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Abstract

This paper presents a perspective on the initial transient
problem in steady-state simulation. In particular, it enumerates
five generally accepted facts: 1) Conditions prevailing at the
beginning of a simulation influence sample paths. 2) The extent
of influence is a function of the strength of autocorrelation.

3) Some initial conditions are less detrimental than others are.
4) Truncation reduces bias but usually increases variance. 5) So
far no complete solution exists. The remainder of the paper describes
a proposal for solving the problem. It relies on the relatively weak
assumption that the conditional means in a stochastic process of inter-
est are related linearly. An estimator of the steady-state mean is
described which has considerably less bias than one can achieve via
conventional truncation. An interval estimator is also described which
follows from standard regression theory. A test for residual bias is
presented which enables a user to judge whether or not sample data meet
the minimal requirements for the proposed technique to apply. A second
test allows a user to judge whether or not a more efficient estimation

technique can be used. ,—




1. Perspective

As you the audience know, the chairman's charge to the invited
speakers today is to provide an up-to-date perspective on the problem

of the initial transient in steady-state simulations. Although each

speaker has his own distinct view of this problem, one hopes that all
can agree on a skeletal characterization of it. In particular, in a
simulation:

1. The initial conditions that prevail at the beginning of a
run influence the sample path that each .tochastic process,
represented in the simulation, follows.

‘ 2. The extent to which the initial conditions affect a

stochastic process at a given point in a run is a function f
of the degree of autocorrelation in the process.

3. Some intial conditions influence a stochastic process at a
given point in a run to a lesser extent than other initial
conditions do.

4. Truncation of observations near the beginning of a run re-
duces the bias in the sample mean as an estimator of the
steady-state mean but generally increases its variance.

5. No completely satisfactory procedure for resolving the
problem has appeared yet.

In support of Point 5 note that during the past year three of the
panelists have proposed solutions. See Adlakha and Fishman (1980),
Kelton (1980) and Schruben (1979, 1980). However, I doubt anyone

L would claim a definitive solution.
Perhaps, one of the reasons that a solution has alluded us is

that while the published characterization of the underlying structures in
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the stochastic processes of interest has enabled us to conceptualize
the problem it has been too narrow to allow a satisfactory solution
for a wide range of cases. In particular, I refer to the first-order
: ' autoregressive representation used in Fishman (1972) and more recently
in Kelton (1980) and Schruben (1980). To overcome this inadequacy we i
describe a generalization of that model and show how it leads directly
to an estimator of the steady-state mean that is relatively free of
contamination from an initial transient. The remainder of this section
provides a concise description of the essential points of the proposal.

The Appendix contains a more detailed exposition.

2. Proposal
Let I be the initial conditions that prevail in a simulation and
ny

1‘ let xgi),...,x(f) be the sample record collected on the ith of 2m’ {
K

1

]

independent repiications. The objective is to estimate the steady-state

mean

b= HmE xgi) 1=1,....m=2m’.

Jo
For convenience of exposition we take

Mai-1 = M *k

oy = Nz *+ k N] < N2 i=1,...,m",

The more general case of arbitrary Nyeeeshy is described in the

Appendix.
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We now impose a restriction on {Xgi); j=1,2,...} that, while

weak, has relatively profound implications for the estimation of .

If the regression of xj_,,xj_z.... on X‘j is linear and of the
form
E (X, | X X I)-b+p X (*)
J 1*°°0%5-12 - Zs=1 3 J-s
then
A(1) n,
Yen, = n]- 7! x{1) p<k<n, i=1,...,m
Ny i j=k+1 d
has expectation
(i) g 9
E ﬁk n =yt i—§F - ﬁ;gk (**)
* i
where
= 0(+*P) 0O<vy<l, p<t.

9

Here k 1is the truncation parameter. More importantly, the estimator

~ 2 m’ A(21) A(2i-1)
TR Ly M o ) o)

has expectation

m
=2
i

u+ (gN]+k = gN2+k) / (NZ = N])

N]+k-

w0 (Y17 P/ (NN ).




