
The conversion can be applied to
<real-literals> and to objects of bit, integer,
fixed, and float types only.

A bit string will be treated as representing
the value of the floating type if the size of
the bit string equals the BITSIZE of the
floating type. Otherwise the conversion is
illegal.

110

MIL-STD-1589B (USAF)
06 June 1980

An integer, fixed, or floating data object will
be converted to the floating type, with
t-uncation or rounding as specified in the
<floacing-conversion>. Rounding and truncation
are performed with respect to the implemented
precision of the type specified by the
<floating-conversion>.

Fixed (A)

Type Equivalence: Two fixed point types are equivalent if their
s-ale attributes are equal and their fraction
attributes are equal.

Implicit Conversions: A fixed point type will be implicitly converted
r an ther fixed point type if the scale and
fraction attributes of the target type are both
at least as large as those of the source type.
A <real-literal> will be implicitly treated as
a <fixed-literal> in the contexts specified in
Section 8.3.1. Implicit fixed conversions do
not change the numeric value represented except
when the implemented precision of the result
value is less than the implemented precision of
the value being converted (see Section
2.1.1.3); in this case, rounding or truncation
occurs with respect to the implemented
precision of the converted value. This

situation occurs only when assigning to a
packed fixed table item (in in assignment
statement, loop <control-variable>, table
preset, or output parameter); the
<round-or-truncate> attribute of the table item
determines whether the assigned value is
--unded or truncated.

Explicit Conversions: A <fixed-conversion> is used to explicitly
convert a data object to a fixed point data

type. The conversion can be applied to
<real-literal) and to objects of bit, integer,
fixed, and float types only.

A bit string will be treated as representing
the value of the specified fixed point type if
the size of the bit string equals the BITSIZE
of the fixed point type. Otherwise, the
conversion is illegal.

111

MIL-STD-1589B (USAF)
06 June 1980

An integer, fixed, or floating data object will
be converted to the specified fixed point type,
with truncation or rounding as specified in the
<fixed-conversion>. Rounding and truncation
are performed with respect to the implemented
precision of the type specified by the
<fixed-conversion>.

Character (C)

Type Equivalence: Two character types are equivalent if their
size attributes are equal.

Implicit Conversions: A character string will be implicitly converted
to a string with a different size attribute,
with truncation on the right or padding with
blanks on the right.

Explicit Conversions: A <character-conversion> is used to explicitly
convert a data object to a character data type.
The conversion can be applied to objects of
t type bit or character only.

A bit string will be treated as representing
the value (excluding filler bits between bytes)
of the character type if the size of the bit
string equals the BITSIZE of the character
type. Otherwise the conversion is illegal.

A character string will be converted to type C
NN by taking the leftmost NN characters. If
there are fewer than NN characters, the value
is padded on the right with blanks.

Pointer (P)

Type Equivalence: Two pointer types are equivalent if they are
both untyped pointers or if they are both typed
pointers referring to the same
<type-declaration>.

Implicit Conversions: A typed pointer will be implicitly converted to
an untyped pointer.

Explicit Conversions: A <pointer-conversion> is used to explicitly
convert a data object to a pointer type. The
conversion can be applied to bit, integer, or
pointer data objects only.

112

• -I

MIL-STD-1589B (USAF)
06 June 1980

A bit string will be treated as representing
the value of the pointer type if the size of
the bit string equals the BITSIZE of the
pointer type. Otherwise the conversion is
illegal.

Converting an integer to a pointer is
equivalent to first converting the integer to
type B BITSINPOINTER and then converting the
bit string to a pointer.

Converting a pointer to a different pointer
type means that the pointer will be considered
as a pointer of the specified type.

Status

Type Equivalence: Two status types are equivalent if (1) they
both have default representation, their size
attributes are the same, and both
<status-lists> contain the same <status-
constants> in the same order, or (2) they both
have identical programmer-specified
representations, their size attributes are the
same, and both <status-lists> contain the same
<status-constants>.

Implicit Conversions: A status type will be implicitly converted to a
status type that differs only in its size
attribute. Furthermore, a status constant
belonging to more than one status type is
implicitly disambiguated in the following
contexts: (1) when it is the source value of
an assignment statement, it takes the type of
the target variable; (2) when it is an actual
parameter, it takes the type of the
corresponding formal parameter; (3) when it is
in a table <subscript> or
<preset-index-specifier>, it takes the type of
the corresponding <dimension> in that table's
declaration; (4) when it is a loop
<initial-value>, it takes the type of the
<control-variable>; (5) when it is in an
<item-preset> or <table-preset>, it takes the
type of the item or table item being
initialized; (6) when it is an operand of a
<relational-operator>, it takes the type of the
other operand; (7) when it is in a
<case-index-group>, it takes the type of the

113

MIL-STD-1589B (USAF)
06 June 1980

<case-selector-formula>; and (8) when it is a

<lower-bound> or <upper-bound>, it takes the
type of the other bound.

Explicit Conversions: A <status-conversion> is used to explicitly
convert a data object to a status type. The
conversion can be applied to bit or status data
objects only.

A bit string will be treated as representing
the representational value of the status type
if the size of the bit string equals the
BITSIZE of the status type and the value of the
bit string is within the range of values of the
status type. Otherwise the conversion is
illegal.

A <status-conversion> may be used to assert the
type of a status object. This will be

required when a status constant belongs to more
than one type and it is used in a context other
than these enumerated above under implicit

conversions. Except for status objects whose
types differ only in their size attributes, a
status object cannot be converted to a
different status type without first converting
it to a bit string.

Table

Type Equivalence: Two table have equivalent types if they are
both ordinary or both specified, their
<structure-specifier> attribute is the same,
they have the same number of dimensions, they
have the same number of elements in each
dimension, they have the same number of items
in the same textual order in each entry, the
types (including attributes) of the items are
equivalent, the (explicit or implied) packing

specifier on each of the items is the same (for
ordinary tables), the !ORDER directive is
either present in both tables or absent in both
tables, the <words-per-entry> attribute is the

same (for specified tables), and the
location-specifiers of the items are the same
(for specified tables). (Note that the names
of the items, as well as the types and bounds
of the dimensions, need not be the same.) A
table entry is considered to have no

114

it2

MIL-STD-1589B (USAF)
06 June 1980

dimensions. A table whose entry contains an
item-declaration is not considered equivalent
in type to a table whose entry is declared
using an unnamed item description.

Implicit Conversions: No implicit conversions are performed.

Explicit Conversions: A bit or table data object may be explicitly
converted to a table type with a <table-
conversion>.

A bit string will be treated as representing
the value of the table type if the size of the
bit string equals the BITSIZE of the table
type. Otherwise the conversion is illegal.

A <table-conversion> may be applied to a table
object of that type merely to assert its type.
(A table object cannot be converted to a
different table type without first converting
it to a bit string).

115

K

MIL-STD-1589B (USAF)
06 June 1980

8.0 BASIC ELEMENTS

8.1 CHARACTERS

Syntax:

<character> G: <etter>

I<digit>

I<mark>

I<other-character>

<letter> A: I B I C ID IEI F

I G I H I I J I XI L

I S I T I UtI V IW IX

<digit 0: 0 11 12 13 14 15

<mark> +: +I* / > <

I$ Iblank

Semantics:

The text of a J73 <complete-program> is a continuous stream of
<characters>. However, in some contexts, the end of an input record has
significance (see Section 8.2).

Note that in the standard character set for the language <letters>
are defined to be upper case letters only. <Marks> are used either
alone or in conjunction with other characters as operators, delimiters,
and separators. <Other-characters> are the remaining implementation-
dependent character., which are accepted within <character-literals> and
<comments>, and which may also be used as described below. Each

116

HIL-STD-1589B (USAF)
06 June 1980

implementation must define these characters, as well as the ordering of
all <characters> in a collating sequence.

Some of the standard characters are not universally available;

therefore, the following standard alternates are defined:

Standard Character Alternates

@-> or ?

! V

z =

If any of the above standard characters are unavailable on a particular
machine, one of the recommended alternates for that character must be
used. (The first column of alternates is intended for the CDC standard
63 and 64 character sets; the alternates ? and are intended for the
Univac 1108.) If the : is replaced, the Z must also be replaced.

An implementation that has lower case letters available in addition
to uppercase may permit their use in programs provided that within
<names>, <reserved-words>, <letters>, <status-constants> and all
<literals> except <character-literals> they are considered
interchangeable with their corresponding uppercase letters (e.g., XX
and xx denote the same name); whereas within <character-literals> they
are considered distinct.

An implementation that has square brackets available may allow [
to be used for (C and I to be used for *) but may not prohibit the use
of the (* and *).

