
AO-A094 726 MASSACHUSETTS INST OF TECH LEXNGTON LINCOLN LAS /,1/
SOME GENERAL PRINCIPLES FOR THE DUAL PROBLEM TO STATISTICAL CLA--ETC(U)
NOV 80 L K JONES F1962B-0-C-0002

UNCLASFTFn T-.IQAn. r .......

UEEE7hAh hEE
nED

IELIIIIIII

_ A



161r t4\e) ua ,rbl

qtfr *b- 19

Tehial ott ii~c
ww'.P96B 0

Labo
LL)*oc

L~tie CU~lI n0C)IC"*NOW TI



O',

*tp 
be..

This e re a d ab ,mw d otrail E j..Gwb
o&cw god.@lw.P.4,S

The iew d cechu leg csel"e i~tis appoved b s he. .1 th

cebStS sd holdst e atq "Coaa .s*) setU b



B

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

SOME GENERAL PRINCIPLES FOR THE DUAL PROBLEM

TO STATISTICAL CLASSIFICATION

L. K. JONES

Group 92 Ace5. '

A L

TECHNICAL NOTE 1980-55

26 NOVEMBER 1980

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS



ABSTRACT

We consider the design of decision problems which maximize

the classification error for a given set of discriminants.

A minimax principle is proved, which has applications in dis-

criminant analysis and feature extraction.
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SOME GENERAL PRINCIPLES FOR THE DUAL

PROBLEM TO STATISTICAL CLASSIFICATION

I. Introduction

In the "two class" problem of statistical classification,

we are given two random variables, X1 and X2, taking values in

RdR We assume occurrences of type 1 (X1) and of type 2 (X2)

are mutually exclusive and have prior probabilities of a and

1-a respectively. (O<ct<l). If x is observedwe need to decide

if x is of type 1 or type 2 in such a fashion as to minimize

the probability of making an incorrect decision.

If the probability densities (wrt some underlying a-finite

measure v on R d ) of X1 and X2, pl(y) and p2 (y) were known, we

could decide by using the likelihood ratio test.

aP2 (x) > 1 type 2

(l-a)pl(X) S 1 type 1

Unfortunately, these probability densities are often unknown

and the problem becomes one of either density estimation or

choosing a discriminant function from a class of "feasible" dis-

criminants. There is extensive literature on this subject and

we refer the reader to [1], [2], [3].

We define the dual of the two class classification problem

as follows: We are given a set A of pairs of density functions
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for the random variables X1 and X2. For which pair (plP 2 )eA

is the classification error maximum among all pairs in A? For

this problem, the structure of A is critical. The main diffi-

culties are to transform an applied problem into a mathematical

expression for A. We consider several examples of dual problems

which occur in signal design.

Example 1. The Mixture Problem

Given a density function for X, p(x), and given ql, q2 ...

qn density functions for Y1' Y2'''Yn find an independent

chance device N (Bernoulli r.v.) taking values in {l,2,...n}

such that the error for the classification problem X vs. YN

is maximum. Here A = W, ci qi W) : tia 0 ;  = 1 .

Example 2. The Masking Problem

Let X be a discrete stationary signal of length d. Design

a stationary stochastic (independent) signal M of length d such

that

(a) the d.c. component = IEMi K

(b) the a.c. power = VAr (Mi )5 2

and (c) the error is maximized for the problem
X+M vs. M.

This problem was discussed in [4] where X and M were restricted

to be multivariate normal.
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Example 3. A Code Jamming Problem

Let X and Y be discrete real stationary stochastic signals

of length d. Find a stationary (independent) signal J such

that the error for the problem X+J vs. Y is maximum.

In (4) we shall treat the first example in detail by applying

some general principles developed in (2) and (3). We conclude

in (5) by considering some theoretical implications to the

problem of feature selection.

