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EVALUATION

The research described here deals with the issues of (1) the effect on black box

identification accuracy of quantized (noisy) input/output data, and (2) the modeling
of wideband systems by frequency partitioning and the use of multirate sampling
within the sub bands. The development presented here shows that the pencil-of-
function method together with selected statistical corrections on the contaminated 1
data and/or the use of multirate sampling leads to enhanced transfer function
identification. The enhancement is quantitatively described in terms of normalized
mean square errors between the "true" transfer function, the identified transfer

function without statistical corrections and the identified transfer function with

the statistical corrections.

ZJOHN F. SFIMNA

Project Engineer




ADVANCED TECHNIQUES FOR BLACK-BOX MODELING

1. INTRODUCTION

The pencil-of-functions method is a black-box modeling method [1]-[2].
Given an input, output response pair of a system under test, the algorithm
leads to a comprehensive description of the system in the form of a transfer
function. Although the method was originally developed for use upon linear
networks, its applicability has been extended by Weiner and Ewen {3]-[4] to

nonlinear Volterra models. The method has been implemented in a FORTRAN

program and is available from RADC together with necessary user instructions(5].

The research described here deals with the important issues of signal quanti-
zation during analog-to-digital conversion, and the black-box modeling of

wideband systems.

1. Quantization

Practical analog-to-digital (A/D) converters employ small word lengths,
tvpically 8 to 16 bits, and,as a rule,one can trade word length for higher
conversion speed, cost remaining fixed. Unfortunately, small word lengths
lead to degradation in the accuracy of the identified transfer function [6].
It is shown here that the statistical properties of the quantization error
can be exploited to improve the accuracy and reliability of the identified
parameters. The study thus demonstrates that higher speed implementaticns
and/or additional cost benefits may be achieved for the pencil-of-functicns

method than have heretofore been realized.

2. Wideband Identification

Communication systems utilize many wideband circuits., for example,
amplifiers for spread-spectrum signals. Black-box modeling, or identification,
of these circuits poses both a theoretical and a practical challenge. A mul-
tirate sampling approach to identification of wideband transmittances is
discussed. Tt permits determination of the transfer function of a four-to-five
decade bandwidth system from simple transient tests. Clever selection of
sampling rates and test inputs reduces the wideband problem into three, simpler
smallband problems. The smallband transfer functions are identified via the

pencii~ntf-functions method and then adjoined, systematically, to construct the




wideband transfer function estimate.

The report is structured as follows. Section 2 describes the pencil-of-
functions method in brief. Theoretical details are omitted, for they can be
found elsewhere [1], [2]). The description is included here for convenience
of the reader, and also to emphasize the discrete-time version of the method.
A computer program for conversion from s to z domain transfer functiomns is
given in Appendix A. Section 3 presents the study on improvement of quanti-
zation-caused degradation, through a statistical approach. The key to this
turns out to be the determinant of the Gram matrix of the integrated signals.
A computer program, ''GQUANT', developed for the particular case of impulse
response modeling, is given in Appendix B. Section 4 discusses the results
of the study on wideband systems. Included are equations and tables for
ready selection by the test engineer of inputs and sampling rates for the LF,
MF and HF band transient tests. These pulse inputs have been selected after
careful study and are considered both effective and laboratory realizable.

A computer program, "USPEC', which generates the amplitude spectra of the

recommended pulses is given in Appendix C.

-




2. PENCIL-OF-FUNCTIONS METHOD

Recorded input, output responses of a network can be integrated to yield
a family of signals, called measurement signals. Application of the pencil-
of-functions theorem [1] to this family yields, in a closed form, the identi-
fied parameters of the network function. The procedure for this black-box
modeling method is described below. Although proofs are omitted, the usefulness
of the technique will be demonstrated with examples. Discrete-time signals
are chosen for the presentation here, because of inherent computational advan-
tages, although such signals must often be obtained by sampling a continuous-

time system.

2.1 SIMULTANEOUS NUMERATOR AND DENOMINATOR DETERMINATION

Identification Problem

Given the input-output observations
{u)}, {y)1, k=0,1,..,K (1)
arising from a physical system (see Fig. 1) believed to be linear, and of finite

order, it is desired to find a system model

blz—1 + v + buz-n
H(z) = ) e (2)
1+ a,z + e, +a z
1 n
n diz—l
= 1 — 3)
i=0 1 -c.z

which best fits the observations, in some sense (see Fig. 2). A solution can
be obtained by use of the pencil-of-functions theorem as discussed below.
For convenience denote sequences {u(k)} and {y(k)} simply as u and vy,

respectively. Also, denote the inner-product of two sequences as
def K
<X,y > = T x(k) y(k) (4)
k=0

Measurement Sequences

Frem the given sequences y and u we form the following set of sequences,

t 11led measurement sequences:




u(t) Network under y(t)
aa—— Test pes———
Hnetwork (s)
y(ka)=y (k)
A/D —

IConvertey

S.I.=4
r—u(’kA )Y=u(k)

Fig. 1. Response~pair from system under test

J y(k)

Black-box
Modeling TSI IT Iz
Algorithm \“‘ Model )
: u(k) > V) Response Fit error
. { 2\ 4 y (k) )
- > Model H(z) 3

Fig. 2. Identification problem: Find H(z) so that
§(k) is close to y(k)

e SR




yl(k) = y(k)
yz(k) = y1(0)+y1(1)+...+yl(k)
yn+1(k) = yn(0)+yn(l)+. TR (k) (5)
ul(k) = u(k-1)
u2(k) = u1(0)+ul(l) ceee +ul(k)
U (k) = u (0)+un(l)+. cen +un(k) (6)

where n is the order of the model desired. That is, n is the degree of the
network function H.
Note that these sequences represent repeated discrete integrations of

the observed signals y(k) and u(k), respectively, i.e.,

k
(k) = I

y. (1) i=1, ..., n (7)
g=0 J

(=
—~
=
~
]

k
T ou, (R) j=1, ..., n (8)
2=0

Equivalently, yj (k) is obtained by passing yj(k) through the filter [{(z) =

+1
z/(z-1) as shown in Fig. 3. Likewise, uj+](k) is obtained by passing uj(k)

through the discrete integrator 1(z).

Gram Matrix

Next form the following inner-product matrix




X > o -
- “e
y (k)
I1(z) I(z) soe0 I(z) I1(z) I
rd Y m — 1 —
C na } e Gram
. ’/ Matrix
i Inner-~
Product
. e e e e e e e e e — e .- —— . e - - Generator'F
]
)
[
)
|
]
'
[}
i
u (k) - I(z) I(z) [T esee 1(z) 1(z)
z

Digital integrator I(z)= —

Fig. 3. Generation of integrated signals and the Gram matrix

(u(k) included in the inner-product generator if
model is required to have direct transmission )




L]

—
< > < >
yl’yl T yl’yN <y1’“2> e <y1,uN>

< > ... >
F = yN’yl <yN’yN <yN,l12> e . <yN,uN> (9)

< > . . . <
uz,yl u u >

> <u2,u > ... <u2, N

2°IN 2

<u y > u y > u. u u u
N’ l ot < N, N < N’ 2> SR ’ >
f—

e

where we have used the notation N = n+l for convenience. This (N+n) x (N+n)

dimensional matrix is the Gram matrix [10] of the (N+n) dimensional vector

sequence
{1, k =0,1,..., K (10)
where1
yl(k)
! yz(k)
|
fk) = yN(k) (11)
§u2(k)
|
i
i_uN(k) ]

To state this observation formally, we have
K
F o= © £R)E (k) (12)
k=0

IThe entrv ul(k) is omitted in f(k), and therefore in the formation of the

gram matrix F, whenever direct transmission in the model is absent (that is
when the coefficient b0 in the function H(z) is constrained to be zero).
7




Diagonal Cofactors

Denote the diagonal cofactors of F as Di:

Di = 1i,i cofactor of F (13)
Recall that the i,i cofactor of a square matrix is the determinant of the
matrix after deleting the 1th row and the ith column.

Parameters of the Network Function

The parameters of the network function are given by the square-roots
of Di up to a multiplicative constant. That is

i1
/D, (L-2 ) 1Y() = [

1 i

1 i-1

Wz ra -2 Tue aw

[ N+i

i

[ asI~-4
[ e =1

1

which can be normalized, by dividing by D = /Dl+ ...+/bN, so that the leading

coefficient becomes unity. Clearly the computed transfer function becomes

1.0 -1 i-1
z [151 /bN+i(1-z ) ] /D
H(z) = (15)
N _p -1
[z /Di (I-z 7)) 1 /D
i=1
REMARKS

® Note that the first measurement signal is the network output itself, Y1 =vy.
Next follow its successive integrations. Each of these signals can be
exp?essed directly in terms of y(k). Indeed, if we let I(z) = z/(z-1), Yj+1(z)
= IJ(z) Y(2) s? that yj+l(k) = ij(k) <:> y(k) where ij(k) is the inverse
transform of IJ(z) and (:) denotes discrete-time convolution.

® The dimensionality of the measurement vector f(k) is 20+l = N+n when the

direct transmission term bo is constrained to be zero. If the network does

have direct transmission, ul(k) = u(k) should be included in the vector f

so that its dimensionality, as well as that of the corresponding Gram matrix
F, becomes 2n+2 = 2N. The right hand side of equation (14) modifies slightly
as follows

i-1 N i-1

1 /o, (1 - D 1 v(@) = [iEIJbN+i a-z21 1w (16)

{

i

12z

The counterpart of equation (15) follows from (16) and is therefore not given

here.

T < O3 g AT WV M,



To illustrate the steps of the method, a simple example is given

next. (The reader, unfamiliar with the pencil-of-functions method, may wish

to work the details with pencil and paper; others may skip this example.)

Example 1

Consider the setup of Fig. 4 where ul(k) denotes the input signal and
yl(k) the output. The network is known to have direct transmission and of
first order (i.e., the s-domain transfer function is of the type (dls + do)/
(s + co)). The measurements are made everyl ms for 5 samples, k = 0,1,...,4.
Unit pulse input

Suppose the following signals are generated as a result of a unit pulse

input (only Y1 and u, may have been recorded in real time):

Yl(k) 1.0 1.2 0.96 0.768 0.6144
y,(k) 1.0 2.2 3.16 3.928 4.5424
ul(k) 1 0 0 0 0
uz(k) 1 1 1 1 1
The Gram matrix of the signals yl, Yoo ul and u2 is
4.3289 12.4811 1.0 4.5424
. 12.4811 51.8881 1.0 14.8304
1.0 1.0 1.0 1.0
4.5424 14.8304 1.0 5.0

which yields the following square-roots of the diagonal cofactors.

/Dl = 3.5032 /bz = 0.,87581 /b3 = 1.7516 /ba = -6.1307

Note that the signs of these square-roots are chosen in direct correspondence
with the signs of the cofactors of the first row of F [1]. Now, substitution

into (16) and division by (D1 + D2) leads to the equation

(1-0.821v@ =@Q+0.42zh v

Clearly, the true parameters have been recovered.
9




lglt

ul(k)

yl(k) y, (k)
z
1 I,
! z- 1
|
|
Network function )
(unknown) iul(k) uz(k)
|
' z
———_*
z- 1

Measurement system
(real-time or off-line)
-1

1+ 0.4z

Unknown network function = - =
t - 0.8z

Fig. 4. A first order test system
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Results of computer simulation on a fourth order network function are

presented next.

Example 2.
The network function considered is

[s® +0.31(10%s + 0.003(10)1%]

[s* + 0.804(10%) s> + 1.4481(10%%)s? + 0.009686(10%8)s

H(s)

+ 0.007056(10%%) ]

s + 10*[s + 0.3(10%)]
6 12 7 3 12
+0.004(10°)s + 0.0049(107%)] [s” + 0.8(10)% + 1.44(10%%)

[s2

s-poles: (-0.002 + j 0.069971b)(106)

(-0.400 + 3 1.131371 )(10%)

It was converted to a digital equivalent form (using the programs STOZ in

A
Appendix A and pole-zero z = e®® transform [5], [8] ) for computer simulation.
With a sampling interval A = 0.5 pys the z-domain transfer function turns out

to be

4

2.002_2 -3.7114409z—3 + 1.7128304z
H(z) =

1 - 3.3791582 1 + 4.4286282"% - 2.7180992 2 + 0.6689807z

4

The system was excited by a + square 5 us pulse (see Fig. 5a). The model

identified by the proposed method is

34 1.71282.74

3 4 0.668982.7%

2.002"% - 3.711502

H(Z) 1 -2 -
1~ 3.3792z + 4.42862 - 2,7181z

s-poles: (-0.002 + j 0.0699714)(106)

(-0.399 + j 1.131373 ) (10%)

Using the inverse of the pole-zero transform, the s-domain transfer
function can be obtained. The poles turn out as shown above.
The response of the model and the actual network response are compared

in Fig. 5b.

11
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50.0 —— Network response
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0
-25.0
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(a) input and response
75.0
— = = === Model response
Network response
50.0
25.0
0
=25.0
=50.0
=75.0 1 1 1 1 i 1

50 microsec.

(b) model response and actual response

Fig. 5 IDENTIFICATION OF A FOURTH ORDER SYSTEM
{data uncorrupted by noise)
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REMARKS

* When the network under test is of order n, i.e., when the model order

is equal to the intrinsic order of the network, the rank of the matrix F

equals its dimensionality minus one.
* The matrix F is positive semi-definite.

* In actual application the matrix F will be formed from quantized versioms

of signals y and u. Call this corrupted matrix as G. It will be shown that
E{Gg}=F + OZP, where P denotes the correlation matrix of unit noise and E denotes
the statistical expectation operator. It will be shown in Section III that E{G}
has full rank (equal to the dimensionality of F).

As seen earlier, the pencil of functions method uses the square-roots of
the diagonal cofactors of F. A very important advantage of the method is the
following.

"Since F is positive semi-definite (G positive definite with unit prob-
ability), its diagonal cofactors are non-negative (strictly positive). Hence,
there is a built-in check and stopping point when, due to computational errors
or wrong choice of model order, one or more of these cofactors turns out to
be negative."

The computations involve finding the cofactors of a 2n + 1 or 2n + 2
dimensional matrix. For the special case of impulse response modeling the
calculation of denominator and numerator coefficients can be decoupled, so
that computations involve only an n + 1 dimensional matrix. This will be

discussed next.

2.2 DECOUPLED PROCEDURE FOR MODELING IMPULSE RESPONSES
Consider that y(k) is the impulse response of a network and that a
suitable K has been selected such that y(k) = 0 for k>K. We define the

reverse-time integrated signals as follows [2], [11]

yy (k) = y(k)
v, (k) = yl(k)+....+y1(1<),

. 17)
yN(k) = yn(k)+. .. .+yn(K) .

13




(Recall, N=n+l). Let F be defined as

<y1!yl> . <yl’yN>"
) K
= . < > =
<Y ¥y <Ys Yy k=t |
N1 N’'N
or, equivalently,
K T
F = L fRE(K) (19)
k=1

where j?(k)

[yl(k) yz(k) .. yN(k)]. Then, it can be shown that the

denominator polynomial is given by
N .
A =21 /o, DNy (20)
i=1
where Di denotes the ith diagonal cofactor of the matrix F. Note the
positive powers of z on the right hand side. Further, the numerator co-

efficients are obtained as:

™9y

|
|
|
] +
po= b e [ . ,
t
i
|

(21a)
] i . N
e | L Px1 Py | L Ay
Py = SwlerloD), wkrl-))> (21b)
q = <y(k), w(k+l-i)> (21¢)

where w(k) is the impulse response (i.e., inverse z-transform) of 1/A(z)

and inner products are summed from k=0 to K.




If the network is known to have no direct transmission, i.e., bo 18 suspected

to be zero, then N should be replaced by n on the right hand side, bO by

b1 and in forming the inner products w(k+l-i) should be replaced by w(k-1i)

(likewise, w(k+1l-j) should be replaced by w(k-j)).