Constraints:

If a left bracket is substituted for (C, then a right bracket must
be substituted for the corresponding C). If a right bracket is
substituted for C), then a left bracket must be substituted for the
corresponding (C.

117

I[_

MIL-STD-1589B (USAF)

8.2 SYMBOLS

Syntax:

<symbol> : <name) (8.2.1)

I <reserved-word> (8.2.2)

I <operator) (8.2.3)

I <literal) (8.3)

I <status-constant> (2.1.1.6)

I <comment> (8.4)

1 <define-string> (2.4)

I <define-call) (2.4.1)

I <letter> (8.1)

1 < separator> (8.2.4)

Semantics:

(Characters) are combined into <symbols) to form the vocabulary of
the language. <Symbols> are indivisible units and cannot contain
blanks, except as noted in Section 8.5. Only <coments>,
<define-strings>, define parameters enclosed in quotation marks,
<bit-literals)', and <character-literals) may extend across multiple
input records; all other symbols are terminated by the end of an input
record.

8.2.1 NAMES

Syntax:

<name> :-<letter-or-$>
<letter-digit-$-or-prime>...

<letter-or-$> ::-<letter>

V $
<letter-digit--or-prime> : <letter) (8.1)

118

II
MIL-STD-1589B (USAF)

06 June 1980

I<digit> (8.1)

I.$
I "

Semantics:

<Names> are words having programmer-supplied spellings. <Names>

are used to denote entities In the <completc-program>.

Only the first 31 characters of a J73 <name> are used to determine

uniqueness. Additional characters are permitted, but are ignored.

For external names, an implementation may further restrict the

number of initial characters that determine uniqueness.

A dollar sign In a <name> is translated to an

implementatiGn-dependent representation. This translation of-the dollar

sign permits the use of a character in a <name> that might otherwise be

unrepresentable in the language. If, for example, external names in a

given system were prefixed by the character '.' a J73 implementation on

that system might choose to represent '$' when it occurs in a name by

the. representation for '.'. Thus, the name $$ABC' occuring in a

source program would be translated '..ABC'.

8.2.2 RESERVED WORDS

Syntax

<reserved-word> ::= ABORT I ABS I AND I BEGIN I BIT

I BITSIZE I BLOCK I BY I BYREF

I BYRES I BYTE I BYTESIZE I BYVAL

I CASE I COMPOOL I CONDITION*

CONSTANT I DEF I DEFAULT I DEFINE

ELSE I ENCAPSULATION* I END I EQV

EXIT I EXPORTS* I FALLTHRU I FALSE

FIRST I FOR I FREE* I GOTO

HANDLER* I IF I IN* I INLINE

119

MIL-STD-1589B (USAF)
06 June 1980

I INSTANCE I INTERRUPT* I ITEM

I LABEL I LAST I LBOUND I LIKE

| LOC I MOD I NENT* I NEW*

NEXT I NOT I NULL I

NWDSEN I OR I OVERLAY I PARALLEL

POS I PROC I PROGRAM I PROTECTED*

READONLY* I REC I REF I REGISTER*

RENT I REP I RETUPN I SGN

SHIFTL I SHIFTR I SIGNAL*

I START STATIC I STATUS I STOP

-TABLE I TERM I THEN I TO*

TRUE I TYPE I UBOUND I UPDATE*

WHILE I WITH* I WORDSIZE

WRITEONLY* I XOR I ZONE*

Semantics:

<Reserved-words> have language-defined meanings and cannot be used
as <names>.

Those reserved words followed by an * in the above list are
reserved in order to maintain upward compatibility with future
extensions to the language and currently have no meaning in J73.

8.2.3 OPERATORS

Syntax:

<opera'tor> : := <arithmetic-operator>

I <bit-operator>

I <relational-operator>

120

MIL-STD-15893 (USAF)+ - 06 June 1980

I <dereference-operator>

I <assignment-operator>

<arithmetic-operator> : :- <plus-or-minus>

I <multiply-divide-or-od>

I <multiply-or-divide>

I **

<plus-or-minus> ::= + I -

<multiply-divide-or-mod> : := * I / I MOD

<multiply-or-divide> :: * j /

<bit-operator> : <logical-operator>

I NOT

<logical-operator> : AND I OR I XOR I EQV

<relational-operator> : <equal-or-not-equal-operator>

I< I>I<=I>

<equal-or-not-equal-operator> 0 I <>

<dereference-operator> @

<assignment-operator> : :

Semantics:

The meanings of these operators are given in Sections 4, 5, and 6.
The order of combination of operators and operands is determined by
parentheses and by the operators' precedence. The operation implied by
an operator at one precedence level is combined before the operation
implied by an operator at a lower level. Within a particular
precedence level, operations are combined from left to right if the
!LEFTRIGHT directive is in effect and in an implementation-dependent
order if the IREARRANGE directive is in effect.

Precedence of operators is defined by the syntax of the language
and is summarized below:

121

- - .+..i+/. .. • ++ ++ -:,l,', -

MIL-STD-1589B (USAF)
06 June 1980

6 @, subscripting, function calls

5 **

4 *, , OD

3 +,-

2 0,<, <, ,<,>

1 NOT, AND, OR, EQV, XOR

0 assignment

8.2.4 SEPARATORS

Syntax:

<separator> ::= (I) I (* I *)

I I1 , I ; I !

Semantics:

<Separators> are used for the following purposes in J73:

() Expression grouping, list delimiters, status
constants, position brackets, subscripts, case
labels

(* *) Type conversions

Statement name, case label, and preset index
terminator; loop control separator; overlay,
dimension, subrange, and parameter separator

List separator

Statement, declaration, and directive terminator

Directive indicator, formal define parameter
marker

122

MIL-STD-1589B (USAF)
06 June 1980

8.3 LITERALS

Syntax:

<literal> ::- <numeric-literal> (8.3.1)

I <bit-literal> (8.3.2)

I <boolean-literal> (8.3.3)

I <character-literal> (8.3.4)

1 <pointer-literal> (8.3.5)

Semantics:

<Literals> are data objects whose value and type are inherent in
the form of the <symbol> itself. Their values are known at compile
time, and, like other compile-time values, cannot be altered during
execution.

8.3.1 NUMERIC LITERALS

Syntax:

<numeric-literal> ::= <integer-literal>

I <floating-literal>

I <fixed-literal>

<integer-literal> :: < (number>

<number> :: < (digit>... (8.1)

<floating-literal> ::= <real-literal>

<real-literal> :: < (digit>... <exponent> (8.1)

I <fractional-form>
[<exponent>]

<exponent> ::= E (<sign>] <number>

<sign> :: + I -

<fractional-form> :: < digit>... (8.1)

123

MIL-STD-1589B (USAF)
06 June 1980

I [<digit>...] . <digit>... (8.1)

<fixed-literal> :- <real-literal>

Semantics:

An <integer-literal>, LL,'denotes a decimal value. Its type is S
NN, where NN is IMPLINTSIZE(MINSIZE(LL)).

The type of a (real-literal> or a (real-literal> preceded by a
<sign> is determined by the context in which the literal appears,
namely:

when the literal is used as a preset value, it is
implicitly converted to the type of the object being
preset;

" when the literal is used as an assignment value, it is
implicitly converted to the type of the target being
assigned a value;

" -when the literal is an operand of an infix relational or
numeric operator and the other operand is not a
real-literal, it is converted to the type of the other
operand;

when the literal is an actual parameter, it is converted
to the type of the formal parameter;

when a literal is the <initial-value> of a loop
<control-clause>, it is converted to the type of the
<control-variable>;

when the literal is the argument of an explicit fixed or
floating conversion, it is converted to the specified
type.

If the type of an optionally signed <real-literal> is not determined
contextually, it is considered to be a floating type with default
precision.

A <real-literal> denotes a decimal value. If an <exponent> is
present, the decimal value preceding the <exponent> is multiplied by 10
to the value specified in the <exponent>.

For <real-literals>, non-<exponent> digits in excess of
MAXSIGDIGITS will be treated as zeroes in computing the fixed or
floating value to be represented.

124 -.

MIL-STD-1589B (USAF)
06 June 1980

Contextual determination of the type of a real-literal will not be
affected by the presence or absence of the <rearrange-directive>.

Constraints:

<Real-literals> may be implicitly converted to fixed or floating
values only.

The value of an <integer-literal> with size SS must not exceed
MAXINT(SS).

The value of a <floating-literal> with precision PP must not exceed
MAXFLOAT(PP).

The value of a <fixed-literal> with scale SS and fraction FF must
not exceed MAXFIXED(SS,FF).

