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OPTIMAL PLACEMENT OF IDENTICAL RESOURCES IN A DISTRIBUTED NETWORK

MicLdel J. Fischer Leo J. Guibas
University of Washington Xerox Palo Alto Research Center

Nancy D. Griffeth Nancy A. Lynch
Georgia Institute of Technology Georgia Institute of Technology

ABSTRACT resources. The total of the network distances
provides a measure of the expected communication

The problem is considered of locating a traffic introduced into the network by the compu-
number of identical resources at nodes of a tations.
tree so as to minimize the total expected cost
of servicing a set of random requcsts for the For another example, suppose the resources
resources. The cost of servicing a request is are ticY-ts to sporting events (or airline seats).
the tree distance from the requesting node to A relev.it cost is the expected waiting time until
the node at which the resource satisfying the a buyer receives his ticket, or equivalently, the
request is located. An algorithm for finding expected total waiting time for all buyers. In
an optimal placement of t resources is pre- this situation, it is probably not reasonable to

sented which runs in time 0(t 2.IE), where E expend much effort in attaining a near-optimal

is the edge set of the tree. In the special matching, for the time to find the matching can
case of a complete binary tree with requests easily exceed the eventual savings in locating a
uniformly distributed over the n leaves, nearby ticket. Even so, the expected total dis-
uniohrlgrited wor the n). ltance in an optimal matching is significant as a
another algorithm works in time O(t log2n)' lower bound for the expected total waiting time.

While optimal placements in general seem diffi-
cult to characterize, there is a very simple This paper investigates properties of optimal
placement whose total cost differs from optir resource placements and provides fast algorithms
mality by at most JEl. The expected cost of for finding them. It also provides upper bounds
this placement on a complete binary tree is for the costs of optimal placements and of certain
O(n + t/vn). nearly-optimal and easily-described placements.

The network in all cases is assumed to be con-
1. INTRODUCTION figured as a tree. Nevertheless, the upper bounds

can often be applied to an arbitrary (connected)
We consider the problem of locating some num- distributed network by constructing a spanning

ber t of identical resources at nodes of a dis- tree.
tributed network in such a way as to minimize the
expected "cost" of servicing a random set of t In this paper, we allow for the possibility
requests for those resources. Various different that fractions of resources, and not only whole
costs are likely to be important in different resources, might be located at some nodes of the
situations, network tree. This is reasonable if, for instance,

the resources are large blocks of available data
For example, suppose the resources are pro- storage space. It would be perfectly permissable

cessors and requests are to establish a virtual for a user to obtain parts of his needed storage
connection with a processor which will be used for from several different nodes. On the other hand,
a very long period of time. In this case one we assume that the requests are discrete -- each
might want to minimize the expected total of all request is for one unit of resource.
the network distances (measured in some appropriate
way) between requesting users and their assigned In Section 2, we present our notation, defini-
processors. Because of the long holding times, it tions, and those results which apply to arbitrary
is probably reasonable to expend considerable trees and arbitrary probability distributions for
effort to find a good matching of requests to arrivals of requests. §2.1 defines matchings and

relates them to network flows. §2.2 defines the
t This research was supported in part by the expected total cost of a placement in terms of

National Science Foundation under grants MCS77- expected total flow. Both the function describing

02474, MCS77-15628, MCS78-01698, MCS80-03337, U.S. the expected flow on each edge and the function
Army Research Office Contract Number DAAG29-79-C- describing the minimum possible expected total flow
0155, and the Office of Naval Research Contract for any subtree are of a particularly simple
Numbers N00014-79-C-0873 and N00014-80-C-0221. form -- they are unbounded, convex, piecewise

linear functions on the nonnegative reals, with
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all singularities at integers. This immediately such that s(v) is the number of resources placed
implies (in §2.3) that there are always optimal at node v. We always assume total(r) - total(s),
resource placements consisting of whole numbers of where for any g: V R+, total(g) I 2 g(v).
resources located at each node; it is never neces- vCV
sary to place fractions of resources at any node
in order to achieve an optimal placement. An A ma+ching is a function m: VxV R+. m(uv)

algorithm using O(t .#edges) arithmetic opera- gives the number of requests at node u which are
tions is presented which always finds an optimal satisfied by resources at node v. m is exact
whole resource placement. This is the fastest for r,s if for all u,veV, I m(uw) = r(u) and
algorithm we have which is completely general. weV
Section 4 contains faster algorithms for special m(w,v) = s(v). Thus, an exact matching gives a
cases. weV

complete correspondence between requests and12.4 considers what is required for a place- esources. Clearly, an exact matching exists

ment to optimize the expected flow over any whenever total(r) = total(s).

particular edge in the tree -- i.e. to be locally

optimal. Unfortunately, it is not possible in The cost of a matching is defined to be
general to obtain a single placement which simul-
taneously optimizes the expected flow on all edges. cost(m) = 2 m(u,v).d(u,v)

A fair whole placement is one 
which "almost

optimizes" the flow on each edge -- that is, one where d(u,v) is the number of edges in the
in which the number of resources in each subtree unique path from u to v in T. Let

is either the mean rounded up or down. It is
always possible (and quite easy) to obtain a cost(r,s) - min {cost(m) I m is an exact

fair whole placement, and such placements are matching for r,s).

close to optimal.
A matching m is optimal for r,s if cost(m) =

In §2.5, we show that if there is a proba- cost(r,s).
bility less than that any request will arrive in
a particular subtree, then it is always bad to It is convenient to relate a matching to a
place even a very small fraction of a resource flow in a directed graph. Choose a node w, and
anywhere in that subtree. direct the edges of the tree to point away from w.

