

23 JAN 1981

÷.;

2

APPROVED FOR PUBLIC RELEASE AFR 190-17.

Laund A. Lampela

LAUREL A. LAMPELA, 2Lt, ⁰USAF Deputy Director, Public Affairs Ar force to clude of lechnology (ATC) Wright-Panarson AFB, OH 45433 ~

A MODIFIED KOLMOGOROV-SMIRNOV TEST FOR THE GAMMA AND WEIBULL DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

THESIS AFIT/GOR/MA/80D-1 14 / Ramon/Cortes) 2Lt USAF

Approved for public release; distribution unlimited.

._____

(), • • • • •

>

AFIT/GOR/MA/80D-1

**

A MODIFIED KOLMOGOROV-SMIRNOV TEST FOR THE GAMMA AND WEIBULL DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science

by

Ramón Cortés 2Lt USAF Graduate Operations Research

December 1980

Approved for public release; distribution unlimited.

. ر.

Preface

The purpose of this thesis was to generate tables used for the modified Kolmogorov-Smirnov statistic. These tables are used for testing whether a set of observations is from a Weibull (Gamma) population when the scale and location parameters are not specified but must be estimated from the sample. A brief Monte Carlo investigation is made of the power of the test.

I would like to thank my advisor, Capt. Brian Woodruff, who offered me considerable guidance throughout my thesis project.

I would also like to thank my readers, Lt. Col. James Dunne and Dr. Albert H. Moore, whose advise aided me greatly.

Finally, I wish to acknowledge my gratitude to my classmates for their encouragement when the going got rough.

Ramon Cortes

Accession Wur NETS GEARE DTIC 143 Un mischert Junflfiction.___ Ry Dictribution/ Avnil Ellity Codes mo/or () cint

ii

· / ·

Contents

Preface) i
List o	Figures	7
List o	Tables	i
Abstra	zti	¢
I.	Introduction	1
	Kolmogorov-Smirnov Test.	1
	Problem	รี
	Background	1
	Objectives	5
		-
II.	The Distributions	3
	Weibull Distribution	3
	Historical Notes	3
	Application of the Weibull Distribution.	3
	The Weibull Probability Function	7
	Gamma Distribution	3
	Historical Notes	3
	Applications of the Gamma Distribution	9
III.	Methodology	1
	Generation of Random Weibull Deviates	2
	Generation of Random Gamma Deviates	ž
	Maximum Likelihood Estimation of Weibull and	1
	Gamma Parameters	3
	Weibull Maximum Likelihood Estimates	í
	Gamma Maximum Likelihood Estimates	ŝ
	Calculation of Test Statistic D	ŝ
	Power Comparison	ź
	Analysis of Critical Values vs. Shape Parameter 18	ź
	Computer Programs	3
IV.	Use of Tables)
	Example for Weibull Distribution	L

1

\$

ł

ر ا

> י י

iii

v.	Discussion of Results	5
	Presentation of the Kolmogorov-Smirnov Tables2Validity of Computer Programs.2Power of the Test.2Relationship between Critical Values and Shape	5 6 7
	Parameter	2
VI.	Conclusions and Recommendations	5
	Conclusions	5 5
Biblic	graphy	7
Append	ix A: Tables for the Gamma Distribution 3	9
Append	ix B: Tables for the Weibull Distribution 4	8
Append	ix C: Plots for the Relationship between Shape Parameters and Critical Values5	8
Append	ix D: Computer Programs	9
Vita.		0

iv

<u>ب</u>م ر

*

ι

List of Figures

Figure	Page
1. CDF and PDF for Weibull and Gamma Distribution	8
2. Summary of the Procedure	12
3. Gamma Level=.20 N=5	59
4. Gamma Level=.20 N=15	60
5. Gamma Level=.20 N=30	61
6. Gamma Level=.15 N=5	62
7. Gamma Level=.15 N=15	63
8. Gamma Level=.15 N=30	64
9. Gamma Level=.10 N=5	65
10. Gamma Level=.10 N=15	66
11. Gamma Level=.10 N=30	67
12. Gamma Level=.05 N=5	68
13. Gamma Level=.05 N=15	69
14. Gamma Level=.05 N=30	70
15. Gamma Level=.01 N=5	71
16. Gamma Level=.01 N=15	72
17. Gamma Level=.01 N=30	73
18. Weibull Level=.20 N=5	74
19. Weibull Level=.20 N=15	75
20. Weibull Level=.20 N=30	76
21. Weibull Level=.15 N=5	77
22. Weibull Level=.15 N=15	78

v

Figu	re																Page
23.	Weibull	Level=.15	N=30.	•	•	•	•	•	•	•	•	•	•	•	•	•	79
24.	Weibull	Level=.10	N=5 .	•	•	•	•	•	•	•	•	•	•	•	•	•	80
25.	Weibull	Level=.10	N=15.	•	•	•	•	•	•	•	•	•	•		•	•	81
26.	Weibull	Level=.10	N=30.	•	•	•	•	•	•	•	•	•	•	•	•	•	82
27.	Weibull	Level=.05	N=5 .	•	•	•	•	•	•	•	•	•	•	•	•	•	83
28.	Weibull	Level=.05	N=15.	•	•	•	•	•	•	•	•	•	•	•	•	٠	84
29.	Weibull	Level=.05	N=30.	•	•	•	•	•	•	•	•	•	•	•	•	•	85
30.	Weibull	Level=.01	N=5 .	•	•	•	•	•	•	•	•	•	•	•	•	•	86
31.	Weibull	Level=.01	N=15.	•	•	•	•	•		•	•	•	•	•	•	•	87
32.	Weibull	Level=.01	N=30.		•		•	•		•	•				•		88

vi

**

List of Tables

Table		Page
I.	Results of Example 1	22
II.	Results of Example 2	24
III.	Comparison between Thesis Program Critical Values and Lilliefors Critical Values	28
IV.	Power of the Test for the Weibull	28
v.	Power of the Test for the Gamma	29
VI.	Coefficients and R ² Values for the Relation- ship between Critical Values and Shape Param- eters	34
VII.	Shape Parameter Equal to 0.5	40
VIII.	Shape Parameter Equal to 1.0	41
IX.	Shape Parameter Equal to 1.5	42
x.	Shape Parameter Equal to 2.0	43
XI.	Shape Parameter Equal to 2.5	44
XII.	Shape Parameter Equal to 3.0	45
XIII.	Shape Parameter Equal to 3.5	46
XIV.	Shape Parameter Equal to 4.0	47
xv.	Shape Parameter Equal to 0.5	49
XVI.	Shape Parameter Equal to 1.0	50
XVII.	Shape Parameter Equal to 1.5	51
XVIII.	Shape Parameter Equal to 2.0	52
XIX.	Shape Parameter Equal to 2,5	53
xx.	Shape Parameter Equal to 3.0	54
XXI.	Shape Parameter Equal to 3.5	55

. . .

)

Y. C. LA

. ____ /

Table XXII.	Shape	Parameter .	Equal	to	4.0	• • • •	•	•	•	•	Page 56
XXIII.	Shape	Parameter	Equal	to	1.0	(5,000)		•	•	•	57

ľ

÷ او

AFIT/GOR/MA/80D-1

Abstract

The Kolmogorov-Smirnov tables for the Weibull and Gamma distribution were generated in this thesis. These tables are used when testing whether a set of observations are from a Weibull (Gamma) distribution in which the location and scale parameters must be estimated from the sample.

A power investigation of the test against some selected distributions using Monte Carlo techniques was conducted. This procedure shows that the test is reasonably powerful for a number of alternative distributions.

A relationship between the critical values and the shape parameters was investigated for the Weibull and Gamma distributions. No apparent relationship was found for the Gamma distribution. In contrast, an approximate log-linear relationship was found for the Weibull when the shape parameter is between one and four.

іx

A MODIFIED KOLMOGOROV-SMIRNOV TEST FOR THE GAMMA AND WEIBULL DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

I. Introduction

One of the most important sets of data generated by the Air Force is data dealing with the time to failure of equipment. Failure distributions are of extreme importance to the Air Force since they determine the reliability of almost all mechanical systems in service.

Often these time-to-failure data are especially useful if we can determine to what theoretical distribution they correspond. That is, a test is carried out to determine an agreement between the distribution of a set of sample values and a theoretical distribution. This test is known as the "goodness of fit test." If the frequency distribution of the data compares well with the expected or theoretical distribution, we can then use the theoretical distribution to represent the parent or underlying population. Two very useful theoretical distributions that deal with time-to-failure data are the Gamma and Weibull distributions.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov statistic provides a means of testing whether a set of sample values are from some completely

specified continuous theoretical distribution, $F_0(x)$. Suppose that a population is thought to have some specified cumulative distribution function, say $F_0(x)$. Then, for any specified value of x, the value of $F_0(x)$ is the proportion of individuals in the population having measurements less than or equal to x. The cumulative step-function of a random sample of N observations is expected to be fairly close to this specified distribution function. If it is not ose enough, this is evidence that the hypothetical distribution is not the correct one.

If $F_0(x)$ is the population cumulative distribution and $S_n(x_i)$ the observed cumulative step-function of a sample (i.e. $S_n(x_i) = \frac{K}{N}$, where K is the number of observations less than or equal to x), then the sampling distribution of

$$D = MAX |F_0(x) - S_n(x)|$$
(1)

is known, and is independent of $F_0(x)$, if $F_0(x)$ is continuous. A standard table of the Kolmogorov-Smirnov test (1:425) gives certain critical points of the distribution of D for various samples sizes.

Chi-Square vs. Kolmogorov-Smirnov Test

Another alternative to carry out the tests of goodness of fit, especially useful in the case where population parameters must be estimated, is the Chi-Square test (χ^2) .

The Kolmogorov-Smirnov test (K-S), however, has three major advantages over the Chi-Square (12:68).

1. The K-S test can be used with small sample sizes, where the validity of the Chi-Square test would be question-able.

2. Often the K-S test appears to be a more powerful test than the Chi-Square test for any sample size.

3. The K-S test will usually require less computation than χ^2 . This is especially true when a graphical test is used, for if the hypothesis is rejected, the computation stops at the point of rejection.

The two major advantages the Chi-Square has over the K-S test are (12:68):

1. In cases where parameters must be estimated from the sample, the χ^2 test is easily modified by reducing the number of degrees of freedom. The K-S test has no such known modification, so it is not applicable in such cases.

2. The K-S test cannot be applied to discrete populations, whereas χ^2 can be.

Problem

The standard tables used for the Kolmogorov-Smirnov test are valid only when testing whether a set of observations are from a completely specified continuous distribution. If one or more parameters must be estimated from the sample then the tables are no longer valid. It has been suggested by (12:68) that if the K-S test is used in this case, the results will be conservative in the sense that the probability of a type I error will be smaller than as given by tables of Kolmogorov-Smirnov statistics. That is, the actual significance level would be lower than that given by the standard tables.

The existence of the probability integral transformation permits us to generate K-S type tables for any particdistribution, if the parameters to be estimated are parameters of scale or location. David and Johnson (4:182) have shown that these parameters will be completely independent of the distribution of any test statistic based on the cumulative distribution function. The distribution of the test statistic will, in general, depend on the functional form of the distribution of the original variables. Since the K-S type test statistic is one based on the cumulative distribution function, the results of David and Johnson apply in this case.

Background

Tables for the Kolmogorov-Smirnov test when population parameters are unknown have been generated by Hubert W. Lilliefors at the George Washington University. He generated the tables for the Normal distribution (8:399) and the Exponential distribution (9:387).

Objectives

This thesis has the following objectives:

1. To generate and present the Kolmogorov-Smirnov tables for the Weibull and Gamma distribution when the scale and location parameters are not specified.

2. To determine the power of the test in selected situations using a Monte Carlo investigation.

3. To investigate the relationship between the critical values and the shape parameter for the Weibull and Gamma distributions.

II. The Distributions

Weibull Distribution

<u>Historical Notes</u>. The Weibull distribution is named after the Swedish scientist Waloddi Weibull, who published a paper in 1939 (10:50) giving some of the distribution's uses for an analysis of the breaking strengths of solids. However, it was also known to R.A. Fisher and L.H.C. Tippett who published a paper in 1928.

<u>Application of the Weibull Distribution</u>. In the past ten to fifteen years the Weibull distribution has emerged as the one popular parametric family of failure distributions. Its applicability to a wide variety of failure situations was discussed by Weibull. For example, it has been used to describe vacuum-tube and ball-bearing failures.

