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1. INTRODUCTION

The purpose of this document is to describe the statistical distribution

models that have been adopted for use in a model evaluation demonstration

software package developed for the Acoustic Model Evaluation Committee (AMEC).

Most of the statistical tests and measures of accuracy that have been

incorporated into this package are documented elsewhere (see references in

McGirr [1979]). However, as an aid in assessing the statistical nature of

empirical data, a means has been provided to allow graphical comparison

against curves generated by theoretical distribution models. For example, the

empirical probability density function (pdf) of data derived from propagation

loss measurements can be compared graphically against curves generated by the

log-gamma pdf. As another example, residual errors obtained by taking

differences between propagation loss measurements and predictions can be

compared graphically against curves generated by a scaled Student's t pdf.

Also, Kolmogorov-Smirnov tests have been included in the software package to

allow testing empirical cumulative distribution functions (CDF) against either

the normal (or Gaussian) CDF or the log-gamma CDF. Certainly the popularity

enjoyed by both the normal and the Student's t distributions precludes the

necessity of elaborate discussion concerning either one. The log-gamma

distribution, on the other hand, does not accede to general application as do

the normal and the Student's t. What is more, the log transformation adopted

here is reversed in sign from that typically cited in the acoustics

J literature, and consequently expanded discussion is desirable.

Section 2 discusses the impetus for choosing the gamma distribution vice

either the exponential distribution or the "sum-of-exponentials" distribution.

Maximum likelihood parameter estimates are discussed as an alternative to

estimates based on the method of moments. Some basic properties of the gamma

,1
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distribution are reviewed, and one of the parameters of the gamma distribution

is given an interpretation based on a comparison with the distribution of the

sum of two exponentially distributed variables.

Section 3 discusses the log-gamma distribution that is obtained by

applying a log-transformation to gamma distributed intensities. The

particular transformation applied here is reversed in sign from that usually

reported in the acoustics literature, and an explanation for this reversal is

provided. Basic properties of the log-gamma density and distribution

functions are presented, and a brief discussion of parameter estimation is

also included.

The report concludes with a few remarks pertaining to useful extensions

of the AMEC software package, and possible applications of the log-gamma and

other distribution functions to the problem of placing bounds on propagation

loss predictions.

I
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2. THE GAMMA MODEL

Statistical models of intensity fluctuations for signals (and noise)

propagating through an ocean medium have been presented and analyzed by Dyer

[1970, 1973]. More recent articles by Mikhalevsky and Dyer [1978] and by

Mikhalevsky [1979] have expanded the distribution theory pertaining to signal

and noise statistics under various conditions. Of particular interest here

are probability density and distribution functions that are useful in

characterizing the statistical nature of propagation data.

For harmonic signals under well-developed multipathing, Dyer [1970]

determines the probability density function (pdf) of intensity (short-time

average of mean square pressure) to be exponential (Rayleigh amplitude).

Letting x denote intensity, then x has pdf

p(x) = 1 exp(-x/X), x>O, X>O, 2.1

A ad arinc a2 = A2
with mean px X and variance ax = . Coming from a radically different

point of view, Dozier and Tappert [1978] develop a statistical theory of

normal mode amplitudes in a random ocean. For acoustic frequencies less than

about 250 Hz and under saturation conditions, they arrive at the same pdf in

the limit as the number of modes increases without bound.

When the multipath intensities are not identically distributed but

can be sorted into M groups, then each Xm, m = 1,2,...,M, is exponentially
M

distributed with mean Xm, The pdf of the sum x = Xm say f(x), takes a form
resembling a weighted sum of exponentials [Dyer, 1973]. That is,

M
f(x) = I (w mA m)exp(-x/A M) 2.2

m=l m

M M 2
with mean px I X m variance a 2= 1 Am, and "weighting factors" given by

mlm m

t3
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On the other hand, if the Am = A for all m, then the sum has the gamma pdf,

say

xM- e-x/A2.

g(x) - 2.3
AF(M)

with mean p = MA and variance 02 = MA2 (see for example p 126 of Mood and

x

Graybill [1963]).

Allowing for distinct group means has intuitive appeal, and when the

underlying assumptions prevail the pdf f(x) is probably a more realistic model

than the gamma pdf. There is an unappealing aspect of this model, however,

which stems from the less than satisfactory means available to estimate the

set of A from data. Ambiguous estimates of the A may be obtained from

m m

N 1

Thus, unless there exists a priori information identifying M-1 of the Aml

additional information must be acquired from higher-order sample moments.

Procedures based on higher-order moments are computationally prohibitive for

M>2 due to the range of values typical of intensities.

