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AFIT/GEP/PH/80D-7

- Abstract

The mode eigenvalue equation for an unstable strip
Taser resonator is developed from scalar diffraction
theory. The field distributions are expressed as a series
and the integral is then evaluated using a first order
abproximation to the method of stationary phase. The re-
sulting approximate closed form is rearranged to form an
eigenvalue polynomial, the roots of which are the mode
eigenvalues, Eigenfunction expressions are then developed
using a second order approximation to the method of station-
ary phase. Modifications to these expressions are then
made to account for the presence of uniform gain in the res-
onator.

The results of a computer program using the derived
expressions are presented. Comparisons to previously pub-
lished results are made for the bare cavity case, and re-

sults for the loaded cavity case follow.




ANALYSIS OF MODES
IN AN UNSTABIE
STRIP LASER RESONATOR

I. Introduction

Background

An ui.table laser resonator is a resonator in which the
geometric path of a paraxial ray traveling back and forth be-
tween the two mirrors is unbounded in an infinite number of
passes. This is opposed to a stable resonator, in which the
ray path is bounded. Any ray inside an unstable resonator
will eventually take on a direction from which it will not
come into contact with either mirror, and thus leave the
cavity. In this type of resonator, the product of the res-

onator mirror g parameters, where

The utility or benefits of unstable resonators, for in-

stance large mode volume and minimally transmitting optics

(Ref 10:353), require that some method of mode analysis be




available. Several methods are available, but have various

drawbacks, such as excessive computer processor time re-
quirements, or limited applicability.

Horwitz (Ref 6) developed a method whereby the mode
eigenvalue equation for an unstable strip resonator, mod-
ified from the original, developed by Fox and Li (Ref 4),
was simplified by using first a series of functions found
through asymptotic analysis to approximate the field in
the resonator, and then the method of stationary phase to
approximate the integral. Butts and Avizonis (Ref 2) clar-
ified this approach and modified it to allow consideration
of a resonator with circular mirrors. Hcwever, neither

allowed for the inclusion of a gain medium in the cavity.

Objectives

The objective of this thesis is to develop a computer
code allowing analysis of modes in an unstable resonator
and to then utilize that code in performing said analysis.
The code is to be developed for a strip resonator and ac-

count for both bare and loaded cavity cases.

Assumptions
To facilitate modeling of the unstable resonator, cer-
tain simplifying assumptions will be made:

1. Scalar diffraction theory will be used to describe

the physical situation in the resonator. This is reasonable,




since the dimensions of laser resonators are large compared

to optical wavelengths.

2. The Fresnel approximation to the Kirchoff-Fresnel
formula is valid. Resonator cavity lengths make this an
acceptable assumption.

3. In a Cartesian system, diffraction integrals and
mode eigenfunctions are separable. This allows a 1-D strip
resonator to be utilized in the following development.

4., One of the resonator mirrors is very much larger
than the beam width on that mirror. In other words, that the
height of this mirror be considered infinite. This is not
an impossible physical constraint.

5. The modes in the strip resonator consist of a fun-
damental cylindrical wave modified by a finite number of
diffraction effects. This assumption is supported by early

analysis of unstable resonators. (Ref 9:279)

Procedure
This thesis will start with the Kirchoff-Fresnel dif-
fraction formula and develop, following Horwitz (Ref 6:1529),

the eigenvalue equation for a strip resonator

2

-it(y-2)

1
Ag(x) =‘\/;—t fe g(y) dy (1.3.1)
-1
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where the eigenfunctions g(x) are the weighting functions
of the basic cylindrical wave assumed to be present in the
resonator, that is, if the total field is described by

u(x) then (Ref 11),

-ianx2
u(x) = g(x)e (1.3.2)
-§fmN g x?2

e f being the phase curvature term of the basis cylin-

drical wave.

The eigenvalues will be found by developing a suitable
relation from the eigenvalue equation. The total field in
the cavity is firsf assumed to consist of a unit amplitude
cylindrical wave plus a finite series of diffraction sup-

plements. This is stated in terms of g{(x) as (Ref 2)

N
g(x) =1+ :E: ann(x) (1.3.3)

n=1

This expression is substituted in the eigenvalue
equation and then an approximation to the integral is devel-
oped using a first approximation to the method of station-
ary phase. The resulting relation will allow the eigen-
values to be expressed as roots of a polynomial with deter-
minable coefficients. The roots can be found by using a
general root-finding routine.

An eigenfunction expression may then be found by using




the original assumption ie., equation (1.3.3). However,
inherent limitations of the first stationary phase approx-
imation confining applicable x values in this relation
require the development of a better approximation to the
integral. The higher order expression will be developed,
using the higher order approximation to the method of
stationary phase (Ref 1), enabling the evaluation of the
eigénfunctions throughout a continuous range of x values.
This thesis will then seek to modify the bare cavity
expressions to account for a gain medium in the resonator
by introducing a gain factor, e2§L , into the integral

abd by relaxing the unit amplitude requirement on the fun-

damental cylindrical wave.

Organization

The derivation of the basic resonator eigenvalue
equation will be covered in Chapter II. Chapter III will
present the two applications of that equation: calculation
of eigenvalues and evaluation of eigenfunctions. Inclusion
of gain considerations will be covered in Chapter IV and
Chapter V will contain results of the computer code. Chap-

ter VI will include conclusions and further recommendations.

4
= POV SRy P rUCIDTPRINE . - SRR W oV




II. Development of the Eigenvalue Equation

Chapter II addresses the problem of applying the Kir-
choff-Fresnel diffraction formula to the desired case of an
unstable optical resonator. The development follows that
in Reference 6.

| A steady state mode will exist in a resonator when the
field value on one mirror resulting from one round trip
through the resonator multiplied by some complex constant
is equal to the original field value on that mirror. Math-

ematically this can be stated as
YE“(x,y) = E(x,y) 2.1.1

where E is the original field distribution on M, , the
second mirror, E” 1is the distribution after one round trip,
and y 1is the constant, in general complex.

Wave propagation through the resonator can be express-
ed using scalar diffraction theory. Wave propagation from
a rectangular aperture, dimensions 2a x 2c , on one plane
to another plane a distance L away, as seen in Fig.1l, is

given in the Fresnel approximation by

M=

. -jkL  ©.@ - 3 [(X1'Xz’2+(Y1'¥2)2]
E(xz,y2) = 85— [ [EGxuyie dxidy,
-C -a

2.1.2
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Since this is presented in a Cartesian system, the

field distribution can be separated. This .is done by as-

suming (Ref 4:485-486),

‘ E(x,y) = U(x)U(y) 2.1.3

Substitution of 2.1.3 into the diffraction formula

yields two independent diffraction formulae,

- _1kL a _ik(xl-xz)z
U(xz) = %—L- e 2 fU(.xl)e 2t dx, 2.1.4
_a .

fiiliele b s o i aaidll Dediged.




kL ik
i '1'2— y -%'f(.Yl"')’z)z
Uv2) =fire © f ulvide dy, 2.1.5
-C

Consideration of only one of these formulae is equiva-
lent to considering diffraction from a strip aperture. No :
generality is lost, however, since the effects of a finite
aperture can be found from the product of two separate strip

cases. Thus the one remaining equation is

1 kL

F“ 2 IX(x -xz)?
U(x,) = J[ e 2L U(x,)dx, 2.1.6
-a

Equation 2.1.6 represents propagation from one plane to

another. For this to correctly represent propagation in a
resonator, the phase lag introduced by mirror curvature must
be accounted for.

The phase lag introduced by the mirrors can be express-
ed as a function of distance from the optic axis. This ex-
pression can be derived from the paraxial lens thickness func-

tion, (Ref 5:80), which is

A(X,y) = ag - 25¥T (-

1
5 RT ~ ﬁ;) 2.1.7

Where A= thickness, A¢= maximum lens thickness, x and y
are coordinates of the point where the ray of interest is

incident on the lens, and R; and R, are the radii of




ceepmecans

Figure 2

curvature of the lens' surface. 1In the case of a strip

‘mirror the lens equation applys if

Rz = @
y =0
Ay = 0
giving
. X2
A(X) = TRT 2.1.8

i

for the ith mirror. The phase lag at some particular dis-

tance .from the optic axis x 1is given by




=
x
N

Ap{x) = R 2.1.9
However, since
g, = 1 - -k—i— 2.1.10
it is seen that
1-g1. = %RT
and
vlz—. - }_;El 2.1.11

th

where 95 is the g parameter for the i mirror. There-

fore the phase lag can be expressed as

A¢1 = 5 T 2.1.12

Introduction of this phase lag into the diffraction

formula gives
U(x) =Vipe & futx)

- %%[x12+x22-2X1X2-X12(1‘91)'x22(1'92)]

e dx;

10




ikL a ik 2 2
3 - 5= = _[glxl +g2 X2 -2X1X2]
U(x,) ='\/h—e 2 f U( 2L dx,
-a

2.1.13

This expression, now modified to describe propagation
of U(x;) from M, to M, , can be used to set up two
equations: one for propagation from M, to M; and the
other for propagation from M, to M, . Combination of
the two will then yield an expression describing propaga-
tion of a field through one round trip in the resonator.

The one way formulae are

'J"I;_L i o1 '%—'E'[lefz"'gzxzz'zxfle
U(x,) = e T fU(xl‘) dx7
"4 2.1.14
and
.k a k[ 2 -2 -
-5 -5 L91x1%+g2x32-2x,X3]
U(x,) = e 2 VT f xile 2L dx;
-a3z 2.1.15

If 2.1.15 is substituted for wu(x3i) 1in 2.1.14, the re-
sultant expression will give the field on M, due to the
propagation of an original field on M, through one round

trip in the resonator. Substitution gives

11




a;
U(xz) = e kb AT _/' Veyan J[ u(

‘az 'al

-,
=

[9:x72+gox32-2x{x5] - FE[g1xi?+gaxd-2xix,]
e dxse dxi

nN
—

2.1.16
In the case considered in Fig, é, the assumption that
M, 1is much bigger than the beam width on that mirror for
any laser mode that is likely to resonate, allows a; to
be thought of as essentially infinite. Then 2.1.16 be-

comes

>

a; k
3 T [g1x7%24g2x72-2x{x7]
U(Xz) = e'lkL f fl'fe i+

-as

-?%[91X;2+92x22_2v'x2]
e U(xs)dxidx; 2.1,17

This expression can be simplified by extracting the in-
terior integral

i P §£[91X1 +g2 X3 -2X1X2]
i /S
- <]

ik[ .2 2 .
- g1X12+gX22-2X7x2]
e Hy dx1 2.1.18

12
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Evaluation of this integral in Appendix B yields

i -2 2 -
3 e-z)‘Lgl[(zglgz-l)(Xz +X2 )-2X2X2] 2 1.19
2LAg . 1.

Substitution of this for the complete kernel in 2.1.17 in

turn yields

az
. -1kL / i
: U(XZ) = e ZL}\gl f

_aZ

"iﬂ“_[(29192'1)(X52+X22)—2x2x5]
e A29: U(xs) dx3

2.1.20
To simplify this further, the definitions
2g19.-1 = g 2.1.21
and
zgi:L - ;;1 = 2.1.22

are introduced.

Here, g, and g, are the familiar g parameters
and F, is the ordinary Fresnel number of the smaller feed-
back mirror, The ordinary Fresnel number is defined as the
additional length per pass in half wavelengths for a ray
traveling from one mirror's center to the other mirror's

edge, compared to one traveling from mirror center to mirror

13




center. (Ref 11:159-161).

The dimensions of the quantities are also scaled such

that a,=1 . These modifications yield

-ikL ‘ -imF{g(x3%+x2)-2x2x3]
U(xz) = e /T J[U(xg)e dx;  2.1.23
-1

Imposition of the reproducobility constraint, equation

2.1.1, and absorption of the constant e'1kL into vy
yields
1 2 2
yU(x,) = /iF J[ U(xE)e.mF[g(x2 tX2 )_szxz]dxf 2.1.24
-1

Introducing the dummy variable y and dropping sub-

scripts and superscripts yields

1
yU(x) = /iF fu(y)e“'"F[g(xz"Vz)'zxﬂdy 2.1.25
01

To further simplify this equation, the following

quantities are defined

. Sm - 1) 2.1.26

=
|

and g{(x) such that

2.1.27

1]
1]
[{n]
—
>
~

U(x)

14




Nf is the equivalent Fresnel number of the resonator.
The equivalent Fresnel number can be interpreted as the
additional path length per pass in half wavelengths for a
ray traveling from a mirror's virtual center to the edge
of the next mirror, as opposed to a ray traveling from the
virtual center of one mirror to the actual center of the
next (Ref 11:159-161). The virtual center is defined as
thét point from which a cylindrical wave would eminate if
that wave were to be reflected from a feedback mirror, and
then return to the original mirror in the same form as when
it left (Ref 9:279-280). That cylindrical wave is then as-
sumed to take the form
-'i'rerx2

e 2.1.28
and the entire wave function is assumed to be based on that
wave, stated by 2.1.27. Substitution of 2.1.26 and 2.1.27
into 2.1.25 yields

2 2 2 _
-in%(m—%l)x 1 -1ﬂFy2(m2m1)
vg(x)e = /iF fg(y)e
-1

dy 2.1.29

After some manipulation, detailed in Appendix C,

15




2.1.29 simplifies to the final form

gral equation

where

and if

1 Sit(y-%)”
yg(x) = /it7mm f glyle ™ dy
-1
t = mmF
A = y/m
1 . 2
-it(y-=)
Ag(x) = /it/m ./.e M g(y) dy
1

of the resonator inte-

2.1.30

2.1.31

2.1.32

2.1.33




III. Determination of Eigenvalues and

Evaluation of Eigenfunctions

Chapter III is concerned with solving the resonator
mode eigenvalue equation and with developing expressions
for the resulting eigenfunctions. The eigenfunctions are
moﬁt desireable since they will ultimately express field

values across the output mirror plane.