Corresponding to the usual way of drawing trees
In Section 3, we analyze the cost of an with the root at the top, we let high(e) be the

optimal placement for the case of a complete binary endpoint of edge e which is closest to w, and
tree of n leaves but with an arbitrary probabi- low(e) be the endpoint farthest from w.
lity distribution for request arrivals. An
arbitrary fair whole resource placement has In the remainder of this paper, it will be
expected total cost at most O(n + / n). Note convenient for w itself to have an edge entering
that in the very important case where t is it. Therefore, we add a new node v to serve as
roughly proportional to n (i.e. the number of the root, and we let rootedge(T) = (v,w), an edge
resources in the network is proportional to the from v to w. Resources will never be placed
number of nodes), that the expected average cost on v, and requests will never originate at v;
per request is bounded by a constant, independent v and rootedge(T) are just notational conven-
of the size of the network. This situation is iences.
very different from the case of centralizing the
resources, where the average cost grows propor- A flow is a function f: E-R which des-
tionately with the log of the number of nodes in cribes the "movement" of resources from their
the network. initial placement to corresponding requests. A

positive value of f(e) denotes a flow along the
2. NOTATION, DEFINITIONS AND GENERAL RESULTS direction of the edge (i.e. towards the leaves)

whereas a negative value of f(e) denotes a flow
2.1. Trees, Matchings and Flows towards the root. A flow is stable for r,s if

for every vcV,
A tree T = (V,E) is an undirected acyclic

graph, where V is the vertex (node) set and E r(v) + i f(e) = s(v) + f(e').
is the edge set. e:high(e)=v e':low(c)-v

Let N denote the natural numbers, including Thus, at every node, the flow out equals the flow

0, and let R+  denote the nonnegative reals. in.

The cost of a flow is defined to beA set of requests is described by a function
r: V-R+ such that r(v) is the number of cost(f) = [ if(eli.

requests originating at node v. A placement of eE

resources is described by a function s: V-R+ Call a flow f optimal for r,s if it is stable

-- ----
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for r,s and has minimal cost over all such flows, distributions for setu of requests and define costs
of placements in termf 3f their expected costs

The following theorem formalizes the intui- given a randomly chosen set of requests.
tion the flows correspond to resources moving
along edges and that in an optimal matching, If 0 is a probability function on V and
resources do not move both directions along the ten, then a random r: -K can be chosen accord-
same edge. We omit the straightforward but in t a ro ribution determin as

tedious proof. ing to a probability distribution determined as
follows: for each i in turn, 1£ i 5t, 0 is
used to select a vertex. Then r(v) is the total

Theorem 2.1.1. Letf an optimal match- fonumber of times v is selected for each veV. We
ing and f an optimal flow for r,s. Then awy suero)-O

cost(m) = cost(f). Moreover, if either m or f always assume 0(root) - 0.

has an integral range, then the other can be Fix 0, t as above, and let s: V-R+ with
chosen so also. total(s) - t. Then expcot(s) denotes the

The removal of any edge e of a tree T expected value of cost(r,s), where r is chosen

splits the tree into two disconnected components: as described above, and minexpcost 
=

B(e), the nodes "below" e, and A(e), the nodes min {expcost(s) I s: V-R and total(s) - t.
"above" e. B(e) and A(e) are defined by:

The flow along an edge e depends only on
B(e)- {vEV I v is in the subtree total(e,s), the number resources in the subtree

rooted by low(e)) below e, and not on their particular placement.
Let expflow (u) be the expected value of

A(e) =V -B(e) . Adflow (e)l, where r is chosen randomly as

The flow along e in any flow for r,s depends described above, and a is any placement with
only on the total number of requests and the total total(es) u.
number of resources in B(e). For any function

g: V- R+ and ecE, let The following two expansions are easy to see.

total(e,g) = [ g(v). Theorem 2.2.1. Expcost(s) -
v ~) expflow e (total(e,s)).

If total(e,r) exceeds total(e,s), then there ecE

are more requests than resources in the subtree Theorem 2.2.2. Expflow e(u) =
B(e), so the excess must be satisfied by resources t
flowing into B(e) via the edge e. On the other I (i)p (l-p)t- ju-ij, where p ¢(v).
hand, if total(e,s) exceeds total(e,r), the i-O vcB(e)
excess resources in B(e) are needed by requests
in A(e) (since total(r) - total(s)), so they The next theorem shows that the expflow
must flow out of the subtree via e. By our con- function has a simple form.
vention that the sign of the flow denotes its
direction, the directed flow in either case is Theorem 2.2.3. For any fixed 0, t -1, and
given by e c E, expflowe  is an unbounded, convex, piecewise

dflow r,s(e) - total(e,r) - total(e,s). linear function from R+ to R+, with all singu-
larities occurring at integer values.

Theorem 2.1.2. dflow r, is the unique Proof. By Theorem 2.2.2, expflowe(u) is the

stable flow for r,s. sum of functions g.(u) = ki.ju-ij, where kI
1I

* Proof. The argument sketched above shows does not depend on u, 0, i St. Each gI is a
that there is at most one stable flow for r,s. + +
We leave to the reader to show that dflowr s  is convex, piecewise linear function from R to

with a singularity at u - i, and at least one of
* stable for r,s. the g 's is unbounded. Since addition preserves

Theorems 2.1.1 and 2.1.2 immediately yield: all four required properties, the result follows.

