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1.0 INTRODUCTION AND SUMMARY

This document provides the unclassified portions of the final report of the Integrated
Strike Avionics Study (ISAS) performed under USAF contract F33615-C-79-1932.
Together with Volume Il of the series (AFWAL-TR-80-1145, Volume II), it reports
research and analyses performed in the formulation and evaluation of three integrated
avionic concepts. Subjects covered are radar, sensor susceptibility to countermeas-

ures, weapon delivery timelines, concept survival, and kill capability against targets.

Details of the rationale leading to a preferred concept—an automatic system using

crewman boost and Ku-band radar-EQ sensor array—are presented in this volume.

1.1 INTRODUCTION

The ISAS program is designed to develop new fire control concepts that exploit the
enhanced target detection capabilities provided by the modular integration of a

variety of new and emerging target sensors and signal processing techniques.

The overall objective is to improve tactical weapon delivery effectiveness through
improvement of the target acquisition and crew workload factors. The applicable time

period is post-1987.

The study consisted of seven major tasks:

a. In task 1, a number of prospective.advanced fire control concepts were to be
formulated and three candidates were to be selected for evaluation. Although
there were no firm constraints limiting the conceptual fire control sensor arrays

or mechanizations, the study scope emphasized new or emerging technology.

b. Task II consisted of analyses to define system characteristics and performance for
each concept. Specific missions and weather conditions were defined as a part of

the study requirements.

)

Candidate concepts were to be evaluated in task III with respect to (1) survivabil-
ity and target kill (providing a figure of effectiveness), resistance to counter-

measures, reduction of crew workload, weapon selection, ease of installation

. - TR .




(retrofit) in existing aircraft, and life-cycle cost. A plan defining an evaluation
methodology was required at the study midpoint. Acceptance of the plan by
AFWAL signified completion of task Ill.

d. Task IV and V consisted of analyses and research to generate concept figures of

effectiveness and life-cycle costs.

e. The ranking of candidate concepts, followed by a trade-off to implement the best
conceptual characteristics in a new and final concept was to be accomplished in
task VI

f. In task VII, technology deficiencies discovered during the Boeing study to
synthesize a number of sensor-processor arrays combined in three distinctive
mechanizations—manual, automatic, and manual-automatic. A different sensor

array was used with each mechanization, resulting in two dimensions for concept

|
|
|
|
formulation and evaluation. A heavy array of sensors (three different frequency !
radars, TV, forward-looking infrared (FLIR), and a laser scanner) was allocated to 1
concept I3 concepts Il and Il used the same electro-optical (EQ) sensors with Ku- }
band and millimetre-band radars, respectively. The sensor selection approximated :
what might be done on a new aircraft, a retrofit aircraft, and a minimum change :
addition to an existing aircraft. The final selection of sensors used in the arrays "

was precedec by a technology survey and update.
1.2 SUMMARY !

The nine sections of this report address the study tasks accomplished in formulating ;

and evaluating the ISAS concepts.

Section 2.0 is a part of the task II analysis. It reviews the attack mission profile and ‘

the assumptions used in the analysis. ,

Section 3.0 summarizes the results of a review and update of applicable sensor

technology. Current and emerging sensor technology developments are considered as

they apply to a sensor functional requirements summary.




The selection candidates as described in Section 4.0 were:

a. A manual/automatic system using multimode long-wave, Ku-band and millimetre
radar, and a Silicon television, a FLIR and a 3D target classifier. Both the TV and
the FLIR were assumed to have their own autocuer-classifiers. The system

mechanization used crewman participation to ensure target recognition.

b. A fully automatic system, using a multimode Ku-band radar and the same EO
complement as the first concept. The automatic system required only crewman

consen: to fire.

c. A manual system using multimode millimeter radar, FLIR, and Silicon TV. The
manual system was essentially a limited-autonomous system and a little more
versatile than a cooperative-only system. Sensor integration relied on the

crewman.

The major analyses (task I1) performed in the study to quantify component perform-
ance ard to evaluate the candidate concepts are presented in Section 5.0. Contained
in this section are performance analysis and discussions of: EO sensors, integrated
sensors, crew workload, installation of the concepts in F-4, F-15, F-16, and A-10
airplanes, weapon selection, and graceful degradation. The section references radar
and an ECM susceptability analyses reported in Volume 2 (AFWAL-TR-80-1145), the

classified supplement to this report.

Section 6.0 also references Volume 2. The section contains classified data used in

generating concept-survival and target-kill-related data as required by ISAS task IV.

Life cycle cost data (ISAS task V) are discussed and provided in Section 7.0. Concepts

I and Il respo~tively had the highest life cycle costs.

The study results and conclusions are presented in Section 8.0. A detailed ranking of
the candidate concepts finds that concept [, the manual-aided system has the best
performance, while concept Il has a very slight survival superiority. Concept Il is
distinguished only by its lowest cost. The tradeoff results in a preferred system that
deletes concept I's inm and long wave radars, and add the full automatic capability of

concept Il to concept | as backup. The resultant system should be superior to concept |
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under norinal conditions. When the crew is overloaded, system performance should not

degrade below the concept I capability level.

Section 9.0 presents a brief summary of the technological deficiencies exist because

the ISAS task has not previously been attempted as addressed in this study.

The appendix in this report contains this ISAS task Il ranking and tradeoff plan

completed midway in the study.
The results of this study indicate:

a. The integration of sensors on the processed level (i.e., after autocueing and
autoclassification) decreases crew workload and shortens weapon delivery time

lines.

b. A fire control concept combining crew participation and automatic target

acquisition and weapon handover is more effective than a fully automatic system.

c. Continued development of lock-on-after-launch weapons is needed to ensure full
realization of integrated sensor capabilities. The target-acquisition benefits of
integrated sensors can be limited by the seeker limitations of lock-on-before-
launch guided weapons. For example, the probability that one or more sensors can
detect or recognize the target is now constrained in usefulness because at least
one of the sensors used to detect or to classify targets must be in the lock-on-
before-launch weapon guidance seeker spectral region or it cannot be certain that
the weapon guidance will function. Weapon seekers that lock on after launch (in
the weapons terminal phase) may remove this limitation if the results of target

classification can be used in a logic exercise to match the target type to the

weapon terminal seeker capabilities.




2.0 SYSTEM REQUIREMENTS AND STUDY ASSUMPTIONS

The ISAS concepts have been formulated to defeat a specific set of mission, target,
and scenario conditions. These conditions have powerfully influenced the nature of the
concepts, the sensors selected, and their resultant performance in the concept

evaluation.

2.1 SCENARIO

Threat Baseline, USAF Attrition Data Handbook, ADTC-TR-79-38, is the official ISAS
scenario and threat document. It defines, among others, the central NATO scenario
used in this study. Target distributions, hostile defensive weapon types, and their
beddowns were extracted from this scenario as were countermeasure data used in
evaluating candidate concept susceptibility to countermeasures. Details of this
information are described in appropriate sections of AFWAL-TR-80-1145, Volume I,

the classified supplement to this report.

2.2 MISSION AND OPERATIONAL CONSIDERATIONS

Additional numerical data and parameters not directly defined in the scenario were
required to fully develop all of the conditions under which the ISAS Candidate
concepts were to be evaluated. These data and parameters are summarized in
Table 2.2-1 and discussed below.

2.2.1 Strike Speed and Altitude

The required attack speeds for the ISAS missions are 350 kn (close support) and 553 kn

(battlefield interdiction and deep interdiction mission).

The conceptual fire control systems are required to make bomb and missile attacks
from 200-ft altitude and 3,000-ft altitude. These speeds and altitudes were selected i
by Boeing with the approval of the USAF project officer.

i
E The 350-kn speed was selected as representative of A-10 maximum attack speed, while
mach 0.85 (553 kn) is representative of the F-14, F-15, and F-16 aircraft with weapon

loads at low altitude.
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The 200-ft altitude attack represents an attack mode that promotes high survival by

exploiting terrain shadowing and clutter. It is preceded by a popup to 3,000-ft altitude

for target acquisition.

The 3,000-ft-altitude attack is a medium-altitude condition designed to maximize the
probability of having a line of sight to the target. The attacker penetrates at low
altitude (200- to 500-ft altitude), pops up to 3,000 ft to attack, and immediately pops

down to exit the area.

Sea level and ground level were assumed coincident and a standard atmosphere

prevailed.

2.2.2 Weather

The candidate concepts are required to operate in four kinds of weather: clear, smoke
and fog rising 5G ft. above ground level, clouds at 200-ft ceiling with the cloud base
ircegular and frequently extending below the 200-ft mark, and a cloud ceiling of 2,000
ft. In both the 200-ft ceiling and the 2,000-ft ceiling cases, the cloud tops extend well
above 3,000-ft altitude.

The clouds are, by definition, opaque to EO sensors. They are assumed to be heavy

cumulus clouds with a density of 1.4 gm/mB.

2.2.3 Targets

On all missions the targets are tanks, stationary or moving, as defined by the mission,
For EO evaluations, tank dimensions are 3.6m by 9.9m by 2.3m high (11.8 by 32.5 by
7.5 f1). The tanks are painted with standard military paint over steel and are located

on a short, brownish-green stubble background.

For radar, the targets are assumed a compiex, slowly fluctuating target (Swerling case

D of 30 m? with a homogeneous background.




Moving targets travel at 45 deg from the strike airplane flightpath at approximately

25 ft/s (range and deflection components of 18.23 ft/s, respectively).

2.2.4 Target Location Errors

Target location errors (TLE) given in Table 2.2-1 are assumed to be target position
errors made by reconnaissance aircraft or army units. Any target motion prior to
initiation of search is assuined to be contained in the TLE and the resulting sensor
search area is a combination of the TLE and ISAS navigation system errors. Army
units continuously survey positions behind the forward edge of the battle area (FEBA)
and, with a little coordination, sufficient navigational fix-points should be available.
The last navigation fix-point is assumed 10 km behind the FEBA and the ISAS INS
accuracy is equal or better than | nmi/h for all concepts. Average distances from the

FEBA are used in target location computations.

The resulting dimensions below are minimum | sigma search volumes for all sensors

and concepts:

Mission TLE Nav Search area (km)
Close air support (CAS) 0.5 0.0732 +0.5
Battlefield interdiction (BI) 2.5 0.1295 +2.5
Deep interdiction (DI) (fixed) 0.5 0.4032 +0.6
Deep interdiction (DI) (road) 10.0 0.4032 +10.0

2.2.5 Mission-Target Combinations

The basic missions are given in Table 2.2-1. Targets are described in Section 2.2.3. A
mission-target motion combination rationale for the four cases used in analysis is

given in the following paragraphs.
Close Air Support—Fixed Target. Because of the small TLE (0.5 km) and short distance
from the FEBA (0 to 5 km), CAS targets are assumed stationary and deployed‘in

positions for fighting.

Close air support missions are evaluated as autonomous in this report even though

close proximity to friendly torces requires direct positive visual target ID.




Battlefield Interdiction—Moving Target. The Bl region is typically used to resupply
ground forces fighting in the CAS region. If enemy vehicles in the Bl region are not
moving, supply lines are stopped and hostile combat resources are soon depleted.
Secondly, the larger TLE (+2.5 kin) infers "stale target" position data resulting from
target motion. Although the targets do not necessarily move continuously, the

assumption is that all Bl targets are inoving when encountered.

Deep Interdiction—Fixed Target. When the TLE is +0.5 km (like CAS) a minimum TLE
without motion aging is inferred and no target motion within the given staging or

assembly area is assumed.

Deep Interdiction, Road—Moving Target. The associated TLE for this case is +10-km;
target position aging because of motion is inferred. The line of communication used in
the ISAS analysis is a road. For this case TLE width is assumed to be +0.5 km and

length (along the road) is +10 km.

2.2.6 Terrain Masking

Masking data for eight terrain types were provided in the scenario document. These
terrains were compared and the average is close to that provided for the gently rolling

hills terrain used in this analysis.

2.2.7 Flightpaths—Popup and Level

Typical phases of the mission profile are shown in Figure 2.2-1. For CAS (350 kn), the
base is located about 150 mi behind the FEBA and loiter is included so that total flight
time to weapon release is 0.6 hr. The base for BI and DI (553 kn) is approximately 200
mi behind the FEBA and flight time for Bl is 0.4 hr and for DI is 0.5 hr.

The fire control mission is restricted to two mission segments, shown in Figure 2.2-2.

The popup point for both profiles is initiated at minimum range to reduce exposure.

Search time (point A to B on the figure) is the time for the aircraft to traverse the 2
sigma length of the search area of uncertainty in Section 2.2.4. This corresponds to a
worst case when the sensor(s) are in a spotlight or ground stabilized image mode.

Human reaction and search times are excluded.

e b el Al o’




Mission Search Search time (sec)

length (km) 553 kn 350 kn
(0.285 km/s) (0.180 km/s)
CAS 2.02 7 11
Bl 16.02 35 56
DI (fixed) 2,57 7 109 1l to 14
DI (road) 40.032 140 222

The release point (C) in Figure 2.2-2 is that {or the specific weapon; the ground range
from B to C is computed using a 4g maneuver. Ground range from B to C is computed
from the minimum time for the crew to perform necessary operations to deliver the

weapon at point C.

The scenario for popup/popdown in Figure 2.2-2 is as follows: pop up to 3,000 frt,
search for, detect, and fire on the target. Immediately after detection, pickle and
descend under line of sight to 200 ft, and navigate blind until line of sight to target is
agaln available. Using navigation system-computed-target coordinates, reacquire,
recognize, and perform a second fix (for improved accuracy) on the target. Fly
without target tracking update for the short remaining distance to the release point

and deliver weapon.

The scenario for the popup level delivery is the same except that the airplane does not
pop down until weapon release, line of sight to the target from point B to C is

continually available, and the weapon is delivered from 3,000-ft altitude.

2.2.8 Weapons

Concept effectiveness in terms of target kill using bombs and missiles is required. The
weapons selected must be effective against the targets selected and mission conditions

defined here.

MK-82 Snakeye. Although gravity bombs are relatively ineffective against tanks, their
continued operational use is expected. To allow delivery at 200 ft, a high-drag bomb is
required. Snakeye can also be delivered at altitudes up to 5,000 ft, and the weapon is

compatible with the mission requirements,

10
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Figure 2.2-1. Interdiction Mission Phases

TIME ON TOP LASTS MINIMUM
TILL SENSOR SEARCH DETECTION
IS COMPLETED RANGE
A B
NETRATE AT POP-UP TO
43 lyal 3,000 FT AGL
L POP-UP BASED ON NAV ]

ACCURACY, TARGET LOCATION
ERROR AND SENSOR SEARCH TIME

2

ISAS POP UP DELIVERY PROFILE BOMBS/MISSILES

Teke-off

Climb

Cruise out

Descent

Run-in to target

Pop-up

Yarget acquisition &
weapon delivery

Weapon guidanca
assistance (if required)

Damage assessment
(it required)

Return to base

Land

REACQUIRE TARGET
(LINE-OF-SIGHT LIMITED)

BOMB-MISSILE WEAPON
RELEASE RANGE

EXIT AT

STAY ON TOP UNTIL RELEASE WEAPON

Both profiles at 553 KT for interdiction
Both profiles at 3I50KT for dose support

BOMB MISSILE WEAPON
RELEA>E RANGE

~
A minimum — B ¢ 7 ~
DETECTION / e
RANGE ~
/ N
PENETRATEAT  [pnpjp  AFTER RELEASE RETURN / N
200-500 FT TO200 FTAND EXIT e . — N

722272

ISAS LEVEL DELIVERY PROFILE BOMBS/MISSILES

\ TARGET
W/WA

Figure 2.2-2. ISAS Weapon Delivery Profiles




Infrared Maverick. The infrared Maverick is « developmental missile specitically
designed for attacks of hard targets. Available Maverick data indicate that the

weapon 1s compatible with requirements in this section.

The infrared Maverick is a modification of the currently operational TV version and
limited use of data from the operational version was made in this study. In this report,
Maverick sensor gimbals are unlocked and slewed to target coordinates with the ISAS
FLIR when the target is recognized, after which the Maverick sensor is locked on and
tracks the target while the aircraft continues in level flight. Maverick gimbal limits

are large enough to allow level deliveries at the minimum ranges used in analysis.




3.0 CANDIDATE SENSORS

A clear knowledge and understanding of current and emerging strike sensors 1s
necessary as a prelude to concept formulation. Sensor selection criteria are: (1) that
the sensor satisfies strike functional requirements, and (2) that it can function
sitmultaneously with other sensors in an integrated system. There is no preconceived
limit to the total number of sensors that may be available in concept formulation. It
was planned that the concept evaluation and the accompanying analysis would guide
quantification. Candidate sensors were: long-wave radar, Ku- and X-band multimode

SAR, millimetre wavelength (MMW) radar, FLIR, TV, and laser EO sensor.