II. Discriminant Functions and a Minimax Principledl
A discriminant function is a map L:RdR. Its error is

given by

inf a[ Prob I {L(X l ) >t} + (1-a) Prob 2 {L(X 2 )<t]-00< t<+QO I

for the minimum total error problem. For a given L and a pair

(PlP2), denote the above error by ea(L; (plP2)).
Let 4. be a class of discriminant functions. If for a

particular dual problem p 2 /P l E 4 for all (plP 2) CA (or some

other optimal discriminant i.e.-Log P2 - Log pI, P2-Pl
'''') '

then we are interested in the quantity

max min (L; p2))
(plP2}  (l

if it exists and (1,2 P CA such that

3



Sm2 (L ; (pl1p2))

ma2(max mi
(p 1 2) ct -;( 1, 2 , - mx iexp 1  (plp2) L a (L;(pP 2 ))

The first and third equalities follow after a trivial application

of Bayes' Theorem. Even if p 2/P l  for all (pIP 2 )EA (or no

other optimal discriminant), expressions of the form

max min(plP2) L 6a (L; (PI'2)

are appropriate for problems for which only L E 4 are used in

the classification problem X1 vs. X2. Hence, we continue our

discussion for (pIP 2)sA and L c 4 . First we show that

a( L; (plP2)) is concave in (plP 2 ).

Lemma 1 Assume A is convex. Then

y(L; (Pl'P 2 )) + (1-y) ea( L; ( 1 2 )) fo

all 0:5y51 and (pEP 2 ), ( I, 2 )eA.

Proof. Let (ql,q2 ) = y(p 1 ,P 2 ) + (l-y)(pi, 2 ). Then

4



a Prob {L>t} + (1-a) Probq {L_5t}

a e (y Probpl {L>t) + (l-y) Probl {L>t})

+ (1-a) (y Prob {L_<t} + (l-y) Prob- fL_<t))P2 P2

- y (a Prob {L>t} + (1-a) Prob {Lt}Pl p2

+ (l-y) (a Prob, (L>t} + (1-a) Prob- {L-<t)
Pl P2

d:y o (L; (pl1P2 )) + (l-y) Cc, (L; (?;l 1 P2 ))

The result follows by taking the infimum of the above equation

over all t.

Note that

e( !Pi' (Pl'P2)) = L L;(plP2))

is concave in (pP 2 ). ence, (plP) i (PI'P 2

could be obtained by methods of convex programming. However, for

most problems c' ( plP 2 )) is extremely time consuming to

evaluate and approximations must be used. We note further that

the concavity property fails to hold for the Neyman-Pearson error

function at level a, i8((L; (plP 2 )) = Prob2 {Lft a where ta is

5
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such that Prob1 {L>t8} = . To see this, take p1 = P 2 = P2= 1

on [0,i], = 1 on [-2,-i], and L = x. Then (L; (plP 2 )

+ 0 ( 1 p) 0< ' + 0 = ~ L; (P1,P2 ))+ ~(L; (Fl';2))

Our main result is now a corollary of the following general

minimax theorem which seems to be new. The proof, however, is

quite standard and will be included for completeness.

Theorem 1. Let C be a subset of a topological space and D a

convex compact subset of a topological vector space. Let f(x,y):

C x D -P R be a continuous function on C x D, which is concave

in y for fixed x. Suppose, further, that there exists a continuous

map x(y): D-C s.t. f(x(y),y) = m(y) = min f(x,y). Then
x

min max f(x,y) = max min f(x,y).
x Y Y x

Proof. For any f on the product of 2 sets C,D we have:

f(x,y)g max f(x,y)4 min f(x,y)5 _min max f(x,y)y x x y

max min f(x,y)-<min max f(x,y)
y x x y

Hence, we need only show

max min f(x,y) >min max f(x,y)
y x x y

To this end consider y* such that m(y*) = max m(y). The existence
y

of y* is guaranteed since f(x(y), y) is continuous in y. Now
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for any t (O<t:51) and y F-D

m (y*) ! m ( (lt)y*+ty) =f(x( (l-t)y*+ty), (l-t)y*+ty)

-(1-t) m (y*) + t f (x((1-t) y*+ty), y)

Therefore, for all O<t:51 and any y

or M (y*)?!f (x ((l-t) y*+ty), y)

Letting t- 0 and using the continuity of f(.,.) and x(-) we have

m(y*) f (x(y*), y )for all y c D

or f(x(y*), Y*)2: f(x(y *),. y) for all y c D.