Approximation of Eigenvalue Equation

The eigenvalue equation that must be solved is

1 . X
-it(y-=)2
Ag(x) = Vit/w U/.g(y)e " dy 3.1.1
-1

where g(x) 1is the quantity multiplying the primary cylin-
drical wave expressed as‘a function of normal distance from
the optic axis.

Now it is assumed that the field an the mirror before
the round trip, U(y) , consists of a unit amplitude cylin-
drical wave plus an infinite series of edge diffracted waves
given by some functions Hn(y) (§€$ 2). In terms of g(y)

this is stated as

gly) = 1+ Z ¢ H (y) 3.1.2

17




The physical basis for this assumption is that the

original field on M, will consist of that primary cylin-
drical wave which makes the round trip unchanged plus

other contributions which are the diffraction additions to
that wave from previous reflections. To make this viable,
however, it is then assumed that the series terminates when
eventually some function HN(y) is the last contribution
that has any new effect on the field, or that HN+1(y) is
constant. If the resonator is thought of as an infinite
lens train, the mode components between the last two lenses
will consist of the basic cylindrical wave and one diffrac-
tion effected wave from each preceeding lens group. The
series terminates when the consideration of another lens
group, farther back, adds'no more new information to the
final mode. Then the addition of one more diffraction
effected wave would add only to amplitude, and not change
the shape of the total wave. 3.1.2 then becomes

g(y)=1+ng1 ann(y) . A good approximation is to let (Ref.
6:1533)

N oz 10 2500¢ 3.1.3

and the quality of this approximation is displayed in
Appendix E.

When 3.1.2 is substituted into 3.1.1, the result is

! i -it(y-1)?
Ag(x) = fﬁ'ﬁflhzann(y) e dy 3.1.4
-1 n=1

18




Some method of approximating this integral is needed.
The method chosen is the method of stationary phase. This

method states that an integral of the form

b
/e'itp(y)q(y) dy 3.1.5

a

can, when t 1is large and q(y) 1is slowly varying, be ex-
pressed as a series, the first two terms of which are ap-

proximately (Ref.2:1073).

e-iw/4q( -itp(y,) 2m

Yole

where y, 1is the point of stationary phase, ie.

P (yoe) = 0 3.1.7

To utilize this however some explicit form of Hn(y)
is needed. The form used here is the same as that develop-
ed by Horwitz through asymptotic analysis of the resonator
integral, 2.1.33. The form is as follows:

Given the functions (Ref 3)

F(x,t) = - — g " E1-)" 3.1.8
2/t 1-x

19




1+x

3.1.9

the functions F (x) and G (x) are formed such that

"n
=
Pan )
x
i
-
‘3 ‘x‘
=3
-
3
pe )
1 ct
—
S—r’

and

X t
Gn(x) Gf — ,

where

and m is the magnification.

It is therefore seen that

\/m m
Fn(x) = - n-1 e
2/int 1-x/mn
and
. X 2
.f— -1t(1+—n') /m -
m m
Gn(x) - _ n-1e -
2/int I+x/m

3.1.10

3.1.11

3.1.12

3.1.13

3.1.14

Hn(x) is then assumed to be some combination of these

functions:

20




ann(x) =

anFn(x)+bnGn(x)

3.1.15

Since the cavity under consideration here is centered

on the optic axis, symmetry dictates either odd or even field

functions.

ed that Hn(x) is even.

odd.

It is seen from 3.13-3.15 that

if an=bn . So, if
an
then with
Cp =
ann(x)
and
ann(-x)
However, since
F(x)
c H (-x)

21

0dd would require that

H(x)

cn(Fn(X)+Gn(X))

¢ (F(-x)+6 (-x})

G (-x)
¢ (G (x)+F (x))

ann(x)

To get an even field function, then it is assum-

Hn(x) be

can be made even

3.1.16

3.1.17

3.1.18

3.1.19

3.1.20

3.1.21

3.1.22




¥ -
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Thus, Hn(x) is an even function.

Similarly, Hn(x) can be made odd by assuming

a, = -bn 3.1.23
and that
a = -bn = cp 3.1.24
itAis seen that
ann(x) = cn(Fn(x)-Gn(x)) 3.1.25
and
ann(-x) = cn(Fn(-x)-Gn(-x) 3.1.26 |
= cn(Gn(x)-Fn(x)) 3.1.27
= -ann(x) 3.1.28

Thus Hn(x) is an odd function. One additional assumption
is that in the odd case, the amplitude of the cylindrical
wave is zero. This is necessary for the field function to
be odd.

In the following development, the even parity case
will be the one dealt with. The odd parity equations can
be found from those for the even case by deleting the lead-
ing term in eq. 3.1.2 and following the procedure as above.

Therefore, the eigenvalue equation to be solved is
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N
ll+2(anFn(y)+bnGn(y)) dy  3.1.29
n=1

Substitution of the actual forms of the functions allows
explicit forms of p(y) and g(y) found in 3.1.4 and
3.1.5 to be found. Employing equation 3.1.5, according to
Appendix A allows the following first order approximation
rg(x) = 1+F; (x)+G; (x)
N
* :E:(anFn+1(x)+bnGn+1(x))

n=1

N
+F1(x) D (a,F (1)+b 6 (1))
n=1

N
+61(x) D (a,F (=1)+b 6, (-1)) 3.1.30
n=1
N ] N
= LeH () + ) e HL (0 (0D e (1) 3.1.31
n=1 n=1
N
= x(1+2ann(x)) 3.1,32
n=1
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In the odd case this would become

N N

A }E:c H (x = }E:ann+l(x)+H1(x):E:ann(l) 3.1.33

n=1 n=1

The Eigenvalue Polynomijal

In the even parity case, the eigenvalue equation is

approximately given by

N

N
MI+Y e () = L ()Y ity (%)

n=1 n=1

N
+H1(x):E:ann(1) 3.2.1
n=1

The relation between X and the known functions is i
constructed in the following manner: ;
First, the coefficients of terms in 3.2.1 involving !

Hn(x) , where n # 1 , are set equal:

Acn+1 =cy

It follows that

(2]

_on
Chtl = X

(2]
]
>0
-
-
(2]
w
[e]
N
]
O
o




and generally it is seen that

c
=& - _n
Cr+l N 3.2.5
In other words
cih = ¢ A" 3.2.6
n
_ N
= CNA 3-2.7
This in turn implies that
_ N-n
Ch = cNA 3.2.8
Equating coefficients of H (x) now yields
N
AC, = 1+chHn(1) 3.2.9
n=1

Substituting for Ch and ¢, according to 3.2.8, gives

N-1 _ N-n
AWVl 1+Zch H (1) 3.2.10

Equating constant terms in 3.2.1 shows that

A= 1+cNH 3.2.11

N+1

25




A=-1 = cNHN+1 3.2.12

A=-1
N+1

i 3.2.13

Substituting for N in 3.2.10 according to 3.2.13 yields

N
N-1 N-n
ﬁlﬁﬁlll___ = ] + :E: iﬁﬁlli___ Hn(l) 3.2.14
N+1 N+1

3
n
—

or

N

N _ N-n

AHA-1) = Hy et (A-1) E ATTUH (1) 3.2.15
n=1

which is a polynomial in the complex variable x» ., Its
roots can be determined from any root-finding subroutine,

since its coefficients all involve known quantities such as
Hn(l)
or the constant

HN+1

It is from this polynomial that the mode eigenvalues of the
resonator are determined. A preliminary evaluation of the
eigenfunction for a particular mode can be made by substi-
tuting into equation 3.1.2 the values for Ch s which are

given by
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A 3.2.16

However, due to the singularities in the first approximation
to the integral, 3.1.6, whenever x approaches y, , this
particular expression for the eigenfunction is invalid. This
problem will be remedied in the next section.

The odd parity solution is given by 3.1.33, and the poly-
nomial development for that case is as follows.

After equating the coefficients of Hn(x), n #1, it is
seen that the same relations arise as 3.2.2 - 3.2.8.

Equating coefficients of H;(x) 1indicates that

N
AC = }E:ann(l) 3.2.17

n=1

Equating constant terms indicates that

CNHN+1
This is only reasonable since the condition imposed on N

namely that HN+1 is a constant, also implies that

F = Constant = G

N+ 1 3.2.18

N+1

27




EONURRN G

e e i e e e e s = SR

and since

3.2.19

N+1 N+1 N+1

H

]
(=]

N+1 3.2.20

This indicates that <, is completely arbitrary since there
are no other restrictions imposed by either 3.2.8 or 3.2.17.

If <, is indeed arbitrary, and

¢ = " 3.2.21

! then ¢~ can be chosen such that

c.A = ch =1 3.2.22

; leaving the relation

c. = A 3.2.23

which can be used in the limited range eigenfunction ex-
pression for the odd parity case.

The polynomial is developed by substitution for h
of 3.2.8 in 3.2.17 giving

N
ACy = chHn(l) 3.2.24

n=1
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N
N-1 _ N-n
AcyA 2 cyA Hn(l) 3.2.25

N
AN Z}\N'an(l) 3.2.26
n=1

Development of Eigenfunction

Expressions Valid for A1l X

To develop an eigenfunction expression valid for all
X o it is first necessary to return to the original equa-

tion, 2.1.32, which is

1 : X
- -it{y-=)?
vl =/3 fatve T gy 3.3.1
71

Since the eigenvalues are known or can be determined,

it can then be said that

N R X
Sit(y-X2
f[1+z:c H (y] Y dy 3.3.2

One might question the validity of this expression, since

g(x)

>4[o—-

A was determined from the first order approximation. How-
ever, that previous approximation yields perfectly valid

values for X , because all that determines the mode

eigenvalue is the field on the smaller feedback mirror,
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where x<1 . In this region, the approximation is always
valid. Therefore the A's are perfectly valid.

A1l expressions and quantities on the right side of
3.3.1 are known, and therefore one can once again utilize
the method of stationary phase, but in a second approxima-
tion, yielding an expression no longer as simple as 3.1.6
but one that is valid for all x . The higher approximation

to the integral is given by {(Ref 1)

itp”(b)?
_ _=itp(b) T '%pe‘gbg
I = e q(b) W e
(Vo ) - 25t et
itp“(a)?

. ) 1 a
ala) \feptay e P

[E'</W£'(ﬂ p'(a) ; 12—‘} 3.3.3

wnen Y, is such that

[ 74N
Q

3.3.4

and







Here, E* is the complex conjugate of the Fresnel integral.

In both the even and the odd cases the integral

3 At/n J/.e E (anFn(y)+bnGn(y)) dy 3.3.9
-1

n=1

must be evaluated. Specific differences for even and odd

cases will be treated Tater. Manipulating 3.3.5 yields

. X2
1 Sitly-g) F b d 3.3.10
< /TE/E e (a F (y)+ nGn(.v)) y .3.

n=1 -1

To make use of equations 3.3.3, 3.3.5 and 3.3.7, it 1is
necessary to get p(y) and q(y) expressions for the nth
term in the series. Substitution of the explicit forms of

the F and Gn functions yields an integral of the form

n
-it(1-L) % /m
] Sely) Ve Moy " "t
e -

J] 2/77T 1 - I

-3 ny2
b | . it(l+y/m")2/m._,

- dy 3.3.11
2/7nt 1+ Lo
© mn

where m, has been previously defined in 3.1.12,
Upon consideration of the term involving the a con-

stants, it is seen that
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ply) = (y-=) + 3.3.12
m mo-1
- - X 2 1 y
p-ly) = 2(y-3) - 4 T m (1-27) 3.3.13
n-
o, - 2
p-(y) = 2 + T 3.3.14
m m
n-1
q(y) = 1 3.3.15
1 - Lo
mn
Solving for y, yields
X 1 Yo _
Yo - = - o+ =0 3.3.16
m m m 2n
n-1 mn_lm
1 X 1
Yo (lt———0y) = = + ——5 3.3.17
me_m moom._qmn
a X 1 1
yo == ¢t 3.3.18
0 m m"mn_1 1+ 1
m m2n
n-1

Similarly, for the part involving the bn constants

it is seen that
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ply) = (y-3) + — 3.3.19
n-1
pe(y) = 2(y-%) + 2o Lo (y4r 3.3.20
m n-1 mn m <9
p- (y) = 2 + —2 3.3.21
Zn -3
m~"'m
n-1
1
q(y) = 3.3.22
1+ Ie
Solving for y, , it is seen that
X 1 Yo - :
yO M + mnmn-l mznm O 3.3.23 :
n-1 '
}
i
1 X 1
¥o<+—2n——>=ﬁ“-m—— 3.3.24 '
mTme n-1 ’
3
b _ [x 1 1 !
Yo = 'n"" - mhm 1 3.3.25
n-1 1 + S
m-ime g

These expressions can now be substituted into the over-
all approximations to the integral. However, in evaluation

careful consideration of the vy, values must be taken, in
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kg

order that the proper form of the approximation is used.
This is rather complicated, since there are two yg¢'s
one for the a, term, and one for the bn term.