The Weibull distribution is closely related to the exponential, but has two additional parameters, the shape parameter and the location parameter. Thus, instead of a single constant failure rate λ , as in the exponential case, a variety of hazard situations can be treated. For a given Weibull distribution, the failure rate can be either continually increasing, continually decreasing, or else constant. Since many failures encountered in practice, especially those pertaining to nonelectric parts, show an increasing failure rate (due to deterioration or wear) the

Weibull distribution is useful in describing failure pattern of this type.

The Weibull Probability Function. Let the random variable x denote testing or operating time, and let η denote the "scale" parameter, β the "shape" parameter, and γ the "location" parameter. The Weibull probability density function (p.d.f.) is

$$f(x|\eta,\beta,\gamma) = \frac{\beta(x-\gamma)^{\beta-1}}{\eta^{\beta}} \exp\left\{-\left(\frac{x-\gamma}{\eta}\right)^{\beta}\right\}, \gamma < x$$
(2)

The Weibull distribution function is

$$F(\mathbf{x}) = \int_{0}^{\mathbf{x}} f(\mathbf{x}|\boldsymbol{\eta}, \boldsymbol{\beta}, \boldsymbol{\gamma})$$
$$= 1 - \exp\left[-\left(\frac{\mathbf{x}-\boldsymbol{\gamma}}{\boldsymbol{\eta}}\right)^{\boldsymbol{\beta}}\right], \mathbf{x} \geq \boldsymbol{\gamma}$$
(3)

When $\beta=1$ the Weibull distribution specializes to the exponential distribution, and when $\beta=2$ the resulting distribution is known as the Rayleigh distribution. The mean **and variance** of the Weibull are given as follows:

Mean =
$$\gamma + n\Gamma\left(\frac{\beta+1}{\beta}\right)$$
 (4)

Figure 1. CDF and PDF for Weibull and Gamma Distribution

Variance =
$$\eta^2 \left[\Gamma \left(\frac{\beta+2}{\beta} \right) - \Gamma^2 \left(\frac{\beta+1}{\beta} \right) \right]$$
 (5)

A Weibull distribution with $\gamma=0$ and $\eta=1$ is illustrated for different values of the shape parameter β in Figure 1.

Gamma Distribution

<u>Historical Notes</u>. The Gamma distribution is a natural extension of the exponential distribution and has sometimes been considered as a model in life-test problems. It can be derived by considering the time to the K^{th} success in a Poisson process or, equivalently, by considering the K fold convolution (10:55) of an exponential distribution.

._.../

The Gamma distribution is the continuous analog of the negative binomial distribution (11:125) which can also be obtained by considering the sum of K variables with a common geometric distribution.

<u>Applications of the Gamma Distribution</u>. The Gamma Distribution has been used widely in queueing systems. For example, it has been used to determine the lengths of time between malfunctions for aircraft engine and the lengths of time between arrivals at a bank, super market, or maintenance checkout queue.

The Gamma distribution is one of the most useful continuous distributions available to the simulation analyst. If the variables from some random phenomenon cannot assume negative values and generally follow a unimodal distribution, then the chances are excellent that a member of the gamma family can adequately model the phenomenon. The Gamma distribution is defined by three parameters, θ , α and c , where θ is the "scale" parameter, α is the "shape" parameter and c is the "location" parameter. The Gamma probability density function (p.d.f.) is

$$f(x|c,\theta,\alpha) = \frac{(x-c)^{\alpha-1}}{\Gamma(\alpha)\theta^{\alpha}} \exp\left(-\frac{(x-c)}{\theta}\right)$$
(6)

$$\theta_{\alpha} > 0$$
 $x \ge c \ge 0$

The Gamma distribution function is

$$F(x) = \int_{0}^{x} f(x|c,\theta,\alpha)$$
(7)

This integral does not have a closed form expression. Its values have to be determined by numerical calculations. When α =1 , c=0 the Gamma density is the exponential density function with an expected value of θ . If α is an integer value, K , then the Gamma distribution is commonly referred to as an Erlang-K distribution. Furthermore, if θ =1 , then as α becomes large, the Gamma distribution approaches the normal distribution. If we set $\alpha=\nu/2$ and $\theta=2$ (where ν is the degrees of freedom) we get the Chi-Square distribution. The mean and variance of the Gamma are given as follows:

$$Mean = \alpha \theta + c \tag{8}$$

$$Variance = \alpha \theta^2$$
 (9)

A Gamma distribution with c=0 and θ =1 is illustrated for different values of the shape parameters α in Figure 1.

\$

III. Methodology

The method that follows was the one used in calculating critical values for the modified D statistic when the scale and location parameter are not specified.

For a fixed sample size n , random deviates $x_{(1)}$, $x_{(2)} \cdots x_{(n)}$ were generated from the Weibull and Gamma distributions. Next the random sample $x_{(1)}, x_{(2)} \cdots x_{(n)}$ was used to estimate the scale and location parameter by the method of maximum-likelihood. The resulting estimates of the scale and location parameter and the constant value of the shape parameter are then used to determine $F_0(x)$, the hypothesized distribution function. Finally, $D=max|F_0(x)-S_n(x)|$ was calculated for the sample size n . This procedure was repeated 1000 times, thus generating 1000 independent values of the D statistics. These 1000 values were then ranked, and the 80th, 85th, 90th, 95th and 99th percentiles were found. This entire process was performed for sample sizes from n=4 to 30.

After tables for the test procedure were completed, a power comparison was conducted.

What follows is a more detailed description of the steps taken in this procedure. Figure 2 illustrates this procedure.

*._.

74 7

\$

,í

2000

Figure 2. Summary of the Procedure.

12

•

۰.

._.../

Generation of Random Weibull Deviates

The Weibull pseudo-random deviates were generated by

$$x = |-\ln (u)|^{\frac{1}{\beta}}$$
 (10)

where u is a pseudo-random deviate from a uniform (0,1) distribution and β is the shape parameter. These deviates were obtained on the CDC 6600 computer by using the International Mathematical and Statistics Library (IMSL) subroutine GGWIB (19:306).

Generation of Random Gamma Deviates

The Gamma pseudo-random deviates were generated using rejection methods by various computational algorithms depending on the value of the shape parameter α . These algorithms are contained in the IMSL subroutine GGAMR (14:1541). This subroutine was used to obtain the Gamma deviates on the CDC 6600 computer.

Maximum Likelihood Estimation of

Weibull and Gamma Parameters

The procedure used to derive the maximum likelihood estimates, \hat{n} , $\hat{\beta}$ and $\hat{\gamma}$, of the Weibull parameters, n, β and γ , and $\hat{\theta}$, $\hat{\alpha}$ and \hat{c} , of the Gamma parameters, θ , α and c, was developed by Harter and Moore (7:639). They developed an iterative procedure for censored or uncensored samples for the three parameter Weibull and Gamma

. 1

distribution. For each of these distributions, the likelihood function is written down, and the three maximum-likelihood equations are obtained. In each case, simultaneous solution of these three equations would yield joint maximum-likelihood estimators for the three parameters. The iterative procedures proposed to solve the equations are applicable in the most general case, in which all three parameters are unknown, and also to special cases in which any one or any two of the parameters are unknown.

Weibull Maximum Likelihood Estimates

The probability density function of the random variable x having a Weibull distribution with location parameter $\gamma \ge 0$, scale parameter η , and shape parameter β is given by

$$f(\mathbf{x}|\eta,\beta,\gamma) = \left(\frac{\beta(\mathbf{x}-\gamma)^{\beta-1}}{\eta^{\beta}}\right) \exp\left(-\left(\frac{\mathbf{x}-\gamma}{\eta}\right)^{\beta}\right)$$

$$\eta,\beta>0, \ \mathbf{x}^{\geq}\gamma>0$$
(11)

The natural logarithm of the likelihood function of the order statistics x_1, x_2, \ldots, x_n , of a sample of size n is given by (7:640)

$$L = \ln n! + n(\ln \beta - \beta \ln \eta) + (\beta - 1) \sum_{c=1}^{n} \ln (x_{i} - \gamma)$$
$$- \sum_{c=1}^{n} (x_{1} - \gamma) / \eta^{-\beta}$$
(12)

The maximum-likelihood equations are obtained by equating to zero the partial derivatives of L with respect to each of the three parameters; these partial derivatives are given by:

$$\frac{\partial \mathbf{L}}{\partial \eta} = \frac{-\beta_{\mathbf{n}}}{\eta} + \beta \sum_{i=1}^{\mathbf{n}} (\mathbf{x}_{i} - \gamma)^{\beta} / \eta^{\beta+1}$$
(13)

$$\frac{\partial L}{\partial \beta} = \sum_{i=1}^{n} \ln (x_i - \gamma) - \sum_{i=1}^{n} (x_i - \gamma) / \eta \beta \ln [(x_i - \gamma) \eta]$$
(14)

$$\frac{\partial L}{\partial \gamma} = (1-\beta) \sum_{i=1}^{n} (x_i - \gamma)^{-1} + \beta \eta^{-\beta} \sum_{i=1}^{n} (x_i - \gamma)^{\beta - 1}$$
(15)

Gamma Maximum Likelihood Estimates

The probability density function of the random variable x having a Gamma distribution with location parameter $c^{\geq 0}$, scale parameter θ , and shape parameter α is given by

$$f(x,c,\theta,\alpha) = \left[1/\Gamma(\alpha)\theta\right] \left[(x-c)/\theta\right]^{\alpha-1} \cdot \exp\left[-(x-c)/\theta\right]$$

$$\theta, \alpha > 0$$
 $x^2 c^2 0$ (16)

The natural logarithm of the likelihood function of the order statistics $x_1, x_2, \ldots x_n$ of a sample of size n is given by

15

 $L = \ln n! - n \ln \Gamma(\alpha) - n\alpha \ln \theta + (\alpha - 1)$

$$\sum_{i=1}^{n} \ln (x_i - c) - \sum_{i=1}^{n} (x_i - c) / \theta$$
 (17)

The maximum-likelihood equations are obtained by equating to zero the partial derivatives of L with respect to each of the three parameters; these partial derivatives are given by

$$\frac{\partial \mathbf{L}}{\partial \theta} = -\mathbf{n}\alpha/\theta + \sum_{i=1}^{n} (\mathbf{x}_i - c)\theta^2$$
(18)

$$\frac{\partial L}{\partial \alpha} = -n \ln \theta + \sum_{i=1}^{n} \ln (x_i - c) - n\Gamma(\alpha) / \Gamma(\alpha)$$
(19)

$$\frac{\partial L}{\partial c} = (1-\alpha) \sum_{i=1}^{n} (x_i - c)^{-1} + n/\theta$$
(20)

where the prime in $\frac{\partial L}{\partial \alpha}$ indicates differentiation with respect to α .

Calculation of Test Statistic D

1

For the Weibull distribution there was no problem in calculating D in Eq(1) since $F_0(x)$ has a closed form expression Eq.(3). Since the Gamma distribution does not have a closed form expression, an integral calculation had to be

done in order to determine $F_0(x)$ before calculating D This integral calculation was accomplished using the IMSL subroutine MDGAM (16:946) which evaluates the probability that a random variable from a Gamma distribution having shape parameter α with c=0 and θ =1 is less than or equal to x .

$$I(x,\alpha) = \int_{0}^{x} \frac{e^{-t}t^{\alpha-1}dt}{\Gamma(\alpha)}$$
(21)

In order to use this subroutine, the generalized three parameter Gamma density function considered in this thesis had to be transformed to the one parameter Gamma density function used in the subroutine. This transformation was done as follows:

$$F(y) = \int_{c}^{y} \frac{(x-c)^{\alpha-1}}{\Gamma(\alpha)\theta^{\alpha}} e^{-(\frac{x-c}{\theta})} dx \qquad (22)$$

Let, z=x-c dz=dx. Then, x=c+z=0

x=y→z=y-c

and

\$

$$F(y) = \int_{0}^{y-c} \frac{z^{\alpha-1}}{\Gamma(\alpha)\theta^{\alpha}} e^{\frac{-z}{\theta}} dz \qquad (23)$$

Next, let $t=\frac{z}{\theta}$, $dt=\frac{dz}{\theta}$

17

. ___ / /

Then $z=0 \rightarrow t=0$

 $z=y-c \rightarrow t = \frac{y-c}{\alpha}$

and

$$F(y) = \int_{0}^{\frac{y-c}{\theta}} \frac{t^{\alpha-1}}{\Gamma(\alpha)} e^{-t} dt$$
 (24)

which is the same integral in Eq(21) with $x=\frac{y-c}{\theta}$.

Power Comparison

The power of the test using the modified D statistic was compared for four alternative distributions. These power comparisons were made using Monte Carlo simulation. The procedure is very similar to the procedure used in creating the critical values for the D statistic. Five thousand random samples of size n were generated for each of the four alternative distributions considered. Then the D statistic was calculated and compared to its respective critical value obtained from the table generated. The number of rejections of the two different null hypotheses (that the distribution was from a Weibull or Gamma distribution with known shape parameter) were counted.

