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rnEFACE

The interest of this thesis is the dynamics of rocket sleds traveling
on rails at supersonic and hypersonic speeds. The analytical model chosen
for simulating the dynamics of a sled ride consists of three subsystems:
{1) the elastic sled body, (2) the slipper beam (springs), (3) and the rail
roughness profile. A parametric study involving a variation of the rail
roughness profile and the slipper stiffnesses was conducted.

I am grateful to my thesis advisor, Dr. Anthony Palazotto, for his
valuable advice and direction given throughout this project. I am also
grateful to Dr. Vipperla Venkayya, my thesis committee member, for criti-
cally reviewing this thesis. A special thanks to Ms. D. Frantz for her

patience and understanding while typing this thesis.

Victoria A. Tischler
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ABSTRACT

\

N
\\\::=*The rail roughness profile and the slipper stiffnesses are the

important factors in determining the forcing function in the dynamic
analysis of high speed rocket sleds. A parametric study involving a
variation in the rail roughness profile and the slipper stiffnesses was
performed. This study was carried out by interfacing the NASTRAN struc-
tural analysis program and a program called SLEDYNE developed for
Holloman AFB. Using NASTRAN a free vibration analysis of the elastic
sled body was made in order to obtain the natural frequencies and mode
shapes. SLEDYNE simulates the sled ride on the rails and computes a set
of inertial forces acting on all the mass points of the sled. The response
of the sled to this inertial loading was determined by a NASTRAN static
analysis.

Two rail roughness profiles were considered, both based on the same
set of track measurements, and three values of slipper stiffness were
used. Response to the parametric study was measured by the total strain

energy of the sled and the displacements of the mass points of the sled.‘;
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A PARAMETRIC STUDY OF CERTAIN FORCING FUNCTIONS

RELATED TO A HYPERSONIC SLED
I. INTRODUCTION

For a number of years both the Air Force and the Navy have been using
high speed sleds on a test track to simulate the dynamic environment of
flight vehicles. A ten mile test track, Fig. 1 has been operated by the

()

Air Force at Holloman AFB for a number of years.: Test sleds that are
capable of attaining speeds up to Mach 6 have been built to test the crew
escape systems, the effects of rain or particle erosion on re-entry vehicles,
missile guidance systems etc. Most of these sleds consist of a forebody to
house the test objects and a rocket train acting as a pusher, Fig. 2.

There are dual rail as well as monorail sleds. The riding mechanism consists
of a set of fore and aft slippers attached to the sled and capable of riding

3.(2) An 1/8" gap between the rails and the

on the rails as shown in Fig.
slippers is usually incorporated. During the ride the slipper mayv be in
any of the following three positions: (a) in contact with the top of the
railhead, (b) in contact with the underside of the railhead or (c) no
contact at all. From an analysis standpoint it becomes necessary to
appreciate the rail roughness and the external aerodynamic forces which
induce pitch and bounce motion during the ride. This motion in turn
induces high inertia forces on the sled. Accurate determination of these
inertia forces requires extensive dynamic analysis and testing.

Research in the dynamic analysis and simulation of vehicles traversing

on rough terrain has been drawing increasing attention in recent years.

The problem is of generic interest to a number of organizatioms. For

example, the automotive industry is interested in this problem in order to




Figure 1.

Ten Mile Test Track at Holloman AFB
2
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gain a competitive edge by improving the ride quality of their vehicles.
The safety and structural integrity of airplanes taking off from bomb
damaged runways is of the utmost concern to the Air Force. Under the
"HAVE BOUNCE" program the Air Force is developing runway repair standards

(3)

for a number of airplanes in its inventory. Similar problems are
encountered by Army vehicles while traveling on unpaved terrains. The
interest of the present study is the dynamics of test sleds traveling on
rails at supersonic and hypersonic speeds.

The analytical model for simulating the dynamics of a vehicle ride

(%) (1) the vehicle bodyv, (2) a

generally consists of four subsystems:
suspension system, (3) tires and (4) terrain. The speed of the vehicle,
the surrounding environment and the terrain profile provide the dynamic
input to the system, whiie the stiffness, mass and damping properties of
the remaining three subsystems determine the dynamic response. The envi-
ronment and the terrain profile are gererally described by random parame-
ters. Even though the stiffness, mass and damping properties are deter-

ministic, they cannot be accurately represented by analytical models

because of theilr complexity. The usual procedure is to represent the

subsystems by simple empirical models and validate the empirical parameters

by extensive testing.

Improving the numerical modeling of the subsystems is the current
research interest in vehicle system dynamics. The models can range from
very simple linear models to complex nonlinear representations. An
interesting discussion on tire models for dynamic vehicle simulation is
presented in Ref. 4. Four tire models were considered, and each model was

integrated with the other three subsystems to simulate a complete terrain-

vehicle model to study the dynamic tire behavior. The paper contains




analytical and experimental results obtained from a three axle military
truck. A computer program to analytically simulate the rough ride on bomb
damage runways was developed by the Boeing Company for the Air Force.(3)
The mathematical model of the aircraft includes horizontal, vertical and
pitch rigid body modes, elastic modes of the airframe, and nose and main
landing gear modes. Tire forces are generated by a nonlinear spring model.
The program is quite preliminary, and it is being tested for validation.

A computer program called "SLEDYNE" for simulating a sled ride on

) The elastic sled body,

rails was developed for Holloman Air Force Base.
slipper beams (springs) and rail roughness profile are the subsvstems con-
sidered in the program. The flexible modes of the bodv and the necessary
mass matrices are generated external to the SLEDYNE program. The basis for
the rail roughness profile is measured data from 400 feet of track. This
data is used as a random sample to generate the profile for the entire
length of the track. The slipper-rail stiffness parameters are empirical
and are input to the program. Similarly the aerodvnamic parameters are the
external input. The mathematical model includes two rigid body modes (the
bounce and the pitch) and a number of elastic modes of the bodv. The in-
termittent contact between the slippers and the rails induce discontinuous
force input. The transient response of the vehicle is determined by
numerical integration of the dynamic equations. The peak accelerations,
velocities, displacements and the inertia forces at all the mass points are
the measures of the response.

The SLEDYNE program represents a preliminary attempt at generating a
rational dynamic model for simulating a high speed sled ride on rails, but
the documentation of the program is less than adequate. There are practi-

cally no guidelines as to how the slipper-rail stiffness parameters are to




be generated or how they affect the response. Similar deficiencies abound
in the description of the aerodynamic and other empirical parameters.