Three examples will be presented next. The first is a simple, paper-

pencil type example; it considers the same impulse response as did Example 1

(page 9) but with a long record length. The final example is interesting

because it deals with an impulse response which, theoretically, requires

an infinite order system (of type 1)) for exact reproduction; a fifth

order model is computed by the pencil-of-functions method which yields a

fractional energy error of 0.0359.

In the first two examples the true

transfer function is recovered by the modeling technique, i.e., the frac-

tional energy error is zero.

Notation -

v (kd) or y(k)

. ny n
. y(kd) or y(k)

Model response

Model response error y(k)—§(k)

. K
s = I yz(k) Response energy
” k=0
) K o2
€ = y (k) Error energy
k=0
i
'
¥ v o= €/S Fractional energy error, or simply fractional
b error, or normalized mean square error
. n = 100(1-v) Per cent modeling efficiency
J Example 3
- Given the left hand side of yl(k) = 1.5(0.8)k— O.SGkO, we find for K=40
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Ty 20!

F o= (inner products are

1 from k=1 to 40)
20 100 J
Then Dl = 100 and 02 = 4. Equation (20) yields
A(z) = 2_1(102—8)/10 =1 - 0.82_1
Equation (21), in turn becomes
- ; _ -
| 1 0.8'] { bOW‘ 1.5 0.18::
1 ) i: 1 . '
0.36 | [ I = 0.36 ;
L Lo ]
0.8 1dLs, L 1.2

which produces B(z) = (1 + 0-42_1). The model has been identified perfectly
with zero fractional error.
Example 4

A fourth order network is known to have zero direct transmission (b0=0).
The numerical data of its impulse response,

2t -0.5¢t

y(t) = 10 e °° Sin(2t) - 2 e Sin(4t)
is recorded at uniformly sampled intervals of A = 0.2 sec. For K=150 (which

signifies a long record; K = 30 sec), we find

(l.51403 2.38856  0.779798  0.114119  —0.05724740
2.09775  0.953032  0.253410 0.00074006

F= | 0.501610  0.157312 0.01499790
! 0.057232 0.00960080

, 0.00352616

det F = 0.54E-14

Note - All summations have employed a multiplication factor A, for scaling
purposes, both in forming the integrated signals and in forming the inner-
products.  However, to undo the effect of this scaling, the ith diagonal
cofactor has to be multiplied with A2i to vield Di' The entire process will

be called ‘~scaling

The values of vﬁf}/ff[ are

1 1.50410 1.33762 0.58517 0.11959
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Equations (20) and (21) yield the following denominator and numerator
coefficients.
Denominator 1 -2.49588 2.82521 -1.5760 0.36786
Numerator 0 -1.31238 1.68950 -1.55568 0.00158

The fractional energy error turns out to be v= 0.1E-6. As seen from

Fig. 6 the model response ; is indistinguishable from the true response y.

Example 5

Here we consider a problem in approximation. This terminology,

rather than identification, is appropriate since the square pulse
y(t) = {1 for 0<t <1

0 otherwise

cannot be exactly reproduced as the impulse response of a finite order
linear system. A fifth order model is desired whose impulse response
approximates this signal. Using A=0.05 sec. and setting y(0)=0, y(k)=1
for k=1,..,20, y(k)=0 for k=21,..,40 the following Gram matrix is obtained.

—
1.0 0.525000 0.192500 0.0553438 0.01328250 0.002767196W
0.358750 0.146781  0.0448284  0.01117940 0.002391640
F = 0.0635731 0.0201175 0.00514064 0.001119480
0.0065189 0.00169444  0.000373780
0.00044604  0.000099363
0.0000223QEJ
det F = 0.344E-26 (note - A scaling is employed)
The values of Vbi/Dl are
1 1.1458 0.67865 0.22900 0.042415 0.003383

Equations (20) and (21) yield the following z transfer function coeffi-

cients. J
Denom. 1 -3.854184 6.095388 -4.93206 2.037106 -0.0342867
Numer. 0 -1.179760 3.806755 -5.19377 3.53997 -1.039771

The fractional energy error turns out to be v=0,0359 with a corresponding

modeling efficiency of 96.47%. The model response § is compared with

18
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the desired, ideal, response y in Fig. 7a.

A brute force application of the correction procedure given in
the next section (Section 3) results in the model response shown
in Fig. 7b. Of course better approximations can only be obtained with

higher order models.

20




3. QUANTIZATION ERROR: IMPROVEMENT OF ESTIMATES
(PENCIL-OF-FUNCTIONS METHOD)

Practical analog-to-digital (A/D) converters employ small word lengths,
typically 8 to 16, and as a result incur quantization error in the repre-
sentation of the signal. This, in turn, causes degradation in the accuracy
of the identified transfer function [6]. It will be shown in this section
that the statistical properties of the quantization error can be exploited
to Improve the accuracy of the parameter estimates. A computer program
"GQUANT" incorporating the technique developed is given in Appendix B.

The principle of analog-to-digital conversion is explained well in
references [6], [9]. For our purposes certain essential properties are most
pertinent. If b bits are used (including the sign bit) and XMSB is the analog
value of the most significant bit (next to the sign bit), then the following
observations and properties hold.

(a) The step size equals

§ - XuSB

2b-—2

(22)

(b) For an input y to the A/D convertor the analog value of the output

Xx=y+e (23)

where lel< %-for roundoff and |e|< § for truncation,

(¢) If the signal excursions during each sampling time-interval A

are large compared to 6, then
def
x(k) = y(k) + e(k) y () ST y(ka) (24)

where e(k) is an independent sequence of random variables having
a uniform distribution over one step size 6. In case of roundoff |
this distribution is centered at zero, so that the random variable
e(k)has a zero mean and a variance[7].
62

var{e(k)} = 17 (25)
In the ensuing discussion we will assume the A/D converter employs
roundoff.

(d) Under the assumptions in (c) above, the error sequence e(k) is

uncorrelated with the parent sequence y(k)

21
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Simulation shows that neither of the properties (c¢) or (d) strictly
hold in practice. However, we will use these properties exercising caution
where necessary.

For definiteness we will discuss in detail the correction technique for
impulse response modeling method of subsection 2.2. Parallel formulas are
applicable to the simultaneous denominator and numerator modeling procedure
of subsection 2.1, but will not be given here. Recall that the poles of the
mndel are obtained from the Gram matrix of the signal y and its successive
integrations. We therefore begin with the analysis and correction of the

quantized Gram matrix.

3.1 GRAM MATRIX OF THE QUANTIZED SIGNAL
We will use the model of equation (24) for the quantized signal
x(k) = y(k) + e(k)

where{E e(k)}= 0, E{e(k) e(2)}= 0 and E{y(k) e(2)}= 0 for all k and . For

the reversed time integrated signals we have
xi(k) = yi(k) + ei(k) (26)
where ei(k) are derived from e(k) through equations analogous to (17), i.e.,
ei+l(k) = ei(k) + ei(k+1) + ... + ei(K) @n

Define also the vector sequences

%100 ] (e, ()]
%00 | e, (k)

g (k) = > p(k) = . » k=0,...,K (28)
LXN(k) s_eN(k)_

Then the Gram matrix of the quantized signal can be written as

K
¢ = I gk gl
k=0
K
= TIE@ ET(R) + £(k) pT(K) + p() £7(k) + p()pT(K)] (29)

k=0

22
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Observation 1

K K
Efcl =1 fET() +EZ  pG)pT)}

=0 k=0

= F + 02 P (30)
where P is the unit noise covariance matrix defined below. Further, if
properties (c) and (d) strictly hold then

o2 - 8

12
Observation 2
The unit noise covariance matrix is given by

K T
P = E{Z p® p (¥} (31)
k=0

where P(k) = [eJ(k) ez(k) .. eN(k)]T as before, but ey (k) = e(k) is taken
to be a zero mean, unit variance, uncorrelated sequence.

Remark
1f properties (c) and (d) do not strictly hold, then the value of 02
(and possibly the definition of P) should be modified. We will estimate o2

so as to satisfy the following criterion.

Jain's Identification Criterion

Consistent with the noise and bias models the estimated Gram matrix
should achieve a minimum of the determinant.

Whatever method is used to choose the estimated Gram matrix, care
should be taken to make sure that its determinant remains nonnegative,
since the determinant of the true Gram matrix is nonnegative (see page 13 ).
An approach to estimation of the Gram matrix is presented in subsection 3.4.
First, however, we discuss the computation of the unit noise covariance
matrix.

3.2 UNIT NOISE COVARIANCE MATRIX

Examination of the sequences

epk) = e(k)

ez(k) = e(k)+ ... + e(K)

eq(k) = e(k)t ... + (K+1-k)e(K)
ey(k) = e(l)+ ... + (K+1-k)Ze(K)

23
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leads to the general formula
Kk 51
ei+1(k) = QZ L e(k-2) (33)
=0

We then have (using the definitioms in (28) and (31))

-
i
i
K-k ¢ 1 :
pk) = & i e(k-L) (34a)
- =0 . :
Lln—lj
K-k
= & r) e(k-%) (34b)
2=0
where é&k) = [620 1 ... ln-l]; 520 is the unit pulse sequence. Then

K K-k K-k T
P = E{Z z Z (%) r (m e(k-2) e(k-m)}
k=0 £=0 m=0

and, since e is a zero mean, unit variance, uncorrelated sequence,

K K-k T
P = I ror() r (R)
k=0 =0
K T
= I (K-k+l) r(k) r (k) (35)
k=0

Note that P is determined entirely by the integers N and K, the dimensionality
of F (recall N=n+l) and the length of the observed sequences, respectively.

Clearly, P can be precomputed and stored.

3.3 ESTIMATION OF QUANTIZATION ERROR VARIANCE
The discussion in subsection 3.1, specifically equation (30), leads us
to estimate F as

F = G- o’ (36)
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where 02 will be chosen so as to minimize the determinant of f.

One possible approach to this
the fact that the rank of the true

is zero. Rewriting (36)

F = G- o’p

minimization is developed here. We use

Gram matrix F is n, i.e., its determinent

we set the determinant of both sides to zero. If the quantization error is

small, we can approximate the determinant of the right hand side by the first

two terms of the determinant expansion theorem. Thus

Fl = 0 = ¢-0° I detlc,P], (37)

where the notation [G,P]i means the matrix obtained by replacing the ith

column of G by the ith column of P.

Then
A2 _ G
tdet[G,P],.
i
and, of course,
F = G- o%p

Note that formula (39) can also be

(38)

(39)

applied recursively, by replacing G in (39)

with the last estimate of F. An exit must be made when the determinant of the

estimated matrix ceases to reduce further (or begins to increase).

3.4 SIMULATION EXAMPLES

As stated earlier, a FORTRAN IV computer program "GQUANT" has been developed

for simulation and modeling of quantized impulse responses. A rational mc.:l of

the type given in equation (1) is produced, except that bo is constrained to

zero; i.e., the network is assumed

modification in the computation of

to have no direct transmission. (Slight

numerator coefficients enables this con-

straint to be removed.) Equivalent s-domain description can be obtained through

appropriate z to s transformation.

following.

Salient features of the program are the

It can be used in either a simulation mode (IRESP=1 or 2) or in network-

response-data entry mode (IRESP=0)

Model can be obtained for

unquantized signal (ISPN= -1, IFIX =-1,

NFIX immaterial) when in the simulation mode, or actual response-data when

in data entry mode.
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Model can be obtained for the quantized signal (ISPN=1) without any sta-
tistical correction (IFIX= -1). Intended for use in simulation mode.
Model can be obtained for the quantized signal (ISIM=1 or 2 and ISPN=1,
or ISIM=0 and ISPN=0) with statistical correction (IFIX=1):; the use of
IBIAS=1 performs a bias correction in addition to statistical noise

correction.

Two examples are given below, one in which a second order network response

is simulated and another in which a fourth order response is simulated. Thus
both examples pertain to simulated impulse responses.
H, (z) True transfer function of the network.
ideal
H(z) Transfer function obtained by application of pencil-of-

functions method upon unquantized signal. Note that H(z)

need not be equal to Hi (z); among the reasons for

deal
this are computation errois, and the use of K # o,
Hquant(z) Transfer function obtained by from the quantized signal.
(no correction is applied)
ﬁ(z) Transfer function obtained from the quantized signal;
one or more iterations of statistical correction for
quantization errors are used.

H(z) Transfer function obtained from the quantized signal; in

addition to statistical correction for quantization errors,

correction is also applied for possible bias in the data.

It should be mentioned that the usefulness of bias

correction arises both because the quantization errors in

particular record of data may not be zero~mean, and also
because K # ® may produce an apparent bias in data.
NDIG Length of binary word b ... b,b. (note b is the

NDIG 271 NDIG

sign bit, b the most significant bit, ..., and b

NDIG~1
the least significant bit; also, we have employed a

1

mid-tread type of quantizer in simulation)
XMSB The analog weight (or value) of the most significant
bit.

26




.rﬂ

Example 6
A second order network with zero direct transmission is simulated. Its

impulse response

y(t) = 2 e 2ty 703t

is sampled uniformly at intervals A = 0.2 sec. apart. The coefficients of the

transfer function Hideal(z) are

Denominator
1 -1.575157 0.606530
Numerator
0 -0.469035 0
Without quantization the modeling program yields (using ISPN = -1,

IFIX = -1, NFIX immaterial) the following results:

H(z) (using 1SPN = -1, IFIX = -1, NFIX immaterial) v = 0.6E-8
Denominator
1 -1.575180 0.606551

Numerat or

0 0.469050 -0.000041

Experiment 1
For XMSB = 5.0 Volts and NDIG = 10, the program yields the following

results
Hquant(z) (using ISPN = 1, IFIX = -1, NFIX immaterial) v = 0.84F-3
Denominator
1 ~-1.635921 0.662757
Numerator
0 0.513516 ~0.114095
H(z) (using ISPN = 1, IFIX = 1, NFIX = 3; includes bias correction)v=0.62E-3
Denominator
1 -1.628129 0.655569
Numerator
0 0.506869 -0.098299
The impulse responses of Hquant(Z) and H(z) are compared with that of
Hideal(z) in Fig. 8a and 8b. (The quantized signal used in determining these

transfer functions is shown in Fig. 8c.) Although the improvement through sta-
tistical corrvection is hard to discern from these figures, the fractioral energy
crror clearly points tv a slight improvement.

27
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A more impressive improvement is achieved in the next experiment.

Experiment 2
For XMSE = 5.0 Volts and NDIG = 7 , the program yields the following

results
Hquant(z) (using ISPN = 1, IFIX = -1, NFIX immaterial) v = 0.0061
Denominator
1 -1.721641 0.743261
Numerator
0 0.571452 -0.263324
ﬁ(z) (using ISPN = 1, IFIX = 1, NFIX = 1; IBIAS = 0) vV = 0.0047
Denominator
1 -1.703728 0.726890
Numerator
. 0 0.550597 -0.219990
H(z) (using ISPN = 1, IFIX = 1, NFIX = l; IBIAS = 1) v = 0.
Denominator
1 -1.696989 0.720718
Numerator
0 0.543307 -0.206371
Example 7

A fourth order network with zero direct transmission is simulatued.

impulse response

y(t) = 10 e 2% sin(2e) - 2 ¢ 0% Sincar)
is sampled uniformly at intervals & = 0.2 scc. apart. The coefficients of
the transfer function Hideal(z) are
Denowminator

1 -2.495629 2.824925 ~1.577498 0.367879
Numerator

0 1.312168 ~1.688152 1.553863 0

Without quantization the modeling program yields (using 1SPN -1,
IFT1Y

ti(2)

= -1, NFTIX immaterial) the following results:

_]’

\using [SPN = IFIX = -1, NFIX immaterial) v = 0.1E-6
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-1.577598

-1.555676

-2.057970

-1.991812
IBIAS = 0)

~1.979050

-2.567285
IBIAS = 1)

-1.956858

-2.731991

0.367863

0.001578
the following

= 0.076

0.455114

0.834767
v = 0.045

0.440495

1.185892
Vv = 0,040

0.436115

1.280967

Clearly, a reduction in energy error has been achieved via statistical

i"'.{.
Denominator
1 -2.495883 2.825209
Numerator
0 -1.312376 1.689499
For XMSB = 5.0 Volts and NDIG = 10, the program yields
results
Hquant(z) (using ISPN = 1, IFIX = -1, NFIX immaterial)
Denominator
1 -3.003323 3.619004
Numerator
0 -1.290046 2.315347
H(z) (using ISPN = 1, IFIX = 1, NFIX =
Denominator
1 -2,930222 3.483747
Numerator
0 -1.368196 2.599335
H(z) (using ISPN = 1, IFIX = 1, NFIX =
Denominator
1 -2.910943 3.447190
Numerator
0 -1.393888 2.690009
correction.
Remarks

The application of the statistical correction was predicated upon several

assumptions.