Analysis of Critical Values vs. Shape Parameter

The tables generated in this thesis for the Weibull and Gamma distributions will depend on the value of the shape parameter. For different values of the shape parameter we will have different tables. For this reason we

have presented tables for eight different shape parameters. These shape parameters are .5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 .

Since there is an apparent relationship between the shape parameter and the table's critical values, an investigation of the possibility of finding an expression or equation that indicates the relationship between the shape parameter and the critical values was conducted. Both regression and graphical methods were considered.

Computer Programs

The computer programs built for generating the Gamma and Weibull distribution were made very flexible. That is they were built to generate tables for any shape parameter input into the programs. The programs used to generate the Gamma and Weibull distributions are presented in Appendix D.

IV. Use of Tables

In the Kolmogorov Smirnov test a theoretical or assumed distribution F(x), is compared to an observed distribution $S_n(x)$. If the maximum deviation of $|F(x)-S_n(x)|$ exceeds a certain limiting value, $d_{\alpha,n}$ the assumed distribution is rejected.

The steps in applying the modified Kolmogorov Smirnov test when the scale and location parameters are estimated are as follows:

1. Determine the values of the scale and location parameters by one of the methods of parameter estimation.

2. Specify completely (including the shape parameter) the hypothesized distribution F(x) .

3. Determine the desired level of significance, α , and the desired or planned sample size, n . The level of significance, α , is the risk of rejecting the hypothesized distribution if it is in fact the true distribution.

4. Using the tables generated in this thesis, select the critical value, $d_{\alpha,n}$.

5. Select a random sample of n items from the population to be tested, and order the observations.

6. Determine the maximum value, d , of

 $D = |F_0(x) - S_n(x)|$

where

$$S_n = i/n$$
 when $x_i \le x < x_{i+1}$

7. If $d > d_{\alpha,n}$ reject the hypothesized distribution. If $d \leq d_{\alpha,n}$ the hypothesized distribution cannot be rejected and we say that it is reasonable to assume that the hypothesized distribution is the true distribution.

These steps are illustrated in the two examples which follow.

Example for the Weibull Distribution

A certain engineer is involved with the development of a new turbojet engine. It is important to determine the failure time of this new engine before it is introduced to the market. Six identical engines were tested. The failure time data obtained from these tests were:

.034, .168, .266, .563, 1.344, 3.118 years. The engineer believes that the failure time of this engine follows a Weibull distribution with shape parameter equal to one and scale and location parameter undetermined. We will now conduct the test developed in this thesis at the 5% level of significance to determine if the engineer's hypothesis is reasonable. That is,

H_c: The distribution is Weibull (shape=1)

H_a: Another distribution

First we determine the scale and location parameter by

	TABLE I									
i	×i	F(x _i)	S _n (x _i)	$ F(x_i)-S_n(x_i) $	$ F(x_i)-S_n(x_i-1) $					
1	.034	.036	. 167	.131	.036					
2	.168	.166	.334	.168	.001					
3	. 266	.250	.501	*.251*	.084					
4	.563	.457	.668	.211	.044					
5	1.344	.767	.835	.068	.099					
6	3.118	.966	1.000	. 034	.131					
Note	Note that $d=max F(x)-S_n(x) $ is .251.									

the method of maximum likelihood. The following values were obtained: scale = \hat{n} = .923 location = $\hat{\alpha}$ = .0003 Using these estimates and β =1 , in Eq(3) we can obtain values for the hypothesized distribution. We can then construct Table I. Using the table of critical values for the Weibull distribution for shape=1 we find for α =.05 and n=6 that d_{.05,6} = .383. Hence, since .251<.383, we cannot reject the null hypothesis. We conclude that a Weibull distribution with shape parameter equal to one is a reasonable model for the engine failure data.

Example of the Gamma Distribution

Major Smith is the maintenance squadron commander at

Big AFB. During the past six months he has been trying to determine the lengths of time his crew takes to complete a maintenance service for an aircraft engine. This information is vital to him since it will permit him to schedule his crew in a way that will optimize service time. Major Smith, presented this problem to Lt Jones. Lt Jones gathered the following service time data:

.397, .524, .691, .973, 2.548, 2.933 hours. Lt Jones told Major Smith that he believes that these data follow a Gamma distribution with shape parameter equal to one. Major Smith wants to use the test procedures of this thesis at the 5% level of significance to determine if Lt Jones' hypothesis is reasonable. That is,

H_o: The distribution is Gamma (shape=1)

H_a: Another distribution

First we determine the scale and location parameter by the method of maximum likelihood. The following values were obtained: scale = $\hat{\theta}$ = 1.009 location = \hat{c} = .341 Using these estimates, and α =1, in Eq(24), we can obtain values for the hypothesized distribution function. We can then construct Table II. Using the table of critical values for the Gamma distribution for shape=1 we find for level α =.05 and n=6 that d_{.05,6}=.383 . Hence, since .220<.383, we cannot reject the null hypothesis. We conclude that a Gamma distribution with shape parameter equal to 1 is a reasonable model for the length of time of a maintenance service. 23

	TABLE II										
i	x _i	F(x _i)	$S_n(x_i)$	$ F(x_i)-S_n(x_i) $	$ F(x_i)-S_{n(x_i-1)} $						
1	. 397	.054	.167	.113	.054						
2	.524	.167	.334	.167	.000						
3	.691	.293	.501	.208	.041						
4	.973	.466	.668	.202	.035						
5	2.548	.888	.835	.053	*.220*						
6	2.933	.923	1.000	.077	.088						
Note	Note that $d=\max F(x)-S_n(x) $ is .220.										
V. Discussion of Results

The results obtained in this thesis are discussed in this chapter. Results applicable to each objective are presented in the sequence in which the objectives were presented in Chapter I. All tables referenced in this chapter are located in Appendix A and B, and all figures in Appendix C.

Presentation of the Kolmogorov-Smirnov Tables

The Kolmogorov-Smirnov tables for the Weibull and Gamma distribution when the scale and location parameters are not specified are presented in Appendix A and B respectively. The critical values in these tables were subject to simulation variability. This variability was reflected in the third decimal place of the critical values. Due to this variability the critical values in many tables are not monotonically decreasing functions of sample size when the sample size exceeds 15.

This variability is not unusual for any kind of Monte Carlo simulation. There are several methods which can be used to eliminate this variability. One method is to increase the simulation sample size. In this thesis the critical values were obtained with 1000 samples. If the simulation would have been done with more than 1000 samples, the

variability would have been less. For example Table (Ref. Appendix B) was obtained with 5,000 samples and as can be seen the simulation variability has been reduced. The critical values are monotonically decreasing for increasing sample sizes at all levels of significance. A11 the tables were not generated with 5,000 samples because to do so would require a large amount of computer time. Another method to reduce simulation variability is to run the program with a different seed several times with a relatively small number of samples in each run. Then the critical values are obtained by computing the means of the critical values found on these several runs. For example, the programs used in calculating the tables in this thesis (1000 samples) could have been run five times with a different seed every-Then the critical values would have been obtained by time. computing the mean of the five program runs. Again this procedure was not carried out because it, too, would require a large amount of computer time.

Validity of Computer Programs

The validity of the computer programs (Appendix D) used to generate the tables presented in this thesis were verified by comparing the critical values obtained with the computer programs with the critical values obtained by Lilliefors in his exponential table (9:387). This comparison is possible because both the Weibull and Gamma distributions become an

exponential distribution when the shape parameter is one and the location parameter is zero. When the shape parameter was input to one, the location parameter to zero and the scale parameter set to be estimated in the computer programs the critical values obtained were almost identical to the critical values obtained by Lilliefors in his exponential table. These results can be seen in Table III for sample size n=10.

Power of the Test

The power of the test was carried out as discussed in Chapter III with only one exception. The Monte Carlo simulation for the power of the test for the Gamma distribution was obtained with 2000 samples of size n=30 instead of the 5,000 samples indicated in Chapter III. The reason for this change was the excessive amount of computer time required to do the test with 5,000 samples.

The results obtained are presented in Table IV and V. Table IV represents the probability of rejecting the null hypothesis of a Weibull distribution with shape parameter one using the modified D statistic of this thesis when the sample size is 30. The numbers are the result of Monte Carlo simulation with 5,000 samples for each distribution. Table V represents the probability of rejecting the null hypothesis of a Gamma distribution with shape parameter one using the modified D statistic when the sample size is 30.

	TABLE III						
Comparison Between Thesis Program Critical Values and Lilliefors Critical Values							
Level of Significance .20 .15 .10 .05 .01							
Critical Values Obtain by Lilliefors	.263	.277	.295	.325	. 38		
Critical Values Obtain by Thesis Programs	.265	.279	.301	.323	.381		

ľ

TABLE IV								
Power of t	Power of the Test for the Weibull							
	Modif	ied K- d	S test istribu	for the	e Weibu	111		
Underlying Distribution	Using	criti	cal va	lues fro	om Tabl	e 23		
n = 30 H _e : Weibull(shape=1)	4: 05	μι	μ2	%= .01	μı	μ2		
Weibull Beta Normal	.05 .98 .96	.044 .976 .955	.056 .984 .965	.01 .94 .86	.007 .933 .850	.013 .947 .870		
Log Normal Gamma(shape=1) Gamma(shape=2) Weibull(shape=2)	.41 .05 .46 .05	.396 .044 .446 .044	.424 .056 .474 .056	.18 .01 .26 .01	.169 .007 .248 .007	.191 .013 .272 .013		

	TABLE V					
Power of the Test for the Gamma						
Underlying	Modif	ied K- di	S test stribu	for the tion	e Gamma	a
Distribution $n = 30$	Using	criti	cal va	lues fro	om Tab	le 8
H ₀ : Gamma(shape=1)	~?. 05	μι	μ2	« = .01	μı	μ2
Gamma Beta Normal	.04 .68 .42	.031 .660 .398	.049 .700 .442	.01 .34 .26	.006 .319 .241	.014 .361 .279
Log Normal Weibull(shape=1) Weibull(shape=2)	.10 .04 .01	.087 .031 .006	.113 .049 .014	.04 .01 .001	.031 .006 .000	.049 .014 .002

The numbers are the result of Monte Carlo simulation with 2,000 samples for each distribution.

In both Tables IV and V, U_1 and U_2 represent the lower and upper limit of the 95% confidence interval for the probability of rejecting the null hypothesis. This confidence interval is given by:

$$P(\hat{P}-Z_{\alpha/2}\sqrt{\frac{\hat{p}\hat{q}}{n}}$$

where \hat{p} is the proportion of rejections in the computer runs and $Z_{\alpha/2}$ is the upper $\alpha/2$ cut-off value from a standard normal.

Table IV indicates that when the null hypothesis is

true, the test does in fact achieve the claimed significance level. The test has a very high power when used on Beta and Normal distributions, but not so high for the log normal distribution. The results obtained for the Gamma distribution with shape parameter equal to one were the same as those for the Weibull with shape equal to one. This result was expected since both distributions are an exponential distribution under this condition. In contrast, when the test was done with a Gamma distribution with shape parameter equal to two different results were obtained. This demonstrates that the test does reasonably well against the Gamma distribution with shape parameter not equal to one. In contrast, the test is not very powerful against a Weibull with shape parameter equal to two. This suggests that the test may not be able to readily distinguish between different members of the Weibull family.

Table V indicates that when the null hypothesis is true, the test approximates reasonably well the claimed .05 significance level and exactly the .01 significance level. The test has a reasonably good power when used on Beta and Normal distributions, but no so good for the log normal distribution. The results obtained for the Weibull distribution with shape parameter equal to one were the same as those for the Gamma with shape equal to one. This result was expected since both distributions are an exponential distribution

under this condition. In contrast, when the test was done with a Weibull distribution with shape parameter equal to two, different results were obtained. Unfortunately, the results obtained for the Weibull distribution with shape parameter equal to two were poor. They indicate that the test could not distinguish between a sample generated from a Gamma distribution with shape parameter equal to one to a sample from a Weibull distribution with a shape parameter equal to two.

In general, the results obtained for the power of the test for the Gamma distribution were poor in comparison to the results obtained for the Weibull distribution even though the null hypothesis in each table was the exponential distribution.

Three possible factors could have caused these different results for the Gamma.

1) The critical values used in the Gamma test were generated with 2,000 samples while the critical values used in the Weibull distribution test were generated with 5,000 samples. This implies that the critical values for the Gamma distribution had more Monte Carlo variability than those for the Weibull distribution.