Examples:

ITEM FF F 24 - -0.1; "equivalent to presetting
with (*F 24*) (-0.1)"

ITEM RR F,R 24 - -0.1; "-O.1 is rounded to a 24 bit
mantissa"

ITEM TT F,T 24 - -0.1; "-0.1 is truncated toward minus
infinity"

CONSTANT ITEM CC F,R 24 - 2.5;
ITEM JJ F,R 24 - CC + .3; ".3 is converted to CC's type"

IF RR > .3; ... ".3 is rounded to a 24 bit mantissa"

Note that if II is an integer item, then II - 2.5 is illegal, since a
<real-literal> cannot be implicitly converted to.an integer value.

8.3.2 BIT LITERALS

Syntax:

<bit-literal> : : <bead-size> B " <bead>...

<bead-size> : : 1 1 2 I 3 1 4 I 5

<bead> : :- <digit>

I A I B I C I D I E I F

I G I H I I J I K I L

I M I N1 P IQ I R

125

. . . .' " . , i - - - - -.. . . . ,

tf

ZIL-STD-1589B (USAF)
06 June 1980

I S I T I U I V

Semantics:

A <bit-literal> represents a bit string value. A <bit-literal> is
composed of a string of <beads> whose <bead-size> in bits is indicated
in the specification of the literal. The total size of the
<bit-literal> is the <bead-size> times the number of beads enclosed
within the primes.

The <beads> of a <bit-literal> can be specified as one to five bits
in size. The <digit> preceding the B indicates the <bead-size>. Only
those <beads> whose value will fit in the <bead-size> indicated arepermitted. The digits 0 - 9 represent their actual values; the letters

A - V represent the values 10 - 31 (see Table 8-1).

126

7_ -..- ~--.~ ,

MIL-STD-1589B (USAF)
06 June 1980

Table 8-1. Bit-Literal Bead Values

IMinimum I I I IMinimum I I
I Bead I Bead I Binary I I Bead I Bead I Binary I
I I Size I Value I I Size I Value I
I I I I I I I I

0 I 1 1 01 1 G 1 5 110000 1

1 1 I I 5 1100011

2 1 2 1 101 1 I 1 5 1 100101

3 1 2 1 11 1 J 5 1100111

4 1 3 1 1001 1 K 1 5 1101001

5 I 3 I 01 1 1 L 1 5 110101 1

6 I 3 I 110 1 1 M 5 1101101

7 I 3 I 11I I N 1 5 1101111

8 1 4 I 1000 1 1 0 1 5 I 11000 1

9 1 4 110011 1 P 1 5 1110011

A I 4 I 1010 1 1 Q 1 5 I 11010 1

B I 4 I 1011 1 1 R 1 5 I 11011 1

C 1 4 i 1100 1 1 S 1 5 I 11100 1

D 1 4 I 1101 1 1 T 1 5 I 11101 1

E 4 I 1110 1 1 U I 5 I 11110 1

F 4 1111 I V 5 11i1II

127

MIL-STD-1589B (USAF)
06 June 1980

8.3.3 BOOLEAN LITERALS

Syn tax:

<boolean-literal> :: TRUE

I FALSE

Semantics:

<Boolean-literals> represent the two possible truth values. TRUE
is equivalent to 1B'1', and FALSE is equivalent to lB'0'.

8.3.4 CHARACTER LITERALS

Syntax:

<character-literal> <character>... " (8.1)

Semantics:

<Character-literals> denote strings of character values.

<Character-literals> can contain any <character> (including blank)
that is representable in an implementation. A prime character (') is
represented within a <character-literal> by two consecutive primes. The
size of a <character-literal> in bytes is the number of characters
represented within the containing primes (two consecutive primes
represent one character). The encoding of characters is
implementation-dependent.

8.3.5 POINTER LITEPAL

Syntax:

<po ater-literal> : :- NULL

Semantics:

Any pointer item, regardless of its attribute, can have the value
NULL, which indicates that the item points to no object.

128

. .

ml. -

MIL-STD-1589B (USAF)
06 June 1980

8.4 COMMENTS

Syntax:

<comment> :: " [<character>...] " (8.1)

I Z [<character>...] % (8.1)

Semantics:

A <comment> has no semantic effect.

A <comment> in a <define-string> or <actual-define-parameter> is
interpreted as part of the character sequence to be substituted when the
<define-call> is expanded.

A <comment> can appear between any two <symbols>, subject to the
constraints below.

Constraints:

A <comment> delimited by a quotation mark (") is not permitted
between a <define-name> and a <define-string> in a <define-declaration>,
or within the <actual-parameter-list> in a <define-call).

A <comment> delimited by a quotation mark cannot contain a
quotation mark, and a <comment> delimited by a percent character (2)
cannot contain a percent character.

8.5 BLANKS

One or more blanks can be placed between <symbols>. Blanks
occurring between <symbols> have no semantic meaning.

Constraints:

Blanks cannot appear within <symbols> except in <character-
literals), <define-strings>, <define-calls>, and <comments>.

One or more blanks must appear between any two <symbols> if the
absence of blanks could cause them to be interpreted as a single legal
<symbol>, except that whether (* represents one or two <symbols> is
contextually determined, e.g., (* represents two symbols in the
following contexts:

TABLE AA (*) ...;
ITEM ... POS (*, 0);

129

MIL-STD-1589B (USAF)
06 June 1980

9.0 DIRECTIVES

Syntax:

<directive> :-<compool-directive> (9.1)

I (copy-directive> (9.2.1)

I <skip-directive> (9.2.2)

I (begin-directive> (9.2.2)

1 <end-directive> (9.2.2)

I<linkage-directive> (9.3)

I (trace-directive> (9.4)

1 <interference-directive> (9.5)

I <reducible-directive> (9.6)

I<nolist-directive> (9.7.1)

1 <list-directive> (9.7.1)

I <eject-directive> (9.7.1)

I<listinv-directive> (9.7.2)

1 <listexp-directive> (9.7.2)

I <listboth-directive> (9.7.2)

I <base-directive> (9.8)

1 <isbase-directive> (9.8)

1 <drop-directive> (9.8)

I<leftright-directive> (9.9)

I<rearrange-directive> (9.9)

I<initialize-directive> (9.10)

I<order-directive> (9.11)

130

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

<Directives> are used to provide supplemental information to a
compiler about the <complete-program>, and to provide compiler control.

Each implementation can specify <directives> in addition to those
described here, but each must conform to the general form for a
<directive>. <Directives> begin with an exclamation point and terminate
with a semicolon, and the word following the exclamation point must not
duplicate that-of any language-defined directive.

9.1 CONPOOL DIRECTIVES

Syntax:

<compool-directive> ::= !COMPOOL
[<compool-directive-list>]

<compool-directive-list> ::= [<compool-file-name>)
<compool-declared-name>,...

I ([<compool-file-name>])

<compool-declared-name> ::= <name> (8.2.1)

I (<name>) (8.2.1)

<compool-file-name> ::= <character-literal> (8.3.4)

Semantics:

A <compool-directive> is used to access definitions in a compool
module.

A <compool-file-name> is an implementation-dependent file name that
specifies the desired compool. If it is omitted, an implicit unnamed
compool is assumed. A <compool-file-name> enclosed in parentheses
implies that all <names> in the compool are to be made available. (This
does not include <names> used in the compool that were obtained from
other compools.)

If the <compool-directive> contains a list of <compool-declared-
names>, only those names (except as noted below) will be made available.

If a <compool-declared-name> is the name of an item, table, or
block declared with a <type-name>, that <type-name> is also made
available if it is declared in that compool. (For pointer items, this
includes the name of the pointed-to-type). If a

131

&

MIL-STD-1589B (USAF)
06 June 1980

<compool-declared-name> is a <table-item-name>, the name of the table in
which It is contained Is also made available. If a table name Is made
available, any <status-lists> and <statua-type-names> associated with
its <dimensions> are also made available, provided they are declared in
the designated compool.

If a <compool-declared-name> is the name of a.table or block and is
parenthesized, all names declared in the table or block will be made
available, as well as all type names referenced in the table or block,
provided they are declared in the designated compool. If a
<compool-declared-name> is a <table-type-name> or <block-type-name>, the
names of these components will be made available whether or not the name
is parenthesized.

If a status item name is made available, its associated
<status-list> and <status-type-name> (if any) will also be made
available, if they were declared in the designated compool.

If a <compool-declared-name> is the name of a subroutine, any
<type-names> associated with that subroutine's formal parameters and
return value will also be made available, if they are declared in the
designated compool.

Constraints:

A <compool-directive> must only occur immediately after START or
immediately following another <compool-directive>.

The <compool-declared-names> must have been declared in the
designated compool.