Experiments show that these assumptions are not satisfactorily

met. The following comments therefore arise.

© The quantization error process e(k) is not white.

It might be useful

in future work to model this error process as a first order process and estimate

the corner frequency of this process together with its intensity.

° The correlation between the quantization error e(k) and the input

signal y(k) is not zero.

This may be ameliorated by the use of a well known

technique [13] namely the addition and, after quantization, the subtraction

of a dither signal?.

This is shown in Fig. 9

The application of this

2Pseudo-random binary signals are often used as dither signals.




technique to our problem, and the extent of improvement achieved [14], remain

subjects of future investigation.

y'(t) x' (k) -
y(t) |A/D converter > x(kggz??iitr(k)
r(t) =y (k)+e (k)

Known dither
signal

Fig. 9 Use of dither signal to decorrelate y(k) and e (k)

® In estimating the intensity {(variance) of noise via equation (36)
only the first two terms of the determinant expansion were retained. Perhaps
three terms, i.e., constant linear and quadratic, should be retained in order
to get a more accurate estimate of 02. However, we feel that the benefit of
this step would be realized only after the steps 1 and 2 stated above have

been taken.




4. WIDEBAND IDENTIFICATION

Determining the transfer function of a network from its ob-
served input-output responses represents the inverse of the analysis
problem. Interest in this problem arises from the frequent need for
a relatively simple mathematical description of the system so that
behavior for other anticipated inputs may be predicted up to accept-
able accuracies. However, the identification of wideband networks
presents some unique difficulties. Consider, for example, a network
whose frequencies of interest range from fo Hz to (lOS)f0 Hz. To
identify the corner frequencies at the low end, one would require an
observation record of length T = 1/fo sec. On the other hand,
in order to avoid aliasing effects the sampling rate must be chosen
in excess of 2(105)f0, say fs = (106)f0. A million samples of data
for both input and output are thus produced. Apart from the diffi-
culties of storing this staggering amount of data and the impracti-
cability of processing them, serious numerical difficulties also
arise from this simple minded approach to identification; for in-
sialce, the low frequency poles cannot be represented in z~domain
accurately even with a 64-bit computer word. A possible remedy is
to break the problem into two or three smallband3 problems. The
network dynamics can be identified for each of these, and this in-
formation can be used to estimate the wideband transfer function.

A multirate sampling approach to identification of wideband

transmittances is preseated in this section. It permits efficient

3A frequency band of less than two decades will be termed as small-
band.
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determination of the transfer function of a four-to-five decade
bandwidth svstem from transient tests. Clever selection of sam-
pling rates and exciting inputs reduces the wideband problem into
three, simpler smallband problems. Each smallband problem encom-
passes only one-to-two decades of bandwidth. The three transfer
functions HL(s), HM(S), and HH(s) are casily identified via the pen-
cil-of-functions method, and then adjoined to build the wideband
transfer function estimate H(s). The technique is demonstrated by
simple illustrative examples and a realistic RF amplitier example.
Frequency regions (sub-bands)

The concept of small band descriptions begins by splitting the
wideband region into three regions. As shown in Fig. 10, thuse re-
gions may be termed as low-frequency band, mediunm frequency band,
ana the high-frequency band; in short, LF, MF, and HF.A These re-

gilons may be chosen covering approximately equal ranges on the loga-

rithmic scale.  Dentote the band edges as o, fl,f, and fj, aad the
o R
respective mid-region trequencics as b fv, and t, . The latter ma:
L Al s}
be ~-- although not necessarily, cho.en as the geomcetric means of the

pand edge rrequencics.

By design, the tollowing inequalities hoad

.17 - <t < T /

. 11L xo tL Il IOfL (40a)
uur“ : f_L . *’51 - t'l LO:‘H (40b)
AR i . « 3 . F A0e)
Ty L: "H 15 lot“ (4uc)

in some cases where prior knowledge of the approximate freguency
characteristic ot the nctwork is available, it mav bo more appro-
priate to chouse the regions as LF, LMF and HF, or as LF, MHF and
HE.
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Sampling Rates

For the three small band problems the sampling intervals are

5
chosen as ,

6, = l/lOOfL (41a)

AM = l/lOOfM (41v)

Ay = 1/100f, (4lc)
The sampling rates are of course the reciprocals of these numbers. !
By this choice -- and in view of (40), the sampling rates become at

: least ten times the highest frequency of interest in the respective
bunds.  If the system input are selected so as to excite frequencies
only in one of the bands, then by using the prescribed sampling rate
aliasing ctfects would be avoided.

Now, if K, the number of samples used for the identification
procedure, is taken as 1000, the length of the record would be 2n

' times the longest time constant of the band under consideration (vor

0
. example, with this choice of K tor the LF case, TI = lOOOAL = %L >

’ L
o iL»? ano). Such record lengths are considered adequate for practical
N o

‘ rdentification of low edge corner frequencies, and storing and pro-

‘ cessing 1000 samples of data is well within todav's minicomputer
¥ capability.
j Anputs
The key to the conversion of the wideband problem to three small

i band problems is the careful selection of inputs which excite

ITs

) 3 . . . . .
These are conservative values in anticipation of 500 to 2000 data
points. Larger values up to five times, and accordingly fewer data
points, may be used with some caution.
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frequencies essentially limited to one of the bands. At first this

would seem to pose no real difficulty, for we can choose a narrow-
band signal for the test. However, a little thought would reveal
that testing with very narrowband signals would be in direct con-
flict with the basic philosophy of system identification, which is
broadband modeling with transient tests. Therefore a judicious com-
promise must be made between these conflicting requirements.

The following inputs are suggested as a rough guide. Experi-
mentation and experience leads to a much richer variety of signals
which meet the above compromise strategy. Two different considera-
tions have been kept in mind in the selection of these inputs: the
spectral requirement stated above and, equally important, easy
realizability in the laboratory.

a) LF Input -

For the low frequency band the input selected is a triangular
pulse, either a full cycle TR+’_(t) or6 a half cycle TR+(t) (see
Fig. 11). 1In either case, the total duration of the pulse is taken
to be TL/2 and the pulse is followed by zero input for the remainder

of the time, i.e., from TL/2 to T The magnitude spectra of these

L
inputs can be shown to be

2
L
IR, _(D)] = @, | s |sin2nfT /8]

T SinnfT. /8

[

T SinﬂfTL/4 2

- _ L - i
[TR ()] = 43 TET, /4 (43)

L

where, keeping (15a) in mind, TL = K/lOOfL.

TR, _(t) TR..(t)

0 i T, 0
v time time

{a) (b)

Figure I . Input waveforms for LF tests.

e

(42)

For networks which pass d.c., TR, _(t), i.e., a full cycle triangular

pulse, is recommended; this reduces the predominance of a d.c component

in the network response.
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Unit peak values for the pulses have been assumed. The amplitude spectra

are tabulated7in Tables 1 and 2

TABLE 1
Magnitude Spectra of +,~ triangular pulse (AV_)

£/EL 7%, (0]
k=20 K=200 K=1000 K=2000

0.01 -56.1 dB  -36.1 dB ~22.1 dB -16.1 dB
0.1 -36.1 -16.1 -3.5 -1.8
0.5 -22.1 -3.5 -16.1 -29.8

1.0 ~16.1 -1.8 -29.8 o
2.0 -10.3 ~o0 —o -0
10.0 -1.8 —o0 -0 —o0
max in band -1.8 -1.8 -1.8 -1.8

Note: zero dB corresponds to a magnitude of Zb/AL=K/4

TABLE 2
Magnitude spectra of a + triangular pulse (A_)

IR (£ |

f/fL k=20 K=200 K=1000 K=2000

0.01 -0.0 dB -0.0 dB -0.0 dB -0.1 dB

0.1 -0.0 -0.1 -1.8 -7.8
0.5 -0.0 -1.8 -29.8 -35.8

1.0 -0.1 -7.8 -35.8 -

2.0 -0.3 - el -
10.0 -7.8 —oo —o —00
max in band 0.0 -0.1 -1.8 -7.8

Note: zero dB corresponds to a magnitude of 2b/AL=K/b

7 Minus infinity is used whenever the spectral amplitude is less than
-200 dB below reference level.
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It is clear from Tables 1 and 2 that the spectra of these pulse
inputs diminishes to -30 dB or more (below in-band maxima) at the
LF-MF boundary, provided N is chosen greater than or equal to 200 8.
This insures that the frequencies in the MF region are not excited by
application of these inputs. A possible exception is the case where
there is a sharp resonant peak in the MF band, particularly at the
LF-MF boundary. However, the presence of such a peak is generally
known before hand; such a resonant component in the output can be

filtered before performing identification on the LF test data.

MF Input -

For the medium frequency band the input selected is an oscillatory
pulse, modulated either by a decaying exponential OEX({t) or by a dimini-
shing one-quarter-cycle triangular wave 0T.(t). In either case, the

frequency of oscillation is taken to be f the center frequency of

the band. The duration of the oscillatio: is taken to be TM/2 (see Fig. 12),
followed by zero input for the remainder of the time, i.e., from TM/2

to TM. In presenting the spectral analysis below it is assumed that

the on-set of the pulse begins with the maxima of the oscillation, i.e.,

the pulse is triggered at its maximum value. Thus u(t)= m(t) Cos ZWfMt

where m(t) denotes the modulating envelope. The spectra of these inputs

can be shown to be as follows:

1
[OEX(E)| = —— [M(E+£,) + M(E-£)] (44)
-(atjw) T /2
1 M
M(f) = ?;j;gzs—'[l - e ]
1
[OTR(E) | = 5~ [M(E+E) + M(E-f )]
1 SinnTMf/Z
M(f) = J_w [ 1- —”W (COSTTTMf/Z - jSinTTTMf/Z)] (45)

81F the sampling interval were chosen five times the value suggested
in (4la) the magnitude spectrum diminishes to -30 dB at the LF-MF
boundary even for N=20.
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where w=2rf, 'a' is the inverse time-constant associated with the expo-

nential decay and, keeping (41b) in mind, TM=K/lOOfM. Unit peak values

have been assumed.

Y n OTR (t)

e — e + e

time

FigurelZ. Input waveforms for MF test.

In order to delineate the spectral characteristics of the input
OEX(t), three different values of 'a' will be considered: a=0, a=2/TM,
and a=4/TM. The corresponding waveshapes will be denoted as OEXO(t),
OEXl(t) and OEXZ(t), respectively. The amplitude spectra of OEXO(t),
OEXl(t), OExz(t) and OTR(t) are tabulated in Tables 3 to 6 respectively.

TABLE 3

Magnitude Spectra of an Oscillatory pulse

loEX, (f)]

t/fy K = 20 K = 200 K = 1000 K = 2000
0.010 0.1 dB ~74.0 dB ~74.0 dB -74.1 dB
0.100 0.1 -34.0 -37.8 -
0.500 0.1 7.4 ~21.4 -
0.909 0.0 -0.5 3.6 -20.5
0.990 0.0 0.0 -0.1 0.2
1.000 0.0 0.0 0.0 0.0
1.010 0.0 0.0 -0.0 -0.1
1.100 -0.0 0.3 -3.5 e
2.000 0.4 - o -
10.000 -29.1 — e —

Note: =zero dB corresponds to the resonant pe«k at fM. Minus

infinity is used whenever the spectral amplitude is less
than -200dB below reference level.
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TABLE 4

Magnitude spectra of an Oscillatory exp. pulse

}osxl(f);
£ty K =20 K =200 K = 1000 K = 2000
0.010 -1.7 dB -26.2 dB -53.1 dB -63.1 dB
0.100 -1.6 -23.4 -36.7 -49.7
0.500 -1.1 -6.9 -20.7 -33.5
0.909 -0.2 -0.5 ~3.4 -14.6
0.990 -0.0 -0.0 -0.1 -0.2
1.000 0.0 0.0 0.0 0.0
1.010 0.0 0.0 0.0 -0.1
1.100 0.2 0.3 -3.2 -15.7
2.000 1.2 -13.6 -27.4 -33.5
10.000 -12.9 -29.9 -43.8 -49.9
Note: zero dB corresponds to the rosonant peak at f\1
TABLE 5
Magnitude spectra of an Oscillatory exp. pulse
{onxz(f)[

My K = 20 K = 200 K = 1000 K = 2000
U.010 -0.0 dB -15.0 dB -41.7 dB -53.2 dB
0.100 -0.0 14.2 ~34.0 -43.4

0. 500 -0.0 -5.6 -19.1 -27.4
0.909 -0.0 -0.4 -2.9 -9.8

0. 4990 -0.0 -0.0 -0.1 -0.2
1.000 0.0 0.0 0.0 0.0
1.010 0.0 0.0 0.0 -0.1
1.100 0.0 0.2 -2.6 -10.0
2.000 -0.1 ~-3.1 -21.4 ~27.4
10.000 -9.3 -24.1 -37.8 ~43.8

Note:  zero dJdB corresponds to the resonant peak at fl‘




TABLE 6

Magnitude Spectra of an Oscillatory triangular pulse

|OTR(£) |

£/fy K = 20 K = 200 K = 1000 K = 2000

0.010 0.1 dB -38.0 dB -51.9 dB -58.1 dB

0.100 0.1 -18.0 -36.3 -43.8

0.500 0.1 -4.3 -21.2 ~27.4

0.909 0.0 -0.3 -2.3 -8.7

0.990 0.0 -0.0 -0.0 -0.1

1.000 0.0 0.0 0.0 0.0

1.010 -0.0 0.0 0.0 01 {
1.100 -0.0 0.2 -2.1 -9.5

2.000 -0.3 -7.6 ~21.4 -27.4 !
10.000 -9.3 -23.9 -37.8 -43.8

Note: zero dB corresponds to the resonant pecak at fM

It is clear from Tables 3 and 4 that the spectra of pulses OEXO(t) and OEX1 l‘

! (t) diminish to -25 dB or more at the Mf-LF and MF-HF boundaries provided
‘ N is chosen greater than or equal to 2009 . This insures that the frequencies
in the L¥ and HF regions are not excited significantly by application of
) these inputs. Tables 5 and 6 show that OEX2 and OTR spectra diminish only
to -15 dB at these boundaries; these pulses are useful in the initial

stages of testing, or when the network's corner frequencies are spread

P oA

. over the band.
HF Input -
. The inputs used for the MF band are equally useful for the HF band with i
i
' T“ replaced by TH' Tables 3 to 6 also hold with fM replaced by fH. ‘
o 1 !
v

91f the sampling interval is chosen five times the value suggested in (41b),
L the magnitude spectrum diminishes to -30 dB at the boundaries even for N=20.
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Small band Identification

Input-output data obtained from smallband tests can be analyzed by
use of the Fortran program IGRAM [5] and the s-domain smallband transfer
functions obtained therefrom. The program, however, requires that the
transfer function order (degree of the denominator polynomial) be speci-
fied. If the order of a smallband transfer function is known from cir-
cuit considerations, then the identification is performed for this order
and for at least one order higher and lower. For example, if the LF band
behavior is expected to be of order 4, then identification should be per-
formed for n=3, 4 and 5. The lowest order model vielding satisfactory
fractional error (see page 13) should be accepted as the model for that
smallband. 1If, on the other hand, the smallband order is not known, then
an upward modeling strategy must be adopted. Starting from an initial
order, a low guess, increasingly higher orders are attempted until the
fractional error in identification turns out to be acceptably small.

