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ABSTRACT

In this report, we discuss the amplitude, location, and

the relative separation estimation accuracy of radar targets

closely spaced in range using the Cramer-Rao bound. It is assumed

that the phases of successive signals are coherent and therefore

contain relative line-of-sight location information. It is shown

that this information can substantially reduce the estimation

error when compared with the case where the relative signal

phase is random.
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1. INTRODUCTION

Resolution of closely spaced signals has been a subject of

interest for many years, see for example [1] - [14].* The

traditional signal resolution problem deals with radar signals,

[1] - (10], while more recent emphasis has been on optical signals,

[101 - [14]. The main difference between the radar and optical

signal is that the radar signal is a complex-valued process cor-

rupted by complex-valued Gaussian white noise while the optical

signal is a real-valued process corrupted by a real-valued non-

Gaussian process and it is usually a random signal in colored

noise problem.

There are two basic issues pertaining to the problem of

signal resolution, i.e., the recognition of the existence of

multiple signals (the problem of detection) and the estimation

oi pertinent signal parameters (the problem of estimation). The

problem which has drawn more attention in the literature is the

problem of detection. This is because the ordinary multiple

1r-,, ,likelihood ratio test procedure is ill-conditioned for this

'4,0: (see [] and [3]), and alternate information criteria

masL b employed (see [i1 - [51 and [14])

I is is not intended to be exhaustive. Rcf. Il] has a
I, .)ut concise review of the open literature.
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As to the problem of estimation, the maximum likelihood es-

timator has been widely used due to its asymptotic optimality

property [15], [16] and intimate tie with the detection

algorithm. [1] - [10]. The difficulty of applying the maximum

likelihood estimator is in the computational burden since it

is generally a multi-dimensional optimization problem.

Furthermore, there may exist many local maxima in the likelihood

function for a certain class of signals. Once a sufficiently

close initial guess is found however, an iterative optimization

algorithm (e.g., the gradient algorithm) can usually find the

optimal solution.

Another difficulty in the problem of estimation is

performance evaluation. Due to the nonlinear nature of the pro-

blem an exact expression for the error covariance of the estimates

cannot be obtained. Fortunately, the error covariance of the

maximium likelihood estimates can be closely predicted using

the Cramer-Rao bound when the signal-to-noise ratio is large.

Furthermore, the maximum likelihood estimates are asymptotically

Gaussian and approach the Cramer-Rao bound, [15] - [16].

For these reasons, Cramer-Rao bound analysis has gained

significant popularity in recent years for predicting the es-

timation performance in the signal resolution problem, [7] - [10],

[121 - [13).

2



The Cramer-Rao bound for parameter estimation of closely

spaced radar signals was presented in [8] - [10]. Refs. [8] and

[9] used some simplifying assumptions in which the amplitudes

(and phases for [8]) of the signals were assumed known.

Closed form expressions were obtained for the two-signal case

which provided intuitive insights about the estimation accuracy.

These bounds are unfortunately too optimistic. In Ref. [10], the

Cramer-Rao bound for jointly estimating amplitudes, phases, and

time delays was obtained. This provided a realistic bound

for this problem and the close agreement with simulation results

was also demonstrated. In this report, we extend the work of [10]

to include the case where the phase angles of successive signal

are coherent. There are many applications for which this

condition is satisfied. For example, if one wishes to estimate

the locations of scattering centers on a distributed target, the

phase difference of two successive scatterers is proportional to

H t2ir separation along the line of sight. Even if two point

targets are completely resolved in terms of base band pulse shape,

thleir relative separation is still contained in their phase

,ifference given that the radar can process the returned signal

-'¢herently. This second example is indeed the basis of the

p hise-derived range technique illustrated in [18]. As will be

i!wn later, this phase information is able to substantially

->iuce the estimation error.
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This report is organized as follows. In the next section,

we introduce the signal model and the Cramer-Rao bound. Equations

for computing the Fisher information matrix and some numerical

results are presented in Section 3. A summary and conclusions

are stated in the last section. Three appendices are attached.

In Appendix A, we discuss the Cramer-Rao bound for multiple radar

pulses. In Appendix B, we give the formulation and structure of

the maximum likelihood estimator for resolving closely spaced

targets. In Appendix C, we re-state the Fisher information

matrix of Ref. [101 for the random phase angle case for the pur-

pose of comparison.
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2. SIGNAL MODEL AND THE CRAMER-RAO BOUND

Let s(t) denote the complex low-pass transmitted waveform.