For the special case of only two groups (M = 2) the method of moments

becomes less impractical, but such a method, though simple conceptually, is

not without drawbacks. Consistent estimates of A and A may be obtained from

(see p 270 of Lindgren [1978])

A +A 2=x

1 2 2

and A 1+ A 2 =S

I4
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2where x and S are the sample mean and variance.

If A1 > A2, say, then

X1 = (i + 12S2 -
2)

and A2 = (x - 42S2 - X2)

Since the Am are real and positive, the sample variance is necessarily

constrained to lie in the interval (x2/2, X2). The likelihood that this

constraint could be easily violated suggests that the "sum of exponentials"

model lacks the robustness necessary to tolerate possible discrepancies

between the model's underlying assumptions and reality.

2.1 The Gamma as a Generalized Exponential

Even if a reasonable technique to estimate the Am could be devised, there

is still no clear cut way to determine M, except in "controlled" experiments.

Thus there is ample incentive to consider the gamma pdf expressed in the form

xv+1 e-x/A
g(x) = e 2.4

AVF(V)

as an appropriate density. Note that M has been replaced by v. The purpose

of this exchange is to emphasize that this parameter is no longer restricted

to integer values. An interpretation of v is given in Section 2.4.

The idea of using the gamma pdf as a generalized exponential is not new.

In his development of the statistics of energy fluctuations, Rice [1954]

suggests the gamma pdf expressed in the form

-an+1 E neaE
p(E) a Ene-/F(n+l)

5* ,



as an appropriate density of

E = fl2(t)dt.

I(t) is the instantaneous thermal noise current and the integration extends

over a finite time interval. The reader should have no difficulties in making

the associations: x with E, v with n + 1, and X with a- 1. To obtain

estimates of the parameters a and n, Rice employs the method of moments where

the sample moments are derived from the spectral density function of the

process. Two approaches to the parameter estimation problem are presented in

the next section.

2.2 Parameter Estimation

2.2.1 Maximum Likelihood Estimates

One of the advantages of the gamma distribution is that estimates of X

and v may be obtained from first-order statistics. For a sample of size N the

likelihood function takes the form

N !
N v- Nx/A v N

L(A,v) = nl x nv-e- /(xVF(v))

n=1n

where x is the arithmetic sample mean

N
'x I - x
" n=1  n'

If x denotes geometric sample mean, that is

X = (lxn)l/N,

then

fnL = N[(v-1)2nx - x/A v2nA - gnF(v)].

4 6
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Maximum likelihood estimates of A and v are obtained by solving the likelihood

equations

anL N(x/A 2 - v/A) = 0

aUnL N(£nx - nX - O(v)) = 0,
3V

where O(v) = d gnF(v)/dv is the digamma (or psi) function. Thus the pair of

equations

VA = x 2.5

and

9nv - O(v) = gn(x/x) 2.6

provide an iterative scheme to obtain estimates of both A and v from

first-order sample statistics.

This method of parameter estimation offers a computational advantage over

methods using second-order moments. The only moment that need be calculated

in intensity space is x. The geometric mean is actually calculated in dB

space as an arithmetic mean. That is, under the transformation y -

a gn(x/vA), where a = -10 log e,

gnx = 9nvX + lal-1 1

11
= £nx + lal N I Yn

, and hence

Rnv - Vv) = lal 1WYn = y/jaI. 2.7

At first glance this expression does not appear to offer a straight-

• , forward approach to the problem of estimating v. However, since the left hand

side of this equation is independent of sample data, it may be plotted against

7
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v, thus providing a simple graplical procedure. This procedure is

demonstrated in section 3.5.

2.2.2 Method of Moments

An alternative procedure i!1, offered by the so-called "method of moments"

(see p 278 of Lindgren [1978]), Iwherein px and a x2 are expressed in terms of

the parameters v and X and then lequated to the corresponding sample

statistics. Thus,

PX = VX = X,

and

2 VA2 = S2

from which

v = X2/S2 . 2.8

Rice [1954] suggests similar estlimates, except instead of using the usual

sample statistics, x and S2, he expresses the moments in terms of the spectral

density function of the process. More recently Frisk [1978] demonstrates the

use of this method in estimating a parameter analogous to v for the so-called

M-distribution (which may be obtained from the gamma by making the

transformation z = x/v).

The maximum likelihood estiIlation procedure is generally preferred to
I

other methods available. Lindgr en notes, however, that the method of moments

usually yields "efficient" estimiates that serve as useful first-order

approximations.

2.3 Some Properties of the Gamm1 Distribution

2.3.1 Gamma Density Curve

If A = 1 the gamma pdf assudoes the simple form

8



V-1 _X

v-il-x
g(x) -x e ,x>O, v>O.

r(v)

A further simplification obtains when v is confined to the set of positive

integers, say v = n, n = 1,2,..., so that

n-e -x
gn(X) =, x>O, n=1,2,3,... 2.9n (n-i)!