In order to simplify things, let

_ aann_l Je m
2/77E 1 - %n 2t(1+—7————->
m
n-1

2 1 1-1 |4, 2n Mn-1
{2(1-=)- —r— 1--“> - — +
Mg \M 2 2/77E ;

—
—
b
]
-

t . X 2
E* 2(-1-2) 0 o (14
-J;Tf(lﬁ’—-z—ﬁl———) m m mn'l ﬁ“_
m m
n-1

= ATERM 3.3.26
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Ml o aoe o L o o o

_ _n n-1}e J
2/int 1 - ,%,TT (1+_2..___ -

. X 1 n|? 1
4'It[1-a-+(1+ﬁm-)/mn_lm ]/4.1+ ;.z_n_m__

n-1

t X 2 1 1-4
BN/ 7 20100 pm—(+gm))) - ==
() 1
m mn_l

2 1 2
—1t[( 1—-—) +(1—~,T)/m _1]
+ anmn-l e " "

2,77 1 - -j—lﬁ 2t(1+—-2—n—1————)
m mn_l

*e

. X 1
4it -1-ﬁ+(1-ﬁw)/mn_1m 4.1+

€

2 1 1-1
I Vzn(“ - (1« el () -

= BTERM 3.3.27

Mh-1

Then, it can be said that

36




o . -

1

-1t(y-—
f (a F (y)+b G (y)) = ATERM + BTERM 3.3.28
%1

provided that both points of stationary phase are less than

negative one, the lower endpoint of the integral. Therefore,

in that region, 3.3.10 is equal to

N

L ATTT ) (ATERM + BTERM) 3.3.29
n=1
However, if one or both points of stationary phase fail the
magnitude condition, the expressions ATERM and BTERM can be
corrected through some slight modifications. If y% 21 |,
or yg 2 -1 all that has to be done is to change the sign

of each 1-i term. If either y, 1is such that
2

-1 3y s 3.3.30

then two things must be done. First, only the second l%i
term requires a change of sign. Second, the stationary
phase point contribution term must be added to the entire
expression,

For the a, term, this contribution is

it |( 3-5-)2+(1--y—%-)7m
_ a VM4 o-im/é Yo q mn n-1 ~
: ==

e

2/int l-yg/mn

3.3.31
37




and for the bn term the contribution is
b
i -it[(y%-2‘->2+<1+¥ﬁ)2 m ]
i bn mo-1 e-1n/4 m m // n-1

b n e m
2/t 1 yo/m tfi+
( en )
m m
n-1

3.3.32

These expressions are added to ATERM or BTERM, which-
ever is required. In this way the complete expression for

the integral

N oL -it(y-3)?

1

T+ f‘e (a F (y)#b G (y)) dy  3.3.33
n=1 =1

can be stated.
However, in the even parity case, one more modification
must be made. The term involving the 'l' must be added to

the expression. Explicity, that term is
1 . Xy 2
1 ‘1t(.Y'E]‘)
X—-\ﬁt/n/‘e dy 3.3.34
-1

From this it is seen that

ply) = (y - 2)? 3.3.35
p~(y) = 2(y - 3) 3.3.36
38




p°(y) = 2 3.3.37

q(y) = 1 3.3.38
and
Yo = & 3.3.39
Substituting into 3.3.2 for y, S -1 gives
1 Sit(1-%)" -it/4-4(1-%)2 »
3 /TE/T |e " e m E*G/g;.°2(l—%> - lgl

-it(-1-%)2 it/4+4(-1-%)2 .
m T fl t X 1-1
-e Vot e Ex ope2(l-p) - =

.3.40

If vy 21 , once again, all that needs to be done is to

change the sign of the l%l terms. If 1y, 1is such that

3.3.30 is satisfied, then aonly the second l%l term is
changed in sign and the stationary phase point contribution

term is added. That term is given by

e~ 17/4 srE 3.3.41

Thus, the higher order approximation expressions for

the eigenfunctions

1 N 1 'it(.Y‘E)
DY /e (1+a F (y)+b G (y)) dy  3.3.42
n=1 =1
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in the even case, and

1

N
% 1t/ :E: ./‘e
=1

n=1

Sit(y-X)2
B (a,F (y)+b G (y)) dy 3.3.43

in the odd case are expressed, per 3.3.2-3,3.4. These ex-
pressions are valid for all x , In this way, the fields
across the output mirror plane can be evaluated. It fol-

lows that intensities are then given by

I = EXE = g*g 3.3.44

where E is given by the eigenfunctions.
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IV. Modifying the Expressions to

Account for Gain

Chapter IV addresses the problem of generalizing the
previous deveiopment so that the expressions can account
for the presence of gain in the resonator. It is noted
hefe that the method set forth here is not the only way
to include gain in mode analysis (Ref 8).

In this thesis, the method taken to include gain in
the preceding development will ~equire two changes in that
development. The first is that the fundamental cylindrical
wave is no longer assumed to be of unit amplitude. In the
even case, to which consideration will be limited, g(x)

is then assumed to be of the form
N

g(x) = h + D¢ H (x) 4.1.1
n=1

where h is the amplitude of the basis wave, in general not
equal to 1, which will be determined later. The second mod-
& jfication made is to include a gain factor, eZE(Y)L in
the kernel of the diffraction integral. The integral equa-

tion then becomes

Foogy iR
Ag(x) = /AAt/n fe IVt e g(y) dy
21
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N — -
>\(h+chHn(x)) = it/ fe2g(y)L e
n=1

The best value of h can be found from a relaxation pro-
cess wherein gains are assumed to be equal to losses. First
however, the eguations require a round value as a starting
point.

To determine that rough value, it is assumed that
there is a uniform intensity across the laser cavity, in
particular, at the output plane. Thus, the gain there is

affected in a similarly uniform manner., If the gain med-

ium is homogeneous, then

—g_(X) = ——-%T— = 5 ) 4.1.4
1 + 2I

sat

where g, 1is the small signal gain, and ISat is the sat-
uration intensity, both determinable from actual laser
parameters, I(x) is multipiied by 2 since there are in-
tensity contributions from two waves, one propagating in
each direction.

If the uniform intensity across the feedback mirror is

If , then the feedback power is given by

P «2ad 4.1.5

£ = I¢

42




where 2ad 1is the mirror area.

After one round trip, the power would be

- 2gL
Pr - Pfe 4-1-6 {

and the round trip intensity would then be

P

) = .—...E__
}
)

since the area of the beam is now increased by the magni-

fication (neglecting diffraction). In a steady state sit-

uation, Ir must equal If , and therefore it follows

_ _ r _ Pfe -
If - Ir - 2mad Zmad Zmad 4.1,

|
that
p 29L If2adesz

and thus

{ . -
. m = esz 4.1,

Tn m 4.1.10

n

2gL
Substituting 4.1.4 for g , it is then seen that

1nm=2L;;?—m 4.1.11

Isat
1+2M= Z—Q_Ql-_ 4.1.12
ISat Tn m
43




= feb_ 2 4.1.14

This ratio is the ratio of the intensity on the mirror to
the saturation intensity, and it will be considered as the
relative intensity of the fundamental cylindrical wave.

Therefore,

h = Q_QL_-

1
T 4.1.15

in a first approximation. This will give a rough starting
point for h "from which.the equations can begin,
Considering the new integral equation, 4.1.3, in
light of the first stationary phase approximation, it is
seen that a term has been added to the various q(y)'s
From the approximation it is then concluded from the re-

sults of Appendix A, that

N
A(h+ann(x)) ~ he?d a(yolL +he29(1)LH1(x)+}E:ezg(y%)anFn+1(x)
n=1
N N
+§:ezg(y°)bnen+1(x)+Fl(X)E:Can(l) +G (x) z:c H ( 1)
n=1 n=1

e2'g_(-1)L 4.1.16
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Since the intensity profile is even, in this case it is as-
sumed that the gain function g is even too, and the ap-

proximation then simplifies to
A(h+chHn(x)) = hezg/(y°)L+hezg(1)LHl(x)

% 25(y2) o~ 23(yd)
+z:e 9o anFn+1(x) +Ze 9\Yo anGn+1(x)
n=1 n=1

N
+ ()29 LS e 1 (1) 4.1.17
n=1

Equating coefficients of Hn(x) s, n # 1 shows that

- a =/, b
re .. = a eZQ(yo)LFn(x)+bn929(yo)LG

Cn+1 0 (x) 4.1.18

n

However, yg and y? themselves are now functions of x ,
and therefore, the sequential arguments leading up to an
eigenvalue polynomial can no longer be made.

In order to build that polynomial, one more simplify-
ing assumption is made, that being whatever intensity fluc-
tuations present across the output plane exist, their ef-
fect on the gain is negligible. The gain factor is then
assumed to be a constant, for all points across the reson-
ator,

Defining the gain factor

£ = o9 4.1.19
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where g 1is given by 4.1.4, then, the equation becomes

N N
Mh+D e H o (x)) = herhgH, (x)+ Y ke
n=1 n=1
N
+H1(X)z:€C
n=1

Equating coefficients of Hn(x)

= &
Cn+1 X Cn
Ca = % Ca
- £yn
Cn+1 = c!()\)

and in turn it is seen that
Ayno_ AL AN
Cn(g) C1f CN(g)

Equating coefficients of H (x)

ACy

N
hg+:£:g
n=1

Equating constant terms shows t
Ah = h§+£cNH
46

an+1(X)

an(l)

now gives

4.1.20

4.1.21

4.1.22

4.1.22

4.1.23

yields as before

ann(l)

hat

N+1

4.1.24

4.1.25

o



Ah-hEg

€HN+1 =c, 4.1.26
%%A;ﬂ - ¢, 4.1.27
N+1
Therefore, from 4.1.27 and 4.1.23,
AT (a-g)h
Cn = (E') H 4,1.28
N+1
Substituting this into 4.1.24 yields
(A)N'l h{x-¢) ﬁi A N’"h(x £) (1)
A(E = = he+ D &(%) =—==H (1 4.1.29
£ EHNs1 =6 BHyg o
n=1
which simplifies to
N
' N N-n
A - - A
' (£) (a-g) = gi +(-£) 30 (3) W (1) 4.1.30
3 n=1
and the polynomial is then given by
;' \ N
! N+1 N-n_N_n-N
Aa-g) = eV e =) 20N NN (1) a1
n=1
N
_ ~N+1 N-n_n
= £ THy,t(A-g) 2ol (1) 4.1.32
n=1
The roots of this polynomial can be found using the

same method as
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to mode eigenvalues. I[f the model is to be correct for a
steady state resonator, gain should just balance Toss in

that resonator, implying that

u“(x) = u(x) 4.1.33
and therefore
y =1 4.1.34
If y=1 , then from 2.1.32
A= /m 4.1.35

Using this condition, 4.1.35, then h can be modified
until the lowest loss mode has an eigenvalue equal to vm .
The value of h that allows this should then be the most
reasonable value of h

When h is found, the proper gain factor is in turn
found by substituting h? for the intensity ratio in 4.1.4.

To extend these solutions beyond the shadow boundaries,
one merely has to multiply the constants a, and bn in

the expressions derived in the last section of the previous

chapter by £ , and change the constant factor to h




V. Results

Implementation of Code and Result Check

The expressions developed in chapters three and four
were incorporated into a CBC Fortran IV program, BARC, which
was organized into two basic sections. The first section
included development of the coefficients of the eigenvalue
polynomials 3.2.15 and 3.2.26, the computation of the roots
through IMSL routine ZCPOLY, the computation of the weight-
ing constants h according to 3.2.16 and 3.1.23, and the
preliminary eigenvalue expressions based on 3.1.2. The
second part, in a separate subroutine, implemented the ex-
pressions developed in the third section of chapter three:
the eigenvalue expressions valid for all x . The program
was then run for various cavity parameters and the results
were compared with the results of other programs (Ref 6:1536;
Ref 8:239).

Table 1 represents a comparison of eigenvalue moduli
resulting from the program developed in this work, and
those from the Moore and McCarthy program.

These results are for a cavity with magnification of
2.9 and an effective Fresnel number of 16.4 . The solu-
tion compared is that of the even parity case.

It is seen that the two codes predict modes with very
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TABLE 1

Mode Mod  BARC Mod  mam®
1 1.040105 1.040105
2 ..625501 .625501
3 .606668 .606668
4 .496561 .496561
5 .467285 .467285
6 .157664 .139999

similar losses, since

loss = 1 - A;L 5.1.1

3

and the x*)x values are all very close.

Figures 3 through 8 are included to show results of
eigenfunction intensity plots over similar ranges for the
Moore and McCarthy program and program BARC. Figures 10
through 15 show comparison between BARC's results and those
published in reference 6 (Ref 6:1536-1539). In both cases,
through visual comparison, program BARC produces results
that are very similar to results from previous methods,

This indicates that BARC produces valid results, at least to

the extent that the previous methods are valid.
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Bare Cavity and Gain Results

After the validity of the code was ascertained, the
code was modified according to the expressions generated
in chapter four. Figures 14 through 21 illustrate results
obtained for a bare resonator of magnification 2.9 and
equivalent fresnel numbers of 15.863 and 16.4 . These
parameters are chosen to facilitate mode separation com-
parisons later in this section. Figqgures 22 through 29 il-
lustrate results of a loaded cavity of the same configura-
tional parameters but containing a gain medium of small

signal gain 5%cm” !

and cavity length of 200cm. This
group of plots allows comparison between bare and loaded
cavity cases. It is seen that this particular resonator
model predicts that loaded cavity modes have nearly the same
intensity profiles as bare cavity modes, differing only by
a scale factor.