The reflection from the ith point target (or scatterer) is

ai S(t-Ti). The total received signal from a group of N targets

may be expressed by

N

r(t) = ai s(t-T i ) + n(t) (2.1)
i=l

TA
w'here (TI ' ' ' ' 'TN T = locations of point targets in termsof relative range

T A
(al. ... .aN) = a = complex scattering amplitudes

n(t) = receiver white noise which has a
complex Gaussian distribution with
variance N /2.

The log likelihood ratio of signals present versus signals

absent is

N

lnA - r(t) - ais(t-Ti)i 2dt + -j r(t)I 2dt (2.2)No i i o

Let Yi f s (t-Ti) r* (t)dt

P ij f ;s (t--ri ) s(t-Tji)dt
AT

Y- = [I'''" 'TN]T

P [Pij]

,wiere the superscript "*" denotes the complex conjugate operation.

Tihe log likelihood ratio may be rewritten as
l A 1 T + (2 3

1- (a y + a*TY* - aTpa* )  (2.3)n N
0

5



The above constitutes the signal model used in [101. The

phase angles of a were assumed to be independent and uniformly

distributed. To evaluate the Cramer-Rao bound on jointly

estimating T and a, one is required to evaluate the (3N x 3N)

Fisher information matrix, [10].

In this report, we assume that the phase difference

between two successive targets, AOi,i+l, satisfies the following

relation.

AOi,i+l =x(Ti+- Ti) (2.4)

where X is the wavelength. With the above assumption, one is only

required to jointly estimate T, the magnitude of the scattering

amplitudes l al, and the phase angle of the first target, 01. The

associated Fisher information matrix has dimension ((2N+)x(2N+l)).

It may be written as

-Ea 22n Zn E2 ,
-E 2 -E i 2 a

---- -----------------------

El 21 -EJ (2.5)

--- --- -- -- -- - - -- - -- 11-- - -- -

-E 2

6



Notice that we have neglected the details of the lower half of.#

since it is a symmetric matrix. The inverse of Jis the Cramer-

Rao lower bound on the covariance of jointly estimating jai , ,

and 0

We note that the expectation, E[.] used in Equation (2.5)

applies to all random variables of the likelihood function A.

It was shown in [17] that a tighter bound can be obtained if the

expectations in Eq. (2.5) are conditioned on the random parameters;

and the expectation with respect to the random parameters is taken

after taking the inverse of the Fisher information matrix. For

example, the phase difference of two scatterers was assumed uni-

formly random in [10]. Let 97denote the Fisher information matrix

obtained with the expectation taken over all random variables and

r,, the Fisher's information matrix with conditional expectation

upon AD, then

E A0 ~~]~- (2.6)

where EAO[ I denotes the expectation with respect to AD. The

above property was used in [10]. We will discuss its application

to our case in the numerical result section.

7



3. THE CRAMER-RAO BOUND FOR A TWO-TARGET MODEL

In this section, we discuss the problem of the two-target

case. The expression can be easily extended to the multiple-target

case. Rewriting Eq. (2.2) explicitly for the two-target case one

obt-.ns

J 4 N  knA

i1 iA -iG -iAe 1 y1+a2Y2e ) + e 1 y(yl*+a2 y*e-i )

-(L 2+22 2alc 2P cos AO) (3.1)

where = Jail'

AO0 2-01 = -- (T2- TI
2 1 X2 1

p(T2,T I ) = fs(t-T1 )s(t-T2 )dt

Notice that for most radar signals, p(T2,T1 ) = p(T 2-T) A p(T).

We use p and to denote the first and second derivatives of p

with respect to T, respectively. The root-mean-square (rms)

bandwidth (the normalized second central moment of the signal

spectrum) of s(t) is denoted by and is equal to the square root

of the negative of ji evaluated at T=O.*

With the above definitions, we now proceed to define

the Fisher information matrix.

*For a linear FM signal, 8 is approximately equal to 4iB/c/12
where B is the LFM bandwidth in Hz, and c is the speed of light.
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3.1. The Fisher Information Matrix

Using (2.5) and replacing jai with a_, we obtain these

following submatrices.

