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EVALUATION

The research described here deals with the issues of (1) the effect on black box

identification accuracy of quantized (noisy) input/output data, and (2) the modeling

of wideband systems by frequency partitioning and the use of multirate sampling

within the sub bands. The development presented here shows that the pencil-of-

function method together with selected statistical corrections on the contaminated

data and/or the use of multirate sampling leads to enhanced transfer function

identification. The enhancement is quantitatively described in terms of normalized

mean square errors between the "true" transfer function, the identified transfer

function without statistical corrections and the identified transfer function with

the statistical corrections.

Project Engineer
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ADVANCED TECHNIQUES FOR BLACK-BOX MODELING

1. INTRODUCTION

The pencil-of-functions method is a black-box modeling method [1-[2].

Given an input, output response pair of a system under test, the algorithm

leads to a comprehensive description of the system in the form of a transfer

function. Although the method was originally developed for use upon linear

networks, its applicability has been extended by Weiner and Ewen [3]-[4] to

nonlinear Volterra models. The method has been implemented in a FORTRAN

program and is available from RADC together with necessary user instructions[5].

The research described here deals with the important issues of signal quanti-

z ation during analog-to-digital conversion, and the black-box modeling of

wideband systems.

1. Quantization

Practical analog-to-digital (A/D) converters employ small word lengths,

typically 8 to 16 bits, and,as a rule,one can trade word length for higher

conversion speed, cost remaining fixed. Unfortunately, small word lengths

lead to degradation in the accuracy of the identified transfer function [6].

It is shown here that the statistical properties of the quantization error

can be exploited to improve the accuracy und reliability of the identified

parameters. The study thus demonstrates that higher speed implementaticns

and/or additional cost benefits may be achieved for the pencil-of-functions

method than have heretofore been realized.

2. Wideband Identification

Communication systems utilize many wideband circuits, for example

amplifiers for spread-spectrum signals. Black-box modeling, or identification,

of these circuits poses both a theoretical and a practical challenge. A nul-

tirate sampling approach to identification of wideband transmittances is

discussed. It permits determination of the transfer function of a four-to-five

decade bandwidth system from simple transient tests. Clever selection of

sampling rates and test inputs reduces the wideband problem into three, simpler

smallband problems. The smallband transfer functions are identified via the

pencii-o!-functions method and then adjoined, systematically, to construct the

--



wideband transfer function estimate.

The report is structured as follows. Section 2 describes the pencil-of-

functions method in brief. Theoretical details are omitted, for they can be

found elsewhere [1], [2]. The description is included here for convenience

of the reader, and also to emphasize the discrete-time version of the method.

A computer program for conversion from s to z domain transfer functions is

given in Appendix A. Section 3 presents the study on improvement of quanti-

zation-caused degradation, through a statistical approach. The key to this

turns out to be the determinant of the Gram matrix of the integrated signals.

A computer program, "GQUANT", developed for the particular case of impulse

response modeling, is given in Appendix B. Section 4 discusses the results

of the study on wideband systems. Included are equations and tables for

ready selection by the test engineer of inputs and sampling rates for the LF,

MF and HF band transient tests. These pulse inputs have been selected after

careful study and are considered both effective and laboratory realizable.

A computer program, "USPEC", which generates the amplitude spectra of the

recommended pulses is given in Appendix C.

-2-
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2. PENCIL-OF-FUNCTIONS METHOD

Recorded input, output responses of a network can be integrated to yield

a family of signals, called measurement signals. Application of the pencil-

of-functions theorem [1] to this family yields, in a closed form, the identi-

fied parameters of the network function. The procedure for this black-box

modeling method is described below. Although proofs are omitted, the usefulness

of the technique will be demonstrated with examples. Discrete-time signals

are chosen for the presentation here, because of inherent computational advan-

tages, although such signals must often be obtained by sampling a continuous-

time system.

2.1 SIMULTANEOUS NUMERATOR AND DENOMINATOR DETERMINATION

Identification Problem

Given the input-output observations

{u(k)J, fy(k)}, k=0,1,..,K (1)

arising from a physical system (see Fig. 1) believed to be linear, and of finite

order, it is desired to find a system model

blz- + ... + bnz -

H(z) = - (2)-1 -n
1l+ az I +_ ..... + a 1 n

n d.z

', = (3)
* -1

i=O 1- c.z

01

which best fits the observations, in some sense (see Fig. 2). A solution can

be obtained by use of the pencil-of-functions theorem as discussed below.

For convenience denote sequences {u(k)} and {y(k)} simply as u and y,

respectively. Also, denote the inner-product of two sequences as

def K

< x,y > E x(k) y(k) (4)
k=O

Measurement Sequences

Frcm the given sequences y and u we form the following set of sequences,

.illvd measurement sequences:

A3
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u(t) Network under y(t)
01 Test

H . y(k )=y(k)

A/D
onverte

S. I.= A

u(kA)=u(k)

Fig. 1. Response-pair from system under test

y (k)
Black-box I
Modeling ........-- Model
AlgorithmMoe

u (k) AlgoResponse Fit error

______ ______ _____y(k) yk

Model H(z)

Fig. 2. Identification problem: Find H(z) so that

S(k) is close to y(k)

r i -4-
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Y1 (k) = y(k)

Y2 (k) = yl(0)+yl(l)+...+yl (k)

Yn(k) = y (0)+Y (l)+...+y (k) (5)

u (k) = u(k-l)

U2 (k) = UI (0)+u 1 (1) .... +U 1 (k)

u n+(k) = u (0)+u (1)+.... +u (k) (6)nln n n

where n is the order of the model desired. That is, n is the degree of the

network function H.

Note that these sequences represent repeated discrete integrations of

the observed signals y(k) and u(k), respectively, i.e.,

k

yj+l(k) = E Y.(£) y~i .M.., n (7)

k
U+ (k) = E u. () j=l, .... n (8)
J+l _ j

Equivalently, y.(k) is obtained by passing yj(k) through the filter 1(z)

z/(z-l) as shown in Fig. 3. Likewise, u (k) is obtained by passing u.(k)

through the discrete integrator 1(z).

'4 Gram Matrix

Next form the following inner-product matrix

, 5
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Generator F(k)

Iner

z* Digital integrator l(z)= z -i

Fig. 3. Generation of integrated signals and the Gram matrix

* (u(k) included in the inner-product generator if
model is required to have direct transmission )

-6-



......... k...0,1,...,.K.(10)

II

<<YlU >

<uYl> <u2,YN > <u2,u2> . . <u2p uN1>

<u Ny Y > 
.• . <u NYN > <U N, U2 >  

.• . <UN, UN>

wher e have used the notation N = n+l for convenience. This (N+n) x (N+n)
dimensional matrix is the Gram matrix [10] of the (N+n) dimensional vector

sequence

{f(k)}, k 0,1..., K (10)

where

yl (k)]

fi (k) =YN (k) (ii)

,' u u(k)

"J To state this observation formally, we have

KT

F = E f(k)f (k) (12)
k=O

-IT-entry ul(k) is omitted i.n f (k), and therefore in the formation of the

gram matrix F, whenever direct transmission in the model is absent (that is
when the coefficient b in the function H(z) is constrained to be zero).

07 7



Diagonal Cofactors

Denote the diagonal cofactors of F as Di

Di = i,i cofactor of F (13)

Recall that the i,i cofactor of a square matrix is the determinant of the

matrix after deleting the Ith row and the ith column.

Parameters of the Network Function

The parameters of the network function are given by the square-roots

of D. up to a multiplicative constant. That is1

N i- n - li-i
[E /Di (-z) I Y(z)=[ E /DN+ i z(l - z- ]U(z) (14)
i=l i=l

which can be normalized, by dividing by D = /D + ...+/D so that the leading

coefficient becomes unity. Clearly the computed transfer function becomes

-1 n 1 i-i
z E /DN+i (l-z ) ] /D

i=l Ni
H(z) = (15)

N -i D

i=l 1

REMARKS

* Note that the first measurement signal is the network output itself, yl = y.

Next follow its successive integrations. Each of these signals can be

expressed directly in terms of y(k). Indeed, if we let I(z) = z/(z-l), Y j+l(z)

= lJ(z) Y(z) so that yj~ (k) = ij(k) a y(k) where i.(k) is the inverse

transform of I(z) and ( denotes discrete-time convolution.

* The dimcnsionality of the measurement vector f(k) is 2n+1 = N+n when the

direct transmission term b is constrained to be zero. If the network does
0

have direct transmission, u1(k) = u(k) should be included in the vector f

so that its dimensionality, as well as that of the corresponding Gram matrix

F, becomes 2n+2 = 2N. The right hand side of equation (14) modifies slightly

as follows
,4

N 1 i-i N i-I
Y/Di (I-z) ] Y(z) [v/DN+ i (1-z) ] U(z) (16)

The counterpart of equation (15) follows from (16) and is therefore not given

here.

8
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To illustrate the steps of the method, a simple example is given

next. (The reader, unfamiliar with the pencil-of-functions method, may wish

to work the details with pencil and paper; others may skip this example.)

Example 1

Consider the setup of Fig. 4 where u (k) denotes the input signal and

yl(k) the output. The network is known to have direct transmission and of

first order (i.e., the s-domain transfer function is of the type (d1 s + d0

(s + Co)). The measurements are made every 1 ms for 5 samples, k = 0, ,... ,4.

Unit pulse input

Suppose the following signals are generated as a result of a unit pulse

input (only y 1 and u1 may have been recorded in real time):

Y1 (k) 1.0 1.2 0.96 0.768 0.6144

Y2(k) 1.0 2.2 3.16 3.928 4.5424

u (k) 1 0 0 0 0

u 2(k) 1 1 1 1 1

The Gram matrix of the signals y1, Y2, u1 and u2 is

4.3289 12.4811 1.0 4.5424

12.4811 51.8881 1.0 14.8304

F =I 1.0 1.0 1.0 5.0

4.5424 14.8304 1.0 5.0

which yields the following square-roots of the diagonal cofactors.

/D I = 3.5032 /D = 0.87581 /D = 1.7516 VD = -6.1307
2 3 4

Note that the signs of these square-roots are chosen in direct correspondence

with the signs of the cofactors of the first row of F [1]. Now, substitution

into (16) and division by (D1 + D2) leads to the equation
9, -1i-

(1 - 0.8 z) Y(z) = (1 + 0.4 z 1) U(z)

Clearly, the true parameters have been recovered.

9



1(k) 

1_(k)_ 
(k

Network function
(unknown) uI(k) uj2 (k)

I Measurement system

(real-time or off-line)

Unknown network function i -- + o.4z1

I - O.8z 1

I Fig. 4. A first order test system

10



Results of computer simulation on a fourth order network function are

presented next.

Example 2.

The network function considered is

H(s) - [s + 0.31(10 6)s + 0.003(10)
1 2

[s4 + 0.804(10 6)s3 + 1.4481(10 12)s 2 + 0.009686(10 18)s

+ 0.007056(10 24)

[s + 104].[s + 0.3(106))

[s2 + 0.004(10 6)s + 0.0049(10 12)] [s2 + 0.8(10) 6s + 1.44(1012

s-poles: (-0.002 + j 0.069q714)(106 )

(-0.400 + j 1.131371 )(106)

It was converted to a digital equivalent form (using the programs STOZ in
sA

Appendix A and pole-zero z = e transform [5], [8] ) for computer simulation.

With a sampling interval A = 0.5 ps the z-domain transfer function turns out

to be

2.00z- -3.7114409z
- 3 + 1.7128304z-4H(z) -l--34

1 - 3.379158z- 1 + 4.428628z - 2.718099z- 3 + 0.6689807z- 4

The system was excited by a + square 5 ps pulse (see Fig. 5a). The model

identified by the proposed method is

-2 _-3 -4H -^ 2.00z - 3.71150z + 1.7128z

1 - 3.3792z- 1 + 4.4286z - 2.7181z-
3 + 0.66898z

- 4

s-poles: (-0.002 + j 0.0699714)(10 6

(-0.399 + j 1.131373 )(306

Using the inverse of the pole--zero transform, the s-domain transfer

function can be obtained. The poles turn out as shown above.

The response of the model and the actual network response are compared

in Fig. 5b.

'VI
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75.0

7. .
Input

50.0 - Network response

0

-25.0

-50.0

-75.0 I
0 50 microsec. 100

(e) input and response

75.0

5 .0 L- -- -.... Model response
Network response

/

-25.0 - -

050 microsec. 100

' (b) model response and actual response

Fig. IDENTIFICATION OF A FOURTH ORDER SYSTEM
(data uncorrupted by noise)

f12

Ii/
L/

.i/

p , /



REMARKS

* When the network under test is of order n, i.e., when the model order

is equal to the intrinsic order of the network, the rank of the matrix F

equals its dimensionality minus one.

" The matrix F is positive semi-definite.

" In actual application the matrix F will be formed from quantized versions

of signals y and u. Call this corrupted matrix as G. It will be shown that

E{G}=F + o2 P, where P denotes the correlation matrix of unit noise and E denotes

the statistical expectation operator. It will be shown in Section III that E{G}

has full rank (equal to the dimensionality of F).

As seen earlier, the pencil of functions method uses the square-roots of

the diagonal cofactors of F. A very important advantage of the method is the

following.

"Since F is positive semi-definite (G positive definite with unit prob-

ability), its diagonal cofactors are non-negative (strictly positive). Hence,

there is a built-in check and stopping point when, due to computational errors

or wrong choice of model order, one or more of these cofactors turns out to

be negative."

The computations involve finding the cofactors of a 2n + 1 or 2n + 2

dimensional matrix. For the special case of impulse response modeling the

calculation of denominator and numerator coefficients can be decoupled, so

that computations involve only an n + I dimensional matrix. This will be

discussed next.

2.2 DECOUPLED PROCEDURE FOR MODELING IMPULSE RESPONSES

Consider that y(k) is the impulse response of a network and that a

suitable K has been selected such that y(k) = 0 for k>K. We define the

reverse-time integrated signals as follows [2], [11]

.4

Yl (k) = y(k)
"4

Y2 (k) = y1 (k)+ .... +y (K),

(17)

YN (k) = Yn (k)+....+y n(K),

13
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(Recall, N=n+l). Let F be defined as

<yl,Yl> .• . <YlY N >

L" K

F . .. <Yyj> = Y(k)Yl(k) (18)

Nl ki

or, equivalently,

K T

F E f(k) (k) (19)

k=l

where fT(k) = [y1 (k) y2 (k) .... yN(k)]. Then, it can be shown that the

denominator polynomial is given by
N N-i

A(z) = zn[ Z VDi (z-)N /D (20)

i=l

where Di denotes the ith diagonal cofactor of the matrix F. Note the

positive powers of z on the right hand side. Further, the numerator co-

efficients are obtained as:

-i

bo -" Pll PlN -

.....l~~ I

Lt NlLq
..... . I(21a)

p.. = <w(k+[-i), w(k+-l-j)> (21b)

q. = < y(k), w(k+l-i) > (21c)

where w(k) is the impulse response (i.e., inverse z-transform) of I/A(z)

and inner products are summed from k=0 to K.

14
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If the network is known to have no direct transmission, i.e., b s suspected
0

to be zero, then N should be replaced by n on the right hand side, b by
0

b and in forming the inner products w(k+l-i) should be replaced by w(k-i)

(likewise, w(k+l-j) should be replaced by w(k-j)).