Since f (x(y*), y*) :5 f(x,y*) for all x c C , we have for all

x E C, y e D

f (X(y*) , y) 5 f (x (y*), y*) :5 f(X, y*)

Therefore min max f(x,y):5max f (x(y*), Y)<
x y y

f(x(y*), y*) :5 min f(x,y*):5max min f(x,y)
x y x

which was to be shown. The point (x(y*), y*) is called a

Saddle Point of f(x,y).
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(a
Corollary 1 Suppose A = {(pj(x), Pa x)); a c A) is a

convex set of pairs of continuous probability densities on

Rd such that

a
pi (x)>O for each i, a, and x

A is a compact subset of RP for some p

A __ (p p 2
a ) is continuous in

II 1(flf2) II = sup Ifi(x)I

X E Rd

Further, let be a class of continuous discriminant func-

tions (with the topology of uniform convergence on compact sub-

sets of Rd) with p2 a/p l a (or some other optimal continuous
a ,  -

function of (p1  p2  for each a c A. Then

min max (L; (pap =a) max min L;(p ,p

L a a L

Proof One need only check the continuity ofO,,(L; p2-a

a
and the map A-(pl P2 To verify the former note

that depends (approximately) only on the values of L on a

a

compact set. For the latter note that A----_ is uniformly
aPl

d
continuous in the sup norm restricted to a compact subset of R

8
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Corollary 2 Assume the hypotheses of Corollary 1 with re-

placed by (L, (plap 2a)) = Prob2 (L<tL
- ) where tL is such

that Prob1 (L >tL) . Further, assume that pla - p1 for all

a E A. (This is the case in Example 1.) Then

min max a- 2a a, 2a

max 'L;(p p)) max min e L ; (p  p )m
L a a L

a tL
Proof Since p p, L depends only on L. Hence,

is concave in ts second argument and the result follows as

in the case of

We conjecture that the minimax result holds in general for

II. K'th Order Solutions

Suppose for a fixed L EL. we wish to find a s.t. ea(L; (pl, p
2 ))

is maximized. If we assume that the density functions of the

L(Pia ) are completely characterized (differentiably) by their

means, variances. ..... , K'th moments about the mean and that

e is differentiable as a function of the difference of the means

of L squared, the variance of L under hypothesis 1, the variance

of L under hypothesis 2, ... , the K'th central moment of L under

hypothesis 2; then letting viJt) = j'th central moment of L(pi a

and differentiating e,(L; (pp?)t we obtain that a miximal a

satisfies

[9



2 K
-- (a) (a)j 2  +(a ) = 0

where the aiJ's are (usually unknown) scalars corresponding to

the partial derivatives of e WRT the various moments. Hence,

a maximal is a critical point of the objective function

1 2 K

(* -~ (a) - la)) (a)~i=l Z=2

If is convex in the above arguments at the critical point

in question, then this critical point is a local maximum of (*).

J
Solving for critical points of (*) for various values of i ,
allows us to reduce our parameters from p (dimension of A) to

2(K-1). The proofs of the preceding assertions are completely

parallel to those in[3]and will hence not be formally presented.

We note that the above remains valid if L were allowed to vary
-ab

with t. (Provided L(a)(pia) are characterized by their first

K central moments.)

As a first example,let L(a) = ln P2  and consider the

first order solution which is given by the critical points of

p (ln p2 a/P a) - E p (ln P/2p ) = [D(a)
L2 P1

where D(a) is commonly known as the divergence. Since the

divergence is always non-negative, the above critical points

are the critical points of D(a). If A = t(p , 2 } is convex

10
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then is can be shown (see [5]) that D(a) is convex in (plP 2 )

and hence that the critical points are global minima of D(a).