[a 2 N PCsA (3.2)
3a 2 o pcosAS 1

41 i n AO O2 Cos . 0G
[L21 2 2 lf P G csA
-- x Cos AO 0

-E R-a~a (304

- [ a p sin A _

-Eaa i.r2i to

22 2 ir2 2 (4T 2 4r2 47T

21
0' 2t~ i (L, 2_t1c (I cosAo- (4,p in O O2 0 2+ .1 2

(3.5)

9



ot 2 4-i 4a cos A0- sin A®]

2 2 ( -4) + a Hi2 (-)p cos A®+p sin A(

(3.6)

-E A 2 (c 1
2 +Ci2

2 +2x 1X 2 P cos AO) (3.7)

Notice that the above expressions do not depend upon

01 , the initial phase. The relative phase AO is a function of

target separation. The expectation is taken with respect to the

receiver noise only. The inverse of the above matrix is the

lower bound on the covariance of jointly estimating a, T, and 01

For the purpose of comparison, the Fisher information

matrix for the case of jointly estimating aj , T, and 0 is shown

in Appendix C.

It is always interesting to know the case when the

targets are disjoint in time, i.e., p(T)=p(T)= i(T)=O. If we

were to assume AO random the information matrix would be diagonal

(see Appendix C) but this is not true for a coherent phase

relation. We discuss this case below.
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3.2. Results for Two Resolved Targets

Substituting p=p=p=O into equations (3.2)-(3.7), one

finds that the estimation of a 1 and a 2 are uncorrelated with the

estimation of T and 0l* The lower bound on the variance of

estimating a i can be expressed as

12
2 No 2

- 2 SNR. (3.8)
1 N

2_NR = This result is the same as the random phase

case. The covariance of estimating T and 0 is lower bounded by

the inverse of the following matrix.

2 2
____a ZnA n

aT 2  D -l

2D2£nA 3 'knA
L 1 ao 1

2 2+ 22( )2 2 2 4r 2 -a 2 47T

1 2  - -2 2 (-

2 2 2 2+2 4i 2 2 4
- 2 ( 4--T) 22 ( -)  CL2  (1-- 23 9
2 ( )2 2 41 a 1 2

After some tedious manipulation one finds that the

bounds on the variance for ii, t2, and A1 A -t areI- -21

11



T 1
2+ 2 ) 2 2 

2 2  2 (Ti) 2
0 2 > 12 22 2 22 2 4T 2(3.8)

1l 2 2 1 2

(2+a2 a2 2 +L2 OL2 4T1 2

G 2 > 1 2 1 + 1 a 2  (39
T2 - (a1 2 + 2a 2 cc22 2+ 4T712

1 2 1 2

2 2(a12 2 2 2

0AT - (a2+ 2 )L2 U2 2 2 + 2 (31T0)

1 +a2 1 a2  [

letting R A 2 = scatterer amplitude ratio anda1  2
2a.

SN = N =peak signal-to-noise ratio of i-th scatterer
0

one can rewrite the above expressions to a more familiar form.

1 2 > 1lR2  + 4_12 (3.8a)

2 1 2_2__47

a 2i R 2+ (3.9a)
T - SNR 28

2 (l+R2)L l()]

a A2 > 2 NR1 (3.10a)
8 [l+(ij-)2  + ]

Comparing the above results with the case of random phase (see

Appendix C), one notices that the difference is in the appearance

of the wavelength dependent term (471/X6). If this term does not

appear, Eqs. (3.8a)-(3.l0a) will be identical to the case when

the relative phase is uniformly random.

12



3.3. Numerical Results

in this section, we present some numerical results and

compare them with those for random phase. We assume that the

signal autocorrelation function is represented by a Gaussian

pulse shape

P - T2 B2 /2 (3.11)
p(r) = et(.1

lts first and second derivatives are

(T)= -8 2 e -e 2 /2 (3.12)

5(r) = -2 (l-T 2 2 )e 2 (3.13)

In order to facilitate the presentation of our numeri-

cal results, we use the following change of variables.

(1) The Cramer-Rao bound will be evaluated as a function

of target separation normalized with respect to the inverse of

signal root-mean-square bandwidth, i.e.,

Z A
(3.14'

normalized target separation

(2) The relative target phase can be rewritten in terms of

Q as

AO 4T r

(3.15)
41

13



(3) Examining the Fisher information matrix, it is

evident that one can normalize it with respect to 8. This results

in changing all 4n/X to 4/XB.