The purpose of this effort is to study the potential and limitations
of the SLEDYNE program, expand its documentation and make parametric

studies with the slipper-rail stiffnesses and rail roughness profile.

e i g SN -



II. DEVELOPMENT OF THE SIMULATION EQUATIONS

The movement of a vehicle along a rail bed would obviously induce
high inertia forces which in turn produce severe dynamic stresses and
displacements. The dynamic stresses required for predicting the sled's
strength, with adequate margins of safety, can be obtained by a dynamic
analysis using a finite element model of the sled. However, the tracnsient
response analysis of the full model can be prohibitively expensive and

thus is not very conducive to design trade studies. Yet, it is possible

to study a reduced system of equations for the transient response by modal
reduction. The significant modes (i.e. the primary bending modes) that
participate in the pitch and bounce motion are determined bv a free vibra-

tion analysis of the full finite element model of the sled with supports at

the slippers. The dynamic reduction is carried out by combining a few
elastic bending modes with two rigid body modes which can adequately simu-
late the dynamic motion of the sled. In order to generate the dynamic
forces for analysis, the use of SLEDYNE with the NASTRAN program was
, carried out as subsequently discussed. Yet to supplement the readers
understanding of SLEDYNE's analytic approach to the dynamic equations, the
author will present the necessary expressions and their development so that
the effect of changes in rail roughness and slipper stiffness can be more
fully appreciated.
! A finite element model of a sled consists of a number of nodes con-
J nected by elements. Each node is assumed to have six degrees of freedom
(three translations and three rotations). The dynamic equations for free

¢ vibration of a sled can be written as

(m]{i} + (k){u) = ¢ (1
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where {u} is a vector of displacements corresponding to the number of
degrees of freedom of the sled, and [m] is the diagonal matrix of the

lumped parameter system such that m, is the lumped mass at the ith node,

i
and [k] is the sled's stiffness matrix.

The solution of the harmonic equation is given by
{u} = {¢} cos (wt + )
{u} = - w{¢} sin (vt + ¥) (2)
{i}) = - w{¢} cos (wt + )

Substituting Eq. (2) into Eq. (1) gives

(’wz[m]{:} + [k]{¢)}) cos (.t +¢) =0

which implies
wl[m) (s} = [k){:" (3)

Eq. (3) represents a standard eigenvalue problem. Its solution gives the
eigenvalues and eigenvectors which represent the frequencies and mode
shapes, respectively. Thus {¢}i is the normal mode of vibration associ-
ated with frequency w, .

By providing supports at the slippers, only the motion due to defor-
mation of the sled is considered in Eq. (1). This motion must be enhanced
to include rigid body modes for a true representation of the sled ride.
This enhancement as well as the reduction in the system of equations can
be accomplished by representing the motion of the sled in the vertical
direction, w, as the sum of a set of displacement functions: the pure
vertical translation, z, the rotation, €, of the rigid sled about its
center of gravity (cg), and the normal modes of vibration, {o}i, of the
sled restrained against translation at the slipper support points. The

{o}i are orthogonal to each other but not to the rigid body functions.

Therefore the vertical displacement, w, of a sled, at time t and station x
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along its horizontal axis is given by

V4
wix,t) = 2(t) + (x-x_)6(t) +] {s(x)}; q,(t) (4)
& 1
where qi(t) is the normal coordinate or amplitude of {¢(x)}i. The first
few transverse bending (vertical) modes are included in this representa-
tion. The {¢(x)}i in Eq. (4) contain only the vertical components.

. Since the structure of the sled has been idealized as a finite ele-
ment model, the vertical motion of the discrete node points on the sled
is given by

e g ]
WG} 1.0 G{ITxcg 020 9227 = o] {02 ®
| | l 921 $227 7 O] |
: | =C | pz(t) +¢ | o(t) + : ' l : (5)
L l | | . |
’ )
/ where N is the number of nodes of the original finite element model, k is

the number of modes included such that O<k<N, and ¢1j(x) is the ith compo-

nent of the jth mode.

The equations of motion will be derived using Lagrange's equatiOn(6)
d(aT) 3u 3F W
Tl st =5 +Q. (6)
de \3n, ) ®n, ~ 30, Ang i

vhere T is the kinetic energy, U is the strain energy, F is Rayleigh's
dissipation function, W is the work and Qi are the nonconservative forces.
The ny represent the independent variables of motion, z, 6, and qj,
i=1,...,k.

The kinetic energy T is given by

T = % )T [m] (o} 0

The mass matrix [m] contains only the degrees of freedom corresponding to

‘5 the vertical displacements of the nodes.
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Substituting Eq. (5) into Eq. (7) gives

:{1.0,...,1.0}3 + {X, - XX ! -
ro1 ﬁ Yz (t) {Xl Xcg, » Xy hcg}v(t)f My
C o+ {q g - - - T P
N f‘¢12 227 T oy
o . m
—m e Y
St T Tt -
_/ ~ ~ N - )
1.0 X, -X - :
; 17 %! 11 %12 ‘e 9 (0
Z(t) +7 Se(ey o+ f21 S227 T Ty
. , ,‘
¢ 1.0 - " - - - .
N, AN cg. ‘N1 N2 Nk q, (t)

After simplification

1.0 1.0--- 1. (o ‘- - . (:
X -x o 9x ;mll mu(k1 Xcg) B¢y mllc;;l ‘2
g N cg It

J

1 2 (- -
oL N 8 -t ™22 P20%0Reg) Bpptarem - mmyty !l |f
T= E \z,e,ql- 'qk>l ' ) ) ‘ ) ! ! 3 q]f’
o ' v | 1 ! !
. | ! | | | | N
jk'n St - (X.~X_) ¢ ' )
I T i Ot i N
(8)
Therefore
1l «.T .
T=3 {n)} [M]{n} (9)

where [M] is a (k+2) x (k+2) symmetric matrix whose elements are given by

My =

miism

o~z

i=1

where m is the total mass of the sled.

11




H 2
m - =1
121 11 (%17%cp)

- My =
where I is the pitch inertia of the sled.
N

. 2
My 121 D15 (§-2)

for j>2

or

PR .
My, = (o} ,lul{e}, ,

Theref M
erefore 53

For p>2, £>2 and p¥%,

N
Mo = 121 5 (p-2)"11%1(2-2) = Mgp = O

since the modes are orthogonal.

p N
Mg =My = 121 myy (xg7Xeg) = 0

is the generalized mass of the (j-2)th mode for j>2.

because by definition the first moment of the masses about the cg of the

body 1is zero.