Theorem 2.1.3. cost(r,s) - cost(dflow r,s). If ec E, let E denote the set consisting
of e, together with all edges below c in T,

Thus, our original problem of studying opti- so d c E if low(d) c B(e). Define

mal exact matchings reduces to the problem of

studying a particular stable flow. expcost(s)- I expflowd(total(d,s))
dcE

2.2. Expected Costs and E

In this section, we introduce probability mi.nxpeost Cu) = mln{expcost,(s)Itotal (es) u.
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Thus, expcost e() gives the portion of the define f,(n) for n a singularity of f to L

expected cost of placement s due to flow in the the limit of f(x) as x approaches n from
subtree below (and including) e, and above. By convexity and lnearty of f f! is
minexpcost e(u) gives the least such cost, sub- av i
ject to the constraint that exactly u resources a non-decreasing step function over the domain R+
be placed in the subtree with steps occurring at integer points.

ber placed in thelet estbesreel

From these definitions and Theorem 2.2.1, it For each i I si:i, let ri be the small-

should be clear that eat element of R+ with fj(ri) 0. r, exists

expcost e(s) - expflow e(total(e,s)) since fi is unbounded, and ri cN by the proper-
ties of f i. We consider two cases:

+ I expcost e(s) Case 1. u E ri. Then g(u) = E f ri), so
g is constant for all such u.

where el,... ,e are the immediate descendants of Case 2. u<E ri. Let S fi(x)

edge e. Optimizing over all s with l i t, xf(0, r For cS and l.:<2
total(e,s) - u, we get define

Theorem 2.2.4. Let *, t, and e be fixed. a
Let el,...,- X be the immediate descendant edges = b {z I f(z) o)

of e, and let u ee. Then Yi lub I f(z) o]

minexpcost (u) =expflow (u)
k By the properties of f i we have xi,

+ rin{ I minexpcost (u rui~u}' y N N, x.< f y a ri. and z) - o iff z E
i-e ei 1 1 r1  n iz f

In order to obtain more information about the [ y ). Hence, the intervals [x v ) for

values of the m[nexpcost function, we first o€S partition (0, r1 ), so the intervals
e [o XIM, IYi) for ocS partition [0, Z r.)-

show that it has a simple form. Io

Theorem 2.2.5. For any fixed 0, t i, 'andThexom 2 . F an y fixouned convx, tice 'aChoose o S. We now show that g is linear
minexpcost is an unbounded, convex, piece- over I . Let u c I . Choose u

wise linear function from R+ to R+, with all s a (u''u£)
singularities occurring at integer values, that g(u) I f Cui) and I ui u. By the

choice of u and using the facts that fi(z) < o
Proof. We use induction on edges in the tree, iff < 0 and fa() > oiff > i

working from the leaves toward the root. 1 - i
straightforward to show that xc5i u 5 y. and

If e is a lowest edge, then there is only 0 0

one edge, e, in E.. Thus, minexpcost ' E ui - u. Hence, f.(u.) = i) (u x,).

expflowe, which has the needed properties by Summing over all i, we get

Theorem 2.2.3. 2
g(u) = f fi(ui)

Now assume the result holds for edges below 1=1
e, and let el,... ,e k denote the immediate
descendant edges of e. Consider the expression = E f (x0 ) + 0-(Z u - xP
for minexpcost e (u) given in Theorem 2.2.4. The
first term has the needed properties by Theorem = E f (x0) + 0.(u x a
2.2.3. It remains to show that the second term is 1 1

convex, piecewise linear and has all singularities
at integers, a linear function of u as desired.

Write f for minexpcoste , g(u) for The convexity of g follows from the mono-

mn u tinicity of the f"

By the induction hypothesis, each f is Examination of the proof of Theorem 2.2.5
i allows us to sharpen Theorem 2.2.4 by stating that

unbounded, convex and plecewise linear with all the minimum cost can alwavs be achieved by placing
singularities at integers. Hence, the derivative whole resources on all vertices.
fi(x) is defined at all non-singular points. We
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Theorem 2.2.6. Let 0, t, e be fixed, a random variable whose value is the number of suc-
Let el,...,e 1  be the immediate descendant edges cesses in n independent trials, each of whose

of e, and let uc N. Then minexpcoSte(u) probability of success is p. Define median(np)
Z as the smallest ccR +  such that Pr[x5c] .

expflow(u) + mini f minexpcoste (ui) I~uiu and uiEN). Theorem 2.4.1. Let 0 be a probability
il i function on V, tEN - (0), e EE. Then

2.3. Optimal Placement expflowe(u) is minimized at u = median(t,p),

where p = I O(v)
We are interested in determining the "best" vEB(e)

placement functions a: V- R+  in the following Proof. Write f for expflow . By Theorem

sense. We say s: V -R is optimal for 0, t 2.2.3, f is minimized at an integer u which is
provided total(s) = t and expcost(s) =minexpcost. the smallest rEN with f(r+l) f(r) nonnega-
The first characterization result follows imme- the Now
diately from Theorem 2.2.6 and shows that there tive. Now
are optimal s which take on integral values only. f(r+ 1) - f(r)

Theorem 2.3.1. For any probability function t
0 and any te N, there exists a: V-N which is I (t)p1(1-p)t-Ir l-i
optimal for 0, t. i-0

Proof. Theorem 2.2.6 essentially provides an t
Y (t)p I(1-) t- jr-il

algorithm for producing such a. For any edge e i
of T with immediate descendants el,...,e, and i=

any u EN, one determines values of s for all by Theorem 2.2.2,
nodes below e by considering all possible decom-
positions u u....u1  with Zui u and uie N for t I (t)pi(l-)ti(1

r +  i- - Ir- ii)

all i. For each such decomposition, one recur- i0
sively determines values of s for all nodes
below each ei, and corresponding costs. The t ()pi (l-P)t-i- t ()pi(l-p)ti

decomposition with the smallest total cost is I=0 i=r+l
chosen. 0

r t 
I

In order to analyze the cost of determining 2 Zi=O)p i(l-p)t- 1

an optimal placement as above, we do not perform a
straightforward recursive analysis of the algorithm = 2Pr[x s r] -1.
described in the proof of Theorem 2.3.1. Rather,
we take advantage of repeated work in various Thus, u is the smallest r E N with 2Pr[x r] -

recursive calls. During the algorithms, one must I nonnegative, or Pr[x r]2 ; that is, u
calculate expflow (u) for all e E and

e median(t,p).
all u, 0 u Lt. The number of arithuetic opera-
tions involved in one calculation of expflow e(u) The following theorem follows immediately

is O(t) (if performed judiciously), independent from Theorem 3.2 and Corallary 3.1 of Jogdeo and

of e and u. It is these costs which dominate Samuels [l]. It is also implicit in some earlier

the total count of arithmetic operations, so that work by Uhlmann [2,31.

