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rNEFACE

The interest of this thesis is the dynamics of rocket sleds traveling

on rails at supersonic and hypersonic speeds. The analytical model chosen

for simulating the dynamics of a sled ride consists of three subsystems:

(1) the elastic sled body, (2) the slipper beam (springs), (3) and the rail

roughness profile. A parametric study involving a variation of the rail

roughness profile and the slipper stiffnesses was conducted.

I am grateful to my thesis advisor, Dr. Anthony Palazotto, for his

valuable advice and direction given throughout this project. I am also

grateful to Dr. Vipperla Venkayya, my thesis committee member, for criti-

cally reviewing this thesis. A special thanks to Ms. D. Frantz for her

patience and understanding while typing this thesis.

Victoria A. Tischler
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ABSTRACT

==-6The rail roughness profile and the slipper stiffnesses are the

important factors in determining the forcing function in the dynamic

analysis of high speed rocket sleds. A parametric study involving a

variation in the rail roughness profile and the slipper stiffnesses was

performed. This study was carried out by interfacing the NASTRAN struc-

tural analysis program and a program called SLEDYNE developed for

Holloman AFB. Using NASTRAN a free vibration analysis of the elastic

sled body was made in order to obtain the natural frequencies and mode

shapes. SLEDYNE simulates the sled ride on the rails and computes a set

of inertial forces acting on all the mass points of the sled. The response

of the sled to this inertial loading was determined by a NASTRAN static

analysis.

Two rail roughness profiles were considered, both based on the same

set of track measurements, and three values of slipper stiffness were

used. Response to the parametric study was measured by the total strain

energy of the sled and the displacements of the mass points of the sled._
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A PARAMETRIC STUDY OF CERTAIN FORCING FUNCTIONS

RELATED TO A HYPERSONIC SLED

I. INTRODUCTION

For a number of years both the Air Force and the Navy have been using

high speed sleds on a test track to simulate the dynamic environment of

flight vehicles. A ten mile test track, Fig. 1 has been operated by the

Air Force at Holloman AFB for a number of years.(1) Test sleds that are

capable of attaining speeds up to Mach 6 have been built to test the crew

escape systems, the effects of rain or particle erosion on re-entry vehicles,

missile guidance systems etc. Most of these sleds consist of a forebodV to

house the test objects and a rocket train acting as a pusher, Fig. 2

There are dual rail as well as monorail sleds. The riding mechanism consists

of a set of fore and aft slippers attached to the sled and capable of riding

on the rails as shown in Fig. 3. (2) An 1/8" gap between the rails and the

slippers is usually incorporated. During the ride the slipper may be in

any of the following three positions: (a) in contact with the top of the

railhead, (b) in contact with the underside of the railhead or (c) no

contact at all. From an analysis standpoint it becomes necessary to

appreciate the rail roughness and the external aerodynamic forces which

induce pitch and bounce motion during the ride. This motion in turn

induces high inertia forces on the sled. Accurate determination of these

inertia forces requires extensive dynamic analysis and testing.

Research in the dynamic analysis and simulation of vehicles traversing

on rough terrain has been drawing increasing attention in recent years.

The problem is of generic interest to a number of organizations. For

example, the automotive industry is interested in this problem in order to

.7
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I Figure 1. Ten Mile Test Track at Holloman AFB
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t gain a competitive edge by improving the ride quality of their vehicles.

The safety and structural integrity of airplanes taking of f from bomb

damaged runways is of the utmost concern to the Air Force. Under the

"HAVE BOUNCE" program the Air Force is developing runway repair standards

for a number of airplanes in its inventory. ()Similar problems are

encountered by Army vehicles while traveling on unpaved terrains. The

interest of the present study is the dynamics of test sleds traveling on

rails at supersonic and hypersonic speeds.

The analytical model for simulating the dynamics of a vehicle rid,,

generally consists of four subsystems: ()(1) the vehicle body, (2) a

suspension system, (3) tires and (4) terrain. The speed of the vehicle,

the surrounding environment and the terrain profile provide the dynamic

input to the system, while the stiffness, mass and damping properties of

the remaining three subsystems determine the dynamic response. The envi-

ronment and the terrain profile are gererally described by random parame-

ters. Even though the stiffness, mass and damping properties are deter-

ministic, they cannot be accurately represented by analytical models

because of their complexity. The usual procedure is to represent the

subsystems by simple empirical models and validate the empirical parameters

by extensive testing.

Improving the numerical modeling of the subsystems is the current

research interest in vehicle system dynamics. The models can range from

* very simple linear models to complex nonlinear representations. An

interesting discussion on tire models for dynamic vehicle simulation is

presented in Ref. 4. Four tire models were considered, and each model was

integrated with the other three subsystems to simulate a complete terrain-

vehicle model to study the dynamic tire behavior. The paper contains

A 5



analytical and experimental results obtained from a three axle military

truck. A computer program to analytically simulate the rough ride on bomb

damage runways was developed by the Boeing Company for the Air Force. (3)

The mathematical model of the aircraft includes horizontal, vertical and

pitch rigid body modes, elastic modes of the airframe, and nose and main

landing gear modes. Tire forces are generated by a nonlinear spring model.

The program is quite preliminary, and it is being tested for validation.

A computer program called "SLEDYNE" for simulating a sled ride on

rails was developed for Holloman Air Force Base. ()The elastic sled body,

slipper beams (springs) and rail roughness profile are the subsystems con-

sidered in the program. The flexible modes of the body and the necessary

mass matrices are generated external to the SLEDYNE program. The basis for

the rail roughness profile is measured data from 400 feet of track. This

data is used as a random sample to generate the profile for the entire

length of the track. The slipper-rail stiffness parameters are empirical

and are input to the program. Similarly the aerodynamic parameters are the

external input. The mathematical model includes two rigid body modes (the

bounce and the pitch) and a number of elastic modes of the body. The in-

termittent contact between the slippers and the rails induce discontinuous

force input. The transient response of the vehicle is determined by

numerical integration of the dynamic equations. The peak accelerations,

velocities, displacements and the inertia forces at all the mass points are

V I :the measures of the response.