A <compool-declared-name> cannot be the name of a component
declared in a type declaration, nor can it be the name of a formal

parameter of a subroutine.

9.2 TEXT DIRECTIVES

9.2.1 COPY DIRECTIVES

Syntax:

<copy-directive> : !COPY
<character-literal> (8.3.4)

132

7

MIL-STD-1589B (USAF)
• " 06 June 1980

Semantics:

The <copy-directive> is used to copy the contents of a text file
into a program. The <copy-directive> can be viewed as a <define-call);
it is expanded at the point of its occurrence by substituting the
entirety of the file being copied. The <character-literal> is an
implementation-dependent file name.

9.2.X SKIP, BEGIN, AND END DIRECTIVES

Syntax:

<skip-directive> :-I SKIP [<letter>] ;(8.1)

<begin-directive> ::- IBEGIN [<letter>) ; (8.1)

<end-directive> :: ! !END

Semantics:

The <skip-directive> is used in conjunction with a
<begin-directive> and an <end-directive> to cause text enclosed in the
latter two to be ignored in the process of compilation.

A <skip-directive> with a <letter> will suppress the processing of

all text following a <begin-directive> containing the same <letter> up
to the matching <end-directive>. A <skip-directive> with no <letter>
refers to all <begin-directives>. The text following a <begin-
directive> with no <letter> can be suppressed only by a <skip-
directive> with no <letter>.

Begin-end directive pairs can be nested. Within a begin-end
directive set whose text is being suppressed, enclosed <begin-
directives> are recognized for the purpose of matching <end-directives>.

Within a begin-end directive pair whose text is being suppressed,
<copy-directives> and <define-calls> will not be expanded.

9.3 LINKAGE DIRECTIVES

Syntax:

<linkage-directive> ::- ILINKAGE
<symbol>... ; (8.2)

133

I~

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

The <linkage-directive) indicates that the specified subroutine
does not obey standard J73 linkage conventions. The <symbol> string
specifies the implementation-dependent linkage type to be used in
linking the procedure.

Constraints:

The <linkage-directive> must only occur in a <subroutine-
declaration> or <subroutine-definition) between the heading and the
<declarations> of the formal parameters.

If a (subroutine-definition) contains a <linkage-directive>, every
<subroutine-declaration) for that subroutine must contain the same
<linkage-directive>.

9.4 TRACE DIRECTIVES

Syntax:

<trace-directive> ::- ITRACE
(<trace-control>]
(name>,... ;

<trace-control> :boolean-formula>) (5.2.2)

Semantics:

The <trace-directive> provides a run-time facility to trace program
flow and to monitor data assignment. This "tracing" will be active from
the lexical point at which the <trace-directive) occurs in the source
until the end of the scope containing the directive. Its effect extends
into nested procedures declared within this lexical range of statements.

The <names> in the <trace-directive> are the names that will be
traced, i.e., certain uses of these names as described in the following
sentences will be noted in an implementation-dependent manner, for
example on a symbolic output file. For statement names, tracing of the
associated statement will be noted each time the statement is fallen
into or branched to. For data names, modification of the data object
and its new value will be noted. Modification of a data object is
considered to have occurred upon execution of an assignment statement in
which the data object is the target or upon return from a subroutine to
which the data object was passed as an actual output parameter. For
tables, modification of the entire table, a table entry, or an item in
the table will be noted. For blocks, modification of any data contained
in the block will be noted. For subroutine names, each call to the

134

4-

MIL-STD-1589B (USAF)
06 June 1980

subroutine will be noted. If the subroutine containing the
<trace-directive> is named in the directive and the directive is placed
immediately after the <procedure heading> or <function heading>, entry
and exit to that subroutine will be noted.

If a <trace-control> appears in the <trace-directive>, the
<trace-control> formula will be tested dynamically at each use of a
<name> as defined in the preceding paragraph. The trace output is
suppressed if the formula is determined to be false. If the
<trace-control> is omitted, it is considered to be true.

If two or more active <trace-directives> contain the same <name>,
then the lexically latest one overrides the earlier ones for that
<name>.

Constraints:

All <names> in the <trace-directive>, including names used in the
<trace-control>, except for statement names and subroutine names, must
have been declared prior to their use in the <trace-directive>.

A <trace-directive> can occur only within a <statement>.

A <bit-formula> cannot be implicitly converted to the
<boolean-formula> in a <trace-control>.

9.5 INTERFERENCE DIRECTIVES

<interference-directive> : : INTERFERENCE
<interference-control>

<interference-control> ::i <data-name> (2.6)

<data-name>,... (2.6)

Semantics:

The <interference-directive> informs the compiler that it cannot
assume that the storage associated with the name to the left of the
colon is distinct from the storage associated with the names to the
right of the colon. In the absence of an <interference-directive> the
compiler can make optimizations on the assumption that distinct
<data-names> refer to distinct storage locations. If two <data-names>
refer to the same storage location, these optimizations could result in
erroneous code. If two <data-names> share the same storage, an
assignment to one name should affect the value of the other. If the
compiler optimizes on the assumption of non-interference, these

135

L,

MIL-STD-1589B (USAF)
06 June 1980

semantics might not be preserved.

The compiler is aware of storage overlapping as a result of
<specified-table-items) and as a result of the arrangement of data
within a single overlay. This overlapping need not be reported via an
<interference-directive>. Other instances of overlap, e.g., as a -result
of absolute addresses in separate overlays, must be stated by the use of
an <Interference-directive).

An <interference-directive> can occur ouly in a <declaration>.

All <data-names> in the <interference-control> must have been
declared prior to their use in the <interference-directive>.

9.6 REDUCIBLE DIRECTIVES

Syntax:

<reducible-directive> ::= IREDUCIBLE ;

Semantics:

The (reducible-directive> is used to allow additional optimization
of function-calls. A reducible function is one for which all calls with
identically-valued actual parameters result in identical function values
and output parameter values, and which does not modify any data except
actual output parameters and automatic data declared within its own
body. If a <reducible-directive> is used to designate such functions as
reducible, the compiler may detect the existence of such co-mon calls,
save the values returned from the initial call for use in place of any
subsequent calls, and delete these subsequent calls.

Constraints:

The <reducible-directive), if present, must be placed immediately
following the semicolon of the <function-heading>.

If a function designated as reducible is both declared and defined,
the <reducible-directive> must appear in both the definition of the
function and in all declarations of it.

9.7 LISTING DIRECTIVES

9.7.1 SOURCE-LISTING DIRECTIVES

Syntax:

136

.. . . ./

MIL-STD-1589B (USAF)

06 June 1980

<nolist-directive> ::- !NOLIST

<list-directive> :: ILIST

<eject-directive> ::- !EJECT

Semantics:

Listing directives are used to provide source listing control
information to the compiler.' The <nolist-directive> causes suppression
of the source listing beginning with the next source line, up to and
including the next <list-directive>, which causes the listing to be
resumed.

The <eject-directive> causes a page eject of the source listing
before listing the following source lines. The <eject-directive> is
ignored if the source listing is suppressed.

9.7.2 DEFINE-LISTING DIRECTIVES

Syntax:

<listinv-directive> : !LISTINV

<listexp-directive> :: !LISTEXP ;

<listboth-directive> :: !LISTBOTH

Semantics:

Define-listing directives allow programmer control over the text to
be included in the source program listing for <define-calls>.

The text contained in the listing for a particular <define-call>
depends on the define-listing directive which was in effect at the point
of the corresponding <define-declaration> (not on the directive in
effect at the point of the <define-call>). If this directive was
!LISTINV, then the listing contains the text of the <define-call>; if
the directive was !LISTEXP, then the listing contains the expanded
string (the <define-string> after substitution of
<actual-define-parameters>); if the directive was !LISTBOTH, then the
listing contains both the invocation and the expansion.

Each define-listing directive is in effect from the lexical point
at which it appears to the end of the current scope or to the point at
which the next define-listing directive appears, whichever is first.
The default define-listing directive in effect at the beginning of every
module is !LISTINV.

137

9.|

MIL-STD-1589B (USAF)
06 June 1980

Constraint:

<Listinv-directives>, <listexp-directives> and

<liscboth-directives> may appear only in a <declaration).

Note:

The effect of a define-listing directive for a particular
<define-call> is independent of whether a <nolist-directive> is
suppressing the source listing at the point of the <define-declaration>
being invoked.

9.8 REGISTER DIRECTIVES

Syntax:

<base-directive> ::= IBASE <data-name> (2.6)
<integer-literal> ; (8.3.1)

<isbase-directive> :: !ISBASE <data-name> (2.6)
<integer-literal> ; (8.3.1)

<drop-directive> :: ! !DROP
<integer-literal> ; (8.3.1)

Semantics:

Register directives affect target-machine register allocation.
Each of these three directives uses an <integer-literal> in a
target-machine-dependent way to specify which register is affected.