Three examples will be presented next. The first is a simple, paper-

pencil type example; it considers the same impulse response as did Example 1

(page 9) but with a long record length. The final example is interesting

because it deals with an impulse response which, theoretically, requires

an infinite order system (of type 1)) for exact reproduction; a fifth

order model is computed by the pencil-of-functions method which yields a

fractional energy error of 0.0359. In the first two examples the true

transfer function is recovered by the modeling technique, i.e., the frac-

tional energy error is zero.

Notation -

y(kA) or y(k) Model response

IV ^

y(kA) or y(k) Model response error y(k)-y(k)

K 2
S E y (k) Response energy

k=0

K
y (k) Error energy

k=0

w'

V = C /S Fractional energy error, or simply fractional
error, or normalized mean square error

= I00(I-v) Per cent modeling efficiency

Exampl 3

Given the left hand side of yl(k) = 1.5(0.8) k _ 0.56k we find for K=40

15
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4 20"

F (inner products are
L2 i from k=l to 40)
20 100_J

Then D = 100 and D = 4. Equation (20) yields
-1

A(z) = z (I0z-8)/10 = 1 - 0.8z
- 1

Equation (21), in turn becomes

0 1. 0.8 1 f b 1  l.5 - 0.187

0.36 I ' ' 0.36

10.8 1 iLbiL 1.2 i
which produces B(z) = (1 + 0.4z-). The model has been identified perfectly

with zero fractional error.

Example 4

A fourth order network is known to have zero direct transmission (b 0 ).

The numerical data of its impulse response,

-2t -0.5t
y(t) = 10 e Sin(2t) - 2 e Sin(4t)

is recorded at uniformly sampled intervals of A = 0.2 sec. For K=150 (which

signifies a long record; K = 30 sec), we find

F4.51403 2.38856 0.779798 0.114119 -0.057247407F 2.09775 0.953032 0.253410 0.00074006
F 0.501610 0.157312 0.01499790

0.057232 0.00960080
0.003526161

det F 0.54E-14

Note - All summations have employed a multiplication factor A, for scaling

purposes, both in forming the integrated signals and in forming the inner-

V produc ts. Ilowever, to undo the effect of this scaling, the ith diagonal

2i
cof;ictor has to bv multiplied with A to yield D.. The entire process will

1
he called .-scaling

The values oIt VIi/DI are

1 1.IC410 1.33762 0.58517 0.11959
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N - - Model impulse response

Network impulse response
0
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4 o

,J i' 5.0 i KhO L::G 25.oc c30.00
' TIME (SEc.)

Fig. 6. Comparison of network and model impulse responses
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Equations (20) and (21) yield the following denominator and numerator

coefficients.

Denominator 1 -2.49588 2.82521 -1.5760 0.36786

Numerator 0 -1.31238 1.68950 -1.55568 0.00158

The fractional energy error turns out to be V= O.1E-6. As seen from

Fig. 6 the model response y is indistinguishable from the true response y.

Example 5

Here we consider a problem in approximation. This terminology,

rather than identification, is appropriate since the square pulse

y(t) = f1 for O< t < 1

0 otherwise

cannot be exactly reproduced as the impulse response of a finite order

linear system. A fifth order model is desired whose impulse response

approximates this signal. Using A=0.05 sec. and setting y(O)=O, y(k)=l

for k=l,..,20, y(k)=O for k=21,..,40 the following Gram matrix is obtained.

1.0 0.525000 0.192500 0.0553438 0.01328250 0.002767190

0.358750 0.146781 0.0448284 0.01117940 0.002391640
F = 0.0635731 0.0201175 0.00514064 0.001119480

0.0065189 0.00169444 0.000373780
0.00044604 0.000099363

0.000022306

det F = 0.344E-26 (note - A scaling is employed)

The values of Di /D are

1 1.1458 0.67865 0.22900 0.042415 0.003383

Equations (20) and (21) yield the following z transfer function coeffi-

cients.

Denom. 1 -3.854184 6.095388 -4.93206 2.037106 -0.0342867

4 Numer. 0 -1.179760 3.806755 -5.19377 3.53997 -1.039771

The fractional energy error turns out to be V=0.0359 with a corresponding

modeling efficiency of 96.4%. The model response y is compared with

18
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the desired, ideal, response y in Fig. 7a.

A brute force application of the correction procedure given in

the next section (Section 3) results in the model response shown

in Fig. 7b. Of course better approximations can only be obtained with

higher order models.

"4

*1

'1

C. 20

II II - III I I
I

* - PL -



3. QUANTIZATION ERROR: IMPROVEMENT OF ESTIMATES

(PENCIL-OF-FUNCTIONS METHOD)

Practical analog-to-digital (A/D) converters employ small word lengths,

typically 8 to 16, and as a result incur quantization error in the repre-

sentation of the signal. This, in turn, causes degradation in the accuracy

of the identified transfer function [6]. It will be shown in this section

that the statistical properties of the quantization error can be exploited

to improve the accuracy of the parameter estimates. A computer program

"GQUANT" incorporating the technique developed is given in Appendix B.

The principle of analog-to-digital conversion is explained well in

references [6], [9]. For our purposes certain essential properties are most

pertinent. If b bits are used (including the sign bit) and XMSB is the analog

value of the most significant bit (next to the sign bit), then the following

observations and properties hold.

(a) The step size equals

6 = XMSB (22)
2 b-2

(b) For an input y to the A/D convertor the analog value of the output is

x = y + e (23)6
where leI< A for roundoff and lei< 5 for truncation.

2

(c) If the signal excursions during each sampling time-interval A

are large compared to 6, then

de f
x(k) = y(k) + e(k) y(k) = y(kA) (24)

where e(k) is an independent sequence of random variables having

a uniform distribution over one step size 6. In case of roundoff,

this distribution is centered at zero, so that the random variable

Se(k) has a zero mean and a variance[7].

Var{e(k)} 6 (25)12

In the ensuing discussion we will assume the A/D converter employs

roundoff.

(d) Under the assumptions in (c) above, the error sequence e(k) is

uncorrelated with the parent sequence y(k)
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Simulation shows that neither of the properties (c) or (d) strictly

hold in practice. However, we will use these properties exercising caution

where necessary.

For definiteness we will discuss in detail the correction technique for

impulse response modeling method of subsection 2.2. Parallel formulas are

applicable to the simultaneous denominator and numerator modeling procedure

of subsection 2.1, but will not be given here. Recall that the poles of the

model are obtained from the Gram matrix of the signal y and its successive

integrations. We therefore begin with the analysis and correction of the

quantized Gram matrix.

3.1 GRAM MATRIX OF THE QUANTIZED SIGNAL

We will use the model of equation (24) for the quantized signal

x(k) = y(k) + e(k)

where{E e(k)}= 0, E{e(k) e(k)}= 0 and E{y(k) e(Z)}= 0 for all k and k. For

the reversed time integrated signals we have

xi(k) = yi(k) + ei(k) (26)

where e i(k) are derived from e(k) through equations analogous to (17), i.e.,

e i+l(k) = ei(k) + ei(k+l) + ... + e i(K) (27)

Define also the vector sequences

x2 (k) e2 (k)

g(k) =,Ii ' p(k) = • , k=0,...,K (28)

Lx (k LeN(k)
Then the Gram matrix of the quantized signal can be written as

K
G = E S(k) gT(k)

k=O

K
Z Z [f(k) fT(k) + f(k) pT(k) + P(k) fT(k) + p(k)pT(k)] (29)

k=O

22

to!



Observation 1

K K
E {G} = E f(k)fT(k) + E{E L(k)pT(k)}

k=O k=O

- F + 2 p (30)

where P is the unit noise covariance matrix defined below. Further, if

properties (c) and (d) strictly hold then

oY2 _ 62

12

Observation 2

The unit noise covariance matrix is given by
K T

P = E { p(k) P(k)} (31)
k=O

where P(k) = [e (k) e 2(k) .. e N(k)]T as before, but el(k) = e(k) is taken

to be a zero mean, unit variance, uncorrelated sequence.

Remark

If properties (c) and (d) do not strictly hold, then the value of 0
2

(and possibly the definition of P) should be modified. We will estimate o2

so as to satisfy the following criterion.

Jain's Identification Criterion

Consistent with the noise and bias models the estimated Gram matrix

should achieve a minimum of the determinant.

Whatever method is used to choose the estimated Gram matrix, care

should be taken to make sure that its determinant remains nonnegative,

since the determinant of the true Gram matrix is nonnegative (see page 13 ).

An approach to estimation of the Gram matrix is presented in subsection 3.4.

First, however, we discuss the computation of the unit noise covariance

matrix.

3.2 UNIT NOISE COVARIANCE MATRIX

Examination of the sequences

el(k) = e(k)

e2 (k) = e(k)+ .. + e(K)

V3(k) = e(k)+ + (K+l-k)e(K)

e3(k) = e(k)+ .-. + (K+l-k)2e(K)

23
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leads to the general formula

K-k i-i
ei+l (k) = £ e(k-£) (33)

R=0

We then have (using the definitiots in (28) and (31))

[6£

K-k
p(k) = e(k-t) (34a)

L-zn-11

K-k
= E r(£) e(k-k) (34b)

L=0

where _a£) =[60 i ... £n-l]; 6 0 is the unit pulse sequence. Then

K K-k K-k T

P =E{ E E r() r (m) e(k-£) e(k-m)}
k=0 £=0 m=0

and, since e is a zero mean, unit variance, uncorrelated sequence,

K K-k T
P = Z r(k) r (£)

k=O £=O

K T

E 7 (K-k+l) r(k) r (k) (35)
k=O

Note that P is determined entirely by the integers N and K, the dimensionality

of F (recall N=n+l) and the length of the observed sequences, respectively.

Clearly, P can be precomputed and stored.

3.3 ESTIMATION OF QUANTIZATION ERROR VARIANCE

£The discussion in subsection 3.1, specifically equation (30), leads us

to estimate F as

1 2'6
F =G P (36)
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where a2 will be chosen so as to minimize the determinant of F.

One possible approach to this minimization is developed here. We use

the fact that the rank of the true Gram matrix F is n, i.e., its determinent

is zero. Rewriting (36)

F= G- 2P

we set the determinant of both sides to zero. If the quantization error is

small, we can approximate the determinant of the right hand side by the first

two terms of the determinant expansion theorem. Thus
F = 0 = G -

2  E det[G,P]i  (37)

where the notation [G,P]i means the matrix obtained by replacing the ith

column of G by the ith column of P.

Then

2 JG(
0 =det[G,P]. (38)

1

and, of course,

F = C - 2p (39)

Note that formula (39) can also be applied recursively, by replacing G in (39)

with the last estimate of F. An exit must be made when the determinant of the

estimated matrix ceases to reduce further (or begins to increase).

3.4 SIMULATION EXAr!PLES

As stated earlier, a FORTRAN IV computer program "GQUANT" has been developed

for simulation and modeling of quantized impulse responses. A rational mcil of

the type given in equation (i) is produced, except that b is constrained to
0

zero; i.e., the network is assumed to have no direct transmission. (Slight

modification in the computation of numerator coefficients enables this con-

straint to be removed.) Equivalent s-domain description can be obtained through

appropriate z to s transformation. Salient features of the program are the

following.

It can be used in either a simulation mode (IRESP=l or 2) or in network-

response-data entry mode (IRESP=O)

Model can be obtained for unquantized signal (ISPN= -1, IFIX =-l,

NF[X immaterial) when in the simulation mode, or actual response-data when

in data entry mode.

25



Model can be obtained for the quantized signal (ISPN-l) without any sta-

tistical correction (IFIX= -1). Intended for use in simulation mode.

Model can be obtained for the quantized signal (ISIM=l or 2 and ISPN=l,

or ISIM=O and ISPN=O) with statistical correction (IFIX=I); the use of

IBIAS=l performs a bias correction in addition to statistical noise

correction.

Two examples are given below, one in which a second order network response

is simulated and another in which a fourth order response is simulated. Thus

both examples pertain to simulated impulse responses.

H ideal(z) True transfer function of the network.

H(z) Transfer function obtained by application of pencil-of-

functions method upon unquantized signal. Note that H(z)

need not be equal to H ideal(z); among the reasons for

this are computation errors, and the use of K # -.

H quant(Z) Transfer function obtained by from the quantized signal.

(no correction is applied)

H(z) Transfer function obtained from the quantized signal;

one or more iterations of statistical correction for

quantization errors are used.

H(z) Transfer function obtained from the quantized signal; in

addition to statistical correction for quantization errors,

correction is also applied for possible bias in the data.

It should be mentioned that the usefulness of bias

correction arises both because the quantization errors in

particular record of data may not be zero-mean, and also

because K # ' may produce an apparent bias in data.

NDIG Length of binary word bNDIG ... b2bI (note bNDIG is the

sign bit, bNDIGI the most significant bit, ..., and b1

the least significant bit; also, we have employed a

mid-tread type of quantizer in simulation)

XMSB The analog weight (or value) of the most significant

bit.
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Example 6

A second order network with zero direct transmission is simulated. Its

impulse response

y(t) = 2 et - 2 e 0t

is sampled uniformly at intervals A = 0.2 sec. apart. The coefficients of the

transfer function H ideal(W)are

Denominator
1 -1.575157 0.606530

Numerator

0 -0.469035 0

Without quantization the modeling program yields (using ISPN = -1,

IFIX = -1, NFIX immaterial) the following results:

H(z) (using ISPN = -i, IFIX = -1, NFIX immaterial) v = 0.6E-8

Denominator

1 -1.575180 0.606551

Numera t or

0 0.469050 -0.000041

Experiment 1

For XNSB = 5.0 Volts and NDIG = 10, the program yields the following

results

H quant(z) (using ISPN = 1, IFIX = -1, NFIX immaterial) 'o = 0.84E-3

Denominator

1 -1.635921 0.662757

Numerator

0 0.513516 -0.114095

H(z) (using ISPN 1, IFIX = 1, NFIX = 3; includes bias correction)V=O.62E-3

Denominator

1 -1.628129 0.655569

Numerator

0 0.506869 -0.098299

The impulse responses of Hquant (z) and 11(z) are compared with that of

SHidealZ) in Fig. 8a arid 8b. (The quantized signal used in determining these

transfer functions is shown in Fig. 8c.) Although the improvement through sta-

tistical correction is hard to discern from these figures, the fractional energy

trror clearly points to a slight improvement.
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Fig. 8b Comnparison of network and model impulse responses.
, Model is obtained from quantized data; statistical

, correction is applied.
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Fig. 8c. Quantized signal used for the determination of model

transfer function (see Fig. 8a and 8b for model response)
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A more impressive improvement is achieved in the next experiment.