2an O(t .E ) analysis results. We summarize Theorem 2.4.2 (Jogdeo and Samuels). Let
this discussion in the following theorem. nc N, n 1, 0 !p 51. Then median(n,p)t

Theorem 2.3.2. There is an algorithm using Lnpi, Fnp ).

O(t 2"l1 E ) arithmetic operations which, for any Since np is the mean number of successes in
tree T a (E,V) probability function , and n independent trials with success probability p,

treT=(EV rbbiiyfntin0 n this theorem implies that the mean and median
t E N, determines a placement of whole resources differ by less than one.

which is optimal for 0, t.

Thus, each edge individually has its flow
2.4. Optimizing Flow on Individual Edges optimized at a value which is either the mean

rounded up or the mean rounded down. However, it
In this section, we show that the flow on is not always possible to achieve this localeach individual edge is optitiized for a number i o laspsil oaheeti oa

optimum consistently throughout the tree. In fact,
equal to the median of an appropriate binomial in this very general setting, an optimal placement
distribution. We use this to bound the distance might require some subtree to contain a value
from optimal of two simple placements. other than the mean rounded up or down.

Let ncN - 10), O"p 1. Let x be
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For any T, 4, t, and for each edge ecE, Proof. By the results of this section,

let p e- I (v). a: V-R
+  is an exact fair- .Apflow e  is minimized at some u, where

vB(e) LtPeJ u Itpe Thus, ltotal(e,s)-ul ti. But
share placement for T, 4, t if for each ecE,
total(e,s) = tpe. s': V-N is a fair whole then lexpflow e (total(e,s)) -expflowe (u) 51, by

placement for T, 0, t if for each e E E, calculations similar to those in the proof of
Lt' Stotal(e, ) : [tp1 Tieorem 2.4.1. Since no placement can do better

p othan the optimal on each edge, s incurs at most
an extra cost of 1 per edge.

It is not difficult to see that for any T,
4, t, an exact fair-share placement and a fair For some choices of T, t and 4, of course,
whole placement exist. Let s(v) = t.4(v) for it is possible to consistently achieve the median
v c V. Then s is an exact fair-share placement. on each edge -- for example, if the mean is an integer
Let s'(v) - Lt o(v)i if v is a leaf. Let for every edge. But in general, we have no global
s'(v) = 0 if v is the root. For v not a leaf optimality results. In §4 we obtain optimal
or root, let e be the edge with low(e) - v, results for a special case.
and let el,...,e X be its immediate descendants.

. Example 2.4.2. If T is a complete binary
Let s'(v) LtPe - Pe An easy induction k _ k

Le I'(v) P - tree with leaf vertices L, I L 2 , t - a 2
shows that s' is a fair whole placement for T, for integer a, and 4 the uniform distribution

, t, and in fact, total(es') - Ltpj for on the leaves, then the placement s such that

every e E. s(v) = a for each vEL and s(v) 0 for vEl'-L
is optimal, because it achieves the integer mean on

In the special case that 4 is non-zero only each edge.

on leaves, then there is a fair whole placement Example 2.4.3. Let T be the tree depicted
a" which is non-zero only on leaves. It can be below, 4 as indicated on the leaves and 0
obtained by a simple recursive construction. elowee andit 12.
Start at the root of T with t resources to elsewhere, and t = 12.
distribute. Below any edge e in the tree, we
will have either LtPej or rtpl to distribute.

Assume e has descendants el,...e .  Distribute

Ltpe J or Ftpl to the i h  subtree. Since

15 Ftpe I
i I i il i

the distribution is possible. We then proceed
recursively on el,..., e .

Example 2.4.1. Let T be a 32-leaf complete 1 1 0 1 115 _ 1
binary tree (except for rootedge(T)), ( 5 4 62 12

for each of the leftmost 16 leaves 1, for
256 Then the means are indicated on each edge below,

each of the rightmost 16 leaves, and 0 for all so all resources can be placed at the levels
other nodes. Let t - 16. The placement s which indicated by the circled numbers.
has s(£) - 1 for each of the leftmost 16 leaves
£, and 0 elsewhere, has total(e,s) = 16 for e
the left descendant of rootedge(T). However, the
mean number of requests in the subtree below e
is t 15 - 15, so s is not a fair whole

16
placement. Nevertheless, one can determine by
exhaustive searching that s is optimal, and
expcost(s) Is strictly smaller than expcost(s')
for any fair whole placement s'.

We note in general, however, that the optimal
cost cannot be tco much less than the cost of any
exact fair-share placement or fair whole placement.

Theorem 2.4.3. Let s be an exact fair-
share placement or a fair whole placement for T, 0 0 0 0 0 0 -
4, t. Then expcost(s) sminexpcost + I El.
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2.5. Nodes with Zero 'acements Theorem 3.1.1. Let T, 0. L, n be as
above. Let t eN, t 1, and let s: \'-.R be an

We conclude this section with a somewhat sur-

prising characterization theorem. It says that if exact fair-share placement with total(s) t. Let

there is a probability less than of any request e E and pe - I 0(v), m - I L 1 B(e). Then
arriving in a subtree, 2t-.4 it is bad to place vrB(e)
even a small fraction of a resource anywhere in
that subtree. eOSt (s) ec mtp

tTheorem 2.5.1. Let ec E satisfy (l-p) > . Here c is a fixed constant independent of the

where p = I 0(v). Let s be optimal for €, choice of T, 0, t, s, or e.
vcB(e)

Before proving the theorem, we need some
t. Then s(v) - 0 for all v B(e). technical lemmas.