. N
i Mlj = Mjl = izl mii¢i(j—2) for j>2
N N
' sz = 121 (xi—xcg) mii¢i(j—2) = sz for 3>2
) ,
Thus [M] can be written as
] — ) -
N " 0 1 M3 M (ke2)
y L _l__:_M”_ T M)
| [M] = M]‘3 M,y | M3y
L ) ' E l . 0
Loy Mie2) Make2) | 0 .
o | (k+2)(k+2)J

(10)
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The strain energy U is given by

1
U=y U (1)
where [k] is the stiffness matrix of the sled with respect to the degrees
of freedom of the original finite element model. The strain energy with

respect to the generalized coordinates {n} can be written as

U =3 () (K]{n} 12)

where [K] 18 a (k+2) x (k+2) matrix whose elements are given by

Kj1 = Xy

since there is no strain emergy in the rigid body motion.

=0

K 0 i>2, §>2 i#j

i3 =K1 T

since {¢}i and {¢$}, are orthogonal for ifj

h|
T

K, = {¢}j[k]{¢}j i>2 §=1-2

or

2
Kig = Myy0y

where wj is the natural frequency of the jth mode, and Mii is the general-

ized mass of the jth mode where 1 is j+2. Thus [K] can be written as

w2

]
|
]
T
[K) =F~--, 13)
)
|
]
) k+2) (k+2) N__J

M

Assuming that the damping forces are proportional to the generalized

velocities, the Rayleigh Dissipation function is given in the form

F =3 (T CHA) s

13

B A R s P NPT SO



where [C), the damping matrix, is assumed to be a (k+2) x (k+2) diagonal

matrix of the form

- _
o
' 0
0
et e ———
[c] = ' Gy O (15)
: 0l TN
| 0 N
o € (k+2) (kc+2)

The work, W, is a product of the force in the slipper springs and the
displacement of the attached structure. Since the attached structure was
pinned in all the modes the springs do work only on the rigid displace-

ments, z and 6. The forward and aft slipper forces are given by

= - ® .E X - 16
FF szF(z + zFe, 2 + Y(X + 2)) DF (16)
(
= -k & - £ et
FA kAsA(z er, 3 + Y(X)) - DA an

with the forward and aft spring forces given by

; Fpo=- ke 8p(z + 2.8, 5+ Y (X +2))
Al S :
N and
\ _ < € ¥
4 FAS = - kA GA(z - R0, 5t Y (X))
) d The definition of the § function is as follows:
! 0
5 S(u,v) = u-v, u>v
=0, Jul <v
= U+V. u <=-v




kF and kA are the forward and aft slipper support stiffnesses, respectively,
€ is the glipper gap, QF and 2A are distances from the sled cg to the
slipper supports, Y is the rail height when the aft slippers are at down-
track position z, and £ is the distance between the forward and aft
slippers, DF and DA’ the damping forces, which act only when the slippers

are in contact are given by

; Dp = Cplz + 2.8 - v¥' X + 1)) A (18)

DA = CA(Z - EAB - VY'(K)) (19)
where v is the sled downtrack velocity and Y' is the local slope of the

railhead. The damping coefficients CF and CA are given by

- 20

cC.=(C_ +¢C) —

F P b kA + kF

2k

A (21)

- CAs(Cp+Cb)kA+kF

where Cb’ the damping coefficient at each slipper for bounce, is given by
-1 (2 v Fi0m)

% =% (252 ky ¥ kpm (22)

where m is the total mass of the sled and CP’ the damping coefficient at

each slipper for pitch, is given by

’ 1
, C = ——— (2¢,/, 2 2

where I is the pitch inertia of the sled. Ez and Ee are the proportion
of critical damping of bounce and pitch, respectively. The derivation of

! Eqs. (20) - (23) is given in Appendix A.

Thus the work, W, can be written as

r A (24)
S =z _S
¢ W= —2 GF(U, V) + 2 SA(U' V)




i
i

. Now that the terms associated with Eq. (6) have been found, it is possible

to substitute Eq. (9) into Eq. (6) giving
TP L,
3711- j= 1377 =
and
‘ 3’1’_ )2: M .n,+M 7 i=3
=3, ... k+2
My gup 13737 Tuae
Therefore
k+2
= \ = = I n 1= ],2
and
2
o ¢ 3, )= LMy Hy 4+, 1=3, ... k+2
| a
( Thus
d /9T .
Fr3 (—ﬁ') = [M]{i#{} (25)

Furthermore by substituting Eq. (12) into Eq. (6) for an arbitrary 1,

the expression for % can be formulated as

i
U

“ an, = KisMy

N i

) Again since i was arbitrary,

: U

Y 3 = [KIn) (26)

4

4 If one substitutes Eq. (14) into Eq. (6) and observes that [C] was
I .
. assumed diagonal, then the calculation of -g%— is the same as the calcula-
. i

{
ol tion of &.

3ni

-

r——

16




Therefore,

ar
an

F e [c1(h) @n

From Eq. (24), W = W(z,0), therefore in Eq. (6)

oW W W

—

vy 0' eesey 0}

an {32* 30°

From Eq. (24)

BFF .
M. S 3
527273 V) 7 FE

Also from Eq. (24)

] aFF
W _1_ s 1
26 " 2 a6 EF(U’V) + 2 FF

p aF %
BGF(U,V) A - aGA(u.V)

1 S 1
—57— *72737 Salusv) *EFAS 57

1,5 1 1., 1z 1
7 (-kF)(SF(U.V) + 7 FFS + 7 ( kA)GA(uaV) + 7 F;‘S

=F_ +F (28)

aF z
a6

S -
7738 SaluV) * 3 Fp —5—

S S

1 x 1
7 (ke2e)dp (uv) + 5
F F

AL

Fr 2 + 7 (k) (2033 (uv) + 3 Fa ()

s
F
Asg‘A

2 2 2
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Then in matrix notation

-~ ~N

F Fr .