The SLEDYNE program represents a preliminary attempt at generating a

rational dynamic model for simulating a high speed sled ride on rails, but

the documentation of the program is less than adequate. There are practi-

cally no guidelines as to how the slipper-rail stiffness parameters are to



be generated or how they affect the response. Similar deficiencies abound

in the description of the aerodynamic and other empirical parameters.

The purpose of this effort is to study the potential and limitations

of the SLEDYNE program, expand its documentation and make parametric

studies with the slipper-rail stiffnesses and rail roughness profile.

!'7
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II. DEVELOPMENT OF THE SIMULATION EQUATIONS

The movement of a vehicle along a rail bed would obviously induce

high inertia forces which in turn produce severe dynamic stresses and

displacements. The dynamic stresses required for predicting the sled's

strength, with adequate margins of safety, can be obtained by a dynamic

analysis using a finite element model of the sled. However, the transient

response analysis of the full model can be prohibitively expensive and

thus is not very conducive to design trade studies. Yet, it is possible

to study a reduced system of equations for the transient response by nodal

reduction. The significant modes (i.e. the primary bending modes) that

participate in the pitch and bounce motion are deternined bv a free vibra-

tion analysis of the full finite element model of the sled with supports at

the slippers. The dynamic reduction is carried out by combining a few

elastic bending modes with two rigid body modes which can adequately simiu-

late the dynamic motion of the sled. In order to generate the dynamic

forces for analysis, the use of SLEDYNE with the NASTRAN program was

carried out as subsequently discussed. Yet to supplement the readers

understanding of SLEDYNE's analytic approach to the dynamic equations, the

author will present the necessary expressions and their development so that

the effect of changes in rail roughness and slipper stiffness can be more

fully appreciated.

A finite element model of a sled consists of a number of nodes con-

.4 nected by elements. Each node is assumed to have six degrees of freedom

(three translations and three rotations). The dynamic equations for free

vibration of a sled can be written as

(m]{if + [k]{u 1

8



where {u} is a vector of displacements corresponding to the number of

degrees of freedom of the sled, and [m] is the diagonal matrix of the

lumped parameter system such that mii is the lumped mass at the ith node,

and [k] is the sled's stiffness matrix.

The solution of the harmonic equation is given by

{u) {€} cos (Wt + ,)

{u - wf{j sin (t.t + 4) (2)

{u} = -w2 cos (wt + )

Substituting Eq. (2) into Eq. (1) gives

(-L 2 [m]' + [k]{¢) cos (-t + 0 = 0

which implies

W2[m]i;} = (3)

Eq. (3) represents a standard eigenvalue problem. Its solution gives the

eigenvalues and eigenvectors which represent the frequencies and mode

shapes, respectively. Thus {€}° is the normal mode of vibration associ-1

ated with frequency w..

By providing supports at the slippers, only the motion due to defor-

mation of the sled is considered in Eq. (1). This motion must be enhanced

to include rigid body modes for a true representation of the sled ride.

This enhancement as well as the reduction in the system of equations can

be accomplished by representing the motion of the sled in the vertical

direction, w, as the sum of a set of displacement functions: the pure

vertical translation, z, the rotation, e, of the rigid sled about its

center of gravity (cg), and the normal modes of vibration, { }i, of the

sled restrained against translation at the slipper support points. The

are orthogonal to each other but not to the rigid body functions.

Therefore the vertical displacement, w, of a sled, at time t and station x

9



along its horizontal axis is given by

w(x,t) = z(t) + (x-x g)e(t) + {*(x))i qi(t) (4)

where qi(t) is the normal coordinate or amplitude of ((x)}±. The first

few transverse bending (vertical) modes are included in this representa-

tion. The {0(x)}i in Eq. (4) contain only the vertical components.

Since the structure of the sled has been idealized as a finite ele-

ment model, the vertical motion of the discrete node points on the sled

is given by

1.0(, X -Xc hi h2- - 1Ok q I W

'1 I 021 0122 - - 2k
0 zt + I e(t) + (5)

I I i I

N(x t) XX cg N N2 - kW

where N is the number of nodes of the original finite element model, k is

the number of modes included such that 0<k<N, and Oij (x) is the ith compo-

nent of the jth mode.

The equations of motion will be derived using Lagrange's equation (6)

d (,T N. 9 (6)

where T is the kinetic energy, U is the strain energy, F is Rayleigh's

dissipation function, W is the work and Q are the nonconservative forces.

The 'k represent the independent variables of motion, z, 8, and qj,
'J J-l,... ,k.

The kinetic energy T is given by

-1 {T[m](w}  (7)
'I

The mass matrix [m] contains only the degrees of freedom corresponding to

U! the vertical displacements of the nodes.

10
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Substituting Eq. (5) into Eq. (7) gives

T 1 {XX1 cg N }g(t) 1
+ tk ( t ) }  21- - -¢NI M 1o

S12 €22- -N2 -

elk ¢2k -- mN

1.0 Xi X cg 11 €12 - -- k qW(t)

Z(t) -' i&(t) + ¢21 ¢22 - -- 2k

1,xN X g, _N1 ¢N2 - k(t )

After simplification

10 1.0 1---.o 2 , (X-x
x-X X -X- -- .- x cg 11 11 01 1k,T ; " "1 "g 2 1 - " N I 2 2 ) 2 1 , - -T -~ :. \ .e, .. . *21n ,,,

2 k l I
- I! I [ i 

I

L1k t2j NN(XN-Xc) mN'N--- k1 k

(8)

Therefore

T = {;)T[M]{}) 
(9)

where [M] is a (k+2) x (k+2) symmetric matrix whose elements are given by

N
Ml l milm

i 1
, - where m is the total mass of the sled.

- n



e~Li

N 2
H2 2  mii (xi-,Cg)

where I is the pitch inertia of the sled.