At first glance this seems reasonable, since in the
bare cavity case, the whole eigenfunction was based on a
wave of unit relative amplitude, and slight modifications
on that wave by diffraction supplied by the oscillatory
functions Hn(x) . In the loaded cavity, the eigenfunction
is also based on a wave modified by the same functions, only
the relative amplitude of that wave is no longer unity.
Thus it seems likely that the profile would look moderately

similar in both cases.
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B e s

In closer analysis, the mode for the bare resonator

has eigenfunctions given by this expression

N

broy . b

g®(x) = 142 cPH () 5.2.1
n=1

while the loaded case has eigenfunctions given by

N
L _ L
g (x) = h + :E:Cn H

n=1

n(x) 5.2.2

Similarly, the expressions for the weighting constants are

c P - A 5.2.3
no T Ho
L. (h-£) , A"
c - = h(=) = 5.2.4
oAy 6 2

the eigenvalue polynomial in the loaded case is (4.1.32)

N
N N+l N-n_n
ANa-g) = g T+ ) 20N (1) 5.2.5
n=1
Dividing through by &1 yields
N N
A A - A N-n
() (3-1) =ty + (D220 (1) 5.2.6
n=1

which becomes identical to the bare cavity polynomial (3.2.15)
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as £&»1 . This condition will be fulfilled when h , the

intensity ratio, becomes very large as seen from 4,1.19 and

4,1.4 . In turn H 1is then seen that, as ¢&-1

5.2.7

and
gL(X) > hgb(x) 5.2.8

From this it is concluded that in the well saturated case,
or when the ratio of the actual intensity to the saturation
intensity is much more than one, the field distributions
and hence the intensity profiles will equal those of the

2
bare cavity case multiplied by h and h respectively.

Tables 2 and 3 are présented to illustrate and compare
mode separation properties of a loaded and a bare cavity
for three different equivalent Fresnel numbers. The para-
meters chosen were a a magnification of 2.9 and Nf's of
16.874, 16.4 and 15.863. These were shown in reference 6
(Ref 6:1534) to be points of least, greatest and then least
loss and next to lowest loss eigenvalue moduli. It was
thought that since the lowest loss mode eigenvalue was forc-
ed to the same constant value at each Fresnel number, negat-
ing any quasiperiodicity, the higher loss modes might also

lose quasi periodicity. The numbers presented show that the

higher loss modes do maintain their quasi periodicity.

80




TABLE 2

BARE RESONATOR Mod ()
Mode Nf=15.863 Ne=16.400 Nf=16.874
1 0.8543652 1.040102 0.8922496
2 0.8508141 0.6255715 0.7785354
-3 0.5385818 0.6067205 0.5400256
4 0.5049350 0.4966156 0.5290538
5 0.4737932 0.4673182 0.4752758
6 0.1718837 0.1646309 0.1593562
TABLE 3
LOADED RESONATOR Mod (1)
‘ Mode Ne=15.863 Ne=16.4 Nf=16.874
1. 1.702922 1.702965 1.70294
2 1.695844 1.024215 1.485906
3 1.073502 0.9933517 1.030688
4 1.006437 0.8130828 1.009747
5 0.8718129 0.7651157 0.9071073
6 0.3425989 0.2695415 0.3041459

The h's required to adjust XA to ~vVm were 2.6899
3.1051, and 2.5979 for Nf=15.863, 16.4, ard 16.874 respectively.
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VI. Conclusion and Recommendations

Conclusion

The primary conclusion of this thesis is that pro-

gram BARC, written according to expressions developed

along Horwit'z analysis, produces valid results. The pro-

grém allows analysis of even and odd parity mode solutions,

more general than Moore and McCarthy's program, and also

allows field calculation beyond the shadow boundary.
Incorporation of gain considerations into the program

to allow analysis of a loaded strip resonator has been done.

After modification the program produces results from which

a second conclusion can be drawn, that being, for this par-
ticular model, mode intensity profiles in a loaded strip
resonator are essentially the same as those predicted for a
bare strip resonator. It is also concluded that mode losses

as function of equivalent fresnel number continue to exhibit

E quasi periodicity in the loaded case.

Recommendations

The computer program, as it stands, predicts some very
basic results about modes in an unstable resonator. There
is no doubt that the scope of the program and the model upon
which it is based can be broadened considerably. As it

stands, it could be used to examine a full, or more complete
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range of resonator parameters either loaded or bare.

The program should be used to explore mode separation
in the loaded cavity case. Mode separation could be ex-
amined for a range of Fresnel numbers as has been done for
bare cavities. (Ref 6)

The model given here could be modified to account for
a non uniform gain function. To do this a new series of
Hn's might be developed through asymptotic analysis of the
gain-modified kernel. Another method might be the use of
matrix methods to solve the eigenvalue equation.

This existing method could be applied to resonators

with circular mirrors per Ref 2, and gain then included

in that case.
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Appendix A

This appendix will employ the stationary phase approx-

imation to simplify the resonator integral equation into a
E
workable expression. The derivation starts with the func-
tions,
-it(1-x)?2
F(x,t) = -1 € Al
2/t 1-x
and
-it(1+x)?
G(x,t) = —L_ & A2
2vint 1+x
These are modified by letting
_ X t
Fo(x) = F&g , —5) A3
n-1
)
and
]
- X t
Gn(X) - G(ﬁ'ﬁ' ' m ) A4
n-1
e
where
n
- -2K
m 25 m A5
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and

m
i = /1

Thus it is seen that

magnification

-1 e—it(l-x/m)2

- 6
Frlx) 2/TRE  LoX/m ’
. ( ) _/I—;W e"i‘t(].-)(/mz)2/1"'1/"\2 A7
x -
2 2t 1-x/m?
and in general that
— —it(1-x/m™)2/m__
F(x)='m"'1‘e - i A8
n 2/t l1-x/m
and similarly
~ -it(1+x/m")2/mn_1
G (x) = Xn=1 ¢ A9
n 2/int 1+x/mn

Now, it is recalled that the working form of the inte-

gral equation is

1
AF(x) =ﬁ—f fe‘”(y"‘/“‘)zf(y) dy A10
21




In the even part

N
‘ F(x) = 25 J+b G_(x)) A1l

ATl is substituted into the integral equation, which now

becomes

AM1+z{a F (x)+b G (x)}) =
|
it t(y-x/m)?
- f (1+z{a F (y)+b G (y)}) dy AL2
-1

When expanded once, the right side becomes

_J—f -it(y-x/m) d+rz f -it(y-x/m)2

n=1 -1

(a,F (y)+b G (y) dy A13

The first term is called I, . Then

1
it -it(y-x/m)?
- /‘e dy Al
-1

This is now considered in light of the first order approxi-

mation to the method of stationary phase which states that if
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I =

]

itp(y,)

then

1= e ™8 (y,)e

ifagb)  -itp(bn)
+ t[p b e -
Where y, 1is such that

P (yae)

It is seen that

q(y)
p(y)
p-(y)
P~ (y)

And that

g(ag e-itp(aq

]

aly)e TtP(¥) gy

(y-x/m)?

2(y-x/m)

x/m

Al5

Al6

A17

A17.1

A18

A19

A20

A21




Therefore, after substitution,

re-it(l-x/m)2

N i) O L V7 S |
Iy = m [e T/t t 2(1-x/m)

'e-it(l-x/m)2

R

2(-1-x/m)

-it(-1- 2
e it( x/m) ]]Azz

-in/4 i
e t e VT [agm

However, since

e-it(1+x/m)2
TFx/m A23

that however, i/3 = /1 = 1

PRLLTAN: g %(1+i)(1-i) A24
=1 A25
Then
; e-it(l-x/m)2 e-it(1+x/m)2
1 Lo Yiyg Jit/m I-x/m * T+x/m Az6
3
- g [esit-xm® o mit(lexym)?
= 1+ + A27
t o | -x/m T+x/m

Since ivy = (i-1)//2 , and =-1/v/7 = (i-1)/vZ , it is seen

It is now easily seen that

lo = 1+F1(X)+G1(X)
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-it(l-x/m)? -it(1+x¥m)?2
B = 1- —— [¢ + & A28
¢ 0 2/t l-x/m 1+x/m

A29




R e T

e Tw—

The first term in the sum of integrals is now called I

1
. 2
1, = AEE [ e Tt mMT G Fo(y) ¢ b6 () dy  A30
-1

Explicitly, this becomes

-a -it(1-y/m)? -b
1 e 1
I, = /it/n +
1 ;{ 2/7wE  Ly/m 2/77E

e-it(l+y/m)?

: 2
Tiy7m cemitly-x/m) A31

Upon separation the result is

may; G- it|(1-y/m)2+(y-x/m)?|
1= it/ f l-y/m dy
1 2/int
. } by -it] (14y/m) 2+ (y-x/m)?| A32
VTE;TT
A 2vVint Ty/m

Upon consideration of the first part of this, it is

seen that
() = 177 A33
p(y) = (1-y/m)?+(y-x/m)? A34
pr(y) = =& (1-%) + 2(y-%) A35

A36

"
54 N
+
ZM)

p-*(y)

1:




Solving for

Yo )
=2 2 2x
0= ﬁ¥l t 2o - 4
yo(l'*"}Tz) = %"’%
1 X
vo =(a*ﬁ)
1
1+-“Tz'

These expressions are now substituted into the first part

A37

A38

A39

of A32 to get r
-it (-%.111 .(%+%) 2+<%+%).111 _%>2]
-a, Je m me
V1E;TT
2/77E 1 N1
1’(5(:_1’;)(5*?))
m
.
B 2 2
-1't((1->n';)2+(1-%)>2 1t<(1+-'}]-) +(-1-%) )
s 1]e _e
Pla-dyEEabeea-d) o b GRashea-1-k)
_

Considering the second term of A32 shows that

1

q(y) = TT§7E

91




= (14d) ey Xy’
ply) = (1+2) +(y-2) A42
- _ 2 y X
p (y) = g(1+5)+2(y-3) A43 J
) .- _ 2
p-r(y) = ozt 2 A44
and solving for y, , the result is ;
_ 2 2 2X i
0 =%+ 24 2y, - 22 A45 d
1 X 1
Yo(ﬁf*l) o om A46
yo = (5 - Dt A47
1+
m
Substitution of these expressions into the second part of

A32 results in
f
i i 171 (x 1y L (x Ly _x\?
—'l" -1t 1+m<1+1 (m m) * 144 (m m m
-b, — mZ me
/1f7w4e / 1
2/t t1+ﬁ'2' " _1-. 1 (2(“_1‘)
m 1+1 mm
mZ

~ )

. 1,2 Xy 2 . 1 X
Sit((1eh) e (1-57) Sit((1-3)24(-1-%)2)
+i‘°-1((m " 91( ! T A48

o) Eaddie-X) T Easdse-a-E)




Considering the denominator in (A-40)'s stationary phase

point contribution, it is seen that

Xl A49
m+—) em

1
moel
And similarly in (A-48)'s stat phase point cont, it is seen

that

x-1

= (m+a)-m

Also, it is seen that the argument of the exponent in A-40's

stationary phase cbntribution can be simplified as follows

1 1 x,1,\? 1 1,Xy X
1-= oI (a+ﬁi) + " (Z+o) -2 = A51
m?2 mZ
1 x,1\?,/x+1 x\?
1-—L X L\ xrl X AT A52
< mtL M m) <n+l m>
m m
x+1 V2, /x+1 x\* _
(1 m7+1> +<n+l ﬁ = A53
m
m2+1-x-1\2 m(x+1)-X(m+%) z
<—m'r+—1—> * y As4
m2+1
2_,)2 - =YV 2
(' ox)efmns onlmm)” pss




X 2 X 2
(1'57) (1-57)
= 1 Y4 + 1 < A56
(1" (med)

1 X
(1-37)% =2 (1-3,)?
SIS A57
(l*ﬁz) (l+ﬁr)
(1-%7) (1+17)
= T A58
(1+ﬁr)
2
(1-27)
=1 A59
1+=

In A48, the exp argument in the stationary phase point con-

tribution can be simplified as follows

1 1 x 1\ 2 1 x 1, x\?
(1*;5 ;ﬁ—(ﬁraD o) w A60
me mZ
x-1 \?, /x-1 x\?
(1"-2’—," +1> *(“1'6) A6l
e+
m
2 X\2
o [mi+lex-1\ | X-m-mX-o A2
- mZ+1 mZ+1
) 2 X 2
me+x m
(m2+1 +<m2+1> A A63

2 2
(L45z) (Fz+1)
= v —~7 A64
(1+427) (Xl
mZ m
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Bor i v -

2
(1427)° L (Xr+1)
= — * e A65
(14~ (1+=7)

- i — A6 H
(147 ey .
m i &
Substituting these simplified expressions into A-32, we !
find that . 1 §
-it(l-ﬁr)2/1+ﬁr ]
- a,e
1, = -/AE7 —— (7174 . L —
2/7TE t(1+27) 1 - X
' m(m+=)
m
2
Sit{142) /1edy :
b,e m m : ¥
+ 1 T 1 i .
X-l - i T _'E'
14— 2/t
m(m+ﬁ)
2 2 2 2
Sit((1-2) +(1-5)7) Sit((142) +(-1-5)7)
m m m m
ae ae

(1-3) (B(1-byea1-2)) (b GRaedyva(a1-2))

-it(1+l)2+(1-%)2
b,e m b,e
NS YOy ) LoD 2D ¢
(1+ﬁ)(ﬁ(1+a)+2(1—5)) (1-5)(5(1-5) (-1-5))

Now the first part of this expression can be simplified as

follows:
1 _ 1
3 SR Aee
m(m+<) me+1




And the second part can also be simplified

1
147

m

+

:

x

-

1+

X
1+
'HTZ'