Fo + A

Fofe - Fp %

FA% = Fa A
oW _ s s
M { 0 # (30)

L 0
-’

The virtual work done by the damping forces DF N

W = (DF + DA)az + (DFRF - DAzA)ce

Now 8z = Bnl and 66 = 6n2, thus Q1 =D _ + DA and Q2 = D_%

Fr - DA%

Then in matrix notation the nonconservative forces are given by

F

DF + DA

D.2. - D,2

F°F A”A

Q- 0 (31)
0

From Eqs. (30) and (31) the forcing function {F} is given by

s =N ~
(Fg =D.) +(F, -D,) F_+F
Fo O F AT A (" F*'a
(Fr 2 = Dety) - ‘FAS‘A = Datp) Fete = Pty
: R R
. 0 J L 0 J

by Eqs. (16) and (17).



Combining Eqs. (25), (26), (27), and (32) the equations of motion can

now be written as

MI{n} + [C1{d} + [K]{n} = {F} (33)

where matrices [M], [C] and [K] and vector {F} are defined by Eqs. (10),

(15), (13) and (32) respectively and {n} = {z, 8, ;s qz""’qk}

As a final step in determining the coefficient matrices in Eq. (33),

it becomes necessary to formulate the [C] matrix corresponding to the

elastic modes. Since the rigid body vertical translation, z, and rotation,

8, are uncoupled from the normal coordinates, 95> i=1l,...,k, Eq. (33) can
be rewritten as
33 (“17 rss o (“q Fss“f N
0 P c 80 2 4
M < >+ 4 < E‘* : H‘-’.‘.: e ' >e 0
_ N | t' 0 N | ’ ‘ | o S !
L M e, Carnaen (N Moy ey %
~ o )
(34)
Egs. (34) represents k uncoupled differential equations. For any i
Eqs. (34) can be written
M..". + C..q. + M..\? Q.. =0 i =3 k+2 (35)
ii%-2. 7 “i%-2 7 "ii%-2%-2) SRR
Assume [C] = 2y[M] where vy is a proportionality constant.(7) Then Eq. (35)
becomes
M.Ge o4 2M Qe ot Mol 4O o = O (36)
nqh-Z; ii-2) ii4i-27%-2)
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Thus 1if qi_z-AeSt, the characteristic equation becomes
2 st st 2 st _
M.i.iAS e + ZYMHASE + Mii“ﬁ-?fe = 0
or
(s2 + 2ys + w(i__z))AeSt =0 (37)

The roots of Eq. (37) are given by

B (38)
For the critically damped case, yz-mi_z-, l.e. v =0y o where vy, 1s the
value of y corresponding to the critically damped system. Then %—-E-l

o
represents the overdamped, critically damped and underdamped systems respec-

tively. If 51-2 is assumed to be %—, then the damping coefficients can be

[e)
written as
= = X .
Cig = 8ty = 29 wi M4
or
Cit = 28(i-2)9(5-2)M5 (39)

Thus the elements of Eqs. (33) are completely defined. Additional
quasi-gteady forces and moments, Fs and MS, are included in the definition

of {F}, Eq. (32), such that

\
Fp +F, +Fg
Felp = Fy8, + Mg
{F} = 0 (40)
1
]
|
0 J
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A discussion of these forces is given in Ref. 5. Egs. (33) represents a
system of (k+2) second order differential equations, the solution of which

5 will be discussed in the next section.
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I1I. DESCRIPTIUN OF AN INTEGRATED DESIGN TOOL

A schematic of the design process is given in Fig. 4. The purpose
of the scheme is to establish communication between two main programs.
The first program, "NASTRAN" is a finite element program which can solve

(8),(9

static and dynamic structural analysis problems. The second pro-
gram, "SLEDYNE" numerically integrates the reduced system of equations
(Egqs. 33) by a predictor corrector method. The program SGAMT provides
communication between NASTRAN and SLEDYNE. Similarly the program SLEDNAS
transmits data from SLEDYNE to NASTRAN for a static analysis.

In the derivation of the equations of motion, Egs. (33) the normal
modes of vibration {¢}i,i=l,...,k, the natural frequencies ws» the general-
ized masses and the diagonal matrix of the lumped masses [m] were assumed
to be known. This information was obtained by conducting a free vibration
analysis of the sled restrained against translation at the slipper support
points. The sled was modeled using finite elements, and a normal mode
analysis was made with the NASTRAN program, rigid format #3, using the
inverse power method. The Nastran finite element model definition, natural
frequencies wy and normal mode shapes {¢}i, lumped mass matrix [m] and the
generalized masses are reformated via the translator program SGAMT to
SLEDYNE requirements.

Egs. (33) are solved by the "SLEDYNE" program. The program computes
the time history dynamic response of a sled traversing on a track which
has roughness characteristics derived from sample track measurements. In
addition to mass, frequency and mode shape data SLEDYNE requires aero-
dynamic data in the form of time histories of thrust, 1ift, drag and
center of 1ift. Additional data required for definition of the sled geom-

etry is given in Fig. 5. The system of (k+2) second order differential

22
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equations is reduced to & set of 2(k+2) first order differential equationms.
The fourth order Adams-Moulton predictor corrector method based on the
classical fourth order Runge-Kutta method was used for the time integra-
tion.(lo)’(ll)
The most important SLEDYNE results are a set of force vectors. These
are the inertial forces acting on all the mass points of the sled. For
each slipper at the peak time, the vector of accelerations of the inde-

pendent variables, (2, 5, al""’ak) i8 used to calculate the inertial

loads by the following equation

1.0 XX oo 413 0127 " e[|
| { "
) . B(t) + [y 990~ = ~O3c | |
{F;} = - [m] I E(e) + | 2,1 2,2 \ I (41)
! | P { 1
'. | o N
1.0 X ¥eg | a1 N2 T "t | \%k

The inertial forces obtained from the SLEDYNE program and the original
finite element model are integrated by the SLEDNAS Program to generate
data for a NASTRAN static analysis. A NASTRAN static strength analysis

is performed, and the response of the sled to the inertial loads is
measured via the total strain energy of the sled, the stresses in the
elements and the displacements at the nodes. It is possible that with the
obtained data the adequacy of the sled, with respect to strength, could be

evaluated.
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1V. SIMULATION OF RAIL ROUGHNESS PROFILES

The values of rail roughness Y(Z) and Y(z+£) were required when
evaluating the forward slipper force FF and the aft slipper force FA
defined in Eqs. (16) and (17), respectively. The rail roughness model
used in SLEDYNE is based on a set of 430 measurements made of rail height
on a 400 ft section of the Holloman track. The data from this 400 ft
track is used as a sample to generate a rail roughness profile for the
entire track. The description of how this data is generated is not clear
in Ref. 5. The following discussion is based on a direct reading and
interpretation of the SLEDYNE program.

