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ABSTRACT

In this report, we discuss the amplitude, location, and
the relative separation estimation accuracy of radar targets
closely spaced in range using the Cramer-Rao bound. It is assumed
that the phases of successive signals are coherent and therefore
contain relative line-of-sight location information. It is shown ;
that this information can substantially reduce the estimation
error when compared with the case where the relative signal

phase is random.
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1. INTRODUCTION

Resolution of closely spaced signals has been a subject of
interest for many years, see for example [l1] - [14].* The
traditional signal resolution problem deals with radar signals,
{1] - [10], while more recent emphasis has been on optical signals,
{10] ~ [14]). The main difference between the radar and optical
signal is that the radar signal is a complex-valued process cor-
rupted by complex-valued Gaussian white noise while the optical
signal is a real-valued process corrupted by a real-valued non-
Gaussian process and it is usually a random signal in colored
ncise problem.

There are two basic issues pertaining to the problem of
signal resolution, i.e., the recognition of the existence of
multiple signals (the problem of detection) and the estimation
of¢ percinent signal parameters (the problem of estimation). The
problem which has drawn more attention in the literature is the

problem of detection. This is because the ordinary multiple

1rrav likelihood ratio test procedure is ill-conditioned for this
voooplem (see [1) and [3]), and alternate information criteria
imust b cmployed (see (1] - [5] and [141]).

. list 1s not intended to be exhaustive. Ref. {1] has a

a0t wut concise review of the open literature.




As to the problem of estimation, the maximum likelihood es-
timator has been widely used due to its asymptotic optimality
property [15], [16] and intimate tie with the detection
algorithm. [1] - [10]. The difficulty of applying the maximum
likelihood estimator is in the computational burden since it
is generally a multi-dimensional optimization problem.
Furthermore, there may exist many local maxima in the likelihood
function for a certain class of signals. Once a sufficiently
close initial guess is found however, an iterative optimization
algorithm (e.g., the gradient algorithm) can usually find the
optimal solution.

Another difficulty in the problem of estimation is 4
performance evaluation. Due to the nonlinear nature of the pro-
blem an exact expression for the error covariance of the estimates
cannot be obtained. Fortunately, the error covariance of the
maximum likelihood estimates can be closely predicted using
the Cramer~Rao bound when the signal-to-noise ratio is large.

Furthermore, the maximum likelihood estimates are asymptotically

Gaussian and approach the Cramer-Rao bound, [15) - [16].
For these reasons, Cramer-Rao bound analysis has gained
significant popularity in recent years for predicting the es-

timation performance in the signal resolution problem, [7] - [10],

{12} - [13]).




The Cramer-Rao bound for parameter estimation of closely
spaced radar signals was presented in [8] - [10]. Refs. [8] and
[9] used some simplifying assumptions in which the amplitudes
{and phases for [8]) of the signals were assumed known.

Closed form expressions were obtained for the two-signal case
which provided intuitive insights about the estimation accuracy.
These bounds are unfortunately too optimistic. In Ref. [10], the
Cramer-Rao bound for jointly estimating amplitudes, phases, and
time delays was obtained. This provided a realistic bound

for this problem and the close agreement with simulation results
was also demonstrated. In this report, we extend the work of [10]
to include the case where the phase angles of successive signal
are coherent. There are many applications for which this
condition 1is satisfied. For example, if one wishes to estimate
the locations of scattering centers on a distributed target, the
phase difference of two successive scatterers is proportional to
their separation along the 1line of sight. Even if two point
targets are completely resolved in terms of base band pulse shape,
their relative separation is still contained in their phase
difference given that the radar can process the returned signal
~oherently. This second example is indeed the basis of the
phase-derived range technique illustrated in [18]. As will be
~nhown later, this phase information is able to substantially

~duce the estimation error.




This report is organized as follows. In the next section,
we introduce the signal model and the Cramer-Rao bound. Equations
for computing the Fisher information matrix and some numerical
results are presented in Section 3. A summary and conclusions
are stated in the last section. Three appendices are attached.
In Appendix A, we discuss the Cramer-Rao bound for multiple radar
pulses. 1In Appendix B, we give the formulation and structure of
the maximum likelihood estimator for resolving closely spaced
targets. 1In Appendix C, we re-state the Fisher information

matrix of Ref. [10] for the random phase angle case for the pur-

pose of comparison.