1 me+1+x-1
1 me+1

A72

A73

A74

If these simplified expressions are substituted into A67, the

result is
I, = -/Tt7 —— " '7/4
2/int
2
Sit(1455) /143,
b.e m m
. 21

~it(1-27)2 /142,
a.e m m
™ 1
1 X
t(l""r-n*[) 1--[?1‘2-
- AT i 3
Yint




Sie((1-h) e (15 ek T (e !

ae ae
1 1.1 X - 1 11 X
( 1-2) (-—+ﬁ?+1"rﬁ) ( 1‘*'“-‘) (-ﬁ-;nv‘-l-ﬁ)
i 1,2 Xy 2
-1t((1+—) +(1- ) ) -it((1-0) +(-1-2) )
b.e b,e m
1 1
' - A7S
(1+—)( +1-—) (1-—)(—-—?-1-5)
After a few sign manipulations and cancellations, it is
f . seen that
-it(1-27)2/ 141, St (14E) 2/ 14
-1 ae b,e
Il ~ +i/m X + X
2vint 1 - ra 1 + =
m
-it(l"%)z "'it(].-')'(')z -'it(l-l--%)z -it(-l_é_)z
1 aje o m . ae e m
4int 1.1 x 1 1.1 .x
(1- —)(1-ﬁ+ﬁ? m) (1+ﬁ)(1+ﬁ*ﬁ?+ﬁ)
o3 +y2 2 -3 __]; 2 2
- 1t(1+m) -1t(1-%) - it(1 m) -it(-l-%)
1 e 1 e
¥ T L1 X ¥ T 11 % AT6
» : () (Lt i) (1-3) (-t )

The stationary phase point contributions are seen

immediately to be equal to
Fo(x)+b 6, (x) A77

In the end point contributions, the denominators must
be approximated and terms of % or higher order be neglect-

ed. When done, the end point contributions appear as
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2

, 1,2 . X . 1,2 Xy 2
-it(1-7) —1t(l-ﬁ) '1t(1+ﬁ) —1t(1+ﬁ)

1 ae e ae e
NI (1-1)(1-%) ) (1+1) (1+%)
m m m m
-it(1+%,-)2 -it(1-2)2 it(1-1)2 -it(143)2
be e b,e m e
* T X + e A78
(1+0)(1-3) (1+2) (1-2)
If

1 __ /=1 ¥ A79
Sint  \o4me

then these contributions are approximately equal to
alFl(x)Fl(1)+a1G1(x)F1(-1)+b1F1(x)Gl(1)+b1G1(x)Gl(-1) A80
And finally,

I, = a1F2(X)+bIGZ(x)

+a ) (F (x)Fy(1)+6 (x)F (1))

+b1(F1(x)G1(1)+G1(x)Gl(-1)) A81

The second term in the sum of integrals is now con-

sidered as I2
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2

-it(y-2)
e [ e (a,Fp(y)+b,G,(y)) dy

—
i

2 272 2
-1
2 : 2 1
-} cit(y-57 [ra, 19ke e-1t(1-%7) /1437
= 1 L e
1 2/t 1 - %T

. 2 1
b 1+l7 '1t(1+%r) /1+ﬁt
.2 _m e dy A82
2vint 1 + 'YT

m

Considering the first term of this expression, it i5 seen

that
aly) = = A83
. _ 1_%7
ply) = (y-5)2+—1-(1-Ly)? Ag4
1+=—
m
- 2
p*(y) = 2(y-2)- (1-YLy) A85
"om (1) "
m
; pr(y) = 2+ —8—— A86
m“(1+ﬁr)
And solving for y, it is seen that
A87

hile a0




= l + l 1
) m* +

ﬁ?

Substituting these expressions into A82 , the result is

that the first part of 12 is

-3 . 2 1
= -it((y-3) e (1y0))

a -
2 AT7A/TFI7mE | e m
2/1nt 1 - l%

m

. ' a )
e[ te1+ 1 : - 2 AT7F JIFITWE 1
m“(1+ar) 2V/1nmt

it(1-%)2eL(1-1,)
m 1+ET m
e
¢ * 2 1
(1-22) (2(1-%)- 1-
m m2(1+%7) m
. X 2, 1 1
'1t('1'ﬁ) +1+1 (1+Ef 2
m2
e m
(1ear)(2(-1-%)—2—(+1,
m2(1+ﬁ?) m

A90

A91




Considering the second part, it is seen that

1
q(y) = A92
1+'z'z'
m
ply) = (y-32)% + 2 (14dy)2 A93
1+=
m
- _ X 2 1
P(y) = 2(y-3) + —1~ = (1+L) A94
1+H2-
P n 2
7 m“(1+ﬁr)
Solving for y, ,
0 = yo-2ed, L (14)g) A96
Yorm™m?T 71 m
1+m—[
0 = yorhtor =+ 2y A97
1+'[-n-2- m (1+[—n'?)
; 1 X 1
Yo (It—————) = & - ———— A98
( m"(1+—1—z-)> " omz(1sly)
m m
and finally
! X 1 1
Yo = (p = i T A99
m2(1+ﬁy> 1 toe—TT
m* (1+=7)




Substituting these expressions into A82 it is seen that

the second part of I2 is approximated by

_b .
2_ 7w JTFITRT | et iT/4 [ ;
2 Vi)
“(1+ﬁr)

m

-itlyod) T—(1+12)2
+

I
. m -b, i
Yit/m 1+ T
1 + -n%-} 2/int "
’ N\
2
Sit((1-5) 2+ (1ekp) )2 Sit((-1-5 L -0-40Y)
- T m 1 m
1+F[' o
e - & " ’
(L) (201045 =) (1L (01042, L (1.L)
1+=w m F m -l'l_'l-z- 1 —m—[
m o=
\ )
A100

Combining the first and second terms the result is the com-

plete approximation to I2 s OF

1 i
2Yint t(1+

I, = «/1I+T/m* /it/w
2 1 )
1)

m“ ( 1+El-z-

) 4 (1-48) " /1415)

]
-
ot
<
]
x>




aze

(1+;11T)(z(-1-%>-2—(il—)—( 1+4)
m -

m
Sit((1-2) 24— (1+27))
m 1_,_l m
=z
b2e m
+
1 Xy, 2 1 1
=
m
\
. X\ 2 1 _1
-‘It((-l-’[-n-) +_1+l...(1 E]'Z‘))
b2e m
(I-F)(Z(-l-ﬁ)’f—;—l—-(l-ﬁ?))
m (1"'"-“-2-)

The denominators of the stationary phase point contribution
terms must be simplified:

In the first term,




‘ _ 1 X 1 1
=1 - 2 (5 + =) I i A103
m 1+L,
{ m
E _ X 1 1
E =1 - (o7 + gogp?) - A104
; me+m2
i 1+ iy - 50 1
| - m*+m m m'+m A105
| 1
E A T
X 1
= (1 - 35 Al06
m 1 1
1+ (_'o‘) 1
m 141,
m
f And in the second term,
t 14k (2 (L)) [ AL07
l+= 1+ T
E m 1+—
m
i
| = (14 A - ) —4 A108
1+m‘+m2
‘ _ 1 X 1 1
| = (1 + TV mZ + e mu+mT) s T A109
: m"+m?
!
I:
“ - X 1
= (1 + =) A110




Now, considering the argument for the exponent in the first

part, it is seen that

2
X\ (l'ﬁ%) x, .1 1 1 X g
¥ %) +—F X (Loy (o) f——)\-2
1+=— 1+_T 1+
m m mé 1+L—
mi
2
(Lol L)L
mei{m m 1 1 1
1+=7/ 1+
m m 1+1
mZ,
+ T Al1ll
1+m1'
2 2
- x, 1 1 X 1 X 1 1
- ((TWH)H I )'Fn‘ et T Al1z
me+m?2 mZ me+m2
2 1+—'r1 X 1 2
_ X, 1 1 X 1 mi+ms m® m*+m*
= W w) P Al13
m*+m? mZ me+m?
2
_Ix,1 1 1 x\?, 1 1 (x,1 1\ 1
= (ﬁ*ﬁ"' 1) T 1 m| "1 1'F(Fn'+m—f T )17 1
1+=) 1427 1+=— 1+=/ 1+
m m 1+1 m m m 1+1
—r =
m m
A113.1
The first half of All3 is
X 1 1 2
LA 1 X Al
] T " m 14
m“l"'ar
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1
b3
P
— P

1
+ e .1 -
Itor  ltortio
2
r e ) - &
a7 e

- L(1+1 +1 ) 2
m i me ome I+1/m?+1/m

2

1+1/m* +1/m >

_ 1 X - fa
= o (l-ﬁf) 517w +1/m“ first half
And the second half is
1 X 1 1
1 - =7 (5 + =~ )
( m m m- 1+1/m 1+%¢ 11 1+%r
1+=o
m
1 1 1<x 1 1\Y
y 1+ " wt\m T oW T 1
“ﬁlrf “1+%T mArom 1+%r e 1
1*‘-[;2'
] 1(1+lr1-1‘-3--3-q- 112 S 2
- 1 m +1 m m 1+ 1+.—
1+-'Fz- l-ﬁz- — o 1+-']‘;_r
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Al16

Al1l7

A118

Al119
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Al121

A122




1 X 1+1/m? 2
= ———I—- - -7 A123
14‘-“?[ ( m >(1+1/m2+1/m“)

1 -2
= 1+, IR A124
m 1+ +
mZ T omr
the total argument is
2 2 2
Lo (14 : +H(1+or) (1-2) : Alz5
m m/ oL 1 el 1
mZ m~ mZ mY,
X 2
1,1 Lo
- (1\»._z + —:.—) _—n A126
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Considering the first part of this,

(<)) (=]
N o
-4 —
< <
x|
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<|E
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+ + llE
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1
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Considering the second part, it is seen that

(ks - b )
1 m° \m m 1+ﬁ1|7 1+

-
m m 1+%T
1+
= 1 1+1 1 + _1_’_ (i- 1 1 ) m
1+1 m 1+1 m 'm mZ 1+1 1+17+1
mZ mZ mZ me ome
1L\
- 1 1+l 1 P S 1 1 2 mZ
141 e e LT mt T omt L] 1+ L1 41
mZ mZ mZ mZ m-
1 2
2 (1+=—)
- —(1) ———
1+— (1+ar+ﬁv)
2 1 2
= } @*%T 1
1+ﬁr 1+ﬁT + =
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A136

A137
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A140




B e o I i e i el

= (1+lT + lr)(1+57)2(“—l-—42 Al141
m m m 1 .1
l+=ot=
m<m
= (1425)2/1 + %2' + %rr A142

Thus the stationary phase point contribution simplifies to

-YT+T/m? 1t/ 1 1" T
2/int t(1+(ﬁv)(——T—))
1+=
m
S -it((1-Ey) ekl
ae ‘e «(1+1/m?+1/m")
(1 - %r) (1 + %r)
b2e e 1+1/m2+1/m*
¥ - T A143
G ()
SV 3 LA sy Wy 8 CS VA GRR S A VL G VA
2Tt t’1+%r+%r 1+%T

1 .1

i . X y2
T 'Tt((l-ar) /1+ET+HT)




_ =/ /IFrmeFm ) 32 ¢
2/int 1 - %T

+ A145

And this is seen to be, since e T =,
a:F3(x)+b2Gs(x) Al46

Now, considering the end point contributions, the denomin-

ators are expanded and the 2's are factored out to get

i1 - L Lye 4
l+=—r
-/TF I i)22¢ e "
/iTE i 1 1 1
ivimt (1- 17)(1- 2 - 2—(1- 7))
m2+1
2 s 2 .
Sit(1ed) - LE(1e2g) -it(1-8)2 -Ah (142
m m
a,e e b,e e
i . o2
1 X 1 1 1 X, 1 1
(427) (1-2 - =g (142r)) (lepr) (1-proagp (140)
-it(1+%)2 - —‘%-(1- %T)Z
1+-rﬁ'z"
b2e e
+ Al47

(1-37) (-1-2 + —dr(1-27))

Once more in the denominators, terms of 1/m or higher are
111

e s




neglected, and it is seen that the end point contributions

A148

are -it(l-%)z _ i§ (1_%?)2

1 12

1+ﬁr i a,e e
- /1t7ﬂ’ T’: 1 X
4/ (1 ] —:) < - —)
m m
. Xy 2 it 1 2 X\ 2 2
-1t(1+ﬁ) -——T—(1+ﬁr) -Tt(l-ﬁ) ET)
1"‘?
a,e b,e e
+ 2 2
X 1 X
(+8) (v%) () (-
sit(1ed)2 - Al
m 1+1 m
mZ
bze
+
X 1
(+z) (-%)
The outer constant is seen to be
vI+1/m* _ /1+1/m”

dime (-2/77E)?

and there the endpoint contribution is approximately

azFl(x)Fz(1)+a2G1(x)F2(-1)

-szl(x)Gz(1)+b261(x)G2(-1)

Thus it is seen that, after adding,

I1 + 12 = ale(x)+ble(x)+a2F3(x)+b2G3(x)

A149

A150

+ Fl(x)(a1F1(1)+b1G1(1) + a2F2(1)+bZGZ(1))

+ Gl(x)(alFl(-1)+b G

1
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1(-1) + aze('1)+bZGZ('1))

Al151




From this it is concluded that

N 1 —'it(y—%)z
Tt/7 Z /e anFn(y)+bnGn(y)) dy
n=1 -1
N
= ) tagFu g (x) + b6 (x)
n=1
N
+F1(x) D fa F (1)+b G (1))
n=1
N
+6(x) E {a F (-1)+b 6 (-1)} A152
n=1