The measurements were divided into ten unequal segments such that the
first value of each segment is zero. The ten segments were arbitrarily
assigned the following number of measurements, respectively: 41, 61, 48,
40, 44, 36, 31, 21, 63, and 45. The rail roughness profile for the leagth
of track needed for each SLEDYNE run is constructed randomly from these
ten segments. The sled downtrack velocity, v, and the total time of the
run, tf, are required SLEDYNE data. Since the total distance, XT’ that

the sled will travel is

ET = vtf + 100 (42)

a rail roughness profile will have to be defined to cover that length of
track. The factor 100 is simply to assure an adequate length of track.
SLEDYNE internally generates this profile (which will be referred to as
the original SLEDYNE profile) as follows.

To define the segments in the profile, the program uses a random
number generator function y=RANF(A), which gives a random value of y such

that O<y<l for every function call. Thus,
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J = [10y + 1] (43)
is an integer such that 1<J<10, where [ ] is the greatest integer func-
tion. So for every value of y the corresponding Jth segment is included
in the profile. The order of the segments as well as a count, NC, of the
total number of measurements defining the profile is maintained internally,
The profile is completely generated when NC = [(vtf + 100)(1.2) + 1]. The
factor 1.2 simply refers to a 20% increase in the length of the track to be
covered. Now the total travel distance is divided into NC divisions, and
the rail height is available at each of these divisions. For the integra-
tion of Egs. (33) each of these NC divisions is further divided inte ten
parts, and the response of the sled is computed at 10 NC points.

For a dual rail sled two profiles are generated, one for each rail.
Profile generation is completed before the solution of Eqs. (33) begins.
On CDC computers RANF(A) generates the same sequence of random numbers
every time. Thus for every SLEDYNE run the same profiles will be gencrated,
thev only vary as to their length. The SLEDYNE rail roughness profilc for
the right rail for the first 3 selected segments is given in Fig. 6.

The values of Y(X) and Y(X+L) for a given value of X is obtained from
the rail roughness profile generated earlier. For example, the rail height

Y(z) at a distance X is computed by the straight line interpolation

— yl - yo —
Y(X) = v+ ;l—_x—o X - x)) (44)

The quantities Yo and y, are the rail heights at distances X, and X5

which are defined as

b
1A
1]
A
»“
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The actual locations of xl and xO are determined as follows:

A parameter N* is defined as

N* = ”:2(_; + lj! (43)
10

where [ ] is the greatest integer function.

Then

x, = 10N* and x = 10(N*¥ - 1)
1 o
This interpolation is necessary because the rail heights are available
only at every 10th integration point. The rail height for the forward
slipper Y(X+£) is computed in a similar manner.

Initially, of course, at t=Q, y0=0 and vy= the second entry of the

first segment of the profile. At time t=t and ¥i= the third entry

1’ o1
of the first segment of the profile.

The author recognizes that SLEDYNE'S random approach toward rail
roughness is really not random enough. It is felt that a profile function
should be associated with each individual slipper. Thus, the Monte Carlo
approach was chosen as an alternate procedure for generating a rail rough-

i
(12,(13),(14) By definition '"Monte Carlo" refers to an

ness profile.
approach for reconstructing probability distributions based on the selec-
tion or generation of rardom numbers., The original SLEDYNE profile was
generated based on a set of 430 rail measurements. This set of measure-
ments was designated by {Vi}’ i=1,...,430. For the Monte Carlo approach
the {Vi} was normalized by V___ where lViliIVmaxlfor all i. Thus -1<v <l.
A sequence of j intervals were arbitrarily defined between [~1,1], and the
mean value, VALj, was assigned to each interval (See Columns 1 and 2 of

Table 1). The probability distribution of rail measurements given in

Column 4 was generated in the following manner: The number of elements

29




00°1-86"
86" -96°
9" -06°
06" -€8°
£8" -GL°
S¢LT -99°
99" -2¢¢°
25" -Bt”
BE™ -L2°
et -el”
6L" -vL’
Lo -2’
2 V]
oL -0
0" -¥0°
0" -¢0°
0" -lo°
0" -00°0
(9)

3T3S -0 9INOTY 3JONVY

ssauybnoy |iey jO UOLINGLulSiQ AILL1QRGOad | I[qe)

00°1
86"
96"
06"
£8°
T
99°
¢s’
8t”
e
6L’
120
at’
or-
L0°
vo°
¢0’
10°
(6)

(x)4
402

20° 6 L
20° 6 9°
90° b2 N
L0° 62 v
60" 8¢ £
60 (£ 2
vl 65 L
vl 29 0
(- 6 L -
L0 L€ 2 -
50° 12 £ -
£0° (L v-
20° L G -
£0° £l 9°-
£0° £l L -
20° ol g -
o g 6 -
10° £ 0°'L-
(v) (¢) (2)
(x)4 JONIHHNII0
JWd 10 INTVA
AININO3YA

(s£° *59° )
(s9° “ss° )
(s6° “sp° 1]
(sv- ‘s ]
(se° “sz* ]
(s2° ‘st- 1
(s1° ‘so° ]
(s0° “so'- ]
($0°- ‘st -]
(sL°- ‘52~ ]
(52°- ‘se°- ]
(S€°- “sp°- ]
(st°- *s5°- ]
(s6°- “s9°- ]
($9°- 52°- ]
(§¢°- *s8°- ]
($8°- “g6°- ]
($6°- “00°L-]
(1)
X
WAYILINI

+

30




of {Vi} which occurred in each interval was recorded under Frequency

of Occurrence, FREQj (Column 3), and the probabilities PMFj calculated by

FREQ,
PMF. = 730

The Cumulative Distribution Function, CDFk (Column 5), was calculated by

CDFk =

[ N b0

PMFj,k=l,..., No. of intervals. For every k a range along the
1

|

0-1 scale was defined (See Column 6 of Table 1). Table 1 is the basis
for the Inverse Transformation Method for generating random variates.