Curves of this simplified form are illustrated in fig 1 for n = 1, 2, 3, and

4. For n = 1 the curve starts with a slope of -1, for n = 2, it starts with a

slope of +1, a for n > 2 all curves have initial slope zero. The

exponential curve (n = 1) has no interior points of inflection, the n = 2

curve has an inflection point at x = 2, and for n > 2 each curve has two

points of inflection at x = n - I ±4n - 1. The modes (or most probable

values) occur at x = n - 1. When A is not unity, the expected value of x is

nA and the mode occurs one A-unit to the left at (n - 1)A.

i1

.75

.50 xn-1 e- x
' gn(X)=(n-l)!

.25

x
1 2345

Figure 1. Gamma pdf curves for n = 1,2,3, and 4.
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2.3.2 Moments

The moments of gamma variates may be obtained from

Ex n+v-1 -X/A21E xn =f x e x2.10

o xVF(v)

Making the change of variable z = x/A yields

Exn = [An/F(v)] f zn+V-le-Zdz A nF(n+v)/F(v) 2.11
0

Thus the first two moments are

ExvA (px) 2.12

and

Ex2 = v(v+l)X 2  2.13

from which the variance a 2 is
x

a = E(x - px)2 = Ex2 - E2x vA2 . 2.14

Higher-order central moments may be obtained from

; = n v-1 ex/ A
n (x - Px) X eXdx. 2.15E(x -P) f x

0 rVF(v)

Making the same change of variable as above and simplifying yields

n
1 n k n-k 21=x k0 ( k r(v + k). 2.16

The third central moment, say m3, is then

m 3 = 2v\ 3, 2.17

so that the coefficient of skewness, a3 is given by

a3  m3/m3/2 1/22.18

10
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Similarly the fourth central moment is

m 4 = 3v(v + 2)X
4  2.19

and hence the coefficient of kurtosis, a4, is given by

2 v+
a m4/m2  3 v + 2 2.20

Note that as v gets large these coefficients tend toward Gaussian values, that

is

lima 3  0 2.21

V *

and
lim a 4 3 2.22

V -0

The rates of approach to these limits are demonstrated in fig 2.

L 3 1: 2 v-5

=2v
2

3
0 i I v

5 10 15

Figure 2. Convergence to Gaussian limits.

2.3.3 Gamma CDF

The gamma COF may be expressed as
.4

x t V-le -t/A dt
Gv(x) f 2.23

o VF(v)

'1

t 11
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which for arbitrary v is not generally expressable in closed form. Tables of

the incomplete gamma function [Pearson, 1934] may be used, however, making use

of relationships and tables in Abramowitz and Stegan (A&S)*[1965] may be more

convenient. For integer v, say v = n, a finite-term series obtains, that is

Gn(x) = 1 - en (x/x)e 'X/, 2.24

where
n

en(X) = xk /k! (A&S, p 262).
k-0

When n/2 is an integer, tables of the chi-square distribution may be used.

Making the transformation z = 2x/N yields the pdf

p(z) - 2.25

2nr(n)

so that replacing n by k/2 and z by x2 yields

xk-2e-x 2/2

p(X2 ) = Xk-2-X2.26

2k/ 2F(k/2)

the chi-square pdf with k "degrees of freedom." Thus,

G n(x) = P X2(2x/Xl2n) = 1 - Q x2(2x/Xl2n) 2.27

where PX2 and Qx2 are defined on p 940 of A&S, and tabulations of Qx2 begin

on p 978.

2.3.4 Remarks Concerning Numerical Evaluation

When v does not take an integer or half-integer value, then either tables

must be interpolated or algorithms must be prepared for computer

* Subsequent citings to this reference are abbreviated A&S.

4 12



implementation. The algorithms used in the AMEC demonstration package are

based on series and asymptotic expansions that appear on p 262-3 of A&S. Now

G (x f t-e- dt x/A tV-le-t
Gv(X ) = f d = f dt = P(v, x/X) 2.28

o A V) o E(v)

where P(v,z) = y(v,z)/r(v) = 1 - r(v,x)/F(v). The functions P(v,z), y(v,z)

and F(v,x) represent different ways of expressing the incomplete gamma

function, and are defined on p 260 of A&S. Expanding e-t and integrating

yields the convergent series (A&S, 262)

P(v,z) z V [1 v z + v z 2  2.29
vF(v) v+1 1! v+2 2!

