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Abstract

This paper presents a perspective on the initial transient

problem in steady-state simulation. In particular, it enumerates

five generally accepted facts: 1) Conditions prevailing at the

beginning of a simulation influence sample paths. 2) The extent

of influence is a function of the strength of autocorrelation.

3) Some initial conditions are less detrimental than others are.

4) Truncation reduces bias but usually increases variance. 5) So

far no complete solution exists. The remainder of the paper describes

a proposal for solving the problem. It relies on the relatively weak

assumption that the conditional means in a stochastic process of inter-

est are related linearly. An estimator of the steady-state mean is

described which has considerably less bias than one can achieve via

conventional truncation. An interval estimator is also described which

follows from standard regression theory. A test for residual bias is

presented which enables a user to judge whether or not sample data meet

the minimal requirements for the proposed technique to apply. A second

test allows a user to judge whether or not a more efficient estimation

technique can be used.
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1. Perspective

As you the audience know, the chairman's charge to the invited

speakers today is to provide an up-to-date perspective on the problem

of the initial transient in steady-state simulations. Although each

speaker has his own distinct view of this problem, one hopes that all

can agree on a skeletal characterization of it. In particular, in a

simulation:

1. The initial conditions that prevail at the beginning of a
run influence the sample path that each ,tochastic process,
represented in the simulation, follows.

2. The extent to which the initial conditions affect a
stochastic process at a given point in a run is a function
of the degree of autocorrelation in the process.

3. Some intial conditions influence a stochastic process at a
given point in a run to a lesser extent than other initial
conditions do.

4. Truncation of observations near the beginning of a run re-
duces the bias in the sample mean as an estimator of the
steady-state mean but generally increases its variance.

5. No completely satisfactory procedure for resolving the
problem has appeared yet.

In support of Point 5 note that during the past year three of the

panelists have proposed solutions. See Adlakha and Fishman (1980),

Kelton (1980) and Schruben (1979, 1980). However, I doubt anyone

would claim a definitive solution.

Perhaps, one of the reasons that a solution has alluded us is

that while the published characterization of the underlying structures in
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the stochastic processes of interest has enabled us to conceptualize

the problem it has been too narrow to allow a satisfactory solution

for a wide range of cases. In particular, I refer to the first-order

autoregressive representation used in Fishman (1972) and more recently

in Kelton (1980) and Schruben (1980). To overcome this inadequacy we

describe a generalization of that model and show how it leads directly

to an estimator of the steady-state mean that is relatively free of

contamination from an initial transient. The remainder of this section

provides a concise description of the essential points of the proposal.

The Appendix contains a more detailed exposition.

2. Proposal

Let I be the initial conditions that prevail in a simulation and

let X(i),...,X(i) be the sample record collected on the ith of 2m'

independent replications. The objective is to estimate the steady-state

mean

= lim E Xi) I =l,...,m=2m'.J2m.

For convenience of exposition we take

n21 1 - N1 + k

n2i - N2 + k N1 < N2  11,...,m'.

The more general case of arbitrary nl...,nm is described in the

Appendix.
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We now impose a restriction on JX j=l,2,...) that, while

weak, has relatively profound implications for the estimation of .

If the regression of Xjil,Xt. 2 ,... on X is linear and of the

jmform

p
E (Xj I X19...,Xj_1  I) - b +s~ as X- (*)

s=1

then

has expectation

^(i) g - n

E AM = 1

where
= t-p

t 0 ( Y ) O<Y< 1, p < t.

Here k is the truncation parameter. More importantly, the estimator

2 IM N A(21) A(2i-1)
m(N2 -N1) i=l 2 PkN 2 +k N 1 VNl+k )

has expectation

E = + (gMlk - gN2+k) / (N2 -NJ)

= + 0 (YNl+kP/(N2N))

( 2
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Observe that whereas the within-replication truncated sample means

(**) have bias 0 (yk'P/N1 ) the new acros-replication estimator

dilutes this bias to 0 (yNI+k-P/(N2-N,)), provided that

N2  2NI. Moreover, -

vr i = 2a2 (NI + N2 ) / m (N2 - N)2,

A2  d

where a is defined in (19) in the Appendix, gives an asymptotically

(N-o) unbiased estimator of var j'--Provided that A(i; i
'kI

are normal, one can treat (j-j) / varuas t distributed with m-2

degrees of freedom.