2) The power of the test for the Gamma distribution was conducted with 2,000 samples while the test for the Weibull distribution was done with 5,000 samples.

3) The cumulative distribution function for the Gamma was determined by an integral calculation. This integral calculation is subject to errors since the values obtained will be limited by some tolerance. For the Weibull distribution such a problem does not exist since its cumulative distribution function has a closed form.

Relationship Between Critical Values and Shape Parameter

As discussed in Chapter III a relationship between the critical values and the shape parameter was investigated. For the Gamma distribution no apparent relationship was found as can be seen in Figures three through 17. Possibly by increasing the number of shape parameters in the investigation a relationship could be found. Another possible explanation for the apparent lack of a relationship is Monte Carlo variability in the critical values. Increasing the number of samples used to generate the critical values for the Gamma distribution may reduce the variability sufficiently to enable a relationship to be found.

For the Weibull distribution an approximate relationship was found when the shape parameter is greater than one as can be seen in Figures 18 through 32. The approximated equation found to represent the relationship between the critical values and the shape parameter (between one and four) is

 $\ln y = a_0 + a_1 x$

where a_0 is a constant, and a_1 is the coefficient of the independent variable. The variable x is the independent variable which is the shape parameter, and ln y represents the natural logarithm of the critical value.

This equation was the best expression found to represent the relationship between the critical values and the shape parameter between one and four.

The equations obtained for all levels of significance using three different sample sizes are presented in Table VI.

The R^2 value on the table indicates how good the loglinear equation represents the relationship between the critical values and the shape parameter. From these values we can see that with the exception of sample size 15 at level of significance .01 all R^2 values are greater than .85 . This indicates that the log-linear equation is a good approximation for the relationship. For example, sample size 15 at level .20 had R^2 =.95, and sample size 15 at level .15 had R^2 =.96 . In fact, of the 15 regressions done, 10 had an R^2 equal to or greater than .90. From these results it can be concluded that the log-linear equation is a good approximation for the relationship, but not an exact one.

The values presented in Table VI were calculated using the Statistical Package for the Social Sciences (SPSS)(17:11). These equations can be used to obtpin approximate critical values for Weibull distributions with any shape parameter between one and four.

			R²		.91	ۍ ۲))		. 44
	tween		10.	777	004	-1.148	024	-1.459	022
	ip be	Ś	R²		. 88	06		00	. 89
	lationsh	irameter	.05	833	033	-1.329	021	-1.620	023
	he Rel	ape Pa	R²		16.	εb)		. 42
TABLE VI	es for t	s and Sh	.10	- ,932	028	-1.399	027	-1.715	028
	Valu	Value	₽²		06.	96	2	¢ c	αγ
	s and R ²	ritical	. 15	-1.016	016	-1.469	027	-1.796	023
	cients	Ċ	R²		. 93	95	, ,	r c	.8.
	Coeffi		.20	-1.057	017	-1.522	026	-1.852	020
			Level of Significance	q ٥	n=5 aı	a.0 n=15	l B	a o	n≖3U a₁

¥, (

VI. Conclusions and Recommendations

Conclusions

On the basis of the results obtained in this thesis the following conclusions are drawn.

1. The tables generated for the modified Kolmogorov-Smirnov are valid. Monte Carlo studies have shown that the test achieved the claimed significance level when the null hypothesis is true and have good power against several alternative distributions.

2. A log-linear relationship between the critical values and the shape parameter was found for the Weibull distribution when the shape parameter is greater than one. In contrast, there seems to be no simple linear type relationship for the Gamma distribution.

Recommendations for Further Study

Based on the observations made during this investigation, the following recommendations are proposed for further study:

1) To increase the number of shape parameters used in the investigation of the Weibull (Gamma) distribution to see if a better expression can be obtained for the relationship between critical values and shape parameters.

2) To increase the range of shape parameters investigated

for the Gamma distribution to see if an expression or equation could be found.

3) To increase the range of shape parameters investigated for the Weibull distribution to see if the log-linear relationship between shape parameters and critical values remains valid for shape parameter greater than four.

4) To compare the power of the test between the Chi-square and the modified Kolmogorov-Smirnov test for some selected distributions.

5) To modify the Anderson-Darling and Cramér-von-Mises goodness-of-fit tests in a manner similar to the one presented in this thesis for the K-S test. The result of the three modified tests can then be compared to determine which is most powerful.

6) To conduct the power of the test for the Gamma with 5,000 samples to see if the results could be improved with a reduction in the Monte Carlo variability.

Bibliography

- 1. Birbaun, Z.W. "Numerical Tabulation of the Distribution of Kolmogorov Statistic for Finite Sample Size", Journal of the American Statistical Association, 47, 1952, 425-41.
- 2. Caplen, R.H. <u>A Practical Approach to Reliability Bus-</u> iness, Book Limited, London, 1972, 41-51, 1975, 256-62.
- Carter, ADS, <u>Mechanical Reliability</u>, John Wiley & Sons, New York, 1972, 31-39.
- 4. David, F.N. and Johnson. "The Probability Integral Transformation when Parameters are Estimated from the Sample", <u>Biometrika</u>, 35, 1948, 182-190.
- 5. Durbin J. "Kolmogorov-Smirnov tests when Parameters are Estimated with Applications to Tests of Exponentialits and Tests on Spacings" Biometrika,62,1975, 5-22.
- 6. Green and Bourne, <u>Reliability Technology</u>, John Wiley & Sons, New York, 1972, 244-249, 239, 537.
- 7. Harter, H.L. and Moore, H.A., "Maximum-likelihood Estimation of the Parameters of Gamma and Weibull Population from Complete and from Censored Samples," <u>Tech-</u> <u>nometrics</u>,7, 1965, 639-643.
- 8. Lilliefors, H. "On the Kolmogorov-Smirnov Test for Normality which Mean and Variance Unknown" Journal of the American Statistical Association, 62, 1967, 399-402.
- 9. ----. "On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown" Journal of the American Statistical Association, 64, 1969, 387-399.
- Locks, M.O. <u>Reliability</u>, <u>Maintainability</u> and <u>Availabil-ity Assessment</u>, Spartan Books, Hayden Book Co., Rochelle Park, N.J., 1973.
- 11. Mann, Schafer, Sinpurwalla, <u>Method for Statistical An-</u> <u>alysis of Reliability and Life Data</u>, John Wiley & Sons, <u>New York</u>, 1974.
- 12. Massey, F.J. "The Kolmogorov-Smirnov Test for Goodness of Fit", Journal of the American Statistical Association, 46, 1951, 68-78.

- 13. Offen, W.W., Littell, R.C., McClaur, J.T. "Goodness of Fit Tests for the Two Parameter Weibull Distribution," Commun. Statist.-Simula. Computa, B8(3), 1979,257-269.
- 14. Robinson, D.W. and Lewis P.A.W. <u>Generating Gamma and Cauchy Random Variables</u>. An Extension to the Naval Post Graduate School Random Number Package. NPS-72 Ro 7541, Naval Postgraduate School, Monterey, California, 1975.
- 15. Shannon, R.E. <u>Systems Simulation the Art and Science</u> Prentice Hall, Inc. New Jersey, 1975, 64-68, 80-88.
- 16. Stegun, I.A., Abramowitz, M. <u>Handbook of Mathematical</u> <u>Functions</u>, Dover Publications, Inc, New York, 1965, <u>946-948</u>.
- 17. Steinbrenker, K., Nie, N.H., Hull, C.H., Jenkins, G.J. <u>SPSS - Statistical Package for the Social Science</u>, <u>McGraw Hill, Inc., 1970, 11-131</u>.
- 18. Stuart, A., and Kendall, M.G. <u>The Advance Theory of Statistics, Vol 2</u>, Hafner Publishing Company, New York, 1961, Chapter 30.
- 19. Wald A. and Mann, H.B., "On the Choice of the Number of Class Intervals in the Application of the Chi-Square Test" <u>Annuals of Mathematical Statistics</u>, 13, 1942, 306-17.

۰.

Appendix A

Tables for the Gamma Distribution

Ĵ,

~1

- -

ł

144 14

\$

ł

ر ا ا

>

54401	LEV	EL OF SIGNIFI	ANCE FOR CH	AX(F(X)-S(X))	<u> </u>
1	• 20	•15	. 10	.05	.01
4				. 469	.565
5				. 430	. 497
6	326		371	. 410	.445
7	297		337		.446
8.	285		. 323	. 358	. 4 27
a .	263	282	, 304	. 328	-4 17
. 10.			.290		.385
11	235				
12	.231		.270	. 301	.3 60
13		235		. 280	.3 30
14	212			277	.3 52
15				. 263	.3 /3
_ 16			.225		.3 (3
17					.286
. 18			.215	. 243	.295
19	,175	.138	.203	. 234	.258
20	170	. 185		. 218	.275
21	170			. 227	,283
_ 22		174	. 190	. ?16	.256
				. 204	.2 56
_ 24	•159		193	. 208	.2 58
. 25			175		.241
			177		.247
. 27				.190	.234
. 28					.231
29		197		. 181	.220
	.141	. 148		• 179	. 256

٤.

÷

2

Table VII. Shape Parameter Equal to 0.5

SAMPLE 1	LE/E	L OF SIGHIFIC	CANCE FOR DEMA	X(F(X)-S(4))	
SIZE	.20	.15	•10	.05	• 0 1
	. 339	• 35 3	•3 99	. 435	.519
5	. 323	.347	.362	.394	. 449
6	. 317	.327	.346	.383	. 456
7	.261	.290	.324	•356	.421
8	. 271	.289	• 3 16	.336	.413
9	.257	•27+	•291	• 325	.390
13	. 252	.260	.286	• 31 2	.381
	. 235	.252	.272	.295	.346
12	. 227	.240	•2 01	.285	.354
13	. 215	•223	•243	.279	.329
	.2(3	.22-	• 2 41	•263	.313
15	• 194	.207	.225	.256	.304
16	. 193	.20]	.?16	.242	.303
17	.184	• 19+	.213	.238	•298
10	•179	.187	•1 99	.219	.266
19	. 172	.185	.2 00	.221	.285
20	• 167	.177	•196	.220	.264
21	.105	.176	.1 90	.216	•563
22	.159	.169	.1 55	.207	.240
23	.161	.175	.1 06	.204	.250
24	• 155	•166	.1 81	.199	.246
25	. 154	.154	•176	.200	.256
26	.167	.150	.172	.190	•234
27	.144	•154	.1 68	.196	.232
28	.144	.154	.1 69	.189	.226
29	.142	.149	•160	•179	.230
30	1.3	140	1.61	.103	

Table VIII. Shape Parameter Equal to 1.0

Y.

>

) او

アント

SAMPLE SIZE		EL OF SIGNIFI	SANGE FOR DEM	X(=(X)-S(X))	
N .	• 20	•15	.10	.05	• 31
•••••			, 6.15		.521
-5		• 350		* 4 2 9	
- 6 -	• • • 312 •	.330	, 3-54		
- 7	297				
- 8			3 05		
9		272			\$62
- 19		257	2-74	303	
11					
12	218				
13	213			265	
14		215			
15		.205	2-19		
10	19]				*304
- 17	• 181				
- 18					
		192		226	
	• 162				+236
· 21		173	1 89		
22	155	160			
. 23	+ 157				
24 -	• 153				
27		•151			
-20					
.29	137	145			
30	134				

Table IX. Shape Parameter Equal to 1.5

>

ι

, r

ŗ

SANFLE	LEVÉ	L OF SIGNIFIC	ANCE FOR DAMA	((F (X)-5(K))	
N		·•• ÷• · · · ·	• • 1 3 -		
			. 		
	. 361	.377	.4 C1	.436	.490
5	. 334	.351	.369	.437	.464
b 1	. 303	.316	•3 39	.370	•+25
7	. 280	.30,	•324	.361	•411
8	. 267	.280	•3 03	.338	.386
3	. 243	.26+	.2 84	.311	.357
 1., .	.24)	•254	.272	•29d	•340
 11	. 234	•243	.263		.338
12	• 215	•229	.2 46	•269	.317
13	.2(5	•22.	•236	.260	.310
	. 195	.239	•2 22	.244	•503
	.187	•199	.2 20	.245	•523
10	.187	•198	.213	.230	.250
17	•179	•190	.2 01	.226	.268
18	.174	.185	•1 98	.225	,268
1.9	. 17J	.181	.1 95	,212	.265
2ú	•163	+177	.186	.205	.254
21	.1tj	+17J	.181	.203	•235
22	. 162	.171	.164	.202	•229
23	• 15+	.161	.177	.195	.238
24	• 1 4 3	•157	.171	.139	+230
25	. 145	.155	•168	.185	•220
26	. 14+	.15+	•1 64	.185	.240
27	.141	.149	.164	.183	.225
20	-141	.15.	•1 64	.184	.224
29	• 139	.146	•156	•173	•222
30	.135	.142	.1 55	.172	.205

Table X. Shape Parameter Equal to 2.0

.