Thus, the smallband transfer functions HL(S), HM(S) and HH(s) be-
come available. From these the overlapping critical frequencies, or
ideallyv speaking common critical frequzncies, are carefully isolated.
This isolation of common critical frequencies is usefrl in the next, and

final, step in wideband identification.

Adjoined Wideband Transter Function

The transfer functions obtained from the smallband tests must he ad-
joined teo form the overall wideband transfer function. For convenience wz
will drop the hat (carat) on the identified TFs, smallband or wideband.
The reader must, however, bear this in mind.

In the notation to follow we will use C .o denote gain constant; and
H with suitable subscripts to denote transfer functions, which are assumed

to be in the Bode canonical form

sL(l + s/z,) ... (1 +s/z)
R SESUR S ———. (46)
+ s +
(1 b/pl) a S/pn) (L = 0, positive
or negative integer )

The first subscript (on H) refers to the test from which the transtfer
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function is obtained; the second subscript, if any, denotes the band with
which the critical frequencies (poles and/or zeroes) are shared. For
example, HMH(s) denotes the part of HM(s) whose critical frequencies are
shared with H (s). Ideally speaking, of course, HMH(S) = HHM(S).

Thus we have

HL(S) = Ci HLL(S) HLM(S) (47a)
HM(S) = CD'4 LL(S) H’MM(S) HMH(S) (47b)
HH(S) = Cé HHM(S) HHH(S) (47¢)

Critical Frequency Adjustment -

In practice the overlapping critical frequencies in two small-
band tests will not turn out to be identical through the corresponding
identifications. For example,a critical frequency si (pole, or zero)
common to HM(S) and HH(S), may be identified as si_ in the MF identifica-
tion and as Si4 in the HF identification. We will adjust both of them to
a common value given by their geometric mean

s, = N S, Siy (48)
Assume that this process has been performed on HLM and HML’ and like-
wise on HMH and HHM' In order to avoid unduly complicated notation we

will let the original symbols denote these adjusted transfer functions,

s0 that now

H, . (s) HML(S) (49a)

B (8) = H () (49b)

Other adjustments include setting s, to 0 when it turns out to be well
below an_, where f denotes the left boundary of the frequency band, but
is known to be zero from circuit considerations; care should be taken in
this case to let Si(l + S/Si) to s. Thus, in the canonical form of (46)
the gain should be divided by h when the term (1 + s/si) is replaced by

s. Another case of adjustment occurs when s; turns out to be much larger

than 2nf+, where f+ denotes the right boundary of the frequency band; it
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is then useful to set the term (1 + s/si) to just 1. These two types of

adjustments occur in Example 8 on page 47.
Gain Adjustment

To obtain equalization at the boundaries of the frequency bands the

gains are adjusted as follows.

B, O DH () 1/2
c. =2¢C! — (50a)
L L IH (Al)HM(A )
1/2
(A H (ML)
c. =¢' EL__E;_lL_jL_ (50b)
Moo [ O pE Q)
1/2
S e R (500)
H H HM(Al)HH(XZ)
where10
Xl = j2ﬁfl
Az = j2nf2

Recall that fl is the boundary between the LF and MF regions, and f2 is
the boundary between the MF and HF regions (see Fig. 10, page 36).

As stated earlier, the purpose of this gain adjustment is to minimize
gain discontinuity at the boundaries. However, phase mismatch may still
exist at these boundaries for the redefined smallband transfer functions.

These transfer functions are

HL(S) = CL HLL(s)HLM(S) (51a)
HM(S) = Cy HML(S)HMM(S)HMH(S) (51b)
HH(S) = CH HHM(S)HHH(S) (51c)

Wideband Transfer Function -
The wideband transfer function is taken to be

H(s) = C HLL(s)HLM(s)HMM(s)HHM(s)H (52)

un (5)

10 For certain wideband networks only two smallbands, LF and HF (with boun-

dary frequencies f , £, and f,), might be necessary. In such cases only
(50a) and (50c¢) ar® nedded with Hy deleted and My =Xp=j2nf;; likewise, only
(5la) and (51lc) are needed wherein the subscript M is replaced by the sub-
script H.




where the constant C is selected to match the gain of one of the smallband
transfer functions at a chosen frequency, perhaps HM(S) at the midband

frequency fM.

Example 8 -

Consider an a.c. coupled network believed to have frequencies of in-
terest from 0.02 MHz to 50 MHz, thus encompassing 3.3 decades. The para-
meters of the system are given in Table 7. In this case it is adequate to
break up the frequency region into two smallbands as follows:

LF f

o 0.02 MHz to fl = 1.0 MHz fL = 0.1 MHz (53a)

1° 1.0 MHz to f2 = 50.0 MHz fH = 10.0 MHz (53b)

The inequalities in (40) are clearly satisfied. From (41) and Tables 1

HF f

and 3 it appears reasonable to choosell

=3
!

= 0.1 us KL = 200 T 20 us

L

>
l

= 0.001 us KH = 200 T 0.2 us

H

and the inputs uL(t) = TR+ _(v), uH(t) = OEXO(t). We, however, select

>
{

]

L 0.05 us KL = 200 T 10 us (54a)

L

>
|

o 0.002 us KH = 100 TH

0.2 us

and define the test pulses explicitly as follows

uL(t) = [One complete cycle triangular wave over 0 to 5 sec. (55a)

iO level over 5 to 10 sec.

i 2m
§ Cos( .05 t), 0 <t

0 0.1 <t <0.2

uH(t)

IA

0.1 (55b)

To simulate the LF test response, the system function Htrue(z) corres-
ponding to Ai = 0.005 usec. is excited by uL(k) of (55a); the response is
then resampled at 1/10th rate (i.e., every 10th output sample is picked
up). In a laboratory test this artifice of using a high sampling rate
H(z) to preserve the integrity of the network response, and then resampling
the output, is of course not necessary. The network output can be sampled

directly at the desired rate 1/AL.

Recall, A denotes sampling interval, K the total number of samples and
T the total duration of the test. Of course T = KA.
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Table 7
A Wideband System: Example 8
6
fepge(®) = Tog 2t
(s+107) (s+107)
v
AL 0.005us
" () = —0:003924z *(1-2"1)
true,,! 1-1.60154321+0. 6035052 >
AH = 0.002us
0.0018108z - (1-2"1)
true,A () = -1 -2
*"H 1-1.8167327z “+0.81709493z
The results of identification from IGRAM using the method of Subsec-~
tion 2.1 are given below.
LF Test ~
Both first and second order identifications were performed. Since
the first order model (predicted response) has a fit error of v = 0.8E-4,
it is decided the LF behavior is first order. For n=1 the Gram matrix,
the square-roots of the diagonal cofactors, the z-domain model and the
corresponding s-domain model (using pulse~invariant conversion [5], pages i
80-82) are given below
—
f 0.00074285 0.00037153 -0.075250 5.1001
P o= 1.03620000 -5.198800 -354.5100
33.336000 1266.7000
’ 346090.00
(-
det F = 0.128
The valucs of /Ei/Dl are
1 0.050249 0.010103 -0.7329E-6
-1
&L(Z) _ 0.0096187(1-z )
1-0.952152"%
4 -8
QL(S) - 0.0101(s-0.14¢10 )) _ _1.0297(10 )s (Frequency
(s+0.981(10%)) (s/0.981(20%)+1) adjusted)
48
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HF test -

As in the LF case, here also a first order model is found adequate
producing a fit error (fractional energy error) v = 0.40E-4. For n=1 the
Gram matrix, the square-roots of the diagonal cofactors, the z-domain
model and the corresponding z-domain model (using pulse-invariant conver-

sion) are given below.

[0.00090304 0.00045161 -0.073612 ~0.52301
F = 0.01842400 0.449400 -1.61760
; 25.000000 12.50000
L} 410.38000

det F = 0.22E-4
The values of r’Di/D1 are

1 0.22817 ~0.0023153 0.0022408
-1
.  0.00006 + 0.00188517z
Hy(2) = -1
1 - 0.8142172
i (s - 0.0023s + 1.009(10%) _ 0.00982 (Frequency
s + 102.76(10%) /1.028(10%) + 1 adjusted)

Gain Adjustment -

At s = j2ﬂfl, where fl=1MHz, the gains of the LF and HF transfer

functions turn out to be 0.00998 and 0.00981 respectively. The adjusted
gain constants (using (50) and (51)) are CL=1.021(10_8) and CH=0'00990'

Wideband Transfer Function -

The wideband transfer function is

H(s) = C 3 S 5
(s/0.981(10°) + 1)(s/1.028(10°) + 1)

f. =1MHz.

where C=l.023(10_8) is obtained from gain matching at s=j2nfl; 1

Comparison -

The Bode plots of ﬂ(s) and Ht ue(s) (of Table 7) are compared in Fig.

r
t3. 1t appears that satisfactory wideband identification has been achieved. )
Remark

The procedure of adjoining the smallband transfer functions can of

course be programmed.
49
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Example 9
As a second example of wideband identification consider the RF ampli-

fier (Fig. 14) of reference [5]). The frequency regions are

LF fo=0.002 MHz to fl=0.l MHz fL=0.01 MHz
MF fl=0.l MHz to f2=lO MHz fM=1.0 MHz
HF f2=10 MHz to f3=1000 MHz fH=100 MHz

The smallband transfer functions, identified from LF MF HF tests through
IGRAM [5] are

3 (o) (s-0.0015(10%)) (s+0.0012(10%))
(s+0.034(10%)) (s+0.075(10%))

8 32

-0.7892(10° ") g 3
[s/0.034(10°)+1](s/0.075(10")+1]
1
(s+24.92(106))
1
(s/25.31(10%)+1)

-20.125

14

1]

—520(106)

P}M(s)

-2U0.95

(s-19060(10%))
(s+25.7(10%)) (s+1140(10%))

2.79(107)

—
=
"

H

(=5/19606 (10%)+1)
[s/25.31(10%)41][s/1140(¢10%)+1]

18.432

The second step of each of the above is obtained after frequency adjustment

as outlined on page 45.
Gain Adjustment -

At fl=0.1 MHz the gains of the LF and MF transfer functions turn out
to be 19.9536 and 20.5437 respectively. At f2=10 MHz the gains of the MF
and HF transfer functions are computed to be 7.6776 and 6.8759 respectively.
The adjusted gain constants (using (50) and (51)) are CL=(O.9602)C£=0.7578,
= ! = = ‘=
CM (0.9327)CM 19.17, and CH (1.0414)0H 19.19.

Wideband Transfer Function -
The transfer function of the network is estimated as

2 [-5/19060(10%)+1]
[5/0.034(10%)+1][s/0.075(10%)+1][s/25.31(10%)+1][s/1140(10%)+1]
51
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v v
¢ o 3 C3 4 ¢y
o—f | = -
+ +
Vi 9 C2 A ZL[j vy
o— —
(a) Schematic (b) Equivalent circuit
¢,=0.01 wF c3= 5 pF g,=4 mmho 93=ho mmho Z = 1 Kohm
(real)
= F = Lf = =
C2 50 p Cb 0.01 9, 1 mmho 9, 0.5 mmho

8(107) s2(s-8000(10%))
(s+o.o33(|r~6)) (s+0.08(106)) (s+25.2(106)) (s+1205.1 (106))

- 7.983(10'9) [5/8000.0(106) +1]

[5/0.033(106) + 1][5/0.08(106) + 1][5/25.2(106) + 1]{5/1205.1(106) +1)

Fig. 14 A common-emitter wideband amplifier
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< - : - v_,_,f,ﬁv_i, o

where C=8.0596(10—9) is obtained from gain matching with ﬁM(s) at s-janM,
fM=l MHz.

Comparison -

The Bode plots of ﬁ(s) and Htrue(s) (of Fig. 14) are compared in Fig.

15. It appears that satisfactory wideband identification has been achieved
from smallband time domain tests.
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SS90 335508008030

§T02Z

PSPPSRIV FEB IS

GIVEN THE CONTINUOUS CESCFIPTICMN, FROGPAY LOWPUTI> Tw.
EQUIVAL ENT DISCRETE JOMAIN DESCRIPTICN OF w LINTAR
DYNAMIZ SYSTZIu

STOZ GINERATEZS H(Z) ANL THE CCGFRESPONNING CIFFEP NCE
EQUATION FROM THME TRANSFER FUNCTION H(3)

TRZ INPUT ARRAYS & ANL B A&Z FILLED ACCIRTIIC T THL
CIFFER"NTI AL EQUATION
QUII*Y(TIHP(2)*D (Lo YUTI V400 o +BINS LI ¥L (N4 Y LT ))
“A (LY PULTI=A(2Y* DL, U(TI = ea o= (N LD*LINLULTYY =
WHERE QUM F(T)) = THE MTh TIME OEXRIVATIVE CF FUNCTION, F

R(Ne1) MUST EQUAL 12
KETUQKNS ARKRAYS A ANC B CCNTEINING THE EQUIVALE! T DISCRFT2
CESCRIPTION STOREDN ACCCRLCING TC THE OIFFZRENCI TCULT ION

BULIPY(KISB(2) Oy In=3) ¢, 4043 (N+LI*Y (K-}

~A(LISUCK) =L (2)%L(K=1) =0 ea=B(N#1)*LIK=N) =

B(1) ALWAYS TQUELS 1
THE POLES OF THE CONTIANUCUS DOYAIN MUST 8€ DISTINCT A~(
NON=ZZS0 F (R THI TRANSFOSMLYIOM TO BZI Valil
DATS& CARD SET PRzPARKLTION

N = ORJER CF SYSTEmM
A (MAXTIMUM) = ONZ LESS THAN TH® OIMENSION Suts(RIe~

IMTH) = § FCR THF IMPLLSZT INVAFIANT CESCFIPTION
= 1 FOR THZ PULSE INVARIANT DESCFRIFTIOM o
= 2 FJ2 THF TRAFZ7CITAL INVARIAMT GISIRIFTTION o
= 3 FOR THE LOGRIT=MIC TRANSFORM DECCRIPTIOCH .
IPOLZ = 1 IF POLSS ANG 7c?CES 89T RELD

MUST BF COMFLEX (RIALeIMAGINAKY)
NEGATIVES OF PCLES AND ZERQCS READ: If,
FO? 8 PCLZ CF (S+2), INPUT ¢2.° +.
(2F15.0 PEP FOLZs & FOLZS PER ChkD)

Lol

= ¢ IF DENOMINATOR AND NUMERATOR ARt PEAT
IN POLYNOINIAL FOFM,
COEFFICIENTS ORQDERZD FROM LOW TC WIGH LIR2ci,
DENOMINATCR INFCRMATION ALWAYS PFAL FIRPST,
HIGHEST ORDER CENOMIMNATOF CCEFF MUST A% 1,0
MOTEE WMHEN FOLE-ZEPQ CATA IS ENTSFEL A GAIN CART
MUST FOLLCW THE LAST POLF CwuRCe
IF THERE ARE NO ZFPOS, USZ BLALNK CARDS IN
THE NORMAL ZER0S POSITIGNS.