Proof. Assume not, a. d fix e, a exhibiting Lemma 3.1.2. For te N, t zl, sst -1
the contrary. Choose e' below e to be a lowest
edge for which x - s(low(e')) >0. Define a new O p sl, it is the case that
placement s', where s'(low(e')) = 0, s'(high(e')
s(high(e')) + x, and s'(v) - s(v) otherwise. s t-1 s t-s
We show that expcost(s') <expcost(s), contra- ()pi(1-p)t -(tp-i) P s )p (1-p)
dicting the optimality of s. i0

By Theorem 2.2.1, e' is the only edge for Proof. (.)pi (-p)t-i(tp-i)
which s and s' have different expected absolute
flows, so t r-i t-i i t-i=. -p ~ 1p t(i-l) p (l-p) .

expcost(s) - expcost(s') Since ( ) t- t-1

- expflowe' (total(e' s)) - expfl ow (total(e',s')) thrn epsa! to
e turn equal to

- expflow e(x) - expflow e'(O). tp(t1 )pi -p)t-i + tP~i-l) p i l -i

Let r 0 (v). Applying Theorem 2.2.2, the - t( 1)p C t-i
vcB(e') i-

difference is tp(t-i i t-i t-l. i-I -ti-1
iiI= tp i )p (-) _tiilP (_~

I ()ri(1-r)t-i(Ix-iI - i) s
i.0 Thus (i)p (l-p) (tp-i)t i=o
2 x(l-r) + (t)r (l-r) - (-x) t

i.1 = ()(1-p)ttp + tp 1( i )p (l-p)t~

- x(2(1-r) - 1). s t-, i-. ,(i-l

Since (1-r) 7 (l-p) >'2, the difference 0, iil
giving the needed contradiction. + [!(

3. BOUNDS ON THE COSTS OF OPTIMAL PLACEMENTS 
tP(-p)t + tp t-i 

)p ( -p )t- i

In this section, we assume that T is a com- s-1
plete (balanced) binary tree (except for - ti)p (1-p)ti /
rootedge(T)) with leaves L, and let n - IL I. i=a J
Assume * is arbitrary, except that as always r
0(root) - 0. We show that optimal placements are p t  t-I )pS(lp)t-s tI j)
much better than centralized placements; in fact, + t (]_p~
their expected cost is linear in the number of L
leaves of the tree. t-I - s

- tp( )p, (l-p)
3.1. Cost of Exact Fair-Share Placements

Lemma 3.l.3. If t cN, t 1, (" p• , then
Since we do not hav, a direct characteriza-

tion of optimal placements, we instead bound the t t tp -

expected cost of an arbitrary exact fair-share ( ip) tp-i tp(- )p (. '
placement. This upper bound, of course, provides iOLtp.
an upper bound for opLimal placements. Moreover,
by Theorem 2.4.3, the costs cannot differ by more
than 2n.
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t Therefore,

j0 0 I 
t i -) t (1 +jpLtP

LcP t i t-i
- p ( .) <l p t --i L tp + tpj-(

i t~
i-0 (-p)t (tp-i) t 1t Pirp 1t

-2 L(tpj 1npV2 , L t t p

± t-LpI. L
.t ()p (l-p)t (rp-i) t tj + tt) (r

1-0 But

C- t(LtPJ ( 1 -p) t-LtPJ Ltj j Ltp

- = (I + L 7

b, Lemma 3.1.2. But S e, i5 I and ( -

I (p (I-~t-(Cp-i)
1.0 The lemma follows.

i= (-Pt ip- p l Lemma 3.1.5. Let T, , t be as in Theorem

-tp 1 tp Jp 3.1.1. Let e E and let p= (v). Then

101expflow e(tp) <6.v'r vB-

tp (t l)pi- 1(1..P)(t1-i tp -tp 0 Proof. if p= 0 or p=I, then

11i-i expflow e(tp) -0. Assume 0 ,p -1. B%

L Theorem 2.2.2 and Lemma 3.1.3,

Lemma 3.1.4. For t c N t 1, 0 5 p<-1, epow()= (t)( tIti

tp ?1, it is the case that e =0

Proof.' A version of Stirling's formula says if tp !1, Lemma 3.1.4 shows this is at most

that for all nc N, n2!1, it is the case that
1 e

2tp- (I + t-)

e e 4n

tp SOL i ;t - and t Lt PiJ 2!9tp()Lp

Then

Ltp t C -

-4t

t

1n any case,

expf low (tp) - W-tp



9

Proof of Theorem 3.1.1. Define a function get

G: NxeR e recursively: G(k,a • k  2 .G(k-l, a 2 2k-l ) + 6  2 k/2 •

G(0, u) = 6- ' Now, divide both sides bv 2k  and express in terms

k k
G(k, u) = max {G(k-l,uI)+G(k-l,u2) of G', where G'(k, a) =G(k, a -2 )12 , to get

+ 6• -/u I ul+u 2 u) , k>l . G'(k, a) =G'(k-1, a)+ 
6  a-
2k/2

We first show by induction on m that Also,
expcoste (s) G(1og 2 m, tpe). Since s is an exact

fair-share placement, total(e,s) = tpe. Hen 0,
Hence,

m=1: Then low(e) is a leaf, so G'(k, a)- k 6[ 6. a i/2

expcost e (S) expflow e(total(e,s)) i=0 i=0

<6 /J7e-p by Lemma 3.1.5 The series is convergent, so let c = 6 - 2
i=0

=G(0, tpe). Then G'(k,a) cv . Substituting back, we get

k . k k/2.
m>1: Then m- 2k since T is a complete G(k, u) = 2k G'(k, u/2k) Sc *2 u

binary tree. Let el, e2 be the two immediate as desired.