SAMPLE I	LEV	EL OF SIGNTFI	CANCE FOR (=M	AX(F(X) - S(X))	
N	. 20	.15	.10	• 05	.01
	356	356	. 391	426	480
5	335	. 35 2		. 405	471
61	, 303	. 31 5	,336	359	
		. 225			•4 10 <u>·</u>
	. 264			, 321	
	.250		.281	. 304	.3 52
	235	245	,2E1		
		232		, ?70	
		.232	.245	. 268	.313
_13	.206	.21.6	.235	, 26 <u>2</u>	
	. 195	.210	.223		
	188	. 139	.213	. 234	
	182		.203	. 225	
17	.176	.195	.271		
	172		. 196	220	2 57
	165			. 212	2 +8
				200	2+2
	. 165.		.188	. 205 _	
22		.165	<u>, 1 94</u>	. 199	240
23		. 165	.176	. 193	
24		15 E		<u> </u>	
25		.156	.158	.187	.2 2 3
26	.143		. 165	, 183	
			562		
28	<u> </u>				
	140	148	.160		
30	.133		. 153	. 166	2[2

\$

ر . ا ا

Table XI. Shape Parameter Equal to 2.5

SAMPLE +	LEVI	EL OF SIGNIFI	CANCE FOR C=M	AX(F(X) -S(X))	
N 2	• 20	.15	.10	.05	.01
	• 350	. 366		. 436	.491
		343			
					4 20
	.279				
				. 326	
9	.239		270	296	
			. 263		
	.?16	230		. 270	• 3 20
-12	• 21 3			.267	
	.207				286
	.194			. 240	
	•185	.201		. 235	•275
	*178		.206	558	
-17			.206	226	.266
		.154	.197		2 54
	• 168	.178	.192	515	2 :9
	• 163	-172	•183		
		.167	.178	.201	
	•157	. 154	•178	. 195	.2 37
-23	•150		.170	.188	• 5 30
-24	• 151	• 16 0	•172		• 5 :3
-25	.148	15 	.169		215
-26		.151	•161		•==••• 2 (5
-27	•139	. 148	.159		
-28	•136	.145	•155		
-29		. 144	.153		•198
-30		.138	168		

÷*

\$

1

7.1.1.

1

Table XII. Shape Parameter Equal to 3.0

SAMPLE	LEV	EL OF SIGNIFI	CANCE FOR C=M	AX(F(X)-5(X))	
N [• 20	.15	.10	.05	.01
4			9401		.488
5	. 322	<u> </u>	355	387	
6	.299	. 312	, 329	. 361	.412
7	.277	. 291		341	
	.262	. 27.6	.292	.315	.373
9	.243		. 273		.3 €9
	.239	.252	.264	, 219	, 3 4 0
_u_l	217		.247		
		220	.234	258	
			.217	. 241	
_15	186	. 230	• 213	. 2 38	.275
16	,102	131			.272
_17	.175		.200		.265
10	.172			. 218	
19	.165			. 209	.243
_ 20	.161	.171			.231
		. 157	,140	. 195	
_ 22	,157	.166		. 200	.237
23	• 150	. 161	. 171	.195	
24	.146		. 165		216
25	.143		. 162	. 180	.223
26		.146	• 155		. 2 15
	.139	. 150	,159	. 174	+2 (6
28	138		.157		
291		. 140		.167	2 12
30 1	.130	.138		. 163	

¥* *

>

:

، •

2011

Table XIII. Shape Parameter Equal to 3.5

SAMPLE	LEVE	L OF SIGNIFI	CANCE FOR DEM	AX(F(X)-S(X))	
	• ?0	.15	• 10	.05	.01
4		,366	• 395		492 _
5	, 323	, <u>33 c</u>	.357	, 382	.448
6		, 310	329	. 356	
	. 272	, 287	.305	. 333	
		. 27 8		• 321	
	.237	, 250		. 296	.3 54
		, 247			.3+2
11	.217			. 271	3(5
12	, 210	, 221	.233		
13		. 213	. 229		. 292
14	195	, 20 4	.216	. ? 40	
	186	. 137		.230	.265
	.184	. 193	. 215	. 227	
17	. 172	183	<u>• 196</u>	.217	254
11	,171		. 193	.218	.242
			.185	. 207	.250
2				, 204	.244
		164	.176	. 197	.278
		164			
23		162	t173		
		. 155		. 190	
25					. 2 16
26	139				
				167	
	134				198
30	.132		150	. 154	. 192

`.* `.

>

;

۲

Table XIV. Shape Parameter Equal to 4.0

47

. 1

Appendix B

Tables for the Weibull Distribution

¥.

>

SAMPLE	LEV	EL OF SIGNIFIC	F SIGNIFICANCE FOR GEMAX(F(X)-S(X))				
N	.20	.15	•10	.05	• 01		
	• • • • • • 359	380			546		
			368				
6	. 316	. 333	.350	. 383	.453		
	• 293		3 26				
		297	3 14				
				323			
	259						
11			2 82				
		.252					
- 13			256				
	222	236					
				265			
16	202				295		
- 17	, 199	, 212		251	368		
		, 203	2 17				
- 20		197					
23							
		, 182			250		
	165						
	162		······································		,242		
		,169	. 1 61		2-34		
			1-74				

•

¥4 ¥

>

-

2

Table XV. Shape Parameter Equal to 0.5

49

. .

SAMPLE	LEV	EL OF SIGNIFIC	GNIFICANCE FOR D=MAX(F(X)-S(X))				
N	.20	.15	.10	.05	•01		
••••••••••••••••••••••••••••••••••••••			• • 3 99				
6 4	.311	.329	:247		456		
	.245	301	3 26		421		
			3 11				
			296	.321			
10							
		.261	279	305			
		.251		.293			
13			251	.277	v 3 37		
		235					
		055		265			
· - ·16	201		2 29		303		
			2 26		3C 4		
		199			201		
19				2 37			
20		196		. 2.29			
		.190	.206	····· £ 23 ·····			
- 23							
		179	191				
	163						
	161				,239		
65	159	•169	140		234		
29	. 156	163	173				
		161					

**

>

ì

2

-

Table XVI. Shape Parameter Equal to 1.0

SAMPLE SIZE	LEVE	EL OF SIGNIFIC	ANCE FOR D=H	4X (F (X) -5(X))	
	• 21	•15	•10	.05	.61
•	• 37 3	• 392	.417	•۱۳6	.552
5	. 341	. 356	.362	• 4 21	.458
6	. 329	• 345	.361	• 389	•473
7	. 299	• 315	.336	.367	•432
8	. 285	.300	• 31 8	.369	.413
9	. 27 3	• 284	.341	• 326	.395
10	. 252	. 274	.293	•319	• 377
11	.251	.25.	.283	•311	• 345
12	• 237	• 254	.274	• 2 98	.359
13	. 229	.239	.251	• 251	• 329
14	. 225	.235	.248	• 274	.326
15	. 211	. 222	. 239	.259	.316
16	. 293	• 21 3	.230	•253	•301
17	. 200	.212	• 227	•Srð	.302
18	•191	• 20 ;	.212	• 231	.269
19	•194	• 20 3	.215	.239	.286
20	.185	.196	.208	.229	.269
21	+191	•189	.207	•225	•265
22	• 176	•186	.196	•214	•247
23	.174	.184	•195	• 21 4	.250
24	• 17 2	.182	• 194	• 210	.245
25	•139	•177	.190	•218	.253
26	•155	•174	•184	•202	.237
27	•162	.170	.185	•201	.21
28	.159	.171	.182	•202	.235
29	• 155	• 163	•173	.186	.233
30	- 154		44 <i>1</i>		••

5.

ł.

Ļ f

۲ ۱

Table XVII. Shape Parameter Equal to 1.5

5<u>1</u>

. 1

•

SAMFLE SIZE N	LEVE	L OF SIGNIFIC	ANCE FOR DEMA	OR D=444(F(X)-5(X))				
	.20	.15	.10	.05	.01			
	.364	.379	•411	-450	.572			
5	, 335	.349	.370		.456			
6	. 319	• 332	.3 51	.379	.457			
· · · · · · · · ·	. 287	.307	. 3 27	.3 59	.423			
	.277	. 295	.308	.340	-403			
9	. 264	.277	•2 93	.320	.3 52			
· 10 · · ·	.255	.263	.237	. 310	.374			
	-;245	.256	.277	.299	.344			
	.233		.206	.241				
- 13		.233	.2 48	.273	.320			
- 14	, 219		.2 .3	•265				
	. 207	.219	.2.33	.252	.299			
16	.198	. 20 9	.2 26					
- 17	. 194	.203	.2.22	.242	.298			
-13	.187	•195	•2 (7	.227	•266			
19	.193	.199	.2 09		.274			
20	. 182	.193	.2 (3	.223	.263			
	.177	.185	.212	.222	.263			
	. 172	.183	.1 92	.711	.2+1			
23.	. 170	.179	•1.45	.211	.749			
	.169	.173	-149	•206	.240			
- 25	.166	.172	.185	.211	.252			
- 26	. 162	.176		.197	.535			
	-159	.167	.181	.198	.240			
65	.155	.165	.178	195	.553			
29	.152	.160	.169	.183	.230			
	. 153	.155	.170	.188	.221			

3

.

ĺ

えい

Table XVIII. Shape Parameter Equal to 2.0

....

SIZE I	LEVEL	OF SIGNIFI	CANCE FOR D= 14	X(F(X)-S(X))	
N	.23	•15	• 10	.05	.01
	. 355	.374	.405	.447	.522
	. 372	.346	•3 64	.396	.456
ъ с	• 313	. 329	.3 45	.376	.450
,	. 2 65	.301	.3 22	•354	.415
s{··	. 27 +	.291	.3 23	.338	.403
	.259	.272	.288	.315	.375
13	. 252	• 26+	.251	•309	• 374
	.239	.253	.272	.293	.341
12	. 229	.241	•263	.289	.340
13		.235		•269	.320
14	.215	.226	.241	.261	.312
15	. 273	.21	• 2 29	. 250	.296
15 .	.197	.205	.254	.247	.285
17	• 193	.205	.2.19	.238	.294
- 13	. 1 35	.192	•2 (5	.226	•265
19	•1.97	.195		.223	.274
- 23	.175	.183	•2 02	.222	.261
-21	.175	.185	.199	.220	.258
22	. 173	•173	•1.89	.208	.237
23	.167	.177	.189	.210	.269
	.165	.177	.1 06	.205	.245
- 25	.164	. 176	.183	.206	.252
26		•168	.180	.194	.230
	•159	•160	.177	.196	.240
28	.154	.163	.175	.194	.725
29	. 151	•157	.167	.181	.2.30
		•155	.166	.185	

Table XIX. Shape Parameter Equal to 2,5

. . .

24

}

The second second

(•[

A CHINE

SAMPLE	LE/E	L OF SIGNIFIC	ANCE FOR DEMA	x(F(X)-S(X))	
SIZE	.20	.15	• 10	.05	.01
		.375	.434	. + 4 5	.522
5	.325	. 344	.361	.392	.455
	. 307	.324	. 3 44	.372	.442
	.201	.297	.319	.351	.414
3	.272	.237	.301	.337	.402
· ···· 9 ···· ·	.257	.271	•2 55	.312	
12	.243	.262	.279	.308	.374
	.236		.268	.291	.340
	. 227	.237	•26J	.288	.327
	.217	.227	.2 44	.265	.320
	. 213	.224	.2 38	.260	.304
	.201	.211	.2 26	.248	.256
₁₆	.195	.20+	.2 21	.243	.262
	.191	.203	.2 17	.237	•5 45
	. 183	.191	•2 34	.223	.266
	.156	.194	.2 35	.221	.274
	. 175	.188	.2 03	.221	.260
- 21	. 175	.183	.197	.219	.258
22	.167	.177	.185	.207	.236
	.165	.176	.188	.207	.249
	,154	.175	.185		.241
25	• 162	.169	.181		.252
	.158	.167	.175	.192	.230
	.157	.165	.175	.194	.2 37
28		.161	.174	.193	.725
	.149	.156	.165	.180	.230
			.164	133	

3

١,

1.00

ć

Table XX. Shape Parameter Equal to 3.0

54

SAMPLE	LE/E	L OF SIGHIFIC	ANCE FOR DEMA	x(=(x)-s(())	
N	.20	.15	.10	.05	•)1
	343	• 369	6.j2	.445	. 522
5		.342	.3 56	.387	
6				. 37.9	436
7	. 281	295		.347	
	. 263	. 205	.300	.337	.402
	. 255	. 269	. 2 36		367
16		.261		307	
	.234	249	.266		337
		23n	261	.287	337
13		. 220	.242	264	.320
	. 211		.2 37	. 260	.238
5	. 195		224	.245	.296
16	. 1.93	. 203	. 2 19	.240	.261
17	. 187	.201	.216		.292
19				.222	.263
19	.164	. 192	.203	.218	.274
20	. 17+	.187	.199	.221	.250
21	. 173	. 181	196		.258
22	. 167	.176	168	205	.236
23	•163	. 175	.1.88	.206	.245
24	.15+			.201	
25	. 161		.186		.252
_26	. 157		.178	.192	
27	.153		174	.194	.237
28	. 151	.163	•173	,192	.225
29	• 1.47	,155	.1 63	.179	
30	. 147	.154	•1 63	.182	.214

Table XXI. Shape Parameter Equal to 3.5

1

1

·. .

