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SECTION I

INTRODUCTION

In Solid Mechanics, the most widely used variational principles are

the virtual displacement principle, the complementary energy principle,

and Reissner's variational principle (Reference 1). In finite element

stress analysis the virtual displacement principle is most commonly used;

providing the usual displacement based elements. The complementary

energy principle has also been to some extent exploited (Reference 2).

The third, and the most general of the three variational principles, is

Reissner's variational principle. Although this variational principle

has remained largely unexploited in certain types of problems it proves

to be quite useful (Reference 3).

The advantages gained by using Reissner's variational principle are

significant when the problems are such that precise point wise stress

and strain distributions are required. Also in problems where satisfaction

of nodal force equilibrium needs to be repeatedly checked, such as in non-

linear material problems, Reissner's principle is advantageous. The

most outstanding advantage in using Reissner's principle is that the

continuity requirements on the choice of shape functions are somewhat

relaxed (Reference 4).

The disadvantages associated with the use of Reissner's principle

need also to be emphasized. Firstly, the mathematical foundations of

finite element formulation based on this principle are not as strong

(References 1-4) as in the case of displacement based elements. Much

work regarding the proof and convergence of the method still needs to

be done. The second disadvantage is that the assembled coefficient

matrix in this formulation is not as well behaved as in the case of

displacement formulation (Reference 5).

The purpose of this report is to outline the salient features of the

numerical formulation of finite element method based on Reissner's
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variational principle. Numerical examples, mainly of crack problems,

are presented. Some two- and three-dimensional analysis results can be

useful in fracture mechanics. Comparison with available analytical

results is provided.

2
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SECTION II

FORMULATION

Reissner's variational principle is distinguished by the first

variation of the functional JR being equal to zero, i.e.,

6 JR = 0 (1)

where

f 1
JR :f {- W c(ai) - FiUi + Y a ij (Uij + Uji)} dv

v v (2)
T i * Uids fu ij vi (U i  Ui,) ds (2

in which

Wc  is complementary energy function

a.. is stress tensor
13

U. are displacement components

Ui, j  is partial derivative of Ui with respect to j

F. are body forces per unit volume

Ti, are surface forces per unit area

vi  are direction cosines of the surface normal

Ui, are prescribed displacements on Su

S u is that portion of the boundary on which displacements
are prescribed

S is that portion of the boundary on which stresses are
0 prescribed

v is the domain.

3
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Taking the first variation of JR and equating it to zero one can obtain

the basic equations of elasticity (Reference 6). In simpler terms the

principle can be stated as follows:

JR = U V (3)

where

JR = Total potential energy

U = Strain energy

V = Potential energy due to applied loads

In the absence of initial strains and body forces

U =f [c] dv - U*

where, U* is complementary strain energy. Therefore,

JR / [a][Ec] dv - U* + V (4)

Use of Equation 1 over a subdomain (element) leads to the following

matrix equation:

[K][ot] = [F] (5)

where

-[Kll] [K1 2] [a] [Fa]

nx n nxm nxl nx 1

[K] . . .. ........ [] .... , [F]:

[K12]T [0] [r] [Fr]

mxn mxm mx 1

[K11] =f [Z]T [DIV 1 [Z] dv (6)

v

4
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[K12 ] f [Z] T [B] dv - f [L]T [Y] ds (7)

v S u

[F] = f [y]T [T] ds , [Fo] = , [y]T [U] ds (8)

S S
0 u

[B] is strain-nodal displacement relationship matrix

[ZI is stress-nodal stress relationship matrix

[LI is boundary traction-nodal force relationship matrix

[D] is stress-strain constitutive relationship matrix

[Y] is boundary displacement nodal displacement relationship matrix

[T] is boundary traction vector

[U] is boundary displacement vector

[r] is nodal displacement vector

[o] is nodal stress tensor written in vector form

The element matrix (Equation 5) is then used to form the master

coefficient matrix employing the usual finite element assembly procedure.