-t V-1Integrating by parts (u = e , dv = t dt) yields the slightly faster series

P(v,z) = ze- [1 + +. + z + 2.30
vr(v) v+1 (v+l)(v+2)

but one that is still slow for large z. The asymptotic expansion

z V'le- z v-1 (-)v2P(v,z) = 1 [1 + - + (v-1)(v-2) + ... ] (A&S, p. 263) 2.31

r(v) z z2

obtained by integrating by parts (u = tv , dv = e dt) is divergent for all z

and noninteger v, but for small v, say v < 3, and "large" z, say z > 4, only

a few terms are required for sufficient accuracy.

2.4 Relationship to Sum of Two Exponentials*

The purpose of this section is to provide an interpretation of v as it

ranges through values between two successive integers. For propagation data v

* This idea was suggested to me by Mr LK Arndt.

13



7 1

is expected to cluster about v = 1, or v = 2, corresponding to one or two

primary groups of multipaths. When there are two groups and the energy is

proportioned equally among them, their mean values are equal and v = 2

exactly. However, when their mean values differ then v takes on some value

between 1 and 2. To see if v can be related in some way to the proportioning

of energy among two groups of multipaths, it is compared with a parameter r

introduced into the "sum of exponentials" pdf.

Let xI and x2 represent the random variables associated with two groups

of multipaths, then each has a pdf of the form

pi(x) = A. exp(-x/Ai), x >0, i = 1,2, 2.32

where each xi has mean A. Without loss of generality let A1 > A2 and

introduce the parameter r (O<r<l) such that with A1 = A then A2 = rA. The pdf

of x = xI + x 2 is given by (for example see p 317 of Parzen [1960])

x
p(x) = f Pl(t)P2(x-t)dt

0

= exp(-x/A) - exp(-x/rA) 2.33

A(l-r)

and E(x) 1 + A2 = (l+r)A.

For gamma distributed variates, E(x) = vA. Evidently then the parameter

v corresponds to 1 + r, at least to first order. This correspondence does not

hold up when higher-order moments are compared, and exact correspondenceIobtains only at the limit points of r. Thus the implied linear relationship v

r + 1 is only approximate. Nevertheless, the interpretation is clear. For

the case being considered, as v increases from 1 to 2 the partitioning of

energy varies from complete imbalance (only one group) to complete balance

(two groups with equal means).

14



The comparison at hand is illustrated schematically in figure 3.

Multipath Partitioning

One __Unequal _ Two
Group Means Groups

0- r1

e-X/Ae-X/r

e-x/x xe-X/

x- e-
V r(v)

V 2

Figure 3. Correspondence between v and r.

To see how well the gamma pdf approximates the sum of two exponentials,

let A = 1 and r = 1/2 so that the sum-of-exponentials pdf is

px e- x e-2x -X
p(x)=- -ex -2eX(1 - ex) 2.34

1/2

Under the assumed correspondence, the gamma pdf has X = 1 and v = 3/2 so that

g(x) = xl/2e-X/r(3/2) = (2//s) x1/2e-x 2.35

These curves are illustrated in figure 4. The gamma pdf reaches a maximum (x

= .5) slightly ahead of the other curve (x .69), but the curves tend to

-4 coincide for x > 2.5. Indeed, at x = 10 E(x) = 15 the curves differ by only

about 7 x 10 7 . Thus, although this discussion is necessarily brief and deals

j' only with specifics, it demonstrates the basis for employing the simple gamma

model with v allowed to assume any positive real value as determined from a

sample.

15



Il x
1 vA 2 3

Figure 4. Comparism) of gamma pdf with
sum-of-2 exponentials.

1 16



3. THE LOG-GAMMA DISTRIBUTION

3.1 The Log Transformation

The range of intensity values typically encountered in ocean acoustics

tends to be discouragingly prohibitive both computationally and graphically.

Log transforming to decibels (dB) circumvents possible computational problems

(eg, underflow) and certainly results in more convenient graphics (eg, 60

units vice 106). Thus, for example, propagation loss versus range plots

typically display loss in dB as illustrated in figure 5.

60

70 -

80 -
J

I I I I I I I I I IR

Figure 5. Plot format typical of propagation loss models.

The expression of acoustic quantities in dB is a well-established

practice, so well that there is a natural inclination to transform

mathematical "operations" from linear space to dB space as well. As Dyer

[1970] points out, however, the average of log-transformed data does not equal

the log of data averaged in linear space. For example, averaging in dB space

vice averaging in linear space and then transforming can produce a 2.5 dB
9t

error. The reason for this discrepancy is made clear in section 3.3.

'1

4
17

7 ... ilU i .. I.n . .



Proceeding to the transformation, let x denote intensity (actually the

ratio of intensity at a given point to some reference intensity) then the loss

H expressed in decibels is obtained by

H = -10 log x.