N 2

H = M m ~ (O2 ) for j>2
i-i

or

ii J- J-

Therefore Mi is the generalized mass of the (J-2)th mode for J>2.

For p>2, £>2 and py4 ,

N
MpH = ill Oi(p_2)miioi(k_2) = Mp =

since the modes are orthogonal.

N

M1 2 - M 21  i mii (xi-xcg) 0

because by definition the first moment of the masses about the cg of the

body is zero.

N
M -J = M i= miioi(j_2) for J>2

N

M2j - i (i-cg) miii(j 2 ) - j2 for J>2
i=l

Thus [M] can be written as

VI13 ..... I (,k+2)
M23 M2(k+2)

.] M113 2 33  (10)

1 02

N I(k+2) (k+2) 0
•' I M(k+2)(k+2)

* C
12

'1



The strain energy U is given by

U 7 = U uTk]{u} (1

where [k] is the stiffness matrix of the sled with respect to the degrees

of freedom of the original finite element model. The strain energy with

respect to the generalized coordinates {n) can be written as

U _ n {}T (K](n (12)

where [K] is a (k+2) x (k+2) matrix whose elements are given by

K 11 K22 0

since there is no strain energy in the rigid body motion.

Ki - K = 0 i>2, J>2 iyj

since [01 and {o) are orthogonal for i~j.

K {W}T[k]f } i>2 J=i-2Kii

or

K -M 2
ii ii'i

where wj is the natural frequency of the Jth mode, and Mii is the general-

ized mass of the Jth mode where i is J+2. Thus [K] can be written as

0

. 00

0'
[K]- 2 (13)

I 33 1

V 0 , (k+2 ) (k+2)'
0, H

'NJ

Assuming that the damping forces are proportional to the generalized

velocities, the Rayleigh Dissipation function is given in the form

F _ ;}i T[C]{;} (14)

4 13
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where [C], the damping matrix, is assumed to be a (k+2) x (k+2) diagonal

matrix of the form

0 
00t

00
Oi

[C]- = C3 3  0 (15)

Ic 0

C

I c (k+2) (k+2)

The work, W, is a product of the force in the slipper springs and the

displacement of the attached structure. Since the attached structure was

pinned in all the modes the springs do work only on the rigid displace-

ments, z and 6. The forward and aft slipper forces are given by

FF = - YF(z + LF6 E w + Y(X + Z)) - DF (16)

F = - kA A(Z - £Ae ' 7 + Y(X)) - DA (17)

with the forward and aft spring forces given by

FF = _ kF 6F(z + zF6 , -. + Y (x +

and

C
FA = kA 6A(z - tA6 , T + Y. (Y))

The definition of the 6 function is as follows:

.(u,v) = u-v, U V
= 0, lul < V
= U+V, U <- V

( 14



kF and kA are the forward and aft slipper support stiffnesses, respectively,

e is the slipper gap, IF and I A are distances from the sled cg to the

slipper supports, Y is the rail height when the aft slippers are at down-

track position X, and L is the distance between the.forward and aft

slippers. DF and DA, the damping forces, which act only when the slippers

are in contact are given by

DF = CF( + tF - vY'( + £)) (18)

D= C A(z - t Ae - vY'(X)) (19)

where v is the sled downtrack velocity and Y' is the local slope of the

railhead. The damping coefficients CF and CA are given by

CF = (C + Cb) 2kF (20)

2k
C (21)

A (Cp + Cb) +

where Cb, the damping coefficient at each slipper for bounce, is given by

Cb =- (2 V/(k-A+ kF)m) (22)
b 4

where m is the total mass of the sled and Cp,, the damping coefficient at

each slipper for pitch, is given by

1 2(02 (kIt+ kj) (23)
p ( 2 + L A) A A/

where I is the pitch inertia of the sled. Cz and are the proportion

of critical damping of bounce and pitch, respectively. The derivation of

Eqs. (20) - (23) is given in Appendix A.

Thus the work, W, can be written as

F F FA (24)
2 ~ FU V) + 2# YAU,

15



Now that the terms associated with Eq. (6) have been found, it is possible

to substitute Eq. (9) into Eq. (6) giving

k+2

-1j =-1,2
ai j=l N ijn j  i = 1,2

and

T 2
J.1i Mij hi + Miii i3, ... k+2

Therefore

k+2d -- -- - r "" i -- 1 2
j= 

1

and

d 2T 2

dt(~- E M ij j + Mi 1-3,.. k+2

J-1

(Thus

t (5 = I M{ii) (25)

Furthermore by substituting Eq. (12) into Eq. (6) for an arbitrary i,

the expression for U can be formulated as
ani

an1  ii i

Again since i was arbitrary,

au= [K]{ql) 
(26)

If one substitutes Eq. (14) into Eq. (6) and observes that [C] was

assumed diagonal, then the calculation of -- is the same as the calcula-

au
tion of 3n,"

16
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Therefore,

7. [C]{;) (27)

From Eq. (24), w - W(z,e), therefore in Eq. (6)

aw aw aw

From Eq. (24)
a F~s@AUV

aw I 1 S Ua FF H F a6(u'v) + A S (u,v) + aF39A(u'v)
T az F T~U~ + F S a Y a+ A 2A S a

1 s1 1 1U'V) 
w _ kzF)(U'v) + F% + -zA uA)A(u ) +v) +

F FSF F F A S +FA
+ - + sr 2

Thus

aw F + F (28)T= Fs FA s

Also from Eq. (24)

- 1 3FFs 3F(uF) 1 99 A(u'v)
aeW + FF(u + ae + 2 F
5- Y 2Be ee 2 O u  As  Be

= (-kF F);F (u'v) + F sF (-kA)('A)A(uv) + T FAs tA

FFsI F Fs F Ast FAst

- + 'sF s A s A
2 2 2 2

Thus

a= Fws£ - FAsA (29)
e FS I S

17
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Then in matrix notation

F Fs + FAs

.W Fs 9F 0 FA sRA  (30)