CELTA = SAMPLING INTERVAL
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c
Cc
S START FACH DATA CARPQ SET WITH & DESCRIPTICN Civ0y
C CONTAINING UP TO 51 CHARACTERS COLS 2-€2
C FIRST GATA CARKD CONTAINSH
[ Ne IMTHD, IPOLZWIN 3F5 FCRMAT, PLUS UELTA In F17.,0 FOsweY
Cc SECCND GROUP OF DATA CARCS IS N POLES €2 Nel NINC-InkT I~
C CO=FFICIENTS, AFTER LA&4STY PCLE CARDs USt & GeTh CarDa
c LAST GROUW OF CATA CAFDS IS N ZERCS (0R RLLNKS),
c OR Ne¢l NUMERATOR CCEFFICIENTS (BLANVS FCF Z7R35 GUIFF SN
[of THE DATA FORMLT FOR EACH OF THE SYSTEM PARL¥ET I CixDo
c isS 8Fil.¢C
c
c AS MANY SETS CF DATA CARCS MAY BE FUN AS LESIFPTY
c D T T Y LD L T
c
c ST0Z MAIN PROGRAM
c

REAL B(20) 4 A 20)4RRI2TDISRI(2ZI4CELTALTIMF (2D

COMFLEX CT(2.94CA(23)4,CB(20),CAB(2,)4CA1C22),

1 TEK(2J)4CON1+sCON2,4,CONT

DIMENSION TITLE(?D)
C
c READ TITLY AND FIFST DATA (APD
v
13¢C REAC(5,92 ) TIVLE

IF(EOF (5) «NE. G)GO TO ©93¢
WRITE(E,9145)
91C FCRMAT (B (/)
WRITF(E,929)TITLE
REAC(5,927)TITLE
9z2¢C FCR¥AT(7041)
WRITE(EL9)
93¢ FORMAT (/742X s71(%¢%))
REACIS QLTI Ny IMTHNZIPCLZH[ZLTA
ue FOPMAT (3I5,F1l.0)
WRITE(E ,I=3INoTIMYHD,IPOLZ,DSLTA
952 FORMAT (/773X 4PN =® qTHeSX,PIMTHD =% 3T S5X*IPJLZ =%4Twe®K,
1 ®DELTA =%,G17.1047/7)
NP1=N¢}
NP2=N+2
NPNF1=NeN+ L
NPNP2=N+N+2
IFC(IPOLZ.HEW1) GO TO 302

READ PCLES AND Z=RCS

READ(54362) (CRIIV,I=14N)
0 FOPMAT(3F 1040
CALL PCLOCNIORy TEMaGoND
00199 I=1,NP1
109 A(II=TEM(T)

3 o000

REAC GAIN CARD
REAC(5,961) RX

o0 00

REAC ZEROS

READ(54963) (CA(I)oI=1,4N)
CALL POLCON(CAsTEM,0,N)
DO 289 I=1,MNP1

209 A(T)I=TEM(I)*RK

G0 t0 310

c QEAD DENOMINATOR AND NUMERATCFR COEFFICIENTS
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30¢

3¢

97¢

980

o000

339
40¢

99¢(

[+ R e N o]

409
53¢C
931

o000

10¢

(s XeXe RV-1

1009
1040
920¢
1029
1030

1939
1100

REAC(5,96C) (B{I),I=1,NP1)
REAG(5,960) (A(I)4I=1,NP1)
CONTINUZ

PRINT OSNOMINATO® AND NUPMEPATCR CCEFFICIENTS

WRITF(6,970)

FCRMuT(* S=-0CMAIN DENOMINATCP®)
CALL PRVZIC(E.NPY)

WRITE(6,990)

FORMAT (* S-DOMAIN NUMERATNR®)
CALL PRVEZ(AsNPL)

DETERMINZ ORDER GF NUMERLTO®

NN=N

D0 309 I=1,MP1

II=NP141-]

TFCACII) NECG DY GO TO &0C

NN=NN=-1{

CONTINUS

WRITE(H,330) NN

FORMAT(* JORLOTR CF S~DOMAIN NUMERLTOR =%*,15,//)
IFI(NN,LT.2) GO TO 5029

NNP1=NN¢1

FACTOR TENOMINATOR TO FINC POLES

IFCIPOLZ.NELS)Y GO YO 502

CALL PCLR (Es TEMPyNyRR4RT,IER)
00 4C3 I=isN
CRIIN=CMPLX(PRII),RI(I))
WRITE(6,921)

FORMAY (* POLFES OF THF S=-CCMAIN®)
CALL PRCV:CH(CReN)

IF (IFTHD NEL3) GO YO 159¢C
LOGRITHMIC TRANSFORY

CONTINUE
WRITE(6,9:00)
FCRMAT(/4* LOGRITHMIC TRANSFO&EM®)

HORK ON NUMERATQR

IFE{NN.EQ.GY GO TO 103¢
IFCIPOLZJNELD Y GO YO 1310
CALL PCLRTUA, TEMP(NN4RRyRI,L IER)
00 1009 I=1.NN
CA{II=CMPLXIRF(I) 4RI(IN
WRITE(6,9200)

FORMAT(®* ZEROS IN S DOPAIN®)
CALL PRCVICICA,NN)

D0 1029 I=1.NN
CA(IN=CEXF(CA(I)*CELTA)
IF(NN.EQ.N) GO TO 1106

00 1039 I=NNPi, NP1
CAA(IN=u,.3D6

CAtIN=0.0

CONTINUS

NOW TUE FIRST NN ENTRIES OF CB CONTAIN THT
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OO0O00

129

OO0,

aAO0OO0OO0

1209

1219

N
n
D

OGOOOOGO OO0,
(=]
<

15¢9

1510

1512
1519
1529

930¢C

Z-0CMAIN 2EROS OF THE TRANSFEF FUNCTION, WHILZ THE
REMAINING ENTRIES ARE ZEFRCECL CUT.

WCRK ON DENOMINATOR

00 1129 I=1sN
CRUII=CEXFI(CRIII*QELTA)

NOW CR CONTAINS THE N Z-COMAIN POLES

FORM NUMERARTOR ANC DENOMIMNATOF
Z-0CMAIN POLYNOPFIALS

IF (NN.ET. L) CAAtL)=1.0
IF(NNJNELC) CALL PCSTZ(CAR,CAALCoNN)
CALL PCSTZ(CR+CReLeN)

NOW CB CONTAINS THE N#i Z-DOMATIN CENOMINATOR COEFFICIENTS.,
AND CAA CONTAINS THE NN#1 NUMERATCR CCEFFICIENTS,

ADJUST DC GAIN CONSTANT

A1=4(1)/8(1)
A2=1.J

00 1209 I=1sNN
A2=A2+CAA(I+1)
82=1.0

00 1219 I=i,N
R2=32¢CA(T+1)
FAC=A1%82/A2

DO 1223 1I=1,NNP}
CAACIN=CAALI) *FAC

NOW CAA TONTAINS THE AJJUSTEL Z-COMATM NUMIRATCP® COTFFICTIZNTS
AND FAC CONTAINS THE GAIN FACTOR USEQ FCR THI BNJUSTEINT

GO TO 500:

CONTINUZ

NON=-LOGIITHMIC TRANSFCRHMATICNS

ADJUST FO> DIRECT TRANSMISSICM
THIS ROUTINE RPEZQUIRES THAT BINPL) = 1.0

CONT=(0e24040)
IF(NN.LT. ) GO TO 154¢
CONT=A(NPY)

001509 I=1.N
A(II=A(II-CONT®*BLT)

FIND NUMERATOR CONSTANTS FOR PARTIAL FRACTION £ XxPANSION

001529 I=1.N

CON1=1.0

CON2=0,0

001519 J=1,N
CON2=CON2SCR( I) +A(N=J+1)
IF(I-J)151241519,1512
CON1=CON1* (CR(I)-CR(IN)
CONTINUE
CA(II=CON2/7CONL
WRITE(E4,9300)

FORMAT (* NUMERATOR CONSTANTS OF THE FACTCRIZED H(S)®)
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n,

CALL PRCVEC(CAWN)

g CONVERT THE FIRST CRDER PARTIAL FRACTIONS TG 7 CCMATN
¢ NMTHD= IMTHD +1 ,
GO YO (2030,300C+4000), NMTHD
g IMPULSE INVARIANT
goau D022309T=1.N

CACI)=CAC(IV*DELTA
2009 CR(II=CEXE(CKk(II*OFLTA)

G0 TO 4500
C
C PULSE INVARIANT
C

30C0 003309 I=14N
CON1=CEXP(CR(T) *DELTA)
CA(IN=CA(I)*(CONL=-1.0)/CR(D)
3009 CR(I)=CON1

60 VO 45C¢
C
c TRAPEZCIODAL INVARIANT
c

000 TCHECK=2
D06I{I I=14N
CON1=CEXP(CR(I) *DELTA)
CON2=CA(IY/(CRITII®CRC(II*CELTA®CONYT)
CONT=CONT+CON2%((1.3-CR(I)*NFLTA) *CON1~-1,.C)
CACIVI=CONC*(1.0-CON1I*(1,0-CONL)

4309 CROIN=CON:

GO TO «t0°7
c
c CONSTRUSY THE Z DOMAIN DENOFMINATOR
c AND NUMERBT(CR POLYNOMIALS
C

4500 CONTINUS
CALL PCSTZ(CR,CBeTN)
DO 569 I=1,.N
4509 CAA(I)=],.0D0"
00 4519 K=1,N
CALL PCSTZ(CR+CALsKeN)
DO 4519 J=1,N
4519 CAAtN=CAILD +CAL (NI *CA(K)
CAA(NPLIYI={,?
C ssvvre
IFC(IMTHOLNE1)G0 TO 4521
DC 45237 I=1,N
IT=NPL~-T
452C CAA(II+1)=CAa(II)
CAA (LY =(.0
4521 CONTINLE

ADJUST FOR DIRECT TRANSMISSION

DIXC=(0.34043)

IF (NN.NE.N) CONT=DTXC
CAA (NP1)=CONT*CRINP1)

N0 4529 I=1.N

4529 CAA(IV=CAA(I)¢CONT*CB(D)

aaoOoaon

SHIFT NUMERATOR TO COMPLETE PLLSE INVARTANT TRANSFORM
WHEN NUPERATOR HAS LOWEK ORCER THAN DENOMINATOR
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4
l
E CONTINUZ
: ¢
[ ¢ cmceccscecemrmemecesrecrerranc e man e ——ar ———. e —-—————=
* c
[ c
{ c PRINT THE TRANSFORMED CCEFFICIEANTS
c
530C CONTINUE
c
| WRITE(649510)
951C FORMAT(* POLES IN THE Z CCMAIN®)

CALL PRCVZCICRND
WRITE(6+.9%20) FAC

9520 FORMAT(® GAIN FACTOR USEL s%,E14e747/7)
WRITE(Bs9530)

953G FORMAT(* ZEROS IN THE Z LOMAIN®)
CALL PRCVECICA4NN)
WOITE (649543

9540 FCRMAT(* 2-DOMAIN DENCOMINATCR®)
CALL PRCVEGICB.NPL)
WRITE(649550}

9550 FCRMAT(* 7-DOMAIN NUMERATCR®)
CALL PRCVEG(CAALNPY)
D0 5019 I=1.NP2
8(I¥=C8tl)

5919 A(I)I=CAA(T)
GO TOo 113

' 5029 WRITE(E+9562)
9560 FCRMAT (/41X +* NUMERATOR QRUEFR LESS THAN Z2ERD®*,//7)
$999 STOP
END
SUARQUTINE PCSTZ(CHR24KyN)

FCST7 SONSTRUCTS A Z-COMAIN POLYNOMIAL COEFFICIENT ARPAY
FROM AN ARRAY OF ITS ROOTS.

OO0

DIMENSION C(1)4RZ (1)
COMPLEX CoR2
s NP L=N+1
' 001 1=2,NP1L
1 R2(IV=0.0
P2(1)=1.C
0031=1'N
* IF(I-K)6y3,6
6 D06 JJ=1,1
. J=I=JdJdst
R2(J+11ZR>(Je1)=C (1) *R2(J)
CONTINUZ
: RE TURN
END
¥ SUBROUTINE PRCVEC (AyN)

A
w &

PRCVEC PRINTS A COMPLEX VECTOF
c A COMPLEX NUMBER OF THE FORM A+J8 IS FRINTED ( &, B J)

QOO0

¢ DIMENSION A(L)
COMPLEX A .
{ IFIN.EQ.0) GO TO 100 i
i WRITEL6,920) ;
ot WRITE(6+910) (A(I) oIzt 4N) ;
9cC FORMAT (1Xo1lHE 4F 22, 15,1H,oF22.15,34 1) i
100 WRITE(6,920)
92¢ FORMAT (2(/))

oL

-

A S
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APRFY ¢

o OO0

oOooon

16

OOO0O0O0O0O0OO0000000000

OCOOOOOO0O0

RETUPN
END
SUBROUTINS PRVEC(AGN}

THIS SUAROUTINE OUTPUTS & SINGLE DIMENSIONED ARSLY
DTMENSION AfL)

WRITE(E+1) (ACTI) s1=1,N)
FCANAT (1X,10F13,5)

FORMAT (/)

RETURN

END

SUBROUTINE FOLCON(C,R2,K4N?

A POLYINOMIAL CONSTRUGYICA FROGRAY NEEOED FCR Z 103

DIMENSION Cl1),R2 (1)

COMPLEYX C.R2,COMP

REAL DC(2)

EQUIVALZIN"E (COMP,DC)

NP1=N¢1

00101=24,NP1

R2{D=0.C

R2(11=1,(

NO4I=1,4N

COMP=CtI
TFUT.EQeKOPL (DC(1) eEQelCoAND OC(2) JEQLL oc NGO TO o
302JJ=1,1

NESENRESE

R2IJ+1)I=R2 (I DI *CIIV+R2( D)

R2(1V=F2(1V*C (1Y

CONTINUS

RETURN

£ND

SUAROUTINE POLRTI(XCOF4COF MyROOTRLROOTILIER)

COMPUTES THE REAL AND COMFLEX RCOTS OF A FEAL POLYNOMTAL

DESCRIPTION OF PARAMITERS
XCOF ~VECTOR OF M¢1 COCFFICIENTS OF THE PCLYNCWMTAL
ORDERED FROM SMALLEST TO LARGEST POWIR
COF ~WORKING VEGCTCR CF LENGTH M1
M -0ORNER OF POLYNONMTAL
ROOTR-RESULTANT VZCTOR OF LENGTH M CONTAINING RFAL F2OTS
OF THEZ POLYNCMILL
ROOTI-RESULTANT VECTOR CF LENGTA M CONTAIRNING THE
CORRE SPONCING IMAGINARY ROOTS OF YHE FOLYNOMIAL
IZR ~ERROK CODE WHZPE
L ERP=5 NO ERR(CR
IER=1 M LESS THAN ONE
IER=2 M GREATER THEN 36
T€EP=3 UNABLE TO CETERMINE ROCT WITk 530 INTERATIONS
ON 5 STARTING VALUES
IER=4 HIGH QRDER COEFFICIENT IS ZcRC

NIMENSION XCOF(1),COF (1) FOOTR(1)4,ROOTI(1)

LIMITED TO 36TH ORCEP POLYNCMIAL OR LESS.
FLOATING POINT OVERFLOW MAY OCCUR FCR wIGH CRDER
POLYNOM TALS RBUT WILL NOT AFFECT THE ACLURECY OF THE PESULT

NETHOD
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c NEWTON-RAPHSOM ITERATIVE YECHNIQUE. Ths FINAL ITEwRATIONS
c ON EACH ROOT ARE PERFORMED USING THE GRIGIMAL FOGLYNO-TAL
C RATHER THAN THE REOUCED POLYNOMIAL TO AVCIC ACCUMULETED
C ERPORS IN THE REOUCED FOLYNCMIAL.
c

IFIv={

N=M

IER=D

IF(XCOF(N+1)) 10,25,1¢C

10 IFUIN) 15415432

c
A SET ERRWR CODE TO 1
C

15 IEP=1

20 IFCIER)I23Z 42014200
2ac WRITE(6,2.3VIER
203 FCRMAT (LX,*ERROP CALLED FROM FOLPT, IEP = ®,12)
201 RETURN

c SET ER®QOR CODS TO &

25 IER=4
GO T0 23

SET E£RROR COCE YO 2

OO0

3 IER=2
GO TO 29
32 IFU(N=3€) 35935,33
35 NX=N
NXX=N+ L
N2=1
KJ1 = N1
D0 4G L=1.,KJ1
MT=KJil-Le1
4] COF (MT)I=XTOF(L)

SET INITIAL VALUES

o000

@5 X0=,0053C101
¥0=3.31000101

TERD INITIAL VALUEZ CQUNTER

OO0

had IN=g
M 50 X=x(C

INCREMINT INITIAL VALUES AND CCUNTER

-
[z X e Xyl

X0==1y.0*Y)
Y0=-10.0%X

SET x ANC Y TO CUPRENT vALUS

-
(3 X e X e]