Experiment 2

For XMSB = 5.0 Volts and NDIG = 7 , the program yields the following

results

H qat(z) (using ISPN = 1, IFIX = -1, NFIX immaterial) v = 0.0061

Denominator

1 -1.721641 0.743261

Numerator

0 0.571452 -0.263324

H1(z) (using ISPN =1, IFIX = 1, NFIX = ;IBIAS =0) V =0.0047

Denominator

1 -1.703728 0.726890

NuIMerator

0 0.550597 -0.219990

11(z) (using ISPN =1, IFIX = 1, NFIX = 1; IMIAS 1) v 0.0042

Denominaitor

1 -1.696989 0.720718

Nume rat or

0 0.543307 -0.2043,1L

* Example 7

A fourth order network with zero direCt transmission is simula~d. W

impulse response

y(t) = 10 e-2 Sin(2t) - 2 e- 0.tin(4t)

is sampled uniformly at intervals A = 0.2 sec. apart. The coefficients of

the transfer function H iel(z) are

Denominator

1 -2.495629 2.824925 -1. 57-1,498 0.367879

Numerator

0 1.312168 -1.688152 1.553863 0

Without quantization the modeling program yields (using 1SPN -1,

IF" : -1, NFJX immaterial) the following results:

ii~z tu:;Ing ISPIN =-1, IF[X =-1, NFIX immatorial) =0. lE-6
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Denominator

1 -2.495883 2.825209 -1.577598 0.367863

Numerator

0 -1.312376 1.689499 -1.555676 0.001578

For XMSB = 5.0 Volts and NDIG = 10, the program yields the following

results

H (z) (using ISPN = 1, IFIX = -1, NFIX immaterial) V = 0.076
quant

Denominator

1 -3.003323 3.619004 -2.057970 0.455114

Numerator

0 -1.290046 2.315347 -1.991812 0.834767

H(z) (using ISPN = 1, IFIX 1, NFIX 1; IBIAS = 0) V = 0.045

Denominator

1 -2.930222 3.483747 -1.979050 0.440495

Numerator

0 -1.368196 2.599335 -2.567285 1.185892

H(z) (using ISPN = 1, IFIX = 1, NFIX = 1; IBIAS = 1) V = 0.040

Denominator

1 -2.910943 3.447190 -1.956858 0.436115

Numerator

0 -1.393888 2.690009 -2.731991 1.280967

Clearly, a reduction in energy error has been achieved via statistical

correction.

Remarks

, The application of the statistical correction was predicated upon several

assumptions. Experiment,. show that these assumptions are not satisfactorily

met. The following comments therefore arise.

W The quantization error process e(k) is not white. It might be useful

in future work to model this error process as a first order process and estimate

the corner frequency of this process together with its intensity.

* The correlation between the quantization error e(k) and the input

signal y(k) is not zero. This may be ameliorated by the use of a well known

technique [13] namely the addition and, after quantization, the subtraction

of a dither signal 2 . This is shown in Fig. 9 . The application of this

2 Pseudo-random binary signals are often used as dither signals.
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technique to our problem, and the extent of improvement achieved [14], remain

subjects of future investigation.
lxy''(0 Ix'(k) Computer

y(t) -- A/D converter

i (t )  
=y(k)+e(k)

Known dither
signal

Fig. 9 Use of dither signal to decorrelate y(k) and e(k)

0 In estimating the intensity (variance) of noise via equation (36)

only the first two terms of the determinant expansion were retained. Perhaps

three terms, i.e., constant linear and quadratic, should be retained in order

to get a more accurate estimate of o2 However, we feel that the benefit of

this sLup would be realized only after the steps 1 and 2 stated above have

beez taken.

.4
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4. WIDEBAND IDENTIFICATION

Determining the transfer function of a network from its ob-

served input-output responses represents the inverse of the analysis

problem. Interest in this problem arises from the frequent need for

a relatively simple mathematical description of the system so that

behavior for other anticipated inputs may be predicted up to accept-

able accuracies. However, the identification of wideband networks

presents some unique difficulties. Consider, for example, a network

whose frequencies of interest range from f Hz to (10 5)f Hz. To

identify the corner frequencies at the low end, one would require an

observation record of length T = 1/f sec. On the other hand,o

in order to avoid aliasing effects the sampling rate must be chosen

in excess of 2(10 5)f,, say f. = (10 6)fo. A million samples of data

for both input and output are thus produced. Apart from the diffi-

culties of storing this staggering amount of data and the impracti-

cability of processing them, serious numerical difficulties also

arise from this simple minded approach to identification; for in-

satice, the low frequency poles cannot be represented in z-domain

accurately even with a 64-bit computer word. A possible remedy is

to break the problem into two or three smallband 3 problems. The

network dynamics can be identified for each of these, and this in-

formation can be used to estimate the wideband transfer function.

A inultLrate sampling approach to identification of wideband

transmiLtances is presented in this section. It permits efficient

A frequency band of less than two decades will be termed as small-
band.
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determination of the transfer function of a four-to-five decade

bandwidth system from transient tests. Clever selection of sam-

pling rates and exciting inputs reduces the wideband problem into

three, simpler smallband problems. Each smallband problem encom-

passes only one-to-two decades of bandwidth. The three transfer

functions HL (s), H,(s), and %l(s) are easily identified via the pen-

cil-of-functions method, and then adjoined to build the wideband

transfer function estimate H(s). The technique is demonstrated by

simple illustrative examples and a realistic R amplifier example.

Frequyncy regions (sub-bands)

The concept of small band descriptions begins by splitting the

widuband region into three regions. As shown in Fig. 10, these re-

gious may be termed as low-frequency band, mediuni frequency band,
4

ann t rz high-!requcency band; in short, LF, ',F, and HF. These re-

gin,- ina', l e choidn :uv,_ring approximatcly equal ranges on the loga-

ithmtic scale. DcuutL the band edge s f f fad and thu

respective mid--region frequcnci. S ,.;' 1: , and r . The latter ma%

[h, -- air holgh not necessarily, c ,, a the geom.tric means o{ thL

oand edgc trequencic-;.

By ,e.,ign, the tollowing ineq uI ties hoid

f "l L  of i, (40a)

f ? 2 lOf M  (40b)

.1 L It 3IM

in some cases 'here prior knowledgt. o: tho ,apptoximate frequen,'.y
characteristic ot the network is available, it may be more app'ro-

priate to cheoo,e thc regions as LF L.+IF and HF, or a.- LF, Iff and
H F.
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Sampling Rates

For the three small band problems the sampling intervals are
5

chosen 
as

AL = 1/100fL  (4 1a)

AM = 1/100fM  (41b)

AH = i/lOofH (4 1c)

The sampling rates are of course the reciprocals of these numbers.

By this choice -- and in view of (40), the sampling rates become at

least ten times the highest frequency of interest in the respective

ba>nds. If the system input aru selected so as to excite frequencies

only in one of the bands, then by using the prescribed sampling rate

aliasing effects would be avoided.

Now, if K, the number of samples used for the identification

procedure, is taken as 1000, tht, length of thQ record would be 2a

* times the longest time constant of thi c and under consideration (for

example, with this choice of K for the LF case, T1 = 1O00A --
1, L F 11 L

,... ). Such record lengths are considered adequate for pact :-il
10 0

0

id.ntification of low edge corner frequencies, and storing and pro-

cessing 1000 samples of data is well within today's minicomputer

capability.

nputs

The key to the conversion of the wideband problem to three small

V' band problems is the careful selection of inputs which excite

These are conservative values in anticipation of 500 to 2000 data
points. Larger values up to five times, and accordingly fewer data
points, may be used with some caution.4 37
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frequencies essentially limited to one of the bands. At first this

would seem to pose no real difficulty, for we can choose a narrow-

band signal for the test. However, a little thought would reveal

that testing with very narrowband signals would be in direct con-

flict with the basic philosophy of system identification, which is

broadband modeling with transient tests. Therefore a judicious com-

promise must be made between these conflicting requirements.

The following inputs are suggested as a rough guide. Experi-

mentation and experience leads to a much richer variety of signals

which meet the above compromise strategy. Two different considera-

tions have been kept in mind in the selection of these inputs: the

spectral requirement stated above and, equally important, easy

realizability in the laboratory.

a) LF Input -

For the low frequency band the input selected is a triangular
6

pulse, either a full cycle TR+,_(t) or a half cycle TR+(t) (see

Fig. 11). In either case, the total duration of the pulse is taken

to be T L/2 and the pulse is followed by zero input for the remainder

of the time, i.e., from TL/ 2 to TL. The magnitude spectra of these

inputs can be shown to be

TL SinrfTL/8 2

TR, - (f)I = 4A-- 7rfT L/8 ISin2wfTL/81 (42)

L

TL  Sin~rfTL/42

ITR+(f)I = L
4AL  7rfT L/4 (43)

where, keeping (15a) in mind, TL = K/100fL.

TR+,-(t) TTR+(t)i

time time

(a) (b)

Figure I I. Input waveforms for LF tests.

L6

6 For networks which pass d.c., TR+,_(t), i.e., a full cycle triangular

pulse, is recommended; this reduces the predominance of a d.c component
in the network response.t 38



Unit peak values for the pulses have been assumed. The amplitude spectra

7.
are tabulated in Tables 1 and 2

TABLE 1

Magnitude Spectra of +,- triangular pulse (Ar)

ITR +,_(f)I
f/fn

L K20 K=200 K=1000 K=2000

0.01 -56.1 dB -36.1 dB -22.1 dB -16.1 dB

0.1 -36.1 -16.1 -3.5 -1.8

0.5 -22.1 -3.5 -16.1 -29.8

1.0 -16.1 -1.8 -29.8 -o

2.0 -10.3 -. -

10.0 -1.8 -o -0 -0

max in band -1.8 -1.8 -1.8 -1.8

Note: zero dB corresponds to a magnitude of 2b/A =K/4
L

TABLE 2

Magnitude spectra of a + triangular pulse (A)

ITR+(f) I

K2f/f K20 K--200 K=1000 K=2000

0.01 -0.0 dB -0.0 dB -0.0 dB -0.1 dB

0.1 -0.0 -0.1 -1.8 -7.8

0.5 -0.0 -1.8 -29.8 -35.8

1.0 -0.1 -7.8 -35.8 -OD

2.0 -0.3 -0 -O -0

10.0 -7.8 -0 -0 -O

!max in band 0.0 -0.1 -1.8 -7.8

Note: zero dB corresponds toa magnitude of 2b/AL=K/4

Minus infinity is used whenever the spectral amplitude is less than

-200 dB below reference level.
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It is clear from Tables 1 and 2 that the spectra of these pulse

inputs diminishes to -30 dB or more (below in-band maxima) at the
8

LF-MF boundary, provided N is chosen greater than or equal to 200

This insures that the frequencies in the MF region are not excited by

application of these inputs. A possible exception is the case where

there is a sharp resonant peak in the MF band, particularly at the

LF-MF boundary. However, the presence of such a peak is generally

known before hand; such a resonant component in the output can be

filtered before performing identification on the LF test data.

Mf Input -

For the medium frequency band the input selected is an oscillatory

pulse, modulated either by a decaying exponential OEX(t) or by a dimini-

shing one-quarter-cycle triangular wave OT;,(t). In either case, the

frequency of oscillation is taken to be fM' the center frequency of

the band. The duration of the oscillation is taken to be T M/2 (see Fig. 12),

followed by zero input for the remainder of the time, i.e., from T M/2

to T . In presenting the spectral analysis below it is assumed that

the on-set of the pulse begins with the maxima of the oscillation, i.e.,

the pulse is triggered at its maximum value. Thus u(t)= m(t) Cos 27fMt

where m(t) denotes the modulating envelope. The spectra of these inputs

can be shown to be as follows:

IOEX(f) = IM(f+fM) + M(f-fM)I (4
2 Moxf M (44)

I W (a+j w) TM/2

IOTR(f)l IM(f+fM + M(ffM) I
M) SinnT f/2

MM - [ iT (CoSTf/2 - jSinnT f/2)] (45)

81f the sampling interval were chosen five times the value suggested
in (41a) the magnitude spectrum diminishes to -30 dB at the LF-MF
boundary even for N=20.

r, 40
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where w=27f, 'a' is the inverse time-constant associated with the expo-

nential decay and, keeping (41b) in mind, TM=K/lO0fM. Unit peak values

have been assumed.

_OEX (t) OTR (t)0i AI1 A ;_.TM
0 time TM 0 timeTM

TM 2  Vie TM/2

Figure 12.. Input waveforms for MF test.

In order to delineate the spectral characteristics of the input

OEX(t), three different values of 'a' will be considered: a=0, a=2 /TM,

and a=4 /TM. The corresponding waveshapes will be denoted as OEX0 (t),

OEX1 (t) and OEX 2 (t), respectively. The amplitude spectra of OEX 0 (t),

OEX1(t), OEX 2 (t) and OTR(t) are tabulated in Tables 3 to 6 respectively.

TABLE 3

Magnitude Spectra of an Oscillatory pulse

JOEX 0 (f)I

f/fM K = 20 K = 200 K = 1000 K = 2000

0.010 0.1 dB -74.0 dB -74.0 dB -74.1 dB

0.100 0.1 -34.0 -37.8 -

0.500 0.1 -7.4 -2 1. -

0.909 0.0 -0.5 -3.6 -20.5

0.990 0.0 -0.0 -0.1 -0.2

1.000 0.0 0.0 0.0 0.0

1.010 -0.0 0.0 -0.0 -0.1

1.100 -0.0 0.3 -3.5 -

2.000 -0.4 ......

10.000 -29.1 ......

Note: zero dB corresponds to the resonant ped4k at f . Minus, M

infinity is used whenever the spectral amplitude is less
than -200dB below reference level.
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TABLE 4

Magnitude spectra of an Oscillatory exp. pulse

JOEX1 (f)

f/1 K = 20 K = 200 K = 1000 K = 2000

0.010 -1.7 dB -26.2 dB -53.1 dB -63.1 dB

0.100 -1.6 -23.4 -36.7 -49.7

0.500 -1.1 -6.9 -20.7 -33.5

0.909 -0.2 -0.5 -3.4 -14.6

0.990 -0.0 -0.0 -0.1 -0 2

1.000 0.0 0.0 0.0 0.0

1.010 0.0 0.0 0.0 -0.1

1.100 0.2 0.3 -3.2 -15.7

2.000 1.2 -13.6 -27.4 -33.5

10.000 -12.9 -29.9 -43.8 -49.9

Note: zero dB corresponds to the resonant peak at fM

TABLE 5

\Iagnitud. spectra of an Oscillatory exp. pulse

OEX 2(f)

f/ K = 20 K = 200 K = 1000 K= 2000

0.010 -0.0 dB -15.0 dB -41.7 dB -53.2 dB

o.100 -0.0 --14.2 -34.0 -43.4

O. 000 -0.0 -5.6 -19.1 -27.4

0.909 -0.0 -0.4 -2.9 -9.8

o. ()9, -0.0 -0.0 -0.1 -0.2

1. 00) 0.0 0.0 0.0 0.0

1. 0 1 0.0 0.0 -0.1

. 1.100 0.0 0.2 -2.6 -10.0

.000 -0.1 -8.1 -21.4 -27.4

I(). 000 -9.3 -24.1 -37.8 -43.8

9(

Notc: zcro t corrusponds to the resonant peak at f
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TABLE 6

Magnitude Spectra of an Oscillatory triangular pulse

JOTR(f)I

f/fM K = 20 K = 200 K = 1000 K = 2000

0.010 0.1 dB -38.0 dB -51.9 dB -58.1 dB

0.100 0.1 -18.0 -36.3 -43.8

0.500 0.1 -4.3 -21.2 -27.4

0.909 0.0 -0.3 -2.3 -8.7

0.990 0.0 -0.0 -0.0 -0.1

1.000 0.0 0.0 0.0 0.0

1.010 -0.0 0.0 0.0 -0 1

1.100 -0.0 0.2 -2.1 -9.5

2.000 -0.3 -7.6 -21.4 -27.4

10.000 -9.3 -23.9 -37.8 -43.8

Note: zero dB corresponds to the resonant pak at fM

It is clear from Tables 3 and 4 that the spectra of pulses OEXo(t) and OEXI

(L) diminish to -25 dB or more at the Mf-LF and MF-HF boundaries provided

N is chosen greater than or equal to 200 . This insures that the frequencies

in the LF and HF regions are not excited significantly by application of

these inputs. Tables 5 and 6 show that OEX 2 and OTR spectra diminish only

to -15 dB at these boundaries; these pulses are useful in the initial

stages of testing, or when the network's corner frequencies are spread

over the band.