Observe that whereas the within-replication truncated sample means

(**) have bias 0 (Yk'p/N]) the new across-replication estimator
(***) dilutes this bias to 0 (YN1+k'p/(N2-N])), provided that

N2 2 2N]. Moreover,

vir 5= 282 () ¢ N) / m (N - N2,

where 32 is defined in (19) in the Appendix, gives an asymptotically
(N]+w) unbiased estimator of var y. Provided that {ﬁéi%.; i=1,...,m}
are normal, one can treat (p-u) / var uoas t distribuled with m-2
degrees of freedom.

Let us now concentrate on the plausibility of (*) as an underlying
characterization. Clearly, (*) hold for autoregressive processes with
normal disturbances. It also holds for a variety of stationary sequences
of nonnegative random variables with gamma marginal distributions. See
Lewis (1979). It also holdsfor Markov chains. More generally, provided
that the expectation on the left is bounded for all j, one can treat
the right side of (*) as an approximation to the left side that either
becomes exact for some p or whose error of approximation can be re-
stricted by making p suitably large. If the analogy with fitting a
pth-order polynomial is kept in mind, p needs to accomodate the smooth-
ness requirements of E (Xj | X]....,Xj_]. I) for j=p+1,p+2,....

To assure oneself of the relative insignificance of the bias in
(2i-1) (2i),

U, a test based on {XN1+k . XN2+k’ i=1,...,m} is provided in the




Appendix. Briefly, if E x{Z1-1) _ g x{2) = 0, then Oy 4y * O-
1 2* 1
Although it is difficult to choose a k such that 9 = 0, one would

hope to be capable of choosing N, + k so that X(21']), the last
1 N]+k

observation collected in each other the shorter replications, is unbiased.
If no significance is found then yu is the best linear unbiased estimator

of u based on ﬁizﬁllz, A£2;)+k, i=1,...,m}.

2
Occasionally one may pick k sufficiently large so that

gk/N]u is relatively incidental. In this case the estimator

m'
2 Zi_ 4 ﬁ.(f&]ll + /N, u Aéz&)«‘k)

m (/R + /R)

gives smaller variance than u. The Appendix provides a method of

¢ e e i e

computing a confidence interval for gk/N}u-

Figure 1 shows the essential steps to follow and procedure M in

the Appendix contains all required computational expressions. We re-
mark that the choice of two sample sizes N] + k and N2 + k leads

to considerable convenience and simplication with regard to estimating

u.
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Estimate
U ]
Collect Check _
Ly - +
Nojy v Ny vk () () Significance 4
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i 0,...,2 Ntk
i=1,...,m = lyceecll )
Check
Sig¢nificance Compute + No Yes Stop
~ ~ /\2
Hs gk9 and ©
Use 7§ and
A2 2
20 (N]+Nz)/m(N2-N]) Done
 for ipterval
estimate ++ AN

Use {i and I
267 /m( /] + V)

for interval
estimate ++

Compute

A
U

Figure 1. Estimation of u

+ See (14) in Appendix for Ek.
tt Use t distribution with m-2 degrees of freedom.
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APPENDIX

1. Preliminary Definitions and Assumptions

Let I denote the conditions that prevail at the beginning of a
simulation. Let My = E (XJII) J =1,2,... denote the conditional

mean of observation j and u =E Xj, the steady-state mean. Assume

that
jm vy T M
j-)oo
and
"
Tim H.=M) = ¢ © |
o Zj=1 j ) lcl < (2)

These relatively weak assumptions are necessary if we hope to deduce
a method of estimating u when the influence of I is present.
Let us now assume that the regression of Xj-]’xj-Z"" on X. is

J
linear and has the form

E(lexl’...’xj-]’l) = b+z a X. (3)
J=p+l,p+2,....

Models of this type arise in conventional autoregressive analysis and in
representation of sequences of nonnegative dependent random variables.
See Lewis (1979). After integration over the domain of X],...,Xj_] one

has

~
I
o
+
t~1
-4
=

where, using (1),

b=y (l- zp a )
s--

(4)
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Let us define w, = u.-u. If )} a 1, then (2) gives
J J s=1 S
P p-J
2 _1 wj 2 as
c = 5=0 az-1. (5)
P 0
I a

Note the dependence on the first p conditional means Hpseelp so that
¢ 1is a function of I.