2. SIGNAL MODEL AND THE CRAMER-RAO BOUND

Let s(t) denote the complex low-pass transmitted waveform.
The reflection from the ith point target (or scatterer) is

a; s(t-Ti). The total received signal from a group of N targets

may be expressed by
N
E a; S(t—Ti) + n(t) (2.1)

i=1

r(t)

where (rl,...,TN)T & T = locations of point targets in terms

of relative range

fic>

(al,...,aN)T a = complex scattering amplitudes
receiver white noise which has a
complex Gaussian distribution with
variance NO/Z.

n(t)

The log likelihood ratio of signals present versus signals

absent is

N
lnA = ﬁi ./]r(t) - ~ ais(t-ri)lzdt + %; ]r(t)[zdt (2.2)
ret y; 2 .fs(t—ri)r*(t)dt
o5 2 Jstorpsce-rae
Y & [Yl:---rYN]T
P& (p,.]

1]
#here the superscript "*" denotes the complex conjugate operation.

The log likelihood ratio may be rewritten as

Int = %_ (aTy T T

o

+ a*'y* - a"Pa*) (2.3)




The above constitutes the signal model used in [10]. The
phase angles of a were assumed to be independent and uniformly
distributed. To evaluate the Cramer-Rao bound on jointly
estimating 1 and a, one is required to evaluate the (3N x 3N)
Fisher information matrix, [10].

In this £eport, we assume that the phase difference

between two successive targets, AGi satisfies the following
14

i+l’

relation.

4

AQ = X—(T - Ti) (2.4)

i,i+l i+l
where A is the wavelength. With the above assumption, one is only
required to jointly estimate 1, the magnitude of the scattering

amplitudes lgl, and the phase angle of the first target, Ol. The

associated Fisher information matrix has dimension ((2N+1)x(2N+1l)).

It may be written as

g[2Zem ) b _ofpfenn 11 _[2%em
o I
___________ T S
| 2 : 2
_ b [afem )] 1 [3%m
g— o : E[ a—rz : E 31391] (2.5)
1 —_ |
| |
___________ o c e c e c e m e e ————————
I |
. | . : 3 %2nA
| | "E 2
| ] I 3@1
6
— |
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Notice that we have neglected the details of the lower half of HF
since it is a symmetric matrix. The inverse of & is the Cramer-
Rao lower bound on the covariance of jointly estimating igi, 1,
and Ol.

We note that the expectation, E[*] used in Equation (2.5)
applies to all random variables of the likelihood function A.
It was shown in [17] that a tighter bound can be obtained if the
expectations in Eq. (2.5) are conditioned on the random parameters;
and the expectation with respect to the random parameters is taken
after taking the inverse of the Fisher information matrix. For
example, the phase difference of two scatterers was assumed uni-
formly random in [10]. Let & denote the Fisher information matrix
obtained with the expectation taken over all random variables and
3§O the Fisher's information matrix with conditional expectation

upon A®, then
-1 g1
Erg [g'w] > HF (2.6)

where EAO[ ] denotes the expectation with respect to A2. The
above property was used in [10]). We will discuss its application

to our case in the numerical result section.




3. THE CRAMER-RAO BOUND FOR A TWO-TARGET MODEL

In this section, we discuss the problem of the two-target
case. The expression can be easily extended to the multiple-target

case. Rewriting Eq. (2.2) explicitly for the two-target case one

obt. ns
g4 N 2na

o

_i0 140 -i0 . . —iA0

= e 1(ulyl+u2Y2e ) + e l(alyl +o Y *e )

-(a 2+a 2 20,4.,0 cos AQ) k3 1)
1 2 172 *
where a, = |ai|,
A

_ 4r _
LG 62-01 = _T(TZ Tl)

0(12,11) = ./g(t—Tl)s(t-rz)dt

Notice that for most radar signals, p(Tz,Tl) = p(rz—rl) A p(t).
We use p and § to denote the first and second derivatives of p
with respect to 1, respectively. The root-mean-square (rms)
bandwidth (the normalized second central moment of the signal
spectrum) of s(t) is denoted by B and is equal to the square root
of the negative of | evaluated at 1=0.%*

With the above definitions, we now proceed to define

the Fisher information matrix.

*For a linear FM signal, B is approximately equal to 4nB/c/12
where B is the LFM bandwidth in Hz, and ¢ is the speed of light.




ey

3.1. 7The Fisher Information Matrix

Using (2.5) and replacing [a{ with a, we obtain these

following submatrices.