3.1 SENSOR REQUIREMENTS

Section 2.0 of this report established the strike mission requirements against which the
ISAS concepts would be evaluated. In the next logical step a functional mission
analysis was used to identify general sensor requirements. The target search, track,
and recognition phases of that analysis are presented in Table 3.1-1. Key factors
identified were: (1) the variety of atmospheric conditions, dictating a multispectral
approach; (2) the need to accomplish target detection and recognition based on
information gathered from brief observation of the target (popup condition). This in
turn, dictates compatibility with scene freezing techniques and/or automatic target-
cueing classification techniques; (3) the need for a high probability of target detection
and classitication, emphasizing the desirability of simultaneous preparation of differ-
ent sensors, correlation between applicable detection and recognition signal pro-
cessors, and also the desirability of a second stage (postautomatic) in the target
recognition process; and (4) the need for autonomous terminal guidance of the weapon
(i.e., guided weapons have self-contained sensors, and the final aircraft target
acquisition sensor must be compatible with the weapon guidance to ensure successful

target lock-on handover).

3.2 TECHNOLOGY REVIEW

An existing data base at Boeing, developed during the ATS study (Air-to-Surface
Technology Evaluation and Integration Study, USAF Contract F33615-76-C-3150) was
enlarged and updated for use in selecting ISAS sensor candidates. In addition, data

inputs have been obtained from AFWAL and MICOM. Boeing directly queried industry

13
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sources, which included eight radar suppliers and over 28 companies in the EO and

target autocueing/classification fields. Seven imajor sensor development prograins

were noted:

a.

Next-Generation FLIR Sensors: Improved FLIR and FLIR display technology

developments

Laser and EO/MMW Sensors: CO2 laser development to promote long-range

laser capability and integrated EO and millimetre wavelength target sensors

Advanced EO Sensors: Development of combined EO sensors using a cornmon

aperture and advanced application of nonscanning (staring) sensors

Automatic Target Classification, EO Systems: Development of a forward-
looking active target classifier and image autoprocessors for automatic
target detection and classification

LF Multimode Radar: Development of a foliage-penetration radar

Air-to Ground Strike Radar Technology: Development of next-generation,

high-resolution tactical radar

Radar Target Classification: Development of technology to automatically

detect and classify fixed and moving radar targets

Short summaries of the activities and planning in these programs are provided in
Tables 3-2-1 A through L.

3.3 CANDIDATE ISAS SENSORS

Six sensors were selected for use in ISAS concept formulation:

d.

FLIR: A generic second-generation FLIR (characteristics to be determined in

the phase Il analysis)




Table 3.2-1A. Technology Category Analysis

Technology Area/Item: Next Generation FLIR Sensors

L.

2.

3.

4.

5.

Required Technology Features

This technology category addresses the development of sensors and compo-
nents for airborne FLIR incorporating onboard target detection, identifi-
cation, location and designation (or strike) of critically time sensitive
targets. The system must be effective both day and night and in adverse
weather. Increased reliance on automatic target acquisition, classifica-
tion, and tracking must be incorporated to allow deployment of one-man
strike aircraft.

Current Technology Development Programs and/or Expected Results

0

Next Generation FLIR Technology Demo: Final design, fabrication,
laboratory, and tower evaluation of an aperture limited FLIR with the
large scale monolithic focal plane array.

Advanced Flir Display: Development of a display capability to handle
enhanced EO (including FLIR) sensor video and symbology for the next
generation FLIR and autoprocessor.

Advanced Target Acquisition System: To develop and flight demon-
strate the advanced weapons delivery and recce pod incorporating the
second generation FLIR, automatic targeting, hands-off control, auto-

focus, tracking, high frequency line-of-sight stabilization and EO
CCM.

Current Technology Development Schedules

Fy 8 81 82 33 84 85

-
o  Next Gen. FLIR Tech Demo. .1_+

o Adv. FLIR Diplay Tech. “

o Adv. Target Acg. System (ATAS)

Applicability of Current Programs to ISAS

Improved sensor detection capabilities are essential to the success of
future tactical strike concepts like ISAS.

Category* Recommendation

ATAS Category 1
Next Generation FLI’ and Advanced FLIR Display Tech II

*Category I:  Development Program will not meet 1987 10C
Category II: Development Program satisfies 1987 I0C




Table 3.2-18. Technology Category Analysis (Continued)

Technology Area/ltems: Laser and EQ/MMW Sensors

1.

Required Technology Features: To study the factors limiting the
deployment of tactical lasers and millimetre wave systems 'nd to develop
target acquisition, classification, tracking and target designation
systems incorporating promising devices or concepts.

Current Technology Development Programs and/or Expected Results

o CO2 Laser Tactical Sensor Studies: Conceptual design of CO2 laser
sensor for multifunctional applications including ranging, tracking,
designation, MTI,. imaging for classification, and navigation aids,
especially obstacle avoidance.

o COp Laser Sensor Technology Development: Design, demonstrate, and
evaluate breadboard multifunctional CO; laser tactical sensor under
both laboratory and low-performance aircraft flight conditions.

o CO0p Laser Multifunction Sensor Demonstration: Design demonstrate and
evaluate a brassboard multifunctional COy» laser tactical sensor for a
high performance aircraft under various weather conditions.

o EO/MMW Targeting Studies: Investigate concepts to integrate E-0/MMW
sensors. Use signature and atmospheric transmission measurements to
evaluate potential improvements in standoff range and targeting
accuracy.

o EO/MMW Performance Measurements: Experimental comparison/synthesis
of MMW sensor capability with E-D sensor to establish baseline
performance envelopes under various weather conditions.

o CO2 Laser Radar Design Study: Covert terrain following/terrain
avoidance/obstacle avoidance (TF/TA/0A) desired for the AF (ombat
Search and Research Helicopter (CSAR-HX). Covert capability and
TF/TA/OA capability of the COz laser will be explored in a design
study.

Current Technology Development Schedules

FY 80 8L 82 83 84

o €Oy TAC Laser Systems
Sensor Study
Technology Devel.
Multifunction Laser System Demo

o [EO/MMW Systems
Targeting Studies
Perf. Meas.

o (02 Laser Radar Ses. St.
Army Obstacle Detect Prog.

Concept Demo

Mobile System




LA T SRer N

Table 3.2-1B. Technology Category Analysis (Continued)

Applicability of Current Programs to ISAS Programs Required

This technology world contribute to the forward and side locking active

classitfier technology development - a desirable capability for ISAS
concepts.

Category* Recommendation

Laser Systems [1

EOMM I
*Category 1: Development program progress will not meet 1987 I0C
Category I1: Development Program Satisfies 1987 IOC
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Table 3.2-1C. Technology Category Analysis (Continued)

Technoloay Area/ltem: Advanced £0 Sensors

1.

Reauired Technoloqy Features

To develop, demonstrate, and test the various necessarv elements for the
next aeneration Advanced Electro Optical Sensors. These elements will
eventually lead to the Advanced Taraet Acquisition System (ATAS) having
the nhjective to acquire, classify, track, and desianate tactical taraets
for weapon delivery.

0

0

Strateqic Sensor Technoloay Validation: This proaram will desian,
fabricate, and test nuclear survivahle, critical FLIR components.
Performance and survivability requirements will be appropriate for
application to the manned penetrating bomber.

Common Aperture Technical Inteagration Efforts: CATIES demonstrates
feasibility of a common aperture electro-optical sensor using an
active TV and a FLIR., 1In-house evaluation will determine the utility
of TV and FLIR vs. TV alone v«. FLIR alone.

EOQ System CCM Technology Demonstration: Proaram for fabrication and
test of a multi-spectral dimaging system incorporatina EQ CCM
technolngies as well as nuclear survivable technologies developed
under SATIS,

tlectronic Scan Imaging Sensor Study: This is a competitive proaram
to perform concept formulation and s.:sor trade-off studies to define
a non-pptical scanning (staring) focal plane FLLIR. Such a FLIR would
permit even lower cost, higher reliability, ar” smaller FLIR's than
nresently nlanned second generation system.

Flectronic Scan Imaging Senscr Development: This program will
fabrirate and test a staring FLIR as an alternate, higher risk
technolnay to the second generation FLIR technology. Successful

development will ensure maximum competition when the second
generation FLIR transitions to ASD and will provide high confidence
in our ahility to fabricate a FLIR of the size and performance
required by an F-16 for air-to-ground fire control in a hiagh threat
#nyironment .,

N Scan Converter Module: Program to develop a CCD Scan Converter
Madule for the Tri-Service Common Modular FLIR. Module will replace
an LEN array visible optics, a TV camera, and associated electronics.

FLIR Field of View & Classification Study (FLIR FACS): Program to
develop a single FLIR/autoprocessor capable of simultaneously
executing a wide field of view search and a narrow field of view
classification. Eliminates the need for dual-dedicated sensors field
nf view switching or programmed coverage of an area.

22




Table 3.2-1C. Technology Category Analysis (Continued)

3. Current Technology Development Schedules

Fy 8 81 82 83 84

o  SATIS New Strategic FLIR

0 Strat. Sensor Tech. Valid.

o CATIES Common Aper. In-house Eval.

o Slewable EO Study ’

o Electronic Scan Imaging Sensor (ESIS)
Study
Fabrication and Test

o0 FLIR Field of View & Classification
Study (FLIR FACS)

Definition
Development & Test j—ﬁ—

4. Aplicability of Current Programs to ISAS

The above programs could provide significant benefit to ISAS sensors, and
sensor configurations:

5. Category Recommendation

ESIS, FLIR FACS I

CATIES [1
Category 1: Development Progress will not meet 1987 10C
Category II: Development Program satisfies 1987 10C.
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Table 3.2-1D. Technology Category Analsis {Continued)

Technoloay Area/lItem: Automatic Target Classification - E0 Svstems

j

Required Technology Features

This effort will develop the interrelated concepts Jleading to an
automated and automatic target classification system usina data from the
rext qeneration FLIR, c0? laser scanners, LLITV, and the shape
classification system (3 DTC).

Current Technology Devciopment Programs and/or Expected Results

o Automatic Image Screenina: Automatic Image Screening 1is advanced
development to achieve higher data rates and more accurate identi-
fication of targets.

o Lantirn: Provide a pod-mounted system that will combine a FLIR and an
image processor to produce a target autocuer/classifier for use on
current tactical airplanes.

o Imaging Sensor Autoprocessor: The Imagina Sensor Autoprocessor will
combine target screening, image enhancement, and autocontrol func-
tions into a flyable breadhoard autoprocessor. The autoprocessor
will be tested in a serjes of lab and flight tests to establish
performance capabilities. Primary emphasis will be placed on versa-
tility and adaptability of the breadboard to changes in signal pro-
cessing algorithms/functions by software modifications. Secondary
emphasis will be placed on miniaturization and packaging, but
feasible technoioay (e.g., CCD memories) which can achieve final
packaaing on a subsequent effort must be identified.

0 Forward-looking Active Classification Technology: Demonstrate feasi-
hility of real time automatic target location and classification
using 3-DTC and forward lookina, lcw depression angle 3-D sensor
techniques.

Current Technology Development Schedules

FY 80 81 82 83 84 85
7
o LANTIRN

0 Imaaina Sensor Autoprocessor %

o Forward Looking Active Class # J

Applicability of Current Program Required

The need for quick, accurate target acguisition in to ISAS strike profiles
requires this basic technology.

Category* Recommendation

Imaging Sensor Auto Processor [
Forward Looking Active Classifier II
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Table 3.2-1D. Technology Category Analysis (Continued)

* Category I:
Category ll:

Development Program progress will not meet post
Development Program satisifies I0C requirements

25

1987 10C




Table 3.2-1E. Technology Category Anclysis (Continued)

Technology Area/ltem: LF Multimode Radar

1.

Category II: Development Program satisfies I0C requirement

Required ATS Technology Features

A LF Multimode radar is vequired for acguisition of ground targets in

foliage. The radar should have the capability for strip and searchlight

mapping, MTI and signature analysis for target identification, maneuver
and turbulence compensation, flexible paraneter control (power, prf, pw),
and good ECCM capabilities.

Current Technology Development Programs and Expected Results

o The WPAFB IMFRAD flight test program has been completed. Signal
processing and data reduction of the test data is currently 1n
progress.

0 Concealed Target Detection (CONTAD) program will be initiated in FY
80 to demonstrate long wavelength radar cueing of concealed targets
at low flight altitudes.

Current Technology Development Schedules

FYy 79 80 81 82 83 84 85 86 &7

' o [ h 1 |

IMFRAD Flight Test Completed ! i

e — P b 1;
IMFRAD Signal | » i

Processing/Data Reduction T !

o N | — L

CONTAD Study | }

g1 R/D ;

| _ Fl1t. Test |

L S SN S R o BN |

Applicability of Current Programs to ISAS

IMFRAD and the forthcoming CONTAD programs validate the basic target

detection and classification techniques.

Category* Recommendation

I1

* (Category I: Development Program progress not adequate

ko e dran
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Table 3.2-1F. Technology Category Analysis

Technology Area/Item: Air-to-Ground Strike Radar

1.

Required Technology Features

Low probability of intercept radar system for tactical aircraft capable
of acquiring moving and stationary ground targets in real-time and pro-
viding fire-control data for the destruction of the targets.

Current Technology Development Programs and Expected Results

a) TIMPR. Texas Instrument Multipurpose Radar - IR&D program, Texas
Instruments Co. - typical of new generation of SAR capable radar
technology. Estimated progress demonstrations.

b) COVIN REST Phase I. The goal is to demonstrate a monostatic radar
using current technology to detect and classify tactical targets.

c) COVIN REST Phase II. Demonstrate a low probability of intercept
radar using a bi static radar system.

Estimated Technology Developnent Schedules

FY 80 81 8 83 8 85 86 87

TI RADAR DEVELOPMENT
RBGM v
SAR/DIBS v
GMTI v
TF/TA v

COVIN REST (ESTIMATE)
PHASE I DEMO
PHASE 11 DEMO

Applicability of Current Programs to ISAS

The results of the study are vital to ISAS. The acquisition of ground
targets, involving target identification and classification with radars
require significant development.

Category* Recommendation

I

Category I: Development program progress will not meet 1987 IOC.
Category II: Development program satisifies 1987 I0C.
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Table 3.2-1G. Technology Category Analysis (Concluded)

Technology Area/lItem: MM Wave Radar

1.

Required Technology Features

'

A very high resolution radar is required to back-up the EO sensors under
the conditions of poor optical visibility due to cloud, fog and smoke.
The radar must be able to view ground targets (fixed and moving) directly
ahead of the tactical aircraft and provide real-time data. These require-
ments dictate the use of real beam mapping at very high frequencies.

Current Technology Development Program and Expected Results

0 MM Wave LPIR (Low Probability of Intercept Radar: A fully coherent MM
wave (94 GHz) radar is being developed by HAC to achieve stealthy
operation. The radar features include real beam mapping, SAR mapping
and coherent (pulse doppler) GMT1. Tests are planned in order to
evaluate its performance.

0 MM Wave RPV Radar: Norden has developed and tested a MM wave (95 GHz)
radar for ECOM. Final ground tests are currently being performed and
a 7H test is planned for 1980. Norden's goal is to incorporate the
radar on the Aquila RPV. The non-coherent radar features RBGM and
clutter locked GMT1.

o Goodyear MM Wave Radar: Goodyear has developed a 95 GHz radar largely
out of company IR&D funds. The radar is non-coherent and features
high resolution ground mapping. Tests have been conducted. Further
tests are planned with company funds.

Current Technology Development Schedules

FY 79 80 81 82 83 84 8 86 8/

T T T T
Brassboard Test

MM Wave LPIR
(DARPA/AFAL)

T f

Gd Test I
MM Wave RPV
Radar (ECOM)

MM Wave Radar
{Goodyear)

Applicability of Current Programs to ISAS

The current programs are important to ISAS. The information relative to
performance between the coherent and the non-coherent radars, partic-
ularly in the area of moving target defection will require the continuing
development of the above programs, especially the DARPA/AFAL program.

Category Recommendation

I
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Table 3.2-1H. Technology Category Analysis (Continued}

Tectnology Area/Item:

1.

Required Technology Feature

To develop, demonstrate & test the technology required to detect and
classify tactical targets from their radar signature. The technique must
be effective against both moving and fixed targets, and accomplished in
real time to allow weapon delivery against the classified targets.

Current Technology Programs and/or Expected Results

0 Polyfrequency Data Exploitation: Analysis of data gathered against
fixed targets to determine the phenomonology of classifying fixed
tactical targets.

o Target Screener Program: A technical effort to determine fixed
tactical target detection techniques, using an X-Band SAR radar.
Dual polarization and multiple frequencies are being utilized as
tools for rejecting false targets.

0 Radar Target Discriminator: A study to investigate the use of radar
return amplitude, phase and polarization to perform automatic radar
classification of fixed tactical targets.

These programs appear to be essentially in the base research phase neces-
sary to formulate the required technology.

o Fixed Target Classifier Design Study: This program would initiate
development of a radar target classifier for future demonstration and
test.

o Moving Target Classification Data Base: Basic research moving
targets.

o0 Target Motion Signature Data Base: Development of moving target
classification based on above.

0o Target Classification Data Base: Radar experiments to obtain a
moving targets doppler signature. Parameters to be investigated
include target type, target motion, target orientation, grazing angle
and radar frequency.

o Target Motion Signature Data Base: When awarded, this study will
conduct experiments relating target motion signatures in the inverse
SAR processing mode. The data base may then be used as a basis for
developing radar moving target classification algorithms.