1IF Input -

The inputs used for the MF band are equally useful for the HF band with

TM replaced by Ti. Tables 3 to 6 also hold with fM replaced by f

9 1f the sampling interval is chosen five times the value suggested in (41b),

the magnitude spectrum diminishes to -30 dB at the boundaries even for N=20.
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Small band Identification

Input-output data obtained from smallband tests can be analyzed by

use of the Fortran program IGRAM [5] and the s-domain smallband transfer

functions obtained therefrom. The program, however, requires that the

transfer function order (degree of the denominator polynomial) be speci-

fied. If the order of a smallband transfer function is known from cir-

cuit considerations, then the identification is performed for this order

and for at least one order higher and lower. For example, if the LF band

behavior is expected to be of order 4, then identification should be per-

formed for n=3, 4 and 5. The lowest order model yielding satisfactory

fractional error (see page 15) should be accepted as the rodel for that

smallband. If, on the other hand, the smallband order is not known, then

an upward modeling strategy must be adopted. Starting from an initial

order, a low guess, increasingly higher orders are attempted until the

fractional error in identification turns out to be acceptably small.

Thus, the smallband transfer functions HL(s), IO(s) and HH(s) be-

come available. From these the overlapping critical frequencies, or

ideally speaking common critical frequencies, are carefully isolated.

This isolation of common critical frequencies is usefrl in the next, and

final, step in wideband identification.

Adjoined Wideband Transfer Function

The transfer functions obtained from the smallband tests must he ad-

joined to form the overall wideband transfer function. For convenience wz

will drop the hat (carat) on the identified TFs, smallband or wideband.

The reader must, however, bear this in mind.

In the notation to follow we will use C .o denote gain constant; and

11 with suitable subscripts to denote transfer functions, which are assumed

to be in the Bode canonical form

s (1 + s/z 1 ) .... (1 + s/z )(I+.~± m (46)

+ S Pl .. . S P ) (k 0 , positive

or negative integer

The first subscript (on H) refers to the test from which the transfer
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function is obtained; the second subscript, if any, denotes the band with

which the critical frequencies (poles and/or zeroes) are shared. For

example, H.(s) denotes the part of HM(s) whose critical frequencies are

shared with H (s). Ideally speaking, of course, HfH(s) = HHM(s).

Thus we have

H (s) = C' H (S) "U1(S) (47a)
I. L Lb 

(47b))
HM(s) = C' Ms f(s) (s)(47b)

HH(s) =C H M(s) HH(s) (47c)

Critical Frequency Adjustment -

In practice the overlapping critical frequencies in two small-

band tests will not turn out to be identical through the corresponding

identifications. For example,a critical frequency s' (pole, or zero)
1

common to HM(s) and HH(s), may be identified as s.i_ in the MF identifica-

tion and as s i+ in the HF identification. We will adjust both of them to

a common value given by their geometric mean

s.= 'Is s (48)
1 i- si+

Assume that this process has been performed on HLM and HML, and like-

wise on HMH and H . In order to avoid unduly complicated notation we

will let the original symbols denote these adjusted transfer functions,

so that now

HLM (S) = L (S) (49a)

Hl1i(s) = H 1(S) (49b)

Other adjustments include setting s. to 0 when it turns out to be well
'* i

below 2nf , where f_ denotes the left boundary of the frequency band, but

is known to be zero from circuit considerations; care should be taken in

this case to let si(l + s/s.) to s. Thus, in the canonical form of (46)
11

'I the gain should be divided by s. when the term (1 + s/si) is replaced by

s. Another case of adjustment occurs when s. turns out to be much larger

than 21Tf+, where f + denotes the right boundary of the frequency band; it
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is then useful to set the term (1 + s/si ) to just 1. These two types of
adjustments occur in Example 8 on page 47.

Gain Adjustment

To obtain equalization at the boundaries of the frequency bands the

gains are adjusted as follows.

HM( 1) H(A 2 ) 1/2

CL = Cq H'L(AI)M(A2) (50a)

, (X)H(X2)1/2

CM = CM  HL(1l)HM 2) (50b)

HL(XI)HM(A2) 11/2

cH = c HM(x1)HH(X 2 ) (50c)

where10

X1 = j2T f

X2 = j27rf 2

Recall that f is the boundary between the LF and MF regions, and f2 is

the boundary between the MF and HF regions (see Fig. 10, page 36).

As stated earlier, the purpose of this gain adjustment is to minimize

gain discontinuity at the boundaries. However, phase mismatch may still

exist at these boundaries for the redefined smallband transfer functions.

These transfer functions are

Ht(s) = C H LL(s)H LM(S) (51a)

N(s) = CM 1M(s)HNI(s)H (s) (51b)

HH(s) = C H H0(s)H HH(S) (51c)

Wideband Transfer Function -

The wideband transfer function is taken to be

H(s) = C H (s)H (s)HI. (s)H (s)HHH(s) (52)
LL LM M Im

10 For certain wideband networks only two smallbands, LF and HF (with boun-

dary frequencies fo' fl and f ) , might be necessary. In such cases only
01

(50a) and (50c) are needed with HM deleted and Nl-X 2=j2nfl; likewise, only
(51a) and (51c) are needed wherein the subscript M is replaced by the sub-

script H.
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where the constant C is selected to match the gain of one of the smallband

transfer functions at a chosen frequency, perhaps HM(s) at the midband

frequency fM"

Example 8 -

Consider an a.c. coupled network believed to have frequencies of in-

terest from 0.02 MHz to 50 MHz, thus encompassing 3.3 decades. The para-

meters of the system are given in Table 7. In this case it is adequate to

break up the frequency region into two smallbands as follows:

LF f = 0.02 MHz to f = 1.0 MHz fL = 0.1 MHz (53a)

HF f, = 1.0 MHz to f2 = 50.0 MHz fH = 10.0 MHz (53b)

The inequalities in (40) are clearly satisfied. From (41) and Tables 1

and 3 it appears reasonable to choose
11

AL = 0.i us K = 2 00  TL = 20 Ps

AH = 0.001 s KH = 2 00  TH = 0.2 ps

and the inputs uL (t) = TR+,_(t), uH (t) = OEX 0 (t). We, however, select

LL = 0.05 Ps KL = 2 00  TL = 10 Vs (54a)

AH = 0.002 Ps KH = 100 TH = 0.2 ps

and define the test pulses explicitly as follows

uL(t) = (One complete cycle triangular wave over 0 to 5 sec. (55a)

L

LO level over 5 to 10 sec.
u U (t) 2TT
H Cos( 0.05 t), 0 t 0.1 (55b)

0 0.1 < t 0.2

To simulate the LF test response, the system function H true(z) corres-

ponding to A1' = 0.005 Psec. is excited by uL(k) of (55a); the response is

V then resampled at 1/10th rate (i.e., every 10th output sample is picked

up). In a laboratory test this artifice of using a high sampling rate

H(z) to preserve the integrity of the network response, and then resampling

the output, is of course not necessary. The network output can be sampled

directly at the desired rate i/A
L*

Recall, A denotes sampling interval, K the total number of samples and
T the total duration of the test. Of course T = KA.
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Table 7

A Wideband System: Example 8

H s (10 6)sHtrue(s) 6 8
(s+10 )(s+10)

L' = 0.005ps

H (z) =  0.003924z-I(l-z -l

true,, 1-1.601543z -+0.603505z-2

AH = 0.002ps

Hr (z) 0.001
8 108z- (l-z

- )

true,A H 1-1.8167327z-1 +0.81709493z

The results of identification from IGRAM using the method of Subsec-

tion 2.1 are given below.

LF Test -

Both first and second order identifications were performed. Since

the first order model (predicted response) has a fit error of v = 0.8E-4,

it is decided the LF behavior is first order. For n=l the Gram matrix,

the square-roots of the diagonal cofactors, the z-domain model and the

corresponding s-domain model (using pulse-invariant conversion [5], pages

80-82) are given below

0.00074285 0.00037153 -0.075250 5.1001

F = 1.03620000 -5.198800 -354.5100
33.336000 1266.7000

L 346090.00~L

det F = 0.128

The valuvs of vi/Dl are

1 0.050249 0.010103 -0.7329E-6

W(z) - 0.0096187(1-z 
)

1-0.95215z

) =0.0101s-0.14i04 1.0297(10- 8)s (Frequency
.L~s) (s+0.981(0 6)) (s/0.981(0 6)+1) adjusted)
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HF test -

As in the LF case, here also a first order model is found adequate

producing a fit error (fractional energy error) v = 0.40E-4. For n=l the

Gram matrix, the square-roots of the diagonal cotactors, the z-domain

model and the corresponding z-domain model (using pulse-invariant conver-

sion) are given below.

10.00090304 0.00045161 -0.073612 -0.52301

F = 0.01842400 0.449400 -1.61760
25.000000 12.50000

L 410.38000_

det F = 0.22E-4

The values of D /D are

1 0.22817 -0.0023153 0.0022408

-0.00006 + 0.00188517z
- 1

1 - 0.814217z -1

0.0023s + 1.009(10 ) _ 0.00982 (Frequency
is + 102.76(10)6 s/i.028(108) + I adjusted)

Gain Adjustment -

At s = j27fl, where fl=IMHz, the gains of the LF and HF transfer

functions turn out to be 0.00998 and 0.00981 respectively. The adjusted

-8gain constants (using (50) and (51)) are C =1.021(10 ) and CH=0.00 99 0.
LH

Wideband Transfer Function -

The wideband transfer function is

H(s) = C 6 s8
(s/0.981(106) + 1)(s/1.028(108) + 1)

-8where C=1.023(10 ) is obtained from gain matching at s=j2Tf 1 ; fl=iMHz.

.4 Comparison -

The Bode plots of H(s) and H true(s) (of Table 7) are compared in Fig.

13. It appears that satisfactory wideband identification has been achieved.

Remark

The procedure of adjoining the smallband transfer functions can of

course be programmed.
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Example 9

As a second example of wideband identification consider the RF ampli-

fier (Fig. 14) of reference [5]. The frequency regions are

LF f =0.002 MHz to f =0.1 MHz f =0.01 MHz0 1 L

MF fl=0.1 MHz to f2 =l0 MHz fM=1.0 MHz
1 14

HF f2=10 MHz to f 3=1000 MHz fH= 1 0 MHz

The smallband transfer functions, identified from LF MF HF tests through

IGRAM [5] are
6 6

= -20.125 (s-0.0015(l0 ))(s+0.0012(106))
HL(s) 62016

(s+0.034(10 6))(s+0.075(10 6))

-8 2-0.7892(10-8)s
[s/0.034(10 6 )+1][s/0.075(106 )+1]

I M -)"~o6 1 6
HM(s) = _-20(I0 6 ) 6

(s+24.92(106))

1
-20.',5I

(s/25.31(10 6)+1)

H = 2.79(10 7) (s-19060(0 6))

(s+25.7(10 6))(s+1140(10 6))

18.432 (-s/19606(10 6)+l)

[s/25.31(10 6 )+1][s/1140(106)+l1

The second step of each of the above is obtained after frequency adjustment

as outlined on page 45.

Gain Adjustment -

At fl=0.1 MHz the gains of the LF and MF transfer functions turn out

to be 19.9536 and 20.5437 respectively. At f2=10 MHz the gains of the MF

and HF transfer functions are computed to be 7.6776 and 6.8759 respectively.

The adjusted gain constants (using (50) and (51)) are CL=(0.9602)CL=0.7578,

CM=(0.9327)CA=19.17, and H414)CH=I9.19.

Wideband Transfer Function -

The transfer function of the network is estimated as

s 2[-s/19060(10 6)+1]H(s) =-C
[s/0.034(10 )+l][s/0.075(106 )+l][s/25.31(10 )+1][s/1140(10 )+1]
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.111f .Olpf C1  91 C3  C4

1 O0kf 94 + +

C4  
+

0 V 1 0 N

ZL 

92C 

9 3 L V

0 -0

(a) Schematic (b) Equivalent circuit

CI=O.01 i F C 3= 5 pF g =4 mmho g3=40 mmho ZL= 1 Kohm
(real)

C 2= 50 pF C 4=0.01 1 g 2=1 mmho 94=0.5 mmho

8(007) s2(s-8000(00 6))H(s) 6
(s+0.033(l ))(s+0.08(106 ))(s+25.2(10 6))(s+1205.1(10 6))

- 7.983(10- 9)[s/8000.0(106) + 1]

Is/0.033(0 +) 1[s/0.08(106)+ 1][s/25.2(10 6) + 1][s/1205.1(10) + 1)

Fig. 14 A common-emitter wideband amplifier
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where C=8.0596(10 9 ) is obtained from gain matching with HM(s) at s-j2rfM,

fM=l MHz.

Comparison -

The Bode plots of H(s) and H true(s) (of Fig. 14) are compared in Fig.
true.

15. It appears that satisfactory wideband identification has been achieved

from smallband time domain tests.

j
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APPENDIX A

LISTING OF

PROGRAM

sTOZ
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C STOZ
C

C GIVJEN rHE CONTINUOUS CESC; IPTTC14, PROGPAP '.,GPUTEZ :,
C EQUIVAL ENT DISCRE'Tl JOMAIJ OFSC;.IPTIcKN or ALltN7tA;

c OYNAMIZ, SYSTE1m

C STOZ GENERATES ij(ZI ANt THF COFPRSPONCING 0IFFED:NCE
C EQUATIoN FROM TOE TRANSFER FUNCTION H(S)

C THE INPUT ARR4YS A AN[ A -E FILLE,) ACCORIjG T3, Tpz
C CIFFER-NTIAL Eou.TION
C ~ jYT P2f~,(),.,(,~,~YT
C -A (I)*U(TI-A(2)'O(1,U(T) i-.. .- A(NG+1)-O(N,UfT ))
C WHERE O(M,F (Ti) THE MT , TIPE DERIVATIVE CF FUNCTIN,t r
C
C P(N4I) MUST EOUAL I
C
C RETURN'S ARRAYS A A.NC E CCNr~ INING THE FQUI VtALF-fOSI
C CESCRIPTI011 STDRII AOCCCTNr TC THE DIFF;f-E:4CE rCUITI~r'
C ~*.'(+iYKN
C I 1)UIJ.(D(-I- -A(4JU-N -

C
C B(1) ALWAYS CQUALS £
C
C THE POLES Or THr CCNTINUCU! 00OAIN MUST BE DISTIN.CT A-C
c NOH4-ZErO FUO TkHE TRANSFOc.."LTTOK TO BE W-LIL
C-- - - - - - - - - - - - - - - - - - - - -

C
C DATA CA;Zfj SET PR;EPA6%;TION

C N =ORJER CF SYSTEm
C K~ (MAYIMUM) = ONE LESS THAN THC OIMENSIO%. SUSSC,?IO

C 111THI 0 FOP Twr IMPULSc INVAVIANT CcSCr-IPTtT0K
C= I FOR TkHE- PULSE INVARIA14T DESCPIPT IO
C= 2 FlO THr TRAFECI'AL INVtRIA'.T C <
C = 3 FOR THiE LOrRITI'-MIC TRANSFORt' *EtL IPTICi

c POLZ =I IF POL 'S ANC 7~ECS AOF r,7..t

C ('UST @= COw.FLEX (REAL.IMAGINARY)
C NEG4TIVES OF POLES AND ZEROCS REID: IF9
C Fof? A POLZ CF (S+21, INPUT +2.,- ..