2 2 1 p cos AO
'E[a—-&%'\— = g{ (3.2)
da ol pcosAO 1
o 4n p sin AO a 5 cos AO
-E 2 oml_ 2. ” i (3.3)
009 T No . .
—alp cos AO 0
-a,p Ssin AO
angl b NO .
0,p Sin AQ
1
glofam]
o2
2,2, 2.4 4 o 2,4m 2 v o
a, "B +o, (XE)Z-Z(XzﬁalaszLnAe —[az (XEQ +ala2(pcosAO- %Epglnj;)]
2
© 2 ,4m,2 . 4w, - . 2,2, ,4n 2
_[az (X*) +ula2(pcosAO—(x~9031nAO)] oy (8 +(T—) )
(3.5)
9

[ S



2 4n 4 . .
-[02 (X—) + alaz[(r—)o cos AO-p sin AQ])

2,47 4n . .
a, (r) + aluzl(x—)p cos AD+p sin AO)

(3.6)

2

d7enA _ 2 2 2

—E[ —} = N_(al ta, +2ala2 p cos AO) (3.7)
Notice that the above expressions do not depend upon

0, , the initial phase. The relative phase A0 is a function of

1
target separation. The expectation is taken witit respect to the

receiver noise only. The inverse of the above matrix is the
lower bound on the covariance of jointly estimating a, 1, and 9y
For the purpose of comparison, the Fisher information
matrix for the case of jointly estimating |a|, 1, and 0 is shown
in Appendix C.
It is always interesting to know the case when the
targets are disjoint in time, i.e., p(T)=é(T)=b(r)=0. If we
were to assume A0 random the information matrix would be diagonal

(see Appendix C) but this is not true for a coherent phase

relation. We discuss this case below.

10
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3.2,

case.

estimation of T and ©

estimating o

where SNRi =

Results for Two Resolved Targets

Substituting p=p=5=0 into equations (3.2)-(3.7), one

finds that the estimation of a

1°

2a.2
i

N .
o]

[ 2.2 2.4n.2
_ _, 2,41.,2
- az ('r)
2.,4m. 2
-a, " ()
| 2 ‘A

After some tedious manipulation

e A

1 and a

can be expressed as

2
2, % _ %
. = 2 ~ SNR,
1 1

the inverse of the following matrix.

520 E 22m |
2
AT E 818@1
[}
________ S,
]
2 : P
2%end  § o 3fm
| 30,31 | aolz .
a2 (4,2
2 A
2.2 2,41 2
a2 g +a2 (r—)
2,4~
a, (T_)

This result is the same as the random phase

The covariance of estimating 1 and Gl is lower bounded by 3

2

2

, are uncorrelated with the

The lower bound on the variance of

(3.8)

an

(4m, (3.9)

one finds that the

bounds on the variance for Tyr Too and At A T,-1, are




2 2 2 2 ,4nm,2

2,2
(a., “+o )a2 8 +al a, (X_)

1 2
— 2 2 2 2,2.,.2, ,4m 2
1 (al +a, )al a, B=[8 +(T') ]

Q
v

(3.8)

2 2 2,2
(al +u2 )al B +a
2

2 2
+a2 )al

2, 2 41,2
1 %2 X

2,2,..,2, ,4m,2

Q
v

> (3.9)
2 (al

62(a

2 2
(al +a2 Yo

2+a22)2

(3.10)

G
v

1
12a2282[82+(%l 2]

Eg = scatterer amplitude ratio and
1 2
4

Nl = peak signal-to-noise ratio of i-th scatterer
o

one can rewrite the above expressions to a more familiar form.

- y - i
o 2> 1+ — 5 (3.8a)
1 SNR, 8™ (1+R7) | l*‘fﬁ)-

2 1 2 1

g > — R™+ (3.9a)
T2 SNR282(1+R2) 1+ (41,2
L AB
2 1 1 1
o 2 + (3.10a)
AT 82[l+(;%)2] [SNR1 SNR2]

Comparing the above results with the case of random phase (scc

Appendix C), one notices that the difference is in the appearance

of the wavelength dependent term (4m7/X8). If this term does not
appear, Egs. (3.8a)-(3.10a) will be identical to the case when

the relative phase is uniformly random.

