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FOREWORD

This report was prepared by the Metals Behavior Branch, Metals and
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Task No. 2307P1, Work Unit 2307P102, and supported, in part under
Contract F33615-79-C-5129, with Universal Energy Systems, Dayton, Ohio.
It was administered under the direction of Materials Laboratory, Air Force
Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio
with Dr. T. Nicholas (MLLN) as the project engineer. The work was
performed by Dr. Jalees Ahmad of Battelle Columbus Laboratories.

This report describes work ccnducted from June 1980 through
September 1980.
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SECTION I
INTRODUCTION

In Solid Mechanics, the most widely used variational principles are
the virtual displacement principle, the complementary energy principle,
and Reissner's variational principle (Reference 1). In finite element
stress analysis the virtual displacement principle is most commonly used;
providing the usual displacement based elements. The complementary
energy principle has also been to some extent exploited (Reference 2).
The third, and the most general of the three variational principles, is
Reissner's variational principle. Although this variational principle
has remained largely unexploited in certain types of problems it proves

b " b g

to be quite useful (Reference 3).

The advantages gained by using Reissner's variational principle are
significant when the problems are such that precise point wise stress
and strain distributions are required. Also in problems where satisfaction
of nodal force equilibrium needs to be repeatedly checked, such as in non-
linear material problems, Reissner's principle is advantageous. The
most outstanding advantage in using Reissner's principle is that the v i
continuity requirements on the choice of shape functions are somewhat ‘
relaxed (Reference 4).

The disadvantages associated with the use of Reissner's principle
need also to be emphasized. Firstly, the mathematical foundations of
finite element formulation based on this principie are not as strong
(References 1-4) as in the case of displacement based elements. Much
work regarding the proof and convergence of the method still needs to
be done. The second disadvantage is that the assembled coefficient
matrix in this formulation is not as well behaved as in the case of
displacement formulation (Reference 5).

The purpose of this report is to outline the salient features of the 3
numerical formulation of finite element method based on Reissner's

2
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variational principle. Numerical =xamples, mainly of crack problems,
are presented. Some two- and three-dimensional analysis results can be
useful in fracture mechanics. Comparison with available analytical
results is provided.
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SECTION II
FORMULATION

Reissner's variational principle is distinguished by the first

variation of the functional JR being equal to zero, i.e.,

where

$ JR =0 (1)

, 1
Jp = f M (o) = Ry +pogs (U 5+ U ) dv
v

in which

-J/” Tix Uids —./: 0§ Vi (Ui - Ui*) ds

S
o u

is complementary energy function

is stress tensor

are displacement components

is partial derivative of Ui with respect to j
are body forces per unit volume

are surface forces per unit area

are direction cosines of the surface normal
are prescribed displacements on Su

is that portion of the boundary on which displacements
are prescribed

is that portion of the boundary on which stresses are
prescribed

is the domain.

-
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Taking the first variation of JR and equating it to zero one can obtain
the basic equations of elasticity (Reference 6). In simpler terms the
principle can be stated as follows:

JR = UtV (3)

where

[«
n

Total potential energy

Strain energy

Potential energy due to applied loads

In the absence of initial strains and body forces

u =/ [o1e] dv - u»
v
where, U* is complementary strain energy. Therefore,
J f [o]le] dv - U* + V (4)
v

Use of Equation 1 over a subdomain (element) leads to the following

matrix equation:

[K[a] = [F] (5)
where
[ -[kp] g ] [o] et
nxn . nxm nxl nx1
K3=0......... el =1}....1, [F]-=
(k1" [0l ] [F,]
 mxn  C mxm mx 1 J

[ky1 = f 1227 (017" (2] av
v
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[Ky,] = f (z1" (8] av - f (11" Y] ds (7)
v Su

Fd =/ 00T M 17 3= /17 (0] s (8)
SO Su

[B] is strain-nodal displacement relationship matrix

[Z] is stress-nodal stress relationship matrix

[L] is boundary traction-nodal force relationship matrix

[D] is stress-strain constitutive relationship matrix

(Y] is boundary displacement nodal displacement relationship matrix

[T] is boundary traction vector

[U] is boundary displacement vector

[r] is nodal displacement vector

[c] is nodal stress tensor written in vector form

The element matrix (Equation 5) is then used to form the master
coefficient matrix employing the usual finite element assembly procedure.
A noticeable feature of Equation 5 is that nodal stress components along
with the nodal displacement components appear as primary unknowns of the

problem.