0

The virtual work done by the damping forces DF and DA is given by

6W = DF 6(z + XFO) + DAJ 6(Z - AO)j

Therefore

6W (DF + DA)6z + (DFIF - DAA)6e

Now 6z 6n and 6 - 6n 2, thus Q1 " DF + DA and Q2 w DFIF - DAIA

Then in matrix notation the nonconservative forces are given by

DF + DA

Q = o (31)

0

From Eqs. (30) and (31) the forcing function {F) is given by

(Fs DF)  (FA DA) F F + FA

(FFs IF - DLF) - (FA sA - DAA) F FIF - FA IAA

fF)- L,- 0 0 (32),3ri

.40 0

by Eqs. (16) and (17).
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Combining Eqs. (25), (26), (27), and (32) the equations of motion can

now be written as

[M]{J} + [C](} + [K]{l} = {F} (33)

where matrices [M], [C] and [K] and vector {F) are defined by Eqs. (10),

(15), (13) and (32) respectively and {ni = {z, 0, ql, q2 .... qk
}

As a final step in determining the coefficient matrices in Eq. (33),

it becomes necessary to formulate the [C] matrix corresponding to the

elastic modes. Since the rigid body vertical translation, z, and rotation,

e, are uncoupled from the normal coordinates, qi, i=l,... ,k, Eq. (33) can

be rewritten as

M 33 C 33 ! F33' 1

M44 | 1 
+  

C44 > >+ M 44-.1 Qs : - C

0 0 0, o .(+2 KI+ L o " -!

L C(k+2)(k+2) i

(34)

Eqs. (34) represents k uncoupled differential equations. For any i

Eqs. (34) can be written

Miiqi- 2 + C 2+ Mii~i- 2 - 0 i : 3, ..., k+2 (35)

Assume [C] = 2y[M] where y is a proportionality constant. (7 ) Then Eq. (35)

4becomes

+ 2yMiiqi_2 + Mii 2 : 0 (36)

i'
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stThus if q 2 'Aet, the characteristic equation becomes

Mi As2eSt + 2yM Asest + i 2 . = 0

or

(s2 + 2ys + w(t-2))Ae - 0 (37)

The roots of Eq. (37) are given by

- y + ] 2 - 2 ( 8
S -- - (38)

2 2For the critically damped case, Y -wi 2 ' i.e. where is the

value of y corresponding to the critically damped system. Then I- > 1
0 <

represents the overdamped, critically damped and underdamped systems respec-

tively. If i-2 is assumed to be '-, then the damping coefficients can be
1-2 Y

written as

C = 2yM1 i 2_]Yo

or
Cii 2 (i-2) (i-2)Mii (39)

Thus the elements of Eqs. (33) are completely defined. Additional

quasi-steady forces and moments, F and M., are included in the definition
s

of {F}, Eq. (32), such that

FF +FA +Fs

FF A"A + MS

{F)- 0 (40)

0

.24 20



A discussion of these forces is given in Ref. 5. Eqs. (33) represents a

system of (k+2) second order differential equations, the solution of which

will be discussed in the next section.

'1
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III. DESCRIPTIU, OF AN INTEGRATED DESIGN TOOL

A schematic of the design process is given in Fig. 4. The purpose

of the scheme is to establish communication between two main programs.

The first program, "NASTRAN" is a finite element program which can solve

static and dynamic structural analysis problems. (8),(9 ) The second pro-

gram, "SLEDYNE" numerically integrates the reduced system of equations

(Eqs. 33) by a predictor corrector method. The program SGAMT provides

communication between NASTRAN and SLEDYNE. Similarly the program SLEDNAS

transmits data from SLEDYNE to NASTRAN for a static analysis.

In the derivation of the equations of motion, Eqs. (33) the normal

modes of vibration {¢}i,i=l,...,k, the natural frequencies wi, the general-

ized masses and the diagonal matrix of the lumped masses [m] were assumed

to be known. This information was obtained by conducting a free vibration

analysis of the sled restrained against translation at the slipper support

points. The sled was modeled using finite elements, and a normal mode

analysis was made with the NASTRAN program, rigid format #3, using the

inverse power method. The Nastran finite element model definition, natural

frequencies w. and normal mode shapes {¢}i, lumped mass matrix [m] and the
11

generalized masses are reformated via the translator program SGAMT to

SLEDYNE requirements.

Eqs. (33) are solved by the "SLEDYNE" program. The program computes

the time history dynamic response of a sled traversing on a track which

has roughness characteristics derived from sample track measurements. In

addition to mass, frequency and mode shape data SLEDYNE requires aero-

dynamic data in the form of time histories of thrust, lift, drag and

1center of lift. Additional data required for definition of the sled geom-

etry is given in Fig. 5. The system of (k+2) second order differential

22
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equations is reduced to a set of 2(k+2) first order differential equations.

The fourth order Adams-Moulton predictor corrector method based on the

classical fourth order Runge-Kutta method was used for the time integra-

tion.(10),(11)

The most important SLEDYNE results are a set of force vectors. These

are the inertial forces acting on all the mass points of the sled. For

each slipper at the peak time, the vector of accelerations of the inde-

pendent variables, (i, e, jl,...,k ) is used to calculate the inertial

loads by the following equation

1.0 Xi7xcg Oiil 1 - lk

(F [m](t + 021 022 - -02k 4
I I I(41)

III I I I

1.0 XN1 Xcg N1 N2- N k

The inertial forces obtained from the SLEDYNE program and the original

finite element model are integrated by the SLEDNAS Program to generate

data for a NASTRAN static analysis. A NASTRAN static strength analysis

is performed, and the response of the sled to the inertial loads is

measured via the total strain energy of the sled, the stresses in the

elements and the displacements at the nodes. It is possible that with the

obtained data the adequacy of the sled, with respect to strength, could be

evaluated.