The Inverse Transformation Method can be explained as follows: In
statistical terminology, if zz denotes a random variable and xj is a

specific value of the random variable, then the probability mass func-

tion (PMF.) can be defined as
f X, = P XX = X,

such that

0<f(x) <1

and

NO. OF INTERVALS
T f(x.,)=1
=7

where P(zz%xj) is the probability that the random variable XX takes on a
value of xj. For example the probability that the rail height takes on a
value 0.1 is 0.14 or P(§3%0.1)=0.14, P(zz%.2)=.09 and so on. The Inverse
Transformation Method consists of generating another random variable U'

which is uniformly distributed over the range [0,1). Then by definition

P(0.<U'<0.01)=0.01, P(.01<U’'<,02)=.01, P(0.02<U'<0.04)=0.02 and so on

(See Columns 6 and 4). Since the probabilities for the given ranges of




i

U' are respectively identical to the probabilities for the given values
of XX, it follows that U' can be used to simulate or "artificially recon-
struct" occurrences of XX from Table 1.

The random number generator function RANF(A) is used to generate a
rail roughness profile (called the Monte Carlo profile) using the Monte
Carlo technique. A Monte Carlo profile is generated independently for
each slipper and in real time as the sled is moving down the track, i.e.
at the same time that Eqs. (33) are being integrated.

Now the rail roughness profile by the Monte Carlo approach can be
generated by using Table 1. At a time t=t the sled has travelled gs
feet along the rails where Xg is the downtrack position of the aft
slipper. Using the random number generator, the value of U' is determined
by U'=RANF(A). Now the value of U' is located in the interval R along the
0-1 scale (Column 6) of Table 1. The corresponding j interval and VALj
are identified from Column 2. The values of N*, x

, x, and Y(i ) are
—S

0’ "1
calculated by Eqs. (44) and (45). Similarly the value of Y(XS+£) is
determined corresponding to the distance zs+£. As in the original SLEDYNE
profile, the rail roughness value Y corresponding to the intermediate value
of X is found by linear interpolation between two consecutive values of

the profile. The Monte Carlo rail roughness profile for the right forward

slipper for the first 100 points is given in Fig. 7. Another method of

defining rail roughness is given in Ref. 15.
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V. RESULTS

This section is divided into two parts. The first part describes the
finite element model of a particular sled. In the second part a dynamic
analysis of the sled is conducted and its response to a variation in both

slipper stiffnesses kA and kF and rail roughness profile is examined.

Model Description

The MX forebody configuration A rocket sled was chosen for this
study. The general arrangement of this sled is given in Fig., 8. Config-
uration A was designed as a high frequency sled with a fundamental fre-
quency of approximately 100HZ without payload masses. The sled forebody
consists of a roof, a floor, two side walls and an intermediate wall at
the center running longitudinally and three transverse bulkheads. All
these components are constructed primarily of aluminum honeycomb panels
with different face sheet thicknesses and core cell sizes.(16)(17)

Initially all the honeycomb panels were modeled with sandwich ele~
ments. In NASTRAN, QUAD1 and TRIAl, the quadrilateral and triangular
elements respectively, were chosen to model the sandwich elements. The
fin structure in the front (See Fig. 9) was modeled with homogeneous
quadrilateral and triangular elements, QUAD2 and TRIA2. All of these
elements have both inplane and bending stiffnesses. The finite element
model with 53 nodes and 63 elements is shown in Fig. 9. The model has
three longitudinal bulkheads and four transverse bulkheads. The sandwich
elements modeling the floor had a face sheet thickness of .144" with a
1.856" core. The remaining sandwich elements in the bulkheads and on top

of the sled had a face sheet thickness of .126" with a 1.874" core. The

homogeneous elements modeling the front fin of the sled were .19" thick.
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The position of the four slippers on the sled is indicated by an * in

Fig. 9. Each slipper is identified by a viewer positioned on top of the
sled facing the front of the sled. Fl implies forward slipper 1, F2 im-
plies forward slipper 2, Al implies aft slipper 1 and A2 implies aft
slipper 2. Note that the viewer position implies that F1 and Al will ride
the right rail.

Realistically this model overestimated the stiffness and indicated a
fundamental frequency of approximately 150HZ. This overestimation of
stiffness is a result of the constant strain triangles and quadrilaterals
used to construct the sandwich elements in the bulkheads. Since the bulk-
heads have high stress gradients, these elements overestimate their stiff-
ness.(ls) In order to obtain more realistic frequencies, the sandwich
elements in the bulkheads in the revised model were replaced by aluminum
SHEAR and ROD elements. The final model had 53 nodes and 98 elements and
is also illustrated by Fig. 9. The fundamental frequency of this sled is

approximately 103HZ.

Dynamic Analvsis Results

The parametric study in this section involves variation of the rail
roughness profile and the slipper stiffnesses. Both of these affect only
the right hand side of Egqs. (33), which includes the forward and aft
slipper forces (See Eqs. 16-23), In Section 4 two different rail rough-
ness profiles were defined, the original SLEDYNE profile and the Monte
Carlo profile. For each of these rail roughness profiles the slipper
stiffnesses kA and kF will be varied in determining the response of the
sled., The dynamic analysis of the sled was conducted in accordance with
Fig. 4.

Initially a Nastran free vibration analysis was performed on the sled
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model, and the first 6 frequencies and corresponding mode shapes are given
in Fig. 10. The mode shapes and the undeformed sled are indicated by

i dashed and solid lines, respectively. It would appear that the mode shapes
realistically depict the natural frequencies normally associated, through

experience, with this type of vehicle. The frequencies A

10 Moo )\3, and X

6

. clearly depict vertical bending modes while XA and AS pictorially represent
in-plane bending modes. These mode shapes, their generalized masses, the
matrix of lumped masses, and the Nastran data were integrated and reformated

by the translator SGMAT for Program SLEDYNE as shown in Fig. 4.

The aerodynamic and geometric data required by SLEDYNE (See Fig. 5)

were provided by Holloman Air Force Base. The velocity of the sled, v,

was 2000 ft/sec and the total time of the run, t_, was 2.001 seconds. The

f

baseline values of slipper stiffnesses (supplied by Holloman) were

kF=kA=96.0x104. Additional values of slipper stiffnesses for parametric

study were chosen as kA=kF=48.OxlO4 and kA=kF=l92.0x104. Thus, six SLEDYNE

runs were made: The original SLEDYNE profile with three separate values of

slipper stiffness and the Monte Carlo profile with three separate values of

slipper stiffness.