12




3.3, Numerical Results

in this section, we present some numerical results and
compare them with thosefor random phase. We assume that the
signal autocorrelation function is represented by a Gaussian
pulse shape

2,2
o (1) T B=/2 (3.11)

I1ts first and second derivatives are

2,2
_Tsze-r B=/2

o (1) (3.12)

2,2
-8 (1-1282)e" T B7/2

b (1) (3.13)

In order to facilitate the presentation of our numeri-
cal results, we use the following change of variables.
(1) The Cramer-Rao bound will be evaluated as a function
of target separation normalized with respect to the inverse of

signal root-mean-square bandwidth, i.e.,

L4 18
(3.14

]

normalized target separation

(2) The relative target phase can be rewritten in terms of

14%0]
(3.15)

13
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(3) Examining the Fisher information matrix, it is
evident that one can normalize it with respect to 8. This results
in changing all 4n/A to 4mw/AB.

(4) The final results will be shown as degradation factors,
i. , the Cramer-Rao bound with closely spaced targets

normalized by the Cramer-Rao bound with completely resolved

targets. This eliminates the explicit dependence on the signal
bandwidth and wavelength, rather, the results can be evaluated ’

using the product of wavelength and bandwidth A8, as a parameter.

Generally, the signal bandwidth in frequency units (e.qg.,
the Linear Frequency Modulated (LFM) bandwidth) is at most equal
to 10% of the center frequency. Let this bandwidth be denoted by

B = kf
(Hz) (3.16)

k%
where k is a positive constant less than or equal to .1, f is the
center frequency, and c is the speed of light.

The above bandwidth is related to the root-mean-square

bandwidth 8 (m™ 1) by the following eguation

41 B

g = 4B (3.17)
cv12

= 41 (3.18)
¢ /12

14




kquivalently, one has

4r _ 23 (3.19)
b T Tk

Ab

For example, if one considers a 10% bandwidth, one uses

k = .1. This results in

4—” = 20/3 (3.20)
A 5% bandwidth case will have

o= 403 (3.21)

The degradation factors for estimating the first target
amplitude, location, and relative target Separation for the equal
target amplitude case with 5% bandwidth are shown in Figs. 3.1-
3.3, respectively. The corresponding results for the 10%® band-
width case are shown respectively in Figs. 3.4-3.6. Notice that
these curves show a general decrease with increasing target
separation with a superimposed ripple. Using Egs. (3.19)-(3.21)
and these figures, it is clear that the ripple period for 5%
bandwidth is exactly half of that for of 10% bandwidth. Also
traced are the results for the random phase angle. It is evident
that the coherent phase information is able to substantially

reduce the estimation error.
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To get a feeling for the average estimation performance,

we may treat the relative phase as a random variable uniformly
distributed between 0 and 2m for the bound computation. In this
case, we used the modified bound developed in [17] to take the
expectation of the inverse of the Fisher information matrix

with respect to AO. This step also eliminates the dependence

on the percent bandwidth. The results for amplitude, location,
and separation estimates are shown in Figs. 3.7-3.9, respectively.

There may be situations where even though the phase
difference is coherent, the estimator does not make use of
this knowledge. The Cramer-Rao bound for this situation is
obtained by treating phase angles as unknown parameters (Ref. [10]
or Appendix C) and not averaging over them. That is, the bound
of Ref. [10] is evaluated for phase difference as a function of
target separation. This step makes the bound depend upon the
wavelength and bandwidth product. Results for 5% and 10% band-
widths are shown in Figs. 3.10-3.15. Notice that these results
are extremely oscillatory. The 5% bandwidth case has a period
exactly equal to half of 10% bandwidth. These results should be
compared with the curves labelled "with random phase" of Figs.
3.1-3.6.

Comparing the above results, one concludes that using
the information contained in the phase difference can substantially
reduce the error of target amplitude and location estimation.
The maximum likelihood estimator which asymptotically approaches

these performance bounds is discussed in Appendix B.
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neglecting phase information, 10% bandwidth.
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4, SUMMARY

In this report, we have discussed the accuracy of parameter
estimation of radar signals closely spaced in range using the
Cramer-Rao bound analysis. Specifically, we extended the result
of [10] to include the case when the phase angle from successive
signals are coherent. Use of this additional information is shown
to substantially reduce the estimation error.

A comparison of the performance of these estimators measured

by the target separation required to achieve a 3 dB degradation

is summarized in Table 4.1. Notice that because the degradation
curves are oscillatory, nominal or a range of values is given
for some cases.