(4) The final results will be shown as degradation factors,

i. , the Cramer-Rao bound withclosely spaced targets

normalized by the Cramer-Rao bound with completely resolved

targets. This eliminates the explicit dependence on the signal

bandwidth and wavelength, rather, the results can be evaluated

using the product of wavelength and bandwidth X , as a parameter.

Generally, the signal bandwidth in frequency units (e.g.,

the Linear Frequency Modulated (LFM) bandwidth) is at most equal

to 10% of the center frequency. Let this bandwidth be denoted by

B = kf

c (Hz) (3.16)

where k is a positive constant less than or equal to .1, f is the

center frequency, and c is the speed of light.

The above bandwidth is related to the root-mean-square

bandwidth B(m - ) by the following equation

- 4 B (3.17)

c,12

- 4TT (3] 8)

C ' _

14



Equivalently, one has

4r7 2,/ 3 (3.19)

k

For example, if one considers a 10% bandwidth, one uses

k = .1. This results in

4ri4 20/3 (3.20)

A 5% bandwidth case will have

4r

40v 3 (3.21)

The degradation factors for estimating the first target

amplitude, location, and relative ta-get Zeparation for the equal

target amplitude case with 5% bandwidth are shown in Figs. 3.1-

3.3, respectively. The corresponding results for the 10% band-

width case are shown respectively in Figs. 3.4-3.6. Notice that

these curves show a general decrease with increasing target

separation with a superimposed ripple. Using Eqs. (3.19)-(3.21)

and these figures, it is clear that the ripple period for 56

bandwidth is exactly half of that for of 10% bandwidth. Also

traced are the results for the random phase angle. It is evident

that the coherent phase information is able to substantially

reduce the estimation error.
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+ For Amplitude Estimate
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Fig. 3.4. Degradation factor for amplitude estimates, 10%
bandwidth.

19



+ For Location Estimate

25 + 10% Bandwidth

20

15 4

ith Random Phase

10

0

-0

With Coherent Phase

.25 .5 .75 1. 1.25 1.5 1.75 ao

IRelative Separation) x (RMS Bandwidth)
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Fig. 3.6. Degradation factor for separation estimates, 10%,
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To get a feeling for the average estimation performance,

we may treat the relative phase as a random variable uniformly

distributed between 0 and 2ff for the bound computation. In this

case, we used the modified bound developed in [17] to take the

ex,)ectation of the inverse of the Fisher information matrix

with respect to AO. This step also eliminates the dependence

on the percent bandwidth. The results for amplitude, location,

and separation estimates are shown in Figs. 3.7-3.9, respectively.

There may be situations where even though the phase

difference is coherent, the estimator does not make use of

this knowledge. The Cramer-Rao bound for this situation is

obtained by treating phase angles as unknown parameters (Ref. [10]

or Appendix C) and not averaging over them. That is, the bound

of Ref. [10] is evaluated for phase difference as a function of

target separation. This step makes the bound depend upon the

wavelength and bandwidth product. Results for 5% and 10% band-

widths are shown in Figs. 3.10-3.15. Notice that these results

are extremely oscillatory. The 5% bandwidth case has a period

exactly equal to half of 10% bandwidth. These results should be

compared with the curves labelled "with random phase" of Figs.

3.1-3.6.

Comparing the above results, one concludes that using

the information contained in the phase difference can substantially

reduce the error of target amplitude and location estimation.

The maximum likelihood estimator which asymptotically approaches

these performance bounds is discussed in Appendix B.
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Fig. 3.7. Degradation factor for amplitude estimates, averaged
over relative phase.
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over relative phase.
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Fig. 3.13. Degradation factor for amplitude estimates by
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Fig. 3.14. Degradation factor for location estimates by
neglecting phase information, 10% bandwidth.

30



+ For Separation Estimate
25 + 10 % Bandwidth

+ Phase Information Neglected

20

0

I--

2"10
10

-50

.25 .5 .75 1. 1.25 1.5 1.75 2O

(Relative Separation) x (RMS Bandwidth)

Fig. 3.15. Degradation factor for separation estimates by
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4. SUMMARY

In this report, we have discussed the accuracy of parameter

estimation of radar signals closely spaced in range using the

Cramer-Rao bound analysis. Specifically, we extended the result

of [10] to include the case when the phase angle from successive

signals are coherent. Use of this additional information is shown

to substantially reduce the estimation error.