TSC is under contract to investigate the utilization of radar information

consisting of amplitude, phase and polarization to perform automatic
radar target classification of fixed targets.
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Table 3.2-1H. Technology Category Analysis (Continued)

Technoloqy Development Schedule

FYy 80 81 82 83 84

0

0

Polyfrequency Data Exploitation
Target Screener Program
Radar Target Discrimination

Fixed Target Classification Data Base ﬁ.

Moving Target Ciassification Data Base

Target Motion Signature Data Base 'H

Applicability of Current Programs to ISAS

The development of adverse-weather/all-weather target classification is

essential to the success at future strike concepts 1ike ISAS.

Category* Recommendation

Radar Target Classifiers I

Category I: Development Program progress will not meet 1987 I0C

Category II:

Development Program progress satisfies 1987 10C.




TV: A silicon TV sensor to supplement FLIR operation under conditions that

might lead to thermal washouts or high losses in certain mist environments

3D classifier: An active, forward-looking classifier to provide nonimaging

classification of targets

VHF Multimode Radar: A foliage-penetration radar (The potential of this
development is high despite considerable technical risks. In the analysis of
concepts, radar data furnished by CDC Corporation relative to a derivative

of their IMFRAD radar research was used.)

Multimode Ku-band Radar: The Texas Instrunents Multipurpose Radar
(TIMPR) is typical of a new generation of synthetic aperture ‘radars now

becoming available. TIMPR was selected as the baseline for tactical radar

studies.

Alr-to-Ground MM-Wavelength Strike Radar: No development program
dedicated specifically to developing a millimetre wavelength radar for
tactical application (other than the AFWAL EO/MMW program) was found.
(A hypothetical millimetre wavelength radar based on Norden Company data

was used as a baseiine for analys s.)




4.0 ISAS CONCEPTS

During task 1, the ISAS study candidate fire-control concepts were formulated and
refined to produce three integrated fire-control systems for analysis evaluation and
trade-off. The research data reported in Section 2.0 (System Requirements) and 3.0
(Candidate Sensors) formed the basis for concept formulation. This section reviews
three final concepts selected for analysis and evaluation and describes the significant
elements of each concept. The fire-control concept descriptions are accompanied by a
general discussion of related core avionics (concept-pertinent avionics discussions are

included with the concepts to which they apply).

4.1 OVERALL REVIEW OF CONCEPTS

Three basic ISAS candidates were formulated at the end of task I. These varied in
sensor arrays and in system mechanization. The sensor arrays in each concept are

listed below:

a. Concept]

I. Long-wave foliage penetration radar
2. Millimetre wavelength radar

3. Ku-band radar

4. FLIR

5. Silicon TV

6.

Laser-3D classifier

b. Concept Il
1. Ku-band radar
2. FLIR
3. Silicon TV
4

Laser-3D classifier

c. Concept Il

-
.

Millimetre wavelength radar
2. FLIR

3. Silicon TV

4

. Laser range finder
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The variation in sensor arrays spans the concept ranges shown in Table 4.1-1. The

table, reading trom left to right, gives the various levels of autonomy corresponding to
an austere equipment selection (limited autonomous) and a full sensor complement
(maximum autonomous). Operationally, a limited autonomous system depends heavily
on supporting systems (i.e., PLSS, PAVEMOVER, etc.); a maximum autonomous

aircraft could use "stale" target data, using its "super sensor" array to find targets.

The vertical axis of Table 4.1-1 shows another dimension in concept equipment
selection—airframe application. Three degrees of equipment consideration are shown.
The concept sensors can be all-up high technology that require extensive installation
consideration (i.e., special radomes, infrared domes, additional antenna installations,
large power demand, extensive software and hardware, etc.). It can be readily seen
that the ali-up high technology approach implies a new aircraft. Other choices shown
are a concept that could be created by adding some new technology and by minor

changes to existing sensors, or a nominal update to an existing lightweight aircraft.

Table 4.1-1. Range of Concepts

Semi autonomous Autonomous Maximum
autonomous
All-up high technology _ 1
Growth - ]
Light-weight m -
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Squares approximately corresponding to the ISAS sensor arrays are indicated by
concept number. It should be noted that in this study Ku- and X-band radars were
considered equivalent, thus including fighters equipped with coherent X- or Ku-band

radars as possible future ISAS fire-control recipients..

Table 4.1-2 shows that selected concepts differ in mechanization as well as in sensor
array. The three concepts range from fully automatic system integration (concept II),
through a man-machine combination (concept I), and a concept where all essential

integration is done by the crewman (concept ill).

4.1.1 Concept |

Concept | is a fully autonomous system that uses brute force and high technology to
solve the ISAS detection-identification problem. The concept is said to use brute
force in view of the large number of sensor types used. Each different frequency used
by the radar, FLIR, or TV systems may provide special intelligence or perforin better

in specific weather and operational environments.

The sensors in concept [ are integrated on the physical-mechanical level, the processed
information level, and the display level. Physical integration is in the form of
aperture and/or gimbal sharing among several sensors. Processor-ievel integration is
accomplished by video scene registration to ensure registration of singular target and
scene imagery from multiple sensors. Display integration results when autocuer-
classifier votes are scored and then fused with prime sensor video for crew surveil-

lance.

A unique feature of concept 1 is full aircrew participation to eliminate false targets
and maximize detection and acquisition ranges. Expected advantages are: (1) there is
less reliance on automatic target classifiers whose performance may be limited by the
state of the art or sensor resolution, (2) processor complexity and weight may be
reduced, and (3) the processor false target threshold may be set at a lower level to
allow target detection and classification at longer ranges and/or under worse visibility

conditions than either aircrew or processors could do alone.
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4.1.1.1 Concept I-Concept of Operation

In concept | the aircrew and the automatic processes function as a teain., Automatic

detection and recognition thresholds may be set lower because the aircrew functions

to "screen" automatic response. The aircrew is continuously informed on functions

such as navigation and weapon selection, even though manual action may not be

needed. In the discussion that follows, the concept is addressed as it applies to the

ISAS missions of this study.

Cataloged target characteristics are provided via a mission tape to the systemn.

Last known locations or landmarks for preplanned targets are included.

Target search is initiated automatically for preplanned, prelocated targets when
the assigned target(s) or nearby landmarks are in sensor range. The onboard
inertial navigation system (INS) in cooperation with processor-controlled sensors
provides "the location basis" for this process. In the search mode, the processors
automatically control all sensors without crew participation. During and after
automatic search the display is automatically adjusted for optimal presentation.

Hands-off display operation is provided.

Search for targets of opportunity can be initiated by the crew.

A popup can be planned or initiated on command so that a line of sight to the
prebriefed target location is possible. The area searched includes allowances for
navigation and targeting error. The sensor processors continuously search for the
specified target. If target-like objects are found, added automauc sensor
comnmands for more frames with maximum resolution enhancement are initiated
and detection of a target triggers a video frame storing or freeze process. A
navigation fix is made on the detected point. Relative aircraft position 1s
computed accurately from the freeze point. Automatic and manual target data
processing is conducted at low altitude. A second popup to release certdin
weapons and/or improve accuracy by reaquisition may be used. It no automatic
detections are made in popup, the last target area scene frames are stored and

reviewed during and after popdown.
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Final processing provides target identification. Automatic processes are imper-
fect, and both real and fulse targets will be located. The crew can override
incorrect target classification. The result of this interaction is a very high
probability of correct target classification {estimated as 0.98 probability that a
target that achieves sensor-related justification criteria (vis, Johnson or Ratches)

is correctly classified).

f. 1t the automatic system is unsuccessful or the crew is not satisfied, manual

targeting using any or all aids is available.
4.1.1.2 Functional Elements

As with other fire-control systems, the ISAS conceptual fire-control system is a form
of state of system integration rather than a specific black box. The elements
constituting the concept | system are radar, EO system, emitter classifier location
system (ECLS), selection system, environmental sensor, digital image processors,
controls and displays, and core avionics. The system block diagram is provided in

Figure 4.1-1.

Radar. Radar provides moving-target indication and long-range, all-weather search
and target acquisition. Radar functions include navigation, fire control, high-
resolution SAR mapping, real-beam ground map (RBGM), Doppler beam sharpening
(DBS), terrain following, limited air-to-air search and detection target for self-

defense, and passive target homing (direction finding of radiation targets).

Forward sector coverage is provided. Sector coverage can be varied to provide large
area coverage using a high-resolution, small-area coverage and to provide aircraft-
stabilized and ground-stabilized imagery for both search and tracking operations. A

searchlight mode is also included for automatic tracking.

A long-wave radar is provided for foliage penetration. A side-mounted antenna array
must be used on practical tactical aircraft, and operation with squint angles smaller

than about 10 deg is not practical.
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The Ku-band radar is the primary all-weather, long-range attack sensor. Although
X-band radars provide longer range and much better performance in rain, Ku-band
raddrs provide better real-beam resolution and allow use of a smaller antenna. The
Ku-band radar antenna is mounted on the aircrait nose to allow completion of attack

using the real beam.

The millimetre wavelength radar is also used during attack, and the antenna is nose
mounted with the Ku-band antenna. Use of a common aperture or a common gimbal
system for the two radars would provide the same advantages, as discussed in the
following paragraphs, as the CATIES system. The extent to which radar apertures or

gimbals can be combined or shared requires further study.

Radar operation in the millimetre band of 30 to 100 GHz is attainable because of
recent and current advances in solid-state, high-frequency devices. Potential advan-
'éages are high antenna gain, high real-beam resolution, and potentially improved
adverse weather operation, compared to EO sensors. lLong-range operation, like that

with lower frequency radar, is not attainable because of propagation considerations.

ISAS requirements include the ability to operate in adverse weather (clouds, fog, or
smoke) where EO systems are inoperative. Although the Ku-band and LW radars
provide all-weather operation, resolution is poor compared to EO systems. The
millimetre wavelength radar provides improved resolution, but study analysis shows
that range performance is inadequate in heavy cumulus clouds. Because of the
characteristically poor resolution of radar, many of the digital image processing
techniques that are used with EOQ systems cannot be used when adverse weather makes

radar the only useful sensor.

EQ System. CATIES is a common-aperture £EO system in development. Use of a single
gimbal. common optical system, and a single window providc advantages of smaller
size, tnherent bores. it of all sensors, simultaneously registered TV FLIR imagery, and
low cost and weight. All of these features are important for concept I. Inherent
boresight and simultaneously registered imagery may be the feature that makes
multisensor digital image processing feasible. In ISAS, sensor systems included with
CATIES are as follows.
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A second-generation FLIR (defined in Sec. %.2.4) with an improved focal plane sensor
provides a sensitivity improvement of four to five times over that for a single-column
FLIR detector array. Performance analysis in this report is restricted to the self
(natural) emission band of 8 to 13 , which is a more difticult task than hot mfrared
{3 to 5 ). However, operational systeins are expected to include the 3 to 5 band,
A priinary reason for including FLIR 1s that one of the selected ISAS weapons is the
infrared Maverick, and FLIR is used for missile sceker target acquisition. A TV
system is included. It operates in the silicon band of 0.45 to 1.1 . For atmospheric
conditions used in this report, TV and FLIR perforimances are nearly identical.
Justification for inclusion of both sensors has been the subject of lengthy analysis.
Current evidence is that both have advantages, and by operating in a difterent band

the TV provides added target intelligence; herefore, both sensors are included.

A laser "3D classifier” (laser radar) is included (Forward Looking Active Classifier,
USAL developmental goal A 125). This systemn is scheduled for a feasibility
demonstration in 1981 and a flight test in 1984. In the 3D classifier system, the laser
provides extremely accurate range resolution, on the order of a few inches. The
systemn is commonly known as the "3D target (buinp) classificr" and easily detects
objects on roads or smooth terrain. Classification is accomplished with successive
cuts or slices "through the object" to obtain a series of cross-sectional arcas, which
are then compared with known object cross section that have unique features such us
special gun barrel profiles. The system uses a cooled detector element to pick up the
COZ ranging energy. The CATIES installation promotes common cryogenics (DEWAR)
for the FLIR and 3D detectors.

For ranging, or target classification, the laser beam is steered, or slewed, to the
coordinates of the target that has been located by another sensor. In the classifier
mode, the laser makes a line-scan pattern across the object of interest. (It is assumed
that a minimum of six scan lines across the target are required for classification, and

at least four line samples for ranging.)

By 1985 it is expected that the CO, laser frequencies will also be in common use for

2
target ranging and designation.

Sensor Selection Systemn. The sensor selection systein provides real-time data for use
in sensor weighting (sensor voting and scoring algorithm), and for use in determining

the prime sensor. Systems for this application are not currently available but appear




o onla - .

within the state of the art, Hardware candidates for the system were discussed with |
industry. Prime candidates are the Perkin-Eliner Aerosol Scattering Measurement
Device (ASMO) or a laser turret. The ASMD is currently in brassboard form but not
adapted for ISAS use. Software logic and sensor image quality algorithms are also

needed and appear readily attainable.

Detection and Detection/Identification Processors. These dedicated processors are
similar to LANTIRN and numerous other Government- and industry- sponsored
research efforts. Specific characteristics are not critical in analysis and added details
are therefore not provided. It is assumed that the selected system will result from a

vendor competition.

Display Processor. The display processor coordinates information from the sensors and
stored information, then presents this composite information onto an optimurn display
for the operator. Therefore, its functions are coordination and display. The functional {
units within the display processor are shown in Figure 4.1-2.

The processors coordination functions include—

a. Conceptually overlaying the target autoscreener results and identifications from

R

the various sensors and, by using a weighted voting scheme, determining the most

certain target locations and identifications

b. Using a scheme that determines the "quality" of the image from each sensor so
that the best sensor image may be displayed as the background for the detected

targets
<. Supervising all sensors, displays, and controls
d. Using stored terrain profiles, popup, and freeze mode to extend the search for

obscured targets; Using display-aural warning of classified radiating threats or

threats with predefined locations

¢. Processing to remove spatial and temporal warp to allow overlay of displaved
images (These corrections are primarily to remove those errors not compensated

for by colocation of sensors, optical paths, and boresight.)
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f.  Using autoregistration to remove small boresight errors for all sensors

The processor's display functions include—

a. Display of the prime sensor image as the primary background on the multicolor
display (The prime sensor is the one that has the highest quality image at the

given instant.)

b. Automatic gain and brightness for display

c. Display of detected and predefined targets by use of graphic overlays that

indicate the identification and certainty of the target

"Tagging" of targets in the normal display presentation is the final classification
performed by the automatic targeting processor. The crew must accept or reject each
tagged target in turn. The display is always adjusted automatically for optimal

presentation, and no added manual operations are required.

High-Density Video Storage Unit. This unit provides digital storage for selected video

frames for freeze mode and processor operations.

Controls and Displays. A separately funded USAF program for display for correlated
sensor data (DCSD) is about to be awarded. The program is required to be compatible
with ISAS. Primary ISAS controls and displays may include a multifunction multiple-
image color display, a standard keyboard, and a tracking control for cursor laying.

Special control panels for high use operation may be included.

Full degraded mode manual operation is provided. This feature allows use of
alternative techniques that may be more compatible with skills of selected crew-
members and to allow for failure. Commands to confine search to limited areas for

faster response may also be initiated.

Core Avionics. Core avionics functions are provided by all aircraft. Selected systemns

that impact ISAS concept 1 performance are shown in Figure 4.1-1.
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Because of USAF drives to limit proliferation of inertial navigation systems (INS) witt
specialized characteristics, two basic systems are currently emphuasized. these are
SPN-GEANS (Honeywell), a precision state-of-art systemn, and the inedium accuracy
USAE standard INS (LN-39) by Litton. Other systems are available, and extensive
trades wmnvolving cost and accuracy are typically required before final selections are
muade tor a specific aircraft. The USAF standard INS was selected for concepts | and
II.  Approximate accuracy, for purposes of ISAS analysis, s l-nmi/h and 2.5-1t/s

velocity tor each axis.

A radar altimeter is used in ISAS analysis to provide a tull 31) coarse fix capability in
EO and radar ground map modes. Analysis indicates perforinance is acceptable as long
as terrain is fairly flat. For performance evaluations, AN/APN 194 accuracy of 3 f1.

or 4% of actual range is used.

4.1.1.3 Sensor Integration

I concept I, forms of sensor integration explored are (1) physical and mechanical, (2)

muitisensor registration, (3) sensor selection, (4) voting of registered processed

services, and (5) display format integration. They are briefly outlined in figure 4.1-3.
wherein a functional entity is shown representing the major areas of integration and

how they interface.

a. Physical and Mechanical Integration: This form of integration is the oldest of
those discussed here. Operational forms can be found in the F-4 TISEQ system
where an EO system is slaved to a tracking radar so that a high-powered telescope

with a small field of view can easily acquire a small target at long range. In the

ACM mode, F-4's also can slave a weapon (Sidewinder) seeker to the radar

tracking line for infrared acquisition of a tracked target.

The CATIES use of common optical paths and a common aperture are examples of
the physical and mechanical integration technique exploited for ISAS. The use of
common aperture and common gimbals (millimetre wavelength radar and Ku-band
radar andfor search and terrain-following radar) minimizes correlation and

screener registration problems.
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b. Sensor Selection: The sensor selection array samples signals received by euch
sensor at a series of commonly registered points in the common search field of
view. Collateral active sensors (lasers in the 1 to 12 pmregion) to easure
atmospheric propagation losses or an aerosol scattering measurement device
{(ASMD) may be included.