We call such a first order solution a minimal divergence solution.

As a second example, let L(a) = L and assume a 90 for the

second order solution (*) Then by dividing (*) by 81, we see

that a second order solution is a critical point of

(**) a V1
2 (a) + a v2 2 (a) -(v2

1 (a - vll(a) ) 2

where a and 8 are scalars.

Theorem 2. Suppose A is convex and a2:0, a2:0. Then the

critical points of (**) are global maxima of (**).

Proof. We may rewrite (**) as

2 .. 2 2EpiC(L2) p2 -(L 2  a (EpI (L))

-(Ep a(L) 2 (Ep a(L) E p(L) 2

~(E~~L)2
-(E 7t) *

This is clearly concave as a function of (pl, P2 ) and hence

any critical point is a global maximum.

Corollary 3 Let A be convex and L normal (under each hypothesis)

in a neighborhood of a critical point a of (**) corresponding

to a local miximum of e a. If the error probabilities of each

type (at ti) are less than , then a is a global maximum of

11



(**) and a>0 , a>0. We call such a solution a maximal variance

solution (since we are maximizing a quadratic form in the first

two moments with positive coefficients of the variances). There-

fore the second order solution for this case is obtained by

calculating the error from normal tables for a which maximizes

(*) for a particular choice of a, a and then maximizing over

a>0, 0>0.

Proof Since L is normal near a and the error probabi-

lities of each type are less than .5, the optimal threshold (the

minimizing t in the definition of ) is between v 1 (a ) and

v 2 () Clearly

8cx -a-I
(2_vl2 < 0 at a and, by the formulae

6(v 2 1- v1 12

aa11 2
in [3] , - > 0 at a . Hence, 51>0 a 0 , andv.2

2

22>0 and a critical point of (*) is a critical point of

2 1 2 -a-
- (v2l() - v1

1 ))2 + /5 ) (a))

2 1 2 --+ (2 ) v 2 (a)

which is then a global maximum of

Sv 2 (a) + 8v22(a) (v2
1( ) (a)

for = 2/a1> 0 and 2 2 2/01> 0.

12



IV. Application - The Mixture Problem - Stationary Gaussian Case

We now discuss the application of the various techniques of

II and III to the problem of Example 1. This problem is of

interest for several reasons: for the general dual problem with

convex A, maximizing error is equivalent to finding the optimal

convex combination of the extreme points of A and many of the

methods of solving Example 1 extend to this more general "mixture"

problem; Example 1 occurs often in practical engineering problems -

(i) In a certain communication channel through which a random

signal S may be transmitted, there are several noise sig-

nals that can occur. The probabilities of occurrence of

each type of signal are small enough that we may assume

that no two occur simultaneously. Unfortunately, the rela-

tive probabilities of the noise signals are unknown.

Solution of this mixture problem yields (by the minimax

principle) a detector for S which is optimal in the

worst case and performs at least as well in every other

case.

(ii) In order to penetrate an enemy radar defense system

effectively, the military deploys a variety of decoys

as well as a tactical warhead. Assuming the enemy is

aware of the statistical radar signatures of the various

objects, the military must assign an optimal relative

probability to each type of decoy. This is, again, the

mixture problem.

13
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A. First Order Solution

Let p. ql' q2 ' ... qn be the stationary, normal densities

in Rd of Example 1. We want to determine weights al, a2, ... a n;n

z i O; a ci=1 such that the divergence is minimum. Since the
11

divergence is convex as a function of a pair of probability dist-

ributions, it could be minimized by a gradient descent method,

provided we are willing to perform many multivariate integrations.