And in turn, adding the I, term, it is had that

1 -1t(y-~

e [ e (1+2€a F (y)*b (F (y)}) dy

-1
N

= 1+ Fi(x) 4600+ D e F L (x) + b 6L (X))
n=1
+ 6(x) D (a F (-1) + b6 (-1)) A153
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Appendix B

This appendix simplifies the definite integral pro-
duced by assuming in 2.1.16 that a, is effectively in-

finite.

i

AL

P -2 - _ik ) 2 _ »
2L[91 1°+9,%3%-2x7%;5 ?t[91x1 *9,%5 2x1"2]
J/. e dxi

dx] Bl

[y _i_k_ -2 -2 , . -2 2 -
d/- 71 [91%17+92%5% -2 (X391 %" 4955 -2x{ %]
e
1

>
—-

kgl x1 2.2(x; +x2)x +92 2+x2 ﬂ

/e dx1 B2

=00

b
—

2t 92("'2+x
e dxi B3

Pl s
—

j IR [oyxgE- (xgxp)xq]

The square is completed in the exponent by adding and

subtracting b2/4a , or

;2 k -2 - (x£+X2)
; 2L92 *x3) e '"E[gl 10 (xp¥xg)xgt 4g,
Xr e e
ik (x5+x5)
L 491
e dxi B4
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If

g =T
and
x‘+x2
V = /g_l-xi -
Z/EI
then the result is
dav = /§I dxi
ik 2,2y ik (x3txp)?  -18V?
; 'ﬁ[gz(xz +"2)] 2 29, .
= -XT e e f
Yo Y9y
Similarly letting
vBY = W
dw = /BdV
the result is
' 2
ik ik (x5+x;)
-519, (x52+x3) o7 —57——
Ji 272\ "2 2 e2L Zg1 1 1+
L
A ,__B.gl =72
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B8

B9

B10

B11

B12

B13




then

~2 bd 2
: g
= 1o (1+1)/A7Z /73K e 1 29, 29,4 gy,
-2 2 »2 - 2
-%'_'5[29192"2 919p%p "X ~2XpX5X) ]
. L
- —‘1/;‘ T Vo e 29y B15
1
’ ik »2 2 -
- -QTT7EI'B29192-1)(XZ +x2)-2x2x2]
= /T W e 816
V 1

which is the final kernel.




Appendix C

This appendix simplifies the integral equation in

2.1.29 into the final form.

C1

c2

€3

dy

ca

C5

1 ~inF[g(x%+y?)-2xy]
yu{x) = ./. YiFu(y)e
=1
Let ‘%ﬁ(m “1)x
u(x) = g(x)e
since
_m -1
N = > F
then
2 _ . 2 _ .
-inF"‘Zmlx2 1 -mFmZmly2 -inF[g(x?+y?)-2xy]
yg(x)e - m-'/g(y)e e
71
However, since
m = Vﬂ+| + Vg-]
vYg+1 - v/g-1

(/g¥T + /g-T)*?
g+tl-g+1
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m? = g2+29/g2-1+g2-1 c9
m2+1 = 29%2+29/g%-1 c1o0
2
: ;1 = g2+g/g7-T C11

If both sides are divided by m , or rather one by
m and the other by its equivalent, g+v/g°-1 , the re-
sult is

mtl . g c12

this can then be substituted into the integral in place of g:

: m2+1 2 m2+1 2 m2°1 2 m2—1 2
1 -1nF[ o Xt oY -2xy+ T AT
yg(x) = ff'F/ g(y)e dy C13
21
. X 2
1 -'ITI’F[Fn— + my -2xy]
= fﬂ'/ glyle dy
-1
1 ~imF (y-2)?
= /TF/ glyle dy
=1
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Appendix D

List of program BARC employing the expressions develop-

% ed in Chapter III and IV, {




Nl i e e ke e K X e K X s K2 K e K X s Xr X2 Ka K K Xz K2 K s Kz R s Ko R R Ra R o N Ra e R o X o]

999

-OUTPUT CONSISTS CF

PROGRAM BARC(INPUT, uUTPUT,TAPE?:OUTPUT)
REAL HNEQ,MAG, ”"U“”’ i), 1suPl (;]),ZHTEﬁS(1000)

COMPLEX EYS CO'L(‘!),‘"'31) L
COMPLEX CL(51),c2:5T(51),CDU™
COMPLEX FIELDX{10C0),SIG,BN1,%00 X L RO
DIMENSTON LAREL(17),3TCEX(1GG2;  xTHBEX(51),PLCCON(S1)
DIMENSION FUNVAL(Z0,410),PLOFUL.20)

DATA LABEL/1T7(1CH )/

./1 (5])

1,AN2,E7EYE

THIS PROGRAM COMPUTES HESD’ATOR NOOE EIGENVALUES AND
SUBSEQUENTL EVALUATES TNSITY VALUES FCE POINTS
ACROSS THE OQUTPUT PLAINE Ox A STHIP LASER RrSONATOR,
THE PROGRAM DEALS WITH ELTHER A ©ARE CR LOADED
CAVITY, USER'S PREF:LLE

LIST, WITH PHASE

5 S LE'""TTD 10DE

£ PLOTS OF FIELD SERIZ3

IhG U‘STA‘xq AND PLOTS OF INTENSITY
LANE WITH tIxﬂLL LIMITED COR EXTENTED

AND MAGNITUDL, cir
EITHER QN OR OFF T&
FUNCTIONS OR WEIGH
ACROSS THE OUTPUT
RANGE.

COMPILED CODE NEEDED AROUND 110000 OCTAL TO LOAD.

..,_

'U»—!

INPUT QUANTITIES ARE A3 FOLLOVWS:

MAG = CAVITY MAGNIFICATICHN

NEQ = EQUIVALENT FRESIEL HUMBER

MTEST1 = FIELD SOLUTION PARITY DESIGHATCR

NBIG = DESIRESD # TERMS IH "IELD SERIES

CAVLEN = CAVITY LENGTH I LEKGTH UNITS FOR LOADED CASE

GNAWT = SMALL SIGNAL GALN IN PER LENGTH

H = AVERAGE CAVITY INTENHSITY, OR EIGENVALUE FORCING
PARAMETER

TO TERMINATE PROGRA!M, INPUT MAG=0 OR LESS.
NOTE: EVMAG DENOTES EIGCVVALUE,HAGNITUDE AND EVPH
DENOTES EIGENVALUEZ, PHASE

THIS PROGRAM ALSO REQUIRES IMSL ROUTINE ZCPOLY AND PLOT
LIBRARY CCPLOTS6X. FINAL COPY, 20 OCT 1980. J E ROWLEY

FORMAT(G10.3)
LABEL(1)=10H NEQ=
LABEL(3)=10H MAG=
WRITE(E, °9)

FORMAT(1H1 UT MAG, NEQ, AND PARITY: *,/)

1X, 18P
READ * hAG,AEé TESTY
IF(MAG.LE.O.)
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15
996

975

97%
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971

WRITE(8,88)MAG,IIEQ
IF(MTEST1.EQ.0) GO
WRITE(8,977)

GO TO 9
WRITE(8,976)
CONTINUE
FORMAT(1X,*PARITY IS ODD. *,/)
FORHNAT(1X,*PARITY IS EVEYN, *,/)
LABEL(5)=10H4 MohE E
LABEL(6)=10HIGEVALUE:

70 8 1

MSUPN(I)=MAG*%(I-1)
MSUBN(I)=1+1/MAG¥*2 « .., +1/MAG¥*(2#1_2)

MSUBN(1)=1.0
MSUPN(1)=1.0
DO 10 I=2,51
MSUPN(I)=MAG¥*}
MSUBN(I)=MSUBN
CONTINUE

SUPH(I-1)

(T-1)+1./MSUPII(I)*%2

PI=2.%ASIN(1.0)

EYE=CHPLX(0.,1.)

RTEYE=CHPLX(1.,1.)/SQRT(2.)

DUM1=2%PI¥MAGKI 2/ (VAn¥¥2.1,)
RNBIG=ALOG(250%uEC)/ALOG(MAG)

IF(RNBIG.LE.50.) GO TO 15

WRITE(&,998)

GO TO 777

WRITE(8,996)RNBIG

FORMAT(1X,*CALCULATED NBIG = *,G14.7,*INPUT INTEGER CHOICE:*%,/)
READ # NBIG .
WRITE(8,979)KSI1G

WRITE(8,975)

FORMAT(1X,*T{PZ 1 FOR GAIN CONSIDERATION : *¥,/)

READ ¥ ,IGAINQ

WRITE(8,979)IGAINQ

IF(IGAINQ.NE.1) GO TO 5

WRITE(8,974)

FORKAT(1X,*¥INPUT LENGTH AND S~S~GAIN IN COMMON UNITS : %,/)
READ # ,CAVLEL,GHLAWT

WRITE(8,971) CAVLEN,GNAWT

DIVIDE INPUT INTENSITY GAIN BY TWO TO MAKE IT THE FIELD GAIN,
WHICH IS WHAT THIS PRGGRAM ACTUALLY REQUIRES

GNAWT=GNAWT/2.

FORMAT(1X,®#INPUT VALUES AYE : ¥,2G14.7,/)
H=SQRT(GHLAWTX¥CAVLEN/ALOG(AG) ~.5)
WRITE(8,973)H




973 FORMAT(1X, *t=% G14.7,*INPUT MODIFIED VALUE OR O TO CONT :

READ * HVAL
WRITE(8,972)HVAL

972  FORMAT(1X,*INPUT VALUE IS : ¥,G14.7,/)
IF(HVAL.NE.O.) H=HVAL
GAMMAZEXP(2*%CAVLEN®(GNAWT/ (1. +2%H*%2)))

GO TO 6
5 H=1. § GAMMA=1,
6 CONTINUE
WRITE(8,993)

993  FORMAT(1X,*INPUT ZERO TO LIST EIGENVALUES :%¥,/)
READ #, LTEST
WRITE(8,979)LTEST
LABEL(13)=1CH EVEN
NDEG=NBIG+1
IF(MTEST1.EQ.0) GO TO 16
LABEL(13)=10H oDD
NDEG=NBIG
16 T=DUM1¥NEQ
LABEL(14)z10H PARITY

COMPUTE COEFFICIENTS OF THE POLYNOMIAL
P(Z)=COEF(1)*Z¥®NDEG + COEF(2)*Z¥*(NDEG=1) + ... +
COEF(NDEG)*Z + COEF(IDEG+1)

aQOOOO0

COEF(1)=CMPLX(1.,0.)
NCOEF=NDEG+1
DO 25 I=1,MNDEG
AN1=RTEYE*2¥SQRT(PI*T/MSUBN(I))
ANZ2==T*EYE/MSUSBL(I)
AN3=1.-1,/HMSUPN(I+1)
ANU=1,.41./7MSUPH(I+T)
ANCI)=(CEXP(AN2¥ANI¥®2)/ANI+CEXP(AN2*ANLU®%2) /ANU) /AN
IF(MTEST1.EQ.0) GO 70 25
ANCI)=(CEXP(ANL2*¥AN3 *¥2)/AN3-CEXP(AN2®ANU®®2)/ANY)/ANT
25 CONTINUE
IF(MTEST1.EQ.1) GO 70 27
COEF(2)=(AN(1)=1,)*GAMHA
. DO 26 I=3,NCOEF
26 COEF(I)=GANNA®R*¥(I-1)*(AN(I-1)=-AN(I-2))

GO TO 666
27 DO 28 I=2,NCOEF .
28 COEF(I)=AN(I-1)*GAMMA®*(I-1)

c
c COMPUTE ROOTS OF POLYNOMIAL WITH IMSL ROUTINE TO

€ OBTAIN THE EIGENVALUES

c

666 CALL ZCPOLY(COEF,NDEG,LAMBDA,IER)
c

c NOW ORDER THE EIGENVALUES BY SIZE
c
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IF(LTEST.EQ.0) WRITE(8,89)
I=1
DO 70 I1=2,HDEG
SIZE= REAL(LAMBDA(I))*%2+ATMAG(LAMBDA(I))%#%2
K=I
DO 75 J=I1,HDEG
SIZE1=REAL(LA“BDA(J) ) ¥%2, ATMAG(LAMBDA(JY) #¥2
IF(SIZE1.LT.SIZE) GO TO 75
K=J
SIZE=SIZEY
15 CONTINUE
CDUM=LANBDA(I)
LAMBDACI) =LAMRDA(X)
LAMBDA(K)=CDUM
CL(I)=LAMBDA(L)
EVPH=ATAN2(AIMAG(CL(I)),REAL(CL(I)))*180./PI
SMA=REAL(CL(I))**¥24A1MAG(CL(I))*%2
SMAG=SQRT(SHA)
IF(LTEST.EQ.0) WRITE(S,2
333 §0RHAT(1X,I10,M(G14.7,1X
=I1 ’
70 CONTINUE
EVPH=ATANZ (AIMAG(LAMBDA{NDEG)),REAL(LAMBDA(NDEG)))%180./PI
SMA=REALCLANBDACHDEG) ) *¥¥2+ A IMAG(LANBDA(IDEG) Y *¥2
SMAG=SQRT(SMA)
IF(LTEST.EQ.0) WRITE(8,333)NDEG,LAMBDA(NDEG),SHAG,EVPH

33)I,LAMBDA(I),SMAG,EVPH
2,7)

c
Cc NOW CALCULATE THE CONSTANTS FOR THE FUNCTICN SUM FOR A
€ PRTICULAR MCDE. LCO? THCHN 70 CALCULATE ThE FIELD AT A SELECTED
C NUMBER OF POINTS FRCM ZERO TO ONE
c
45 X=0.
BRIGHT=0.
WRITE(8,997)

997  FORMAT(1X,*INPUT 1 TO CALC FIELDS, 0 TO DO NEW CAVITY:¥,/)
READ *,MTEST2
WRITE(8,979)1TEST2
IF(MTEST2.EQ.0) GO TO 777
WRITE(8,995)
995  FORMAT(1X,*INPUT DESIRED MODE NUMBER:*,/)
READ *¥,MODE
WRITE(8,979)MODE .
LABEL(15)=10H MODE #
ENCODE(10,987,LA3EL(16))MODE
987  FORMAT(I2,8X)
NPOINT=0
NL=NBIG
ROOT=LAMBDA(MODE)
992  FORMAT(1X,IS,1X,*POINTS WILL BE EVALUATED FOR MODE *%,2G14.7,/)
c

c CONSIDER I/Q OPTIONS AND CALCULATE THE CONSTANTS FOR EITHER
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c
c

30
30
31
982

981

26
980

WaOOOMO

-

PARITY CHOICE.