The sensor with the best returns from the target search area is identified as the
“primne sensor” of the moment, and video from that sensor will provide the
primary or "base" video for the crewman display. This logic is then correlated
with stores management data to promote sclection of a cornpatible hotning

weapon.

The onboard weapons mix may include only one spectral variety of sensor. If this
sensor is spectrally unsuited for use at the moment (because of excessive
propagation losses) the pilot will be notified. He has the option of deliberately
selecting the less optimal sensor (so that he is compatible with the weapon),

switching to unguided munitions, or aborting the pass.

c. Voting of Registered Processed Scenes: Each sensor is individually linked to its
own full-time automatic target cueing and classification processor. Single-sensor j
voting uses segmentation and feature extraction with thresholds to establish
amplitude limits. Correlation is accomplished by comparing extracted features
with stored target characteristics. If "votes" are inadequate or more features are i
required for classification, the operation is repeated by automatically slewing the
sensor to center the "target" and by changing to a magnified image to provide

maximum use of available resolution.

The sensor registration comparator ensures that the target's location is registered
for all sensors to permit use of added sensors such as the 3D classifier, FLIR, or
radar to the target for ranging, improved resolution, or to search for added cues

such as hot or moving targets.

Registration also ensures that multipie sensor detections and classifications for a

single target complex are at the same coordinates and the same physical display

location. The voting scoring processor combines votes from all single-sensor




el it

autocuers and generates target scoring coefficients for subsequent automatic

operations to stores management and for display. The voting scoring processor

also provides target video signal conditioning for display.

|
d. Display Format Integration: The output from the voting scoring processor is an :
enhanced color composite for each target successfully automnatically detected or
classified. Adjacent alphanumerics may be provided for detection classification,
target, and voter scoring coefficients. This colored target box is overlayed on the
pr'me sensor video display at the location corresponding to proper target

coordinates.

To provide sufficient detail for aircrew verification of identification, the target
box must cover 20 to 30 lines on the display (from Johnson, Ratches), and the
display must cover less than 0.5 km. To allow the display of several targets at
different locations, scale factors for prime sensor background scene video and
target video are adjusted independently. A common scale factor is provided for 1
general orientation with varying scale factors (zoom) provided to examine detail

of selected targets.
4.1.2 Concept 11

Concept 11, is also a fully autonomous system with automatic digital image processing.
The primary goal for concept II differs from concept I, which allowed a higher crew
workload. The major emphasis for concept Il is full automation to minimize crew
workload. Ultimately in the limiting unrealistic case, concept Il could become part of

an unmanned self-contained attack vehicle.

In concept Il cornplete reliance is placed on processor capability to provide automatic
target detection and identification. Current programs such as LANTIRN are expected
to provide much of the technology base needed for EO systems. ISAS requires all-
weather operation (fog, clouds, and smoke). Manual rather than an automatic digital
image processing for radar is necessary because the automatic mode is limited by
f attainable resolution. A manual mode to permit operation in adverse weather (when

EQ systems cannot function) is provided.




The unique feature for concept Il is maximum reduction of aircrew worklead. Human
decision is required to commit weapons; however, workioad reduction is achieved in
functions relating to automatic target detection and identification. Maximum

emphasis Is on clear-weather, high-resolution EQ sensor processing.

Sensors are integrated in the physical-mechanical, processing, and display domains.
Physical integration has been exercised in the common aperture, common optical path
of the CATIES technique used in the EO sensor concept. Autornatic target cueing and
classification is used with each sensor and the results are voted and scored auto-
matically. Target scores are presented on the display. Simplified video, as used in the
registration processing of the various sensor scenes, is provided as a background on
which graphic target displays are shown. The systemn selects a high-score target for

operator approval.
4.1.2.1 Concept lI-Concept of Operation

Concept Il is an autonomous, fully automatic system. Full reliance is placed on the
automatic processes of the system. There is no partnership between man and machine.
The aircrew acts to approve, or disapprove automatic processes, not 1o augment them;
thus details of navigation, weapon selection, etc., are available upon specific
"request," but normally the aircrew is involved only in principal or final decisions. In

the discussion that follows, the concept is addressed as it applies to the ISAS missions.

a. Cataloged target characteristics are provided via mass storage to the system.

Last known locations and landmarks for preplanned targets are included.

b. Target search is initiated automatically for preplanned prelocated targets when
the assigned target(s) or nearby landmarks are in sensor range. The onboard
navigation system capabilities provide the location for target search and tracking.

Manual participation is not required.

c. Target search for targets of opportunity is a secondary mode that can be

initiated.
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It mission plans are to attack an obscured target, a prograinmed popup maneuver

will be executed; the processor will store selected frames of digital video in
freeze mode, and the aircraft will resume terrain following. Aircraft position is
accurately computed from the freeze point. Autornatic high-speed target data
processing is conducted during and following freeze. Added popups, to improve

accuracy by reacquisition, may be used.

The processors initiate search for specified target-shaped objects. If target-like
objects are found, added autornatic sensor commands for more frammes with
maximum resolution enhancement is initiated. Inforination from environmental
sensors (weather and atmosphere) is used to select the best weapon-sensor
combination. For targets that are identified, a complete final analysis and

weapon selection will be presented to the crew.

In the search mode, the processors automatically control all sensors with no
aircrew particination. The video data are processed and digested; simplified data

are presented to the crew.

Final processor programming provides target identification. The auiomatic
processors are adjusted to minimize false targets. Normal aircrew operation is to
view a synthetic display readout of the processor target assessment and either
accept or reject targets. (The probability of correct target recognition by the

automatic system is estimated as 0.9.)
If the automatic system is unsuccessful or the crew is not satisfied, a manual

mode for backup is provided. Real video displays are provided and sensor control

is manual.
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i 4.1.2.2 Concept 1-Functional Elements

Concept Il uses much of the same hardware as the previously described concept I, but
system mechanization reflects the system design theme of maximum possible automa-

tion. The system block diagram is presented in Figure &.1-4.
Radar. The Ku-band radar antenna is forward mounted, and aperture size is limited in
attack aircrait to about 30 in. The resulting real-beam resolution is about 2 deg or

one line of resolution on a tank at },000-ft slant range. i

Use of the Ku-band radar in SAR mode provides a resolution improvement over real-

bearn resolution of roughly 60 times for squint angles greater than about 10 deg. The

SAR mode is used to deliver weapons that can be maneuvered to offset targets.

EO System (CATIES). No changes to the CATIES system were made, and the system

as defined in Section 4.1.1.2 also applies to concept Il

Sensor Selection System. The sensor selection system provides real-tiine data for use
in sensor weighting (sensor voting and scoring algorithm), and for use in determining
the prime sensor. Systems for this application are not currently available but appear
within the state of the art., Hardware candidates for the systemn were discussed with
industry. Prime candidates are the Perkin-Elmer Aerosol Scattering Measurement
Device (ASMD) or a laser turret. The ASMD is currently in brassboard form but not
adapted for ISAS use. Software logic and sensor image quality algorithms are also

needed and appear readily attainable.

Digital Image Processors. Digital image processors will essentially be the same as in
concept [. Differences are that processor functions related to full manual partici-
pation have been deleted in concept II. Objectives are very similar to those
established in the LANTIRN program, and a derivative of LANTIRN may be used to

limit developmental effort for concept II.

Controls and Displays. Primary concept Il control: and displays include a multi-

function multiple-image color display and a sensor command panel.
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The EO sensors associated with CATIES are comnpletely integrated, and image
detection and identification processing is automatic. The display provides a target
location symbol with a legend giving target number (which is also the attack sequence)
and a target-type code. The only manual operation, using the command panel, is to
reject the unwanted target. The system then automatically selects a new target or
targets. Homing missiles can be automatically locked on and released upon target

acceeptance.

There is cvidence that developmental processors perform about as well as a human
when the person is not tired or distracted and high-quality EO display is not needed.
The EO display does not provide "true" video, and the only display requirements are
crude scene data (major topographical features for orientation only) and target

graphics.

In adverse weather, EQ sensors are ineffective and the display is autornatically or
manually switched to the radar r ode. Although some radar image processing may be
teasible, particularly for very large targets, the display concept assumes that no
significant near-term improvements exist. Consequently, radar control and display
operation is manual. The display is real video and operation is conventional, with a
tracking control and predesignation cursors. Special control display equipment for this
degraded radar mode is not shown in Figure 4.1-4. Under these adverse weather
conditions, the radar ground moving-target indicator (GMTI) capability enhances the

systein probability of detecting moving tactical targets.

Video Storage Unit. The video storage unit provides the same functions as in concept L

Core Avionics. Concept Il makes use of the same radar altimeter and inertial

navigation system used in concept L.
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4.1.2.3 Sensor Integration

In concept Il the forins of sensor integration used are: (1) physical-mechanical, (2)

voting of registered processed scenes, (3) display format integration, and (4) sensor

selection. They are outlined briefly in Figure 4.1-5. Functional entities representing

the major areas of integration and how they interface are shown in the figure.

d.

d.

Physical-Mechanical: The EO sensor handover is the same as that of concept I.

The same CATIES technique is also used.

Voting of Registered Processed Scenes: In concept Il there is no prime sensor.
All sensors of a type are always in use at the same time. Scene registration
voting and scoring by processing are the same as in concept I, except that target
type, count, and voter output are shown in the crewman display in graphic

symbology at the proper coordinates.

Display Format Integration: The fully automated aspect of concept Il does not
provide a real video scene display to the crew. Instead, a simplified scene format
as derived in the registration {(Matchall-type format) process is provided as a

background for target graphic symbology.

The simplified scene, although devoid of detail, is intended to provide scene
context to aid the operator in his decision process of committing weapons. The
simplified scene format has the appearance of a cartoon; i.e., it shows only object
outlines and scene boundaries without the gray-level variation of a photograph or
normal cathode ray tube (CRT) screen image. The key processes in the
transformation of a gray-level image into one of these binary images are the
various edge detection techniques, They detect changes in gray leve!l or texture
that define object and scene boundaries. These techniques have existed for many
years and therefore may be considered mature technology. In the context of the
pattern recognition terminology introduced in Section 4.1.1.2, the edges are
features that can be used to classify the scene for navigational update and/or

object recognition.

Sensor Selection: The sensor selection device furnishes the necessary tie-in

between weapon guidance and target sensors so that a weapon with the proper
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guldance sensor is selected, or, if such is not available, the pilot is notified so that

he may abort or use unguided weapons.

e. Target Handover Processor: Weapon guidance seekers are automatically

locked-on to the target using a target template and the handover processor.

4.1.3 Concept Il

Conceot Ul 15 a short-range autonomous system that is also uniquely adaptable to

cooperative strike activity. It represents a minimum-cost ISAS capability.

A basic objective of concept 1l 1s to recognize cooperative concepts and to provide a
generalized flexible systemn that can be used to work with a variety of cooperative
concepts. This I1s provided by including a digital data link that, in addition to local
sensors, provides targeting and fire control data to the ISAS displays and processors.
Concept Ill includes a data link on the ISAS aircraft, but excludes the remote aircraft
or complexes that generate and transmit targeting information to the ISAS concept Iii

data link.

[t is assumed, therefore, that automatic or manual processing is included on recon-
nalssance aircratt or with ground or air complexes, and that data received via the data
link 15 already processed. The system has limited onboard processing capability and

does not include full onboard automatic target cueing and classification capability.

Sensor integration in concept Il consists of physical-mechanical integration of radar
ard sensors (handover and common apertures) and cooperative linking. In cooperative
linking the initial targeting system preprocesses the data and compresses it as
required. The processed, compressed sensor data are then data linked to the strike

aircraft for correlation and registration with onboard sensor data.

Laser designator/spot seekers and laser guided munitions have changed close support
beyond all recognition in the last 10 years. Incorporation of a laser spot seeker system
in concept I essentially solves the targeting problem with "instant" identification
when the forward aircontroller (FAC) uses a laser designator with coded pulses to
imark the target. Added advantages are that the ISAS aircraft can also use laser

missiles or guided bombs that home on the designated target code. This allows weapon
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launch froin standoff out of range of enemy fire or launch and leave. The associated

ISAS crew workload is minimal.

The resulting concept, is expected to be the simplest and ligntest of the three
concepts, and probably could be adapted to many more existing aircrait than the other

two concepts.

4.1.3.1 Concept Ill Concept of Operation

In concept Ill, sensor integration and system integration (must rely extensively on the
crewman. To assist the crew, the concept hardware and mechanization exploit
supporting systems (e.g., reconnaissance, command and control). For example, in
normal operation global position system (GPS) Navstar or JTIDS navigation updating
relieves the crew of the need to make navigation fixes; the system can use target
scene structure to make "fixes" that translate the concept Iil systen from area

navigation coordinates to local target coordinates.

a. Target assignments and 1SAS weapons loading are made beiore ISAS takeoff. It
may not be necessary to load precise target coordinates into ISAS iission tapes at
this time, and ISAS may take off and loiter waiting tor command link target

coordinate updates.

b. In the cooperative mode, the ISAS aircraft must reriain within line of sight of the
data link relay (satellite, balloon, aircraft, or ground station) during scheduled
periods when target reassignments or coordinate updates are expected. [f the
command data link relay is beyond line of sight, lost, or jammed, ISAS will

proceed on best available data.

c. A predesignation cursor showing best system estimate of target position is
provided on the display, and manual search using local sensors is confined to the

area within the predesignation box.

d. In close-support, FAC laser target-designated missions, dependence on the com-
mand data link is minimal. The ISAS aircraft uses the laser spot seeker systemn to
rapidly search large areas for assigned laser codes. High accuracy and positive

target identification is provided and attack is initiated when within weapon range.
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e.  When the target area is obscured, popup can be initiated manually to acquire the
target with local sersors. A freeze mode, as in concepts | and ll, is available;
automatic operation is restricted to navigation computations to find the current

position in respect to freeze point.

f. Target detection and identification are manual for cases where target reacquisi-
tion is necessary. Also provided are precision navigation with autornatic
checkpoint update to reduce search volume, and display of stored reconnaissance

maps to provide landmark and target orientation and registration.

g. The remaining operations to deliver weapons use core avionics. Sensor-weapon

matching is performed manually.

4.1.3.2 Concept Il Functional Elements

Concept Il uses some of the sensors used in concept I. The system goal is a short-
range, lightweight, low-cost fire control that would be readily adaptable to small

aircraft modification. A block diagram of the concept is shown in Figure 4.1-6.

Radar. General concept Il radar characteristics were defined in Section 4.2.1.2. The

millimetre wavelength radar is used because of its small size and light weight.

Range capability of the millimetre wavelength radgar is expected to be limited. For
concept Ill, the assumption, in the cooperative mode, is that long-range targeting
would be accomplished by reconnaissance aircraft. This allows the ISAS aircraft to fly
at lower safer altitudes during penetration than the other two concepts allow, and

long-range targeting with local ISAS sensors is not necessary.

EO System (CATIES). In concept Ill, CATIES does not link with digital image process-
ing. The system is (otherwise) as defined in Section 4.1.1.2. As with concept Ii,
detailed task Il definition and evaluation may provide variations, such as changes in ;

frequency spectrum, that are unique for one or more concepts.

Controls and Display. The basic system used with local sensor target acquisition and

identification is conventional. Automatic sensor selection is not provided, and the

sensor display is selected manually. The aircrew performs target search and

identification. The track control is used to position the cursor on the "target."
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A command and control display for aircraft vectoring to the weapon release point for

assigned targets is provided. For a two-man aircraft, a second or a special command
display is provided to the pilot, For a one-man aircraft, the display may be added
modes on the multifunction display.

Digital Bulk Storage and Registration Processor. Digital bulk storage is provided for
TERCOM or pattern recognition maps and for ISAS sensor generated video frames for
freeze mode. The registration processor compares ISAS aircraft position as obtained
with local sensors with the reference map to find current aircraft position. Operation

1s automatic.

Scan Converter. The scan converter allows presentation of either radar or EQ video
data on a single multifunction display. The scan converter may also include features
to allow alternate multifunction display presentation for the Laser spot seeker, and
other core avionics sensors. Hardware is available and developments are restricted to

improvements and extension of capability.

Core Avionics. The following core avionics elements identified in Figure 4.1-6 are

significant to concept lil.

Laser Spot Seeker. Laser spot seekers are passive and provide anguiar measurements
to a laser-marked target. If the target is marked with a known coded pulse, automatic
target identification is provided. The system can be combined with an active
rangefinder to also provide range to target. Systems typically also require a gimbal
system and theoretically could be included with CATIES to reduce registration and

boresight errors and weight.

Inertial Navigation System. Because of the requitement for high accuracy for
handover, a precision state-of-the-art INS is included in concept Ill, The system
selected 1s the Honeywell SPN-GEANS. For purposes of analysis, accuracy is 0.1

nmii/h and G.5 ft/s velocity for each axis.

Radar Altimeter. The radar altimeter is the same in all three concepts.

Data Link. The assumption is made that developmental data links, such as JTIDS, are

available for communication with weapons and attack aircraft. JTIDS is a party line
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multiple user distributed time division multiple access system using spread spectrum.

It is designed for tactical command control, communication, navigatioin, and identifi-

cation. Extensive antijam features are provided. Added developmental work for ISAS

is unnecessary and hardware is expected to be available.

