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ABSTRACT

A method of density estimation is proposed, which is a
rational modification of orthogonal expansions, combined with
a stopping rule determined by a nearest neighbor statistic.
This method yields consistent estimates and applies (in principle)

to density estimation in any number of dimensions.
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ON NONPARAMETRIC PROBABILITY DENSITY
ESTIMATION USING ORTHOGONAL SERIES

I. INTRODUCTION

Among the numerous non-parametric methods of estimating a
probability density function, the approximation of this density
by a finite fourier series has several computational advantages.
Probably the most important of these is the fact that the eva-
luation of this density at a new data point requires only the
storage of certain fourier coefficients. One of the main dis-
advantages of such an approximation of a density is the difficulty
of determining the number of terms in the expansion.

In this note, we propose an approximation which is a rational
function of a finite fourier series. The number of terms in
this series depends, in a very natural way, on the nearest neigh-~
bor error rate for the sample data when compared to a sample
drawn from a reference distribution. 1In III we show that the
method is consistent and in IV we remark on the relevance of

this method in hypothesis testing.
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II. SECOND ORDER SOLUTION TO THE BINARY DECISION PROBLEM
Let P/ Py be two Lebesgue measurable, bounded ( £K) prob-

ability density functions on the unit cube, I, in R". We assume

further that p,=p, on some set of positive measure in I and

that for some §>0, p126 onI. Let &= {f ¢ L2(I): El f

=f f pydx=0, E, £ =ff p,dx=1}. According to[1], a second

order solution for an optimal discriminant f ¢ i, for the binary

hypothesis test Hl: X has density Py vs.HZ: X has density Py

is a critical point for some real o of the functional

Ja(f) = aVAR, f + (l-a)VAR, f (1)

1 2

In fact if we restrict ourselves to the case 0<a<l and solve
(1) for the unique (to within a null function) critical point
(and global minimum of Ja(f) for £ edﬁ), we obtain by elementary

variational calculus

- [(1-0)-2]p,/p, + 2

a + (l-a) pz/pl (2

with

PoP;
0 >A (l-a)Jr“pl+(l'“)pZ ™ (1 T
‘(pz_pl)pl = -a) - JG( )
fap1+(l-a)p2

dx

It follows that f is rational and increasing in (pz/pl)
and hence optimal (by an adjustment of threshold) for minimum

total error (or Neyman-Pearson at level B) hypothesis testing.




IIX. DENSITY ESTIMATION

For simplicity we consider only the case a=%. Similar

results may be obtained for other a. Solving (2) for p2/p1 we

obtain
P 7 f-1+23, (F)
B T TR T (3)
We now write
=z nn
= + 4
T8 =%+ g @)
PoPy - :
where €an = _/. dx 1is known as the limiting nearest neighbor

pl+92
error rate, i.e.,if we generate n independent class 1 samples

from a distribution with density Py and similarly n class 2
samples from a distribution with density Py and then classify

new samples (drawn from class 1 or class 2 with equal probability)
as the class of the (a) nearest neighbor in the original 2n,
then the classification error of this procedure approaches €n
as n—ow with probability 1. (See [2].)

We now make a final assumption that pIE]. on I. Again,
results analagous to the following will still hold provided Py
is strictly bounded away from 0 in I.

Suppose we are given n independent samples from a distribu-

tion with density P, Let lE¢l, ¢2"“ be a complete orthonormal

system for L,(I). Finally, let v_ be the empirical density
2 n

determined by the n sample points. Now, consider the solution




of the variational problem: minimize

_ n
% VAR, f + !5VAR\) f—JN () (*)

1 n

such that

N
f=2a¢
1

where N is determined by a "stopping rule". We then let f be
the above minimizing f. Before describing the determination of
N, we show that the preceding variational problem has solutions

with probability 1 for large enough N.

Lemma Assume n is fixed. Then with probability one (*) has
solutions for large enough N. 1In fact m%n JNn(frao as N—@
with probability one.

Proof: Let L be any positive integer and e€=0. Then there is

an No such that, for N>N0, there are functions Wl, Wz,...WL

e (¥, ¢2,...¢N) with the properties:
2_1
» <_
W v, lissd + e
(ii) there exist disjoint subsets Ay,.--A, with

L

m(UA,)>1l-¢ s.t. x € A, implies
1 1 i

Iwi(x)-1|<e and l‘l’j(x)|<e (Fwi) .
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Hence, with probability (wrt p2) > (1-Ke)® , each of our samples

£ will lie in some A, . Let us now consider the function 'A

Yy, = jpw. dx 3
~ =1 1o 421 19,
i |
= 2 2‘*’1 (x)- fw dx

Clearly E1 %=0, Ev f=1. We have further
n

1 2
- n i—+ €
L JIL £

VAR

1

Hence, JNn(?) becomes arbitrarily small as N—® with probability
arbitrarily close to one.