'.2
.4
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IV. SIMULATION OF RAIL ROUGHNESS PROFILES

The values of rail roughness Y(X) and Y(X+Q) were required when

evaluating the forward slipper force F F and the aft slipper force FA

defined in Eqs. (16) and (17), respectively. The rail roughness model

used in SLEDYNE is based on a set of 430 measurements made of rail height

on a 400 ft section of the Holloman track. The data from this 400 ft

track is used as a sample to generate a rail roughness profile for the

entire track. The description of how this data is generated is not clear

in Ref. 5. The following discussion is based on a direct reading and

interpretation of the SLEDYNE program.

The measurements were divided into ten unequal segments such that the

first value of each segment is zero. The ten segments were arbitrarily

assigned the following number of measurements, respectively: 41, 61, 48,

40, 44, 36, 31, 21, 63, and 45. The rail roughness profile for the length

of track needed for each SLEDYNE run is constructed randomly from these

ten segments. The sled downtrack velocity, v, and the total time of the

run, tft are required SLEDYNE data. Since the total distance, XT' that

the sled will travel is

X =vt + 100 (42)
Z1 vtf

a rail roughness profile will have to be defined to cover that length of

9track. The factor 100 is simply to assure an adequate length of track.

.4 SLEDYNE internally generates this profile (which will be referred to as

the original SLEDYNE profile) as follows.

To define the segments in the profile, the program uses a random

number generator function y=RANF(A), which gives a random value of y such

i. that Oa<l for every function call. Thus,

26
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J = [lOy + 1] (43)

is an integer such that l<J<l0, where [ ] is the greatest integer func-

tion. So for every value of y the corresponding Jth segment is included

in the profile. The order of the segments as well as a count, NC, of th

total number of measurements defining the profile is maintained internally.

The profile is completely generated when NC = [(vtf + 100)(1.2) + 1]. The

factor 1.2 simply refers to a 20% increase in the length of the track to be

covered. Now the total travel distance is divided into NC divisions, anj[

the rail height is available at each of these divisions. For the intekri-

tion of Eqs. (33) each of these NC divisions is further divided into tt:i

parts, and the response of the sled is computed at 10 NC points.

For a dual rail sled two profiles are generated, one for each rail.

Profile generation is completed before the solution of Eqs. (33) begins.

On CDC computers RANF(A) generates the same sequence of random numbers

every time. Thus for every SLEDYNE run the same profiles will be genLratLdj,

they only vary as to their length. The SLEDYNE rail roughness profilL for

the right rail for the first 3 selected segments is given in Fig. 6.

The values of Y(X) and Y(X+x) for a given value of X is obtained from

the rail roughness profile generated earlier. For example, the rail height

Y(X) at a distance X is computed by the straight line interpolation
Iy Yl 0

Y(X) = v + o (X_ x 0 (44)

The quantities y0 and y1 are the rail heights at distances x0 and xl,

which are defined as

x <X<xo-- 1

) 27 .
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The actudl locations of x1 and x0 are determined as follows:

A parameter N* is defined as

N* = + (45)

where [ ] is the greatest integer function.

Then

x, = ION* and x l0(N* - 1)

This interpolation is necessary because the rail heights are available

only at every 10th integration point. The rail height for the forward

slipper Y(X+S) is computed in a similar manner.

Initially, of course, at t=0, y0=0 and yl
= the second entry of the

first segment of the profile. At time t=tl, y0=Yl and yl
= the third entry

of the first segment of the profile.

The author recognizes that SLEDYNE'S random approach toward rail

roughness is really not random enough. It is felt that a profile function

should be associated with each individual slipper. Thus, the Monte Carlo

approach was chosen as an alternate procedure for generating a rail rough-

ness profile.(12,(13),(14) By definition "Monte Carlo" refers to an

v, approach for reconstructing probability distributions based on the selec-

tion or generation of random numbers. The original SLEDYNE profile was

generated based on a set of 430 rail measurements. This set of measure-

V ments was designated by {V.1, i=l,...,430. For the Monte Carlo approach

the {V i was normalized by V where IVi<IV Ifor all i. Thus -l<V.<l.-te{i } wa omlzdb max i max -a

A sequence of j intervals were arbitrarily defined between [-1,1], and the

mean value, VALj., was assigned to each interval (See Columns 1 and 2 of

Table 1). The probability distribution of rail measurements given in

Column 4 was generated in the following manner: The number of elements

2
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of {Vi } which occurred in each interval was recorded under Frequency

of Occurrence, FREQ. (Column 3), and the probabilities PMF. calculated by

FREQ.
FM 430

The Cumulative Distribution Function, CDFk (Column 5), was calculated by

k
CDF k = 1 PMFj,k=1,..., No. of intervals. For every k a range along thek j=l -

0-1 scale was defined (See Column 6 of Table 1). Table 1 is the basis

for the Inverse Transformation Method for generating random variates.

The Inverse Transformation Method can be explained as follows: In

statistical terminology, if XX denotes a random variable and x. is a

specific value of the random variable, then the probability mass func-

tion (PMF.) can be defined as
3

f(x.) = e( X = x.)

such that

0 < f(x) ' 1

and

NO. OF INTERVALS
E f(x.) = 1
j=l 3

where P(XX=x.) is the probability that the random variable XX takes on a

value of xj. For example the probability that the rail height takes on a

value 0.1 is 0.14 or P(XX=O.l)=O.14, P(XX=.2)=.09 and so on. The Inverse

Transformation Method consists of generating another random variable U'

which is uniformly distributed over the range [0,I]. Then by definition

P(0.<U'<0.0l)-O.0, P(.01<U'<.02)=.0l, P(O.O2<U'<0.04)-0.02 and so on

," (See Columns 6 and 4). Since the probabilities for the given ranges of
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U' are respectively identical to the probabilities for the given values

of XX, it follows that U' can be used to simulate or "artificially recon-

struct" occurrences of XX from Table 1.

The random number generator function RANF(A) is used to generate a

rail roughness profile (called the Monte Carlo profile) using the Monte

Carlo technique. A Monte Carlo profile is generated independently for

each slipper and in real time as the sled is moving down the track, i.e.

at the same time that Eqs. (33) are being integrated.