GPS/NAVSTAR. GPS/NAVSTAR is a cooperative system and is included for growth.

Performance characteristics do not impact concept lll performance analysis in this

report.

4.1.3.3 Sensor Integration

In concept Il sensor integration consists of (1) physical-mechanical integration and (2)

cooperative linking. They are shown in Figure 4.,1-7 and are described below.

Physical-Mechanical: Handover between sensors and common aperture/optical

path provisions are the same as concepts I and Il.

Cooperative Linking: In cooperative linking of sensors, the reconnaissance target
acquisition sensor performs target detection and acquisition. Target data are
then processed, at the remote site, to define target type and specific location in
local coordinates. This location may be in a TERCOM coordinate system or
correlation coordinates (as in scene registration) or both. Both techniques are
known and used today. The primary problem is that of translating from a cultural
or topographical reference as viewed by the target acquisition system with a long-

range sensor to an airborne ISAS sensor at another aspect angle.
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4.2 ISAS CONTROL PROGRAMS AND ALGORITHMS

Table 4.2-1 suinmarizes the major computer control programs and functional algori-
thins required for the ISAS concepts. The control prograins establish and implement
orderly sequences of instructions, functions, modes, application of algorithms, etc.
The algorithins are discrete mathematical solutions to specific control, data correla-
tion, or mechanical problems - just as the expression (x2 + yz)y2 = h is the algorithm for
determining the hypotenuse of a right triangle with sides x & y. The data in the table
were extracted from the concept descriptions furnished in this section and organized
by mission function. A number of subfunctions are shown with each major function.

Each of the three concepts is separately addressed.

It is evident that the entire array of programs and algorithms needed is not unique to
ISAS and will require adaptation rather than develoment. Other functional algorithm
elements are already being partially or fully developed by other nFWAL and ASD

programs. A brief review is presented below,

Initialization. This function consists of the insertion into the overall system of initial
position, route planning, and mission planning data from an external source. Current
tactical aircraft are capable of limited (if any) automatic initialization. The loading
of bulk data for initialization is, however, already a part of the B-1 navigation system

and several next-generation navigation and integrated EW systemns.
The initialization requirements of all three ISAS concepts are essentially the same.

Sensor Management. This function includes preprogrammed search, sensor output
control, data freeze, and handover among sensors. Automatic positioning of search
scans, in accordance with preset logic driven by the navigation system, is already a
part of some operational aircraft (FB-111 and B-1). The complete scope of sensor

control visualized for ISAS is not yet available.

Concepts 1 and II have essentially the same sensor management requirement except
that concept I management must provide for manual participation during normal
operation. Concept Il has greater reliance on management of its sensors and requires

fewer management tasks.




SYSI 03 JBL[NJ34 p343PLSUO) 30N 34y INg SYSI A9 pasn 3dy

SWI3SAS UOLIBDLJLSSR|) § UOL12313Q 396ue| JL3PWOINY

310N«

SL4LSSEL) § $12919Q URWMIL) O
NOTLYITJISSYTI/NOTLDILIQ L39UYL

SjuL04
3JUBU3 JBY 3IRULPUOOT) [BI0]
pajuiL1-eieq JO uoirieaysibay o
INIANIT JATLWY3I400D

uoLie4isibay auadg o
NOTLVYIIINI HOSN3S

{043U0) |enuep O
973344 RIR(J JOSUBS O
y24e3S pauue|daud o

INFWIDYNYW YOSN3S

S3utogd A2M “Sjulod X140
Suo 139207 33bur| P343L4Q34d O
NOLLYZITYILINI

UOLIBILJLSSR[D0qNy O
Burandojny o
NOTLYIT4ISSYII/NOIL33130 1394l

BurLa0dg § Butjop o

uoiLieaistbay 13bue )l /auadg o

U01123|35 40SUsS O
NOILYYIIINI ¥OSN3S

sapop papeubag ul [043U0) |enuey
s40suag Buowy udaopuey

3Z9344 B1R( 40SU3S

K1iunquoddg 4o sisbuey yodess
yod4ess pauue |dauayd

LO43UCT JOSUBS

INIWIDYNYW HOSN3S

O O0O0O0O0

=

SIUL0d ABM “SJUL04 XL 4 ©
suoL3e207 1364e | $343119344g O
NOTLYZIVILINI

UOLIRILLLSSR|) JO MILA3Y URwWM3U) O

UOLIBILJLSSR|I03NY O

Butandoiny o
NOTLIYITJISSYTI/NOILI3L30 139¥vL

Butuodg 3 butiop o

uoLieuysibay 31abue]/suadg o

UOL3J313S 40SUBS O
NOTLY¥9IUINT HOSN3IS«x

uotiedidLiaed |enuey

sJosuasg buowy uanopuey

9Z3344 viR(Q JOSUIS
Kyitunqyuoddg j0 si1abue)] yosueas
yo.J4eas pauue|dauad

1043U09) JOSUdS

INIWIDYNYIK HOSN3S

O 0O00O0

o

SquL0o4 AeM “SquL0d X1 4 O
suo13ed307 13bue] pajoLugaud o
MOTLYZIYILINI

[T 1430M0D

[T 1d3INO3

[ 1432402

sweiboiy j013U0D %P SWYliiobly SYS/

12’ 3/qeL

63




7213 0
AI8y] 4185 o
uoLiebiaey o
JUBWssAssy abeurq o
¥Y3IH10

suoL3einduon
Ka0129feu)/asea|ay uodean o
AY3IATT3Q NOdY3IM

71607 sau035 ©

49%93¢ j0dg Jaseq o
d3AOGNVH NOdY3IM/NOILD3T3S NOJYIM

S40SUaS 8013 | Ny
40 Ae4aAQ paIlWL] O
1oqufs uotieubLsapasg o
340-Sbuey o0
NOTLYHOIINT LWWUNd AVI4S1a

713 0

A39Y) H18g 0 7
uoLiebiaeyN o
JUBWssassy abeurq o

43H10

Suotendwon
Ka0103(rua] 9SPI|3Y uodeaM ©
AY3A1730 MOdJY3IM

21607 sa4015 0O
Yy21®Y 3duepiny
uodesm/a0suads Buiqsbue) o
JIAOANYH NOAY3IM/NOTILD373S NOJYIM

S3pON
papeJban u] |043U0) jenuey o
94025 J0Su3S/3dA] 1sbue| o
Aedsig dt3ayjufs o
03PLA PadURYUI ‘34n-SPulH O
NOTLW¥OILNT LYMM0 4 A% dSIa

2130

A23Y) 418S o

uotyebiaey o

JUBWSSISSY abeuwrq O
_ 43HIO

JURISU] 323344
1Y XL 4 uolyisog 13buey o
suo Ljendwo)
Ka0329feu]/ases|ay uodespu o
AY3AIT3G NOdY3IM

31607 sau035 O
yojey aduepiny
uodeap/aosuag buriabue] o
YIAOONYH NOdYM/NOILD313S NOdYIM

duemM (euodua| [eLiedS 3A0ULY O

wooz 0

Buiyess o

403§ Josus§/adA) 19bup] O

3U3IS JOSUIS AWidd O

03DLA P3JURYUI “140-SPUBH O
HOTLIVHDIIND IWEnd Aw1dS1a

[TI 1d33N0D

IT 143000

[ 1d430N0D

!
_
3
A

(papnju0]) swesbo.y jpi3u0) % SWyiuoly SYst “1-g'b 8igey

64




Sensor Integration. Several unique integration functions are required. First, real-time
automatic selection of the best of several sensors has never been provided on u
system. Industry has indicated that devices to make pertinent measurements are, or
can be, made available without risk. The measurement device outputs will require an
algorithm to translate them to an actual sensor selection and a sensor '"value"
weighting. Second, scene and target registration is necessary to correlate simultane-
ous target data from more than one sensor. This function ensures that the system can
differentiate between four targets—only one of which is equal to each of four sensors
and the same target seen four times, once by each sensor. Third, voting and scoring of
sensor returns provide a measure of confidence that targets have been detected and/or
currently classified. The measure of confidence is conveyed to the crewman via
displayed information. These three items appear sufficient complex to be considered

as individual algorithms.

A limited display registration capability has been claimed by Hughes Aircraft Co. This
capability is consistent with displaying selected sensors (such as FLIR and TV)

simultaneously.

Concepts | and Il require identical algorithms for all three functions. Concept 1II will

require scene registration capability to provide limited multisensor display capability.

Target Detection and Classification. Programs to develop image processing autocuers
and autoclassifiers are well under way, The ASD LANTIRN program, AFWAL Image
Sensing  Autoprocessor and Augmented Target Screener Subsystem and
Autothreshold/Autoscreener, Westinghouse Auto Q, and similar equipment developed

at Northrup are examples. It is intended that ISAS will apply this technology.

Display Format Integration. An assembly of algorithm elements to process outputs
from the sensor management, sensor integration, target detection classification,
weapon selection and weapon handover, and weapon delivery functional algorithms is
required. At least one program (Display for Correlated Sensor Data, RFP F336]5-80-
R-3603) is identified as intended to develop an ISAS-compatible display. ISAS has
unique display requirements and will require an ISAS-compatible display during

concept development and proof.
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The display tormat for concept 1 uses enhanced real video and requires graphic
annotation that will not degrade the video quality. Concept Il requires cartoon-like

displays. Concept Il is far simpler except for the requirement to overlay imagery.

Weapon Selection and Weapon Handover. This functional algorithm ensures that the
target recognition sensor is compatible with the weapon guidance sensor. Interface
with the host airplane stores management system is used to promote the assignment of
a suitable store and store-station. An element of the algorithm makes a target
template from the recognition sensor and controls transter of luck on one-half the

weapon guidance unit by comparing sensor and guidance unit templates.

The automatic weapon assignment and weapon handover functional requirernents are
the same for concepts I and II. Concept lil is mechanized to use manual and hardware

logic for weapon selection, weapon handover, and Laser Spot Seeker use.

Weapon Release. Fix-taking algorithms and digital weapon trajectory algorithms are
in common use on current tactical aircraft. Real-time launch envelope algorithms for
air-to-ground weapons are not yet available. Current development programs in the
real-time trajectory area are emphasizing air-to-air application. It is intended that
ISAS will apply existing trajectory and launch envelope techniques and that advances

in these areas be exploited as available.

Other. Damage assessment and other functional algorithms do not appear integral to

the basic ISAS concept and have not been addressed.
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5.0 ANALYSIS

This section presents the individual analyses performed to quantify ISAS conceptual

systemn parameters. Analyses reported here are: Radar, EO Sensors, Integrated

Sensors, Crew workload, Resistance to Counterineasures, Concept Installation, Weapon

Selection and Graceful Degradation. These analyses were accornplished as a part of
ISAS Task IV.

5.1 RADAR

The analysis of ISAS candidate radars will be found in AFWAL-TR-80-1145, Voluine 1!

Integrated Strike Avionics Study - Final Report, Classified Supplement.
} 5.2 ELECTRO-OPTICAL SYSTEM PERFORMANCE

Based on the technology contact survey made for this contract plus information
already in house on sensor research trends, a next-generation electro-optical (EV)
target-acquisition system has been hypothesized. [t is important to stress that this is
a generic system that combines features and characteristics found within the

technology and industry as a whotfe. Care has been taken not to feature a speciti

system or supplier product line. 1t s fully recognized that cowmposite systeins otten
require a inerging of capabilities or products from different manufacturers plus
combinations of results from different research centers. No judgment is made on
whether corporation A and corporation B would work on the same team for a common
product goal. The recent formation of EO-industry teams for the TADS/PNVS and the
LANTIRN competitions, however, indicate that development of highly complex EO

systems that incorporate the product lines of several corporations is possible.
5.2.1 Atmospheric and Meteorological Phenomena
Much published analysis has attempted to resolve the FLIR-versus-TV issue. At a time

when the cost of these weapon targeting systems was very high, economic considera-

tions often dictated an either-or but not-both choice. Extensive work done by F. A.

Rosell and R. L. Sendall under USAF contract attempted to quantify the problem and
resolve the FLIR-versus-TV issue. Figure 5.2-1 is reproduced trom their final report

and represents the real world. The space of all conditions involving an atmosphere
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Figure 5.2-1. Space of All Conditions
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Figure 5.2-2. Task: Detect Tank All Weather
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containing water phenomena (i.e., rain, fog, dissolved molecular water, plus aerosols of
stnoke in haze) is shown symbolically as a Venn diagram. Clearly, there are conditions

that favor the use of either the infrared or the visual-to-transvisual TV.

Figure 5.2-2, also by Rosell and Sendall, iliustrates the form of data presentation
originally sought by the referenced study. In the final analysis, the variability of the
atmosphere, including weather, allowed an unlimited number of these figures to be
created, each for one specific set of conditions. Being aware of these previous results,
we have chosen to follow the Lincoln Laboratories recommended concept and bound
the practical problem with two, reasonable atmospheric-condition assumptions.
Therefore, to provide justification for these assumptions, a brief discussion of the

general atmosphere-weather effects on EO systems is given.

Atmospheric Effects. Figure 5.2-3 illustrates the primary atmospheric components
confronting the EQ target-acquisition system. The impact of these components on

E-O systems is as follows:

® Clouds ® Preclpltation
Can be opague - <3dB/Kkm
Attenuation to 100dB/&km
® Fixed gases @ Turbulence
<.5dBkm - - Not significant problem at
resolutions under study
® Varfable gases e Obscurants & camouflage smokes
<4 dB/km - Can be opague
® Aerosols {includéing Fog) e Thermal gradiants
Can be opaque - Induce mirage eftects

Figure 5.2-3. Atmospheric Components & Effects
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Clouds: (An airborne accumulation of water droplets of varying sizes following
the classical size distribution statistics). Depending on particulate density, clouds

can range from diffuse to totally opaque for all optical wavelengths.

Fixed gases: (The known and measured molecular gases that constitute the
normal atmosphere). The attenuation phenomenon is known and measured and

accounts for up to 0.5-dB/km EO system energy loss (image signal loss).

Variable gases: (Primarily water vapor in its dissolved gaseous state). The
attenuation of optical transmission is known and predictable from meteorological

data. Attenuation approaches & dB/km.

Aerosols:  These include precipitable water fogs (i.e., clouds) and can be

unpredictable and opaque.

Precipitation: Can account for up to 15-dB/km attenuation during intense
tropical rainstorms. However, typical rainfall statistics indicate that rainfall

accounts for up to 3-dB/km signal attenuation for the candidate EO systems.

Turbulence: In general, turbulence becomes a problem only with extremely high-
resolution systems, such as those used for astronomical observations and high-

resolution photo reconnaissance.
Obscurants: These include dust, dirt, and camouflage smokes, and can be opaque.
Thermal gradients: These produce primarily a mirage effect. This is a unique

phenomenon that can affect low-altitude EO systems but is not be quantifed in

this study.
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ATTENUATION (dB/km})
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Figure 5.2-4. Range of Attenuation Effects Due to the Phases of Atmospheric Water

Water in the atmosphere introduces many various effects, as illustrated in figure
5.2-4. Data available from classical meteorological data (i.e., pressure, temperature,
and humidity) equate to an absolute water content expressed in grams HZO per cubic

meter (gm/rnB). However, water can cause optical signal attenuation ranging over 4+

orders of magnitude for any specific meteorological condition.

A particular atmosphere can be quite transparent, especially to silicon-based TV (SiTv)

sensors. The same moisture content, when in the mature fog phase, may be opaque to

all optical wavelengths. Thus, the primary assumption about the atmosphere must be

uncertainty. Water alone introduces +22-dB uncertainty in atmospheric absorption.
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Figure 5.2-5. Percentage of Time Rainfall Exceeds a Given Rate

Rainfall. Statistics of rainfall rate are shown in figure 5.2-5, which illustrates that
rates of 1- or 2-in/h do occur, but at very infrequent intervals. The 4-mm/h rate is
often taken as a specification rate for military systems. As seen from Figure 5.2-5,
98% to 99% of the time conditions are not that severe; i.e., the 4-mm/h rate is
approximately the | percentile level. Figure 5.2-6 illustrates the range of EO signal
attenuation measured at two reference wavelengths. The silicon-based sensor band
(SiTV), which covers the 0.4- to l.l-umwavelength band is represented by the 0.63-

data. The FLIR band and the C02 laser region are represented by attenuation
measurements for the CO2 laser at 10.6 Uumwavelength. Rainfall rate statistics of

Figure 5.2-5 show that 99% of the time the rain attenuation is less than 4 dB/km.
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10 ATTENUATION IN RAIN

O - 0.63 Um (Si TV GROUP)
8l 4A-10.6 Um (FLIR & CO, LASER)

ATTENUATION (dB/&m)

L i
5 10 15

RAINFALL RATE (mmH20/hr)

Figure 5.2-6. Bounds on Rainfall Attenuation Effects for EQ Systems

Precipitation also occurs as snow. Figure 5.2-7 illustrates snowfall rate statistics for
an unspecified but representative European location. A rule of thumb states that
fresh, dry snow accumulates at 10 times the equivalent for rain. Thus, a 1-cm/h rain
yields a 10-cm/h snow accumulation (approximately). Data on EO signal attenuation
for snowfall rates are available only in the 10.6- um C02 faser and FLIR band and are
illustrated in Figure 5.2-8. However, these data state that approximately 1% of the

tirne conditions are bad, with 24-dB/km attenuation.
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Figure 5.2-7. Distribution of Snowfall Intensity

10.6 um ATTENUATION (dBAm)

| { ] 1
0 0.5 1.0 1.5 20

SNOWFALL RATE (mm H,0/hr)

Figure 5.2-8. Attenuation of the FLIR & CO5 Laser Band by Snowfall
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Camouflage Smokes. The attenuation caused by camoutlage smokes in the EO bands of
interest to this target-acquisition study is shown in Figure 5.2-9. This figure
illustrates that FLIR systems operating in either or both wavelength bands of 3- to
>-umand 8- to 13-Um suffer far less attenuation than systems operating in the visual
and the SITV bands. One specific test using hydrocarban smmoke to obscure a Soviet
tank measured 17-dB signal attenuation in the SiTV band, and 1.1-dB signal attenuation
tor the CO, (10.6) laser,

Data taken for two specific wavelengths are shown in Figure 5.2-10. A comparison of
the relative performance of the Nd:YAG laser target designator (1.06 umin the SiTV
band) and the C02 laser/FLIR band systems shows that signal attenuation in the FLIR

band is 100 times less in fog and 5 times less in phosphorus smoke.