Consider an estimator of u of the form

1D
u = X, p<k<n . (6)
k,n ~ n-k Zj=k+l J

The quantity k denotes the number of observations truncated from the

sample at the beginning of the run. We can use

w.=z A, w, Jo>p (7)

to characterize the bias in (6). In particular, observe that

9% - 9,

A
E Meon TP YT (8)
where
p t
! ag w
_s=1 jete1-s Y (9)
% = : Zp
- a
s=1 S

Note that the bias in {i, ~ is a function of Melopre oWy and

Mpalap? oy which are related to the beginning and end, respectively,

e wegra) o
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of the sample record X

k+1""’xn' We can characterize this bias more

precisely by using (7). The solution to this pth-order difference

equation has the form

Pocn
w., = C. B.
J j=p 1 (10)
where
lﬁil < '“i+]' <1 i=1,...,p-1
so that
- t-p t ~ 1
9, O(lﬁpl ) p (11)
and
E(n - ) = o 1Py - o(1e 1P
l‘k:n n-k ‘p p

Since gn/gk ~ 0 when n >= k, we concern ourselves principally with the
more serious bias gk/(n-k). In particular, we "ow turn to the esti-

mation of u free of the contamination of gk/(n-k).

2. Estimation of yu

Consider m independent replications of the simulation, each with
initial conditions I. For replication i 1let n denote the number of
A L3
observations collected and “k(13 the sample mean based on observations
M

k + 1 through n, with k < ny < nj j=2,...,m and where the inequality

holds for at least one "j' Then
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k,ni ni-E n1-R
Let
f1 =n; - k i=1,...,m
m m
-1 2
D =7 f. ) f -m
mo e Y Ty Y
Consider the quantities
~ i L m -1 A(i)
=p "y (f. ) f2  -=m)u
L I L kony
~ A" m (1)
g =07 ( f,-mf.)
k m i j=1 J i k,ni
Then one has
Eu=u-A
E gk = gk - Bm
where
A I
A =0 "7 g. (mf; -] )
m moChay TNy j j=1 3
S L ) B
By = D 21_1 f n, (m £, 2j=1 fy)

Note that Am and Bm contain no term in gy » thus eliminating

in u and Ek due to this term.

(12)

(13)

(14)

(15)

(16)

the bias
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One additional assumption is needed. Suppose that

. i) 2
11Tm(ni-k) var uk.ni = g% < . (17)

1

Then to order l/mn] we have

]
Q
o

var §

~ -1
varg = o° D § f.
k i=1 (18)

1

cov (ﬂ.ak) = -mag q;

m
£
,

. /m
corr (u,g, ) = -m/ V] , fil
1:

i=1

Now, as Ny e ¥ and ak converge to the generalized least-squares
estimators of u and 9y > respectively, which, in addition to being

unbiased, have minimal variance among all linear estimators. As an

estimator of 02 one has
A2 1 " A1)~ o~ 1,2
“emz L f Ghon m ¥ 9 fy) (19)

which is asymptotically (n] + ») unbiased and for which (m-2) 82/02

has the chi-squared distribution with m - 2 degrees of freedom, pro-

ks

m
vided that the ﬁ&izi converge to normality. Then (u-u)/(S2 D;] )} f}])
‘ ’ i=1

has the t distribution with m-2 degrees of freedom, as does

m
L) fi)li.

~ A -
Gy - 9 ol T

Bt i iaagiints ca o
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To illustrate the estimation methbd consider the case of m even and

Nyjp = Ny + K
- -1,..., 20
Ny = Ntk NN, el (20)
m m -]
I fo=m N+ N2, I f) = m (N + M)/,

i=1 i=]

-4 2
Dy =m (N2 - N]) /4N]N2

so that to order 1/N]

~ 2 2
var u = 20 (N] + NZ)/ m (N2 - Nl)
T = 202NN, (N #N)/m (N, - NP (21)
var gk =20 N 2 \Ny 2 2 ]
= N]N2 var F
~ o~ 2 2
cov (u,gk) = -4 N]Nzo /m(Nz - N])

corr (1.9, ) = - \’N]Nz /(N +N) = JJNZ/N] /(1 Ny/hy)

~ A2
L Also,as N, = the distributions of (u-u) (N, - Ny) ym/° (N + Np)

~ 2
and (3 - g, ) (N, - Ny) m/28° NiN,(Ny + N))  converge to the t

distribution with m-2 degrees of freedom. Observe that a large

difference Nz - N]. is most desirable. Later sections show that the

sampling plan (20) offers many conveniences for estimation and hypothesis

testing.