C (2FIO.C PEP FOLZ9 4. FOLZS PER CAQ)D

C C IF DENOMINATOR ANO NUMEFRATOR, ARt PEAC
C IN PCLYNOMIAL Fort..
C COEFFICIENTS OPOERED FROM LOW TC WTGO- CrE-'vE
C DENOMINATOR INFCRMIATION ALWAYS PF4C FIOST.
C HIGHEST ORDER CFNOM!NATOF COEFF MUST Ar I.,

C N'OTEI W44FN FOLE-ZEPO CATA IS ENT7EC. A CAIN CA;J0
C MUST FOLLOW THE LAST POUE O.R..
C IF THERE ARE NO ZFPOS, Uc-E ALANK CAPOS IN~
C THE NORM~AL ZEROS POSITIONS.
C
Ct D ELTA SAMPLING INTERVAL
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C
C

START EACH DATA CADO SET WITP A OFSCPIFTICFN C;.4jI

C CONTLINING UP TO 51 C4ARjACTECS COLS 2-S2
C FIRST ciATA CARO CONTAlt-St
C N, rM-40, IPOLZ. IN SF5 FCPMAT, PLUS~ DE'L'6 1;4 Ci: 4z~
C SECCND GROUP OF DATA CARtzS IS 11 POLES CR N+.1 i-1;._ 7 L-

C COEFrICIENTS. AFTERi LLST PCLE CAR&, USL L c-.;!h C,.
C LAST GROUP OF CATA CARDS IS N ZEQCS (OR F Li.NKSI .
C OR N~l NU'4EPATOR CCEFFICIEITS (BLANVS FC ZF;: ~FF~i
C THE DATA FORmAT FOP EACH OF THE SYSTVf PAklET-> C-ND.>
C IS 8FIC.C
C
C AS MANY SETS Or DATA CARDS MAY BE RUt4 AS CESTO-:
C - - - - - - - - - - - - - - - - - - - - - - - -

C
C STOZ MAIN PROGRAM
C

REAL a(Z:b, A(20),RR(2C),rI(2.'),CELTATMr-c2c-)
COMFLFX C (2Z ),CA(2.),CS3(2C),CAA(2j),CA1(2:3,

i TEK(2j) ,CON1 ,CON2,CONT
OIMENS13N TITLE(701

C
C READ TITL- AND rIcST DATA CAD
C
loC QEAC(5,q2.)TI

T LE
IF(EOF(5).NE.6)GO TO 1,94S

P I TE (E,91C~)
91 c FC RmAT (6f/) )

WRITF(6,q2917~ITLE
RE A C(5 92)TI TL F

92C F CROA~T(70 A1)
WRITE(6,97:1

9L.O FODM AT U.,1 7 ( +

WR ITE (6 9, 5 I4,TIT HD IDOLZ,ODFL TA

I *DELTA =,*G17.1 ,//
NPI=N. 1
NP2=N+2
NPNPI=N+N.1
N PNP2= N +N+ 2
IF(IPOLZ.,iE.1) GD TO 301

C
C READ PCLES AND ZUQCS
C

%0 FDPMqATW~10.6)
CALL PCLCCN(CRTEm,0.N)
00109 11L,NPi

109 9(II=TEM(II
C
C READ GAIN CARD

READ(599611 Ri(
C
C REAC ZE90O

REAG(5996,3 (CAQ() .I=19N)

CALL POLCON(CW.EPrVN)
DO 209 TII

209 AfI)=TEM(I)9RK
GO TO 310

C
C READ DENOMINATOR AND NUMERATCR COFFICIENTS
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30C REAC(5996C) (6(I).I=1,NPl)
REAGC59960) (AC I)*T!1NPI)

31C aON TI NUE
C
C PRINT OrNOMINATOO AND NUPEPATOR CCEFFIC~r'1'S

WRI TF(6 ,970 I
970 FCRP.T(* S-OOtiAIN DENOMNt'ATCP41

CALL PRVEC(ENPlI

980 FOR!OAT(* S-DOMAIN NU#IERATr)R*)
CALL PRVEO;(AqNPI)

C
C DETERMINE ORDFR OF NUMERATOO
C

NN=N
DO 309 T=1.6P1
TI=NP1.1-1
TF(A(II).'jE.G.0) GO TO 40C

309 NN=NN-i
40r, CONTINUE

WRITE(6,990) NN
q9C FCRMATC' 3R~CR CF S-DOMAIN KUIME~tTOR ~I./

IF(NN.LT.') GO TO 5029
NNP1=NN~l

C FACTOR IENOMINATOR TO FIND POLES

TF(IPOLZ.NE.-O) CO TO 50)
CALL. PCL-(e*TEMP,N,RP.RI,IER)
DO 4C9 1=19N

'.09 CR(I3=CMPLK (DR(i),QI(r)J
5
3C WRTTE(6,991)

9141 FORv4AY 1 POLES OF Tw.F S-tCMINO)
CALL PRCVFC (CR. M

rF(r?'THO.NE.3) GO TO 153C

* C LOGRIT44MIC TRANSFORu
C
1000 CONTINUE

WlRITE C6,9:001
910 C VC RAT (/9, LO GQ ITH MIC TR A NSFO 9M

C WOR~K ON NUMERATOR
C

IF(NN.EO.Gl GO TO 103C
IF(IPOLZ.NE.0) GO TO 1310
CALL PCLRT(A,TEMPNN,QR,Rr.irpi

U DO 1009 I11NN
1009 CAII I =C MPL X R (I) ,RIII))

II1010 WRITE(6,9?OCI

.4920C FORMAT(* ZEROS IN S OOPAIN~l
CALL PQCV7C(CA,NN)
00 1029 I=1.NN

1029 CA(Il=CEXr-fCAdI1*0ELTA)
IF(NN.Eg.Nl GO TO lhOG

1030 00 10?39 I=NNPI*NP1
CAA (I1=u. 300

1939 CA(TI=0.0
1100 CONTINUE
C
C NOW T'4E FIRST NN ENTRIES OF CA CONTAIN TMF
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C Z-OCMAIN ZEROS OF THE TRAKSFFF FUhtDTICpNv W41LE THE
C REMAINING ENTRIES ArE ZEFCEC CUT.
C
C WORK ON DENOMINATOR
C

00 1129 I=i*N
1129 CR1 I)zCEF(CR(I)*OELTA)
C
C NOWi CQ CONTAINS THE N Z-COM&IN, POLES
C
C FORP NUMER~ATOR ANr DEN0NIIKATOF
C Z-DCMAIN POLYNCOPIALS
C

IF (NN.E').Ll CAA(ib=1.C
XV (tN.NE.CI CALL PCSTZ(CAvCAA*CqtNNI
CALL PCSTZ(C;R9C990,N)

C NOW CB CONTAINS T04E N~l 2-DOMAIN CENOMINATOP COEFFICIENTS.
C AND CAA CONTAINS THE NN+1 NUMEPATCR CCcEFcICltTS.
C
C ADJUST DC GAIN CONSTANT
C

A2=1.J
DO 1209 I=INN

1209 A2=A2+CAA(I+L)
82=1.0
00 1219 I=ItN

1219 '2=82+CRUT+l)
FAC=A1'02/A2
DO 1223 I=1,NtJP1

129 CAA(I)=CAA(I?*9AC
C
C NOW CAA rCONTAINS THE AOJUS7EC Z-COflAI'l NU~Tr, G39 FFTOJPr S
C ANO FAC tONTAINS THE GAIN FACTOR 11SED FOR TwC AOJJSTf -NT

GO TO 500:
C
£500 CONTIN4Ur-
C
C NON-LOG:IT4?w!C TRANSFCQ'1PTICNiS
C
C ADJUST FOD DIRECT TRANSNISSICh
C THIS ROUTINE REQUIRES THAI e(NPI) i .0

CONT=(0.0,.0)
TF(NN.LT. 4 GO TO 151L
CON4T=A (N01)
001509 1=1,N

15C9 All V=AfI)-CONTS( I)

C FIND NUMERATOR CONSTANTS FOR PARTIAL FRACTION EXPANSION
C
1510 001529 11I.N

CON1=I.e
CON2=O .0
001519 J1I.N
CON2=CON2*Cg( I)*A(N-J.13
IF (I-J)i5i29151991512

1512 CONl=CON*(CR(I)-CR(J)l
£519 CONTINUE
1529 CA(IP=CON2/CONI

WRrTE(6,93001
0930C FORD4ATIE NUMERATOR CONSTANTS OF THE FACTCP17ED H(5141
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CALL PRCVFCCCA9N)
C
C CONVERT T'-4E FIRST CROER PARTIAL FFACTIONS TO 7 CCtATN
C

NMTHD=IMTHO41
GO TO (2C)0,300Cv'.00CI, NHTi~fl

C

C IMPULSE INVARIANT
C
2036~ 0023091=1.N

CA (II=CA(1ID4OLTA
20C9 CR(I)=CE:Xr-(Ck (IIOFLTA)

GO TO 450-
C
C PULSE INVARIANT
C
30CO00O33&q I=1.N

CON 1=CEXP (CR(lI DELTAl
CA CI) =CA( T*( CONi-i.0li'CR(II

3OCq CR(I=CON1
"O TO '.50C

C
C TRAPEZCIOAL INVA*UANT

4000 TCHECK=2?

CONI=CE'XP (CRC II DELTA)
CON2=CA(T)/(CP(T1C1C11'CELIA*CONI)
CONT=CONT.CO42C(1I.3-CR(I)flFLTAI*CON1-1.OP)

4009 CR(I)=CON:
GO TO 450

CI
C CONSTRU "T TNF Z DOMIAIN DENDtFINATOR
C ANO NUMERATCQ POLYNOMIALS
C
4.50', CONTINUE

CALL PCST7(C,CB9^ON)
n0 '.5G9 1~i.N

45 V9 CAA(II=O.CDC!
00 4519 K=I.N
CALL PCST7CCR,CA.K*N)i
0O '4519 J=A,N

4519 CAAlJ)=CA.1CJ),CAlCJ)*CACK)
C CAA (NPi11.

IF(IMTHO.NE.I)GO TO 4521

00 4523 I=1,N

lI=NPI-I
452C CAA(II+L)=CAAC(III

CAA (11=0. C
4521 CONTINUE

w C
4C ADJUST FOR DIRECT TRANSMISSION

.4 C oyEC=(G.2.O." I
C IF(NN.NE.Nl CONT=OTXC

C CAACNPLI=CONT*C9(NPIl
no 4529 I=1,N

4529 CAA(II=CAACI,,CONT*C84I)
C
C SHIFT NUMERATOR To COMPLETE PLSE INVARIAN~T TRANSFORM4
C WHEN NUI'ERATOP HAS LOWElt ORCER THAN DEN~OMINATOR

'I C
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CONTINUE

C
C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C

C PRINT THE TFANSFORMED CCEFFICIENTS
C
5OCC CONTINUE

WRITE (6, q5103
951C FORMAT(* POLES IN THE Z C)CMAIIN)

CALL PRCVPC(CR,hl
WRITE(6,qF20) FAC

9520z FORMAT(* GAIN FACTOR USEC =f,Ei'..I,)
WRITE(6,953C")

9530 FCRMwAT(* 7EROS IN 7WE Z COH4AINI*
CALL PRCV-C(CAoNN)
W0ITE (bo,'.)

954&~ FCRMAT(* Z-OOMAIN OENOMINATC~f)
CALL PQCVEC(CBNP1)
NP ITE (6, 55 0)

9550 FCRPIAT(* '-0034ATN NU'45RATCQ#)
CALL PRCVEC(CAA.NPII
00 5019 rI*NP1

5glq A(Il=CAA(1)
GO TO 130

C
5029 WRITE(6*q56")
956C FCR"AT(/,lX,*NUt'EPSTOr OFEEF, LESS THAN ZERO*,//)
S999 STOP

SUdROUTINE PCSTZ(CvR?,,(,td
C
C FCST7 ;,ONSTRU)CTS A Z-COMAIt* POLYN0I,.IAL COEFF ICIENT ARRAY
C FROM AK. APRAY OF ITS ROOTS.
C

OIMENSION C(lIhR2(1l
COMPLE X CoR2
NPI=N~l
00 1. =2 ,NPi

1. R2(11=0.0
P2(1)=1.C
0031=19N
IF(I-Kl6, 3,6

6 004JJ=loI
J=I-JJi

4. R2 (J,1)zP'(Jt1I-C(I1*P2(Jl
3 CONTINUE

RETURN
END
SUOROUTINE PRCVEC(A,Nl

C
C PRCVEC PRTNTS A COMPLEX ECTOF
C C A COMPLEX NUMBER OF THE FORM A4J8 IS FRI14TED A, il

C IESONAt
COMPLEX A

IF(N.Eg.0) GO TO 100
WITEIG,920)
WRITE(6oqla)(AfIloI=lN3

91C FORMAT(iX,IH4(,F22.15,IH,,F22.15,3H ill3
100 WRITE(6o920)
92C FORMAT (2/)
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RETURN
END
SUBROUTINE PRVEC(A,N)

C
C THIS SU9ROUTINE OUTPUTS A SINGLE OP4ENSIOtSEG ARf~y

DIMENSION A(l)
C

WRITE (6, 1) (A( I) .I=1*N)
I FCR"AT(lX,iJOrj3.5l
31 FORIKAT(/

RE TURN
END
SUBROUTINE FOLCON(C.Q2.K.K)

C
C A POLYINO41A. CONSTRUCTICt FPOGRAtP NUEEDE FCR Z1OS
C

DIMENSION C Q ) *<2(1)
COMPLEW C.R2*COMP
REAL OC(2)
EOUIVAL;EN-E (COMP.DC)
NPi=Nfl
O0101=2.NP1

10 ?2(1)=O.C

COMP=C t )
TICT.EO.K.DP.CCC) .EO.O .:.ANfl.OC C2).EQ.C . l C0 TO .