descendant edges of e. Then
We conclude that

expcost e(s) =expflow e(total(e,s))
2exp c°Ste(S) !;

G (
10

g 2m ' 
tPe) : c" -tCPe"

+ expcOS te (s).
+~l e Corollary 3.1.6. Let T, ¢, L, n, t be

By induction, as in Theorem 3.1.1. Let s: V -R+ be an exact
fair-share placement for T, , t, and let

expcoSte (s) G(k-l, tPe. ), i= 1, 2. s': V-N be a fair whole placement for T, c, t.
1 1 Then

Again using Lemma 3.1.5, we have expcost(s) Sc vt

2 and
expcoste(s) < 6 • tpe + [ G(k-1, tp) expcost(s') 5c'v'+2n- 1.

i=l i

5G(k, tPe) =G(o tP) Proof. The first bound comes from a direct
og2m e application of Theorem 3.1.1 to rootedge(T). The

second bound follows from the first using Theorem
since tp e + tPe2 S tpe. 2.4.3 and that fact that an n-leaf binary tree

has at most 2n-1 edges (including rootedge(T)).

We complete the proof of the theorem by show-
ing that 3.2. Cost of Centralized Placement

G(k, u) c • 2 k/2 u s is a centralized placement if s(v) =0
everywhere except at low(rootedge(T)), and

for some constant c. s(low(rootedge(T)))= t. For such an s,

First observe that for each kE N, G(k, u), expcost(s)= t log 2 (n).
regarded as a function of u, is concave and mono-
tonically increasing. This is clearly true for Note that the ratio of expected cost for a
k 0. For k>0, we know inductively that centralized placement to a fair whole placement is
G(k-l, u) is concave and monotonically increasing, at least
Hence, G(k-l,u)+G(k-l,u2) ):2• G(k-l, (u+u 2 )2)

!2 •G(k-1, u/2) whenever u +u 2 <u, so t log,(n)

(*) G(k, u) = 2. G(k-l, u/2) +6. vuu c € - +2n

and G(k, u) is concave and increasing. When t is small relative to n, then the cen-

We proceed to solve the recurrence equation tralized placement is superior, for reasons
First, substitute a 2 k for u in (*) to similar to those discussed in Section 2.5.
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However, for t= (n), the fair whole placement Let Tt = (Vt, Et ) denote the tree consieiag
is better by a factor of Q(log 2n), and for of the vertices of T at levels from 0 to

t >>n, the ratio approaches Vr, that is, theFog 2  inclusive and the edges of T between
centralized placement is worse by a square.

them. The leaves Lt  of Tt  are the vertices atNote also that for t - f(n), the fair whole lee lg +I n Itl e t

placement has linear expected cost, so the expected level log2t] + 1, and n " ILtI. Let 0 be

cost per request is a constant, whereas the cost defined on the vertices of Tt by 4t (v) = 1/nt
per request for a centralized placement is log2n. for all ve Lt  and *t(v) =0 for vEV -L t . If

4. OPTIMAL PLACEMENTS FOR SPECIAL DISTRIBUTION s: V-R is such that s(v)= 0 for all ve V at

In this section, we give several characteriza- levels below Flog 2t +1, then st: Vt R+ can

tion results and algorithms for optimal placements be defined from s by simply ignoring the missirZ
for a further restriction of the case considered in vertices. Then it is easy to see that
Section 3 in which we assume 0 is the same on all expcost(T) (s) = expcost(Ttd (St ) + t •
leaves and zero elsewhere. Specifically, we assume t (s ) + t
the following for this section: (Superscripts distinguish the trees under consi-

deration.) We then have the following.
(a) T = (V, E) is a complete binary tree (T)

with leaves Lc V, n = IL, except that, as Theorem 4.1.2. If t >1, then minexpcost
before, the root has a single emanating edge, = (T )
rootedge(T). minexpcst(t +t •og 2n- Flog2 t]).

b)/n for all v L, and 0( =0 for Proof. ( ) follows from Theorem 4.1.1 and
(b) (v) the fr aremarks. ( =0fo

all vE V-L. the remarks.

(c) t EN, t al. (!) follows because any p~acement for Tt
can be augmented to a placement for T by placing

We define the level of a vertex to be its zeros on the additional nodes, thereby incurring
distance from the root. By our conventions regard- the stated cost.
ing rootedge(T), the leaves are at level
log2n+ 1. Thus, in the remainder of this section, we

assume that the maximum level in T is at most
For the special case being considered in this Flog (that is, n <2t). The reader can

section, certain of the relevant definitions can 2 t+ t
be generalized to reflect the symmetry in the tree. then use Theorem 4.1.2 to infer corresponding
For example, if e1  and e2  are edges with results about cases where n 2t.

high(eI) and high(e2 ) at the same level k, Example 4.1.1. The case where t 1 is

then expflowe = expflowe . Therefore, we write somewhat peculiar. The reader can verify that for
2all T with maximum level number at least 2, the

expflowk in place of either. Similarly, we write following pictures all represent optimal placements.

minexpcostk for minexpcost e, where k is the

level of high(e). levels: 0

4.1. A Bound on Levels with Nonzero Placements
1

Theorem 2.5.1 can be used to bound the level
at which nonzero placement can occur in an optimal
placement.

Theorem 4.1.1. Let vE V be at level That is, in the first case,
k Flog2tl +2. Let s be optimal for 0, t.