Although there are no simulation results presented in this
report, it is known that the maximum likelihood estimator can
achieve these performance bounds when the signal-to-noise ratio
is high, (10}, [15], [16]. For this reason, %the maximum
likelihood estimator equations for the radar signal resolution

problem are presented in Appendix B.
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TABLE 4.1

SUMMARY OF PERFORMANCE COMPARISON

arameter Normalized* Target Separation for 3 dB Degradation
Phase Amplitude Location Separation
Relation
Coherent 0.9 ~0.35 ~0.8
Random 1.45 1.45 1.45
Coherent but
Ignored 1,15-1.65 1.2-1.7 0.8-2.0

*Separation is in units of 1/RMS Bandwidth or equivalently
0.55 x nominal range resolution (C/2B). Rayleigh «criterion
corresponds to normalized separation of 1.8.
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APPENDIX A:

The Cramer-Rao Bound With Multiple Pulses

The results of this report are based upon measurement with a single radar ]
pulse. In this Appendix, we extend the Cramer-Rao bound formulation to i
include multiple pulses. Let {rm(t), 0<t <T} denote the m-th |
received pulse and assume that r, and r. are independent for

m#¥m', then one has the following log likelihood function

N

M
enA = ﬁi E firm(t) —E ais(t-‘fi)lzdt
m= i=1

M

+ N—l E f|rm(t)|2dt (A.1)

o] ,
n=1

frm*s(t-‘?l)dtw

Let Yo =
* -
Jrp*s(t-t)at
L -
one has
M
= = T "o *] . Tp =
J = NAnh = a Yol t 2 E Y Ma"Pa (A.2)
m=1 m=1
M
Let u = E Y then the ith component of u is
m=1

34




N M
u; = M/s(t-—‘?i) E aj*s(t—‘fj)dt+ E [s(t—‘f‘i)nm*(t)dt = Mqi
j=1 m=1
(A.3)
N M
where q; = /s(t—‘fi) E aj*s(t-‘fj)dt—jbl,1 E /s(t—‘i‘i)nm*(t)dt
j=1 m=1

Notice that the ay above 1is similar to the ] defined in (2.2).
Their first terms are the same and their second terms have the
same variance No/2.

Using the above notation in (A.2) yields
T T T
J = NOZnA = Mla"g+ta*'g~a"Pa*] (A.4)

From the above derivation it is evident that the Cramer-Rao
bound for measurements containing m pulses is equal to the Cramer-Rao
bound for a single pulse divided by M.

We note that the above derivation uses the assumption that
all pulses can be aligned properly for the required summation.

It also assumes that the relative position and orientation of

all scatterers are preserved for M pulses.
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APPENDIX B:

The Maximum Likelihood Estimator

The maximum likelihood estimates are those parameter values
maximizing the log likelihood function. The log likelihood

function for our case is

et = 3@Ty + a*Ty* - aTrav) (B.1) ;
(o)

In the following, we will discuss the cases of targets with
random phase and coherent phase individually. 1In the last sub-
section, we will extend our results to the case of multiple

measurements.

B.l. Targets with Random Phase

Ir this case, one first maximizes (B.l) with respect

to a this yields the estimate of a

a = P-ll* (B.2)

Substituting 4 into (B.l) yields

~

= 1 . Tp=l .
fnh = NOYP A (B.3)

The 1 estimate is therefore the vector % which maximizes (B.2).

For the two target case, the above expression becomes

A [Y1Y1*+Y2Y2*"p (® 2—?1) (v 1Y2*+Y ZYl*)] (B.4)

2
No(l_p (?Z_Tl))

The estimates (?1,?2) are obtained by searching through the set
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of twc-target (after matched filtering) time samples which
maximizes the above expression. The estimator structure is
illustrated in Fig. B.l.

The above algorithm assumes that the received signal is
analog. If only sampled data is available, one may first use
the available samples to find an approximate solution and refine
this solution by interpolation. One may also devise algorithm
working directly with the sampled data. One such algorithm is

defined in Ref. [14]. We will not discuss this further here.

kr B.2. Targets with Coherent Phase
In this case, one does not have to estimate all complex
target anplitudes. but, rather the first phase angle and the magnitude

of all target amplitudes.

