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ABSTRACT

A method of density estimation is proposed, which is a

rational modification of orthogonal expansions, combined with

a stopping rule determined by a nearest neighbor statistic.

This method yields consistent estimates and applies (in principle)

to density estimation in any number of dimensions.
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ON NONPARAMETRIC PROBABILITY DENSITY

ESTIMATION USING ORTHOGONAL SERIES

I. INTRODUCTION

Among the numerous non-parametric methods of estimating a

probability density function, the approximation of this density

by a finite fourier series has several computational advantages.

Probably the most important of these is the fact that the eva-

luation of this density at a new data point requires only the

storage of certain fourier coefficients. One of the main dis-

advantages of such an approximation of a density is the difficulty

of determining the number of terms in the expansion.

In this note, we propose an approximation which is a rational

function of a finite fourier series. The number of terms in

this series depends in a very natural way, on the nearest neigh-

bor error rate for the sample data when compared to a sample

drawn from a reference distribution. In III we show that the

method is consistent and in IV we remark on the relevance of

this method in hypothesis testing.



II. SECOND ORDER SOLUTION TO THE BINARY DECISION PROBLEM

Let pl P2 be two Lebesgue measurable, bounded (S<K) prob-

ability density functions on the unit cube, I, in Rn. We assume

further that p1 OP 2 on some set of positive measure in I and

that for some 6>0 , pl> on I. Let {f E L2(I): E1 f

=f pldx=0, E2 f =ff P2dx=l}. According toll], a second

order solution for an optimal discriminant f E 4, for the binary

hypothesis test H1 : X has density p1 vs. H2 : X has density P2 '

is a critical point for some real a of the functional

J((f) = (%VAR1 f + (I-a)VAR2 f (1)

In fact if we restrict ourselves to the case O<a<l and solve

(1) for the unique (to within a null function) critical point

(and global minimum of J (f) for f c/), we obtain by elementary

variational calculus

+ X (2)
a + (1-a) p2/p 1

with
(-)fa P2Pl d

0 >;k = ~J 1+(l-a)P dx (1-a) -J a?
(P 2 -PI)Pl dx

Jap1+ (1-a) p 2

It follows that F is rational and increasing in (p2/Pl )

and hence optimal (by an adjustment of threshold) for minimum

total error (or Neyman-Pearson at level a) hypothesis testing.
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III. DENSITY ESTIMATION

For simplicity we consider only the case c= . Similar

results may be obtained for other a. Solving (2) for p2/Pl we

obtain

P 2 =_f- f-l+2J (()

Pl (--2)- J

We now write

J (f) + 4 ( Cnn) (4)

where Enn = Plp dx is known as the limiting nearest neighbor

error rate, i.e.,if we generate n independent class 1 samples

from a distribution with density p1 and similarly n class 2

samples from a distribution with density P2 and then classify

new samples (drawn from class 1 or class 2 with equal probability)

as the class of the (a) nearest neighbor in the original 2n,

then the classification error of this procedure approaches nnn

as n-oo with probability 1. (See [2].)

We now make a final assumption that pl=l on I. Again,

results analagous to the following will still hold provided p1

is strictly bounded away from 0 in I.

Suppose we are given n independent samples from a distribu-

tion with density P2. Let 1im l '2 ''" be a complete orthonormal

system for L2 (I). Finally, let vn be the empirical density

determined by the n sample points. Now, consider the solution
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of the variational problem: minimize

2VAR1 f + h VARn f J N n(f) (*)

such that
Nf :E ai i

E f = 0

E f= 1
n

where N is determined by a "stopping rule". We then let fn be

the above minimizing f. Before describing the determination of

N, we show that the preceding variational problem has solutions

with probability 1 for large enough N.

Lemma Assume n is fixed. Then with probability one (*) has

solutions for large enough N. In fact min N n(f)- 0 as N-00
f

with probability one.