SAMPLE	LEVE	L OF SIGNIFT	CANCE FOR E=M	AX(F(X)-S(X))	
SIZE N	.29	•15	.10	.05	.01
	.347	. 36 8	.401	. 439	.522
5	. 326	.341	. 155	. 386	.454
5	.304	. 320	. 342	. 369	.431
7	.273	. 294	• 716	. 344	.414
8	.263	. 293	. 300	. 3 3 5	.4(2
9	.255	. 26 8	• 295	. 310	.367
10	. 245	• 25 E	. 277	. 306	• 3.74
11	.233	.248	• 255	. 247	.337
12	. 223	. 234	.259	. 285	.3 37
13	.215	. 226	.249	.262	• 3 20
14	.209	.231	.236	. 258	.298
15	.198	. 205	. 223	. 245	. 296
16	.101	. 202	.218	.239	.250
17	-189	. 201	.213	. 236	.290
1.5	.181		.204	. 220	•260
19	.183	.192	. 202	.218	.274
20	.173	.185	. 195	. 221	.260
21	.172	. 191	.195	. 216	.258
22	•166	.176	+186	.202	.2.36
23	.164		.187	. 204	.244
24	• 1€ 3	. 172	193	. 200	PI 5.
25	.160	. 158	.179	. 201	.252
26	•157	. 166	. 177	. 191	.2:9
27	.155	.164	.173	. 192	.2 35
24	.150	.160	•173	. 191	.235
29	.147	. 154	.152	. 179	.227
30	.146	. 152	.162	. 182	.214

Table XXII. Shape Parameter Equal to 4.0

SAMPLE	LEVE	L OF SIGNIFIC	ANCE FOR DEMA	X(F(X)-S(X))	
	.20	.15	.10	.05	.01
	. 3 4 3	.364	.3 93	• 430	.496
5	. 335	.340	•366	.395	.472
6	.31)	. 325	.348	. 383	. 444
7	. 289	.300	.3 30	.363	.418
	. 276	.29J	.310	. 3 4 3	•411
	.261	.275	.2 92	. 120	.375
10	. 252	.266	.2 d3	.309	• 365
11	. 241	. 253	.271	.301	• 3 5 2
• 12	.2	.246	.2.52	.291	. 342
13	. 225	.235	.252	.277	.324
14	. 223	.231	.240	.271	. 322
15	.21)	.221	.236	•563	•314
16	.207	.213	.2 33	.253	.303
17	. 2 . 3	•212	•2 26	.248	.294
18	.195	.207	• 2 20	.242	.268
19	. 191	.201	•215	.238	.262
	.187	.197	•2 11	.231	.275
21	+ 181	. 191	•2 04	.227	.272
22	. 175	.187	.2 00	.219	.256
23	.174	.163	.195	.214	.252
24	.171	.181	.1 93	.211	.251
25	.167	.177	.1 89	.210	.251
26	.167	.176	.1 87	.207	.243
27	. 162	.171	•183	• 200	.238
26	.157	.166	.178	.197	.238
29	. 158	.154	.175	.194	.228
30	• 154	• 163	.173	•140	.228

iya V

\$

ł

ر : •ر

Table XXIII. Shape Parameter Equal to 1.0 (5,000)

Appendix C

Plots for the Relationship between

Shape Parameters and Critical Values

· . . .

· _ · / ·

)

**.....

j.

>

59

۰.

2

60

• . •

._.../

**

\$

1

ž

Figure 5. Gamma Level=.20 N=30

. 1

<u>ر</u>

*

Figure 7. Gamma Level=.15 N=15

۰.

Y

¥,

· ·

· · · · ·

.

 $\sim 10^{-1}$

11

. . .

۰<u>،</u> .۰

N.

\$

ķ

. .

> ۲ ()

Figure 11. Gamma Level=.10 N=30

•

67

-

٠.

X

ų

69

.

·. .

Figure 14. Gamma Level=.05 N=30

._.../

.

¥

)

*

Figure 15. Gamma Level=.01 N=5

. ____

- -

Figure 16. Gamma Level=.01 N=15

·. .

72

Y

>

**

ſ

2

73

. 1

. .

\$

.

5

7

Figure 18. Weibull Level=.20 N=5

74

-

ž

75

and the second second

ж. <u>–</u>

7

¥,

76

· · · · · ·

.•

∎_____

1

24

77

• . · ·

.....

. .

11

1. 0

Y.

¥

Figure 22. Weibull Level=.15 N=15

78

.

v. ..

3

N

201

- •

79

·. . . .

...

. .

2

• . •

80

·_ . .

1

, Ç

۲

01

. . .

·

. . .

1. 1

्र

ţ

**

2

•___

- -

. . .

11

83

•

·. .

N.

2

Figure 28. Weibull Level=.05 N=15

84

. .

- -

Ś

- 4

85

Ľ

(f

2

86

¥.

į.

ע י

87

.

۰<u>.</u> .•

.

A.

Ņ

1000

88

N 1

· • •

·. .

Appendix D

Computer Programs

٦

•

۰.

¥.

\$

ء ب 1

```
RC2+ST037+T2.+1974,94136 3.+1744-+3+CORTES,90X#4397
ATT454,145L,10*L 1935 87,544150.
   LIBRA Y, THEL.
   FTN.
   L:0.
                    PROGRAM FERET (T. PUT, OUT FUT, TAFES=OUTPUT)
   С
                  --- ---------
                                                                                C
                ATTALE STITUTED OF ALTALED (OR KNOWN VALUE)

ATTALE STITUTED OF ALTALED

ATTALE STITUTE TO USED FOR THE HEIRULL DISTRIBUTION

ASSAME FOR THE ASSAME

ASSAME

ASSAME FOR THE ASSAME

ASSAME

ASSAME FOR THE ASSAME

ASSAME
                  Ĉ
   Ĉ
   C
   C
   C
   C
   Ĉ
   C
   Č
   C
C
                  *EKIAINITIAL ESTIMATIO OF ALPHA (ON KNOWN VALUE)
   C
                  C
                                                                                                    **-----
   Ĉ
                                                                                                                                              COMMENTERY /7 (1* ), N
COMMENTERN 7/571, 752, 557, M, 01, 71, EK1, NR
DB MPLE FIECTSIT: 03750
                     01"ENSION FX (607, 44 (140 5)
                     05170=10000.000
                     MR = 0
                    F29 DF, 551, 552, 573, 51, 71, 5K1
WFJ TE(5, 70 D)
                     DC 100 J=4,71
                    NSJ
                     Ma N
                    00 95 <K=1,1000
                    DALL GINTE (DSEED, FK1, 4, 7)
                    CALL VERTS (Z,N)
GALL WEISJUL(35 1, TE 1, EV SJ)
                     02 77 _=1, N
FX(L)=L.-FXP(-(17(L)-35J)/TSJ)**EKSJ)
                    CONTINUE
  88
                     T02=0.0
                     901=0.0
                     XH=N
                     00 500 I=1.N
                     L=I
                     IF(KL/fr-FX(I) .GT. TOP)TOP=RL/XK-FX(I)
                     IF(FX(T)-(RL-1)/XN .GT. 3GT) BOT=FX(I)-(RL-1)/XN
  590
                     CCNTINJE
                     DIFETOP
                    IF(PCT +GF+ DTF) DIF= 707
                     AA (KK)=DIF
   99
                     JULITIOD
                     CALL VSATA (34, 100 0)
                     WEITE (5, 30 0) N, AA (800), 4 A (550), AA (900), AA (950), AA (993)
   100
                    CONTINJE
                    STOP
                     FORMAT("/",65("-"),/,2X,6HSAMPLE,3X,"I",13X,
   280
               +42NLEVEL OF SIGNIFICANCE FOR L=+ 4x(=(+)+5(x)).
              -/, TX, 44 () F, 4X, "I", () (" -"), /, (X,

-/, TX, 44 () F, 4X, "I", () (" -"), /, (X,

-/, T, , (T, , 5X, T4, 2, ) Y, ) +, () , (X, 3H, 1), (GX,

+ T4, () , (Z, 3H, 1), (Y, 3S ("-"))

FOXMLT (/, Y, 1), (Y, 1), (Y, 1F, 3, ((X, 1F5, 3))
301
                  510
                  SUBPCUTIVE HEITYLL(CSJ, TSJ, EKSJ)
C
```

NAMES OF TAXABLE PROPERTY AND ADDRESS

90

• 🧠 🕐

11

. . .

N. ..

.

*

¥.

1

۲

£

ÿ

```
............
 C
         -_-INSLEE T(100), C(757), THET_(517), EK(554), X(55), Y(53)
CT-MEN/PN//7(100), M
         CAMPE / CONDASS1, 557, 557, 4,01, T1, EK1, MR.
COMPE / CONDASS1, 557, 557, 4,01, T1, EK1, MR.
         E:=:
no 2 I=1,4
7(7)=7(I)
 2
         0(1)#61
         74174(1)=71
         E-(1)=EV1
         TF (*) 5 ., 53, 72
         CONTINUE
 32
         74 ± M
         ELNMEN.
 31
         4.3eHL+1
         1.421-4+2
 33
         30 34 I=14,4
         E≠Ì.
 34
         ELNMAELNAALDG(TT)
         IF (1+) -5,33,7
DD.75 I=1,MP
 74
         EL=I

-L: M=(_N++4L 05(7T)
 75
         00 70 J#1, F#1
IF (J-1) 56, 23, 7
 35
          JJ=J=1
 37
          5K=0+
         51=0.
         00 6 I=+<2,4
S<=S++(1([)=0(]1))++=<(U))
 6
          1F (SS1) 7,7.3
          THETI (J) = THETA (IJ)
 7
         GO TO 3
IF (MT) -5,13,2
  8
          THETC ( ))=( (EK+ (FN-E4)+(T(H)-C(JJ))++EK(JJ))/E4)++(L+/EK(JJ))
 19
          GC TO 9
  24
          X(1)=T4574(JJ)
          15=0
          00 21 .=1,55
                                                           ł
          11=1=1
          LF=L+1
          X(LP)=((L)
          78 (# ( (F (HZP) -7 (JJ)) / (L )) * + EK (JJ)
        Y(_) ==EK(JJ) *(<- =E47) /X (L) +EK(JJ) *SK/X (L) ** (EK(JJ) *1.) + EK(JJ) * (EN-
1EM) * (T(M) = C(JJ) * *** (J) /X (L) ** (EK(JJ) *1.) =EK(JJ) *ZRK*IXP(=ZRK
         2)/(X(L)*(1 -= 2(P/ - 2(*)))
          IF (Y(_)) 57,73,54
          LS=LS-1
  53
         IF (LS+L) 55,35.58
 54
                                       - - -
         LS=LS+L
                                                                                -- -----
         IF (LS-L) 13,35,58
 55
          X(LP)=.5+X(L)
         GO TC 51
 56
         X(LP)=(. 1+ Y(L)
         GO TO 31
IF (Y(_)/Y(LL)) 50,73,59
 53
 59
         11=11-1
         GO TU 38
         X(_P)=((L)+(L) (X(L)-Y(LL))/(Y(LL)-Y(L))
IF (ARR(((L)-X(L))-1.=-4) 73,73,21
 63
 61
 21
73
         CONTINUE
         THET4 (J)=( (LP)
 9
         Er(J)=: r(JJ)
. 13
         TF (552) 12.12.11
```

>

;

۳į

 $\langle \rangle$

Į,

4

ž

91

• . •

· · · · · /

٠

. . .