Further, [B] and [Z] matrices appear unrelated and therefore,
interpolation functions for displacement and stresses can be chosen quite
independently. This provides increased flexibility to the computer code
in terms of improving stress estimates. As for the satisfaction of
equilibrium and compatibility equations of elasticity, they are both
satisfied in an integral sense. This in turn relaxes the constant

derivative requirement on the shape functions (Reference 1).

By simple block matrix rules one can write Equation 5 as follows:

'[K*”][”] + [K]Z][r] = [F(,‘] (9)
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and

[K;," o] = [F] (10)

from Equation 10 it is then possible to recover the force vector Fr; a
procedure which is commonly necessary in problems involving nonlinear

material behavior.

For application to problems in linear elastic fracture mechanics,

commonly sought parameters are the stress intensity factors (Reference 7).

The Mode I stress intensity factor (KI) can be found by using the

following equations:

K
g, = cos g
venr
[2 + cos %
K
o= cos %
Yy o o
8 3

cos 7 cos 5

or, alternatively by

[t
1]
0|H7<
TN
g:'-s
N

[1 - sin % sin

cos %9] +

(1 + sin % sin

6 , )

o -

N @

[2 -

ro| @

38, f11 . e
2_ - sm?
/2T
(11)
K
29) + L gin 8
2 2
"
(12)
2p + sin2 g]
2 4
2p + cos §] + ... (13)
2..
2p - cos ?]
+2p + sin2 é] + -
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where U and V are X and Y components of displacements near the crack tip.

G is shear modulus and

v = Poisson's ratio for plane strain conditions

~
1l

= 3 : " for plane stress conditions. (15)

The crack-tip coordinate system is shown in Figure 1. 1In the
evaluation of stress intensity factors Equations 13 and 14 are commonly
used. However, an extrapolation of values is usually necessary to arrive
at accurate results. Further, in three-dimensional problems it becomes
difficult to ascertain which value of p should be chosen to represent the

actual situation.

In the formulation presented earlier, Equations 11 and 12 can be
conveniently used since accurate determination of nodal stress values

is possible.

",
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SECTION ITII
NUMERICAL EXAMPLES

The formulation presented previously can be used to develop a variety
of finite element solution techniques by choosing various combinations of
displacement and stress interpolation functions. Suitable interpolation
functions can be chosen for particular applications and desired accuracy
results.

For application to problems in linear elastic fracture mechanics, it
was determined through numerical experimentation that parabolic shape
functions for displacements and linear interpolation functions
(Rference 2) for stress components provide accurate results both in
two- and three-dimensional problems.

The numerical examples presented in the following were solved by using
eight node quadrilateral and 20 node brick elements for the two- and
three-dimensional cases considered. This procedure provided the dis-
placement and stress components at each node from which other quantities
of interest (KI, crack opening displacement, etc.) were obtained.

In the illustrative examples that follow, three different fracture
toughness test specimen configurations are presented. An extensive study
of the effect of element size in the region surrounding the crack tip was
conducted and the results indicated that by keeping the major element
dimension at one-fifteenth of the crack length the error between the
computed KI values and the reference KI values was consistently minimum
(0.1 to 5.0%). In all the examples presented here the size of the
elements surrounding the crack tip was therefore talen to be (a/50.0),
where "a" denotes the crack length.

For two-dimensional problems, KI was evaluated by using the transverse
displacement (V) of the node closest to the crack tip at 6 = 180° and by
employing Equation 14. For three-dimensional problems, Equation 12 was
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used by substituting the transverse stress (o ) at 6 = 0.0 and
r = (a/50.0). 1In all the examples Poisson's ratio of 0.3 was assumed.
For two-dimensional problems plane stress conditions were assumed.

A1l the results are presented in nondimensional form. Nondimensional
stress intensity factor (Y), and nondimensional crack opening
compliance (C), and nondimensional load-line compliance (§) are defined
separately for each case considered. In the solutions British units
were employed and specimen thickness (B) was assumed to be unity.