“ N o "
e e foe———

<14-

3. Relative Importance of gk/(n1 - k)

The aforementioned results for . and §k follow directly from
the assumptions of a linear regression in (3), a conventional form of
convergence in (17) and, to a lesser extent, the asymptotic normality
of ﬁéjz_for i=1,...,m. Reflecting on the method for a moment, one
quickly ;otes that k does not serve the role of the conventional
truncation parameter. We merely require k to exceed p, the order
of the difference equation in (3). The value of p depends on the
smoothness of “j as a function of j. Generally, a choice of, say,

k = 10 accomodates a commonly encountered range of cases and a choice

of k = 100 probably includes all but the most exceptional cases.

Suppose that for the selected k gk/(n] - k)u=0. Then using

I oexpld)
pooocim b en (22)
m
b
f
zi=1 i

instead of 1y, gives

A

m
var fi = moz/ (I 1”5)2 < vary .
1‘_'

1 1
To take advantage of this opportunity for creater accuracy one can
test p = gk/(n]-k)u for significance. For example, suppose we want to
test the hypothesis that |p] does not exceed a preassigned tolerance
5§ >0 significantly and that an investigator is willing to tolerate, iﬁ
|3

say, & = 0.01 or 0.05 by way of relative error. By using the
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method of Fieller (1954) for ratio estimates one can make the

confidence statement

pr (f;] ryses f{’ rz) =] -aq (23)

where

~ ~ §
gun - m+ (1)1 y
r. = —K i=1,2 (24a)

1 m
u2 -h} f'.‘I
=1

m m
¥ = (g 1 - h m?- (% -hy fgl) (gi -hI f) (24b)
j= J=1
_ A2 -1 .2
h=35"D"t ,(a) (24c)

and t (a) is the 1 - a/2 quantile of the t distribution with

2 2 0. If the interval

m - 2 degrees of freedom, provided that <y
[f;] e f;] rz] is relatively small, then one may want to use (22)
instead of (6) to achieve a smaller variance. For example, if

Irql < 8 fy and [ryl < & f; one may elect to use (22).

4, Testing "N]+ R 0

A remaining issue in need of attention is the implicit assertion
that 9 /9k ® 0. To check the credibility of the assumption we test
1

the more inclusive hypothesis: My, “HT 0, since we also want at least
1
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some observations within a replication to be relatively unbiased. At
least one check on the adequacy of this hypothesis seems possible. We

. . (2i-1) (2i)
describe the check for the case in (20). Let XN] + § and XN2 . K

denote the last observations collected on replications 2i - 1 and 2i,
respectively and let m’ = m/2 and
(2i - 1) (21)
= - P = ]
Ys XN1 + K xN2 + K i=1,...,m" , (25)

If N] is sufficiently large so that one can regard BN, ¢k "M T 0,
1

then Ym, / \/ (Y) / m’, where

1™
Yt LY (262)
2 () = - Xm’ (v, - )2 (26b)

RS Rt T B A ;-‘
has the t distribution with m’ - 1 degrees of freedom. One can '
test the hypothesis at a prespecified level a or alternatively
compute the P-value {

P] = pr (Tml_-IZ lvmlll sC (V) /m' ) (27)

where T ,_ ; has the t distribution with m’-1 degrees of freedom.
Small values of P] lower the credibility of the hypothesis.

A(21-1) (2i) 2
5. Testing N1 var uk’N1 +k N2 var “k "2 +k= O

If gn /(n] - k) u 1is found to be significant then one may be
A(i)

suspicious of the assumption that var U n =g /(n - k) i=1,...,m.
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To test this hypothesis when the sampling plan (20) holds, one can

use the statistic

m'-1,m’-1 = m’ [27) ?_- ’ (28)

g where

Uk Ny + K (292)

m’ .
% = ] ﬁl((zliﬂz + K (29b)

j=1
A(2i-1) _ A(2i) _ 2 .
If N] var “k.N] vk = N2 var uk.NZ +k =0 i=1,

has the F distribution with m-1 and m'-1 degrees

4
...,m 'y

F<1,m' =1

of freedom.
In the absence of additional information one might incline to

use a two-tail test. However, the observation that the initial con-

ditions I are more restrictive of the variation in Géza']l , than they

are of the varfation in Géza) + K leads one to consider a one-tail test.
N2

Let F(B) be the B-quantile of the F distribution with m’-1 and

m’-1 degrees of freedom. If F(B) s F +_q We accept the hypothesis

m "'] ’m
at the 1 - g level.