The <base-directive> loads the specified register with the address
of the object corresponding to the <data-name>.

The <isbase-directive> directs the compiler to assume that the
specified register contains the address of the data object corresponding
to the <data-name>, but to take no action to guarantee it.

The <drop-directive> frees the specified register for other use by
the compiler in generating code for subsequent statements. Both !BASE

and !ISBASE cause the compiler to dedicate the register to the value it
currently contains until !DROP or the end of the current scope is
encountered.

Register directives may be ignored in implementations for machines
on which register allocation is not meaningful.

138

?/9

MIL-STD-1589B (USAF)
06 June 1980

9.9 EXPRESSION EVALUATION ORDER DIRECTIVES

Syntax:

<leftright-directive> ::- ILEFTRIGHT ;

<rearrange-directive> ::- IREARRANGE

Semantics:

If a <leftright-directive> is in effect, operators at the same
precedence level are evaluated in left-to-right order within a given
<formula>, consistent with the order imposed by parentheses.

If a <rearrange-directive> is in effect, order of evaluation is
still constrained by parentheses and operator precedence, but the
compiler is otherwise free to rearrange the expression for more optimal
code generation, such as by applying associative and commutative laws.

The effect of each of these directives extends from the point at
which it auoears to the end of the current namescope or to the point at
which a different expression-evaluation-order directive appears,
whichever is first. At the beginning of each module, a <rearrange-
directive> is in effect by default.

9.10 INITIALIZATION DIRECTIVES

Syntax:

<initialize-directive> ::- !INITIALIZE

Semantics:

The <initialize-directive> causes all STATIC data objects that are
not explicitly initialized via an <item-preset>, <table-preset>, or
<block-preset>, to be preset by default to all zero bits.

Its effect extends from the point at which it appears to the end of
the current namescope.

Constraint:

The <initialize-directive> may appear only in <declarations>, but
not in a <table-body> nor in a <block-body-part> nor in a
<subroutine-declaration>.

139

HIL-STD-1589B (USAF)
06 June 1980

9.11 ALLOCATION ORDER DIRECTIVES

Syntax:

<order-directive> ::- IORDER

Semantics:

The <order-directive> directs a compiler to allocate storage for
the data objects in a block or ordinary table in the order in which
their declarations appear in the text of the <block-body-part> or the
<ordinary-table-options>. Lexically declared data objects that occur
earlier in text are allocated physically lower addresses, and if data
objects share a word, lexically earlier data are allocated to the left
of later data. In the absence of an <order-directive>, a compiler is
free to rearrange the physical storage layout for ease of access or more
optimal utilization of memory.

The effect of the <order-directive> extends from the point at which
it appears to the end of the current block or table. If the
<order-directive> is in a block, its effect extends to the components of
any blocks or ordinary tables contained in the block.

If an <order-directive> appears in an <ordinary-table-options> in a
<table-type-declaration>, the ordering extends to all tables declared of
that type.

Constraints:

A block affected by an <order-directive> cannot contain an
<overlay-declaration>.

The <order-directive>, if present, must be the first of the
<block-body-options> in the <block-body-part>, or the first of the
<ordinary-table-options> in the <ordinary-table-body>.

140

S'S -.

MIL-STD-1589B (USAF)
06 June 1980

APPENDIX

CROSS-REFERENCE INDEX

This appendix provides a cross-reference for terminal and
non-terminal constructs in the J73 syntax used in this manual. For each
construct, columns give the section in the manual where it is defined
and the sections where it is used or referenced.

Construct Definition References

A 2.1.1.3, 7.0, 8.1, 8.3.2

ABORT 4.3, 4.10, 8.2.2

abort-phrase 4.5 4.5

abort-statement 4.1I0 4.0

ABS 6.3.6, 8.2.2

abs-function 6.•3.•6 6.•3

absolute-add ress 2.6 2.6

actual-def in&-paramet er 2.4.1 2.4. 1

ac tual-define-parame ter-lis t 2.4.1 2.4.1

actual-input-parameter 4.5 4.5

ac tual-out put-parame ter 4 .5 4.•5

actual-parameter-list 4.5 4.5, 6.3

allocation-specifier 2.1.5 2.1.1, 2.1.2, 2.1.4

AND 5.2.1, 8.2.2, 8.2.3

and-continuation 5.2 5.2

arithmetic-operator 8.2.3 8.2.3

assignment-operator 8.2.3 8.2.3

assignment-statement 4.1 4.0

141

HIL-STD-1589D (USAF)
06 June 1980

Construct Definition References

B 2.1.1.4, 7.0, 8.1,

8.3.2

BASIC 9.8

base-directive 9.8 9.0

bead 8.3.2 8.3.2

bead-size 8.3.2 8.3.2

BEGIN 1.2.3, 2.0, 2.1.2.3,
2.1.2.4, 2.1.4, 2.5.1,
2.5.2, 2.7, 3.1, 4.0,
4.4, 8.2.2, 9.2.2

begin-directive 9.2.2Z 9.0

BIT 6.1, 8.2.2

bit-conversion 7.0 5.2

bit-formula 5.2 4.4, 5.0, 5.2,
5.2.2, 6.3.3,
6.3.5

bit-function 6.3.3 6.3

bit-function-call 5.2 5.2

bit-function-variable 6.1 6.1

bit-item-description 2.1.1.4 2.1.1.4

bit-literal 8.3.2 5.2, 8.3

bit-operator 8.2.3 8.2.3

bit-primary 5.2 5.2, 5.2.1

BITSINBYTE 1.4

142

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

BITSINPOINTR 1.4

BITSIWORD 1.4

BITSIZE 6.3.8, 8.2.2

bit-size 2.1.1.4 2.1.1.4

bits-per-entry 2.1.2.2 2.1.2.2

bit-type-conversion 7.0 7.0

bit-type-description 2.1.1.4 2.1.1, 7.0

bit-type-name 2.1.1.4 2.1.1.4, 7.0

bit-variable 5.2 5.2, 6.1

$BLOCK 2.1.4, 2.2, 2.5.1,
8.2.2

block-body-options 2.1.4 2.1.4

jblock-body-part 2.1.4 2.1.4, 2.2

block-declaration 2.1.4 2.1

block-dereference 6.1 4.5, 6.1, 6.3.1

block-item 6.1 6.1

block-name 2.1.4 2.1.4, 2.5.1, 2.6,
5, 6.3.1, 6.3.8

block-preset 2.1.6 2.1.4

block-preset-list 2.1.6 2.1.6

block-preset-values-option 2.*1 .6 2.*1 .6

block-table 6.1 6.1

block-table-entry 6.1 6.1

block-table-item 6.1 6.1

143

MIL-STD-15893 (USAF)
06 June 1980 "

Construct Definition References

block-type-declaration 2.2 2.2

block-type-name 2.2 2.1.1.7, 2.1.4, 2.2

boolean-formula 5.2.2 4.2, 4.3, 9.4

boolean-literal 8.3.3 5.2, 8.3

bounds-function 6.3.9 6.3

BY 4.2, 8.2.2

by-formula 4.2 4.2

by-or-then-phrase 4.2 4.2

by-phrase 4.2 4.2

BYREY 3.3, 8.2.2

BYRES 3.3, 8.2.2

BYTE 6.1, 6.3.4, 8.2.2

byte-function 6.3.4 6.3

byte-function-variable 6.1 6.1

BYTEPOS 1.4

BYTESINWORD 1

alternative 4.4 4.4

144

ttJ

MIL-STD-15893 (USAF)