For the original SLEDYNE profile for each value of slipper stiffness,

AR the vector of accelerations of the independent variables, (%, g, ﬁl,...,dﬁ)
) is given in Table 2a at that time when the dynamic force is a maximum for
each slipper. Here slipper 1 implies forward slipper 1, slipper 2 implies
{ forward slipper 2, slipper 3 implies aft slipper 1 and slipper 4 implies
aft slipper 2. (See Fig. 9). Accelerations d4 and qs are zero since modes
{ 4 and 5 were in-plane bending modes which do not contribute to the vertical

displacement w(x,t) of the sled. These acceleration vectors are used to

4

) calculate the inertial loads by Eq. (41). Note that for a given value of

r
!
S

4
!

38




slipper stiffness kA=kF, the peak times vary for each slipper. Also as kA
and kF increase, the peak time for the same slipper changes. For increas-
ing values of stiffness, the vertical acceleration : increases in absolute
value for the forward and aft slipper 2, while Z assumes its maximum value
at kF=kA=96x104 for the forward and aft slipper 1. The results imply that
the slippers on each rail move in the same direction due basically to the
similarities of the rail roughness profile on the same rail.

In considering the rail roughness profile contribution to the moving
vehicle, it would appear that when one considers a set of slippers on a
given side, one would see like movement. But to determine this, data for a
constant value of slipper stiffness kA=kF must appear with the peak time
comparisons approximately equal. This does occur in Table 2a for
kA=kF=48.0xlO4 at a peak time of = 1.4. Realistically speaking, one would
assume that this type of phenomena would actually occur due to the stiffness
of the vehicle. It is very strong in bending resistance as observed by
the insignificant values of g.

Table 2b gives the vector of accelerations of the independent varia-
bles, (%, §, ql,...,q6) for the Monte Carlo profile. As in Table 2a the
absolute value of 8 is small for all values of stiffness. In this table for
increasing values of stiffness the vertical acceleration % increases in 7
absolute value for the forward slippers 1 and 2 and the aft slipper 2, while
2 has its maximum value at kF=kA=96XIOA for the aft slipper 1. A different
rail roughness profile was generated for each slipper when using the Monte
Carlo technique. Thus each slipper experiences a different profile.

From Tables 2a and 2b there will be a set of inertial loads for each
value of slipper stiffness for each slipper, i.e. 24 sets. Each set of

inertial loads was integrated separately with the NASTRAN data from the
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free vibration analysis and reformatted by Program SLEDNAS for a NASTRAN
static analysis as shown in Fig. 4.

A NASTRAN static analysis was performed for each set of inertial loads
and the response measured in two ways: The total strain energy of the sled
and plots of the deformed sled. For the original SLEDYNE profile Table 3a
gives the total strain energy of the sled in in-1b for each value of
slipper stiffness for each slipper. Table 3b gives the corresponding
results for the Monte Carlo profile. In general for each profile the total
strain energy increases with increasing values of slipper stiffness kA=kF'
And this becomes more obvious when the peak times for the same slipper are
approximately equal. An exception is noted for the original SLEDYNE pro-
file for forward slipper 1 when kA=kF=96xlOA, and for the Monte Carlo
profile for aft slipper 1 when kA=kF=192x104. In both cases the strain
energy decreased as the stiffness increased. This phenomena implies that
the total inertial load at the mass points of the sled decreased from that
generated for the previous value of stiffness. It is possible that for
any given value of stiffness, the contribution of the vertical acceleration
Z offsets the contribution of the elastic mode accelerations, thus result-
ing in lower inertial loads. The inertial loads calculated by Eq. (41) are
a function of the maximum accelerations given in Tables 2a and 2b.

For the original SLEDYNE profile Figs. 11, 12, and 13 give the
deformed shape of the sled superimposed on the undeformed shape for the
indicated value of slipper stiffness. As before the deformed sled is drawn
with dashed lines while the original sled is drawn with solid lines. Defor-
mation plots A correspond to the inertial loads calculated for forward
slipper 1; deformation plots B correspond to the inertial loads calculated

for aft slipper 1; deformation plots C correspond to the inertial loads
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calculated for forward slipper 2, and deformation plots D correspond to
the inertial loads calculated for aft slipper 2. Some observations can
be made about the deformation plots by studving Fig. 11. Upon examining
the accelerations in Table 2a for the forward slipper 1, one can observe
that not only #=.0933 is small in absolute value compared to dl=-.4320,
but also ql exceeds by a minimum of 70% the magnitude of the remaining
elastic mode accelerations. Thus from Eq. (41), the contribution of the
first mode in calculating the inertial loads far exceeds that of the rigid
body modes and the remaining elastic modes. This contribution is evident
if Fig. 11A is compared with the first mode given in Fig. 10. Similarly,
examining Table 2a for the aft slipper 1, the contribution of %, dl and 63
is noted, and a comparison of Fig. 11B and Fig. 10 for modes 1 and 3 can be
made. For the forward slipper 2, Table 2a gives the largest maximum accel-
erations as dl=—.3785 and d6=.2214. However, comparing Fig. 11C and Fig.
10, the contribution of the first mode appears to be predominant compared
to the sixth mode. For aft slipper 2, Table 2a gives the largest maximum
accelerations as dl=.5553 and d6=-.3554. In this case comparing Fig. 11D
and Fig. 10, the influence of the sixth mode is comparable to the first
mode. Similar observations could also be made for Figs. 12 and 13. Figs.
14, 15, and 16 give deformation plots for the Monte Carlo profile for the
indicated value of stiffness. 1In general the deformation plots reflect the
contribution of the mode shapes to the inertial loads, Eqs. (41).

In examining the results shown in Tables 2a, 2b, 3a and 3b two points
should be considered.

(1) Since both profiles were generated using the random number
generator function, RANF, both are random profiles. Thus their contribu-

tion to Eqs. (33), i.e. the force input via Eq. (16) and (17) is random.
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Each profile generates a different force input.

(2) Also the inertial loads were calculated separatelyv at a different
peak time for each slipper. As Tables 2a and 2b shown, for the same value
of stiffness, the dynamic force is a maximum at different peak times for
the same slipper. For example, for kA=kF=48xlOA, at slipper 1 the peak
time for the original SLEDYNE profile is 1.416 sec. while the peak time

for the Monte Carlo profile is 1.980.
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L ; VI. CONCLUSIONS

The dynamics of a sled ride on rails at high speeds is an extremely
complex phenomena. The factors that affect the ride are numerous and
adequate simulation can only be achieved by extensive testing. The
SLEDYNE program represents a preliminary attempt at introducing some
¢ sophistication to modeling stiffness/mass properties of the sled and the
rail roughness profile. An extensive test program is necessary in order
to validate the results obtained from analytical programs like SLEDYNE.