N. 1.

ł

ï

nu 17 te RP#1 11 5(+51+11)7(7(7)-7(11)) X(1)=2(1) L:=0 00 \$1 Latest SLAR'S SLAR'S SLAR'S TRAPPS SLK=(LK+(1LOG(*/T)-3(JJ))-4LCG(THETA(J)))+(T(T)-3(JJ))+*X(L) 18 LL#L=1 LD#L+* Y(LD) ((L) TRK#((T((*??)=?(*J))/*+±T1(J))+*X(L) Y(_)#(EM+E**2)*(*, /*(L)+*L25(THET4(J)))+SL=SL*/THET1(J)**X(L)+(EM+ EM)*((__(*/*+2***)))=1_0?(T(M)=0(JJ)))*(T(M)=?(JJ))**X(L)/THETA(J) 249 Y(L)+**(+***(L))((****)/X(L))*EXP(=*RK)/(1+*EXP(=*R<)) 249 Y(L)+***(+***(-***))(***)/X(L))*EXP(=*RK)/(1+***(-***)) LI = L = 1 IF (Y(L)) 47,57.44 LS=LS+L IF (LG+L) 47,+5+47 43 44 LS=LC+L IF (LG-L) 47,946,47 Y(LD)#.55%(L) S(TC 3) 45 Y(LP)=L+ /* X(L) 46 GC TC 30 IF (Y(L)*Y(LL)) A9,52,6* 47 LL=LL-L 48 60 TG +7 Y(_□)=((L)+Y(L) (X(L)+X(LL))/(Y(LL)+Y(L)) 49 IF (LAS (Y (LO) - Y' L)) - 1. E -) = 2, 32, 51 ġ n 51 CC 4711.JE 52 Ex(J) =x (1)) C(1)=C(J)) 12 IF (553) 75,27,4 + IF (1,+54(J)) 1',74,73 7F (51,+54(J)) 37,57,13 62 14 78 X(1)=C(J) 16 L1=0 05 23 .#1,5% 54=0. 30 15 1= 12P.4 4 SK1=SK1+(T (T)-V(L))**(EK(J)-1.) 15 S=SR+1./(T(I)-Y(L)) LL=L-1 LP=L+1 ¥(_P)=((L) 784+((T(+28)-4()))/THET &(J))++EK(J) Y(_)=(1,-E*(J)) * \$\$+7K(J)*(\$K1+(E4+LH)*(T(H)-X(L))*(E*(J)-1,)) 1/T4ETA(J)***K(J)-E***E*(J)*7*K*E*P(-Z&K)/((T(4&P)-K(.))*(1,-E*P 2(-784))) 1F (Y(L)) 39,24.44 L3=L5-1 39 IF (LS+L) 73,41.70 40 LS=LS+L IF (LS-L) 77,42.7: X(LP)=.5-1 (L) 41 GC TG 22 X(_P)=,5+X(_)+.**T(1) 42 GO TO 22 IF (Y(_)*((L_)) 72,2%,71 73 71 LLELL-1 GO TO TO 72 X(_F)=+(L) ++(L)+(X(L)++(LL))/(Y(LL)+Y(L)) IF(&FS(Y(_P)-X(L))-1.5-4) 24,24,28

ţ

21

>

1

1

Ł

1

ž

.

92

• . •

. Comments of

.

....

1942 - N.

```
CONTINUE.
23
          C(1)=X(F2)
24
          63 TO 25
          (1)==(1)
57
          (())=T(1)

TF(15) E, 35,49

T(15] I=1, H

T(15] I=1, H

T(15)=T(1) 58,47,57

T(15)=T(1)

TT(15) E, 69,89

S(=),

S(=),
25
38
57
53
53
69
          SL≠0.
50 30 [#47₽,4
          36
        ELEFLIG+(EM-E47)+(/L)3( 5((J))-EK(J)+ALOR(THETA(J)))+(EK(J)-1.)*SL-
1(C(+(EM-E4)+((())-3(J))*+EK(J))/(THETA(J)++EK(J))+E4R#ALOG(1.-EXP
         ?(-76K)I
          IF(1=3) 37,27,27
IF(1=3) (0(1)+((1))=1+7=4) 28,28,30
IF(1=5(T=1=1+(1)+T=1+(1))=1+2=4) 29,29,31
27
Zà
29
35
          IF(195(CK(J)-FK(JJ))-1. 5-4) 4,4,34
          CONTINUE
CONTINUE
4
          00 (11(0)
05 J=C(J)
75 J=THET((J)
EKT J=EK(J)
RETURN
                                                                          .
66
          END.
```

K.

34

ž

93

• . •

~1

- -

```
RC1.57050,720%(377,374,76074.77).222%
ATT1284,1021,7000L1774.24,54=350.
C1805.44,1021.
C1805.44,1021.
C1805.44,1021.
650.
        C
        THIS POCKAN SCHERALS AND SCHERALS FOR THE MODIFIED K-S TEST

THE TELL STITET IS VALUE FOR THE GAMMA DISTRIBUTION

FILLE FOR TITE NOLE 100

FILLE FOR TOTON OF THEMATER

SIZE IF THETA TO TO TO TESTIMATER

SIZE IF SHARE (ALPHA) IS KIGHN

SSIZE IF ALPHATS TO BE TESTIMATED

SSIZE IF START(O) IT KIGHN

SSIZE IF START(O) IT KIGHN

SSIZE IF START OF THETA (OR KNOWN VALUE)
C
c
c
С
С
C
č
000
C
        HENRY IF DIVICE AN ASSETTING

TITTITIL SETTATION DE THITA (DR KNOWN VALUE)

HEITILITIL ESTINTO DE TOOR KNOWN VALUE)

HATTITIL ESTINTO DE ALAMA (DR KNOWN VALUE)

HATTITIL ESTINTO DE ALAMA (DR KNOWN VALUE)
C
C
C
C
         **************
                                                                                 ....................
          00+ M04/ V 1214/2 (10 0)
00 - M04/ F 14 / T (100)
          00 PC 42 PL 44/4. 7 1,937,5 53,4,61,71,41,4R
00 PC 17L2 F (507317) 05220, 7,01,71,41
          GIMENSED : FY(601,44(100 0),6(50)
           05EED=10000.000
          1.2 2 1
          --+n+,551,552,573,01,51,41
          HAIT: (:,200)
           00 1.: J=+,31
           4= J
           ·= .
          00 8.3 MM=1.1000
           CALL GIANT (DSEED, 11, 4,5,P)
          CALL VSRTA (P,N)
PU 3 I=1.N
           T(1)=P(1)
          CUNTINUE
CALL GEMIN (CRU, TSU, ASU)
 3
           00 373 L=1.N
           W= (P(L) -75J)/T5J
           XX=ASJ
           CALL HIGSA (H, XX, PRD3, IER)
           FX(L)=PF)=
           CONTINIE
 333
           T02#0.0
           BC1 = 0.0
           X:+= 4
           00 588 I=1,N
           PL = I
           IF(RL/KN-FX(2) .GT. TOP) TOP=FL/XA-FX(I)
           IF(RL/KK-(RL-1) XN . ST. 301) 907=FX(I)-(RL-1) XN
           CONTINUE
 545
           DIFETOP
           IF (EDI .GT. DIF) DIF=30T
            ABEMMISECIE
           SCHITINJE.
  843
           C4_L VSFT4 (A1, 1 00)
HETTE(5, 3 () 4, AA (811), 1 A(851), AA (901), AA (950), AA (990)
            CUNTINJE
  100
```

¥,

(

94

• . · ·

11

. . .

1982 - K^a

STIP 201 301 FO: MAT(/, 4Y, 17 7, 4X, "I", "Y, 1F; . 3, 4(3X, 1F5. 3)) END -----C C SHAFCHITCHE GA ANT (GS J, TO L, CE J) CONFLN/534/1(1) 01. ENGIG (0_7(50),0L4(7),4L(50),0L0(4)),0E(52),7H(5)) J] = 26 JH= 20 F07H4T(J%, 3F11+*, 21%) 11 C(1)=C1 THET4(1)=[1 AL =HL (1)=11 9 21 2 12 Cu z u 86 1.42=0.00 EH J SHE HH-P=HP+1 -----87 00 86 1#04.N FT = T SUNCERSIN (+ DEOG (TT) 88 IF(*R) +3,80,109 DG 110 I=1,42 139 E1=I EL 48#EL 8 (-0.07 (TT) 11. CO E3 J=1,1100 89 IF(J-1) 5,117, 11 111 JJ= J=! IF(J-JI) 6,133,'34 18(3/34-33/34) -,5,117 139 J2= J-2 117 J?=J-3 JF(SS1) 119,113,113 D2T=THET+(JJ) +2+0 /* THET+(J2) +THET+(J3) 0T=THET#(JJ) +THT+(J2) 118 IF(62T) 135,119,135 NT=0493(07792T) 135 GU TO 121 119 NT=959993 , 120 IF (SS 2) 122,122, 21 . - -02A=ALPHA(JJ)-2. DO*ALPHA(J2)+LL=H4(J3) 124 GETALFHE (JJ) -ALTHA(12) IF (C24)136,122,135 NA=DAA3(34/024) 136 GG TC 123 122 HARGESSE: IF (553) 125, 125, 12 D25=C (JJ) + 2, 7 1+ 1 (J2) + 7 (J3) 123 124 0C=C(J)) -3(J?) IF(C(JJ)+3, 7-3-T(1)) 1+),125,125 IF(C(J))-5.0-7) 127,127,127 IF(C(D2) 137,127,137 NC=04PS(02/022) 145 141 137

95

_ / /

.

- •

N. (*

• •

¥,

1

İ.
```
GU TO 124
10794949
10794949
 125
125
                  17(16) 6,5,142
                  12(15-36:309) (10)34
 142
 135
                         * et
                  T=(551) 127,12",124
T=(T)(J)=THFF1('J)
127
                 120
 120
13
                  60 TO 132
21242(J)=1L942(JJ)+(71++200(*(EN5+1+DJ)*D2A)*ENS
 131
                  10=H1(J)=9+14(()0H1(J) ()(H=-)
2F(553) 137,177,134
 132
                  C(J)=S(J))
 133
                 \begin{array}{l} G_{1} = G_{1} + G_{2} +
 134
 ô
                   1=(551) _3,13,7
                  91= .0:
00 ? I=HAD,4
 7
                  00 7 IFMAA 97
SLESLEF(I)-J(JJ)
IM(N=M+H) 93,77,7,
THETL(J)ESLA(EM ALPMA(JJ))
 8
 73
                   GD TO 13
 74
                   GHILEGAN (ALPHICS D)
                   KS≠∑
                  DD 1.3 X#1,77
                  KK=K=1
                   GH11=G1H10(10(4)-0(11))/TH2T1(J),1LPH2(JJ))
                   GH412=54 YI ((T (4 2)-7 ()))/1H-14 (), ALPHA())
                  OLT (K) = - : 4" 1L > 4" ( J) / TH STA ( J) + S1/ (THETA ( J) + 2) + (EN-E4) + (T ( 4) - C ( JJ)
               31+ 34 7 5 Y P( (? ( )) + T (+ 5) ) / T + 57 a ( ) ) / T + 57 a ( ) * + ( ) ? ) Y P( ) ? ) Y P( ) ? ) Y P( ) ? )
                   THERE FIRE ALD
                   IF("LT(K)) 171,13,172
                    KS=KS-1
 101
                   IF (KE+4) 165,103,105
192
                  KS=KS+1
                  1F(VS-() 1.5,1",1 5
123
                  THETA (J) = , 53 J + TH(R)
                  69 TG 161
104
                  THETA ( J) = 1 +5317" H (K)
                  GO TO LES
105
                  IF (OLT(K) + OLT (K") ) 1:7, 13,106
                  KK= KF -1
106
                  60 TO 10;
THETA (J)=FH(K) +1LT(K)+(TH(K)-TH(KK))/(OLT(KK)-OLT(K))
107
                  IF ( DHOS ( TAETS ( ) - TH( K) ) -1+3-4) 13,13,168
178
                  CONTINUE
                  AL=HA (J)=AL=HA (1J)
13
                  IF(552) 44,44.1
14
15
                  SL=0.00
                  M 11 1= 420,1
16
                  SL=SL+DLUG (T(I)-" (JJ))
                 KS=0
NC 43 (#1,F?
                  KKaK-1
                 GY2 # ( 24 ( 1 044 ( )) )
```

24

>

ŧ,

ξ

ĺ

96

.