Construct Definition References

case-body 4.4 4.4

case-index 4.4 4.4

case-index-group 4.4 4.4

case-selector-f ormula 4.4 4.4

case-statement 4.4 4.0

character 8.1 2.4, 2.4.1, 8.3.4,
8.4

character-conversion 7.0 5.3

character-formula 5.3 4.4, 5.0, 5.2.1,
5.3, 6.3.4

$character-function-call 5.3 5.3

character-item-description 2.1.1.5 2.1.1.5

character-literal 8.3.4 8.3, 9.1, 9.2.1I character-size 2.1.1.5 2115

character-type-description 2.1.1.5 2.1.1, 7.0

character-type-name 2.1.1.5 2.1.1.5, 7.0

character-variable 5.3 5.3, 6.1

commuent 8.4 8.2

compile-time-bit-formula 5.1.2 4.4, 5.0

compile-time-character-formula 5.1.3 4.4, 5.0

compile-time-fixed-formula 5.1.3 5.1

compile-time?-f loating-formula 5.1.2 1.4, 5.1

compile-time-formula 5.0 2.1.6

-opl-im-ne 5 1.4, 2.1.1.1, 2.1.1.2,

145

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

2.1.1.5, 2.1.1.6,

2.1.2.1, 2.1.2.2,
2.1.2.4, 2.1.6, 2.6,
4.4, 5.1, 6.3.9

compile-time-nuueric-formula 5.1 5.0

compile-time-pointer-formula 5.5 5.0

compl£e-time-status-formula 5.4 2.1.2.1, 2.1.6,
4.4, 5.0

complete-program 1.1

compound-def 2.5.1 2.5.1

compound-ref 2.5.2 2.5.2

compound-statement 4.0 4.0

COMPOOL 1.2.1, 8.2.2, 9.1

compool-declaration 2.0 1.2.1, 2.0

compool-declared-name 9.1 9.1

compool-directive 9.1 9.0

compool-directive-list 9.1 9.1

compool-file-name 9.1 4.1

compool-module 1.2.1 1.1

compool-name 1.2.1 1.2.1

CONDITION 8.2.2

conditional-statement 4.3 4.3

CONSTANT 2.1.3, 8.2.2

constant-declaration 2.1.3 2.0, 2.1

146

MI1L-STD-1589B (USAF)

06 June 1980

Construct Definition References

constant-index 2.1.6 2.1.6

constant-item-name 2.1.3 2.1.3, 6.1, 6.2

constant-table-item-name 6.2 6.2

constant-table-name 2.1.3 2.1.3, 6.2

continuation 4.2 4.2

control-clause 4.2 4.2

control-item 4.2 4.2

control-letter 4.2 4.2, 6.2

controlled-statement 4.2 4.2

control-variable 4.2 4.2

COPY 9.2.1

copy-directive 9.2.1 9.0

D 2.1.2.3, 8.1, 8.3.2

data-declaration 2.1 2.0, 2.1.4, 2.5.1,
2.5.2

data-name 2.6 2.6, 3.3, 9.5, 9.8

declaration 2.0 1.2.2, 1.2.3, 2.0,
3.1, 3.2

DEF 1.2.2, 2.5.1, 8.2.2

DEFAULT 4.4, 8.2.2

default-option 4.4 4.4

default-preset-sublist 2.*1 .6 2.*1 .6

default-sublist 2.1.1.6 2.1.1.6

147

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

def-block-instantiation 2.5.1 2.5.1

DEFINE 2.4, 8.2.2

define-call 2.4.1 8.2

define-name 2.4 2.4, 2.4.1

define-string 2.4 2.4, 8.2

definition-part 2.4 2.4

define-declaration 2.4 2.0

def-specification 2.5.1 2.5

def-specificaCion-choice 2.5.1 2.5.1

dereference 6.1 6.1

digit 8.1 8.1, 8.2.1, 8.3.1,
8.3.2

dereference-operator 8.2.3 8.2.3

dimension 2.1.2.1 2.1.2.1

dimension-list 2.1.2.1 2.1.2, 2.1.3, 2.2

dimension-number 6.3.9 6.3.9

directive 9.0 1.2.1, 1.2.2, 1.2.3,
2.0, 2.1.2.3,
2.1.2.4, 2.1.4,
2.5.1, 2.5.2, 3.0,
3.1, 3.2, 4.0,
4.2, 4.4

DROP 9.8

drop-directive 9.8 9.0

E 8.1, 8.3.2

148

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

EJECT 9.7.1 9.7

eject-directive 9.7 9.0

ELSE 4.3, 8.2.2

else-clause 4.3 4.3

ENCAPSULATION 8.2.2

END 1.2.3, 2.0. 2.1.2.3,
2.1.2.4, 2.1.4,
2.5.1, 2.5.2. 2.7,
3.1. 4.0, 4.4,
6.2.. 9.2.2

end-directive 9.2.2 9.0

entry-size 2.1.2.4 2.1.2.4

entry-specifier 2.1.1 2.1.2, 2.2

equal-or-not-equal-operator 8.2.3 5.2.1, 8.2.3

EQV 5.2, 8.2.2, 8.2.3

eqv-continuation 5.2 5.2

EXIT 4.8, 8.2.2

exit-statement 4.8 4.0

exponent 8.3.1 8.3.1

EXPORTS 8.2.2

external-declaration 2.5 2.0

F 2.1.1.2, 7.0, 8.1,
8.3.2

FALLThIU 4.4, 8.2.2

149

7--q.

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

FALSE 8.2.2, 8.3.3

fbit 6.3.3 6.1, 6.3.3

fbyte 6.3.4 6.1, 6.3.4

FIRST 6.3.11, 8.2.2

fixed-conversion 7.0 5.1.3

fixed-factor 5.1.3 5.1.3

fixed-formula 5.1.3 5.1, 5.1.3, 5.2.2

fixed-function-call 5.1.3 5.1.3

$ fixed-iteu-descripion 2.1-1.3 2.1.1.3

fixed-literal 8.3.1 5.1.3, 8.3.1

fixed-machine-paraeter 1.4 5.1.3

FIXEDPRECISION 1.4

fixed-term 5.1.3 5.1.3

fixed-type-description 2.1.1.3 2.1.1, 7.0

fixed-type-name 2.1.1.3 2.1.1.3, 7.0

fixed-variable 5.1.3 5.1.3

floating-conversion 5.1.2 5.1.2

floating-factor 5.1.2 5.1.2

floating-formula 5.1.2 5.1, 5.102, 5.2.1

floacting-function-call 5.1.2 5.1.2

floating-item-descripCion 2.1-1.2 2.1.1.2

floating-literal 8.3.1 5.1.2, 8.3.1

floating-machine-parameter 1.4 5.1.2

150

M IL-STD-1589B (USAF)
06 June 1980

Construct Definition References

floating-primary 5.1.2 5.1.2

floating-term 5.1.2 5.1.2

floating-type-description 2.1.1.2 2.1.1, 7.0

floating-type-name 2.1.1.2 2.1.1.2, 7.0

floating-variable 5.1.2 5.1.2

FLOATPRECIS ION 1.4

FLOATRADIX 1.4

FLOATRELPRECI SION 1.4

FLOATUNDERFLOW 1.4

FOR 4.2, 8.2.2

for-clause 4.2 4.2

formal-define-parameter 2.4 2.4

formal-define-parameter-list 2.4 2.4

formal-input-parameter 3.3 3.3

formal-output-parameter 3.3 3.3

formal-parameter-list 3.3 3.1, 3.2

formula 5.0 4.1, 4.2, 4.5,

5.1.1, 5.1.13

5.2, 5.3, 5.4,
5.5, 5.6, 6.3.8

fractional-form 8.3.1 8.3.1

fraction-specifier 2.1.1.3 1.4, 2.1.1.3

FREE 8.2.2

function-body 3.2 3.2

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

function-call 6.3 5..,5.1.2,
5.3, 5.,
5.13, 5.2,

function-declaration 3.2 3.0

function-definition 3.2 3.2

function-heading 3.2 3.2

function-name 3.2 3.2, 3.3, 4.59 6.1,

6.3, 6.3.1

G 0.1, 8o3.2

$GOTO 4.7, 8.2.2

goto-statement 4.7 4.0

H 8.1, 8.3.2

HANDLER 8.2.2

I 8.1, 8.3.2

IF 4.3, 8.2.2

if-statement 4.3 4.0

IZIPLFIXEDPRECISION 1 .4

IMPLPLOATPRECI SION 1.4

IMPLINTSIZE 1.4

IN 8.2.2

increment-amount 6.3.2 6.3.2

152

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

index 6.1 6.1

INITIALIZE 9.*10

initialize-directive 9.10 9.0

initial-value 4.2 4.2

INLINE 3.4, 8.2.2

inline-declaration 3.4 2.0

input-paranter-name 3.3 3.3

INSTANCE 2.5.1, 8.2.2

integer-conversion 7.0 5.1.1

integer-factor 5.1.1 5.1.1, 5.1.2, 5.1.3

integer-formula 5.1.1 4.4, 4.8, 5.1, 5.1.1,
5.2.1, 6.1, 6.3.2,
6.3.3, 6.3.4, 6.3.5

integer-function-call 5.1.1 5.1.1

integer-item-description 2.1 .1.1 2.1.1.1

integer-literal 8.3.1 5.1.1, 8.3.1, 9.8

integer-machine-parameter 1 .4 5.*1 .1

integer-primary 5.1.1 5.1.1, 5.1.2

integer-size 2.1.1.1 1.4, 2.1.1.1

integer-term 5.1.1 5.1.1, 5.1.3

integer-type-description 2.1.1.1 2.1.1, 7.0

integer-type-name 2.1.1.1 2.1.1.1, 7.0

integer-variable 5.1.1 5.1.1

INTERFERENCE 9.5

153

MIL-STD-1589B (USAF)