For a sample of intensities xn, n = 1,2,...,N, obtained at ranges r then$ n

corresponding sample loss values are

Hn = H(rn) = -lOlogxn, n = 1,2,...,N.

If the range interval spanned by the rn is not too large then "fluctuations
about the mean" may be examined by calculating moments of H - <H>, where <H>

n

-lOlogx and x is the arithmetic mean of the intensities.

Assuming that the xn are independent random variables all deriving from a

given population distribution, the corresponding distribution in dB space may

be obtained through the transformation H = -10 log x. The purpose of the

minus sign is clarified in the next section. Mathematical manipulations are

somewhat less cumbersome when the natural log is substituted for the common

log. Hence the transformation is expressed as H = a inx, where a = -10 log e.

Since the expected value of gamma distributed variates is vX, the

transformation of interest here takes the form

y = a kn(x/vA). 3.1

Thus the gamma pdf

xV-i e-x/
g(x) = x > 0, 3.2AVF(v)

transforms to.4
f(y) = g(x(y))/Idy/dxl

V
v {exp [y/a - exp(y/a)]}v , 3.3

lalF(v)

18
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Despite its foreboding form, this pdf is not as exotic as its appearance might

suggest. In fact it is routinely applied in the analysis of extreme-value

problems.

Interestingly, if the motive for making a transformation were based on

the desire to obtain a variate with constant variance, this same pdf (or one

of similar form) would result. That is, suppose a transformation z = h(x) is

sought such that z has (approximately) constant variance. Expand h(x) about x

= p and assume that to a good approximation

h(x) = h(p) + h'(p)(x - p).

Then E[h(x) - h(p)] 2 = [h'(p)]2 E(x - p)2

or ( 2  [h'(p)] 20x2 ,

and if ox2 can be expressed as some function of p, say V(p), then setting

h'(p) = [V(p)]- 112 yields Oz2 = 1. Hence the desired transformation is

provided by

x
z = h(x) = f dp//Vjp).

The variance of gamma distributed variates is vA2 , so that for constant v

x dh(x) a f T- cc 9nx,

which implies that the transformation yielding a variable with constant

variance is logarithmic. A discussion of this technique (referred to as the

"angular transformation") may be found in Brownlee [1965].

3.2 Intensity-Loss Orientation

The material in this section is intended to orient the reader to the

special application of the log-gamma distribution to the analysis of

19
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propagation loss data as generally viewed by those engaged in propagation loss

modeling. The majority of propagation loss models under consideration by the

AMEC for evaluation offer an output option that generates a plot (or plots) of

loss versus range. These plots are usually oriented like the one presented in

figure 5, that is, with increasing values of loss directed downward. Since

the gamma pdf is highly skewed, its orientation relative to such plots is

important.

Figure 6 displays the orientation of distributions in linear (or

intensity) space and in dB space, under the transformation y = akn(x/vX) where

a = -10 log e. Values of x falling below vX (the mean) yield positive values

of y (high loss) corresponding to the "right" tail of f(y). Similarly, values

of x above vA yield negative values of y (low loss) corresponding to the

"left" tail of f(y). Thus the random variable y is oriented in the same sense

as propagation loss.

In terms of sample data,

Yn = Hn <H>, 3.4

where <H> = -10 log x and x denotes the arithmetic mean of intensity data (x

Ix nIN). Let y denote the mean calculated in dB space, then

y = WH n - <H> = H- <H>. 3.5

20
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Transformation: g(x) to f(y)

Figure 6. Orientation of density curves g(x) and f(y)
relative to intensity and decibel scales.
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3.3 Moments

The gamma pdf

v-I -x/A

g(x) x- , x > 0

xVr(v)

under the transformation y = a £nI'x/vX) takes the form

f(y) = v (e/a - e I. --<Y<. 3.6

laIF(v)

The first moment of y is given by

Ey = f yf(y)dy

or, with the prospect of more tra(I:table mathematics in x space,

Ey = Ex [a £n(x/vA)]

= [a/hVF(v)] O 1n(x/vX)xVle- X/ dx 3.7
0

Making the change of variable z --lx/A gives

Ey = [a/f(v)] f £n(z/v) z dz
0

- [a/F(v)] f (knz - 2nv) ;VI Zd
0

= [a/r(v)] f nz z- -e tdz - env f zVleZdz}. 3.8
o o

Now F(v) J zV-le-Zdz, 3.9
0

and* dr(v) = 7 knz zV-le'Zdz, 3.10
dv o

* I thank Mr LK Arndt for bringin4l this fact to my attention.
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and hence

Ey = a[r'(v)/r(v) - £nv]. 3.11

Since r'(v)/r(v) = dknr(v)/dv (v), the digamma (or psi) function (see eq

6.3.1, A&S), then the expression for the first moment of y simplifies to

Ey = a[ti(v) - Inv]. 3.12

Evaluating this expression at v = 1 yields (see eq 6.3.2, A&S)

Ey = a (1) = (-4.343)(-.5772)

2.5 (dB) 3.13

which agrees with the result obtained by Dyer [1970] for the "log-exponential"

pdf.