302 JJ= 1,1
J= I-JJ*i

2 Q2 (J+i)=R' (J+1) 'C CIlR2(CJ

4 CONr1NU
RETURN
END
SUAROUTINF POLRTC XCOF,Cor, M,FOOTR',ROOTI.TEQ)1

C COMPUTES THE REAL AND COPFLEX ROOTS OF A REAL PGLYNOCtIEL
C
C DESCRIPTION OF PARAMETERS
C XCOF~ -VIECTOR OF M+1 C0EFFIC.IENTS Or THE PCLvYrPTAL

*C ORDERFD FROMl St1ALLI:ST TO LA~RC.ST POWrQ
C COF -WORKING VECTCA CF LENGTH MG1
C M -ORflER OF POLYNOtIAL
C ROOrR-RESULTANT VECTOR Of LENGTH 10 CONTArf ING RcAu FZ;OTS

.4C OF THE POLYNC"IL
C ROOT I-PE SUL TANT VECTOP CF LEGTH 11 CONTAI IKG THE
C CORRESPONCINC I"AGItAPY ROOTS OF THE FOLYNOMIAL
C IER -ERROR CODE WI-ERE
C IEP=S NO ERRCQ
C IER=i M LESS THAN ONE
C IER=2 M GREATER THAN 36
C TE0=3 UNABLE TO CETERMINE ROCT wITI- 53, iNTER;ATIOI.7E
c ON 5 STARTING VALUES

C IER=. HIGH ORDER COEFFICIENT IS ZERO

DIMENSION ICFlgO()100rtlROIl

C

C LIM:TEO TO 36TO4 ORCEP POLYNC'IIAL OR LESS.
C FLOATING POINT OVERFLOW MlAY OCCUR FCR hIGN CROER
C POLYNOMIALS RUT WILL NOT ArFECT THE ACLU2ACV Or THE PFSJLT

'1C METHOD
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C NE--TON-RApmsoIN rTERArIvE ECWNIOUE. Tk.- FIN~AL rTti;TI , 3
C ON EACH ROOT ARE PERFORMED USING THE ORIGIN!AL FOLYNrV'IAL
C RATHER THAN THE REDUCED POLYNOMIAL TO AVCIC ACCJMULfT 1
C ERPORS IN THE REDUCED POLYNCMIAL.
C

iFITrZ

IER=0

IQ IF(sI 15915932
C
c SET ERRO9 CODE TO ±
C

15 IER=1
20 rF(IER)?3.2ZC±,20G

20C WRITE(6,2Z3)rEQ
203 FCRMAT(IX,*ERROP CALLED FRON FOLPT. f.o *i
201 RETURN
C
C SET ERrIOR CODE TO 4.
C

25 1 E R
GO TO 22

C
C SET ERROR COCE TO 2
C

31 IrEP2
GO TO 29

32 IF(N-361 3593593 1
35 NX=N

N X KN4 2
N2= 1
S(Ji = Nfl
00 4.0 Lz1.I
PMTJI-L,1

4.0 CoP,(mTI=xrOF(Li
C
C SET INTTIAL VALUES
C

45 XOz.00532U02.

* YOml.^1.2CL1O1

C

50 XzXC
C
C INCREME-NT INITIAL VALUES AND CCUNTER

xOX-lju * Y3
YOU-1C .0*Y

C
C SET X ANE Y TO CURRENT VALUE
C

%axe

55IFITzl

'I VPR=Y

C EVALUATE POLYNOMIAL ANC DERIVATIVES
* C
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69 UX=.v
uJY=O.J
V =0.0

XT: 1.L
u=CCF (N,19
yr (I 65913 s 6cj

65 00 70 119
L =N-141
TEMP=CCOf(Ll
XT2=YX T-Y*YT
YT2=x4 V!,Y*XT
U= U4TE9'0 f'(1 2
V=V+TENP*YT2
FI=l

UJY=LY-F1*'TTEM4P
XT=XT2

70 YT=YT2
su.4SO=ux~ux+uv~uy
IF(SUMS'lI 75911L..75

75 OX(VUv-LU)/SUt.Sn

C =+C

785 IF (AISFITI1 S~)YIQE-0.12Eg9

C STE IERATIO C C 70 3
C

A3 TT=?T~

945 IF(IFTI -1+1 10

US SE(LT ERPRCCET

MXS ITEMP

153 DO L5L=f N

120 IVIT=0

125 CAFLI=T*

130X=.0M

135 XZXPF0

15ALP#4A=X V
SMSQ=Y*-I *4N 45



140O COF(21=COFv2 .ALPI'A*COFgj)
145 00 153 L=2,N
15C COF(L.I=COF(L.1I.ALPHA.CCF(LI-SUPMSQ*COF(L-1)
155 ROOTI(N2)=Y

ROOTR(NZ)=X

IF(SUMSO) 1eK,16596C-
161 Y=-Y

suosozo.t
GO TO 155

165 IF(KI 23920.45
E NO

,.4
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C 

r# 

. . .... 
#.. # U ..

C
C PROGR' QU&JNT-
C IMPULSE-PESPCNSE MODELING
C BY PENCIL-CF.FU#4CTIONS P'ETiqOf
C DEC 1979 (FOR RACC)
C
C PCOGPAM -GOUANT- USES CNAPACTERISTICS OF OLIANTIZATION rRz ,C7
C TN PENCIL-CF-FUNCTIONS PET44OO TO P;Or:UZ.-
C IMPROVEC TQAINSFEZQ FUNCTION.
C MODELS IPPULSE-RESPONSE OF CHANEL/NTWnPK.
C CAN BE USED IN SIMULATION 14CO: (E8I%. 00 crr,.§
C OR ON EXFERItPENTALLY QECCROEVC PESPONSC-.
C
C
C
C

OI4ENSI3PN GN(8,8),GE-ST('i,8),GCUM( ,8) ,E-(8), (%.1)

0IHENSIJN TITLE(79) ,13UF 4512)

OOUSL7 PPR-^ISION OTACq3DEQRCR
COMMON /O4/IS;NyS,DELTA,SIG2CTOI,BIAS .I8IAS
C0OMCN IOALIFBAQ, fBAP,FESUK,FESum
COM4MON /IO/I~iILT,IPP*IQCUND.IPVr
REW 1ND5
MAXPL 53JC
MAXE=8E
MAX2=2*MA't
IR=5
ILT=6
IS K 1P=
NSTQr=2
CALL VEoUAT (mAWPL,U,F,G, It)
CALL VEIUfT fMAXPLqUU,Fv) 1 11)
CALL VEQU1T~(m~AX?, VvVVv J9 t
WRITE (ILT,21
REA9(IR.M)l(TITLE(I),1=1.7C)

* WRITE(ILT~jil,(TITLr (I),I=1,7C)

REAC(IR0)1(TITLE(I1,I=1,7 )

REA3EIR,*dNPTIPADNOJIGtNISI',NCCMP,I0LTNNPT.
*xNSB,ZJT.BIAS
N~i=N+i
NPZ=NPLi
NP3=N*3
N PN P2=N +N 42
NPNPI=N+N+i
IF(NNPT.EO.a) NNPT=NPT

IF( [SIM. EQ. CIPEAr) (!QR, 1C) (F (K)vK1,PNNPT)
IFE ISIM.EQ.CIGO TO 61
IF (ISIM.EO).1) PFAD (IR,1li) (V (I),I1,NPNP2)
TV(ISIM.E].1ICALL RESPON(F9UNVvVVNNPT)
IF(ISIM.EO.1)GO TO 61
DO 6C 1=19NCOMP

60 WQITE(ILT,11) IAMP(I),SREI),SI(I),SPH(!I
o4 CALL SIGNIL(FMNPT,.AMlPSR ,SISPI.CT.NCOMPI

61. CONTINU-:
IF(IPLT.GE.2bCALL PLOTS(IBUFtS12,

0
)

1111 REAC(IFE') (TTLE(1)91=19?ZI
IF(EOc(IP).NF.0)GO TO 994!
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WPITE(ILT.3)
WRITE (ILT.18) (TITLEET) ,=1,701
REA C(I R*4)I PR*I REpISP~v IF I X FIW vI SIAS* I Yy IZZvC I
rqouho=a

C ROUNDOFF 3PTION
C
410 CONTINUE

IF( IROUNO.NE. 0 CALL OUANT2(F, Y,N I G, rAc, NPT, 0' PL I
as CON TINULt

I c( IPOUND.NE.0) GO TO 99
DO 30 K=I.NPT

31 X (h.1) =9(K) +BIAS
99 CONTINUE

IF ENPI .GT .1)CALL INGPAT( Y,NPT ,NPI,b4AXPL ,-j)
C
C COMPUTE GOAM MATRIX
C

NP=NP i
IF(I8IAS.NE.C )NPP=NP2
00 44. L=i.NPP
00 44. J1I.NPP
AD=C1
IF(TSPN.E0.fl.AN0.XRCUN0.EC.-Z) GO TO 43

DO 42 Kt=NSTR,.NFT

42 AD= AD+ X(K,r) xc o, j)
GN( IjI= A I* OT
GOU0411l, J) =GN( I.,J)

43 CONTINUE
IFI IROUND.EO.&lIGEIqJ)=GNQ(,J)

44. CONTINUE-
TF(rSPN.NE.:.oQ.recLNc.NE.2J

ICA LL GK.R;'T (G'.. E. CET. v p4JFFqNPF.VA W. 1)
IF(IPOLNO.EO.CWRITE(ILT17)O'r
TF(IRCUNO.EO.1)WoITE(ULT,172)CET
rF(rpq.GE.i)CALL PRTP;T(Gl,NPr,NPc. MAY,-I I

C wRITE(ILT.1)
IPO=IR0UNj
IF(IPCUND.EQ.ClIPCUND=I0CLN0#1
IF(IQO.E3.q.ANn.TSFN.NE.-±,rGO TO 41:

* IF(IFIX.EQ.-I)GC TO 203
* C

C
C ESTIMAT=E CF -- G
C
.156 CALL 9UILn1Z(AMqVdJlPI,NPTqt'A%,NFIX)
C---------NPJ. REPLACED BY NPP NEWT 3 CAP'DS--

CALL FIX GDUMA1.GESTE,VNPPsNPP,SIGZMAYX, FI.YI
lIr(IFIX.Efl.1)WOITE(ILT..,82)SIG2
CALL GKRDCT(GEST. (,DEToV.NPPN'PP,'lAx,1)
WRITEC ILT,1621bET
IF (rpp.GE.IICALL PQTf4AT(C.ESTqhIv1NP1,'AX,0I
00 154 I=',NPI

00 15'. J=1.NP1I154 GDUM(I.JI=GEST(IoJ)
NFIX=NFIX-i
IF(NFIX.Gz.IIGO TO ISE
IS'(IP=i

C CALCULATE ERQCR MATPIX
C
150 rF(JPR.LE.2.OR.ISKZF.EQ.0)G0 TO 151

no 32 Imi.NP1
00 32 Ju1,NPI4 68



TA

32 FN( IJ)=G U9J )-GN (I* J)
WRITE(ILT,161)
CALL PQT4AT(E,NFl9NPi,.q4Xv-l)
WRITE(ILT,163)
CALL PRTMAT (ENNPi9NP1,tIA)'-1)

£51 CON T riquE

C 'ETEP'MIN;7 NUMFRATOR
C
203 CONTINUr

IP(!SPN.EQ. C) GO TO 996
CALL VEOUATNPI.VfNP2)vVVvGICD
CALL RSP)N(X(1,llqUv-,V9VV9NPT)
CALL IN .R.IT(Y NPT,NOI I-RE~sAYPL,21

C CH4ANGES fMADE HERZON FOP E(2)=C
L=N-IREM4
IF( IBIAS.NE .0 )LN-IRF~M+1

LP2=L42
IF(IBIAS.NE.C)CALL VE0UAT(NTX(LP)Uk^911)
CALL VElUAT (NPTX (1,LP2) ,FC, 1)
CALL YEQUZT(NPTXfILP),PIAS9Gv3)
DO 21b 1=1.L
DO 216 J=,LP1
G(IJ)=C..
DO 215 K=ND

216 G(I.J)=G(IJ)*'OT
C205 CALL PRTMAT69LLP19MAX920ri)

CALL GKROT (GE,DETVV ,LvLgMA~sCi
C207 CALL PRT4AT(E.L.L, AY.2E7)

CALL VE0U,;T(NP1,VVvAPPC,C)

00 21q J=I,L
219 VV(II=VV(I)4E (I*J)*G(JqLFPb,'OET

IF (IP.IAS.NE.C )FMffAN=VV(L)
v(NF2)=. j
CALL VE0JU T(NqV(NP3)vVV9Cql)

211 WRITE(IL733

WiPITE(ILT,210)(V(I),!=NP2,NFNP21

CALL RESPON(X(1,2)oUNtVVV*NNPT)
ERROR=9.C

00 213 K1,.NNFT

X(I(33F(K)-X(K,2)

213 EPROR=ERROR4X(K.3)*X(K.31
FFSUM=FFSUM*DT

'4 ERR.CF=ERROR0fT
RAT IO=E-7ROR/FFSUM
WRITE( ILT 9304. lERQCRFFSUM.qRATIO
IF(IPR.GE.2)WPITE(ILT,11CJ (FEK) ,KI,NNPTI
WRITE CILT.2J
IFI~PQ.GE.21WRITE(ILTtil0I(fI(,2),KziNNPTI
WRITEC ILTsil

'1 C
TO=C.0
IF( IPLT.G-. 2) CALL PLOP (NNPT*2,9X94AXPL *T09CT 1t4YI1HT 9IPUF)
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C FORMAT STATEMENTS
C
5 FCR PAT (5F IC.3)
4 FORMAT (I.,*6T29I494FIC.61
8 FORMAT(70A1)

1s FORMAT(2X,70AI)
9C3 FCQMAT (I G (5X, F5.C)

it FCRMAT(2y,12.* AmP=OF8.2,4 S=49FF1.41 + J~,FIC.'.,

14C FCRMAT QIY,8HG MATQTYJ
160 FCRt1AT (IC X8H?0 MATRIX)
161 FCRPAT(IC tl2wrCTFRL1E - GCSTI
163 W:CR)4AT(1CY,1.4HGT0UE - GNCISY)
162 FORPMAT(ICX,I1wGEST -ATRIX,- (DET=9.G13.b,*)v)

tic F CRMAT (2ri 11lK. F5.2 ))
CuDC rORMATC2X.I0(2w.r1i.5)J
178 FC,AT(Ox~, 4wNOIS' X IATPIXP
179 FCRP'AT(ljxANK MATRIX$
171 FC~t-AT(lCY916I TRUE GRAM1 fATRI'. (X=,:.f)
172 FORf1AT(I~x,7P-NOT!Y GRAM4 t'ATc~K,* (O;ET=4,G13.,)*)
lee FORMAT(5F!0.C)
3.3 FORPIAT(2X. wEST NUw/q1-NEP VECTOR*)

395 FCRAT(2XvEST1.4TF0 fEAN=4.G13.5)
482 FORMAT(* ESTI'IATEC NOISE VA=,C1.5)
I FORPIAT U)
2 FCRfA7(j')
3 f:ORMATC////P
C
C isrfl=Ji FOP~ POEFLING ACTU4L c Pu~lE 9LTA
C 1 09 2 FOR SIPULATICK 111w(71) (21SuIMS Cr EYF ANLI OSCI
C NOIG=8IN 9ITS (INC SN-BIT), Of. tIl'I'AL MANTISS.. q,'4U)LF;7 IN 2,T
C IPAC=2 FO3 c3INAPY* I[ Fo OE71I' L
C NP1=INTFGcATED FUNC