Then s(v) 0. s(v) = I 1 for v the son of the root,
0 otherwise,

Proof. By Theorem 2.5.1, it suffices to

show that (1- 1 t > 1for tE N. It while in the other two cases,
2 Fiog2t +1 27

S(v) = 1 for v the left (resp. right)
also suffices to consider t a power of 2. In grandson of the root,

this case, the inequality is just (1 -1 ) t •1, 0 otherwise.

which follows by an easy induction on log 2 t.
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This is the only value of t for which an optimal During the algorithm, one must calculate
placement can have nonzero values below level tt

expflow 0 (t), expflowl.(i),...,expfl°Wlog(n)(. ) " In

xale .1 Ifnt haddition, one must calculate expflowI(i) for all

Example 4.1.2. If t - 2 and n >t, then i c N, i ., expflow2 (1) for all i c N, i :5,
the placement with one resource on each of the t

vertices at level k+ I is optimal: nothing is expflow3 (-) for all icN, expflowlo(
placed below this level, and an optimal placement g

for the whole tree results from an optimal place- 2i) for all it N, i S
ment within levels up to log t+ 1. But clearly n n
putting one resource across all leaves of Tt  is
optimal, as seen in Example 2.4.2. This is a total of O(t log n) expflow computa-

tions. Since each such computation involves O(t)
4.2. Algorithms for Finding Optimal Placements arithmetic operations, we have the following

theorem.
In this section, we prove two sharper versions

of Theorem 2.2.4 for the special case of this Theorem 4.2.3. There is an algorithm using
section, and use them as bases for two algorithms 2(t21og
for finding optimal placements. tree T with n leaves satisfying the assumptions

R+ of this section and for any t e N, determines an
k Teor2n- . Then mnexpcost(u) = expflOW k(u)  s which is optimal for t such that s(v) =s(v')

k k for all pairs of vertices v, v' at the same

+ 2 - min {minexpcostk+l(')Iu '{Ol,...L...1) level.

Note that the bound of Theorem 4.2.3 represents
Proof. t is clear. We show . Write f for an improvement over the bound in Theorem 2.3.2

minexpcostk+l. Consider any ul, u2 e R+ with applied to the special case of this section; the
placements produced by the two algorithms have

uI + u2 Su and f(ul)+ f(u2 ) minimal. We will somewhat different propcrties, however. The
remainder of this subsection deals with integral

u , h placements, the stuation considered in Theorem
produce u'c {0,1,...,L u' ~Jwith 2f(u) 2322.3.2.

f(ul+f(U2)" Theorem 4.2.4. Let t, u, kcN, k:logn-1.

By Theorem 2.2.5, there exists r cN such that Then

r is the smallest element of R+ with f(r) sf(s) minexpcostk(u) -e xp flowk(u) +min{minexp costk+l (u1 )
for all s !r. We consider two cases.

+ minexpcostk+l(u 2 )I Ul,U 2 N,uI + u) u,

Case I. ua2r.
and u 2 - u l I I }.

Choose u' =r. u' and0,i,...,11 } la
Coseu' .u' L2J )Proof. Again, we show -. Write f for

2f(u') !f(ul ) + f (u2 ) ,  minexpcostk+l. By Theorem 4.2.1. there is a value

u', f0,i,..., L , R} such that minexpcostk(u)-Case 2 . u < 2r. LL

u expflowk(u)+ 2f(u'). If u'c{0,.. j}, then we sim-Then ul + u 2 u . Choose u' - . Then k"'5

u +u ply take uIl u2 u. If u' -2 I N, then we
2f(u')- 2f(-1--) f(u1) + f(u2) by convexity of f.

take u1 - and u2 . Il ; in this case,

An appeal to Theorem 2.2.4 completes the
proof. piecewise linearity of f guarantees the required

properties. 0
Theorem 4.2.2. For any t EN, there exists

s such that s(v) - s(v') for all pairs of ver- Theorem 4.2.5. For any t eN, there exists
tices v, v' at the same level, which is optimal s: V+N which is optimal for t. Moreover, s
for t. has the additional properties:

Proof. s can be found by a recursive (a) if eI  and e2 are two edges with high(e)
algorithm based on Theorem 4.2.1. - high(e2 ), then Itotal(els) - total(e 2,s)

1 1,

We proceed as before to analyze the cost of (b) if e is any edge with high(e) at level k,
finding the placement of Theorem 4.2.2. During

then total(e,s) k L 1



12

Proof. Tnpirem 4.2.4 leads naturally to a Proof. Again, we show a. Write f for
recursive algo" *thm yielding a placement in V -N minexpcostk+l. By Theorem 4.2.4, there is a pair
and obviously satisfying (a). To see that (b) uI  u E N such that u + u u, - i
is also satisfied, assume the contrary, and let 2  1  2  u2
e be a highest edge in the tree with and minexpcostk(u) - expflowk(u) + f(uI) +f(u2).

total(e,s) > t , where high(e) is at level k. Of all such pairs, choose one minimizing
[2 ku- (uI+u 2 ) and assume u1 Su 2. We must check

Since total(es) EN, we have total(e's) F.]+l that U,

-+l. e is not rootedge(T), so let e' be [ 2 1 2 1
2w k

the edge 0 e with high(e) = high(e'), and let If u2 > t then u t + 1,  so
e" be the edge immediately above e in T. Then

total(e",s) k t+ i U l j u T U +U 2  +1>

Therefore,
a contradiction. Thus, u2  (and therefore u1 )total(e's) $ total(e',s) - total(e,s)

< ( 
4

! [)+ 
l) tk 

I

2f ul 2 k 2t
If1,< t , then u1  t - 1, so

But then 2 2t

Itotal(e,s)-total(e',s)j >1, Then

contradicting property (a). 
2

12-[ + tI 1 . Define a new decomposi-

Once again, we analyze the cost of determin- - ([t. - 2+ k+ 1
ing an optimal placement with the properties of L J
Theorem 4.2.5. One must calculate expflow0 (t), tion wl, w2  by w =u l +l, w2 =u,. Then

and also expflowI(i) for all i E N, i S Ft/1,

expflow2 (i) for all ieN, i 1f-t/2f= " a/nd ... 11w 2 Wl+W2u Now expflow l(w I2I 2

expflow (i) for all ieN, 1 rt/n. This Nsa i expflowk(u) because u t - 1
log(n) 1  j by

total of 0(t) expflow comnutations, (since we Theorems 2.2.3, 2.4.1 and 2.4.2. Thus, f(w
are assuming that n is 0(t)).