Now the rail roughness profile by the Monte Carlo approach can be

generated by using Table 1. At a time t=t the sled has travelled Xs -- S

feet along the rails where X is the downtrack position of the aft-- s

slipper. Using the random number generator, the value of U' is determined

by U'=RANF(A). Now the value of U' is located in the interval R along the

0-1 scale (Column 6) of Table 1. The corresponding j interval and VAL.

are identified from Column 2. The values of N*, x0, x1 and Y(X ) are

calculated by Eqs. (44) and (45). Similarly the value of Y(Xs +S) is

determined corresponding to the distance X +Z. As in the original SLEDYNE'-S

profile, the rail roughness value Y corresponding to the intermediate value

of X is found by linear interpolation between two consecutive values of

the profile. The Monte Carlo rail roughness profile for the right forward

slipper for the first 100 points is given in Fig. 7. Another method of

defining rail roughness is given in Ref. 15.
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V. RESULTS

This section is divided into two parts. The first part describes the

finite element model of a particular sled. In the second part a dynamic

analysis of the sled is conducted and its response to a variation in both

slipper stiffnesses kA and kF and rail roughness profile is examined.

Model Description

The MX forebody configuration A rocket sled was chosen for this

study. The general arrangement of this sled is given in Fig. 8. Config-

uration A was designed as a high frequency sled with a fundamental fre-

quency of approximately 100HZ without payload masses. The sled forebody

consists of a roof, a floor, two side walls and an intermediate wall at

the center running longitudinally and three transverse bulkheads. All

these components are constructed primarily of aluminum honeycomb panels

with different face sheet thicknesses and core cell sizes.
(16 ) (1 7)

Initially all the honeycomb panels were modeled with sandwich ele-

ments. In NASTRAN, QUADI and TRIAl, the quadrilateral and triangular

elements respectively, were chosen to model the sandwich elements. The

fin structure in the front (See Fig. 9) was modeled with homogeneous

quadrilateral and triangular elements, QUAD2 and TRIA2. All of these

elements have both inplane and bending stiffnesses. The finite element

model with 53 nodes and 63 elements is shown in Fig. 9. The model has

*three longitudinal bulkheads and four transverse bulkheads. The sandwich

elements modeling the floor had a face sheet thickness of .144" with a

1.856" core. The remaining sandwich elements in the bulkheads and on top

of the sled had a face sheet thickness of .126" with a 1.874" core. The

homogeneous elements modeling the front fin of the sled were .19" thick.
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The position of the four slippers on the sled is indicated by an * in

Fig. 9. Each slipper is identified by a viewer positioned on top of the

sled facing the front of the sled. Fl implies forward slipper 1, F2 im-

plies forward slipper 2, Al implies aft slipper 1 and A2 implies aft

slipper 2. Note that the viewer position implies that Fl and Al will ride

the right rail.

Realistically this model overestimated the stiffness and indicated a

fundamental frequency of approximately 150HZ. This overestimation of

stiffness is a result of the constant strain triangles and quadrilaterals

used to construct the sandwich elements in the bulkheads. Since the bulk-

heads have high stress gradients, these elements overestimate their stiff-

(18)
ness. In order to obtain more realistic frequencies, the sandwich

elements in the bulkheads in the revised model were replaced by aluminum

SHEAR and ROD elements. The final model had 53 nodes and 98 elements and

is also illustrated by Fig. 9. The fundamental frequency of this sled is

approximately 103HZ.

Dynamic Analysis Results

The parametric study in this section involves variation of the rail

roughness profile and the slipper stiffnesses. Both of these affect only

the right hand side of Eqs. (33), which includes the forward and aft

slipper forces (See Eqs. 16-23). In Section 4 two different rail rough-

ness profiles were defined, the original SLEDYNE profile and the Monte

Carlo profile. For each of these rail roughness profiles the slipper

stiffnesses kA and kF will be varied in determining the response of the

sled. The dynamic analysis of the sled was conducted in accordance with

Fig. 4.

Initially a Nastran free vibration analysis was performed on the sled

I3



model, and the first 6 frequencies and corresponding mode shapes are given

in Fig. 10. The mode shapes and the undeformed sled are indicated by

dashed and solid lines, respectively. It would appear that the mode shapes

realistically depict the natural frequencies normally associated, through

experience, with this type of vehicle. The frequencies X1. X' X39 and '6

clearly depict vertical bending modes while 4 and X5 pictorially represent

in-plane bending modes. These mode shapes, their generalized masses, the

matrix of lumped masses, and the Nastran data were integrated and reformated

by the translator SGMAT for Program SLEDYNE as shown in Fig. 4.

The aerodynamic and geometric data required by SLEDYNE (See Fig. 5)

were provided by Holloman Air Force Base. The velocity of tle sled, v,

was 2000 ft/sec and the total time of the run, tf, was 2.001 seconds. The

baseline values of slipper stiffnesses (supplied by Holloman) were

4
kF-kA 9 6 .OxlO . Additional values of slipper stiffnesses for parametric

4 4
study were chosen as k A=k F=48.0xlO and k A=k F=1920xlO . Thus, six SLEDYNE

runs were made: The original SLEDYNE profile with three separate values of

slipper stiffness and the Monte Carlo profile with three separate values of

slipper stiffness.

For the original SLEDYNE profile for each value of slipper stiffness,

the vector of accelerations of the independent variables, (2, 6, ql. .

is given in Table 2a at that time when the dynamic force is a maximum for

each slipper. Here slipper 1 implies forward slipper 1, slipper 2 implies

forward slipper 2, slipper 3 implies aft slipper 1 and slipper 4 implies

aft slipper 2. (See Fig. 9). Accelerations 44 and 45 are zero since modes

4 and 5 were in-plane bending modes which do not contribute to the vertical

°* displacement w(x,t) of the sled. These acceleration vectors are used to

calculate the inertial loads by Eq. (41). Note that for a given value of
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slipper stiffness kA=kF, the peak times vary for each slipper. Also as kA

and kF increase, the peak time for the same slipper changes. For increas-

ing values of stiffness, the vertical acceleration f increases in absolute

value for the forward and aft slipper 2, while 2 assumes its maximum value

at k F=k A=96xlO 4 for the forward and aft slipper 1. The results imply that

the slippers on each rail move in the same direction due basically to the

similarities of the rail roughness profile on the same rail.