T
IONS, THE FIOST IS Ol7A

C IPR=E FOA MNIMAL PRINTING9 OTHEFWISF I OP 2
C ISPK=.' IF ANELVUE 01F R.CFF E6RFC, SIGNAL CN4L.1 r~o- ~J~
C -1 IF ANALYS IS OF TRLF C LNFOPUNLED) S IGftL CNLY
C NCOMP= CO-1PONENTS CAPEXPC P T)I STN(SI T).) TYPE
C IP.T=l (OR 3) FOR F3cw/AF.C INTrGRAT!ON, -1 FOR k-V.:S:
C DT=SA4PLING INT Xkle=WEIrNT OF t1S'4 (ACN-1))
C NPT=DATA F'TS., NNPl'=OOTNIS ON~ PLCT, N=DEGREE Cr MCO L
C IFIX=-1 F3.7 NO COR;ECTIOtN, 1
C NFIX=I FOR 0Z CORRPC., 2 FOR OZ Q? ccRqR.7
C 3 FOz BIAS ANC 07 0? f!0PPFCTI3N
C IFIX=O IF GEST=GN-A4, -. IF NCISF VAR To AE ESTI':IT-D
C -1 IF NO CORRECTION IS To 8F APPLITO (ISPN VLST eE 11
C

GO TO 1±1,
gqa CONTINUE

CALL PLOTCV.*C..9991
STOP

SURQGUTIN - SIGNAL(FNPT,*,Sr.S,SlvP.O,0N Cf'PI

DIMENSION F(lI.qAMPCI1)SP(1b.STPj1,SPI4C1)
COMPON /IO/Ii~,ILT9IPR9IftCUNO
ooCuLE PR-CISIOK AoB,C*Y
00 12 Ki1.NPT

12 FvKlm=.l
00 20 Im1.NCOPD
A=SRCII*OT

h 70



C=SP4( )
r30 15 'K=1,NF'T

X=AMP( 1)
XV (A.NE..3.0)X=X*DEXPtA4Kf

15 F (KK)=X4F(KK)
20 CONTIlUEr
C

IF(IPR.LT.2)G0 TO 3C
WRITE (ILT .9)
wrliTEELT6)(F(KI0e(=l.N 0 7J
WRITE(I LT1l)

39 CONTINU-
1 FCR PAT (/1)
6 FCRtiAT (20 iX, F5.2 11
9 FCRMAT(IOX9* F SIGNAL*)

RETURN
END
SUBROUTINE OJAN Ti(FqY9,NOIC-vIFA0,NFT ,NDII)

C ------------------------------------------

DIMENSION Ff1 l,X)UNDI?4,l
nouBLE PRzCISI0N CTqAC,9C
COMMON /046/I SPlt, fmS8,DELTASIG2,DT .01, BIAS ,lII

COMMON /DA1/FhArF,E6AR. FEUm,EESU!
COMMON /IO/IR,ILT,IPP,IROUNr

C
C9

FIOArw=
EBAR=6 *

FESUP-C.
EESUM=0.

C
C BINARY QU NTIZATICN
C WOSC=SN eTT.P'S99. .. *LSa MAX NEG-2*X#,Sa

IF(IRQ.D.NE.2)GO TO 551

NDIGI=NII --1
OELTA=(2.C*XMSI1)/(2.'**NCIGl)
DEL=DELTA/2.t
SIG2=DELT.~fOELTA/12-^
WvT(LMqDLASG
00 81 K=1.NPT
XEVzu .'

SN=-1. U
XX=F(KP*BGTAS
IF(KX.GrE. .CSN=1.0
XSN*XX

V XO=2.C*XMSA-OELTA
00 P2 I=i.NorG
n0=00/2.0
OIF=ABS(Xx-XrLEV)
IF CIF.LE.OEj. )WQ=XLEV
XTEM=XLEV-OD
1Ff XX.GE-.YLEV)XTEM=XLEVCD
XLE V=TFM

C WRTE(ILT,21C )XX,0C.OIFXLEV9X0
62 CONTINUt-

IF(XX.LT. DEL) X~G=.O
'1 X(K,11=SN*XQ

a1 CONTINUE
GO TO 711
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C
C42?
C4.E 6 OCI"AL 011ATIZATIC4
551 CONTINUE

rF(IRAD.N-.1OIG0 TC 711
AAA:1l2.G~fNCIG
DEL TA~i.D/AAA
SIG2=DELTA*DELTA/I?. C
WrITE(ILT,4.P9lOELTA,SIG2
00 91 K=1.NPT
XhKi,1C.'
FB=F(K3 .6IAS
XTEMIAES c"B
SN= 1.0
IF (FB.LT.: .^)SN=-1.C
XTEM=YTEMw AAA
XT6M=XTEN,+ .5
IX= XTEII
XTEm=IX
YTEM=XTE#4/AAA

91 CONTINLE
C
C SSO VALUE--
C
711 CONTINUE

00 21l '(=.NPT
FB=F(if) +BIAS

F BA R=F8AQ+F B
EBAQ=EEAQ.X (K,2)

EFSUI=EE-SUM+X(K.2)*X(K,2)
FESLM=FE-SUM.F LEK( K.2)
IF (ISPN.*Ef) * C)X~(K, 1) = Y(K, 2)

211 CONTINUE

EE SLMEESUM*0T
FESUP4=2.C*FES UM'*OT
F8A47=rAR/NP7.
EPIAQ=EeAR/NPT
WP T CL , 8 )B PrB R F SP,'-U

IF(IPR.LE.2) GO TO 4.11

e WQITE(TLT,11O)(Y(K,1),K=l.NDT)
tF(IStPN.E0).L),O TO 1411

WPITE(ILT.1I5)P(X(Kv2) ,K=1,NFT)

411 CONTINUE-
gqq CONTINUE

C FOR~MAT STATEMENTS
C
a FORMAT(1GV.SROVNO r.BIAS SIGNIL~l
18 FORMAT(IOX,.QOUNOFF =PRCr E*)
21C FCRIlAT (2X,5(2y*GII.4)P

lic FCRMAT(23(1,F5.2))
I15 FORMAT~iX,2B(lX9F5.3)$
17a FORIAT(IOX.1'.INCISY x mATFIx)
179 FCRPMAT(1CW98HW MATRIX)

4.89 'rCDMAT(2X,6HDELTA=.V1O5.3.5H SIG=.EI2.41
I FC'KAT(/)

RETURN
END
SU9FOUTINE COUTFYNr.IA.P.Dm
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C ADDS Mors,

DIMEN'SION FQ1-PX(NCIH,1)
OOUELE PRECISION~ OTADP'C
COMMON /OAO/TSDN,)(MSRi,DiLTASIG2,OT,oi,srAs.IrFiAs
COMMON /O~I/F8AQEEAPFFSUM9EESUtM
COMMON /I--iIP',ILTqIPRIIRCLNl

C
C9

F8i10=3 .
FBAR=L.
FE SL t != 0.
EESUM=C.

C
NOIGI=NDIG-I
DELTA (. 'cB/ 2', 'N I I
S lG2=OELTA#DzLTA/12. C
WRITE(ILT,'.891DELTfi*SIG2

C
C

IS=2.5816
IS2=397665
SIGMA=SOR-(SIG?)
CALL NR'4L NP,,1.r.,SIrr'IA,IS 9IS2,X(1,23g 'I
DO 26 K=1,NPT

265 X(KI,1F(<)+BIASK.,2)

C O 211 K=*..NPT

FB=r (KI+B818.
F BA R=FB ARGF B
EBAP=E9AQ.X (K.2)
EFSUm=E7S0M*X(Kv?P*X(K,2)
FESUM=FESUm*F P*X(K.21

211 CONTINUF
EESUM=E:ESIJM*OT
FESUM=2.C*FESUN0IT
F8AQ=FA;/NPT
E8AR=E0AR/NPT

WITE ( ILT.482 IF9 EAP,FFS0?', EESU'1
Ir7(IPR.LE.2) GO TO 4.11
WP ITE ( LiT. 8)
WPITE(ILT,11O (XfK.1).K=1.NPT)
IF(ISPN.EfD. ClGO TO 4.11

WRITE(ZLT 1 I
411 CONTINUE
999 CONTINUE
C FORIPAT STATEMENTS
C
a FCATIOKI6ROJN0EO F SIGtNALi
is FCRt0AT(10,l6HOUNCOFF EFROR El
218 FCRMAT(2X,5(2X,GI1.411
SAc F0RM1AT (2BIQ,F5.2 )l
115 FORMAT (1(,2CtX*tF5.3))
482 FORMAT (2X.5HF PAR= Ell .4, 6H E8AQ~qE11.4q5H FE2,oEl.4.. EfEEII.)
4.89 FC;ZMAT(2X,6H.4ELTA=.FlE.3q5N SIG=.E12..)
I FORMAT (/I

QET URN

SUBROUTIN- INGRATfENPT9tdP1,N0IM*INT)
C -----------------------------------------

DIMENSION EENDIM*1l
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DOUBLE PRECISION [T,SC,9C
COMMON /D-0,ISP,,XMSBDELTASIG2.CTOIBIASI6IAS
COMMON /IO/IR,TLT,IPR,IOUNC

C GENERATE INTEGRATEC SIGN4LS From CATA 1IN X(K,13
C INT=. OR 2 FOR FORWARD INT., -1 FC REVEPSF
C INT=2 FOR UNIT DELAYS (x(x,r41P=wtK-iriil

N=NF1-i
NP2=NPI4i
IOPT=INT.2
GO TO(51.,1,9,q!qOPT

C FORWAW!) IN~TEGRATICN
It CONTINUr

00 4.0 J=1.N
JJ=J+i
S(j, JJ) = K(1., 1
00 '.2 K=2.NOV
K1 K-I
XI K,JJ) =E(Ki, JJ).X (K, J)

40 CONTINUE
GO TO 73

C REVERSE INTEGRATION
51 CONTINUc

DO 6C J1I,N
JJ=J+1
V (NPT.JJI rK(NPT.1)

C X(tNPT.JJ)=a.C
RP K (NPT, JJ)
DO 60 KK=2,NPT
K=NPT. j-KhK
K1=K+I
809D=B+O*X (K. J)
V (K.JJ) =90

60 CONTINU '
IF(I81

8
S.(2.LI(,C TO 60

IPWQ=IBIA -1.
DO 61 KK. ,NPT
T1ME=DT*KK
K=NPT+ I-KK

61 X((KtNPZ)=TIPME**IPWR
62 CONTINUZ

* GO TO 79

*C GENERATE UNIT DELAYS
91 CONTINUE

00 93 I=Z,NPI

DO 93 K=2.NDT
Ki=K-I

GO TO 81
70 CONTINUE

sC=1.C
00 8D 1=2.NPI
SC=SC*DT

.4 00 SC Xi(NPT
be XIKol)=SC*X(Kvl)
81 CONTINUE

IF(JPR.LT.41GO TO 99
IF ( ROUND.EC.1 it ITE (ILT 17 F)
IF(IROUND.EQOCWQITE(ILTt179)
00 18.* Iftl,NP2

ISO lfIIEfILTI1C) IVIKI),X=1,NPT)
C wRITE(ILT,13

99 CONTINUE
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C
Clio F3RPIAT(4fiKFI2.e3)
tic lFORPAT(2QX,F5.2))
178 FORMAT(IC ,1%I4NOISY X PIATAIX)
179 FCRP'AT(1GX,BHX) MATRIX)
I FCR'AT(/)

RE T R
END
SU3rcOUTIN4F FIX(., FCDXNNCSIGNDIr4, IFIX 3

C
C ESTIMATE NOISE INTENSITY SIG (ASSUME: WHITE PsCISE)
C CORRECT NMTSY N4ATIl= C
C (P) DENOTES NOISE MATRIX FOO UNIT NOI!SE-
FC NC IS TH4E NONZZPO SUBPATFIX OF F =COV OF NOISE
C

DIMENSION G(NDIM.1),P(NDIM.1l) C(tOIN-1IpC(NOI1, 1b.X(iI
IF(IFIY.EC.C)GO TC 51
JCT=C
SIG=0.0

3 SUMCET~a.1

JCT=JCT+.

IF (JCT .EQ.1tDETG=COcT

no 7 11=1.N
0O 7 JJ=I.N
c(rijji=G(I .JJI

IF (JJ. EQ. J3 CII .JJI=P (I.',JJI
7 CONTINUE

CALL GKROCT (C*09DFT,XqN,N.NIP, 2
SUMCEV=SUIOET +OET

5 CONTINLT-
SI=GDET/SUNCIT

51 CONTINUF
00o 9 I=1,N
00 9 J=I,.N

9 C(I.J)=r(lqJJ-SIFr(IpJ)
IF(CIFIX.E)I. C3GO To 11
CALL GKR)CT(C.,,'ET,Xp,',NtNi'i*t)

IF(COET.LT.3.01CO TO 51
IF(JCT.GF.5)GO TO 11
IFfCOET/DETG.C.T.0.1)CALL FEOUAT(NqNqC..CqNCIfqj)
SIG=SIG.ST
TF(CIJET/OE:TC.GT.0.1)GC TC 3

It RETURN
END
SUBROUTINF EUILOR(A,XsN9PAX)

C -- - - - - - - - - - - - - - - - - - -
C CONVERSIO1N MTRIX$ REVERSE INTEGPATIOt - I.k. VOOELING

DIMENSION A('AX,13,X(13,Y(?.3
.4 OCUOLE PRFCIS1ON 1T.Y

COMMO4N /DAG /TSPNKNMS6,DELTASIG2,CTOIt31AS.1B3I AS
.4 COMMON /IO/IR,ILT91PRvIRCUND

NM I=N-1
DO It 11I,N
Y ij= * a
DO II J11.N

11 A(I,J)z3.0
AfN9N)ol.C

C
17 00 20 JJ='*NMI

J=24JJ
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Do 15 SCI(1.2
KsI(IC-1
0 0 15 I=JvNMI

23 CONTINUE
00='..D
0O 22 J=2,N
0O=OO'01
00 22 I=J.N

22 A(I,JlVOOQA(IJi
C

00 25 I~i.N

00 25 J=l.N
25 V (Ilxv (I)+A(I ,J)*Y(J)

DO 28 11I.N
28 xfI)=Y(I1/Y(1

IF(IPrJ.GE.3)WITE(67(XfI),I1I,NI
5 FC~poAT (2X.iDG12 .5 )
7 FORMAT(* ESTIMATED PARA~rTER VSCTOR,9/slCC13.6)

RETURN
END
SWi3rOUTIN: GKOTXYDT)LlrAN*.-VI-T

C ------------------------------------------------------
DIMENSION XLAP'OA(t)
DIMENSION K (MAX,1)*Y(MAX.1)
DOUt3LE PREC ISIO A*t'teCO,E
IN'TEGER NL,4(2920,
ODUeLE rRCIsjorN CT,SC9.CR0
COMMON ,DAO/ISDN.X 5q,DELTA,SIG2,CT.0)IR'ASI ITA
COMMON /IOIR,ILTipR.r-lCUN0
IGKR~i
TP'(N.NE.IGO TO 3
V (1,iII.
DET=X(1,il
GO TO 61

3 CONTINUE
00 6 I11,N
DO 6 J=I,N

6 Y ( J9I) =X (J.1)
A=1.C
DO 4,3 I=1.N
13=0.6
L~I
M I

V C
C FIND LAQGEST EN'TRY AtLom) IN Ti4ELOWF 0P DIAoCNAL SUa.,i.Tzlx

C
no 18 J=1.N

00 18 K=I,NI
IF(ABSfYfvJI ).LE.OA13S(9l)GO TO 18
B=A eS(YV(K,J~
L= K
Ms J

104 CONTINUE
vjc

CINTERCHANGE ROWS

rP(L.EO.rlGO TO Z4.
00 23 J=IN

.4 C=Y EL,.1)
V IL JIOY(IJ)