If, however, there are mixtures whose density is close to the

(normal) density p, we may give approximate expressions for
n

D(p,iE a iqi ) which are quadratic in ai and hence easily minimized.
i=l 1

More specifically, let p1 be a stationary normal density with

(positive definite) correlation matrix K = ((k ij)) and mean

(0,0,...0), let P2 be a stationary normal density with (positive

definite) correlation matrix K + A (A=(Aij))) and mean-t = (m,m,...m),

and let A. and m be 0(e). Then
1)

D(PI'P 2 ) = ym + qps A1 pt~s + 0(e3)
p s

where Y= bij> 0
i j

d-s+l d-p-l

q E= (b. iplb. + b b..ps (i -l bij+s-l j+s-l i+p-l ijj=l i=l

B = ((b ij)) = K -

and ((qps)) is positive definite.

14



This is derived in the appendix. Applying the above to our

mixture problem with p having mean (0,0,...0) and correlation

i
matrix K and qi mean (mi.,mi,...m i ) and correlation matrix Q

we need minimize

In 2n n

y q imi) + qs i(Ql- i(Qisls

n
subject to Li =l; Ci>_O. This is a standard quadratic pro-

1
gramming problem.

B. A Second Order Solution

If d is moderately large, then stationarity implies that

optimal (quadratic) discriminants will be approximately of the

form

L = A 0 (x1 +X 2+...+xd) + A1 (x1 2+x2 2+...xd 
2 ) +

A2 (x lx 2+x2x3
+ .. -+x dlxd) + Ad-l(xlxd-l+xd Ixd)

+ Ad (Xlxd)

In many cases, these discriminants will be approximately normal.

Hence, we may use the second order solution for fixed values of

A0,A,... Ad and then minimize the associated error over the choice

of A0 ,AI,... Ad' The above second order solution is equivalent

to finding critical points of the one-parameter family of objec-

tive functions

15



E2 (L2 ) [E2 (L)]2 (E2 L-EL)2

where hypothesis 1 has density p and hypothesis 2 density
n
nIiqi . Note that the first term of (**) is not present in

i=l1

the above objective function since it is constant as a function

of ai. Using the following 2 formulae, valid for x,y,z,w, compo-

nents of a normal multivariate random variable each with mean m,

E(xyz) = m E(xy) + m E(yz) + m E(xz) - 2m3

E(xyzw) = E(xy)E(zw) + E(xy)E(yw) + E(xw)E(yz) - 2m4

we calculate d

E1 (L) = = (d-9.+l) Ax kli

n [ A 2. 1i

E2 (L) = [i 0 mi + (d-2+l) A Q I
i=l L£=I

n di
E2 (L2) = oi  (n-d+t) QI + AoCi + D i

where ci (i[ + i + i -2m 2 ) E
= m(Qclb-a+l + lc-a+l + lc-b+l abc

a (Qlb-a+l " Qlg-c+l + Qic-a+l Qlg-b+l

+ Qi 'Qi -2m 4 ) F
ig-a+l "lc-b+l Fabcg

16
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with

E ab c  Ab-a+ 1 + Ac-a+1 + A cb+ 1  if a<b<c

A1 + Ac-a+l if a=b<c
or a< b=c

A1  if a=b=c

and

Fabcg A b-a+l * Ag-c+l + Ac-a+1 Ag-b+l

+ Ag-a+l A c-b+l if a<b<c<g

A1 A-gc+l + Ag-a+l * Ac-a+l if a=b<c<g

Ab-a+1 • A1 + Ag-a+l * Ag-b+l if a<b<c=g

A1  Ag-a+l + Ab-a+1 * Ag-c+l if a<b=c<g

A1 A g-a+l if a<b=c=g
or a=b=c<g

A 2 + A 2  if a=b<c=g1 g-a+l

Now for 0O a critical point of the associated objective

function is a global maximum and can hence be determined by

standard quadratic programming methods. We note that it might

be useful to develop expressions for Ci involving d terms and

Di involving d2 terms, rendering the computations more feasible

for moderately large d.
17
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V. Minimax Feature Extraction

We now describe a purely theoretical application of the

minimax principle to feature selection. It is hoped, however,

that further research will lead to practical implementation.