For example there is no simplified way at present to determine the slipper
stiffnesses kA and kF. Both the slipper beam assembly and the track flexi-
bility affect these stiffnesses.

The aerodynamic data is even less sophisticated than the mass/stiff-

ness properties. The extent of this deficiency cannot be assessed with-

out parametric studies involving thrust, lift and drag. As in slipper

stiffness data, no simple approach is presently available for determining
the aerodynamic parameters.
However, some specific conclusions can be derived from this thesis.
' (1) For example, the total strain energy of the sled increased in
general as the values of slipper stiffness, kA=kF’ incressed for both
profiles. However, exceptions can occur as was shown in Tables 3a and
3b.
1 (2) From the limited data obtained in our study, it would appear
that the torsional rigidity in the sled structure is large enough to
prevent dissimilar motion of opposite sets of slippers.
(3) Within a given profile, the effect of a variation in slipper
stiffness could be more adequately measured, if the accelerations were

available at the same time for a given slipper. Then, the total strain
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energies could be compared for the resulting inertial loads.

(4) 1t wasn't possible to directly compare the results of the orig-
inal SLEDYNE rail roughness profile (Tables 2a and 3a) and the Monte Carlo
profile (Tables 2b and 3b), because the profiles were generated by a random
function. In addition, for the original SLEDYNE case a separate profile
was generated for each rail. It was felt that this did not satisfy the
true physical phenomena that may- occur. While, in the Monte Carlo case,

a separate profile was generated for each slipper. So each profile gener-
ated a different force input in Eq. (40). However, by comparing Tables 2a
and 2b one observes that the physical characteristics of the structure are
quite similar. In particular, the bending stiffness produces a small
amount of pitch acceleration, é. Yet the Monte Carlo profile on each
slipper, in general, would have a larger & as would be expected. In order
to make a comparison within the Monte Carlo profile, a statistical approach
must be made due to the individual slipper profile concept.

(5) For the user, the Monte Carlo profile is not only easier to imple-
ment in the SLEDYNE program but also easily expandable if additional
measured data becomes available. Additional or finer intervals can be
defined to adequately represent any range of track measurements. Since
the Monte Carlo ranges along the 0-1 scale are constructed (See Table 1)
independently of the SLEDYNE program, a virtually unlimited amount of track
measurements can be considered in defining the profile. Thus, neither the
efficiency nor the core memory requirements of SLEDYNE are affected by
the amount of rail roughness measurements. On the other hand, since the
original SLEDYNE profile is generated internally in SLEDYNE, core require-
ments for it will be increased as the number of track measurements increase.

Also additional data on the sequence of the segments selected plus the total
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number of point entries must be stored for both rails, since a different
rail roughness profile is generated for each rail. Therefore, the original
SLEDYNE profile is not as amenable to expansion as the Monte Carlo profile.
(6) Although only two basic parameters have been examined, it is pos~
sible for one to investigate additional individual parameters with the usc
of the combined SLEDYNE and NASTRAN programs. For example, it is possible
to study a variation in the aerodynamic forces with the combined SLEDYNE
and NASTRAN programs. The author feels that this joint application is an

extremely useful design tool which can be incorporated into future hyper-

sonic sled development.
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APPENDIX A

This appendix provides the detailed steps required for the deriva-
tion of Cb, the damping coefficient at each slipper for bounce, Eq. (22),
Cp’ the damping coefficient at each slipper for pitch, Eq. (23), and

Eq. (20) and (21).

damping coefficients CF and CA’

—

i

ol

— e 0
PR N




To compute the damping coefficients associated with flexing of the
stepper beam springs. For bounce, consider the following spring-mass-

damper system.

it .,
l ‘
[

Derive the equation of motion by taking the sum of the forces in the

vertical direction

-sz - kAz - Czi = mz

or

c (k +k_)z
2+—Zi+—i5—=o (1A)
1] m

From Eq. (1A) the natural frequency w

N is given by

(k, +k
Wy i Am F) (27)
Define O where b implies bounce.
Also from Eq. (1A)
E% N 2C‘zwb o

where gz is the viscous damping factor.

Substituting Eq. (2A) into (3A) gives
i
L N 2
z “z . m f

ey
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or

c, = 26, AkHim (4A)

Thus the damping coefficient at each slipper for bounce is given by
c
—

Cy =% " % (28, Sk tkpdm) <8

Therefore Eq. (22) has been derived.

For pitch consider the following spring-mass~damper system.

- N N
. \ i
. \ ;
- i
- Al a
- " :

P .
- - >

-
4 P
- P
- - 8 L.
-
p = -
-
.
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where Ce is a rotary damper. The forward slipper spring is being extended

while the aft slipper spring is being compressed. For small values of 6,

F = kFﬂFB

(64)

Fk = kAKAG

Derive the equation of motion by taking the sum of the moments about the

cg.

-F, &_ -F & -C6 = 18
kp F - ok,A T B

or

Ié + C é +F L +F 2 = (74)
0 kF F kA A

Substituting Eq. (6A) into Eq. (7A) gives

|
o

2

. . 2
“ya =
Ie + cae + (kFﬂF + kAQA)V 0
Thus
2 2
c (k2o + kL)) ©
b+ 84 EF AN _, (84) !
1 1
From Eq. (8A) the natural frequency wy is given by
’ 2 2
9A
. - (kF£F+kA£A) (9A)
N 1
Define Wy=we where 6 implies pitch.
Also from Eq. (8A)
%
= = 104
T 2£ewe (104)

where Ee is the viscous damping factor.

Substituting Eq. (9A) into Eq. (10A) gives
r 2 2

/

nggflw 1

0 ¢ \ / 1

~

{. \
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- (e 22 2 ) (11A)
Cq = 2 (Ndxszp + k0T

Thus the damping coefficlent at each slipper for pitch is given by

c
c_ = 6 . 1

P 2 2. 2 2
20 + 4) 20 + )

/ / 2 2.0
\?59 RUCE S kAQA)I) (124)

Therefore Eq. (23) has been derived.
Assume that the damping is not equal at each slipper but is propor-

tional to the beam stiffness. Thus for a forward slipper

2k ' (134)
= —_ A
Cp = (C + cp) T R

and for an aft slipper

2kA (14
C. =(, +C) ——— A)
A b P kA+kF
Thus Eqs. (20) and (21) have been derived. The recommended value for gz

and Ee is .03, i.e. 3% critical damping.
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