Let us now concentrate on the plausibility of (*) as an underlying

characterization. Clearly, (*) hold for autoregressive processes with

normal disturbances. It also holds for a variety of stationary sequences

of nonnegative random variables with gamma marginal distributions. See

Lewis (1979). It also holdsfor Markov chains. More generally, provided

that the expectation on the left is bounded for all j, one can treat

the right side of (*) as an approximation to the left side that either

becomes exact for some p or whose error of approximation can be re-

stricted by making p suitably large. If the analogy with fitting a

pth-order polynomial is kept in mind, p needs to accomodate the smooth-

ness requirements of E (X I X1,...,X- 1., I) for j = p + l,p + 2,...

To assure oneself of the relative insignificance of the bias in

i, a test based on ( 1+k , XN2+k i = l,...,m'} is provided in the

111111110k



Appendix. Briefly, if E - E 0, then N 0.N1+k N2+k 1

Although it is difficult to choose a k such that gk= 0, one would

hope to be capable of choosing N1 + k so that X(21-1), the lastI N1 +k,

observation collected in each other the shorter replications, is unbiased.

If no significance is found then is the best linear unbiased estimator

of P.i based on {(2i-l) A(2i)
ok,NI+k, Pk,N 2+k; i =

Occasionally one may pick k sufficiently large so that

gk /Nlp is relatively incidental. In this case the estimator

2 ( A(2i-l) ( 2 i)

A =1 IkN 1+k 2 IkN 2+k
U

m(/NI+ A2~)

gives smaller variance than Th The Appendix provides a method of

computing a confidence interval for g0f11P.

Figure 1 shows the essential steps to follow and procedure M in

the Appendix contains all required computational expressions. We re-

mark that the choice of two sample sizes N1 + k and N2 + k leads

to considerable convenience and simplication with regard to estimating

P2.
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Estimate

n. N + k Collect Check
- 1 . M i)Signi ficance

nl2i N N2  + k k+l1'" niO N +

Check
Sic~nificanceCopt t a;:Sgii Ye or

of kN1 n

Use if and

20 ( 1 N 2 /m( 2 NJ)Done

Signii- _P_-,for interval

Fat sigure 1. timtof~

See (14) in Appendix fo
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APPENDIX

1. Preliminary Definitions and Assumptions

Let I denote the conditions that prevail at the beginning of a

simulation. Let pj = E (XjII) j = 1,2,... denote the conditional

mean of observation j and j = E Xj, the steady-state mean. Assume

that

lim Vij = (1

and
nlim -c Icl <(2

n-.o j=l

These relatively weak assumptions are necessary if we hope to deduce

a method of estimating ij when the influence of I is present.

Let us now assume that the regression of Xj-1 ,Xj- 2 ,... on Xj is

linear and has the form

p
E(XjlXl,...,XjII) = b + P a(j-'I s= 1 a X j-s (3)

j =p + 1, p + 2,...

Models of this type arise in conventional autoregressive analysis and in

representation of sequences of nonnegative dependent random variables.

See Lewis (1979). After integration over the domain of Xl ,...,X j ,1 one

has
Zp

P~j = b + a 1s
s=l is

where, using (1),

b= ( a ) (4)
s 1
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Let us define Wj = uj-u. If Js=l as 0 1, then (2) gives

p p' as

C j=l s-O a -1 (5).P 0

s=O

Note the dependence on the first p conditional means p so that

c is a function of I.