A comparison of the performance of these estimators measured

by the target separation required to achieve a 3 dB degradation

is summarized in Table 4.1. Notice that because the degradation

curves are oscillatory, nominal or a range of values is given

for some cases.

Although there are no simulation results presented in this

report, it is known that the maximum likelihood estimator can

achieve these performance bounds when the signal-to-noise ratio

is high, [10], (151, [16]. For this reason, the maximum

likelihood estimator equations for the radar signal resolution

problem are presented in Appendix B.
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TABLE 4.1

SUMMARY OF PERFORMANCE COMPARISON

arameter Normalized* Target Separation for 3 dB Degradation

Phase, Amplitude Location Separation
Relation

Coherent 0.9 - 0.35 - 0.8

Random 1.45 1.45 1.45

Coherent but
Ignored 1.15-1.65 1.2-1.7 0.8-2.0

*Separation is in units of l/RMS Bandwidth or equivalently
0.55 x nominal range resolution (C/2B). Rayleigh criterion
corresponds to normalized separation of 1.8.
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APPENDIX A:

The Cramer-Rao Bound With Multiple Pulses

The results of this report are based upon measurement with a single radar

pulse. In this Appendix, we extend the Cramer-Rao bound formulation to

in,.lude multiple pulses. Let {rm (t), O<t <T denote the m-th

received pulse and assume that rm and rm , are independent for

m4m', then one has the following log likelihood function

M NtnA N -i f /ir m(t) a i as(t-ti)12 dto il

+f1rm(t) 2dt (A.1)
0 nL=l

f rm*S (t- I) .dtJ

Let ym="

Lf r m*S(t't N ) dt-

one has

J = N A T a +'a* m - MaTPa* (A.2)

M

Let u E y. then the ith component of u is

m=l

34



u M fs(t- a a*s(t% dt+ (t~tinM*(t)dt = Mqiui  M E~-i  aj(-i)n*q
j=1 m=

(A. 3)

where qi fS(t-i)E aj*s(t ) ]dt+ 1E fS (t- i) nm *(t) dt

j=i m=i

Notice that the qi above is similar to the yi defined in (2.2).

Their first terms are the same and their second terms have the

same variance N /2.

Using the above notation in (A.2) yields

J = N0 Z = M[aT +a*T -aTPa*] (A.4)

From the above derivation it is evident that the Cramer-Rao

bound for measurements containing m pulses is equal to the Cramer-Rao

bound for a single pulse divided by M.

We note that the above derivation uses the assumption that

all pulses can be aligned properly for the required summation.

It also assumes that the relative position and orientation of

all scatterers are preserved for M pulses.
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APPENDIX B:

The Maximum Likelihood Estimator

The maximum likelihood estimates are those parameter values

maximizing the log likelihood function. The log likelihood

function for our case is

1 -(aT + a*Ty* aTpa*) (B.1)
0

In the following, we will discuss the cases of targets with

random phase and coherent phase individually. In the last sub-

section, we will extend our results to the case of multiple

measurements.

B.1. Targets with Random Phase

Ir this case, one first maximizes (B.1) with respect

to a this yields the estimate of a

P (B.2)

Substituting a into (B.1) yields

^ 1 Tp-lIPnA - (B.3)
0

The T estimate is therefore the vector t which maximizes (B.2).

For the two target case, the above expression becomes

^ [YIyI*+y 2 y2 *-p (12-%) ( 1yy 2 *+'y 2y*) ]
ZnA = 2(B.4)

N0 (1-p (t2-Ti))

The estimates (tIt 2) are obtained by searching through the set
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of twc-target (after matched filtering) time samples which

maximizes the above expression. The estimator structure is

illustrated in Fig. B.1.

The above algorithm assumes that the received signal is

analog. If only sampled data is available, one may first use

the available samples to find an approximate solution and refine

this solution by interpolation. One may also devise algorithm

working directly with the sampled data. One such algorithm is

defined in Ref. (14]. We will not discuss this further here.

B.2. Targets with Coherent Phase

In this case, one does not have to estimate all complex

target anplitudes, but, rather the first phase angle and the magnitude

of all target amplitudes.