construct Definition References

INTERRUPT 8.2.2

interference-control 9.5 9.5

interference-directive 9.5 9.0

INTPRECISION 1.4

intrinsic-function-call 6.3 6.3

ISBASE 9.8

isbase-directive 9.8 9.0

ITEM 2.1.1, 2.1.2.3,
2.1.2o4, 2.1.3,
8.2.2

Item 6.1 6.1

itemr-declaration 2.1.1 2.1

4item-dereference 6.1 6.1

item-name 2.1.1 2.1.1, 2.6,
4.2, 6.1

item-preset 2.1.6 2.1.1, 2.1.3

item-praget-valu@ 2.1.6 2.1.6

item-type-declaration 2.2 2.2

item -type-description 2.1.1 2.1.1, 2.1.2.3,
2.1.1.4, 2.2, 3.2

item-type-name 2.2 2.1.1.1, 2.1.1.2,
2.1.1.3, 2.1.1.4b
2.1.1.5, 2.1.1.6,
2.1.1.7, 2.2

J 8.1, 8.3.2

154

...

MIL-STD-1589B (USAF)
-... 06 June 1980

Construct Definition References

K 8.1, 8.3.2

L 8.1, 8.3.2

LABEL 2.3, 8.2.2

label 4.0 1.2.3, 3.1, 4.0, 4.4

LAST 6.3.11, 8.2.2

LBOUND 6.3.9, 8.2.2

LEFTRIGHT 9.9

lefcrighc-directive 9.9 9.0

letter 8.1 2.1.1.6, 2.4, 4.2,

8.1, 8.2, 8.2.1

let er-digit-$-or-prime 8.2.1 8.2.1

, letter-or-$ 8.2.1 8.2.1

LIKE 2.2, 8.2.2

like-option 2.2 2.2

LINKAGE 9.3

linkage-directive 9.3 9.0

LIST 9.7

LISTBOTH 9.7.2 9.0

LISTEXP 9.7.2 9.0

LISTINV 9.7.2 9.0

list-directive 9.7.1 9.0

155

t -~

ML-STD-1589B
(USA)

06 June 1980

Construct Definition References

literal 8.3 8.2

LOC
6.3.1, 8.2.2

loc-arpument 6.3.1 6.3.1

location-specifier 2.1.2.4 2.1.2.4

loc-function 6.3.1 6.3

LOCSINWORD
1.4, 8.2.2

logical-conltinustion 5.2.1 5.2.1

logical-operand 5.2 5.2

logical-operator 8.2.3 8.2.3

loop-statement 4.2 4.0

loop-type 4.2 4.2

lower-bound 2.1.2.1 2.1.2.1, 4.4

lower-bound-optiOn 2.1•2.1 2.1•2.,L

M
2.1.2.3, 8.1, 8.3.2

machine-specific-function-call 6.3 6.3

machine-specific-procedure-call 4.5
4.5

main-program-module 1.2.3 1.1

mark 8.1 8.1

MAXBITS
1.4

MAXBYTES
1.4

MAXFYXED
1.4

MAXFIXEDPRECISION
1.4

156

j 4 (i R I. . . I I "

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

MAXFLOAT 1.4

MAXFLOATPRECISION 1.4

MhXINT 1.4

MAXINTSIZE 1.4

MAXSIGDIGITS 1.4

MAXTABLESIZE 1.4

MINFIXED 1.4

MINFLOAT 1.4

MINFRACTION 1.4

MININT1.

MINRELPRECISION 1.4

MINSCALE 1.4

MINSIZE 1.4

MOD 8.2.2, 8.2.3

module 1.1 1.1

multiply-divide-or-mod 8.2.3 5.1.1, 8.2.3

multiply-or-divide 8.2.3 5.1.2, 5.1.3, 8.2.3

N 2.1.2.3, 8.1, 8.3.2

name 8.2.1 1.2.1, 1.2.3, 2.1.1,
2.1.1.6, 2.1.2.3,
2.1.3, 2.2, 2.4,
3.1, 3.2, 4.0,
8.2, 9.1, 9.4

157

I4

HIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

named-bit-constant 5.2 5.2

named-characer-const ant 5.3 5.3

named-constant 6.2 5.1.1, 5.1.2, 5.1.3,
5.2, 5.3, 5.4,
5.5, 5.6

named-fixed-constant 5.1.3 5.1.3

named-floating-constant 5.1.2 5.1.2

named-integer-constant 5.1.1 5.1.1

named-f loacing-constant 5.1.2 5.1.2

named-pointer-consant 5.5 5.5

named-status-constantl 5.4 5.4

named-table-consrtant 5.6 5.6

named-variable 6.1 6.1, 6.3.1 .

NENT 8.2.2

nested-block 4.5 4.5

E 8.2.2

NEXT
6.3.2, 8.2.2

next-argument 6.3.2 6.3.2

next-function 6.3.2 6.3

nbit 6.3.3 6.1, 6.3.3

abyte 6.3.4 6.1, 6.3.4

NOLIST
9.7

nolist-directive 9.7.1 9.0

non-nested-eubroutine 1.2.2 1.2.2, 1.2.3

158 .-

" '... i nae ,- ... :]&llKr... ,,-.... .. , -

I

HIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

NOT 5.2.1, 8.2.2, 8.2.3

NULL 8.2.2, 8.3.5

null-declaration 2.7 2.0, 2.1.2.3, 2.1.2.4,
2.1.4, 2.5.1, 2.5.2

null-statement 4.0 4.0

number 8.3.1 8.3.1

numeric-formula 5.1 4.2, 5.0, 6.3.6,
6.3.7

numeric-literal 8.3.1 8.3

NWDSEN 6.3.10, 8.2.2

nwdsen-argument 6.3.10 6.3.10

nwdsen-function 6.3.10 6.3

0 8.1, 8.3.2

operator 8.2.3 8.2

OR 5.2.1, 8.2.2, 8.2.3

or-continuation 5.2 5.2

ORDER 9.11

order-directive 9.11 9.0

ordinary-entr -specifier 2.1.2.3 2.1.2

ordinary-table-body 2.1.2.3 2.1.2.3

ordinary-table-item-declaration 2.1.2.3 2.1.2.3

ordinary-table-options' 2.1.2.3 2.1.2.3

other-character 8.1

159

MIL-STD-15899 (USAF)
06 June 1960

Construct Definition References

output-paramter-name 3.3 3.3

OVERLAY 2.6, 8.2.2

overlay-address 2.6 2.6

overlay-declaration 2.6 2.0, 2.1.4

overlay-element 2.6 2.6

overlay-expression 2.6 2.6

overlay-string 2.6 2.6

P 2.1.1.7, 7.0, 8.1,

8.3.2

packing-specifier 2.1.2.3 2.1.2.3

PARALLEL *11.,8.2.2

parauter-binding 3.3 3.3

plus-or-minus 8.2.3 5.1.1, 5.1.2, 5.1.3,

8.2.3

pointer-conversion 7.0 5.5

pointer-formula 5.5 5.0, 5.2.2, 5.5,
6.1, 6.3.2

pointer-function-call 5.5 5.5

POS 2.1.2.4, 2.1.6, 2.6

pointer-item-description 2.1.1.7 2.1.1.7

pointer-item-nam 6.1 6.1

pointer-literal 8.3.5 5.5

pointer-type-description 2.1.17 2.1.1, 7.0

pointer-type-name 2.1.1.7 2.1.1.7, 7.0

160

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

pointer-variable 5.5 5.5

precision 2.1.1.2 1.4, 2.1.1.2

preset-index-specifier 2.1.6 2.1.6

preset-values-option 2.1.6 2.1.6

PROC 3.1, 3.2, 8.2.2

procedure-body 3.1 3.1

procedure-call-statement 4.5 4.0

procedure-declaration 3.1 3.0

procedure-definition 3.1 3.0

procedure-heading 3.1 3.1

procedure-module 1.2.2 1.1

procedure-name 3.1 3.1, 3.3, 4.5, 6.3.1

PROTECTED 8.2.2

PROGRAM 1.2.3, 8.2.2

program-body 1.2.3 1.2.3

program-name 1.2.3 1.2.3

Q 8.1, 8.3.2

R 2.1.1.2, 8.1, 8.3.2

READONLY 8.2.2

real-literal 8.3.1 8.3.1

REARRANGE 9.9

161

2~* ~ -- o.