In considering the rail roughness profile contribution to the moving

vehicle, it would appear that when one considers a set of slippers on a

given side, one would see like movement. But to determine this, data for a

constant value of slipper stiffness k A=k F must appear with the peak time

comparisons approximately equal. This does occur in Table 2a for

kA=k F= 48.OxlO at a peak time of = 1.4. Realistically speaking, one would

assume that this type of phenomena would actually occur due to the stiffness

of the vehicle. It is very strong in bending resistance as observed by

the insignificant values of e.

Table 2b gives the vector of accelerations of the independent varia-

bles, ( ' 6, l'.... for the Monte Carlo profile. As in Table 2a the

absolute value of b is small for all values of stiffness. In this table for

increasing values of stiffness the vertical acceleration 2 increases in

absolute value for the forward slippers 1 and 2 and the aft slipper 2, while

2 has its maximum value at k kA= 96x10 4 for the aft slipper 1. A different

rail roughness profile was generated for each slipper when using the Monte

Carlo technique. Thus each slipper experiences a different profile.

From Tables 2a and 2b there will be a set of inertial loads for each

value of slipper stiffness for each slipper, i.e. 24 sets. Each set of

inertial loads was integrated separately with the NASTRAN data from the
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free vibration analysis and reformatted by Program SLEDNAS for a NASTRAN

static analysis as shown in Fig. 4.

A NASTRAN static analysis was performed for each set of inertial loads

and the response measured in two ways: The total strain energy of the sled

and plots of the deformed sled. For the original SLEDYNE profile Table 3j

gives the total strain energy of the sled in in-lb for each value of

slipper stiffness for each slipper. Table 3b gives the corresponding

results for the Monte Carlo profile. In general for each profile the total

strain energy increases with increasing values of slipper stiffness kA=kF.

And this becomes more obvious when the peak times for the same slipper are

approximately equal. An exception is noted for the original SLEDYNE pro-

4
file for forward slipper 1 when k A=k=96x10 and for the Monte Carlo

4profile for aft slipper 1 when k A=k F=192xlO. In both cases the strain

energy decreased as the stiffness increased. This phenomena implies that

the total inertial load at the mass points of the sled decreased from that

generated for the previous value of stiffness. It is possible that for

any given value of stiffness, the contribution of the vertical acceleration

2 offsets the contribution of the elastic mode accelerations, thus result-

ing in lower inertial loads. The inertial loads calculated by Eq. (41) are

a function of the maximum accelerations given in Tables 2a and 2b.

For the original SLEDYNE profile Figs. 11, 12, and 13 give the

deformed shape of the sled superimposed on the undeformed shape for the

indicated value of slipper stiffness. As before the deformed sled is drawn
-4

with dashed lines while the original sled is drawn with solid lines. Defor-

mation plots A correspond to the inertial loads calculated for forward

1slipper 1; deformation plots B correspond to the inertial loads calculated

for aft slipper 1; deformation plots C correspond to the inertial loads
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calculated for forward slipper 2, and deformation plots D correspond to

the inertial loads calculated for aft slipper 2. Some observations can

be made about the deformation plots by studying Fig. 11. Upon examining

the accelerations in Table 2a for the forward slipper 1, one can observe

that not only 2=.0933 is small in absolute value compared to q=.30

but also 4 exceeds by a minimum of 70% the magnitude of the remaining

elastic mode accelerations. Thus from Eq. (41), the contribution of the

first mode in calculating the inertial loads far exceeds that of the rigid

body modes and the remaining elastic modes. This contribution is evident

if Fig. 11A is compared with the first mode given in Fig. 10. Similarly,

examining Table 2a for the aft slipper 1, the contribution of 2i, q1andq3

is noted, and a comparison of Fig. 11B and Fig. 10 for modes 1 and 3 can be

made. For the forward slipper 2, Table 2a gives the largest maximum accel-

erations as 4 1 =-.3785 and q 6='2214. However, comparing Fig. 11C and Fig.

10, the contribution of the first mode appears to be predominant compared

to the sixth mode. For aft slipper 2, Table 2a gives the largest maximum

accelerations as ql.53and 46=-.355
4 . In this case comparing Fig. 111)

and Fig. 10, the influence of the sixth mode is comparable to the first

mode. Similar observations could also be made for Figs. 12 and 13. Figs.

14, 15, and 16 give deformation plots for the Monte Carlo profile for the

indicated value of stiffness. In general the deformation plots reflect the

contribution of the mode shapes to the inertial loads, Eqs. (41).

In examining the results shown in Tables 2a, 2b, 3a and 3b two points

should be considered.

(1) Since both profiles were generated using the random number

generator function, RANF, both are random profiles. Thus their contribu-

tion to Eqs. (33), i.e. the force input via Eq. (16) and (17) is random.
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Each profile generates a different force input.

(2) Also the inertial loads were calculated separately at a different

peak time for each slipper. As Tables 2a and 2b shown, for the same value

of stiffness, the dynamic force is a maximum at different peak times for

4
the same slipper. For example, for kA~k.F4 8xlO , at slipper . the peak

time for the original SLEDYNE profile is 1.416 sec. while the peak time

for the Monte Carlo profile is 1.980.
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Figure 10. First Six Frequencies and Mode Shapes
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VI. CONCLUSIONS

The dynamics of a sled ride on rails at high speeds is an extremely

complex phenomena. The factors that affect the ride are numerous and

adequate simulation can only be achieved by extensive testing. The

SLEDYNE program represents a preliminary attempt at introducing some

sophistication to modeling stiffness/mass properties of the sled and the

rail roughness profile. An extensive test program is necessary in order

to validate the results obtained from analytical programs like SLEDYNE.