Let p = E(y) so that the higher-order central moments are given by

- n ---1 00 Pnv-i -
E(y p) (v) f [a £n(zlv) - p]nzVe-dz, 3.14

0

after making the same change of variable as above. Applying the binomial

expansion to the quantity in brackets and integrating over the sum yields

E(y - p)) = an n (_q)k D In nkz z V-le-Zdz + (-q)n 3.15
[k!0 o r(v)

where q = Inv + p/a.

Expanding this expression for n = 2, 3, and 4 gives

E(y - p)2 = a2[F,,(v)/r(v) _ 2qr'(v)/r(v) + q 1, 3.16

E(y - p)3 = a 3[F,,,(v)/r(v) _ 3qrF"(v)/r(v) + 3q2 r(v)/r(v) - q ], 3.17

and

E(y - p)4 = a4[r(4)(v)/r(v) - 4qr'.(v)/r(v) + 6q2Fr"(v)/r(v)

3S 4
*, -4q3F,(v)/r(v) + q4]. 3.18
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(n)

The derivatives r (v) can be expressed in terms of polygamma functions. A

fairly thorough account of these functions is given in A&S (p 258-260) with

tables for (n)(v), n = 0, 1, 2, and 3 beginning on p 267. The polygamma

functions are defined as

o(n)(v) = dn t(v)/dv n  3.19

where

ON) = d gn F(v)/dv 3.20

so that

r,(v) = r(v)o(v). 3.21

In the following expressions for the derivatives F(n)(v) the v dependence is

suppressed. From r' = Fo,

F(v) dr'/dv = r' + rs' V (t2 + tp') 3.22

F".(v) = dr'/dv = r'(¢s2 + o') + r(2*p' + 4$1") 3.23

= [(F 3 + 3*f' + €")

r(4)(v) = dr'"./dv = r'(qp3 + 3qO' + p') + F(3q,20 ' + 3(40)2 + 3t* 1"1 + t"')

= r( 4 + 6t2p' + h + 3(') 2 + tP'"') 3.24

Substituting into the central moment expressions given above and

collecting terms yields

E(y - p)2 = a2 qI(v) 3.25

3 3E(y - p) = a3 4''(v) 3.26

andI4 4 g 2
E(y - p) = a [3(tp,(v)) + t" ''(v)]. 3.27

The second central moment, or variance, for v 1 is simply

I.2
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E(y - p) 2  G y2 a2 ,(1) 3.28

From eq 6.4.2 and 23.2.24 of A&S

= (2) = n 3.29

so that

a = (4.343)(1.283) = 5.57, 3.30
Y

in agreement with well-known results (see Dyer [1970]).

The coefficients of skewness and kurtosis, a3 and a4, are given by

a =- "(v)/[ '(v)] 3/ 2  3.31

and

a4 = 3 + "'(v)/[q'(v)]2  3.32

Asymptotic expressions for qs', tl'' and tp''' are given on p 260 of A&S and

are (including the first two terms only)

1+ 1
*l(v) - + 2V + .. (Eq 6.4.12, A&S)

1 1" )~- v- v- ... (Eq 6.4.13, A&S)

4'"'(v) 2 v + (Eq 6.4.14, A&S)

Thus to lowest order in v

-123.33
a a3 M V -0 as v 3.3

and

a4(v)- 3 + v - 1 3 as v 3.34

and hence these coefficients are asymptotically Gaussian.

3.4 Some Properties of the Log-Gamma Distribution

3.4.1 Density Curves

The log-gamma pdf illustrated in figure 7 for v = .05(.25)2.5, exhibits a

pronounced skew, as does the gamma pdf. Under the negative log transformation
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applied here, the skew is to the right of the mean. As v increases the

skewness becomes much less pronounced. A feature resulting from transforming

about Ex = vX is the invariance of the mode with respect to v. That is, let

h(y) = v(y/a - e y /a) and let C = vV /aIF(v), thenV

f(y) Cv eh(Y)

and hence

f'(y) y(v/a)( - eY/a)Cv eh(y)

Setting f'(y) to zero yields the most probable value of y, the mode, as

5=a gn = 0

for all v.

The second derivative takes the form

f"(y) = a-2[-vey/a + v
2(1 - eY/a)2 ]Cveh()

and when set equal to zero yields a pair of inflection points for each v, say

Y= a kn[1 +1 + 44v +1 3.35
2v

'2
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Figure 7. Log-gamma density curves.