A noticeable feature of Equation 5 is that nodal stress components along

with the nodal displacement components appear as primary unknowns of the

problem.

Further, [B] and [Z] matrices appear unrelated and therefore,

interpolation functions for displacement and stresses can be chosen quite

independently. This provides increased flexibility to the computer code

in terms of improving stress estimates. As for the satisfaction of

equilibrium and compatibility equations of elasticity, they are both

satisfied in an integral sense. This in turn relaxes the constant

derivative requirement on the shape functions (Reference 1).

By simple block matrix rules one can write Equation 5 as follows:

-[KII][(,] + [K12 ][r] [F ] (9)

5
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and

[K1 2]T [a] = [Fr ]  (10)

from Equation 10 it is then possible to recover the force vector Fr; a

procedure which is commonly necessary in problems involving nonlinear

material behavior.

For application to problems in linear elastic fracture mechanics,

commonly sought parameters are the stress intensity factors (Reference 7).

The Mode I stress intensity factor (KI) can be found by using the

following equations:

K 0 s 30 KII 0

x cos 2 [1 - sin 2 sin 2 - sin

0 30

[2 + cos - cos 30
2 - + (1

K I 0 30 KII

cos (1 + sin sin .- ) + - sin y

0 30
cos - cos - + (12)

or, alternatively by

r Cos [1 - 2p + sin ]

+ KII ()/2 sin 0 [2 - 2p + cos 2  ] + (13)

V = - r 2  sin 0 [2 - 2p - cos 2 ,-

+KII r 1/ 2 Cos 0 [-1 + 2p + sin 2

6
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where U and V are X and Y components of displacements near the crack tip.

G is shear modulus and

p = v = Poisson's ratio for plane strain conditions

- for plane stress conditions. (15)

The crack-tip coordinate system is shown in Figure 1. In the

evaluation of stress intensity factors Equations 13 and 14 are commonly

used. However, an extrapolation of values is usually necessary to arrive

at accurate results. Further, in three-dimensional problems it becomes

difficult to ascertain which value of p should be chosen to represent the

actual situation.

In the formulation presented earlier, Equations 11 and 12 can be

conveniently used since accurate determination of nodal stress values

is possible.

7r
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SECTION III

NUMERICAL EXAMPLES

The formulation presented previously can be used to develop a variety

of finite element solution techniques by choosing various combinations of

displacement and stress interpolation functions. Suitable interpolation

functions can be chosen for particular applications and desired accuracy

results.

For application to problems in linear elastic fracture mechanics, it

was determined through numerical experimentation that parabolic shape

functions for displacements and linear interpolation functions

(Rference 2) for stress components provide accurate results both in

two- and three-dimensional problems.

The numerical examples presented in the following were solved by using

eight node quadrilateral and 20 node brick elements for the two- and

three-dimensional cases considered. This procedure provided the dis-

placement and stress components at each node from which other quantities

of interest (KI, crack opening displacement, etc.) were obtained.

In the illustrative examples that follow, three different fracture

toughness test specimen configurations are presented. An extensive study

of the effect of element size in the region surrounding the crack tip was

conducted and the results indicated that by keeping the major element

dimension at one-fifteenth of the crack length the error between the

computed KI values and the reference KI values was consistently minimum

(0.1 to 5.0%). In all the examples prcsented here the size of the

elements surrounding the crack tip was therefore taLen to be (a/50.O),

where "a" denotes the crack length.

For two-dimensional problems, KI was evaluated by using the transverse

displacement (V) of the node closest to the crack tip at a = 1800 and by

employing Equation 14. For three-dimensional problems, Equation 12 was

8
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used by substituting the transverse stress (a y) at 0 = 0.0 and

r = (a/50.O). In all the examples Poisson's ratio of 0.3 was assumed.

For two-dimensional problems plane stress conditions were assumed.