X=XC
v=vQ
INTINe1
GO TO S9
\ 55 IFIT=1
0 YPR=X

ol YPR=Y

EVALUATE POLYNOMIAL ANC DERIVATIVES

o000

Y
by 64




59
69

65

70

75

-3

OO0

R

85
90

Oooo

95

105

11¢
115

120
122
125

130

135

ICT=0

ux=3.v

Uy=ded

vV =3,0

YT=0.0

XT=1.L

U=CCF (Ne1)

IF (UY 65,1300 €65

00 70 I=1.N

L =N-I+1

TEMP=COF (L)
XT2=X*XT-Y®*YT
¥YT2=X*VYTevY*XT
U=y+TowO®XT 2
V=V4TEMPRYT2

FI=1
UX=UX+FI*XT*T ENP
UY=UY=-FI®*"T*TEMP
XT=xXT2

YrT=vy7v2
SUMSO=UX*UX+UY*UY
IF(SUMSTY 75,110.,75
OX={v*uY=-UPUX )/ SUMSEN
X=X +0X
OY=-(UsUY+y*UX) /SUMSQ
Y=Y+0Y

IFC(ARS (Y4 ARS(OX)I=1,CE=-10)1C T80 eA0

STEP ITERATICON COUNTER

ICT=ICT+1
IFLICT=502) 674,85,85
IFLIFITILIN.9G.20C
TFCIN-5) 30495495

SET ZRPOR COCSE TO 3

IER=3

60 6 22

DO 1CS L=1eNXX
MTz=kJji~L4+1
TEMP=XCOF (MT)
XCOFMTY=COFIL)
COF (L) =TEWP

ITEMP=N

N=NY

NX=ITEMP

IF(IFIT) 12C0.55.d20
IFCIFITY 115,504,115
X=XPR

Y=YPR

IFIT=0

IF (ABS(Y)-1,"CE=8%ABSI(X))135,125,125
ALPHA=X#X
SUMSQ=X®X 4V *Y

N=N-2

GO TO 14l

X=J .0

NX=NX=~-1

NXX=NXX=1

¥Y=0,.,9

SUMSQ=0.0

ALPHA=YX

N=N=1




143
145
15¢
155

169

165

COF (2) =COF (2) +ALPHA®COF (1)
00 1530 L=2.N
COF(L*LI=COF(L+ 1) +ALPHA*CCF (L) -SUMSQ®*COF(L~1)
ROOTI(N2)=Y

ROOTRIN2) =X

N2=N2¢+4

IF(SUNSQ) 16591654160

Y=-Y

SUMSO=0.C

60 TC 155

IF(NY 23,20445

END
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PROGRAM “GQUANT™
IMPULSE~RPESPCNSE MODELING

BY PENCIL-CF~FUNCTIONS METHOC
DEC 1979 (FOUR RACG)

PROGRAM "GQUANT*™ USES CHARACTERISTICS OF OQUANTI2ATION ZR:(CT
IN PENCIL=-CF=FUNCTIGNS METHOD TO PROCUSCE
IMPROVEL TRANSFZR®R FUNCTION.
MODBELS IMPULSE-RESPONSE OF CHAMKIL/ZNTTHNRK,
CAN BE USED IN SIMULATION MCOT (BIN. 0P [Fn,?
OR ON EXFERIMENTALLY RECCROEC FZSPONSEZS.

4442220044
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NIMENSION FUSCOILUCSTTILUISEII oX (5274804 Gl 84 R) (BMIR,A)
OIMENSIIN GN(ByB) oGEST(398) 4GCUNMCAL8) ¢S (848)145N(3,R)
DIMENSION VILE)4VVIL16) yAMP (R) (SE(P) 4ST(8) SPH(R)
DIMENSION TITLE(72),IBUF(512)

N0UBLT PRTCISION OT,AC+3D4ERRCR

COMMON /030 /ISPNyX¥SB,0FLTA,SIG2+CT40I,BIAS,LIBIAS
COMMCN 7021 /F BAR,y EBARGFISUMFESUM

COMMON ZI0/IRLILT,IPR,IRCUND,IPLY

REMINDS

MAXPL=53C

MAX=8

MAX2=2¥MAY

IR=5

ILT=6

ISKIP=Q

NSTRT=2

CALL VEQUAT (MAXPL,UyFe0,10)

CALL VEQULT IMMAXPL yUULFods11)

CALL VENUIT(MAX2+VeVV,sd,y )

MRITE(ILT,2)

REAG(IRGH) (TITLEC(I) I=1,70)

WRITE(CILT,18) (TITLE(I),I=1,70)
READ(IRAY(TITLE(IN,I=1,70)

REAC(IRS) (TITLE(I) 4T=1,7%)
READJ(IRGLINPT 4 IRADGNGIGs Ny IST*y NCCHMP, IOLT 4NNPT,
+XMSB.s3T4BIAS

NP1=N¢1

NP2z=NPL+l

NP3=N+3

NPNP2=N¢N+2

NPNPLI=N¢N+L

IF(NNPT,EQ, 0) NNPT=NPT

IF(CT.EQ.5.08107=1,20
IFCISIMIEQ DY REAND (TR, 1AL ) (F(K) ¢ K=314NNPT)
IF(ISIM.EQ.CIGO TO 61

IFCISIMGEN, DIRFAD(IR418Y)I IVIIDoI=14NPNP2)
TFCISIME 1. 13 CALL RESPON(F 4 U Ny Vo VVINRPT)
IF(ISIM.EC.1)GO TO 613

D0 6C I=1+NCOMP
READ(IRGSIAMP (T) o SRUTD,y SICID,SPKLID
WRITECILT+11) T+AMP LIV SRIIVZSI(I)SPH(I)

CALL SIGNAL(F yNNPTGAMP 4SR4SI¢SPHeCToNCOMP)
CONTINUEZ

IF(IPLT.GEL2)CALL PLCTSUIBUF,512,9)
REAC(IR &) (TITLE(I)»1=1.7Q)

IF(EOFLIRI JNF,0)G0 TO 998
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WRITE(ILT.3)

WRITECILT.18) (TITLE(IN),T=1,7G)
REACCIRs4)IIFPRGIREVMoISPNSIFIXyNFIX+IBTIAS,IYY ,122,C1
IROUND=0

ROUNDOFF JPTION

CONTINUEZ

IFCIROUNDNE. CICALL QUANTZ(F o XoANIGoIRACI NPT+ 2 XPL)
CONTINUE

IF(IFOUND.NE. VGO T3 99

DO 30 K=1,NPT

X{Ke1)=F(K)+BIAS

CONTINUE

IF (NP1 GT 1ICALL INGRATUX NPT gNP14MAXFL 4=1)

COMPUTE GRAM MATRIX

NPP=NP1L

IF(IBTIAS.NECINPP=NP2

DO 44 [=1.NPP

DO 44 J=1.NPP

AD=C,?

IFC(ISPN.EQ, Do ANDL. JRCUNDLEC.2) GG TO &3
DO 42 K=NSTRT4NFT

AD=AD+X(K,I)® XC &y J)

GN(I,J)=21%0T

GDUM(I+1)=GNL{I I}

CONTINUC
IF(IROUND.EQe OV GITI s J)=6GN LT, D)
CONTINUZ

TF(ISPNeNE«Coe ORJIRCUNC WNEL D)

1CALL GKRDTT(GNe Eq CET o VoNFF4NPFotAY,1)
IF(IROUNDLEQ. CYWRITECILT 41742057

IF (IRCUND.EQ. 1) WOTITE(ILTL172)0ET
IFCIPR.GELLICALL PRIMATIGAgNPF NPE MAY =1}
WRITEC(ILT.1)

IRD=IRIUN
IF(IRCUND.EQ. CY IRCUND=TIPCULND*1
IFCIONLEQ.BANDGTSPNJNEL-10G0 TO 417
IF(IFIX.EQ.=-1?GC TO 203

ESTIMATZ CF ®% G

CALL BUILDNZ(AMeVsNPL14NPT 4MA X, NFIX)
ee~==NP{ RZPLACED BY NPP NEXT 3 CARDS~--
CALL FIX(GOUMAM GESTE9 VeNFPNPPySIG2sMAX, IFIX)
IF(IFIXLEN 1) WRITE(ILT 482)S1G2

CALL GXRDCTIGEST, EsDET oV NPPyNPPywAX 41)
WRITE(ILT,162V0E7

IF(IPP.GELLICALL PRTMATIGEST NP1 NP1y~ AX, ()
DO 154 I="4NP1 :

00 154 J=1,NP1}

GDUMII, N=GEST(I,J)

NFIX=NFIX=-1

IF(NFIX,6Z.1)G0 TO 15¢

IsxipP=1

TROUND=(

CALCULATE ERRCR MATPIX
IFUIPR.LE.2.0R, ISKIF.EQ. 0160 TO 151

N0 32 I=1,NP1
D0 32 J=1,NP1

68

- — S




32

151

223

215
21¢
c205

c207

219

211

a3

EA(TIoJV=G(Ioe M) ~GEST(IVJ}
ENC(I»JI=GUIJ)=GN(Io0J)
WRITEC(ILT.161)

CALL PRTMAT (S oNFLoNP1l MAX ,=1)
WRITE(ILT,163)

CALL PRTMAT(ENINPL4NPL sMAX,=1)
CONTINUE

NETERMINE NUMERATOR

CONTINUZ

IF(ISPN.£C. 0) GO TO 998

CALL VEQUAT (NP1 VINP2)4VVa0,10)
CALL RESPINIX (141) 4Us -5V VV ,NPT)
CALL INGRATUIX (NPT NO1-JRENMMAYPL,2)
CHANGES MADE HERZICN FOR E(Q)=C
L=N-IRENM

IF(IBIASJNE JDIL=N=-IRFM+L

LP1=L+1

LP2=L+2

IF{IBIASSNECICALL VEQUAT INPT oX (1 4LP1)oUsTe11)
CALL VENUST (NPT X (14LP2)4FyCy1)
CALL VEQUITINPT X (14LP2) ¢PIAS(+3)
DO 216 I=1,l

DO 216 J=il.LP1

G(I.J)=T,.

DO 215 K=14NPT
GUIoJ)=GlIa ) X (K, T41) ¥X Ky Je1)
G(IsJI=5(T,J)*DT

CALL PRTMATIGeLeLPL4MAX,,205)

CALL GKROGCT(GoE+DETsVV el ol oMAY, ()
CALL PRTYAT(E.L,LyMAX,2(7)

CALL VEQUATINPL1,VV,AMP,0,C)

ND 219 TI=¢,L

D0 219 J=i,
VVIII=VVLII4E (T JV*G (JGLF1I/DET
FMEAN=Q.O
IFCIPTASONESTIFMEANZVV (L)
VINF2)=3.3

CALL VEMUITUINGVINPIY) 4VV,(el)
HRITE(ILT,L3Z)
WRITECILT 2101 (VIIVsI=1,NP1)
WRITE(ILT210) (VI TI=NP24NFNP2)
IF(IRTAS NE.JIWRITE(ILY,305)F~EAN
CALL RESPONI(X (142) sUsNgVsVVNNPT)
ERRQOR=0.C

FFSUM=],.]
N0 213 K=1¢NNFT
FFSUM=FESUMF (X)*F (K)
X({Ks3V=FI{K)=X(Ks2)

Y {Ko1)=F ({K)
ERROR=ERROQ#X (Ko3)*X (K43}
FFSUM=FFSUM®DT
ERRCR=FERROR®NT

RAT JO=EPROR/FFSUM

WRITE(ILT ¢3064)ERRCR,FFSUM,RATIO
IF(IPRGGE2INRITECILT 110D (FUKD (K=1,NNPTH
WRITE(ILT.1)
IFCIPR.GEL2INRITE(TLT 21100 {XIK,42) ¢K=14NNPT)
WRITE(ILT,,1)
IF(IPP.GE.2IMRITECILT 41100 {X(Ky3) 4K=1,NNPT}

T0=C.0
IF(IPLT.GZ o 20 CALL PLOP(NNPT 424X oMAXPL 4T« 0T o1HY o 1HT 4 IRUF)
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FORMAT STATEMINTS

FCRMAT(SF1G .3)

FORMAT (I 96T2 s TlosbeF10.00

FORMAT (70A1)

FORMAT (2X47041)

FCRMAT (LG (S, F5.())

FCRMAT (LC (S5 A, ISY)

FORMAT(2Y 4 T2¢® AMP=®,F 8,2 4% Sz%,F10,4e®* ¢ J*Fil,.&y
1% PHAST=*,F1(,4)

FCRMAT (1S, 8HG MATRIY)

FORMAT(LC X4 B8RP MATRIX)

FCRPAT (LD L12KGTRUE - GFSTH

FCRMAT (L0 Xy 1« NG TPUE = GNCISY)

FORMAT (10 Xo 13 HGEST MATRIX,* (DET=%,613.6+%1%)
FORMATI2X,5(2%,G12.,6))

FCRMAT(20€1Xe F5,2))

FORMAT (2X 100 2X4F10,5))

FCRMAT (10X, 4a MNOISY X MATPIX)

FCRMAT (15x 48R X MATRIX)

FCRMAT (10X 416 FTRUE GRAM MATRIX.* (JIT=%,G13.£,%)°%)
FORMAT (10X 47HNCT EY GRANM MATRIX,* (DZT=%,G13.6,%0 %)
FORMAT(SF (.0

FORMAT(2X, ®ZST NUM/NENGM VECTOR®)

FORPAT (/9 XyP ERROR=* (13 Eg®FFSUM=,513,64*k{TIC=%,3513.0,4/})
FCRMAT(2X (*ESTIMATED MEAN=%,613.5)

FORMAT (*  ESTIMATEIC NOIGE VEF=%,G17,5)

FORNMAT (7)

FORMAT (1442)

FORMAT (/7777)

ISIM=3 FOR MODILING ACTUAL ®TLPUNST DLTA
1 OF 2 FOR SIMULATICN (1ew(7)) (28SUMS CF EYF ANL 0S5OV
NOIG=8IN 2ITSUINC SN=-BIT), O~ DECIMAL MANTISSA, ROUNICFF IN 237w
IRAC=2 FOx BINARY, 1 FQFR DENTImAL
NPL=INTSGTATCD FUNCTIONS, THE FIPST IS D&TA
IPR=C FOR MINIMAL PRINTINGy OTHEFWISZT 1 OF 2
ISPA=C IF ANLLYSIS OF R.CFF ERFCN SIANAL CONLY.t FOF FCINITTY SIS
<1 IF ANALYSIS OF TRLT (LNFOUNUIDY) SIGANEL CNLY
NCOMP= COMPONENTS (A*FXP(SP T) * SIN(SI T)) Tye:
INT=1 (OR J) FOR FOFWARC INTEGRATION, =1 FOK REVISSE
DT=SAMPLING INT XMSE=WEIGNT CF M53 (R(N=-1))
NPT=DATA PTS.y NNFT=DPOINTS ON PLCT. N=DEGREE CF MCO°L
IFIX==1 F3R NO CORRECTION, 1
NFIX=1 FOR QZ CORRFL,, 2 FOR QZ 92 CCRR:EC
3 FO- BIAS ANC N7 Q7 2NRFFCTION
IFIx=Q IF 62ST=GM=-&%, & IF NCISF VAR TO RE ESTINZTID
=1 IF NC CORRECTICN IS TO 8Y APPLICD (ISFN MLST 3 49

GO TO 111!

CONTINUE

CALL PLOT(0.e(.+99%)
STOF

END

SUBRQUTINT SIGNALU(F NPT, AVMD ,SKySI +SPH,,DT,NCCHFPY
OIMENSION F(L1),AMP(1),SRP(1),ST(1),SPH(1)
COMKON Z107IR+ILT 4IPR(IRCUND
OOUBLE PRICISION AyB,yCoYX

00 12 K=14NPT

FiKi=g,.