Let o
L1
o =
*N
— -
1 0 o . . . 0
0 e192,1 0 ) 0 J
® =10 0 ei93,1, . 0 »
L? e e e e e e e eiON'1
= 0.-0. = Am .. _ = o101 ‘
where ej,l = 0.-0, =3 (Tj T,). Then a = e ¢ a




Matched () a
r(t) Y Likelithood A, 1)
Filter Function
Delay
tl
Search For Location Estimates Amolitude Estimat
es
Maximum 15 " .
— -
of A Tt
wrt ¢, t1
Fig. B.1l. Estimator structure.
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B

The "_og likelihood ratio becomes

~iOlaT

J = e1012?¢1 + e ¢*1* - g?¢P¢*g (B.5)

Onhe may maximize (B.5) with respect to a, this yields
6 = [opo* + 0xpo] L(ei®loy 4 710Lonyx) (B.6)

Let

I = OPO* + O*PO (B.7)
Substituting (B.6) into (B.5) and using (B.7), one has

T

T = (yT0e®1 + y#Toxe 01y (z7L | p7loperzTh (B.8)

The maximum likelihood estimates of 61,11,...,TN are those values

which maximize (B.8).
For the two-target case, one obtains the following

expression after some tedious manipulations.

2 2
3 _ [dl +d2 - 2d1d20(T2—?1)cos AO]
= 5 (B.9)
No(l-p (?2—?l)cos AQ)

4n

where A0 = X-(?z-?l)
4, = lylicos(61+6l)
4, = ly2|c05(61+A@+62)
éi = phase angle of A
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The estimator structure for the above problem is similar

to that of the previous subsection. The difference is that one

has to search for three parameters Ol' Tl, and T, instead of two.

B.3. With Multiple Pulses

Similar to the case for the Cramer-Rao bound, the log like-

lihood ratio becomes

M M
- *T * T *

J = a Ym + a Yia - Mea"Pa (B.10)

m=1 m=1
Maximizing J with repect to a yields

M
-1]1 z :

é P ﬁ lm (B.ll)
m=1

Substituting (B.11) into (B.10) yields

M M

21 T . ~1

J—MZ:ImP z Y (B.12)
m=1 m=1

The optimal estimate ? is obtained by maximizing 3 with respect
to 1.

Notice that the above estimator first requires a
summation of all pulses. This assumes that all pulses can be
aligned properly. This assumption may not be true in general
due to tine performance limit of the realtime tracking

algorithm. One alternative is to process each pulse individually

then average the results (e.g., for the target separation estimate).




This procedure does not maximize the log likelihood function, but
if the signal-to-noise ratio is high and the maximum likelihood

estimator is unbiased, then this alternate procedure should

achieve near optimum performance.




APPENDIX C:

The Fisher Information Matrix for a Two-Target Model With Randam Phase Angles

For the purpose of comparison, we state the Fisher infor-
mation matrix for a two-target model with random phase angles
in this appendix. This case was first discussed in Ref. [10].

Using (2.3) and (3.1) one has

_ _ io] i0o xa~101 wa—i02
J = NoznA = alyle + azYze + a1Yy e + a,Y, e

(C.1)
2 2
ay;” - a,” - 2ala2 cos(Oz—Gl)p(TZ—rl)

The Fisher information matrix has the following terms.

C 9] [ 1l pcos AO

8§°J _
-E —3 = 2

[ 607 | chos Ye) 1

- 1 o 262 -a,0.pcos AO

2 1 172

3°J
-E-——z = 2

[31 i -alazﬁcos AO a2282

- o 2 a,a.,cos AO p(T)

2] 1 1%2 P

3 J
-E —% = 2

30 2

"= CIGZCOS A0 p (1) a,

) 0 a,cos AQ p(T)
_EaJ = 2

93T .

talcos AOQ o 0
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[ 0
2
3°J
<3| - -

alsin AO p(T)
r 1

1
t
p——my
[+ P/ R¥]
Al N
ol
(0]
Ae——
i
N

1

-azsin AD p(T)

aja.,sin AQ é(r)

172

a azsin AO B(T) 0

Notice that if two targets are completely resolved so that

and one obtains the following familiar equations

These equations hold for an arbitrary

ing lower bound

0?5 L

B

1
= +
ISNRl

T 2

43

variance on the estimate of relative delay t1=t1

2 1 1
o > =
Oi — 2a.2 SNRi
i
1 No
o 2 1 1
T - 2.2 2,2
i 2ai E_ SNRi B
No
2
s 2,1 _ %4
ai - _3 SNRi
No

number of targets.

27

sy
SNR2

p(t) = 5(T) = 0, then the above matrix becomes a diagonal matrix

(C.2)

(C.3)

(C.4)

The

has the follow-

(C.5)
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