Proof: Let L be any positive integer and c-0. Then there is

an N0 such that, for N>N0 , there are functions Tl' If 2'.. L

C< ' O 2''''VN> with the properties:

(i) Ilil2<. +ci> ~ ~ lii - L

(ii) there exist disjoint subsets A,.... A2 with

L
m(UA i ) >1-c s.t. x c A. implies

1 1

ITi(x)-lI< c and ITj(x) I< (j i)
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Hence, with probability (wrt p2 ) > (1-KE) n  each of our samples

k will lie in some A. Let us now consider the function

n n __ i

~i~_ fY dx
f n=n

= E__i i ( x k )  , Ti d x

k=l L~l Z (xk - f 1'd

Clearly E I=o, E n f=l. We have further

n 1+ F

VAR, 1n-nT

VAR 2n s - 2

n 1l-ne-n .I!+ E

Hence, J Nn() becomes arbitrarily small as N-00 with probability

arbitrarily close to one.

The solutions of (*) can be easily obtained by the method

of Lagrange multipliers. Since Via 1, (*) is reduced to solving

the following for ai -

N 2  N a
min[ a i + Ea.a.

2 i,j=2

such that
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N

- ini =  i(x)

S=1 n
1ij n 1Pi i(x£) (P9(x£

For the determination of N=Nn, we first estimate J (f) by

n= + C (5)
n 4 ( _n)

where cn is the expected nearest neighbor error rate of the n

samples with the leaving-one-out method:

n 1 n rl(lV)n-1]
= , l (lV (6)

where VZ is the volume of the intersection of I with a sphere

centered at x and of radius equal to the distance between x.

and its nearest neighbor in {xkk. Now en__ Enn with probabi-

lity one as n-aoo and hence Jn-' J with probability one as

n-o0. Let N n be an N which minimizes IJNn(fn ) - an1. By the

lemma such an N exists with probability one provided that

J n>0 and this is true with probability one as n-oo
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The estimate we then use for P2 is

n - n (7)
Pn =  2- fn n

If we should know the value of K, we may use the truncated esti-

mate

Pn = (PnVO) AK (8)

We now make the following consistency claim.

Theorem pn P2 in Lebesgue measure with probability one and

2 with probability one.

Proof From the form of (3), (7), (8) and the fact that

Jn (-f), it suffices to show that fn T with probability

one.

Note that V2' 3'" are linearly independent and dense

in{fffdx~o} L PE2 P2
in L2( + 2 ) where L2 ( ++-I) denotes the set of square

integrable functions wrt. to a measure whose density is +P2/
2 .

Now form a complete orthonormal basis 2' E3'''" of

{f:f fdx=O}n L2 ( +P) where each E is a linear combination of
f 00

4P2 3 ... Let c =f i P2. Then f =F b i i where b. is2

00 00
the solution of min E b.2 such that , c. b. = 1. This is

00 2 2 '

just b. = ci/ 2 ci2.
2
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n n
Similarly, we form a complete orthonormal basis n2 fl3,''

vn n
of {f f=0}n L2 ( +- -), with each n a linear combination of

V2# IP3 .... (i* Let d =f nin v . The solution of (*) is
N n n n N n n 2given by f n 2dn i n/

2

Clearly, di  and ni n-i12-0 with probability one

as n-.oo for each i. Since

( ci2)- l - ( (din)2)-l- O

with probability one as n-.oo , for each N, it follows thatI(2 (din) 2-( ci2)-- 0

N 00
with probability one as n-.oo, and hence f (din) 2 . c.

2 2

with probability one as n-oo. Finally, for any E>O pick M
0

such that E ci < . Then
M

Nn  00

lim II fn-l 2  I ll d in
M M

with probability one. But

11 gll2  
- 2 l1gll P2 and llgll2  _f-2 11g l1
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Hence li 1fn-Tl;2 : 21% with probability one.

1Since c was arbitrary, the proof is complete.

IV. A REMARK ON HYPOTHESIS TESTING

If we are given two sets of data {xi}n=l and {yjn1 and

are then given the task of constructing an optimal discriminant

between the two classes, we might solve

mi [VA- n + VARvn (**)

such that

E f=O

E n f=l

Nn
f = 'P

Pn' Vn empirical densities for{xi}, fyj

where N is determined by the analagous "stopping rule".
n

Unfortunately the consistency proof does not apply in this

case since we are unable to find a bound for 1II1pl+P 2 in terms

2
of 1glI n . Hence, the reference density pl=l "forced"

2

the consistency. We therefore recommend the estimates: Pl

by the method of III using {xi } and then similarly P2 using {yj).

The discriminant p2/pl will then be optimal with probability one

as n-0.
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