1. TWO-DIMENSIONAL PROBLEMS
a. Three-Point Bend Specimen

For the three-point bend specimen shown in Figure 3, a typical finite
element mesh is shown in Figure 2. The problem was solved for a/W ratio
ranging from 0.3 to 0.8. The results for nondimensional stress intensity
factors (Y) and nondimensional lcad point compliance (8) are shown in
Figure 2. The referenced values were oLtained from Reference 8. Crack
opening compliance values measured at gage point (Cg) and at the notch
mouth (Cm) are included in Table 1.

b. Compact Tension Specimen

Dimensions of the standard compact tension specimen are shown in
Figure 4. The results for a/W of 0.3 to 0.8 were obtained by the present
method.

The reference values for Y and C(1-1) were obtained from Reference 8.
The load at the pin hole was assumed to be sinusoidally distributed.
In Table 2 the previous results and compliance values C{m-m), &{(p-p),
and &(g-g) at measured locations m, p, and q, respectively, are included.
This table also shows the effect of applying a concentrated load at
point p.
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c. Double Notch Ring Specimen

The geometry of a doubly notched ring under diametrally opposed
concentrated tensile forces is shown in Figure 5. This specimen can be
useful in studying the crack behavior in thick shell type structures
usually encountered in nuclear power plant, gun-barrels, and in other
applications. Nondimensional values for stress intensity factor and
compliances at measurement locations 1, 2, and at the crack mouth are
shown in Figure 5. Table 3 shows the actual finite element values.

2. THREE-DIMENSIONAL PROBLEMS
a. Three-Point Bend Specimen

The same three-point bend specimen of Figure 3 was analyzed using the
three-dimensional formulation presented earlier. Due to double symmetry
about X and Z axes (Figure 6), only one-quarter of the specimen was used
in the analysis. Constant pressure loading consistent with the dis-
placement interpolation functions was applied. The problem was solved
for only one a/W ratio of 0.375.

Table 4 gives the variation of Y, Cm’ and § across the thickness (B)
of the specimen. The definition of nondimensional quantities is con-
sistent with Figure 3. The corresponding plane strain Y value for the
crack length considered is 7.335 (Reference 8).

b. Double Notch Ring Specimen

A double notch ring specimen of 1.0 in thickness (B) and 0.5 in crack
length (A) was analyzed using the three-dimensional formulation. Inner
and outer radii of the ring were chosen to be 1.0 in, and 7.0 in.,
respectively. Due to symmetry about X, Y, and Z axes only one-eighth
of the ring with appropriate boundary conditions needed to be considered.
Consistent constant pressure load was applied along the inner radius at
right angles to the crack line (Figure 5). Half the thickness ~f the

ring was divided into two layers of brick elements.

- rav o s — -
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The variations of KI’ crack opening displacement, and load line
displacements across the ring thickness are given in Table 5.
Notations are consistent with Figure 5.

N
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SECTION IV
SUMMARY AND DISCUSSION

Two- and three-dimensional finite element formulations based upon
Reissner's variational principle were described and applied to three
different fracture toughness specimen g.ometries, For the three-point
bend specimen and compact tension specimen the results of KI and load
line displacements agreed well with available two-dimensional analytical
solutions. 1In general, the results for the compact specimen were found
to be more accurate. One reason for the three-point bend specimen
results being consistently higher than the corresponding reference values
can be the effect of wedge action (Reference 9). This wedge action is
characterized by a horizontal force of magnitude (P/m) being introduced
at the load point when a concentrated force is split in half to solve
geometrically symmetrical problems. For further information on wedge
action, the reader is referred to References 9 and 10. For the double
notch ring specimen geometry it is observed that KI varies linearly with
nondimensional crack lengths at 0.3 and 0.8. This observation can be
useful in designing test specimens for use in parametric crack growth

studies.

For the three-dimensional cases considered, it was found that for a
three-point bend specimen with straight crack front the value of KI is
considerably lower (23%) at the specimen surface than at the middle plane.
This fact can be useful in understanding the phenomenon of cra.k front
“tunneling” in thick specimens. In the case of ring specimen, using the
same Poisson's ratio (= 0.3), the variations in KI’ C, and § follow the
same variation as in the three-point bend specimen.

12
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Figure 1. Crack Tip Coordinates
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PLANE STRESS ANALYSIS (POISSON'S RATIO = 0.3)
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DOUBLE NOTCH RING TENSION SPECIMEN
(Rj/Ro)=0.5

Fioure 5. Results for Ring Specimen (Two-Dimensional)
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