IF(MTEST1.EQ.1) GO TO 40
DO 30 I=1,:L
RINDEX(I)=1I .
CONST(I)=t*(RCOT-GAMMA)/GAMMA/ AN(HDEG) * (ROOT/GANHA) #% (NL-I)
GO TO 29 »
DO 41 I=z1,ML
RINDEX(I)=I
CONST(I)=(GAMMA/ROOT) *¥I
WRITE(8,982)
FORMAT(1X,*¥I4PUT O TO CALC INTENSITIES OVER EXPANDED RANGE:¥,/)
READ *,JTEST
WRITE(8,979)JTEST
ENCODE( 10,994, LAZEL(2)) NEC
AG

ENCODE(10,994%,LASEL(T))IREALIRCOT)
ENCODE( 10,994, LASEL{C) ) AIMAG(ROOT)
IF(JTEST.NE.OQ) GO 70 4
LABEL(9)=10HMTRROR
LABEL(10)=10HPLANE
LABEL(11)=10iiSALE
IF(IGAINQ.EQ. 1)
LABEL(12)=1CY 4
LABEL(17)=104AP
CALL ALLINT(MAG,MSUBY
1 GAMMA, IGAINQ)
WRITE(8,981)
FORMAT(1X,*I4PUT O TO CONTINUE WITH OTHER I/O OPTIGHS:¥,/)
READ ¥, JTEST}
WRITE(8,979)JTESTH
IF(JTEST1.LE.G) GO
LABEL(17)=1CHAPPRO
WRITE(8,980)
FORMAT(1X%,*INPUT 4 PNTS FROM 0-~1 AND 0-1 TO PLOT OR PRINT:%,/)
READ ¥* INCX,MTEST3

WRITE(8,978)I:CX,MTEST3

WRITE(8,992)

L{11)=10H
!

,MSUeN, CONST, T, NBIG, MTEST1, RCOT ,LABEL , H,

TO 45
X &1

CALCULATE THE FIELD AT VARIOUS X VALUES U3ING THE
CONSTANTS JUST CALCULATED:
FOR EVEN, F(X)= 1 + 3UMCH(X)) .
FOR 0ODD, F(X)= SUM(H(X)), WHERE THE H(X)'S ARE THE OXES
DERIVED FOR EACH CASE
NPOINT=NPCI:T+1
STOREX(NPOINT) =X
SIG=CMPLX(0.,0.)
DO 32 I=1,iiL
BN1=RTEYEX2*¥SORT(PI*T/NSUBN(I))
BN2==T*EYE/MSURN(I)
BN3=1,~X/MSUPL(I+1)




32

33
34

86

35

991

32

984
390

43

989

986

BNB=1,4+X/MSUPH(I+1)
HNX=(CEXP(B!2¥5N3¥%2)/BH+CEXP( N2 ¥RNU®E2) /BNL) /BN
FUNVALCI,UPOINT)=RSALI-HNK) #¥ 24 TMAG(-HNX) ¥¥2
IF(MTEST1.EQ.Q0) GO 10 32
HNX=(CEXP(BL2¥5N3%%£2) /RN -CEXP(RH2*¥BHLE#2)/BNL) /BN
FUNVAL(I,NPCINT)=REAL(-HUX) ®*¥24AIMAG(-HNX) *¥2
SIG=SIG+COHST(I) *HNX

IF(MTEST1.EQ.1) GO TO 33

FIELDX(NPOINT)=H+SIG

GO TO 3u

FIELDX(HPOINT)=SIG :
INTENS(NPOINT) =REAL(FIELDX(NPOINT) ) ¥ %2 AIMAG(FIELDX(NPOINT) ) *#2
IFCINTENS(NPOINT).GT.SRIGHT) BRIGHT=INTENS(NPOINT)
IF(MTEST3.E£Q.0) GO TO 35
WRITE(8,87)X,FISLDAL(NPCINT)

WRITE(8,86) [NTENS(NPOINT)

FORMAT(1X,*INTEN3ITY = *,514.7,/)

FORMAT(1X,*X = ¥*,G14.7,% FIELD = *,2G14.7)
X=X+1./1IHCX

IF(NPOIKT.LT.INCX) GO TO 31

IF(MTEST3.EQ.1) GO TO 777

WRITE(8,991)

FORMAT(1X,*¥TYPE ZERO TO PLOT CONSTANTS V3 N:%,/)
READ * HTESTC .
WRITE(8,979)MTESTC

IF(MTESTC.NZ.0) GO TC 38

LABEL(9)=10HCONSTANT ¢

LABEL(10)=104

LABEL(11)=10H MCD(CONS

LABEL(12)=10HTANT) *%2

DO 42 I=1,!

PLOCON(I) =REAL(CONST(I))* %2+ AINAG(CONST(I))%%2

CALL HGRAPH(RINDEX,PLCLOMN,NBIG,LABEL,1,-1,11)
WRITE(8,984)M0DE

FORMAT(1X,*CCMPLETED PLOT OF CONSTANTS, MODE =%,12,/)
WRITE(8,999)

FORMAT(1X,#TYPE INDEX CF FUNCTION TO PLOT OR O TO CONTINUE:*,/)
READ ¥ INDEX

WRITE(8,979)INDEX

LABEL(9)=10HMIRROR

LABEL(10)=10HPLANE

IF(INDEX.EQ.0) GO TO 36 .

DO 43 I=1,InCX

PLOFUNCI)=FUNVAL(INDEX,1)

LABEL(11)=10HMOD(FU, I

ENCODE( 10,983 ,LABEL( 12} ) INDEX
FORMAT("DEX=",I2,")%%2m)

CALL HGRAFH(STOREX,PLOFUN,INCX,LABEL,1,0,0)
WRITE(8,986)ILDEX

FORMAT(1X,*¥COMPLETED PLOT OF FUNCTION, INDEX =%,I2,/)
GO TO 38
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WRITE(8,988)

FORMAT(1X,*TYPE ZERO TO PLOT INTENSITY:*,/)

READ *,ICONT

WRITE(8,979)ICONT

IF(ICONT.HE.O) GO TO 45

LABEL(11)=10#SCALED

IF(IGAINQ.EQ.1) LABEL{11)=10H

LABEL(12)=10H INTENSITY

IF(IGAINQ.EQ.1) BRIGHT=1.

DO 37 I=1,IkCX

INTENSCI)=INTENS(I)/BRIGHT

CALL HGRAPH(STOREX,INTENS,INCX,LABEL,1,0,0)

WRITE(8,985)

GO TO 45

FORMAT(1X,*INPUT VALUES ARE : ¥,2I5,/)

FORMAT(1X,*INPUT VALUE IS : *,I5,/)

FORMAT(1X,¥COMPLETED PLOT OF NORMALIZED INTENSITY.%,/)
FORMAT(1X,*REVISE PARAMETERS SO NDEG 50%)

FORMAT(1CX,*MAG = %,F6.2,5X,*NEQ = *,F6.2,/)
FORMAT(9X,*I*, 2X,*LiM3DA(REAL)*,2X, *LAMBDA( IMAG) *,6X,
1 ®EVMAG*,11X,*EVPH¥,/)

CALL EXIT

END

SUBROUTINE ALLINT(MAG,MSUSN,MSUPH,CONST,T,NBIG,MTEST1,R00T
1 ,LABEL,H,GAMMA,IGATEQ)

DIMENSION LABEL(17),XSAVE(2000)

REAL MSUBL(S1),MSUP(S1),INARG1,THARG2,INARG3,INARGY, INARGS
REAL INARG6,INARGT,INARGS,MAG,INTENS(2000)

REAL MINV

COMPLEX APART1,APART2,BPART1,BPART2,ALLFUN,CONST(51),R00T,EYE
COMPLEX AFUN,BFUX,SPNTC,SPNTD,EVENX,OUTCON,FRESL, CONSTA,COSTB
COMPLEX EYEFAC,SPCOMN

THIS SUBROUTINE FCLLOWS PROGRAM BARC AND COMPUTES BEAM INTENSITITE
IN THE OUTPUT PLANE FrCM THE CPTIC AEXIS TO SOME DESIRED OUTZR POIN
OQUTER POINT AND # INTEZRMEDIATE POINTS FOR EVALUATION ARE INPUT
WHILE ALL OTHER REQUIRED QUANTITIES ARE CARRIED THROUGH IN THE
ARGUMENT LIST AS FOLLGCWS:

" MAG= CAVITY MAGNIFICATION

MSUBN= ARRAY FCR PARTIAL SUMS OF INVERSE POWERS OF MAG
MSUPN= ARRAY FOR !AG TO SOME POWER

CONST= ARRAY CF CONUSTANTS IN TEE ASYMPTOTIC SERIES

T= QUANTITY DEFINED I! BARC PER HORWITZ

NBIG= # TERMS IN THE SERIES

MTEST1= PARITY DESIGNATOR

ROOT= MODE EIGEKVALUE

LABEL= PLOT LABELING ARRAY
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900
10

901

50

1
1

BRIGHT=0.

PI=2.%ASIN(1.)

EYE=CHMPLX(0.,1.)

EYEFAC=(1.-EYE)/2

HRITE(8,900)

FORMAT(141,X¥ENTERING EXTENDED RANGE INTENSITY SUBROUTINE.®,/)

Do 10 1:1,51

MSUPN(I)=NAG*MSUPN(I)

NPOINT=1

X=0.

WRITE(8,901)

FORMAT(1X,*INPUT MIN AND MAX X VALUES AMD # POINTS BETWEE!N: *,/)

READ #,XMIN,XMAX,INCX

X=XMIN

ALLFUN=(0.,0.)

XOMAG=X/MAG

DO 310 I=1,NBIG

MINV=1./MSUPN(I)

EVENX=(0.,0.)

SPNTD=(0.,0.)

SPNTC=(0.,0.)

CONSTA=-COHNST(I)*GAMMA

CONSTB=CONSTA

IF(MTEST1.E5Q.1) CONSTB=-COHSETA

P2PRYM=2.%( 1, +1./MSUPN(2%T)/MSURN(T))

STAPHA= (MIHV/YSUBH(I)+ACMAG) /(5% P2PRYM)

STAPHB=(-MINV/M4SUDN(I)+40MAG) /(. 5%FP2PRYHM)

INARG1=(1.-XC%1G)**?+f(1 SMINV)*%X2/43S5EN(I))

INARG2=((1.-X2 MAG-(MI V-MINV#¥Q)/NSUBN(I))*¥%2)/( ,5%P2PRYM)

AARG1=INARG2-INARG]

APART1=CEXP(EYE *T*"EG?)/(?.-VIHY)*(—COHSTA)

INARG3=(~1.-YCMAG) #¥24 (1, +MI V) *$2/MSUBN(])

INARGU=((=1.-/0MAG=-(HINV+HMINY*¥2) /7 (MSUBN(I) ) ) *¥2)/(.5%P2PRYH)

AARG2=INARGU-INARGS

APART2=CEXP(EYEATXALRG2)*(-C?2

INARGS:(1.—XC”‘”)*‘9+(I +HINY

INARGE= (1. -XCHAS+(NINVMINy S

BARG1=1NARGE- I""Ga

BPARTl:CEXP(BA°J1*EYE*T)*(—CCXSTB)/(1.+MIHV)

INARGT=(1.+XOMAG) %¥24 (1, aMINY)*£2/SUBN(T)

INARG8=(-1. -AC‘ru+("I“V-HIYV**E)/”\VE”(;))** /(.5¥P2PRYM)

BARG2=1HN APG8 INARGT

BPART2=CEXP(BAXG2¥EYE* T)¥(-CD'3 TB)/(1.-vav)

OUTCON= SQHA(”"'"‘(-)/PI/ /P2P2YI)/2./3C0T

SPCON=SQRT(MSUBN(I)*2.,/P2PRYM/PI/T)/2./500T

FRSPOS=SQRT(T/PI/P2PRYM) ¥ (2. %(1,=X0OMAG)=2,%( 1, -NINV)/MSUPN(I)/
MSUBK(I))

FRSNEG=SQRT(T/PI/P2PRYM)*{2,.%#(-1,-XOMAG)-2.%( 1, +1INV)/MSUPN(I)/
MSUBHN(I))

IF(STAPHA.GE. =1, AND.STAPHALLE.1.) GO TO 120

AFUNzAPART1*¥(FRESL(FRSPOS) - LYErAC) APART2¥% (FRESL(FRSNEG)-EYEFAC)

'?/\tgLRlv(I)

ISTAY/Z (1. +MINY)
Y/MSUBNCI) ) ¥*¥2/ (. S*P2PRYM)