For example there is no simplified way at present to determine the slipper

stiffnesses k A and k F. Both the slipper beam assembly and the track flexi-

bility affect these stiffnesses.

The aerodynamic data is even less sophisticated than the mass/stiff-

ness properties. The extent of this deficiency cannot be assessed with-

out parametric studies involving thrust, lift and drag. As in slipper

stiffness data, no simple approach is presently available for determining

the aerodynamic parameters.

However, some specific conclusions can be derived from this thesis.

* (1) For example, the total strain energy of the sled increased in

general as the values of slipper stiffness, k AkF1 increased for both

profiles. However, exceptions can occur as was shown in Tables 3a and

W 3b.

(2) From the limited data obtained in our study, it would appear

that the torsional rigidity in the sled structure is large enough to

prevent dissimilar motion of opposite sets of slippers.

(3) Within a given profile, the effect of a variation in slipper

stiffness could be more adequately measured, if the accelerations were

available at the same time for a given slipper. Then, the total strain
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energies could be compared for the resulting inertial loads.

(4) It wasn't possible to directly compare the results of the orig-

inal SLEDYNE rail roughness profile (Tables 2a and 3a) and the Monte Carlo

profile (Tables 2b and 3b), because the profiles were generated by a random

function. In addition, for the original SLEDYNE case a separate profile

was generated for each rail. It was felt that this did not satisfy the

true physical phenomena that may- occur. While, in the Monte Carlo case,

a separate profile was generated for each slipper. So each profile gener-

ated a different force input in Eq. (40). However, by comparing Tables 2a

and 2b one observes that the physical characteristics of the structure are

quite similar. In particular, the bending stiffness produces a small

amount of pitch acceleration, e. Yet the Monte Carlo profile on each

slipper, in general, would have a larger e6 as would be expected. In order

to make a comparison within the Monte Carlo profile, a statistical approach

must be made due to the individual slipper profile concept.

(5) For the user, the Monte Carlo profile is not only easier to imple-

ment in the SLEDYNE program but also easily expandable if additional

measured data becomes available. Additional or finer intervals can be

defined to adequately represent any range of track measurements. Since

the Monte Carlo ranges along the 0-1 scale are constructed (See Table 1)

independently of the SLEDYNE program, a virtually unlimited amount of track

measurements can be considered in defining the profile. Thus, neither the

efficiency nor the core memory requirements of SLEDYNE are affected by

* .4 the amount of rail roughness measurements. On the other hand, since the

original SLEDYNE profile is generated internally in SLEDYNE, core require-

* 4' ments for it will be increased as the number of track measurements increase.

Also additional data on the sequence of the segments selected plus the total
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number of point entries must be stored for both rails, since a different

rail roughness profile is generated for each rail. Therefore, the original

SLEDYNE profile is not as amenable to expansion as the Monte Carlo profile.

(6) Although only two basic parameters have been examined, it is pos-

sible for one to investigate additional individual parameters with the use

of the combined SLEDYNE and NASTRAN programs. For example, it is possible

to study a variation in the aerodynamic forces with the combined SLEDYNE

and NASTRAN programs. The author feels that this joint application is an

extremely useful design tool which can be incorporated into future hyper-

sonic sled development.

'5
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APPENDIX A

This appendix provides the detailed steps required for the deriva-

tion of C bp the damping coefficient at each slipper for bounce, Eq. (22),

C p, the damping coefficient at each slipper for pitch, Eq. (23), and

damping coefficients C F and C A9 Eq. (20) and (21).
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To compute the damping coefficients associated with flexing of the

stepper beam springs. For bounce, consider the following spring-mass-

damper system.

4

Derive the equation of motion by taking the sum of the forces in the

vertical direction

-k Fz - k Az - C z = mz

or

M M

From Eq. (A) the natural frequency is given by

+ _ _z_+ (A

* (k A+k )
A m (2A)

Define uN=Wb where b implies bounce.

Also from Eq. (IA)

c b (3A)- = 2 Li

m

where z is the viscous damping factor.

Substituting Eq. (2A) into (3A) gives

C 2 (k+kF) F ,
Cz =2 4 m F
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or

Cz = 2 z  /(kA+k)m (4A)

Thus the damping coefficient at each slipper for bounce is given by

C
Cb = = (2 J A+k,)m) (5A)

Therefore Eq. (22) has been derived.

For pitch consider the following spring-mass-damper system.

k 

f

- tj } , .f I

'444

II
', J
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where C is a rotary damper. The forward slipper spring is being extended

while the aft slipper spring is being compressed. For small values of e,

F =k k
k F F

(6A)
F kA k k AA

Derive the equation of motion by taking the sum of the moments about the

cg.

-F k F  - F kA A - c 4 =

or

I + C e + F k F +F kAk = 0 (7A)

Substituting Eq. (6A) into Eq. (7A) gives

I@+ C + (kZ 2 + kAZ ) = 0

Thus

+~%~ e k + kA.- 0 (8A)

From Eq. (8A) the natural frequency wN is given by

( 2 + k k2(A
W(FZF A A)(A

N : I

Define wN=W where 6 implies pitch.

Also from Eq. (8A)

Ce
- 2 We  (10A)

where & is the viscous damping factor.

Substituting Eq. (9A) into Eq. (1OA) gives

2(kF2 + 2

Ce 2  / Fi AA))
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or

C0  2C a (kF2 + k 2 ) (11A)

Thus the damping coefficient at each slipper for pitch is given by

C = 21 2 2C I(kZ 2 k 2 .- (12A)
2 + 2(kFk2 2X + Z2) F F + k A kA)(1

Therefore Eq. (23) has been derived.

Assume that the damping is not equal at each slipper but is propor-

tional to the beam stiffness. Thus for a forward slipper

2kF

CF = (Cb + Cp) k +F k (13A)

and for an aft slipper

2kA

C = (C + C) kA (14A)
A b p kA + kF

Thus Eqs. (20) and (21) have been derived. The recommended value for zz

and e is .03, i.e. 3% critical damping.
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