Consider an estimator of P of the form

A 1 n
"k,n = n- j=k+l X

The quantity k denotes the number of observations truncated from the

sample at the beginning of the run. We can use

a sp s j-s (7)

to characterize the bias in (6). In particular, observe that

A k - gn"k,n = -n-k (8)

where

lp t
I -- a. I

S s= 1 j=t+l-s (9)
I - 1p  as

s=l

Note that the bias in Akn is a function of k+1-p,...,k and

1 ,. which are related to the beginning and end, respectively,
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of the sample record Xk+l '.... Xn* We can characterize this bias more

precisely by using (7). The solution to this pth-order difference

equation has the form

P j
(A) ci 6i (10)

where

so that

gt= O(Iw I t - p ) t -p (1)

and

^ l [0 k-p) n-p)

E(k, n  - n-k E10'p ) - O-p J

Since gn/gk z 0 when n >- k, we concern ourselves principally with the

more serious bias gk/(n-k). In particular, we -ow turn to the esti-

mation of W free of the contamination of gk/(n-k).

2. Estimation of p.

Consider m independent replications of the simulation, each with

initial conditions T. For replication i let n denote the number of

observations collected and k(i) the sample mean based on observationskn

k + I through ni with k < n <- n. j=2,...,m and where the inequality

holds for at least one n . Then

.... . . -
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(i)= gk E k,n i + * - W (12)

Let

f i = n i i , . ,

1 1m m _.m

Dm fi -  f)m (13)m i=l j=1

Consider the quantities
m m

(fi . f "- 1 m ) (i)
m i=l j= 1 j kni(

(14)
m QA(i)

Dk m i ( j fj - m fi) k,ni

Then one has

E : Am
E g k :gk B Bm (15)

where
Am 1D m -1m1 ~fA m  (m f-lZ f~lAm ml i=l gni lj

11 ij1l (16)

Bm D- m -1m m i=l i n i j=l

Note that Am  and B contain no term In gk thus eliminating the bias

in and gk due to this term.

hak
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One additional assumption is needed. Suppose that

ln (n.-k) var A(i) 2
ln - vr k,n i (17)

Then to order 1/mn I we have

=c
2 DmI  m f1

var m D i=l f

var gk m2 =m I 
(18

coy ( =gk -m 02 D1l

min mI

corr ( ,gk) = m /'j fi I f-

i=l i=l

Now, as nI  0 V and g converge to the generalized least-squares
k

estimators of p and g respectively, which, in addition to being

unbiased, have minimal variance among all linear estimators. As an

estimator of a2 one has

A2 = m ,A(i) - f12

a -7 i=l tk,nk (19)

which is asymptotically (n1 + c) unbiased and for which (m-2) a

has the chi-squared distribution with m - 2 degrees of freedom, pro-

A(i) o
vided that the Pk,ni converge to normality. Then ( a-i)/(2 D m i1 f )

has the t distribution with m-2 degrees of freedom, as does

(A2 D1 Im f
(k gk)/( m i
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To illustrate the estimation method consider the case of m even and

n 2 N 2+ k N I<N 2 i=l, ... 'm12 (20)

m fi -1N N2 /,~

i~ NI+N2)2. i1=1 (N I + N2 )/2NIN 2

Dm=m 2 (N 2 - NJ) 2/4N IN 2

so that to order 1/N1

var 2a E22 (N 1 + N 2)/ m (N2  N N1)

var jk 2a 2 NN2 (N1 + N2)/ m (N42 N 2 (21)

- I N NN var Tj

22

coy (Pid~~ 4 NjN 2c /N 2  N N1)

- .4 INFiN" (N 1 + N 2) = -F / (1+ N 2/Y1

Also,as H1 - the distributions of (~)(N 2 - N 1) 4m/ 2(N1 + N2)

and k gk) (N 2 - NJ) 4 f~ 1 ( 1 +N) converge to the t

distribution with m-2 degrees of freedom. Observe that a large

difference N2 - N1, is most desirable. Later sections show that the

sampling plan (20) offers many conveniences for estimation and hypothesis

testing.