Other Atmospheric Effects. The mass movement of armored, tracked vehicles or an
armored vehicle military engagement creates a highly complex atmospheric situation.
The U.S. Army has staged several exercises to generate typical combat atmospheres
and has invited experimenters to instrument, observe, and make measurements at the
range. Data from these exercises, entitled "smoke week" and "dirt week," are
beginning to be available as examples discussed earlier indicate. Figure 5.2~11 is an
additional example of the diversity of data being gathered. Artillery projectiles
(155 mm) were detonated at approximately 8-sec intervals. Atmospheric obscuration
due to the ejected soil was measured using [.06- and 9.75- Um laser transmissometry.

The atmosphere, predictably became optically dense with dirt and dust.

Particulate settling is probably dependent on size: dust remains airborne for a long
time after large particles have fallen or settled. This latter illustration may appear
trivial and self-evident. However, it is cited to illustrate that thorough experimenta-

tion is addressing all aspects of the atmospheric image-degradation problem.

One generalization is becoming more evident from all these experiments. The
atmospheric transmission under conditions of interest to ISAS-class target-acquisition
systems pulsates quite dynamically with time. Target objects appear, fade, and
reappear for all sensors. This image pulsation can be on different time sequences for
different wavelength-band sensors. Therefore, the multiple-sensor concept as cur-
rently expressed in the forthcoming LANTIRN program and the Army attack helicop-
ter target acquisition/designation system and pilot night vision system (TADS/PNVS)
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® ¢ == ¢« » Petroleum oil aerosol
Sulfuric acid - water aerosol (FS)

GaAs Semme==w== Phosphoric acid - water aerosol (WP)

Attenuation/unit = 4.34-CdB/m

CL (g/m?)

Figure 52-10. Attenuation by Military Aerosols
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Figure 5.2-11. Optical Transmittance Through Dust Cloud
Produced by Three 155-mm Projectile Explosions

will give synergistic combinations to enhance target acquisition probabilities over that
which can be achieved with a single sensor. Therefore, the preferred ISAS target
acquisition will combine sensors from the various wavelength windows to maxinmuz>

any synergistic system benefits due to the varied nature of the atmosphere.
5.2.2 ISAS EO System Design Point

Section 5.2-1, Atmospheric and Meteorological Phenomena, described individual

effects contributing to the degradations of EO imaging target-dacquisition systems.
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Typically, these data present decibels per kilometre as a signal attenuation as a
function of phenomena (rainfall rate, time after shell burst, etc.). This attenuation
causes degradations due to loss of image signal, increased noise, decreased contrast,
etc. Thus, the overall effect is a decreased signal-to-noise ratio (SNR) causing lo-s of
utility of the imaging system. The most universal solution to counteract signal loss is
to increase optical aperture regardless of wavelength band. Sensor gain or sensitivity
is also increased wherever possible. However, most systems use the sensor at its full

design sensitivity.

Arbitrary increase of aperture is not practical in operational systems due to practical

contraints that include, typically—

a. Aerodynamic drag due to frontal area
b. Installed weight

Cc. System cost

d. Available volume for optics assembly

Lincoln Laburatories was recently commissioned to generate target-acquisition sys-
tems design guidelines to pace industry on the LANTIRN and other next-generation
EO-based target-acquisition systems. Much of the phenomenology previously sum-
marized was assembled by D. H. Kleiman, et al., at Lincoln Laboratories for this
purpose. Several significant studies have addressed the central European EO atmos-
phere. Figure 5.2-12 illustrates a cumulative probability for LWIR FLIR (8- to 12-

band) attenuation for data taken at Meppen, Germany, during a specific winter. There
is a significant knee in the curve as shown for the 90th percentile at 3-dB/km or less

attenuation.

This curve illustrates a typical and significant EO system design effect. Increasing
system performance (i.e., increasing aperture area) gives a high leverage to perform-
ance improvement up to the 85% to 90% cumulative-probability point. The design of
aperture size to furnish adequate focal-plane photon energy {minimum required SNR)
under an atmospheric attenuation condition of 3 dB/km is a productive improvement.

Beyond the 90% percentile point, an optical aperture gain of +4.2 dB is required to
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This requires an aperture ared

Typically, EO system

yteld the next 5% cumulative-probability benetit.
Increase ot 263w or an aperture diameter increase of 162%.
welght and cost of optical fabrication increases approximately as the cube of aperture

size (an empirical rule of thumb from production records). Thus the &.2-dB

pertformance increase is purchased with a 425% cost (and otten weight) increase,
Theretore, the strong knee in the data shown in figure 5.2-12 Is a very realistic design
point arrived at by plotting atmospheric degradation aggregate effects at a specific

Figure 5.2-13 plots simtlar data for the various heuristic haze and

observation site.
It 1s

aerosol models fitting Moscow, U.S.5.R., winter meteorological observations.

readily seen that the rural model and the maritime model represent good bounding

conditions for Moscow data. Again, attenuation of 2 to 3 dB/km is a data knee, and ;

again the knee at approximately 3 dB/km is quite evident.

Winter weather data for Berlin, Germany, in Figure 5.2-1%, also illustrate the saine

knee of the curve at 2 to 3 dB. Based on this analysis, Lincoln Laboratories formally
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Figure 5.2-14. Composite of Various Atmospheric Effects for Berlin DDR Winter
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recommends sizing EO system apertures to yield the design sensor SNR under ar

atmospheric attenuation condition of 3 dB/kin.

Analytical atmospheric models (specitically LOWTRAN 1V) should also use both the

rural and the maritime haze options to place probable system bounds on the vuariable

range. These recommendations were followed for the ISAS LO system performance

analysis.

5.2.3 Sensor Evaluation Methodology

Performance for 1985 TAD potential sensor systems was calculated using a combina-

tion of the following models:

a. Avionic Laboratories Sensor Performance Model (ALSPM) resident in ASD comn-
puter, WPAFB, Dayton, Ohio
b. L3TV Pertormance Model, Poppelbaum, et al., General Electric Aerospace Elec-

tronics Systems, Utica, New York

c. Boeing Military Airplane Company, developed Tank Acquisition Model, bascd on
Naval Weapons Center TM 2760 updated with LOWTRAN 1V

The general atmospheric condition chosen is summer, midday, midlatitude, using both
the rural and the maritime haze models to bound performance. This is a very realistic
and also taxing atmosphere for EO system evaluation. Atmospheric conditions could
be chosen to optimize the performance of a specific sensor. For example, FLIR will
perform very well with the following conditions: midlatitude, winter, night, with rural

haze. However, this enhances the case for FLIR at the expense of SiTV sensors.

The target chosen is the typical main battle tank with standard military paint on steel,
Tank dimensions are 3.6m by 9.9m by 2.3m high (11.8 by 32.5 by 7.5 ft high). This
target tank is placed on a short, brownish-green grass stubble background. No systein

cueing advantage by the presence of a prepared road is allowed.

The probability of detection and probability of recognition and classification calcula-

tions were made, assuming—
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a.  Flut Earth

b. Cloud-tree line of sight

These assumptions allow sensor system pertormance in an ideal environment to be
computed. Further steps in the evaluation combined these probabilities with the
probabilities of cloud-free line of sight at the designated altitude, and terrain model
line-of-sight probabilities. These computation steps are necessary to prevent intro-
duction ot clear line-of-sight probabilities several times in the evaluation chain.
Consultation with ALSPM model authorities* at WPAFB confirmed the appropriate
contrcl) modes required to eliminate existing terrain models, and to mmake other ISAS-

problem unique program manipulations,

Subsequent analyses in this report show that terrain line-of-sight statistics for the
ISAS terrain model dominate sensor performance for the 200-ft-altitude case and are
essentially in balance with atmospheric effects at the 3,000-ft altitude (above ground

level).

There were extensive consultation with and technology evaluation visits to the overall
EO laboratory and manufacturing community. Based on these many and diverse inputs,
the potential performance parameters for TAD 1985 systems were developed. It is
unportant to stress that the technology capabilities genecrally do not represent a
specitic manufacturer's concept, but rather a realistically attainable composite. In
specific cases we have merged diverse concepts into one system because significant
advantages are recognized in each technology area. One specific example is the use of

the heterodyned CO,, laser (Lincoln Laboratories) as the ranging sensor for the Perkin-

Elmer (:orporation/ZERlM three-dimensional target-classification {(3D-TC) concept.
Although these two organizations are not pursuing a joint prograri, such a system i
possible with feasible synergistic advantages derived from the various laboratories'
concepts. Therefore, for purposes of the ISAS analysis, we assunie a COZ ranging laser
with its atmospheric-penetration advantages (as discussed in Sec. 5.2.1) cembinea with

the 3D-TC Perkin-Elmer and Erwin shape-classification algorithm as a 1985 TAD

*Special recognition is given to Ms. Dorothy Johns and Ars. Dianne Sumniers ol
WPAFB-AA-3 for assistance with the ALSPM model.
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potential systemn. The ERIM CYTO computer concept is an alternative route to

obtaining the 3D-TC system.

Specific characteristics of the basic eleinents of the 1SAS target acquisition/classifi-

cation system are described in subsequent sections.

5.2.4 Infrared ISAS System

The infrared sensor is a generic derivative of the common module and the technology-
demonstration FLIR concepts. The focal-plane sensor is an immproved trialkaloid, two-
dimensional array, probably of the Hg-Cd-Te class. Time-delay integration (TDI) is
assumed with between 16 and 25 repetitive sampie steps. TDI effectively increases
sensitivity by decreasing noise. The gain in sensitivity is proportional to the square
root of N, where N is the number of repetitive TDI sampling steps. Figure 5.2-15
shows the number of additional TDI steps required to increase the sensitivity by a

factor of two. The point of counterproductive return is described as follows:

a. Adding three stages of TDI to a single detector doubles sensitivity.

b. The next doubling requires another 12 rows (total of 16).

c. The next doubling requires adding 48 new TDI sample rows (total of 64 rows).

The consensus among the manufacturers of the two-dimensional FLIR focal-planc
detector arrays is that 16 to 25 rows (total) dedicated to TDI implementation are tne
maxirmuim practical. This gives a four to five times sensitivity improvement over the
single-colurnn FLIR detector array currently implemented in the common-inodule-
based FLIR's. Note: larger two-dimensional arrays {referred to as staring arrays) arc
in development, but are not considered pertinent to ISAS needs nor available within

the prescribed TAD.

Based on these industry data, a FLIR having the following parameters was specitied

within the ALSPM model:
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Figure 5.2-15. Time Delay Integration Gains

a. Resolution (instantaneous field of view) = 0.05 to 0.1 mrad
b. Thermal sensitivity: NE delta T = 0.1°C

c. Optical aperture: A study variable ranging between 4 in (10.16 cm) and 8 in ]

(20.32 cm) in diameter

All scan parameters and dynamics as in classical 30-frame per second systems

o

All display parameters and man-display interaction effects are normalized, eliminated,

or made transparent by using a 1.0 transfer function as appropriate for each step in

the evaluation model. The atmospheric variables chosen are specified as discussed in

Section 5.2.1. The Night Vision Laboratories (NVL) evaluation inade for thermal

sensitivity is specified with a system modulation-transfer function (MTF) that is i

compatible with the spatial resolution cited earlier. The resultant tank target
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detection and target classification/identification range parameters are shown in

Figures 5.2-16 and 5.2-17, respectively.

The aperture variables cited were examined to determine the reasonable match
between sensor operation range and aperture size. Atmospheric degradations com-
bined with terrain line-of-sight limitations support the aperture choice of a 6-in

diameter for ISAS. The larger (8-in) concept is an overkill for the system.

A final caveat on FLIR performance evaluation is suggested. Earlier discussion of
atmospheric phenomena illustrates the great degree of variability of the atmosphere,
especially as it influences infrared transmission. Data on relative concept perforin-
ance should be recognized as being relative and containing a wide variance band.

These data are not absolutes.
5.2.5 Silicon-Based Television Systems (SiTV)

Performance of contemporary television systems is highly constrained by the man-
display requirements. ISAS systems augmented by automatic target
classification/recognition elements allow consideration of video concepts currently
outside the usual TV domain. Specifically, an SiTV system optimized for a frame-
grabber to route a specific scene frame for analysis appears as a most likely concept.
Optional display in a usual video (TV) mode must be considered because SiTV or
intensified SiTV image data are processed and displayed synergistically with FLIR

and/or any other sensor data.

The SITV sensor may be implemented with a ruggedized vidicon tube or with a two-
dimensional, silicon-based, charge-coupled device or charge-injection device
(CCD/CID) fabricated by methods similar to those used for infrared focal-plane

arrays.

Regardless of the type of physical structure, the SiTV performance obeys the basic

laws of photon physics, whereby —

a. High-photon-flux-level performance (daylight) is limited by bandwidth and other

factors.
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b. Extreme by low-photon-flux-level performance (starlight) is liinited by photon

statistics and intrinsic detector noise.

O

Midrange performance (dusk, predawn, partial moonlight situations) is limited by

both low- and high-photon-flux-level phenomena.

The concept of using TDI to enhance system sensitivity was initially demonstrated
with SiTV focal-plane sensor arrays. Up to 100 stages of TDI (a gain of 10), with
photon-limited performance, have been demonstrated. Figure 5.2-18 illustrates the
response of SiTV-class systems. The performance trade is obvious: operation at low-
photon-flux-levels, low-light-level TV (LLLTV) is accomplished only at the expense of
resolution. Use of pre-focal-plane photon amplifiers (image intensifiers) makes
isolated electronics problems easier only. Both the signal and the noise are amplified.
This is not all bad, however. For some applications, such as detection and
classification of ships at sea, the loss of spatial resolution at extremely low photon-
flux levels {overcast starlight) still allows ship outline discrimination, a useful
classification feature. Similarly, joint use of intensified video (LLLTV or LLLSiTV)
with FLIR has demonstrated low-level-flight utility of both sensors. Thermal washout
occurring in the few minutes after an intense rain squall can cause temporary FLIR
degradation until thin water surface films drain off of objects and/or warm to the
temperature of the material below. During this momentary phenomenon the intensi-
fied SiTV or classical LLLTV presents the necessary terrain imagery required for flight
or'ientation and prevents loss of terrain content. The lower spatial resolution of the

SiTV is offset by the benefits of flight control safety.

For the purposes of ISAS system analysis, an SiTV sensor is assumed to have the

following characteristics:

a. Performance limitations equal to the theoretical limits documented for silicon

devices

b. System bandwidth limits midway between those for TV systems of 525 and 875

lines
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Figure 5.2-18. Physics of Response for SiTV Sensors

As with the FLIR system, aperture diameters are varied from 4 to 8 in. Terrain line-

of-sight statistics, as with FLIR, become such a dominant factor that use of large

apertures for better atmospheric penetration is not warranted. Because a common-
aperture system concept is proposed (all EO sensors share the common, stabilized
primary aperture), the 6-in diameter, as paced by the FLIR system, is preserved.

Analysis of SiTV shows nonconflicting results with this aperture choice.,

The TV system subsection of the ALSPM model used for FLIR analysis did not aliow
full freedom to incorporate the SiTV refinements discussed. However, because the
performance assumed for SiTV matches the theoretical performance model for
extended actinic, EQ imaging systems, a computer evaluation developed by General
Electric Aerospace Electronic Systems, Utica, New York, was implemented. The

results of these evaluations are shown in Figures 5.2-19 and 5.2-20.
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5.2.6 Three-Dimensional Target Classification

The potential of classifying military vehicles on the basis of three-dimensional shape
alone has been demonstrated with a USAF/AFWAL (RWI) flying prototype systein.
This system (3D-TC) precisely measures the shape of the external surface or shell of
the vehicle. The goal of this concept is to classify a vehicle on the basis of shape
measurements and a comparison of these measurements with a catalog of prestored
shape templates of different targets. In the simplest form, a 3D-TC could be
initialized for one specific target class. Increasing the supporting microprocessor
capability increases capability and sophistication in multiple-target classification or

threat recognition.