Theorem 4.2.6. There is an algorithm using 5 f(u1), by Thecrem 2.2.4. Hence, w 1, w2  also

Th2 ) arithm sin satisfies the conditions used in choosing u1, u),O(t2) arithmetic operations, which for any tree btu u+ 2  0 w4w) otaitn h

T and for any teN, determines an s: V -N but u- (ul+U2)

which is optimal for t, and which satisfies con- minimality condition.
ditions (a) and (b) of Theorem 4.2.5.

Theorem 4.3.2. For the special case of this
4.3. A Fast Algorithm for Determining Optimal section, there exists a fair whole placement s

Placements which is optimal for t.

The results of Section 2.4 can be used to Proof. Theorem 4.3.1 yields a recursive
prune the algoritam's search space still further, algorithm. l
leading to a much faster algorithm.

Note that a result similar to Theorem 4.3.2
Theorem 4.3.1. Let t, u, ke N, does not hold in the general case -- recall

[t] [t. Example 2.4.1.
k~log(n) -1, u .Then

The algorithm resulting from Theorem 4.3.2 is
minexpcostk(U). expflowk(u) extremely fast. Namely, one must calculate

+ miniminexpcostk+l(ul) +minexpcost 1l(u2 )1  expflowk(i) for i [2 for each k,

ul' u2, C{ 2-t-' t-i ) and ul +u 2 !u). I !kslog(n), for a total of only O(log n)

2 [2J2 expf low computations.
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Theorem 4.3.3. There is an algorithm using
O(t log n) arithmetic operations which -r any
tree T and for any t E N, determines a fair
whole placement s which is optimal for t.

4.4. Example

Some of the optimal placements discovired by
our algorithms are rather unexpected. For example,
the following represents an optimal placement of
11 resources in a balanced binary tree with
uniform probability distribution:

Acknowledgements

The authors thank Carl Spruill, Charles Blair
and Mike Paterson for contributing their ideas and
suggestions for some of the results in this paper.

References

1. K. Jogdeo and S.M. Samuels, "Monotone Conver-
gence of Binomial Probabilities and a
Generalization of Ramanujan's Equation," The
Annals of Mathematical Statistics 39, 4 (1968),
1191-1195.

2. W. Uhlmann, "Ranggrjssen als Schttzfunktionen,"
Metrika 7, (1963), 23-40.

3. W. Uhlmann, "Vergleich der hypergeometrischen
mit der Binomial-Verteilung," Metrika 10,
(1966), 145-158.



DISTRIBUTION LIST

Office of Naval Research Contract N00014-80-C-0221

Michael J. Fischer, Principal Investigator

Defense Docunentation Center Captain Grace M. Hooper (008)
Cameron Station Naval Data Automation Cormnand
Alexandria, VA 22314 Washington Navy Yard
(I copy) Building 166

Office of Naval Research Washington, D.C. 20374

800 North Quincy Street (I copy)

Arlington, VA 22217 Defense Advanced Research Projects Agency

Dr. R. B. Grafton, Scientific ATTN: Program Management/MIS
Officer (I copy) 1400 Wilson Boulevard

Information Systems Program (437) Arlington, VA 22209

(2 copies) (3 copies)

Code 200 (1 copy) Professor Nancy A. Lynch
Code 455 (1 copy) School of Information and Computer Science
Code 458 (1 copy) Georgia Institute of Technology

Office of Naval Research Atlanta, GA 30332

Branch Office, Pasadena (I copy)

1030 East Green Street Professor Nancy Griffeth
Pasadena, CA 91106 School of Information and Computer Science
(I copy) Georgia Institute of Technology

Naval Research Laboratory Atlanta, GA 30332
Technical Information Division (1 copy)
Code 2627 Dr. Leo J. Guibas
Washington, D.C. 20375 Xerox Palo Alto Research Center
(6 copies) 3333 Coyote Hill Road

Palo Alto, CA 94304
Office of Naval Research (l co)

Resident Representative (i copy)

University of Washington, JD-27 Professor Philip Enslow
422 University District Building School of Information and Computer Science
1107 NE 45th Street Georgia Institute of Technology
(I copy) Atlanta, GA 30332

Dr. A. L. Slafkosky (I copy)

Scientific Advisor Office of Naval Research
Commandant of the Marine Corps Branch Office, Chicago
Code RD-I 536 South Clark Street
Washington, D.C. 20380 Chicago, IL 60605
(1 copy) (1 copy)

Naval Ocean Systems Center Dr. John Cherniavsky
Advanced Software Technology Division Program Director
Code 5200 Theoretical Computer Science
San Diego, CA 92152 National Science Foundation
(I copy) Washington, D.C. 20550

Mr. E. H. Gleissner (2 copies)

Naval Ship Research and Department of the Army
Development Center U.S. Army Research Office

Computation and Mathematics Department P.O. Box 12211
Bethesda, MD 20084 Research Triangle Park, NC 27709
(I copy) (I copy)



DATE

ILMED

IV