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

rearrange-directive 9.9 9.0

REC 3.1, 8.2.2

REDUCIBLE 9.6

reducible-directive 9.6 9.0

REF 2.5.2, 8.2.2

ref-specification 2.5.2 2.5

ref-specification-choice 2.5.2 2.5.2

REGISTER 8.2.2

relational-expression 5.2.1 5.2

relational-operator 8.3.1 5.2.1, 8.2.3

RENT 3.1, 8.2.2

REP 7.0, 8.2.2

rep-conversion 7.0 6.1, 7.0

repetition-count 2.1.6 2.1.6

rep-function-variable 6.1 6.1

reserved-word 8.2.2 2.1.1.6, 8.2

RETURN 4.6, 8.2.2

return-statement 4.6 4.0

round-or-truncate 2.1.1.2 2.1.1.1, 2.1.1.2,

2.1.1.3

S 2.1.1.1, 7.0, 8.1,
8.3.2

L62

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

scaIle-speclfier 2.1.1.3 1.4, 2.1.1.3

separator 8.2.4 8.2

8GW 6.3.7, 8.2.2

shift-count 6.3.5 6.3.5

shift-direction 6.3.5 6.3.5

shift-function 6.3.5 6.3

SHIMY 6.3.5, 8.2.2

SHIUTR 6.3.5, 8.2.2

sign 8.3.1 5.1.1, 5.1.2, 5.1.3,
8.3.1

SIGNAL 8.2.2

sign-function 6.3.7 6.3

simple-def 2.5.1 2.5.1

simple-ref 2.5.2 2.5.2

simple-statement 4.0 4.0

size-argument 6.3.8 6.3.8

size-function 6.3.8 6.3

size-type 6.3.8 6.3.8

SII 9.2.2

skip-directive 9.2.2 9.0

spacer 2.6 2.6

specified-entry-specifier 2.*1.2.4 2.1.2

specified-itest-description 2.1.2.4 2.1.2.4

163

MIL-STD-15893 (USAF)
06 June 1980

Construct Definition References

specified-preset-sublist 2.*1.6 2.*1.6

specified-sublist 2.1.1.6 2.1.1.6

specified-table-body 2.1.2.4 2.1.2.4

specified-table
-item-declaration 2.1.2.4 2.1.2.4

specified-table-options 2.1.2.4 2.1.2.4

START 1.2.1, 1.2.2, 1.2.3, -
8.2.2

starting-bit 2.1.2.4 2.1.2.4

starting-word 2.1.2.4 2.1.2.4

$statement 4.0 1.2.3, 3.1, 4.0,
4.2, 4.3, 4.4

statement-name 4.0 2.3, 3.3, 4.0,
4.5, 4.7, 6.3.1

statement-name-declaration 2.3 2.0, 2.5.1

STATIC 2.1.5, 8.2.2

STATUS 2.1.1.6, 8.2.2

status 2.1.1.6 2.1.1.6

status-constant 2.1.1.6 2.1.1.6, 5.4, 8.2

status-conversion 7.0 5.4

status-formula 5.4 4.4, 5.0, 5.4,
6.1, 6.3.11

status-function-call 5.4 5.4

status-inversemargument 6.3.*11 6.3.*11

status-inverse-function 6.3.11 6.3

164

11WP

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

status-list 2.1.1.6 2.1.1.6

status-list-index 2.1.1.6 2.1.1.6

status-size 2.1.1.6 2.1.1.6

status-type-description 2.1.1.6 2.1.1, 7.0

status-type-name 2.1.1.6 2.1.1.6, 6.3.11, 7.0

status-variable 5.4 5.4

STOP 4.9, 8.2.2

stop-stat eme nt 4.9 4.0

structure-specifier 2.1.2.2 2.1.2, 2.2

subroutine-attribute 3.1 3.1, 3.2

subroutine-body 3.1 3.1, 3.2

subroutine-declaration 3.0 2.0, 2.5.2

subroutine-definition 3.0 1.2.2, 1.2.3, 3.1

subroutine-name 3.3 3.3, 3.4

subscript 6.1 6.1, 6.2

symbol 8.2 9.3

T 2.1.1.2, 2.1.2.2,
8.1, 8.3.2

TABLE 2.1.2, 2.1.3, 2.2,
8.2.2

table 6.1 6.1

table-conversion 7.0 5.6

table-declaration 2.1.2 2.1

165

N2iL-STD-15893 (USAF)
06 June 1980

Construct Definition References

table-dereferefice 6.1 6.1

table-description 2.1.2 2.1.2, 2.1.3

table-entry 6.1 6.1

table-formula 5.6 5.0, 5.6

table-item 6.1 6.1

table-iter-ame 2.1.2.3 2.1.2.3, 2.1.2.4,
6.1, 6.2

table-name 2.1.2 2.1.2, 2.6, 6.1,
6.3.9, 6.3.10

table-preset 2.1.6 2.1.2, 2.1.2.3,
2.1.2.4

table-preset-list 2.1o6 2.1.6

table-type-declaration 2.2 2.2

table-type-lame 2.2 2.1.1.7, 2.1.2, 2.2,I 6.3.10, 7.0

4 table-type-specifier 2.2 2.2

table-variable 5. 5.6

TERM 1.2.1, 1.2.3. 8.2.2

THEN 4.2, 8.2.2

then-phrase 4.2 4.2

TO 8.2.2

TRACE 9.4

trace-control 9. 9.4

trace-directive 9.4 9.0

TRUE 8.2o2, 8.3o3

166

iI1':Aem

MIL-STD-1589B (USAF)r 06 June 1980

Construct Definition References

TYPE 2.2, 8.2.2

type-declaration 2.2 2.0

type-nam 2.1.1.7 2.1.1.7

U 2.1.1.1, 7.0, 8.1,
8.3.2

0BUN 6.3.9, 8.2.2IUPDATE 8.2.2

uprbud2.1.2.1 2.1.2.1, 4.4 81

variable 6.1 4.1, 4.5, 5.1.1,

5.6, 6.1

variable-list 4.1 4.1

W 2.1.2.4, 2.6, 8.1

which-bound 6.3.9 6.3.9

WHILE 4.2, 8.2.2

while-clause 4.2 4.2

while-phrase 4.2 4.2

167

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

WITH 8.2.2

WORDSIZE 6.3.8, 8.2.2

words-per-entry 2.1.2.4 2.1.2.4

WRITEONLY 8.2.2

x 8.1

XOR --.2.1, 8.2.2, 8.2.3

xor-continuation 5.2 5.2

Y 8.1

Z 2.1.1.2, 8.1
ZONE 8.2.2

168

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL No ApRova5

INSTRUCTION&: The purpose of this form is to solicit beneficial comments which will help achieve procure-
mat of suitable products at reasonable cost and minimum delay, or will otherwise enhance us* of the document.
DoD contractors, government activities, or manufacturers/ vendors who are prospective suppliers of the product
ane invited to submit comments to the government. Fold on Lines on reverse side, staple in corner. and sand to
preparing activity. Comments submitted on this form do not constitute or imply authorizantion to waive ay
portion of the referenced document(s) or to amend contractual requirementa. Attach any pertinent data which
may be of use in improving this document. If theme are additionsi papers, attach to form end place both in en
envelope addressed to preparing activity.

DOCUMENT IDEN4TIPIER AND TITLE

M-STD- 1589w (USF)
NAME OP ORGANIZATION AND ADORESS CONTRACT NUMSIEN

MATERIAL PROCURED UNDER A

0 IRECT GoVVRNUCT CONTRACTr B USCONTRACT
1. WAS ANY PART OF THE DOCUMENT CREATED PROBLEMS OR REQUIRED INTERPRETATION IN PROCUREMENT

A. GIVSt PARAGRAPH HU141119 ANO0 WOROING.

5. NRCOUMCNOATIONS FOR COARRCTING TMQ OEPICIENCICS

2. COMMENTS ON ANY DOCUMENT REQUIREMENT CONSIDERED TOO RIGID

3. IS THE DOCUMENT RE8STRICTIVIET

SYES Cn F4O 01 are^" in wha MW)

4. RMARKS1

SU1MITTEO SY (Printed at typed nave end adstaa - Option&at TELEPHONE NO.

DATE

DD p' 1426 REPLAC*s EDITION OF I JAN se WHICM MAY 55 UsED 14 11-t.10

AN'9?

POLOL

AIR FORCE
DOD 318 _ _

OPPICAL BUSINESS
PENALTY FOR PRIVATE U89 S8M

HQ USAF/ACDT
ATN: Mr. William P. LaPlaut, Jr.
Washington, DC 20330

FOLD

p.