All the results are presented in nondimensional form. Nondimensional

stress intensity factor (Y), and nondimensional crack opening

compliance (C), and nondimensional load-line compliance (6) are defined

separately for each case considered. In the solutions British units

were employed and specimen thickness (B) was assumed to be unity.

1. TWO-DIMENSIONAL PROBLEMS

a. Three-Point Bend Specimen

For the three-point bend specimen shown in Figure 3, a typical finite

element mesh is shown in Figure 2. The problem was solved for a/W ratio

ranging from 0.3 to 0.8. The results for nondimensional stress intensity

factors (Y) and nondimensional load point compliance (6) are shown in

Figure 2. The referenced values were oitained from Reference 8. Crack

opening compliance values measured at gage point (C ) and at the notch

mouth (C ) are included in Table 1.

b. Compact Tension Specimen

Dimensions of the standard compact tension specimen are shown in

Figure 4. The results for a/W of 0.3 to 0.8 were obtained by the present

method.

The reference values for Y and C(1-1) were obtained from Reference 8.

The load at the pin hole was assumed to be sinusoidally distributed.

In Table 2 the previous results and compliance values C(m-m), 6(p-p),

and 6(g-g) at measured locations m, p, and q, respectively, are included.

This table also shows the effect of applying a concentrated load at

point p.

9
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c. Double Notch Ring Specimen

The geometry of a doubly notched ring under diametrally opposed

concentrated tensile forces is shown in Figure 5. This specimen can be

useful in studying the crack behavior in thick shell type structures

usually encountered in nuclear power plant, gun-barrels, and in other

applications. Nondimensional values for stress intensity factor and

compliances at measurement locations 1, 2, and at the crack mouth are

shown in Figure 5. Table 3 shows the actual finite element values.

2. THREE-DIMENSIONAL PROBLEMS

a. Three-Point Bend Specimen

The same three-point bend specimen of Figure 3 was analyzed using the

three-dimensional formulation presented earlier. Due to double symmetry

about X and Z axes (Figure 6), only one-quarter of the specimen was used

in the analysis. Constant pressure loading consistent with the dis-

placement interpolation functions was applied. The problem was solved

for only one a/W ratio of 0.375.

Table 4 gives the variation of Y, Cm, and 6 across the thickness (B)

of the specimen. The definition of nondimensional quantities is con-

sistent with Figure 3. The corresponding plane strain Y value for the

crack length considered is 7.335 (Reference 8).

b. Double Notch Ring Specimen

A double notch ring specimen of 1.0 in thickness (B) and 0.5 in crack

length (A) was analyzed using the three-dimensional formulation. Inner

and outer radii of the ring were chosen to be 1.0 in. and ^.0 in.,

respectively. Due to symmetry about X, Y, and Z axes only one-eighth

of the ring with appropriate boundary conditions needed to be considered.

Consistent constant pressure load was applied along the inner radius at

right angles to the crack line (Figure 5). Half the thickness -f the

ring was divided into two layers of brick elements.

10
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The variations of KI, crack opening displacement, and load line

displacements across the ring thickness are given in Table 5.

Notations are consistent with Figure 5.

11
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SECTION IV

SUMMARY AND DISCUSSION

Two- and three-dimensional finite element formulations based upon

Reissner's variational principle were described and applied to three

different fracture toughness specimen goometries. For the three-point

bend specimen and compact tension specimen the results of KI and load

line displacements agreed well with available two-dimensional analytical

solutions. In general, the results for the compdct specimen were found

to be more accurate. One reason for the three-point bend specimen

results being consistently higher than the corresponding reference values

can be the effect of wedge action (Reference 9). This wedge action is

characterized by a horizontal force of magnitude (P/h) being introduced

at the load point when a concentrated force is split in half to solve

geometrically symmetrical problems. For further information on wedge

action, the reader is referred to References 9 and 10. For the double

notch ring specimen geometry it is observed that KI varies linearly with

nondimensional crack lengths at 0.3 and 0.8. This observation can be

useful in designing test specimens for use in parametric crack growth

studies.