4. -*
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3. Relative Importance of gk/(n I - k)

The aforementioned results for V and gk follow directly from

the assumptions of a linear regression in (3), a conventional form of

convergence in (17) and, to a lesser extent, the asymptotic normality
A(i)of fk,nifor i = l,...,m. Reflecting on the method for a moment, one

quickly notes that k does not serve the role of the conventional

truncation parameter. We merely require k to exceed p, the order

of the difference equation in (3). The value of p depends on the

smoothness of Vj as a function of j. Generally, a choice of, say,

k = 10 accomodates a commonly encountered range of cases and a choice

of k = 100 probably includes all but the most exceptional cases.

Suppose that for the selected k g - k)kntO. Then using

m

A i=l fi i (22)

m1

i=lf

instead of p, gives

Am 2
var 1 = mo/ (Q f 1 var

i=l

To take advantage of this opportunity for greater accuracy one can

test p = gk/(nl-k)p for significance. For example, suppose we want to

test the hypothesis that Ip does not exceed a preassigned tolerance

6 >0 significantly and that an investigator is willing to tolerate,

say, 6 = 0.01 or 0.05 by way of relative error. By using the
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method of Fieller (1954) for ratio estimates one can make the

confidence statement

pr (f r1 5 p s f I r 2 )=1 -& (23)

where

gk - h+(-Iy

ri k i = 1,2 (24a)
1 -2 m -

m fm
ii - h fj.

2 " h m) 2  ( 2 h = f;l) (1 - h2 (24

(ik~ ~~ = G2 kJ ht2 ~lf(2b

h A2 Dm-I tm-2 (c) (24c)

and tm2 (c) is the I - a/2  quantile of the t distribution with

m - 2 degrees of freedom, provided that y2 0. If the interval

rf- , f-1 ri isml, oemy tue
*- 1 1 r1 2 is relatively small, then one may want to use (22)

instead of (6) to achieve a smaller variance. For example, if

Irll 5 6 f, and Ir2 1 : 6 f, one may elect to use (22).

4. Testing UN1+ k - P = 0

A remaining issue in need of attention is the implicit assertion

that 9n I/gk = 0. To check the credibility of the assumption we test

the more inclusive hypothesis: vn n, i= 0, since we also want at least
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some observations within a replication to be relatively unbiased. At

least one check on the adequacy of this hypothesis seems possible. We
(21-1) (2i)

describe the check for the case in (20). Let XN + k and XN2 + k

denote the last observations collected on rep1ications 2i - 1 and 2i,

respectively and let m' = m/2 and

(2i - 1) (2i)

Yi = XN + k - XN2 + k i= l,...,m' (25)

If N1 is sufficiently large so that one can regard N + k P =O

then m, Vs 2 (Y) / m', where

ym =1 NTi
= Im Y (26a)
ml m

s2 (Y) 1 (Y (26b)
(V-1 i'l

has the t distribution with m' - I degrees of freedom. One can

test the hypothesis at a prespecified level a or alternatively

compute the P-value

p r (7 m, -hVtr s2 (Y) m' ) (27)

where Tm,_l has the t distribution with m'.1 degrees of freedom.

Small values of PI lower the credibility of the hypothesis.

Testing N A(21-1) A(21) a2

I1 k,NI + k N2 va k,N2 + k

If gn /(nI  - k) P is found to be significant then one may be
A1 A,2

suspicious of the assumption that var ak /(nI - k) ,...

-. ..n
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To test this hypothesis when the sampling plan (20) holds, one can

use the statistic

FNJ I ' i )k N 1 + k Q-

m' (21) 2
N2 li-I Uk,N 2 + k 2)

where
1 m' A(21 )

Q1 M Ziz kN 1 + k (29a)

Q2 m i=l k,N' A(2i) +k (29b)

A(2i-1) N A(2i) G2 =If N 1 vakN+k 2 var uk,N + k "
'1 '2

Fm,.lIm,.l has the F distribution with m,-I and m'-l degrees

of freedom.

In the absence of additional information one might incline to

use a two-tail test. However, the observation that the initial con-
A(21-I ) thnhe

ditions I are more restrictive of the variation in A1k,N-1 than they

A (2 1 ) 
1ead 1 + k

are of the variation in kN2 + k leads one to consider a one-tail test.