Let[i

1 0 0 .. . 0

0 ei0 2,1 0 . 0

= 0 0 ei0 3,1 . 0

0 e..iO , 1

where e9 1  l =0 -(-TT). Then a = el a
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Search For Location Estimates 1 mltd siae
Maximum pnltueEtiae
Of A

w.r.t. , r-r

Fig. B.1. Estimator structure.
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The 'og likelihood catio becomes

= e lcaT'zy + e iOlaT * * - U__ PI*(_ (B.5)

One may maximize (B.5) with respect to a_, this yields

_ = [VP* + D*P]-1[ei010y + e-i010*y*] (B.6)

Let

= OPp* + (*PO (B.7)

Substituting (B.6) into (B.5) and using (B.7), one has

T i®l + Y_*TD*e-io1 ] -1 - -1-1 (B.8)

J y = ~ E_ (D ~ y(B.8)

[yei0 l + *y*e-iOl]

The maximum likelihood estimates of 0I,TI,..°.,TN are those values

which maximize (B.8).

For the two-target case, one obtains the following

expression after some tedious manipulations.

^ d1 2 +d2 2 - 2d 1 d 2p(t 2 -t 1 )Cos A01

J N (B.9)
No (i-2 2- 1 ) cos AS)

where AO = .4--(T-t

d I  = I y 1 cos(0 1 +6 1 )

d 2  = IY 2 lcos( 0+e+ 2

6i1 = phase angle of yi
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The estimator structure for the above problem is similar

to that of the previous subsection. The difference is that one

has to search for three parameters 01, T1 and T2 instead of two.

B.3. With Multiple Pulses

Similar to the case for the Crair-Rao bound, the log like-

lihood ratio becomes

= ( )+ a*( * - M.aTpa* (B.10)

Maximizing J with repect to a yields

Pl l (B.11)
m=l /

Substituting (B.11) into (B.10) yields

J = 
(B.12)

The optimal estimate 9_ is obtained by maximizing J with respect

to T.

Notice that the above estimator first requires a

summation of all pulses. This assumes that all pulses can be

aligned properly. This assumption may not be true in general

due to the performance limit of the realtime tracking

algorithm. One alternative is to process each pulse individually

then average the results (e.g., for the target separation estimate).
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Thi.P procedure does not maximize the log likelihood function, but

if the signal-to-noise ratio is high and the maximum likelihood

estimator is unbiased, then this alternate procedure should

achieve near optimum performance.
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APPENDIX C:

The Fisher Information Matrix for a T-Target Model With Randam Phase Angles

For the purpose of comparison, we state the Fisher infor-

mation matrix for a two-target model with random phase angles

in this appendix. This case was first discussed in Ref. [10].

Using (2.3) and (3.1) one has

i81 + a i2 + -1 +

J = No2nA = lyle 22 e y*e iY2 *e

(C.l)
2 a 2 2 c

0C 1 2 2 21a2 cos(2-e1)P(T 2 -T1 )

The Fisher information matrix has the following terms.

F 2J[ 1 pcos AO
- pcosAS 1

2 F a 2j] 2 L 2 cos A]
4_i -ai1a 2 cos AO a 2 22

2 CL 1 2 OL 1 C 2 Cos AS p(T

ao ~ ~ ~ ~ ~ ~ O AS O O () C

2F 2 
AS (X2 C o O T
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2 = 2 si AO p(r) (T

[9 1i AO (T) 0iA~(T

and~~~ ~ one obtin sin foloin failaeutin

2 1 2

°4ta. >- 2 -SRI C2

1Oi 2tsin AO p(T 0

1I 2ct

Notice that if two targets are completely resolved so that

P(T) = p(T) = 0, then the above matrix becomes a diagonal matrix

and one obtains the following familiar equations

* 2 > 1 - 1 (C.2)
1 2ct 2 SNR1

N
0

2 1 1 (C.3)°i 2a 2.2a SNR.2 a
1 1

N

22 1 2i

* 1 O (C.4)CL. 2 SNR.

N0

These equations hold for an arbitrary number of targets. The

variance on the estimate of relative delay T=T2- 1 has the follow-

ing lower bound

oT2 > + 1 (C.5
T 2I1 SNR 1  SNR 2 1j(C
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