For the three-dimensional cases considered, it was found that for a

three-point bend specimen with straight crack front the value of KI is

considerably lower (23%) at the specimen surface than at the middle plane.

This fact can be useful in understanding the phenomenon of cra, k front

"tunneling" in thick specimens. In the case of ring specimen, using the

same Poisson's ratio (= 0.3), the variations in KI, C, and 6 follow the

same variation as in the three-point bend specimen.

12



AFWAL-TR-80-4182

REFERENCES

1. Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall, 1965.

2. H. C. Martin and G. F. Carey, Introduction to Finite Element
Analysis, McGraw-Hill, 1971.

3. K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element
Analysis, Prentice-Hall, 1976.

4. 0. C. Zienckiwicz, The Finite Element Method in Engineering Science,
McGraw-Hill, 1971.

5. R. H. Gallagher, Finite Element Analysis Fundamentals, Prentice-
Hall, 1975.

6. E. Reissner, "On a Variational Theory in Elasticity," J. Math. Phys.
29, 1950.

7. D. Broek, Elementary Engineering Fracture Mechanics, Noordhoff,
1974.

8. J. E. Srawley, "Wide Range Stress Intensity Factor Expressions for
ASTM E 399 Standard Fracture Toughness Specimens," Int. J. Fract.
12, 1976.

9. S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill,
1951.

10. E. A. Rippergen and N. Davis, "Critical Stresses in Circular Ring,"
Trans. ASCE 112, 1947.

13



AFWAL-TR-80-41 82

Cn C 00 a 0 en
%0 r- 0 N. aN

00 00 LI co m ~
4-4 c,,

mNr' -.1 -c ON

o4 co ej cm 00 0 q

CA

cc -1 cci 17

C0 a' ON cc 00i m~
a\ 0 0 C'J IT-~
ko 01 0- IT O-I

- 1-4

-j cm N '0 '0 r-rl cc 0

cr ~ ~ NJ C 0 a' 0 t '-

I- co i) ON '0 a' cc cc

LLJ

W m ' ' a a, m '0
wf I' 0N t- 0 a' m

ui~~- 0 ('4 c N

4 -4 00 N- m' 0

-4, -r 4 -4 a%

14



AFWAL-TR-80-41 82

o r- o~' t00% -I

eq ,-4 %.0.

00 N -4 00 -4 raq C

-1 14 m o L

o3 C7% 0% 14 14 00 0 00PL4 0- 00% a% IT -% O-N' '0 ' , I

C1 ON I N c% %0 C0 C% '0 '0 n 00 %0
-r0 N 0%1 I -4 mI 0I CN 0% I a% a'%MI IT4 00% m0 1-1 M -11C %.0 -1

60 a 4 (-C ; 4 -

01

I N4 00 41% 41 00 0 .-4 r- 0 N- T 00 n" -o "I'0 0 un 1-4 LO 41% r- ,-1 Iq r

0. cn C'% %D0 00 IT 0%' 0 0m 0% N-

0

L.J

coL w

C4 0-C4e om c
41% 0~ '0 a ~% 41% N- cn% N

c) 4 . 0 c'% %D Lf% Ln z ON ' 0 m Mw ID 01 r- mI 4 0 00'0 n :

- 14 r:4 4 ~ ,-4
C) 'A r- cn %DIn -4 m %D LPn'

6--I

C/) C14 4% ,4 %0'0 N- '0 "I 00 '0 N-
NI 0% Nli 4/ 0 IT '.0 m . 0 % 0

m 000 r- 0%I ~ 0%

=3 N- 0n '-4 0 '0r m ~ It N 4%

-j .: '0i N- CC -. I '0 N C4 -9

' -1 0%q 04% m- N4 '0 - C04 (% -4 ,
1- I - 4 NI -1

%D 0n 0 000 0 4% IT 0o 0 0 D

0 0 0 0 %0 0z 0o 0 0 00

; 4 Itr, rl V)15



AFWAL-TR-80-41 82

0 un r- o~r- u -1
CNJ e r-I un ON r-

-.. %0 c'I ,-1 %0.n u ~
1 -1 4-4

CC,

NJ 0 C14 '0 CVtf '

en 4q- o c ) %
cn C14 04 00 -.1 LfC Co
-q " 1 u 4 q r rI

CD Co eq % 00 0o 0 0%
Ut) It) m% I~ 0 t 00

ItIn 'tU

I-

Li

I- - IT 00 Uj C') 00 a%
00 en) 0 0 co r- C')