Let F(O) be the a-quantile of the F distribution with m-1 and

m -l degrees of freedom. If F(O) s F m'-1,m,.l we accept the hypothesis

at the 1 - B level.

If the hypothesis of equality is rejected then the variance ex-

pression (19) does not apply. Also, the use of the t distribution
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with m-2 degree of freedom no longer applies exactly. When (20) is

used one has

A N2  N(
' = N2N Q2 2-N. Ql "(30)

Let ^(2J-l)

1 var k,N + k

2 A(2i)
a 2 var 4kN2 + k i=l, m"

so that

var -2 -(N2 a 2 + N2 02)
m(N2-Nl)2

4

As unbiased estimates of 012 and a 2 one has, respectively,
2

2 1 m' (2i-l) 2
i i --I =l kNI + k Q1 ) (31a)

m' A(2i) 2
s 2 l1 Ei,(IjkN Q2) • (31b)S2 im' l ~ k,N2 +k2

Then it is common practice to treat

Gm 1 = l 2
1N1  

- (N2 s2 + N2 s)
2 1 (32)
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as a t distributed random variable with m'-1 degrees of freedom,

although this treatment is at best an approximation.

.1
* ..
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Procedure M

Definitions: t r() = 1 - a/2 quantile of t distribution with r degrees of
freedom. 6 = tolerable relative bias.

Given: k, N1 < N2, m (even), m' = m/2, tm, i(2a), tm2 (a) and 6.

collect: X(2i-1) (2i- 1 ) X(2i) X(2i) i = l ,m'

k+,..., N1+k I kWl,..., N2+k , ... .

Test: VN +k p =  .

1. +- , 1 mi x(2i-l) - X(2i))

SZ1 +k N2+k

2. s2 1 mi [x(2i-1 ) -(2i) Z2.
2. s --- M i=l L N1+k - ^N2 A

3. t Y /q7.

4. If t' >t m I (2a), return indicating failure at l-a level.

A(2i-l) I NI+k (2i)
5 'kNl+k N j=k+l ,

6. A(21) N2+k (21) i ,
2 j=k+l X.

' A(2i-1)
7. A I +k

8. B m' A(2i)
. i=l 'kN 2+A"

9. (N B - NIA)/m'(N -N).

10. gk NIN 2 (A-B)/m#(N"tI)"

10'- 9k N2 2-O-
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A 2 I! me (k (21-1) - /' 2  (AN(2 1)+ /r)2]a1 4
2  ii1 I W [N '(2'ltkN I+k  " A/m')2 + N 2t' (2"k,N2 +k,- B/rn')2

Test: gk/NlU= 0.

12. h N ele2 2  2 tm_2(a)/m(p 2-N1 .

[-2 2 h(N AN2)] [-2 hm(N 1+N 2)]13. 'y2 (i 9k" hm) 2  - . 9k 2 "

2
14. If y < 0 go to 18.

15. r 1 k-hm-y
1.I 2-hm(N+N 2)/2N 1N2

16. r2  k-+y
16 2 

2-hm(N+N 2)/2N1 N2

17. If max (Ir 1  r2 1) !g 6 go to 23

Relative bias is significant at 1-a level.

Q A2 )2
18. var ( ) 2 (NI+N 2)/m(N2-N,)

19. var (gk) 2NIN 2 var (j).

20. 1I 4. - tm.2 (c)ajr)"

21. 12 -I1 + 2j.
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22. Return with

point estimate i,

1 - a interval estimate [11,12],

bias estimate gk'

variances vAr (Q) and var (ik)

Relative bias is not significant at 1-a level.

^ -4 A + /IF B
23. A 1 2m'(/lN7 + /IFf2)

24. var ( ) 42/M (/ + /T)2 .
A

25. I l - tm_2  .

26. 12 4-I1 + 21.

27. Return with

A
point estimate .,

1 - a interval estimate [Ii,12],

variance vtr (A),

indication that gk/Nlp = 0 at 1-a level.

no--
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