)*
2
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130

200

180

300
310
802

8oo

500
510

600
904

IF(STAPHA.LT.1.) GO TO 200
AFUN=APART1%#(FRESL(FRSPOS)+EYEFAC)-APART2*(FRESL(FRSNEG)+EYEFAC)
GO TO 200
AFUN=APART1*(FRESL(FRSPOS)-EYEFAC)-APART2#(FRESL(FRSNEG)+EYEFAC)
SPNTC=SPCON®(-COHSTA)/(1.-STAPHA/MSUPN(I))*CEXP(-EVYEX(PI/4, +T*
1 ((STAPHA-XCHMAG) *%¥24(1.-STAPHA/HMSUPN(I))%%2/MSUBN(I))))
FRSPOS=SQRT(T/PI/P2PRYM)¥(2.%(1.~XCHAG)+2.%(1.+MINV)/MSUPN(I)/
1 MSUBN(I))

FRSNEG=SQRT(T/PI/P2PRYM) ¥(2.#%(~1,-XOMAG)+2.%(1.-MINV)/MSUPN(I)/
1 MSUBN(I))

IF(STAPHB.GE.-1..A!D.STAPHB.LE.1.) GO TO 140
BFUN=BPART1¥(FRESL(FRSPOS)-EYEFAC)-BPART2*(FRESL(FRSNEG)~EYEFAC)
IF(STAPHB.LT.1.) GO TO 300
BFUN=BPART1*#(FRESL(FRSPOS)+EYEFAC)~-BPART2*(FRESL(FRSHEG)+EYEFAC)
GO TO 300
BFUN=BPART1¥(FRESL(FRSPCS)~EYEFAC)-BPART2¥*(FRESL(FRSNEG)+EYEFAC)
SPNTD=SPCON¥(-CONSTB)/(1,+STAPHB/MSUPN(I))*¥CEXP(-EYEX(PI/4,+T#*
1 ((STAPHB-XOMAG) *%2+(1.+STAPHEB/MUSUPH(I))*¥2/MSUBN(I))))
ALLFUN=OUTCOL¥* (AFUN+BFUN) +SPHTC+SPNTD+ALLFUN

CONTINUE

FORMAT(1X,2G14.7)

EARG1=SQAT(T/2./PI) %2, %(1,.-XOMAG)
EARG2=SQRT(T/2./P[)*2.%(=-1.~XCMAG)
EVENX=CSQRT(EYE/2.)/ROCT*(FRESL(EARG1)-FRESL(EARG2))
IF(X/MAG.GE.-1,.AND, X/MAG.LE,1,) EVENX=EVENY~-CSQRT(EYE/2.)/ROOT*
1 (1.-EYE)+CEXP(-EYE¥PI/4,)/ROOT*CSQRT(EYE)

EVENX=EVENX*HXGAMMA

IF(MTEST1.EQ.0) ALLFUN=zALLFUN+EVENX

WRITE(8,802)ALLFUN

INTENSC(NPOINT) =AIMAGCALLFUN) **2 4 REAL(ALLFUN) #¥2

XSAVE(NPOINT) =X

WRITE(8,800) INTENS(NPOINT),XSAVE(NPOINT)

FORMAT(1X,2G14.7)

IF(INTENS(NPOINT).GT.BRIGHT) BRIGHT=INTENS({NPOINT)
IF(IGAINQ.EQ.1) BRIGHT=1.

IF(X.GT.XMAX) GO TO 500

X=X+1,/INCX

NPOINT=NPOINT+1

GO TO 50

DO 510 I=1,5POINT

INTENS(I)=INTENS(I)/BRIGHT

CALL HGRAPH(XSAVE,INTENS,NPOINT,LABEL,1,0,0)

DO 600 I=1,51

MSUPN(I)=VSUPN(I)/MAG

WRITE(8,904)

FORMAT(1X,*COMPLETED CALCULATION AND PLOT, EXTENDED.%,/)

RETURN

END

SUBROUTINE HGRAPH(X,Y,N,ID,NO,NP,NS)

DIMENSION X(1),Y(1),ID(1) $ IF (NO.EQ.2) CALL PLOT(-1.85,2.10,-3
IF (NO.EQ.2) GO TO 30 $ IF (NO.LT.0) GO TO 10
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20

25

30

10

20

101
102
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CALL SCALE(X,7.,N,1) $ CALL SCALE(Y,5.,N,1)

CALL PLOT(0..11.,2) 8 CALL PLOT(8.5,11.,2)

CALL PLOT(8.5,0.,2) §_ CALL PLOT(0.,0.,2)

CALL PLOT(1.35,1.35,- $ CALL PLOT(0.,8.30,-2)

IFCID(1).EQ.999) GO TO 25

CALL PLOT(.1,-.1,-3) _ $ CALL PLOT(0.,-2.,-2) .
DO 20 I=1,7,2

CALL SYMBOL( (I+1.5)%.1,.3,.07,ID(I),90.,20)

CALL PLOT(0.,0.,3) $ CALL PLOT(1.,0.,2)

CALL PLOT(1.,2.,2) $ CALL PLOT(0.,2.,-2)

CALL PLOT(-.1,.1,-3)

CALL PLOT(5.8,0.,-2)

CALL PLOT(0.,-8.20,-2) % CALL PLOT(-5.8,0.,-2)

CALL sYMBOL(.5,-.2,.1,ID(13),0.,50) $ CALL PLOT(5.3,.75,-3)
CALL AXIS(0.,0.,1ID(9}),-20, 7.,90.,x<u+1) x<r+2))

CALL AXIS(0.,0.,ID(11),20,5.,180. Y(”+1) Y(N+2))

YCN+2)==Y(!i+2) $ CALL LINE(Y,X,N,1,HP,NS)
Y(N+2)=-Y(N+2) $ CALL PLOT(1.85,-2.10,-3)
RETURN $ END

SUBROUTINE AXIS(X0,YO,L,HNC,RL,ANG,RMIN,DR)
DIMENSION L(1) $ A= A”G”3 1“159/100 $ DX=.1%COS(A) $ DY=,1%¥SIN(A
IC=ISIGH(1,NC) 5 NNC=IABS(NC) 3 R=.1 $ N=z1 $ X=X0 $ Y=Y0$
CALL PLOT(X,Y,3) $ X=X+4DX 3 Y=Y¥+DY $ CALL PLOT(X,Y,2)

CALL PLOT(X~,21%*DY*¥IC,Y+.21%¥0X*1C,2)

IF(N.EQ.5) CALL PLCT(X-.42%DT%1C,7T+, U2¥DYX*IC,2)
IF(N.EQ.10) CALL PLOT(X-,70*¥DY®IC Y+,70%DX¥*IC,2)
N=MOD(N,10)+t 3 R=R+.1 ¢ IF(R.LT.RL) GO TO 10
AzANG-(IC+1)%45, $ DX=10.%DX $ DY=z10.#%DY

Cz-.175+.125*IC $ D=.19+.35*%IC

X=X0+C*DX-D*DY $ Y=Y0+C*DY+D¥DX
R=AMAX1(ABSCFMIN),ASS(RMIN+DR*RL)) $ R=zALOCG10(R)
IR=INT(ABS(R)) $ IF(R.LT.0,) IR==(IR+1) $ IR=zIR-MOD(IR,3)
R1=RMIN/10.%¥*¥IR $ DR1=DR/10.%¥*¥IR $ R=0.

ENCODE(7,101,S)31 $& CALL SYMBOL(X,Y,.07,S,A,7) $§ R1=R1+DR1
X=X+DX $ Y=Y+DY $ R:zR+1. $ IF(R,LE.RL) GO TO 20
R=(RL-,1%¥NNC)/2. $ =.1+.5%¥IC

X=X0+RX*DX-C*DY $ 1=YO+R¥DY+C*¥DX

CALL SYMBOL(X,Y,.1,L,ANG,NNC) $ IF(IR.EQ.O) RETURN
ENCODE(5,102, S) $ CALL STHBOL(999.,999.,.10,5,AKG,5)

CALL WHERE(X,Y,A)

ENCODE(3,103,S) IR $ CALL SYMBOL(X,Y,.07,S,ANG,3)
FORMAT(FT7.2) .

FORMAT(SH *10)

FORMAT(I3)

RETURN $ END

SUBROUTINE SCALE(DATA,LENGTH,N,K)

REAL DATA = N+2 DIMENSIONED ARRAY OF DATA TO BE SCALED
INTEGER N = NUMBER CF DATA POINTS

REAL LENGTH = LENGTH OF THE PLOT AXIS (E.G. IN INCHES)
INTEGER K = UNUSED PARAMETER INCLUDED FOR CONPATIBILITY
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WITH THE EQUIVALENT CALCOMP SUBROUTINE

THE FOLLOWING VALUES ARE RETURMNED:

DATA(N+1)
DATA(N+2)

= ADJUSTED DATA MINIMUM
= ®NICE" SCALE FACTOR IN DATA UNITS
PER LENGTH UNIT (E.G. YOLTS/IlCH)

"N unnn

N N oW

SEZ =Tz srISSsT=SToE=ESCTCs=C=ECsICcCIESSCESSCs=CT=sSs=s=ZSSTZ========z==

SUBROUTINE SCALE(DATA,LENGTH,N,K)

REAL DATA(N), LENGTH, SF(5)
DATA SF /1., 2., 2.5, 5., 10. /

COMPUTE THE RAW SCALE FACTOR

DMIN=DMAX=DATA(1)
PO 10 I=1,N
IF(DATA(I) .LT. DMIN) DMIN = DATA(I)
IF (DATA(I). GT. DMAX) DMAX = DATA(I)
CONTINUE

EXCLUDE TRIVIAL ERROR CASES

DATA(N+1) = DMIN

DATA(N+2) = 1.0

IF (LENGTH .LE. 0.0 ,OR. DMAX .EQ. DMIN ) RETURN

RAWSF = (DMAX - DMIN) / LENGTH

RAWSF = SFMANT * 10. #% SFEXP, WHERE 1 .LE. SFMANT .LT.
SFEXP = AINT( ALOG10( RAWSF ) )

IF ( RAWSF .LT. 1.0 ) SFEXP = SFEXP - 1.0

SFMANT = RAWSF * 10.0 ¥*# (-SFEXP)

LOCATE NEXT LARGER "NICE" SCALE FACTOR

DO 20 I-1,5

IF ( SF(I) .GT. SFEANT ) GO TO 30 .

PRINT®," SCALE: SCALE FACTOR ERROR ... ™ & RETURN
SFNICE = SF(I) * 10.0 #% SFEXP

COMPUTE ADJUSTED DATA MINIMUM

ADJMIN = AINT ( DMIN / SFNICE ) ¥ SFNICE
IF ( ADJMIN .GT. DMIN ) ADJMIN = ADJMIN - SFNICE

1IF ( (DMAX - ADJMIN) / SFNICE .LE. LENGTH ) GO TO 40
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NEED TO USE THE NEXT LARGER SCALE FACTOR

IF ( I .LT. 5 ) SFNICE SF(I+1) * 10.0 ¥¥ SFEXP
IF ( I .EQ. 5 ) SFNICE 20,0 ¥ 10.0 *% SFEXP
ADJMIN = AINT ( DMIN / SFRICE ) #* SFNICE

IF ( ADJMIN .GT. DMIN) ADJMIN = ADJMIN - SFNICE

CONTINUE

DATA(N+1) = ADJMIN ‘ .
DATA(N+2) = SFHNICE

RETURN

END

COMPLEX FUNCTION CERF(ZZ)

COMPLEX 2Z,Z,A,A1,A2,B,B1,82,F,F1
2=22

IF(CABS(Z).GE.3.)GOTO30

J=0. :

A=2

B=2

J=J+1
B=-Z¥Z%CMPLYX(FLOAT(2%J-1),0.)%B
B=B/CMPLX(FLOAT(J ),0.)/CMPLX(FLOAT(2%*J+1),0.)
A=A+B

IF(J.GE.1000)G0OT050
IF(CABS(B/A).GE.(1.E~10)) GO TO 10
CERF=(1.128379167,0.,) %A

RETURN

IFCREAL(22).LT.0.22==-22
A2=(1.,0.)

B2=2

F2=A2/B2

Al=Z

B1=2%2+(0.5,0.)

F1=A1/B1

J=1

J=J+1
A=Z%¥A14CMPLX(FLOAT(J)/2.,0.)%A2
B=2¥B14+CMPLX(FLOAT(J)/2.,0.)%B2
F=A/B

IF(J.GT.1000)GOTO 50
IF(CABS((F-F1)/F).LT.(1.E-10))GOT060
A2=A1

B2=B1

Al=zA

B1=B

F1=F

GOTOu0

WRITE(8,99)
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99 FORMAT( "  ERROR FUNCTION ROUTINE DID NOT CONVERGE ")
IER=1
RETURN

60 F1=(0.5,0.)*CEXP(-Z*Z)*F
CERF=1.128379167*F1
CERF=1,-CERF g
IF(REAL(ZZ).LT.0.) CERF=-CERF

70 RETURN
END
COMPLEX FUNCTION FRESL(X)
COMPLEX EYE,Z,CERF
EYE=(0.,1.) § PI=2.%ASIN(1.)
2Z=SQRT(PI)*X¥(1.-EYE)/2.
FRESL=(1.+EYE)/2.%CERF(2) .
FRESL=CONJG(FRESL)
RETURN § END
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Appendix E

This appendix displays plots of the intensity of the
function Mn(x) for n=1 through 8 , for bare resona-

tor parameters of M=2.9 Nf=16.4
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