For purposes of this contract, we have merged results of research and analysis from

the following sources:

a. Perkin-Elmer Corporation: Three-dimensional target classification scanner using

GaAs pulsed laser

b. ERIM: Three-dimensional target-classification data-processing algorithin (CYTO

computer algorithm)

c. Lincoln Laboratories: CO, laser concepts being demonstrated within the Infrared

Airborne Radar (IRAR) program
d. ERIM: Pulsed CO, laser scanner program

e. Proprietary dedicated data processing VHSIC concepts in development for 3D-TC

type applications

f. USAF, Perkin-Elmer, General Dynamics shallow depression angle 3D-TC concept

flight testing

g. Inclusion of the IRAR CO2 laser concept may provide an optional target-classifi-
cation mode currently under investigation at Lincoln Laboratories. This mode
uses synthetic-aperture-radar (SAR) data-processing concepts to detect vehicle

signatures from processed Doppler signal return. The primary 3D-TC mode is the
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shape-only classification. The Doppler signature mode may be a future candidate

for ISAS system upgrading.

Target Sampling. The statistics of probability of recognition and classification as a
function or target sampling granularity are still being investigated. Preliminary data
turnmished by USAF suggests four profiling samples along the target minimum dimen-
sion. Later discussions indicate that the imaging system Johnson criterion of &.4 scan
samples per minimum opject dimension may also apply to the 3D-TC. Thus, for the
ISAS analysis, 4, 6, and 8.4 scan samples are considered. The standard inain battle
tank model used for all analysis is 3.6m by 9.9m by 2.3m high. The 2.3m (7.5-f1)
height is therefore sampled 4, 6, or 8.4 times with a C02 laser beam no broader than
0.29m at the vehicle location. Lincoln Laboratories reports an operating pulsed CO

2
laser with the following parameters:

a. Aperture size: 133 cm? (13-cm diameter)

b. Beam divergence: 83 rad

c. Power required at 3-dB/km attenuation: 1W on 3-km test range
Lincoln Laboratores also forecasts—

a. Qualified airborne CO, lasers with 10W to .0W by ISAS TAD

2

b. The probability of recognition/classification will conform to the Johnson-Ratches

definition:

(N/NO)?
pR/C =1-exp

where NO is the factor (4, 6, or 8.4 used) and N is the CO

target location.

2 laser spot beamwidth at the

The predicted performance of the 3D-TC system incorporating the CO2 laser is shown
in figure 5.2-2!. There are three levels of performance (8.4, 6, and & lines across the

target). The six-line case was used in the systemn performance summary.
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5.2.7 Summary of EQ

The results of ranking and comparing system performance for various candidate EO
concepts is strongly dependent on the time of day and momentary atmospheric
conditions in the target environment. The choice of midday, midlatitude, rural, and
maritime haze atmosphere allows an unbiased, multisensor competition. Specific
conditions can immediately skew the results to favor or exclude a particular system.
An ISAS-class of target-acquisition and target-classification sensors will be subjected
to a wide variety of atmospheric, seasonal, weather, and terrain conditions. There-

fore, maximum synergism between the various EOQ sensor concepts is mandatory.

The cost-of-acquisition and producibility trends in the EQ industry today are such that
exclusionary decisions between concepts based on cost and technology availability are
becoming less dominant t' in several years ago. Based on this favorable situation, we
see a firm trend (LANTIkw~N, TADS/PNVS, PAVETACK) to mix diverse EO sensors and
wavelengths and operate in the multispectral domain to the benefit of the ISAS-class

of system.

95

CVo




5.3 INTEGRATED SENSORS—DETECTION AND RECOGNITION

The individuai sensor performance characteristics plotted in Figures 5.3-1 through
5.3-6 were derived during the performance analysis of the ISAS sensors (ISAS task 1I).
The sensor combinations featured in these figures are those that are assigned to
concept I (Figs. 5.3-1 and 5.3-2), concept II (Figs. 5.3-3 and 5.3-4), and concept Il
(Figs. 5.3-5 and 5.3-6).

Concept 1 has one each of every target-acquisition sensor deemed feasible for a
tactical fire-control system: two EO detection sensors (TV and FLIR) and three radars
(Ku-band synthetic aperture; long-wave foliage-penetration radar (LWR); and non-
coherent millimetre-wavelength radar (MM). Because of similarity, only Figures 5.3-1
and 5.3-2 are fully discussed here. In addition to individual sensor performance data,
the sensor performances have been combined to show combined-sensor performance
limits. Sensors performance characteristics are plotted for weather conditions in

which they are usable.

Curve | in Figure 5.3-1 illustrates the best overall target-detection nerformance: the
probability that at least one sensor will detect the target (P1 =1 - (- PA)
(1 - PB). N PN). ..) where PA’ PB, etc., are detection probapilities of individual
sensors. As the various sensors reach their range limits, the probability P1 decreases

and becomes equal to the detection probability of the sole remaining sensor.

In Figure 5.3-1, curve 2 illustrates the probability that all sensors will detect the
target (P2 = PA X PB X PC' . X PN). The probability P2 is limited by the detection
probability of the the poorest sensor and emphasizes the necessity of using weighting
factors in sensor voting to avoid deleterious effects of equal votes but significantly

unequal performance.

In Figure 5.3-2, sensor target-recognition data are plotted in a manner similar to
Figure 5.3-1. An obvious technical deficiency is the lack of all-weather target-
classification and target-recognition capability. All work, surveyed in this study,

leading to automatic recognition of radar targets is in the basic-research category.

Figures 5.3-3 and 5.3-4 summarize individual sensor detection and recognition

capabilities of the ISAS concept Il sensors. The combined-sensor detection capability
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closely resembles that of concept 1. Little, if any, detection capability is lost by not
using the long-wave radar and/or the millimetre-wavelength radar. Target recognition

capabilities of the two systeins are identical.

Concept IlII, as shown in Figure 5.3-5, has less fixed-target-detection capability than
either concepts | or Il because of the limited range of the millimetre-wavelength
radar. Target-recognition capability of concept Ill is the same as concept] and Il
capabilities.

Conclusions. Conclusions reached during the evaluation of ISAS concepts are
summarized below. These conclusions are based on the system performance data

furnished by sensor suppliers and apply to the conditions of the Boeing analysis.

a. Best target-detection sensor is the Ku-band radar in ground moving target
indicator (GMTI) mode. However, this sensor could only recognize that targets
were moving. Its recognition capability is, therefore, limited by the percentage

of all moving targets that are tanks,

b. The TV sensor has better daytime target-detection range capabilities than FLIR
for the weather conditions of this study, however, the FLIR has better target-

recognition range capabilities than the TV especially at night.

c. The 3D classifier has the best overall target-recognition capability in clear

weather,
d. Best Ku-band radar target-detection modes are GMTI and SAR.
e. The millimetre-wavelength radar and long-wave radar (as defined in this study)

target-detection capabilities are not adequate for ISAS. These sensors should be

reinvestigated when better performance can be defined.
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5.4 CREW WORKLOAD ANALYSIS

This section describes the analysis performed to evaluate the selected ISAS fire
control concepts from a crew workload standpoint. The results of the evaluation
shown in concept Il, the fully autornatic systemn has the lightest crew workload,

followed by concept I and then concept IlI,
5.4.1 Scenario

A typical battlefield or deep interdiction mission profile is shown in Figure 5.4-1 with
its mission phases. The strike aircraft takeoff from an airbase behind the forward
edge of battle area (FEBA), climbs to altitude, loiters or cruises out, and descends to
the penetration altitude for a run-in to target at very low altitude (TF/TA). Prior to A
arrival at the target, a popup is initiated for target acquisition at a predetermined %

location. The strike aircraft either remains at the popup altitude for weapon delivery

or returns to low altitude for weapon delivery and damage assessment {if required).

Upon cornpletion, the strike aircraft returns to base at low altitude.

Figure 5.4-2 shows a typical variation, in this case a popup at standoff and minimum
time exposure ranges. The target acquisition range (hence the popup distance from
target) will depend on the sensors available for acquisition (avionics suite configura-
tion or concept) and mission conditions (weather, altitude, speed, line-of-sight
probability, weapon delivery parameters, etc.). These factors will influence the
standoff range and, therefore, the survivability of the strike aircraft as a function of

popup exposure time and weapon launch range from target defenses.

An analysis of the battlefield, deep interdiction, and close air support missions shows
that except for the differences in time for the various mission phases the missions are
essentially the same from a crew workload standpoint. The critical mission phases for
crew workload are the last portion of target run-in, popup, target acquisition, and
weapon delivery. Therefore, in the analysis of crew workload and critical mission
phases, the battlefield and deep interdiction missions are considered the same. The
close air support mission was not evaluated in the analysis. This decision was based on
the ground rule that all avionic concepts would be evaluated autonomously. The close
air support mission requires positive identification, which in this case would be visual

identification. Without the cooperative forward air control (FAC), laser designator,
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1 Take-off
1-2 Climb
. . 2-3 Cruise out
2 3 34 Descent
4.5 Run-in to target
6 5-6 Pop-up
7 67 Target acquisition &
4 5 8 weapon delivery
7-8 Weapon guidance
V'3 5 © assistance {if required)
89 Damage assessment
{if required)
910 Return to base
10 Land

Figure 5.4-1. Interdiction Mission Phases

(1) RUN-IN TO TARGET, POP-UP AT STAND-OFF RANGES

NAVIGATION UPDATE TARGET SEARCH Variables:
/ & ACQUISITION Aititude (probability LOS)
Weather
DESCENT POP-UP Y&VEL%;?/’% LAUNCH Z:get designation time

RUI:J-IN

RUN-OUT ® TARGET

| MAX. TARGET ACQUISITION RANGE |
| MAX. STAND-OFF WEAPON RANGE I

(2) RUN-IN TO TARGET, POP-UP AT MINIMUM TIME EXPOSURE RANGES

Variables: Altitude

NAVIGATION TARGET SEARCH Weather
UPDATE & ACQUISITION Target designation time
DESCENT ETe.
RUNAN POP-UP WEAPON LAUNCH
— & LEAVE
RUN-OUT
® TARGET

MINIMUM WEAPON
LAUNCH RANGE

Figure 5.4-2. Typical Interdiction Run-In to Target
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etc., close air support is considered the saine as battlefield or deep interdicuon,
Analysts then was based on the critical mission phases stated above and a popup-

popdown or 3,000-ft-level flight mission scenario.

5.4.2 Crew Workload Evaluation

Evaluation of the crew workload for each avionic concept was subjectuive, usiny the
scerarios and variables discussed above; detailed crew functional task allocations: anc
weapon, aircraft, and crew interface definitions. These data, in combination with
mission timelines, were used as a basis to subjectively estiinate crew workluad by
mission phase for each avionic concept, its scenario, and variables. Results of thesc
estunations were the construction of subjective crew task percentage matrices {u )
measure of workload) for each avionic concept and dependent variables. These muatrix
values for critical mission phases were then weighed for a value to be applied for

ranking of the avionic concepts.

5.4.2.1 Evaluation Approach

Evaluation of the crew workload required some restrictions (to keep the study within
lithits) and some assumptions. For the purposes of this evaluation, workioad is defined
as the extent to which an operator is occupied by a task relative to the time available
for accomplishing the task., In determining the subjective workioad estunates, no
degraded-mode operations were considered. Also, no stress factors were taken into
account to degrade performance, and a standard crew skilf level was assumed
regardless of configurations. The survivability of one concept or case over another

was not taken into account when estimating crew warkload.

The evaluation approach to estimating workload was to consider the crew workjoad in
two parts. The basic part was the crew workload associated with flying the aircraft,
maintaining communications, navigating, and self-defense; in other words, all tasks
that did not relate directly to management of the sensor suites, weapon delivery, or
the target acquisition. Evaluation of this workload considered all mission phases fromn
takeoff to landing. The same phases were used for all concepts, but varied with
mission speed and attack altitude. The workload of the target acquisition functions,
however, is directly influenced by the various avionic concepts, and therefore was

evaluated by avionic concept. The workload associated with weapon delivery varies
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with weapon type and was influenced by the different avionic concepts when
integrated with the fire control system. Strike aircraft, speed, and altitude influenced
the basic crew workload only. The time to accomnplish target acquisition and weapon
delivery is not a factor uf aircraft speed, but of operator skill, performance, and/or ‘:

system characteristics such as processing time or time to display.
5.4.2.2 Subjective Task Estimates
Table 5.4-1, adapted from Reference | (Crew Workload Tactical Strike—Crew Work-

load Study, Boeing Document D180-26048-1) provides an estimate of the non-fire-

control crew task loading. Based on the mission sequences shown in Figures 5.4-1 and

5.4-2, the figures show the percentage of crewman attention required to control the
arrcraft, monitor aircraft systems, and carry on norimal communication, navigation,
seif-defense, and related mission activities. Mission phases 4 through 8 are empha-
sized because these data will be used in estimating total crewman task loading by [

summing them with fire control task percentages.

To understand the workload associated with the weadpon types, three different
elements were investigated: weapon interface, controls and displays, and automation.
Tables 5.4-2 through 5.4-4, show the interface between weapon, aircraft, and crew for
each avionic concept. It can be seen that armament functions are essentially
independent of fire contrel concepts. Target ucquisition functions, however, are

heavily atfected by the avionic concepts.

Table 5.4-5, also from Reference 2, lists each basic function (conventional mode) to
deliver the MK-82S, the controls and displays required, and the event location by
mission phase. Figure 4-3 in the classified supplement to this report similarly
describes Maverick missile information and is included as a part of confidential section

4.0 of this report.

To evaluate effects of the three fire control concepts on the target acquisition crew
tasks in combination with the weapon delivery task, the information given in Figures
5.4-3 through 5.4-5 and Table 5.4-5 were adapted from Reference 2. Crew functional
tasks were identified with levels of automation and integration as defined by each

avionic concept. The symbols are defined below.
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a. Circle: Indicates tasks that cannot be automated, and therefore would have to

remain an operator task.

b. Triangle: Indicates tasks that are accomnplished or inonitored by the machine
(automation) but must be displayed (information) to the operator. Many of these
tasks need only be displaycd to the operator when the system  are in an out-of-

tolerance condition.

¢. Square: Indicates a machine (automated) function with a human override
requirement.  Again, information displayed is required for human operator

judgment.

d. Hexagon: Indicates a machine function without operator monitoring or override.

e. Shaded Symbol: Indicates tasks that can be shared by both inembers of & two-man

crew.

Using the above analysis from Figures 5.4-3 through 5.4-5, subjective task percentages
for the two weapons and for either the automated (concepts | and II) or inanual
(concept IlI) fire control systems were developed in Table 5.4-6. While some of the
functions (as defined by Figures 5.4-3 through 5.4-5) related to the AGM-65D ure
performed at takeoff or climb mission phases, they were not included in [able 5.4-6.
This omission was made because the above mission phases were not of interest in the
crew workload analysis as representing the high workload mission phases listed in
Table 5.4-6.

Evaluating the crew functional task analysis from Figures 5.4-3 through 5.4-5,
subjective task percentage values for the four high-workload mission phases were
developed for each avionic concept in target acquisition and weapon delivery func-
tions. These values were combined with those of Table 5.4-6 to develop Table 5.4-7,
the target acquisition and weapon delivery task percentages. In Table 5.4-7, the
weapon delivery functions and the target acquisition functions were influenced by
concept and altitude. For the comparison of the three concepts, only moving targets
were used. All-weather detection must be performed by radar sensors, and automair
target detection is currently limited to moving targe's on these systemns. Although

some new EO-type systems detect either moving or fi ed targets automatically, they
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Table 5.4-6. Weapon Delivery Task Percentages

Weapons
Concept | & 1! Concept 111
X

Té o )
g |e8| & | 38
Miss p 4 o Q x P Q
Dr:;ss': ; Description = ~« = =<

4-5 Run-in to target 6 2 6 5
6-7 Target acquisition - 1 - 3
7-8 Weapon delivery 3 2 4 10

Table 5.4-7. Target Acquisition and Weapon Delivery Task Percentages (Moving Target)

Functional task

MK82S 3000 FT Pop-up 3000 FT Level flight
0> Kev: [zom
765D Concept | | Concept H | Concept It} | Concept | Concept il | Concept 11
§ 5 § 5 g §
z Dz I D s = D
S 'S 3 ‘3 3 ‘S
g g g g g g
clszlzlsz| S szl & lszl szl ® |52
— 5 (855 (85| % (82| g [38| g |8%| g |3%
hase | Description E 23| 8 |28 F |28 8 |23 | & |28 5 |23
4-5 | Run-in to Target 6 6 & 6 6 6
2 2 5 2 2 5
56 |Pop-up 5 16— 65— 55— 5 —
= _ = = = ]
7 67 ] Targeji:iuisition 33 p 22 ] 45 3 30 ] 20 ] 35 3
3 3 4 3 3 4
78 Weapon deliver
po Y 2 2 10 2 2 10
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are not all-weather. Turthermore, the time for radar system fixed-target acquisition
thoa teanaal mode wall be the same for all three concepts. Theretore, the moving-
Larget vase appears to show the greatest effect due to the various avionic concepts,
and s used to evdaluate the workload. The values of the tarpet acquisition, and weapon
delivery tasks are then added to the basic subjective task percentages (which were
imtluenced by altitude and speed), to give the total task percentages for comparison ol

cach concept.