1 27



As v increases the distance between the corresponding pair of inflection

points decreases. Thus the distance between inflection points could serve as

a measure of peakedness.

3.4.2 Log-Gamma COF

Given that x has the distribution Gv (x) (eq 2.28), then under the

transformation y = -laln(x/vA) the distribution of y, say Fv(yo), is given by

Fv (yo )= Pr(y Yo) P r(-laj2n(x/vA) <y 0)

-y o/al
=P(x> ve )

-Yo/IaI

1 - Pr(x < ve 
)

-y /IaI
I - Gv(vXe -

0

-Yo/IaI

- 1 - P(v, vye ), 3.36

where P(v,x) is discussed in section 2.3.3.

Plots of Fv (y) are presented in figure 8 for v = .75(.25)2.25.

V
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3.5 Parameter Estimation

By taking the transformation about the expected mean intensity, E(x) =

vA, only the parameter v needs to be estimated from samples in dB-space. The

parameter A is implicitly determined through the calculation of x in intensity

space. In practice A need not be known explicitly. Since y = a gn(x/vA) =

a Inx - a Cnv\ then denoting propagation loss measured at range rn by H the

n ncorresponding sample point is Yn = H n - <H> where <H> = -10 log x and x=

x N. The y from a specified range interval represent deviations of lossn n
from the interval mean.

Assuming that the yn are independent and identically distributed (iid)*,

the maximum likelihood estimator of v can be determined from (see section

2.1.1)

knv - 0(v) = - y/Jal, 3.37

where

Y = ZYn/N = H -<H>. 3.38

Figure 9 presents y versus v, providing a graphical means to estimate v given

y. The dashed curve gives a versus v and can be used as a consistency check

for v obtained from , since a2 = N-(yn - Y)2 is an estimate of E(y-p)2  a2

, *'(v).

The following examples illustrate the maximum likelihood parameter

estimation method. The first example is taken from a bottom-limited data set

analyzed by Pederson [1980]. The sample size is a rather awesome 5,398 points,

which perhaps accounts for the quality of fit that is evident in figure 10.

Obtaining iid sample points is evidently an ancient artform handed down from
one generation of data reduction specialists to another, and involves closely
guarded secret black arts such as detrending, decimation, and "proper"
selection of interval length.
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The impressive sample size was obtained by combining range-detrended data sets

derived from several independent measurement events. The curve over-plotted

on the histogram is a log-gamma density function corresponding to v = 1.12.

The appropriate value of v can be obtained graphically from figure 9 or by

iteratively solving equation 3.37 for v given that y = 2.22.

An example based on model-generated data is demonstrated by the histogram

of figure 11. A subsample consisting of 250 points generated by RAYMODE-X was

range-detrended by subtracting the incoherent outputs from the coherent

outputs. The sample mean is 1.7; thus from figure 9 the estimated value of v

is 1.3. The closeness of fit is not particularly impressive near the mean,

but the degree of coincidence is certainly acceptable along the tails.

I

31



6

4

'5

3

7 4

2

3

2

0 1 2 3 4 5
V

Figure 9. Log-gamma parameter estimation curves.

I

.4

1 32

i n n n I I .



o N=5398

=2.22 ±.07
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Figure 10. Histogram of bottom-limited data.
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Figure 11. Histogram of propagation loss data generated by raymode X.
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4. RECOMMENDATIONS FOR FUTURE WORK

4.1 Extensions to AMEC Software

The log-gamma and Gaussian "graphical aids" are included in the AMEC

software package largely as a result of efforts in support of a limited

propagation data assessment project recently conducted by Pedersen [1980].

Initial data snooping clearly indicated that most of the collected data

derives from distributions exhibiting skewed tails. As a consequence there

was no pressing need to consider other distribution possibilities. Log-gamma

and Gaussian distributions do not always provide adequate fits, however, as

demonstrated by Frisk [1978] in his comparison of exponential, gamma and

log-normal distributions against low-frequency, long-range propagation data.

At the lowest of three frequencies (9.8, 110, 262 Hz) all of the distributions

produced an acceptable fit. At 110 Hz only the log-normal with a = 5.6 dB was

adequate, and at 262 Hz none was acceptable.

Frisk suggests that the Rice distribution may yield a reasonable fit to

data when log-normal and gamma distributions fail. Derivations of the Rice

pdf are given in Rice [1954], Davenport and Root [1958], Whalen [1971] and

Ol'shevskii [1967]. The Rice pdf may be put in the form

p(v;a) = ve-1/2(v2 + a2)1 0 (av)

where v and a are ratios of the envelope and the sine wave amplitude to RMS

noise. Urick [1977] examines this distribution in terms of a randomicity

parameter T defined as

2Ta2+ 2.