If the hypothesis of equality is rejected then the variance ex-
pression (19) does not apply. Also, the use of the t distribution

st H W WL LIGHUP e SR V- NE
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with m-2 degree of freedom no longer applies exactly. When (20) is

used one has

N N
A 2 1
v Q - - ¢, . (30)
N2 N.I 2 N2 N,-N, 1
Let .
2 _ A(21_])
2 _ a(2i)
Op = var “k,Nz + K i=l,...,m
so that
~ 2 2 2
var y = 2 (NZ + N2 02)
m(Nz-N])

2

As unbiased estimates of 0]2 and o, one has, respectively,

2 m’ (21 1) 2
T | Xi=1 (B Ny + K - Q) (31a)
; .
2 1 m a(21) 2
Sy = ) u - Q) (31p)
2m By TNy ek 2
Then it is common practice to treat
. 2 /2 2
Gt T Ve 05 5 e N s
21 (32)

————
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as a t distributed random variable with m’-1 degrees of freedom,

although this treatment is at best an approximation.

mt e —
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Procedure M

Definitions: tr(B) = 1 - B/2 quantile of t distribution with r degrees of
freedom. § = tolerable relative bias.

Given: k, Ny < Ny, m (even), m' = m/2, tm,_](Za), tm_z(a) and §.

e ATt ki

L o (2i- 1) (2i-1) (2i) (21) .
CO]]QCt. xk+] XN]+k Xk+] N2+k 1= ],...,m’.
Test: “N]+k -u=0,.
1" (2i-1) | (29)
1. Te= § et ooxrelly,
m i=1 N]+k N2+k
s 2 1 mt(2i-1) W (21) _ 2
S 1 C U= D) 21.= [XN +k N2+k . |
3. t'«7 /\’s2 .

4. If t' >t ; (2), return indicating failure at 1-a level.

s a2i-) 1 M (2ien

u i=1,...,m.
k N]+k N] okt J

N, +k .
6. plad) 1 y2r (2) i=1,...
My N2+k ﬁ; jekel 3

o a(2i-1)
7 A + 2 ﬁ 1=

i=1 Ntk

m
8 B« A(21)

ja KoMtk
9. u « (NyB - NA)/m'(Ny=N;).

4

0. g« KN, (A-B)/m’(Ny-N,).
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a2 1 " A(2i-1)
]]' ¢ ﬁ:f Zig] [N](quN]+k

Test: 9y /Nyu = 0.

12, he NNB2 2t () /min,N, )02,

o - hm(N,+N,)
13, Y - (ugk-hM)z- uz-—m%;‘-z—z-
2
14. If vy < 0 goto 18 .
aak'hm‘Y
1. "+ 3
u ‘hm(N]+N2)/2N]N2
Eak'hm"'y
16. ro *

~2
u -hm(N]‘FNz)/ZN.IN2

7. If max (Iryl,Iry1) < 6 goto 23.
Relative bias is significant at 1-a level.
18, vAr (8) « 5% (Ny#N,)/m(N,-N,)?

) 172 2

19. var (Ek) « ZN]N2 var (ﬁ').

20, I, «u-t o (a) Var(h).

21, I+ -1y + 2

- . un. P

A/m,)z + NZ(A(Z")

2
b Nyek™ B/m')7D.

~p Ny H,)

9y 2
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22. Return with
point estimate w,
1 - o interval estimate [I,,1,],
bias estimate g,

variances var (1) and vir (Ek).

Relative bias is not significant at 1-a level.

VWT;'A + /TE; B
23, b+
m'(/TTT + MTTE)
‘ 24. VAr ({)) <« 432/m (/Tq_ + JTTE)Z.

25. I] « {i- tm-? (a) ¢C§F_?57f

A
2. I, « -I] + 2u.

27. Return with

point estimate i,

T el B

1 - a interval estimate [11.12].

variance vir (f}),

indication that gk/N]u =0 at 1-a Jlevel.
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