DO 20 I=1.NCOMP

A=SRII)*DT

A=SI(1)*07
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C=SPHID)

NO 15 KK=14NPT

K=KK=~1

X=AMP(I)

IF (AJNEG0)X=XPDEXP LA K]}
IF(ENE.0.2)X=X*DSIN(E*K+()
FIKK)=X+F (XK)

CONTINUZ

IF(IPR.LT 260 TO 3C

MRITE(ILY,.9)

WRITECILT 46) (FUK)4K=14NOT)

WRITE(ILT,1)

CONTINUZ

FCRMAT (/)

FCRMAT (22 (1XsF5,2))

FCRMAT(10Xe®* F SIGNAL®*)

RETURN

END

SUBROUTINE QUANTZ(FeXyNDICy IFADINFT,NDIN)
PEIFORMS BIMRY OR DECIMAL GQUANTIZATION
DIMENSION F (1 )y X (NDIM,1)

NOUBLE PR-CISION CTsAC,AC

COMMON /DAG/ISPNeXMSB4DELTA9SIG2+CTN1yBIASLIFTAS
COMMCN /DAL /FRAR,EEAR,FESUM,EESUM

COMMON /I0/IRGILT,IPK, IROUNC

FRAR=J .
EBAR=(,
FESUM=C.
EESUM=0,

BINARY QUINTIZATICN

WORDO=SN BIT#SB84..e9LS3 MAX NEG==2%X+58
IF(TRA0NZ.2)6G0 TO 551
IF(XMSBL.ENLG, CYXMSI=E,
NDIG1=NII -1
DELTA=(2.G*XMSBY/ (2.0**NCIGY)
DEL=DELTA/2.8
SIGR2=DELT:®0=LTA/12.0
WRTTECILY wRA)DELTA,SIG2

00 81 K=1.NPT

XLEV=g "

SN=-1.0

NX=F(x)+BTAS
IF(XXaG6Z4,4C)SN=1,0

XX=SN® XX

DD=2.3%XMSS
X0=2,C*¥YMSB-DELTA

00 #2 I=1.NOIG

nn=g0s2.0

DIF=ABS (XX=X EV)
IF(CIF.LE.DEL IXQ=XLEV
XTEM=XLEV=-DD
IF(XXeGZ o XLEVIXTEM=XLEV+CD
XLEV=XTFM

WRITECILT 210)XXsDCoDIF(XLEV. X0
CONTINUSZ

IF(XX.LT.DEL) XQ=0.C
X({Ke1)=SN*XQ

CONTINUE

60 70 711
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DECIMAL QUANTIZATICN
CONTINUE
IF(IRADJNZL1016G0 TC 7114
AAA=2G.0%*NCIG
DELTA=L1.0/ARA
S1G2=DFLTA®DE(TA/12,0
WRITECILT LRIIDELTA,S1G2
DO GL K=1,NPT
X(Kodd=3Cal

FB=F(K)+EIAS
XTEM=AES(FB)

SN=1.0

IF(FBsLTe s C)SN==1,0
XTEM=XTImM®*AAL
XTEMSXTEM+5 .5

IX=XTEM

XTEM=IX

XTEM=XTEM/AAA
X{Kel)=IN*XTEM

CONTINLE

SSA VALUE:

CONTINUE

N0 211 K=14NPT

FB8=F(K)+BIAS

X(Ky2)=X(Ky1)=FP

FBAR=FBAR+FB

EBAR=EBARX (K42}

EESUM=EZSUMX (K,2)*X (K, Z)
FESUM=FESUM+F B*X(K,42)
TFCISPNLENGC) XKy 1Y=X(K,2)
CONTINUZ

ECSUM=ESSUM®DT
FESUM=2,.C*FESUM®OT
FBAG=FRAR/NPT

ERAR=EBAR/ NPT
WRITECILT 4 82)FBAFEBLR,FESUM,EZSUM
IF(IPRWEL2) GO TO wii
MRITECILT. 8)
WRITEC(TILT 1100 (XY (K1) 4K=1,NPT)
IF(ISPNLENRLCIGO TO L1t
WRITECILT. 1#/)
WRITE(CILTL115)(X(Ke2) 4XK=14NFT)
WEITEC(ILT 1)

CONTINUZ

CONTINUE

FGRMAT STATEMINTS

FORMAT (1GY, *ROUNDED F¢BIAS SIGNIL®*)
FORMAT (10X, ®*ROUUNDOFF ZPRCF %)
FORMAT(2X45(2X4011.4))
FCRMAT(2J(1Xe FS 2 M)
FORMATI1X,20(3XeF5,3))
FORMAT(10Y 4 1 FNCISY X MATRIX)

FCRMAT(1CX 484X MATRIX)

FORPAT (2X JSHFBAR= EL1 1 olyg€H FBARZGE11.b95H FE2=eFitement £ gt 21
FCPMAT (2X O HDELTAZ oF15,.345H SIG=0EL12,.4)
FCRMAT (/)

RETURN

END

SUBROUTINE CORUPT(FoXoNDIGe IPADSNPT NDI™)
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C ADDS NCIS™
OIMENSION F (1) o XANCIMe1)
DOUELE PRZCISION DT4ADWPC
COMMON /DAQ/TISPN4 XMSR,DZLTA+SIG2,0T+QIoBIAS JIRIES
COMMON /071 /F BARLEEAPFZSYMEESUN
COMMON /IN/IRILT4IPR,IRCLND

c

c9
F8aP=3,
€BAR=S,
FESLM=0.
ESSUM=C,

c
NOIG1=NDIG~2
DELTA= (2.2%X%SB)/ (2. C**NCIG1)
SIG2=0ELTA®DSLTA/12,0
WRITE(ILT,489)0ELTA,SI1G2

c

c
1S=265816¢

. 1S2=397665

STGMA=SQR” (S162)
CALL NRML (NPT 4151404 ,SIRMA, IS IS2,X (2424 C)
DO 26 K=1,NFT

25 X(Ke1)=F(KI+BIASH+X(K,?2)

c

DO 211 K=i4NPT
Fa=F(K1+BIAS
FBAR=FBAR+FS
EBAR=EBARMX (K,2)
EESUMSETSUMX (Ke2)®X (Ky Q)
FESUM=FOSUASF BRX(K,2)
IFCISPNGEN U XKy 1)=X K,y 2)
211 CONTINUZ

EESUM=EZSUMSOT
FESUM=2,0*FESUM*DT

‘ FBAR=FBAR/NOT

, EBAR=CRAR/NPT

' WRITE(ILT 4 B82)FBAR,CRARFESUM,ECSUM

' IFCIPRLLES2Y GO TO 411
MRITECILY.B8)

K WPTITECILTo110) (X (Ko1)o K=14NPT)

v IFCISPN,EA.OI GO TO 411
WRITE(ILT,18)

3 WRITE(ILT+115) (X (K 2) eK=34NPT?

WRITECILT.1)
11 CONTINUE
' 999 CONTINUEZ
! c FORMAT STATEMENTS

Y c

>

\ 8 FORMAT (10X, 16 HROUNDED F SIGNALY
.} 18 FCRMAT (10X, 16 WROUNCOFF ERROR E)

210 FCRMAT (2X+5(2Xe GL1 ol ))
11¢C FORMAT (2)t1X,F5,2))
115 FORMAT (1X42CL1XFEL3 Y)Y
\ 482 FORMAT(2X5HF RAR= ¢ E11 e ls €H EBAR= E11.4e5H FE2Z,E110bouH EE=¢E1104)
489 FCRMAT (2X 6 HDELTAZ oF 1L «395H SIG=4EL12.4)
ot 1 FORMAT (/)
RETURN
END
v SUBROUTIN- INGRAT (X NPToNP1,NOIMsINT)

¢ gy

, DIMENSION X(NGIMe1)
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00UBLE PRECISION [T1,SC,8C
COMMON /D-0/ISPNsXMSByDELTAGSIG2.LT+01+BIAS18IAS
COMMON ZI0/ IR ILTIPR,yIPCUNC
GENERATZ INTEGRATEC SIGNLLS FROM CATA IN X(Ke1)
INT=1 OR I FOR FORMWARD INT., =1 FCR REVEFSE
INT=2 FOR UNIT DELAYS (X (K,I+1)=X{(K<1,I))
N=NF1=-1

NP2=NP1ey

TIOPT=INTe2

GG TO(51,11511,913,7GPT
FORWARD INTEGRATICN

CONTINUT

DC 40 J=1.N

JJ=J+t

Y(1oJ4¥=X(1,1)

D0 43 K=2,N°Pr

Ki=K-1

XKy JIJ)=XIK1y JJY ¢X (K4 J)
CONTINUE

GO T0 73

REVERSE INTEGRATION

CONTINUSZ

DO 6C J=1,N

JJ=J+1

XAINPT4JI) =X (NPT 41}
XANPT, JJY =3,C

BC=X(NPTJJ)

DO 60 KK=2,NPT

K=NPT+1-KK

Ki=kKet

BD=8D+QI*X (K¢ J)

¥(KeJJ)=8D

CONTINUZ

IF(IBIAS. (N.()GC YO 62
IPWR=IBIA -1

DO 61 KK="4NPT

TIne=DT*KK

K=NPT+1=-Kx
X{KeNP2)=TIME*»* IPKK

CONTINUS

GO 10 793

GENERATE UNIT DELAYS
CONTINUE

00 93 I=2,NP1

I1=]~1

X(1eI)=0.2

DO 23 K=24NPT

Ki=K=-1

XKy I)=XIKL,I1)

GO T0 61

CONTINUE

SC=1.{

D0 80 I=2.NP1

SC=SC*0T

DO AC K=1,NPT
XKy IV =SC¥X X, 1)

CONTINUE

IF(IPR.LT.4)GO TO 99
IFCIROUNDEC, 1Y WRITE(ILY 417 8)
IFCIROUNDEQaOIWRITE(ILT 217D
00 185 I=14,NP2
HRITELILT 4140 IXIKL,I) g K=1,NPT?
WRITE(ILT.1)

CONTINUE




D S N ¢

C
C1190
110
178
179
1

QOOOO0O0

51

11

11

FORMAT (L tL1X,F12,€))
FORMAT (23 (1X,F5.2))
FORMAT (10 414 HNOISY X MATRIX)
FORMAT (10X BHX MATRIX)
FCRVAT (/)
RETURN
END
SUBROUTINE FIX(GeFoColsXoNoNCoSIGoNDINM, IFIX)

ESTIMATE NOISE INTENSITY SIG (ASSUME WHITE MCISE)
CORRECT NNISY MATRIX= C

{PY DENOTES NQISC MATRIY FOR UNIT NOILE

NC IS THE NONZ=ZRO SUBMATRIX OF F =00V OF NOISE

DIMENSION GINDIMe1)4PUINDIMe1) ¢CNDIMe1) 4O (NOIMe 1) 4 X (1)
IFCIFIX.EG.CIGO TC 51

JCT=0

SIG=0.0

SUMCET=3.9

CALL GX2NCT(G4DeGDETo X9 QoNyNDINMGT)
JCT=JTTey

IFCUCT .EQ.1IDETG=GOFT

D0 5 J=1,NC

N0 7 II=%«N

DO 7 JJ=1.N

CCITvJdIN=GLIT yuJ)
TF(JJEQe JICUTIT v JII=P(II,4JJ)
CONTINUE

CALL GXRDCT(C+DsDFToeXeNygNyNOIM,2)
SUMCET=SU40ET +DET

CONTINLZ

SI=GDZT/SUNMCET

CONTINUZ

N0 9 I=1.N

00 9 J=i,n

ClIN=6(Te N =SI*F(T,J)
IFCIFIX.FI.TVGO TO 13

CALL GKRIITUCsDWORET o X 42 oNeND3IMHC)
TFACCEToLYe0o {)SI=SIV/240
IF(COET.LTLJ.GYCO TO 51
IF(JCT.GF.5)C0 TG 11
IF(COET/DETGa T G« 1) CALL MEQUATININ9GoCoaNCIF,1)
SIG=SIG+ST

IF(CDET/DETC.GT«041)GC TC 3

PETURN

END

SUBROUTINE BUILOR(A,XsNy#+AX)
CONVERSION MATRIXS RPEVERSE INTEGRATIGM == I.R. MOOELING
DIMENSION AMMAX,1)4,X(1),Y(22)
BOUBLE PRFCISION CT,Y

COMMON /DA0 /I SPNeXMSB4OELTALSIG24CT4QI+AIASL1BIAS
CONMON /I0/IR4ILT+IPR.IRCUND
NMi=N~1

00 11 I=1,N

Y{II=C,?

D0 11 J=1.N

All.J)=].C

A(NSNI=1,C

DO 20 JJ)=° «NM1
JEN=-JJ
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DO 15 XK=1,2

K=K K1

DO 15 I=J.NM1

ACT¢Ks JIZA(To Ko J) 4ALT+24041) % (1.0-K=K}
CONTINUE

Q0=1.C

DO 22 J=2,4N

Q0=0G*0Q1I

00 22 I=sJ«N

A(I JV=NQ*A(I D)

00 25 I=1.N
IrlXPP.GE.J)HRITElILT.EJ(AlI;JJ).JJ=1oN)
00 25 J=1.N

Y(I¥=Y (1) +A(I,J)*X (D)

DO 28 I=1.N

X(Iy=vy (I /Y (1)
IFCIPRGE,IIWRITE (E£47) (X (I) 4I=1,4N)
FCRMATI(2X,10612 .5)

FORMAT(* ESTIMATED PARAMETER VECTOR®+/+:1C0613.6)
RETURN

END

SU3ROUTINC GKROCT (XY 4DEToXLAPNAGANGNSMAY LI TET)
DIMENSION XLAMDA(YL)

DIMENSION X (MAX 1) Y (MAX 1)

DOUBLE PRECISION AsBeCeD,E

INTEGER NLHA(2,20)

DOUBLE FR-CISIIN CT+SCeALCRC

COMMON /DAQ/ISPONe XPSR(DELTASIG2,CTe NI BIAS4IAYAS
COMMON 7I10/IR4ILTIPR,ICUND

IGKR=1

TF(N.NE.13GO TO 3

Y(iL.1)=1.

DET=X(1,1)

GO 710 61

COWTINUZ

00 6 I=1eN

DG & J=1sN

Y(J1V=X(J )

A=1.0C

D0 43 I=1.N

o0

- O

8=
L=
=
FIND LAQGEST ENTRY A(LoM) IN THELOWEP UL AGCNAL SUBHaTAIX

N0 18 J=1.N

D0 18 X=I4N
IF(ABS(Y(X,J) ) .LE.DARS(3))1GO TO 18
B=ABSIY (K, J))

L=x

M=

CONTINUE

INTERCHANGE ROWS

IF(L.EQ.IVGO TO 2«
00 23 J=14N

C=Y (Lo )
Y(LsJV=Y(I D)

YT ,J)=0
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NOO

28
29

cooLgE

51
52

57
58

61

200

INTERCHANGE COL UMNS

IF(M.EQ.IVGO TO 29
DO 28 J=1.N
C=Y(Jo»)
YU(IeMI=Y (S ]
YtJ,1=C
NUM (1, T)=L
NUM(2,I)=

8=y (I, D

Y(I.1)=A

DO 42 J=1eN
IF(J.SQ. IGO0 TO &2
C==Y (I,
Y(I4J)=j.2

DO 41 K=1,N
D=Y (K, I)*C

E=Y (K, J)*B+0
IFC(CASSCE) oLT o1,00~12"CARSIDIIE=T,3
YKo J)=C/A
CONTINUSZ

A=3

RESTORE COLUMNS

00 58 I=2«N
J=Nei-1

K=NUM{2,J)
IF(K.EQ.JIGC TO E?2
DO 51 L=1.N

C=Y (K, L)}
Y(KoeL)I=Y(Jy L)
Y(JsL) =%
K=NUM(1,J)

RESTORZ ROWS

IF(X.,cQ.4)560 TO 54

D0 57 L=14N

C=Y (L, K)

Y{LsK)I=V (Lo N

YiLsJ)=C

CONTINUE

DET=A

CONTINUT

IF(ICPT.NEL12GO TO 1510C
IF(Y(141).,LT.0.,006GC TO 1C5¢C

XXEr

SC=1.C

DO 200 I=2eN

SC=SC*DT

IF CIGKR.EQ. O) XLAMBACII=Y (1410 /7Y(1,2)
IF(IGKR.EQ.,0) GO TO 2G4y

A=Y (I,1)

IF(Y(I,1).LT,0.0}A=3,C
IFUIGKR,EN, 2) A=ABSHIY (T, I))
XLAMDA(TI)=0SNRY (A/Y(1,1))