N. C

an alay of a class many alayers and the

· ___ · /

.

```
1F(N+M+M)) 57+7 +91
3+11=0+M1((f(4)+7(1))/74+14(1)+51P4X(J))
 21
          G-1 (245) (1 ((1 ( - P)-7(1)))/(HET2(J), ALPHA(J))
          30
 76
 77
          63 TG - 6
         GJ 10 70

ngI=rgAM5((T(M)+C(J))/THETA(J), ALPHA(J))

D5I2=05AMT(((T(M) 2)+7(J))/THETA(J), ALPHA(J))

nL1(K)=+(M)D_)C(THLTA(J))+5L+FN+DG/GHA+(EN+EM)M(DG+GGI)/(GMA+GMAI)

2+FMS+(NDA(THTTA(J))+EM≤+70GF2/GMAI2
 32
 39
          AL(K)=11-4A(J)
 78
          _F(OL1(M)) 23,1 ,41
           K5=K8=1
 39
          IF(KS+6) 78,41,77
           K5=K5+1
 49
          I=(YS=() 75,32,77
           4LPH4 (J)=+501+A, IC 10
 41
           65 TU -1
          AL=H2(J)=1.573.7L(K)
 42
          GO TO +3
IF(CL_(M)+0_1(K')) T2;+4;71
 70
           KK=KK-1
 71
          GC TO 71
           AL=H1(J)=11(()+TLA(()+(AL(()-AL(KK))/(OLA(KK)-DLA(())
 72
           IF(0)(95(4_P44(J) - 4L(K)) -1+0-4) 4:544543
          CONTINUE
 43
          C())=C(J))
IF(SS3) 112,117,45
 in (4
 85
          IF(1.0. - 1. F41(1)) /3,14 7,14 7
IF(511+557) 37,77,70
IF(7.-4) 66,33,46
 45
 143
 79
           6511 = 644 (A_ PH1 ( J) )
  46
  83
           K3=0
           00 SE (#1,5"
           KX=K-1
           SR=0.03
ŧ
           DO 61 I =MRP, M
  69
           SR = SR + 1. Do/(T(I)-C(J))
           IF(N-H+NR) 66,20,81
PLD(K)=(1.PC-1LCHA(J)):SC+LM/IHLIA(J)
  83
           GC TC 52
         Gevice JA ((((()) P)-0(J))/THETA(J), ALPHA(J))

PL2(K)=(1,00-ALPHA(J))+00+(EH-EMP)/THETA(J)+(EN-EH)+(((H)-0(J))++(

1ALPHA(I)-1,0())707X7(-(T(M)-0(J))/THETA(J))/(CHETA(J)+ALPHA(J)+(GH

2A-GH(I))-EM7*(T(MR0)-0(J))+(ALPHA(J)-1,0U)+DEXP(-(((MRP)-0(J))/TH
   81
         3271 (J)) / (THET1 (J) +4LPH #(J)+GFAI2)
  82
           CE(K)=3(J)
           IF(CLC(K)) 33,1'2,91
  51
  90
           KG=VS-1
           IF(45+6) 34,72,74 .
           KS=MS+1
  91
           1F(KS-C) 54,57,54
           C(J)=.50.+CF(K)
  52
           50 TO 30
           C(J)=CE(K) ++571 (T(1)-0 E(K))
  53
           GO TO 58
  54
           IF(DLO(*)+DLO(**)) 37,112,55
  55
           KK=KK-1
           GC TO 54
           C(J)±CE(K)+DLC(M)+(SE(K)+CE(KK))/(DLC(KK)+DLC(K))
IF(DAF5(C(J)+SE(K))+1+0 +4) 112,112,56
   67
  68
  55
           SCRETIOD
           GD TC 112
```

1 X.

97

· · · · /

- -

·

```
C(J)=T(1)
IF(M-) E(,113,5
DN 11- IR1,4
IF(C(J)+..N=+T(I)) 115,114,114
57
112
113
11-
          HT = 21 +1
115
          C(1)=T(1)
110
          1F(M=) F ... 44, 35
53
          S1#6.PD
          SL=0.00
          SL=9,00

GC 92 (=12754

SL=SL+7([]="(J)

SL=SL+1([]="(J)

GC=GC*([]=C4(J))

F(N=4+M()F5,73,05

F(N=4+M()F5,73,05
92
           G-11=G4+2((T(4)-0(J))/THET4(J),ALPHA(J))
 96
          G-415-3524(C(T(MAR)-G(J))/TH(TA(J))ALPHA(J))
ELF(LR4-34-34-3L7G(GHA)-EM "ALPHA(J)/ALPHA(J))+(A_PHA(J)-1.04)*SL
98
             -SIVENTEALD
         1
          1F(1)-4+4() 5591 (973
2L=EL+(E)-E4)+ (7L06(71A-64(1)-6L06(544))
99
         1+14% * 4. F 14 (J) * 0 36(745* A(J)) + ERR* 0L06(6HAI2)
          (1) 2=120
10:
          TSJ=THET: (J)
          (L) 914=L?A
          CONTINUE
IF(J+2) 13,60,5
 50
          IF(0445(4_943(J)=410345(J))=10094) 51,61,63
IF(0445(4_943(J)=14074(J))=10044) 62,62,63
IF(0445(4_944(J)=41044(J))=10044) 4,44,63
5)
61
62
          CONTINUE
63
4
          CCNTINJE
```

T ' ' ' ' ' ' '

1

.

١,1

4

۲

```
66
      RETURN
      END.
           C
C
      DO TALE FREDTS TON FUNDITION GAM (Y)
      NOUGLE PLECTSING G, 7, DL CG, DEXF, Y
      7=1
      G=0.00
      IF(7-9.01) 2,2,7
      G#5=0L36(7)
2
      7=7+1+30
      GO'TO 1
     G4 1= G+ (7=, 50)) ==LCG(7) = 7+,50% =0LCG(2,00+3,1415923535979301) +1+0.7
1 (12,0777) = 1+077(36)+03% 77*3) +1+0.7(1250+00+7**5) =1+0)/(1433+0;+7**
27) +1+0.7(1133+0;+7**3) =491+0.7(350350+00+7**11) +1+007(1155+0+7**13)
3
     33
      GAN=CEXP(GAN)
      RETURN
      END
C
   *****************
Ċ
   Ĉ
č
      DOJELE PREDISTON FUNCTION DGAM(Y)
      NCHELL PECTATA DE, 7, Y , PLOG, GAN
      2=1
```

98

. •

N. N.

1 1

. .

```
107=0+00
      17 (7-3-01) 2,2.3
07=06-1-71/7
1
г
      7=7+1+){
     56 36 1

05542654(7-.33))/7+3235 (7) =1.52=1.00/(12.02+7+*2)+1.32/(12.02+7**

)=1.37/(7)2.3.(7+32)+1.32/(2+2.02+7**2)=1.37/(132.02+7**1.)

+6.1.37/(7275:3)=7**12)=1.05/(12.02*7**1+)

053)=030(*644(*)
3
    ;
      - FTUFN
      zi;n
C
   C
   Ċ
Ĉ
      DOUPLE EVENTSION PHIOTION GAMI(W,Z)
      DU HALE F. FOTSTON U. 4,7, SU, ELL
      C
      PT: 117 - , V, 7, SJ, FLL
Ċ
      U(1)=W++7/7
      511=11(1)
      00 1 L=2,50
      LL=L-1
      EL.=LL
      "(L)=(-U(LL)/TL')+#+(7+ELL-1+CL)/(Z+ELL)
      SU= SU+J (L)
1
      GAVIESJ
      RETURN
      END
C
  C
   Ĉ
     00 J9LE F ECTSION FJ 1713 CN GGAFI(W,7)
1998LE FREGTSION L.M.4.4.7,SJ,ELL
OIMERSICH U(301.40(3))
U(1)=M.474 0LOS(4)/2
      V(_)=4++7/7++2
      SU=U(1) -/(1)
      CO 1 L=2,50
      LLEL-1
      FLLALL
      U(_)= (-P(LL) * 4 / LL) * (7+ ELL+1.0,) / (7+ELL)
      V(_) =-V (L_) + 4+ (' + ELL-1. [%) + 2/((7+ELL) ++2+ELL)
      511=50+1 (L) -V (L)
1
      05141=50
      RETURN
      5:10
```

.

11

. .

· . .

č

۲

Ramón Cortés was born on 23 July 1956 in Caguas, Puerto Rico to Ramón and Isabel Cortés. He graduated from Gautier Benitez High School in 1975 and received a Bachelor of Science degree in Chemistry and Mathematics from the University of Puerto Rico. He was commissioned a Second Lieutenant in the United States Air Force through the AFROTC program on June 13, 1979. Lieutenant Cortes entered the Air Force Institute of Technology Resident School of Engineering in pursuit of a Master's degree in Operation Research in June, 1979.

> Permanent address: 4-P-1 1st Villa del Rey Caguas, Puerto Rico

VITA

100

7

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	3. RECIPIENT'S CATALOG NUMBER
AFIT/GOB/MA/80D-1 (AD-A094732)	
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVEREI
A Modified Kolmogorov-Smirnov Test for	MS Thesis
the Gamma and Weibull Distribution with	MD INCESIS
Unknown Location and Scale Parameters	5. PERFORMING ORG. REPORT NUMBER
AUTHOR()	8. CONTRACT OR GRANT NUMBER(.)
Pamon Contag Odit 1104F	
Ramon Cortes, 2011., USAF	
Ain Force Inctitute' of Machaelers (ARIM R)	AREA & WORK UNIT NUMBERS
Wright-Datterson AFB Obio 45433	
"IBMU-FAUCCISON AFD, ONIO 40405 /	
. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
•	December 1980
	13. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESSIL Allowed free Contralities Office	111 IS SECURITY CLASS (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
DIST BIGUTION STATEMENT (of the shores second in Black 20. If different be	
. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for supplementary notes Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs	nn Report) 17
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for supplementary notes Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse side if necessary and identify by block number) Nodified K. S. Taget	ит Report) 17
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse side if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution	xm Report) 17 S
DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different in SUPPLEMENTARY NOTES Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF <u>Director of Public Affairs</u> KEY WORDS (Continue on reverse side if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution	ип Report) 17 S
DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different for Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse elde if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution	nn Report) 17 S
DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different for Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse side if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution Monte Carlo Simulation	nn Report) 17 S
DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different for Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse side if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution Monte Carlo Simulation	nn Report)
DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different for Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse elde if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution Monte Carlo Simulation ASSTRACT (Continue on reverse elde if necessary and identify by block number) The Kolmogorov-Smirnov tables for the We bution were generated in this thesis. The testing whether a set of observations are distribution in which the location and sc estimated from the sample.	m Report) 17 5 eibull and Gamma distri- ese tables are used when from a Weibull (Gamma) ale parameters must be
DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different for Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse side if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution Monte Carlo Simulation ASSTRACT (Continue on reverse side if necessary and identify by block number) The Kolmogorov-Smirnov tables for the We bution were generated in this thesis. The testing whether a set of observations are distribution in which the location and sc estimated from the sample. A power investigation of the test agains butions using Monte Carlo techniques was	eibull and Gamma distri- ese tables are used when from a Weibull (Gamma) ale parameters must be st some selected distri- cońducted. This procedu
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for SUPPLEMENTARY NOTES Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF Director of Public Affairs KEY WORDS (Continue on reverse side if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution Monte Carlo Simulation ASSTRACT (Continue on reverse side if necessary and identify by block number) The Kolmogorov-Smirnov tables for the We bution were generated in this thesis. The testing whether a set of observations are distribution in which the location and sc estimated from the sample. A power investigation of the, test againsibutions using Monte Carlo techniques was	eibull and Gamma distri- ese tables are used when from a Weibull (Gamma) ale parameters must be st some selected distri- conducted. This procedu
DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different for Supplementany NOTES Approved for public release; IAW AFR 190- Frederick Lynch Major, USAF <u>Director of Public Affairs</u> KEY WORDS (Continue on reverse side if necessary and identify by block number) Modified K-S Test Critical Values Gamma Distribution Regression Weibull Distribution Monte Carlo Simulation ABSTRACT (Continue on reverse side if necessary and identify by block number) The Kolmogorov-Smirnov tables for the We bution were generated in this thesis. The testing whether a set of observations are distribution in which the location and sc estimated from the sample. A power investigation of the, test agains butions using Monte Carlo techniques was of tight 73 1473 EDITION OF I NOV 65 IS OBSOLETE <u>UNCL</u>	eibull and Gamma distri- ese tables are used when from a Weibull (Gamma) ale parameters must be st some selected distri- cońducted. This procedu

•

`.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

7

ŧ,

shows that the test is reasonably powerful for a number of alternative distributions.

A relationship between the critical values and the shape parameters was investigated for the Weibull and Gamma distributions. No apparent relationship was found for the Gamma distribution. In contrast, an approximate log-linear relationship was found for the Weibull when the shape parameter is between one and four.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

· . . .

~ •