>4 1 -1 4-4 It) 0% C14 04 00
IT - n 1t -4 '0 % It)

Li -l .-4 N- ) co C'-) C0

Li NI 4' C4) -; -UU) t

L-i

enJ ' -1 tn '0 r- Co
0

16



AFWAL-TR-80-4182

0z c 0 -n 00
If) ON t'4 r-4 -;T

O~k -4 0 0 00 00)

C)n 1 -4 C , - 1

C'- mc c' C')

I-j Lo

__jC')

Lu

ui 0 %0 0 0n
-J(0X) ~ - t

cN
Clu

17i



AFWAL-TR-80-41 82

cli %D - co ID --T

C ~" C N '

uj F-0 C C.- '

-C C) C) C)
1-4 ~

Of

IT M~ C -4 a%
. - . (1 1 m~~( , 4

I - Ln

C

to ~ IT cr o c
(N c c 0 Do

0~ C 4 (N 4

C C C, C C,

18



AFWAL-TR-80-41 82

y

r

= x
Crack

Figure 1. Crack Tip Coordinates

19



AFWAL-TR-80-4] 82

j
d)

4-)

E

LU

QJ

C
1.~

C.

S..

20



AFWAL-TR-80-41 82

o 0 o 0 0 0 0 0
16i 0n ui I6

OD - ND 1 ~ . ~

E

U))

w~ w co
w- Ui w Li 1

>-~j >

1 DX 0 1a

00
V) of

0 D0

C_ 0 a

~~Z 0O ,iJ) Ci)
I~~~n Z - Oz I I*

f- 9l CD (D U D W 0

0 0 0 0 0 0 0 0 0
0 tO 0 10 0 to 0 LO

21



AFWAL-TR-80-41 82

00
do

00

I--

d

CC

0i C)

a V~)

Isw c

0 t; z 4-)

4 (n2

ON~~ 2 CLZ _
I 0m

ofI If tuo o Un z
xI r (% .NO->-Ow.w

(1m sum s mm a im c .I0 z I-.--hi Wi -~

22 a t

Z LL. w



AFWAL-TR-80-4182

C Y
26.0 13.0 40.0

PLANE STRESS ANALYSIS (POISSON'S RATIO= 0.3)

Ri 
= 1.0 IN, Ro =2.0IN, A= CRACK LENGTH

24.0 12.0 P = LOAD, B
= THICKNESS, E YOUNG'S MODULUSY : (K)()(-v/o)/(P), C=:(C.0O)(B)(E)/(P)

- n=(Bn-n)(B)(E)/(P), n-n=I
O
IML 

D i
P
F
LA

C E
MENT

22.0 11. BETWEEN POINTS n,. C 35.0
2 C2

20.0 10.0 R, S

18.0 9.0- 30.0

16.0 8.0

14.0 7.0 25.0

12.0 6.0 y

IQO 5.0 -20.0

8.0 4.0

6.0 3.0 15.0

4.0 2.0

2.0 1.0 10.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A/( Ro-R i )

DOUBLE NOTCH RING TENSION SPECIMEN
(Ri /Ro) = 0.5

Fioure 5. Results for Ring Specimen (Two-Dimensional)

23



AFWAL-TR-80-41 82

0
LL

U

-C

S.-
Ln

I 4.

E

% (Q)

al

*1-.

24
*u.SGovenmet Prntin Ofice:1981- 77-00/33



IF',AI