The solutions of (*) can be easily obtained by the method
of Lagrange multipliers. Since ¢lE].,(*) is reduced to solving

the following for a; -

N
minkzai + % Zaljlj

2 i,j=

such that




. . l n

b, == ; "i(xl) i
— 1 & .
By =% %E ¢, (x)) Vj(xl)

For the determination of N=Nn' we first estimate J%(?) by

n
T =%+ —5 (5)
" 4 (%-c™) j

where ¢” is the expected nearest neighbor error rate of the n
samples with the leaving-one-out method:

n
n 1 n-1
en =L ’E [1-(1-v2) ] (6)

1

where V, is the volume of the intersection of I with a sphere

centered at X and of radius equal to the distance between X,

. . . n \ .
and its nearest neighbor in {Xk&#z . Now ¢ =€ with probabi-
lity one as n—o and hence 3n~ Jk(f) with probability one as
n—ew . Let N be an N which minimizes IJNn(fn) - Enl. By the
lemma such an N exists with probability one provided that

3n>0 and this is true with probability one as n—oo .
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The estimate we then use for P, is

fn-1+23n
= (7)
n n

If we should know the value of K, we may use the truncated esti-
mate

P, = (P VO)AK (8)

We now make the following consistency claim.

Theorem P, P, in Lebesgue measure with probability one and
6H—£%>p2 with probability one.
Proof From the form of (3), (7), (8) and the fact that
En—oJ%(f), it suffices to show that fd—£3>f'with probability
one.

Note that DY, ¢3,... are'linearly independent and dense
in {fi/.fdx=0}n Lz(%+%§) where LZ(%+%%) denotes the set of sguare
integrable functions wrt. to a measure whose density is %+p2/2.
Now form a complete orthonormal basis Ez, £3,... of

{fi/.fdx=0}n Lz(%+%%) where each Ei is a linear combination of

o0
$0 $3,...9,. Let c, =f€i p,- Then =Zz: b £, where b, is
00 5 o0
the solution of min bi such that 2, cy bi = 1. This is
2 2

Q2
just b, = ci/g; c, .




n
Similarly, we form a complete orthonormal basis nzn, UENERR

v
of {f:‘[ f=01}N L2(¥5+—2'1) , with each nin a linear combination of
n _ n , 3
Por Py 0., NLet di —ani V,+ The solution of (*) is
n n
. _ n n n, 2
given by f_ —}2: a.” n /f; (@; " .
n n - , A
Clearly, 4, '~ c, and I ny -‘éiHZ 0 with probability one

as n—oo for each i. Since

N ~1 N -1
2 n, 2 -
2 2
with probability one as n—o , for each N, it follows that

oy (5 o
N

with probability one as n—o, and hence i (din)2—~
2

-0

NMS
Q
N

with probability one as n—®. Finally, for any €>0 pick M

w 2
such that 2, C. <€. Then
THE
Nn n n &
T _— < o
T |5, Tl < TR IZa” 0l + 1 2e; gyl

with probability one. But

lall, V2 llgll p, 204 igll, s V2 llgll |, .

n
!5"’—2- !5+—2"




Hence TIim ||£ -Tli, < 2/2¢ with probability one.

Since ¢ was arbitrary, the proof is complete.

Iv. A REMARK ON HYPOTHESIS TESTING i

: n n
If we are given two sets of data {xi}i=l and {yj}j=l and

are then given the task of constructing an optimal discriminant {

between the two classes, we might solve

+ % VAR (**)
)

min %[VAA
“n

such that

¥, Vv_ empirical denstf}es for{xi}, {yj}

where Nn is determined by the analagous "stopping rule".

i e~y

Unfortunately the consistency proof does not apply in this

case since we are unable to find a bound for Hg([p +p in terms
1 %2
2
of HgHV +y + Hence, the reference density p;=1 "forced"
n "n
2

the consistency. We therefore recommend the estimates: 61
by the method of III using {x,} and then similarly 82 using {yj].

The discriminant 32/61 will then be optimal with probability one

as n—o .,
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