3
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When a -> 0, T - 1 and p(v;a) reduces to the Rayleigh pdf, and when both v

and a are large p(v;a) exhibits Claussian behavior. Since T -> 0 as a - ' then

T ranges between 0 and 1. As an estimate of T, Urick uses the value that

yields the closest agreement bet%)een the Rice CDF and the sample CDF. This

approach appears to be more efficlient (computationally) than the maximum

likelihood procedure. That is, nieverting back to the parameter "a" (for

notational convenience), the log-likelihood function for a sample of size N is

N 1 2~ 2
nn L(a) =n F1 vn - 2 vn I- Na /2 + I kn 10 (avn).
n=1

Setting d kn L(a)/da to zero yields
1 vn 11 (a Vn)/Io(&Vn
N n n 0 n

which must be solved iteratively -a discouraging calculation to contemplate.

A transformation of the form u v2 results in a non-central chi-square

distribution (p. 113, Whalen [191I]) for which extensive tables and

computational algorithms have be.n developed (Harter and Owen [1973]). For

AMEC purposes, however, confinin(iI T (or equivalently a non-centrality

parameter) to a few selected valties appears to offer the most efficient

procedure.

The Rice distribution proviL 1es a connecting link between the Rayleigh

distribution ("slow" fluctuation ) and the log-normal distribution ("fast"

fluctuations). Delineating the -pace of fluctuations vertically with a

"phase-fluctuation strength" par meter 0 and horizontally with a "diffraction"

parameter A, Flatte et al [1977] suggest the Rice distribution to characterize

amplitude fluctuations along the fuzzy border separating saturated (42A>>1)

* and unsaturated (1 2A<<1) regionsp Thus as a "transition curve" the Rice
9'

distribution affords an alternat" ve to "arbitrary" Pearson and Edgeworth
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frequency curves (see, for example, Elderton and Johnson [1969]). Part of the

impetus for characterizing amplitude fluctuations with "standard"

distributions vice "best-fit" frequency curves stems from the desire to have a

'physics-based" framework for calculating bounds on model predictions.

4.2 Prediction Bounds

Serious attempts to place confidence bounds on propagation loss

predictions have been avoided because the dependence of fluctuations on model

input parameters is not well enough understood. Moreover, the amount of

information contained in a given set of model inputs might not be sufficient.

Eclipsing such pessimism, however, the assumption is made that RMS

fluctuations can be related in some way to model input parameters.

Three approaches to this problem are considered here. The first

approach, and the most expedient, assumes that the deviation of propagation

loss from its mean value follows a N(0,o2) law with a = 5.6 dB. Using a

second-pass scheme, the predicted loss versus range curve is divided into

range intervals according to predominant path type. For each such interval

the 90% confidence limits are given by Hn ± 1.9604-, where N is obtained by

dividing the decorrelation length into the range interval length. A slight

variation to this approach entails substituting a more "appropriate"

distribution for the normal law, such as the log-exponential, the log-gamma,

or the log-Rice distribution.

The other two approaches are by comparison much more extensive in scope

in that each requires considerable data analysis effort. In one of these

approaches, the dependence of RMS fluctuations on environmental-acoustic (EVA)

parameters is determined using regression methods. That is, the RMS

fluctuation ar at range r is regressed on selected EVA parameters (or

functions of EVA parameters).

r=
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The third (and most elaborate) approach applies Baysian methods (see for

example p 234-7 of Lindgren [1978]). Let y denote the deviation of predicted

loss H from its mean <H> over a specified range interval, and let w denote the

deviation of measured loss H from its mean <H>. Suppose that w is found to

have a distribution with pdf p(wle) conditioned on a known value of the

parameter e. The parameter 0 can take the form of an n-tuple, although in

practice it typically is either a single parameter or a pair of parameters.

For example if p(wlE) is log-exponential then 0 = A, or if p(wIO) is log-gamma

then 0 = (v,A), or if p(wIO) is Gaussian then 0 = (p,o2). During a given

measurement exercise information about 0 is gained, yielding a prior pdf for

6, say g(O). A posterior density function h(0Iw) is then given by

h(01w) = g(O)p(wlO)/p(w)

where p(w) = f g(O)p(wjO)dO. Finally the predictive density function f(ylw)

is determined from

f(ylw) = f f(yjO)h(Olw)dO

= f f(yjO)p(wjO)g(O)dO
f p(wlO)g(e)dO

The pdf f(ylw) along with its estimated parameters can then be used in

calculating confidence limits. Note that both the regression approach and the

V Baysian approach tend to be "EVA-specific" since in each case the final

results are tied to a particular set of environmental-acoustic conditions.

I3
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