Suppose, in the minimum total error classification problem,

the (unknown!) densities involved (ql,q2 ) lie in A, where A is

some nontrivial convex set of pairs of possible densities which

can be parameterized as in Corollary 1. We may assume that,

for a given discriminant function (feature) L, the densities

of L(ql) and L(q2 ) can be well enough approximated from sample

data that we may consider them known but that the actual higher

dimensional densities remain unknown. Then one approach to

solving the classification problem is to construct a sequence

of discriminant functions L0 ,LI,... whose classification errors

decrease. We propose the following sequence: let L0 be some

arbitrary initial discriminant. Let A0 be the set of all pairs

of densities (plP 2 ) EA such that the density of LO(pi) equals

that of L0 (qi). Solve the associated dual problem for A0 ,

obtaining as a solution (plP 2 ). Then let L1 = log(p 2/Pl).

L2 is then obtained from L1 in an identical fashion, etc. We

claim that the classification errors for this sequence are non-

increasing. To establish this claim, it suffices to prove:

Theorem 3. e.(LI;(ql,q2 )) 6 (L 0 ;ql 1 q 2 ))

18



Proof. If the densities of L 0 (Pi) and L 0(F.) are identi-

cal to that of L 0(qi), then this density equals the density of

L 0 (yp-%+(l-y)p.) for any 05y:51. Hence, A 0 is convex and the

minimax principle together with Bayes' Theorem imply

6t(L; (11q 2)) 6a ~(L ; (qlp9 2 lg( 2 ~)~v9

19



Appendix

Let L(X) =log(p2 /Pl). ThenL(X) = - (X--)t (K+A-m 2 )- (X-)

+ Xt K- 1 X + terms not varying in X.

(K+A-m 2 ) - 1  K-'(IAK-  + m2 K- 1 + (AK- 1 ) 2 + 0(,3))

Hence, L(X) = X tK- AK- Ix + tK-iX - XtK-I(AK- )2X

-K AK- - Xtm2K-Ix + 0(e3) 3

+ terms not varying in X.

Using the notation <E2-EI> Z = E 2Z-EIZ , we have

D(PIP 2 ) = <E2-E1> L <E 2-E1 > (L-terms not varying in X).

XtK-AK-Ix = , E , bri i j Xr~jj r ii ~

<E 2 -EI> ( XtK-l-x)= Am 1r ()i b ri Ai b j)A

ri rj rjt ,j
h ( iZ bri b~j) Arj

j r £ i

d-p+l d-p+l
= r(pb A b_ b + br bi rri bi+p+J i+p-I .. HA.

20



n d-p+1

Alp [bi bi+P-1 j + br i-.p-1 bi]

n d-p+1L

P i_ j r jrj j ~- r ri+p-1 i

(since A is symmetric)

n d-p+1
E~ Lip . L EAb b.
_~ i. j jr ii j i+p-1 ir

nds+1d-i

P j ri i J- i js-

d-s+1l d-p~i

nn

i~ j~ i1) ipli ~-

d-s~l d-21



definite. Finally <E 2-E1 > (X
t K-IAK-IM) = O( 3 ),<E 2 -E1 >

XtK 1 (AK 1)2 X) = O(c3 ), and<E-2-El>(h Xtm2K-X) = 0(3

We have now established that D(PIP 2) = ym
2 + FP Fs qps A p AIs

P s 5

+ O(L3). It remains to show that gq Ps> is positive definite.

We present the following analytic proof: Let al,a 2 F ... , ad be

a non-trivial real sequence. Consider A defined by Alp = aP.

Since K is positive definite, K+A is positive definite for

sufficiently small c>O . Setting-S=0, we compute D(PlP 2)>0.

In fact by passing to a linear space which simultaneously

diagonalizes K and A, we see that D(PlP 2 ) = E 2 + O(E3) for

some T>O and c sufficiently small. It now follows that

qps ap as>0
P s

22
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