TFEY(T01) el Tele GV XLAMDA(I)==XLANDAC])
XLAMOA(I)I=SC* XLAMDA(T)

CONTINUE

XLAMDA(1)=1,000
IF(IPR.GELLIWRITE(64106) (XLAMDACI) o I=354N)
NPP=N

IF CIBIAS.NE,O0INPPEN=-1
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13¢€
10C¢C

=~

93

101

24

166

231

21 ¢

168

174
160
161
220

OO0

CALL BUTILOR(Y yXLAMCAWNPPyFAY)
FORMAT(SX®*SYNTHETIC FARMMETER VECTOR®4/,10G12.5)
CONTINUZ

RETURN

END

FUNCTION TOMA (Ny™)

CALCULATE ™ COMAINATION M CUT OF M
IF(N,LEL.CIGO TO 989

L=t

LO=1

IF(M.EN.CIGO TO &

MNLzN=Mey

DO 5 I=MNi,N

L=L*]

0O 7 I=i.¢

L0=L0*1

coMe=L/LD

RETURN

END

SUBROUTINEZ BUILDZ(Z4RyNPLyNET ¢NCINMgNFIX)
DIMENSION ZINDIMe1),RI1)

ODO0UBLE PRICISION CT

COMMON /D0°'0/ISPNeXMSPRGDZLTA4SIG2+CTQI¢HIAS J151AS
COMMON /IO/IRSILT,IPR,IRCUNT
TINE=DTeNOT

TICPT=NFIX¢1

GO TO(201+131+10142040V,ICFT

SC=0T

00 2« I=1.NP1

Z{I+411=SC*NPT
IF(T.GE.2)YZ(1+2)=DV*SCHCOVMBINPT=141,])
SC=SC*DT

DO 166 J=3I,4NP1

D0 166 I=JsNPL

AB=TIMES* (140-2)

AC=1407(14¢J0=3) « 1,.0/7(1¢J-2)
Z(L.JV=AB*AC* DT
ZU343)=7(3,2Y*DT* (NPT #1 ,.5)/72.C
HMRITEC(ILT 162)

6D TO 331

CONTINUE

DO 210 J=1,NP1

00 212 I=J.NP1Q
TECIEQe1VZ (141 )=T1INg

Z(I o J)=(TTME®*(TI+JU=1))/ (T4 U=~1)
WRITE(ILT.161)

CONTINUZ

DO 174 I=14NP1

DO 168 J=I,NP1

ZIoMN=2¢4, )

IF(IPP L GE3IMRITECILTL226) (2€10d) 9 =1 oNE1D
CONTINUE

FORMAT(10Xy® QUANT, NOISE ®)
FCRMAT (1CX4*BIAS EFFECT*)
FCRMAT(?2X45(2XyG1 246))

RETURN

END

SUBROUTINE PRTMAY (A My N, NDIN,LOCY

PRINTS A MATRIX, ANC AN INTEGER (PERHIPS & LLCATIGN)

DIMENSION AINDIM,1)
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IF(LCC.GE.LIMRITE (6+5)L0C

DO 31 I=1.M4
31 HRITE(6+18) (AT 4J)pd=1,4il)
5 FORMAT (* LOGATION/ INTEGER=*,15)
18 FORMAT(2X410613.6)

RETLURN

END

SUBROUTINE RESPON(XyVy Ny GAMMA ¢ XLAMDA,MP1)
c S PDD DG CD DS S DEGS DG S S E ST E W R TS S WA P W S e e e
DIMENSION X (104 V(1) ¢GAMMA (10, XL AMCALL)
DOUBLE PRICISION XSAV,AN,80
NM1zN-1
NP1zN+1
NPNPL=N&N+1
NPNF2=N+N+2
0C 19 I=1,NPNP1
19 XLAMDACI) =8 .
XSav=0.3
D0 20 K=1,MP1
IF(N.EQ.11 G0 TO 25
DO 21 I=1,NMi
J=NFL-T
21 XL AMDA (JI=KLAMOA CJ=2)
25 CONTINUZ
DO 22 I=1,.N
J=NENP2-1
22 XLAMCA CJY=XLA MDA CY=1) -
XUAMDA (1)=XSAV ‘

XLAMDA INP1) =V (K)
XSAvV=3.0
DO 23 I=1,NPNPL
23 XSAV=XSAV=-GA“MA(TI®+1)*XLAMCAC(])
IF(DABSIXSAV) GE.1.0E10) XSAV=C,)
20 X (K)=XSAV
RETURN
ENO
SUSROUTINZ VEQUATUINPT .Y, XeNPUL, IOFT)
IOPT=0 ST Y TO ZEPO ”
1 OR 2 SET v=X (PRINT IF 2
3 ST v=Y+ CCNST X
9 SET Y TO ZERD
10 S T ¥Y=IMPULSFE
11 SET v=STeP
DIMENSION X(1),Y(1)
IFCICPT.E2. () IOFT=¢
N0 33 K=1,NPT
IF(IOPT.CQe1a0RICPTLEQe2IYIKI=XIK)
IFCIOPTEQ.3 YIRKI=ZV(KIEX (LY
IF(IOPT.G ¢ Y(K)I=0, ¢
IF(IOPT.EQ.11)Y(K)=1,0
33 CONTINUE
IF(IOPTLEQ.2) WRITEL6,E) (YIK) K=14NOT)
6 FORMAT (2X .10G12.5)
IFCIOPT.EQ.10)Y(1)=1,?
RETURN
END
SUBROUTINE MEQUAT (M NyByA,NDI¥,IOFT)
I0PT=0 SET 8 TO 7ERO
1 8 EQUAL TO A
18 8 TC IDENTITY
DIMENSION A(NDIMe1)oBINCIF,1)
00 33 I=i.M

QOO0 OO

OO0
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| Ny

N

33

o000

o oo

19

D0 33 J=1i,N

IF(IOPT.NZ 1) BT JI=CLC
IF(IOPT.ENe 1l «AND. T EQ.JIBITo V=1,
IF(IOPT.EQ.1) BTy JUI=A(T4 )

CONTINUE

RETURN

END

SUBROUTINI PLOPUINPTyNF oY yNDIMaTIaCToLEBEL +INPCP 4IRUF)

P L L T T 2 R N T N N

NPT=NUM3 OF TIME FTS (WARNINGS NCI4 SHOULD ®2,GNPT¢2)

NF=NUMBZR OF FUNS

YKy ) DA A ARRAY CF DIMENSICN NOIieNF

TO= INITIAL TIME, QOT=TIMI INCPEMINT

LABEL, INDEP = TITLES FOR Y AND ¥ AXES ‘
DIMENSION YUINCIMyNFIoYY(Z)4LABREL(LD},INTEP (L)
DIMENSION X(512),18UF(512)

COMMCN ZIC/ZIRILT IPRP,IRCULND, IPLT
M=NFeNQIM

Miz=veyl

M2z=Me?

NPT 1=NPT+1

NPT2=NPT+2

Xt11=70

DO 9 X=2Z2,NPT

X(K)=X(K=-1) 407

DO & I=14NF

NC 8 K=NPT1,NDIV

YIK I =Y (NPT, I}

INITIALTIZS (LT Q. INK, L12IN.FAPEFR) MAXJLENGTHRZETIN
CALL PLOTMX(E0.9)

SEY ORIGIN

CALL PLOT {C X Tt} 5'3'

CALL FACT R(5.0/6.5)

B8EGIN FLOTTING

CALL SCALE(Xe 54 E4NPT,L1)

CALL SCALZ(Y(141)410434M01)

CALL AXIS(CesCasldHTIME (SEC),
Be1BeEe5¢309 XINPTLI X NPT 2))

CALL AXIS!0aes GoolEHRESPONSES ¥ WY
#16e1C4995.9 YIPLI, Y (M2Y)
MRITE(E+H6IXNINFTL) ¢ XINPT2)
WPITE(Be7)Y (ML) ,Y (M2)

FORMAT (1X+®*TG+0IV (E45 DIVI*o 4 (1X,F7.3))
FORMAT(IX %YL DIV (17 DIVI*,LI1X,FT7,.3))
N0 10 I=1.NF

YINFTL,I)=Y (" 1)

YANPT24T)=Y(N2)

IFCLaEC.10R, IPLT (ERe IICALL LINT(X oY U1gI) yNFT o1 4T-1,1)

IF(I.Z0e2.AND IFLTLEQ,2) CALL GASHLNIX4Y(1192),NPTo 1)
CONTINUE

CALL PLOT(1C. sl es~D)

RETURN

END

80




_‘“-.w' —

APPENDIX

LISTING OF

PROGRAM

USPEC

81

C




c
c
c
c
c
c
c
C
c
c
c
c
c
c
c
c
C
c
c
c
c
c
c
c

29

3

bl

(XX 2T RS RIRSS LSS SIS R 24

USPEC

Y YT Y YR IRIN ISP Y Yy Y
“uysePec™ FOm. RADF

EVALBATES ThHe MAGNITUNT SPFCT AU

OF THZ FOLLOWING PULSE INFUTS (SZE SelTINt «
OF THC RZ20RTH$

1+ TR*4=(T) ONT CYCLE TRI WaVE, FCLLOWED 3y ZIRC LEVEL

2. TR+(T) $VI HFALT JYTLE TPI WVAC, FOLLCAZO 3Y 27RO LivL

3. CEXQU(T) C5CILLATCORY FULSE (NG DECLYI. FCLLUWED BY Ze-CT LIVIL
we CEYLUT)Y Sav0 A5 3y WITH E¥2, TICAYING Zhv, = SNT TIMT T5nST

5. 0EX14T) SA¥E A4S 34 WITH ExP, DECAYINRG EiVe = Twd TImMT CONST

5. OTRI(T) OSCILLATORY FULSE WITH TRI ENV. FOLLOWID 3Y ZZRC LIVl

FO% PULSZS 3 TN 6 THE OSCILLATICH IS A COSIN: 44V

DIMENSION N(I1J) oF (200 4FRI2CV e X(22,4,13)
DATA NCL1)/2C/ oNRI/Z20C/ G N(ZV/7 2207 o NEQV 71T S0/ eNUEY V725507
DATA FUIV/Z7aC1/7eF(2)/ a4/ aF 3V /o570 F (a1 /a3001/4FUSY /449500 5/
DATA FUB)/7093S/7 4 UTV /750 id/oFUEV/L oL/ o G)Y /2 WS/ FUL1IV/ 20/
DATA FLL1V/Z 3, 7F 12V /710 o7 0F 023V 18 0/
PI=w d*ATINIL )
P12=2.0%PT
NN=3
NF=13
ISs1=4
I1S2=6
NE1=0
DO 30 J=1.%F
IF(CEU) ol ot LINFL=NF L4
CoONTINUE
ITEST=C
IFLITES AN L1060 70O 29
N(1)=10°
F(1)=0.1
I%1=1
IS2=1S1
NN=3
NFF=1
IPR=3
CONTINUS
IFCITESTWNE1VIFPP=0
0O 100 ISTG=IS1.1S2
NFF =NF
I“ISIG.LF. 2) NFF=NF=NF1
DO 95 I=14.NN
D0 94 J=1,NFF
FRIJI=F(NI=1,1
IFCISIG.EDebeANN FUII LT L0 LIFR(YDI==,Q
IFCISIGaGe340RGITESTHEQ1)GC TC 31
FRIJI=F(JeNFLY=1, 0
CONTINUZ
GO TO (41+42951451+514614710,1516
CONTINUS
8F=(0.125N=2) *N (I}
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51

57

61

67

IF(IPP RS, IIWFITZ (B,EVBF
BF=BF*FR(J)
TFCIPR4GEIIWRITE (6+46)RF
THETA=PI®RF

IFUISIG.EG.2Y THETA=2, 0% THETA
IF(IPR .GE, 2IWRITE (647 ITHETA
XX=1e7
TF(THITALHEJCIXX=STR(THITA)/THETA
IF(IPR.GEL2IWRITT (6, RIXX

XY= XX®XYYX

IFCIPK GELZIMRITE (6490 XYY
IFC(ISIG.EN.1IP=STN(2,*THETA)
IFUISIG.5 7.1 XX=¥X*835(])

GN T0 93

CONTINUE

ERN ]

B=0.CI5*NI)

IFCISIG.ERt) =200/ L1)
IFCISIG.Z0,3)2=620.5/0ND)

EAR=LYO (-L£%0)

IF CIPR.GEL2INPIT €413V nsEyZAE
Xk=0el

XI=%.0
OC 57 xfF=z=i,2

FF=FR(JV42,(* (KF-1)

WzPJ2*FF
C=CCS(W*s)

S=SINIW®*B)

IFCIPN (S, 2IPRITE(E,2a) ey S
YR=1.(-543%C

YI=-ELR*S

IP=A%YewrY]

71=A*YI-WP*YR

I=ASA+USW

XP=Ye7Z2/¢

XI=x1+¢21/D

CONTINLE

XX=SAoTIXO8XR 4V ToY )

TFUIPP GG 2IMRITI e iB)XF XT, XX
IF(S.IQNFLIY I =XX

60 TC 23

CONTINUT

R=0.025%N(])
IFCIPR,GE2)WRITE(EL?3) B

X9=l,.3

X1=342

DO €7 KkF=1,

FFz=FR(JV+2,(" (KF=1)

W=P[2¢FF

THETA=P ®*cF#A

D=1.(

TF(THETANE CoCIO=SIN(THETAIZTHETA
C=C0S(THZTA)

S=SIN(THETA)

IF (TP RE2IWNRITE (e g Za )W THET B,00CyS
YR=z1.(=-D*C

vI=C*S

XR=XkeYI/A
XI=XI=-YR/W
CONTINUE
XX=SOPT(XPeXR+XI* X I}
IFUIPR (GE2IWRTITE (€415 XRyXTI0 VY
IF(JecQaNFLIXL=XN
G0 TO 93
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74 CONTINUT
93 CONTINUI

XS IV=XX
9% CONTINUZ

DO 9¢ J=14NFF
XX=X(Je 1)
TF(ISIG.G e3¢ ANDANFF G NFLIXX=XJoIV /X"
X{de1V=-220
TFOXXeGTa1,s07 ~10IX I T)=2L e ®EL0GL0 (XYY
96 CONTINUT
95 CONTINUT
WMRITE (B, 11V ISIG(N(I) ¢ I=g4NN)

c WRITE(H,L)
00 97 I=1.NFF
FRA=FR(I)
IF(ISIG.GT «NFRO=FC(II*1.C
97 HRITE(E4sAIFRO« (XTI gJ) sJd=14NY)

WRITE(ELL)
ic CONTINUE

1
c
c
1 FCRMAT (/)

[ FORMATI2X,F12,3,9F12.1)

7 FORMAT {2X 4 #THETA=3,F13,¢)

] FORMAT(2X . *Y=SINCG 1/ ( 1=%,F17,5)
9 FORMAT (2X+*Y, Y2 %, F13,¢)

1

1 FORMAT (LG xo®™ LG, IN NP FOGE PIFFERENT FRIG NFT®,*  TSICG=%,
110/l e X F/FT 72,10 (T gTteqlY))
12 FORPMAT (14X, {wxy T X))
13 FORMAT (2X 4 ®A=® 4 FLT o549 % E=%*,F10.5+4% (ThBS=%,F1(.9%)
14 FORMAT(2X *W=®,F17,564F% CCS=¥4F10.5¢% SIN=®F1.,5)
i5 FORMATE2X+* XY REAL=®4Fi{.54" YY IMAG=%4 3F1245)
23 FCRMAT(2X, ¥B=*4F1(,.%)
2+ FORMAT (2X P W= P F17,5,% TWETLZ¥,F10,5,% SIMCDI/ZL 2, FL,.5,
4/92%4*COS=%4F1).54* SIN=*,F1(,.5)
STOP
END
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,: MISSION
of
Rome Avr Development Center

RADC plans and executes nesearch, development, test and
] selected acquisition programs in support o Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas of technical competence
48 provided to ESD Program Ofgices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
4ionospheric propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.
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