23 Yf!,Jlxc
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C INTECWA.NGE COLUM4NS

24 IF(N.EQ.I)GO TO 29

28 Y(J,I)=C
29 NU4(1.I1=L

NUN (2, rIii
B=Y (I,11
V (I, II=A
00 42 J=i.N
IF(J.EG.IIGO TO 42
C=-Y I J)

DO 4.1 K=1.N

E=Y CK,J)*B+O
IF (CA9S (E)*LT .1.0 0-1Z ' ceS P31 IE=: *

41 Y(K,JI=Ei'A
'42 CONTINUF
43 A=a
C
C RESTORE COLUMNS

00 58 1=2.N

J=N+1-I
K=NUM(2,J)
IF(K.EQ.J)GO TO 52
DO 51 L=I.N
CcYV(K, LI
V (K*L)=Y(JoLl

51 Y(J.Ll=(
52 K=NUPM(1,J)

C RESTOR2 ROWS
C

IFCK.EO.JlGO TO 5SR
DO 57 L=1.N
C=Y(L, KI
Y(LIKl=Y(L,Jl

57 Y(L.JI=C
5o CONTINUE

OET=A
61 CONTINU

IF(ICPT.NE.IIGO TO 1500

IF(YdI,1j.LT.0.C)GC To IC ,

00 200 1=2.N

IF(IGKR.EO.0) XLA~nA(II=Y(I,1/Y(.I
IF(IGKR.EGOIGO TO ZG3
A=Y (I, T)I ~ ~IF (V (1, II*T. 0.0) Az3.
IF( IGKR. Er.). AzABS (V (1,1)
XLAMDA (1l=osnpT(A/Y(1, ill

C IF(YdI,1.LT.6.0IXLAMoA(1l=-XLAMoAIl
XLAMOA (I)=SC*XLA'IOA(I)

200 CONTINUE
XLAMDA (11=1.000

f ( IPR.GE .1iWRITE (6, 10(1 XLAMDA (II, 11. N)

N PP=N
IF (ISIASNE.O INPPzN-1
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CALL 8UILOR4Y ,KLA9CA9NPpPtAVW
136 FORIPAT(5X.*SYNTHETIC FAR41rETER VECTOR,9/91DG12.5)
10CC CONTINUE

RETURN
END
FUNCTION --OM2 tNom)

C CALCULATE' copqrINATION, M1 CUT OF
IF(h.LE.GIGO TO 99
(L=1
LOsi
rF(P4.EO.ClGo TO 8
MNl=N-M+i
DO 5 124Nl.N

5 L=LIl
00 7 Im1,"

7 L0=L01
a COMBzL/LD
99 RETURN

END
SUBROUTINE BUILDZ(Z0q.NP19NTqNCP1, tFIY)

C -- - - - - - - - - - - - - - - - - -
DIMENSION Z (NDItV.1)vR(1)
OOUeLE PR7CISION CT
COMMON /O'.OISPN.KMSP,0E-LTA,SIG2,CT,a:.$IAS .11 I.S
COMMION /IC/XR,ILTIPR,IPCLNC
TI4I'E=DT*NOT
TCPT=NFIX,1
G~O TO(201.131,101*Ztl) ,ICFT

00 2'. I=l.NP1
Zi I ,Ii=SC*NPT
TiPII.GE.2)Z(I,2)=DT*SC*COPSNI)T-1.D

24. SC=SCDOT
D0 166 J=3,NPI
00 166 1=J.NP1

AC=1.0/(IJ-31 - 1.C/CI+J-2)
166 Z(I.Jl=AB#AC*0T

Z (3,3)=Z (3.2)*0T*(NPT *1 .0/2. C
wRITE(ILT.16: )
GO TO 331

231 CONTINUE
* DO 213 J=1.NPI

00 212 I=J.NPI

21( (I.jl=.TMEO(,11T1*E 4J-I
WRITE(ILT.16i)

3a 1 CONTINUE
DO 174. 1=1,NPI
DO 16A J1,.NPI

168 Z(IJl=Z(Jf,

174. CONTINUE
160 FORPIAT(10Ef QUANT. NOISE *
161 FCRPOAT(ICX**BIAS EFFECT#)
220 FCRAT(?Wq5(2X9Gl!.6I)

RET URN
END
SUBROUTINE P9TMATfAvlpN.NCIPvLOCl

C-------------------------
C
C PRINTS A PIATkIX* ANI' AN II'TEGER IENItPS A LCCATIGN) 197 LCC.Gi.1
C

DIMENSION A(NO114,114 78



IF ILCC.GE. I) WRITE 1695 )LOC
00 31 r=iN

31 WRITE(6,1A)(Aff,J).J=101~
5 FORMAT(* LOCATION/INTEGER=*915)
14 FCRMAT(2X,10G13.6)

RETtUPN
END
SUBROUTINE RESPON C KV, NGANMYA XLAMOAMPII

DIMENSION X(l 3,V(1.)*GAIMA (l)*XLlMCA(lI
DOUBLE PR=CISION XSAvAgveo
NMI=N-1
NPLIN+l
NPNPI=N4NGI
NPNP2=N+N+2
00 19 I=1.NPNPI

19 XLAPDACI)=S.C.
XSAV=D.j
D0 2C K=11,
IF(N.EO.1)GO TO 25
Do 21 I=I,NMI
J=NFI-I

21 XL AljA (J)=XLAIA J-11
25 CONTINUE

Do 22 11I,N
J=NFNP 2-I

22 XLAI.C(J)=XLAPOAfJ-1)
XL AI0A (I)=XSAV
XLAPYDA INPil=V (I)
XSAV= * C
00 23 I=i.N'\,P1

23 XSAV=XSAV-GAIIA(I*)*XLAPCA(T)
IFODABSEXSAV)*GE.1.QE1O) XSAV=C.3

20 X(K)=XSAV
RETURN
END
SUBROUTINE VcEOUAT(NPT,Y,'XNPUL,IOFT)

C---------------------------
C IOPT=D S T Y TO 7EPO

*C I OR 2 SET Y=X (PPINT IF 2)
*C 3 SrT Y=Y+ CCNFT X

C 9 SET Y TO ZERO
C 10 S7T v=P4PULSF
C 11 SET Y=STEP

OTN4EN3ION X(1),yC1)

nO 33 K=1,NPT
IF(IOPT.E0.1.OD.ICPT.E.2)Y(KOX(c)
IFlIOPT.EO.3)VIK)=Y(Kl+Xtll
IF(IOPT.G-.9?Y(W0.0
IF(IOPT.E.:i )V(K)zl.0

33 CONTINUE

6 FORMAT (2 .1G12.51

qETURN
ENO
SUBROUTINE lqEQUATfM,N,B,ANOIfP,IOFT)

C IOPt=0 SET 4 TO 7EqO
C 1 B EQUAL TO A

C0 ig TC IDENTITY
DIMENSION AfND09iJ.1)9(NCI',1)
00 33 Izl.M
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00 33 J~i,N
lF(IOPT.NE.1)B(I,J3=0.C
IFgr0PT.E0).lL.AND.I.EQ.JlehI,J$=1.:
IF ( IPT.EQ. 1) 8(1Jl)A(Iq .3

33 CONTINUE
PETURN
END0
SU3ROUTIN: PLOP fNPTvNF iyNDlt TZ9 CTvLABEL *I K'-.' rJF)

C NPT=NtUMi OF TIME FTS (WAPNINGS NtIm SWMI r-..Gc.NPT+2)
C NF=NUM2ER OF FUNS
C YCIK, ) DA-A AQRAY CF DIMENSIOKN tCIri,NF
C TO=INITIAL TI14E. orTimE INCPEM:ENT
C LAREL, INDEP = TITLES FOR Y AND X AXES

DIMENSION Y(N'C[MNF),YY(Z).LAPELClI.I DEPf13
DIMENSION X (512),!SUF(512)
COM!'CN /IO/IR,1LTiPP,rPCLNO,TPLT
M=NFNC3

NPT 1=NPT+i
NPT2=NPT+2
XC(1 I=TC

0O 9 K(2,NPT
9 X(OK=(K-1)tDT

0O e 11J,NF
nlo 8 K=NP71,NOTP'

8 Y'4,l=y(NPT,Tj
C
C rNrTIALIZ-A:rD.IN., 12TN.FAP-P My.Ei73=f!

CALL PLOTMX(60.0)
C SET ORIGIN

CALL PLOT (C.o-.S,3)
CALL FACT R(5.0/'6.51

C 9EGIN PLOTTING
CALL SCALE(X96.5vNPTvl)
CALL SCAL:E(Y(i~i).,. Z,M,l)

* CALL AXIS(C.qC.,llI4TIME (SEC.),

* *-16vb.5*.9X(NPTI),v(NPT2l)

CALL AXTSt0.,G.*16R4PESPOr.SES V s

WRITE(6,6)X(KiPTi3.X(NPT2l
WPXTEf(6,73 V ml).YV (23

6 F0R1MAT(lv
5
TOIV (6.5 v),(xF.)

7 FO;?MAT(lX,'YLvDIV flT DIV),v4(IXF7.3))
00O 10 I=I.NF

v (NPTz,I3) ('4?)
IF(I.EC.i.oR.rPLT.EQ.3?CALL LINE(X.vY(1.liPNFT,1,I-itI)
IF(I.Ta.2.AND.I FLT.EO.2lCALL CAS'4LN(XqY(1 ,2),NPT.*:)2 1' coNTiNUE
CALL PLOTfIC. ol.o-31
PETURN
END
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LISTING OF
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C
c *4488##88

c
C
C USPEG
C
C
C
C 4648 88888848

c U uSE,; go;.RA~r
C EVALIJTES T~ M.-NITUrVT 50CT;U4
C OF THE FOLLCWINC- PULSE II\FUTS (SEE SECTIOt 4

C Or THE REPORTIS
C
C i. TRe,-(T) 0,4-- CYCLr' TRI WAVE,. FCLLOWE- ?v ZERC LEV;L
C 2. TP4AT) +V:- 'AfLt 'Y^ZLf TPI WVAE, FOLLOizj IV ZFi LE-v-L
C 1. CEXJ(T) rSMLTO4Y PULSE (110 DE-C~y. FCLL )i-c BY Z7-NC Lm;'dL
C - CEYI(T) S-' AS It WITH~ Eyo. CAYTNI C-v. - 3az TIrIlM C

C 5. OEXIMT SA'; AS 3, WITH EXP. DEC4Yl:.A E.qv. - T TImE- r.OrNET
C S. OTP?(T) OSCILLATORY PULSE WITH~ TRI ENV.,F LLOjWED qy ZEP-C L=EVrL
C
C FOZ PULSES 3 Tn 6 TWE 05CLLATIC-N IS A CGSIK- -JV;
C
C

DIMEKSION N2~.
DATA

P I ... A TtN( )I

OT2=2. 08DT
N N = 5
NF= 13
Isi=i
IS?=

00 3C J=1.4F

3 0 C C 4 T I . -
I TFST=0
I F GTES-. NE I )GO TO 2q
N Q)P =10 ,
F 11)P =0 . I

IS2=ISl
NNZl
NFF=1
1PP=3

29 CONTINUS
IF(ITEST.NE.1 PIPP=G
0O 100 ISTG=ISI.IS2
NFF=NF
IF (ISI G.LF. .2) KFF=NF-NFI
00 95 I=I.NN
00 94 J=1,NFF

A IF(ISIG.El.6.ANr.F(JI.Lr.C.0IFR(JJ=-3.Q
IF (lSIG.GF.3.OR.1TEST.E0.l)G0 TG 31
CP JI:F (JGNFl)P-1.0

.1*31 CCNTINU7
GO TO (41*41951*5195196it71P,1SIG

4.1 CONTINUF
RF= (0 * I 5r-2P 8 N (I)4 82
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THETA=PI*PF
IF(CISIG.EQ. 2) T4TA=2. O*TI-ETA

IFC IVC.GE.2)WRITE (6*7 )THET-i

IFfIP'4.GE.23WQIT(6.,9IXX

IF( II .G. h 11 (6~f,YXA CO

GO TO 93
51 C ON TIN UZ

A= G . 0

IF ( ISIG.-rO. 5) A=4: .'%I I

IF (IPR.GE.2) WPIT Q(, 13) 9C926,
XFK= 0.

DC 57 Cr=!.2
FF=FR( J 1+2. C' (i(F- 1)
w:P 12*F,;

C=CCZ( W*s
S=SIN( W*)

Y I= -UE4RS
zPD=A* Y.+W'y I

7I=AYI-W*YR
!)=A *A+U W
XP= vQ.Z:/

57 r ON T I'l L

IF( T.E.F2)W Iz-U, 5 XXX,

Go TC 03

61 CON TIN UE
FR=0.0:.5*NQC)
IF( IP-?.GE.Z)WRITE (6,?31 8

w=P124FF
TwETA=1*cF*

IF(THETA.NE.C.C)a=SIN(THETA,T4-'TA
r=COS(T4;-T A I
S=S IN( TwETA)
I F( IP7.rE.2IWh I TE(b, 24)WiTWF-T A DC*S

WP=Xk+YI/d

I( I XI-YR/W

6? CO.- TNUdE
Wx=S0PT (X**X*XII

IF (J.iO.Nr )XC-XX
GO TO q3
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71 ^ONT71 i4L'
93 r 04T I NU Z

9'. C04 TIN U-
DO 9c J=1.NFF
XX=A(J,I)

96 CONTIN07
95 COiTINUE

C WRITE(6,i.)
DO 97 I=1.NFF
rRl)=FPQ(I

97 WUPITE6.56FRQ(XfIj).j=1,N
t J

WRITE(6.1)
13C CONTINUE
C

I IrCp*4jJ(

7 FOMT(2W *THTA= *.F13.E I
a rO4rAATCZx.*YSTN4 )/( )=*,FI'.6)

1I. FOkfAT(1O~x.44. IN n"~ Fnr rIIrFEENT FR7,I4T*.* I SI C-

13 FORlAT (2X,A*, Fj^,.5. E#FZ*,4'F.5

23 rCfATf2(.*B=.%F.F)

STOP
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MISSION
Of

Rrm Air Development Center
1RAVC ptan6 and execauteA teswaith, -deveopment, tet and
4etec~ted acq&iaition ptopam in a6uppoitt o6 Command, Con.C'wZ
Comnwi &tion6 and IntW.Zgenc~e (C3r) activite. TechzniiAt
and engineeAing .6appo'Lt within aAeah6 oj techncAt eompeteiute
i6 p'Lovided to ESV Ptogh~oam Oj~iceu (PO.&) and otzex ESD
etement4. The p'r2 ,wZpat tecknicat mi.6,6on a~eaa ate
eownunicaton6, eecomagnetic guidance and contLot, .6A-
veittance o6 gtiound and avmopace object6, intettZence data,
cottecton and hand, Wig n6oxrmation .6y,6em technotogy,
iono.6pkeAic pkopagation, 6otid £tate 6cZenc~eA, mIaic ve
phyq6ieA and etesctJonic 4eZ4abAiaty, maittanabititg and
compaLtibitit.
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