Figure ».4-6 shows graphically an example of a task percentage peak of the total
subjective task percentages for all three concepts, at 953 kn tor the Maverick at two
altitude conditions.  As stated before, the task percentage is a measure of workload,
and in this case concept 1l has the lowest workload during the indicated mission phase .
[he rodutine maximum Jine 1s at 30 level, to indicdatc the usual routine maximum of
crew workload. It can be seen that concepts | and Ili exceed this le el for the period
ol tine the target acquisition takes place on the mission timeline. Exceeding this
level does not mean an excessive workload preventing accomplishinent of a task. It
ineans siinply that the workload is high for a period of time. Other factors, such as
stress or tatigue, may prevent or degrade performance during this tiime, but were not

evaluated in this workload analysis.

Tables 5.4-8 and 5.4-$ summarize the task percentages for the concepts, speeds.
weapons, and altitudes. Only the mission phases of run-in to target, popup, target
acguisition, and weapon delivery are considered, because these phases are the basis of
concept comparison.  Examination of these tables reveals that the only signiticant
variatior between concepts and weapons for the same speeds is the target acquisition
values for cach avionic concept. Thnis one mission phase value was then selected to
establist the rating normalization factors used in the ranking system. The crew
workload rankings derived show that concept Il (fully automatic mechanization) ranks

first, concept | is a close second, and concept Il is third and last.
5.4.3 Conclusions

4. Concept 1l has the lowest crew worlecad during the critical mission phases of
turgel acquisition and weapon delivery for moving targets. “loncept I's workioad
1s very nearly gt the limit of a one-man crew pertorinance, remembering that the

analysis did not consider degraded performance by imission stress. Workload for a
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Figure 5.4-6. Estimated Task Percentages for Critical Mission Phases (Speed = 553 Knots, Maverick AGM-65D)
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Table 5.4-8. Critical Mission Phases Estimated Task Percentage Ranking Factors
{Pop-Up to 3,000 Ft, Moving Target)

] WEAPON T6T. ACY |
| AVERAGE
CUNCEPT] SPEED | MISSION PHASE AGM TAK | RANK-
(KNOTS) MK82S 650 PERCENTAGL | ING |
RUN-IN TO TARGET 71 67 i
POP-UP 75 75 ;
1 553 e 33.5 2
TARGET ACQUISI- 83 54
TION
| WEAPON DELIVERY 68 67
RUN-IN TO TARGET 71 b7
POP-UP 75 75
Il 553 72.5 1
TARGET ACQUISI- 72 73
TION
WEAPON DELIVERY 68 67
RUN-IN TG TARGET 71 70 | !
POP-UP 75 75 | 1
111 553 A 96.5 | 3
TARGET ACQUISI- 95 68
‘ ; TION :
L_ WEAPON DELIVERY 69 75
— I O R P
| RUN-IN TO TARGET 65 bl
! POP-UP 75 75 ‘
L 350 R 5.5 2
; TARGET ACQUISI- 75 76 i
! TION i :
& WEAPON DELIVERY 58 Y :
S S T e
| RUN-IN TARGET 65 ! ol
POP-UP 75 75 | |
Ll 350 b ey 64.5 ]
| TARGET ACQUISI- 64 65 | ;
: TION j
| WEAPON DELIVERY 58 Y
‘ ‘
. RUN-IN TC TARGET 65 04 : ?
l POP-UP 75 75 | '
111 350 R B 8v.5 4 3 |
$ TARGET ACQUISI- 87 90 f |
' TION ;
l WEAPON DELIVERY 59 69 ‘
| U SRS SR (U

NORMALIZED METHOD: 80% TASK PERCENTAGE = 1.00
83.5% = .835; FACTOR = 1.00 - (.835-.80) = 1.00-.035 = .Sub
{nigher than normal)

B e U
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Table 5.4-9. Critical Mission Phases Estimated Task Percentage Ranking Factors
(3,000 Ft Level Flight, Moving Target)

b WEAPON T6T. ACQ
AVERAGE
CONCEPT| SPEED | MISSION PHASE AGM TASK RANK-
(KNOTS) MK82S -650 PERCENTAGE | ING
RUN-IN TO TARGET 71 67
POP-UP 65 65
I 553 70.5 2
TARGET ACQUISI- 70 71
TION
WEAPON UELIVERY 63 62
RUN-IN TO TARGET 71 67
POP-UP 65 65
11 553 60.5 1
TARGET ACQUISI- 60 61
TION
WEAPON DELIVERY 63 62
RUN-IN TO TARGET 71 70
POP-UP 65 65
11 553 76.5 3
TARGET ACQUISI- 75 78
TION |
WEAPON DELIVERY 64 ! 70
RUN-IN TO TARGET 65 61
POP-UP 57 57
[ 350 . 65.5 2
TARGET ACQUISI- 65 5 66
TION |
WEAPON DELIVERY 56 55
RUN-IN TO TARGET 65 61
POP-UP 57 57
I 350 55.5 1
: TARGET ACQUISI- 55 56
| 1 TION
‘ WEAPON DELIVERY 56 55
— T N
! RUN-IN TO TARGET 65 64
‘ POP-UP 57 57
il 350 71.5 3
: TARGET ACQUISI- 70 73
| TION
‘ WEAPON DELIVERY 57 63
[
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ene-indan crew is very high for concept HI and may be yinpossible to pertorin ande
conditions of high speed and stress. The crew workload tor fixed radar targets is

the same tor all three concepts and higher than the moving-target cases.

The results of the timeline studies are in sec. 4.0 i the classitied supplemcnt i
this report. Shorter useful detection ranges (and higher detec tion probabilities)
are possible with a two-man crew. The one-rman crew cannot perforim target
acquisition tasks while descending to 200 ft above ground level fromn popup
altitude. A second man, however, can start accomplishing target acquisition
while descending from altitude, reducing the total timeline by about 9 sec. tu
953-kn speed and 11 sec. for 350kn. This capability would be especially tmiportant
in multiple targets. The two-man crew also provides a greater margin of

survivability.

The results of the timeline studies also indicate o lower attack speed (357 versus
553 kn) is desirable from the standpoint of exploiting fow detestion ranges and
reducing crew workload. However, the lower speed must be  traded with

survivability considerations.




& -

5.5 CONCEPT INSTALLATION
5.5.1 Aircraft and Avionics Integration

This subtask investimated the integration of ISAS equipment into four existing aircraft
and a4 new-technology aircraft design created for operational use in the 1990's. The
basic approach used in current aircraft included the following guidelines: (1) Use
available space where possible—considering sensor field of view, equipment cooling,
and accessibility; (2) Retain aircraft balance within the approved center-of-gravity
range; and (3) Investigate design studies through the full-capability ISAS (concept I)
first, then remove components for concept Il and Ill installations. This approach was
used for the F-15, F-16, A-10, and F-4. For the new-technology aircraft, the full-
capability avionics suite was designed in from the start. Table 5.5-1 summarizes ISAS
avionics equipment data. The first order investigation showed that only the F-16 had
any appreciable performance degradation (Concept i) among the existing aircraft and
for this reason, takeoff gross weight was used as a basis for comparing concepts.

Concept Il ranked first followed by Il and I in that order.
5.5.2 A-10 and ISAS

The Fairchild A-10 available growth space restrictions required that all sensor
installations be mounted ahead of the main landing gear in pod extensions, thus
creating new aerodynamic shapes and new structural supports. These wing locations,
Figure 5.5-1, provide good field of view for all sensors. The long wave and Ku-band
radars with the missile site location system were installed in the right-hand pod
extension. The left-hand pod housed the millimetre-wave length radar and the
common aperture systemns. JTIDS and GPS/NAVSTAR equipment was installed in the
right-hand pod in Concept Ill. Installation weights for added structure, equipment, and
wiring are included in the totals for each pod and concept. Avionics were installed in
the body armor bathtub behind the pilot. The most favered nose location was
considered not suitable because of gun environment and proximity to in-flight
refueling receptacle. Locating sensors and electronics away from the A-10 nose
section will avoid the life-shortening problems of high acoustic and dynamic loads, gun
gas contamination and debris on sensor heads, fuel spillage, and potential impact

damage tromn refueling booms. The penalty for this installation is a forward shift in
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the center of gravity and some new flight testing to certify flight safety of the

modified aerodynamics.

5.5.3 F-15A and ISAS

The large size of the F-15 would appear to make an easy installation of the all-up
ISAS avionics suite. The F-15A has large growth volume behind the pilot's seat within
the pressurized cockpit (Fig. 5.5-2). In later models (F-15C/D) this volume is
employed for instructor pilot, avionics, or fuel. The nose radome section is available
and well suited for installation of the all-up Concept I sensor set. The F-15 avoids gus
and refuel hazards to ISAS (see A-10) by locating them in each wing root. Balance
within the current center-of-gravity range is retained in the F-15 by exchanging
APG-63 radar equipment for ISAS nose-mounted equipment. The F-15 installation 15
significant because of the apparent ease of modification. The F-15A still has reserve

volume for growth because of its relatively recent IOC.

5.5.4 F-16 and ISAS

General Dynamics' F-16A (Fig. 5.5-3) represents the most difficult modification
requiring more compromise to ISAS than other aircraft studied here. The principal
problem is size. The result is large new bumps added to the body aerodynamic
contours in an effort to retain all store stations for weapons or fuel. Equipinent boxes
are generally added to the body spine in an enlarged fairing fore and aft of the
refueling receptacle. This fairing is essentially identical to the fairing to be employed
for instrumentation on the AFT1/F-16 by AFWAL's Flight Dynamics Laboratory. The
spine houses only approximately 50% of equipment boxes. Compromise is also
indicated in the nose and lower aft body location of primary radar and EO sensors. For
the all-up ISAS (Concept I) the entire nose must be modified, thereby requiring new
certification flights to verify safe operation. Potential influence of the nose shape
could induce turbulence into the engine inlet at high speeds and low altitudes. At high
g maneuvers the modified nose could induce cross flows that cause stall departure and
spins, thereby limiting the maximum angle of attack. F-16A is presently limited to
23-deg body angle. Millimetre-wave length field of view is severely limited by the
lower body location. Any other location will take away a weapon store station. The

installation shown does preserve F-16/ISAS balance within F-16A limits.
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5.5.5 F-4 and ISAS

McDonnell Douglas' F-4 (Fig. 5.5-4) presents a still different integration problem.
While the F-4 is the same size as the F-15, its military equipinent has increased so
that all usable space is full. The nose section was selected for conversion to ISAS.
Here the radar and M-61 gun installation are removed and replaced by ISAS sensors

and equipiment. Control boxes are located in the rear seat.

The exchange of weight volume and power makes sense for the F-4. Removal of the
gun does not seriously cornpromise the strike role since a 30-mm gun pod (GE POD-30)
could be carried on the body centerline station and would produce a ore effective

antiarinor weapon than the M-61 gun.
5.5.6 ISAS Modification Effects on Existing Airplane Performance

Changes in the mission performance capabilities ot the four existing airplanes were
briefly examined. The bulk of the avionic concept equipment was installed within
existing aircraft contours or under smooth fairings making the impact on drag minimal
in comparison with the high drag oi the payload (6 - Mavericks and 6 - MK82 bombs).
Because all configurations retained their original internal fuel quantities, the operat-

ing radius varied by only a maximum spread of 5% from their original values.

Propably the most notable change in performance for any of the airplanes will be a
degradation in the supersonic capability of the F-16. This is due to the adverse effect
of the concept one radome modification and conformal "dorsal" avionics housing. The
degradation was not quantified since the [SAS evaluation did not encompass supersonic
speeds. Location of the retractable "eyeball" directly in iront of the F-16 inlet is of
some concern. Engine performance will be degraded particularly in use with the

"eyeball" extended downward.
5.5.7 ISAS Modification Weight Summary
Table 5.5-2 provides the ISAS avionic modification weight summary for the four

existing aircraft, The present operating weight of each aircraft is increased by the

aircraft structural changes required to accommodate the ISAS equipment and the net
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weight change in avionic equipment, installation, und wiring. The moditied operating

weight is then increased by a standard payload and the internal fuel load to determine

the takeotf gross weight.

5.5.8 Concept Ranking

The first order investigation showed that only the F-16 had any appreciable perform-
ance degradation (Concept ) among the existing aircraft. Takeoff Gross Weight
(TOGW) was therefore used to rank the ISAS modifications to the existing aircraft.
Table 5.5-3 illustrates the relative score and ranking for each concept on the four
existing aircratt. These values are then averaged for the relative score for each

concept.
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5.6 ECM SUSCEPTABILITY

A brief analysis and discussion of the susceptability of ISAS concepts to hostile
countermeasures will be found in AFWAL-TR-80-1145, Volume Il Integrated Strike
Avionics Study -Final Report, Classified Supplement.
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5.7 WEAPON SELECTION

This section evaluates the capabilities of each concept to deliver unguided weapons
and homing lock-on-before-launch missiles. Concept | is inost capable, with concept Il

a close second, and concept Il a far third.

Target Kill (Popup and Level Deliveries and Ranking). Tables 5.7-1 and 5.7-2 list the
relative target (tank) kill capability of each 1SAS fire-control concept when using
bombs and missiles. The basic data from which the tables were derived are provided
and discussed in Section 5.0 of Volume ll. The data were normalized about the best

kill probability for a particular mission-weather condition.

Popup Delivery. In Table 5.7-1, all data are for a popup attack. The popup, used to
overcome target masking, terminates in a 200-ft-altitude delivery. Close air support
and the other missions are listed across the chart from left to right. Under each
mission the relative effectiveness of each concept, over three weather conditions, is
shown. The 200-ft weather condition is visualized as a cloud-cover case, in which the
combined effects of an irregular (in altitude) cloud base and terrain-elevation
variations result in a high percentage of terrain obscuration. This results ir cases
where guided weapons cannot be launched because of lack of a line-of-sight to the
target at launch or during weapon flight. Cases when the guided missile could not be

launched are identified by resultant blanks in the table,

The target-kill factors are summed from left to right for each concept. The average
is determined by dividing by the total number of opportunities (each mission-weather
condition is regarded as an opportunity, regardless of cloud constraints). The averages
are not weighted by the frequency of weather occurrence, since they are intended to
reflect fire-rontrol concept capability and not actual mission value. PK evaluations
discussed in Section 5.0 (vol. II) consider the frequency of occurrence of the various

cloud covers.

Level Delivery. The data of Table 5.7-2 were derived and compiled in the same
manner as the preceding table. The data represent a case where the aircraft
penetrates to the target area at low altitude and then climbs to 3,000 ft to acquire an-

deliver weapons against the target.
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In the table, the blanks representing no-weapon-delivery occur for both cloud covers

because delivery is from 3,000-ft altitude.

Ranking. Table 5.7-3 repeats the average PK factors for both weapon-delivery modes
and shows an average factor for each concept and each weapon. Although concepts |
and II are close in capability, concept I obviously has the highest kill factor. Concept
[l has less than half the capability of the other concepts to deliver either bombs or
missiles.
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5.8 GRACEFUL DEGRADATION

A significant measure of system value is the ability of the systemn to accept a gradual
decline in effectiveness, rather than a catastrophic reversion to a useless state. The
integrated sensors of the three ISAS candidates were reviewed in this respect. The
results show that concept I is best able to withstand sensor failure; concepts Il and Ii!

were next, in that order.
5.8.1 Effect of Sensor Failure

The ISAS system mechanizations described in Section 4.2 of this report provide each
sensor with a dedicated autoprocessor for the cueing and classification function. This
analysis assumes that sensor failure and processor failure are equivalent. It is further
assumed that sequential worst-case failures occur (i.e., the "best" or longest range

sensor fails) each time there is a failure.

Table 5.8-1 shows the decline in integrated-sensor capability, in terms of detection by
one or more sensors as individual sensors fail. There is a column for the sensors of
each concept; the column is partitioned to show the number of sensor failures for that

concept as the sensors in the column fail.

The data show that concept I still has a 31% probability of detecting a target at 8 km
after three successive failures of the longest range sensors, whereas concepts 11 and IIi

are completely "down."

Concepts 11 and Ill appear to perform equally after one failure, but when the second
failure has occurred, concept 1l emerges strongly ahead (0.924 te 0.054) because of the
inherent superiority of its sensor combination. Concepts II and .II catastrophically fail
when their third sensor fails. Because the same combin.ition of sensors with
recognition capability are used in each concept, there is no diff s2rence in the ability of
the three concepts to recognize a target at 5 km during successive sensor failures
(Table 5.8-2).
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5.8.2 Ranking

A combined ranking of a concept's ability to degrade in a graceful manner over a
period of sequential failures of the best (longest range sensor) is: concept I, concept

11, and concept Il
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6.0 FIGURE OF EFFECTIVENESS

Analyses and discussions of survival and target kill (ISAS Task IV) will be found in
AFWAL-TR-80-1145, Integrated Strike Avionics Study - Final Report, Classified
Supplement.
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7.0 LIFE CYCLE COST (LCC) STUDY (TASK V)

Life-Cycle Cost: RDT&E, Acquisition, and Operating and Support. Life-cycle cost
(LCC) tor the integrated strike avionics study (ISAS) concepts include development,
production, and operating and support costs. LCC study results are sumrmarized in

Table 7.1-1. These costs were derived as a part of ISAS Task V.

7.1 METHOD OF ANALYSIS

The physical characteristics of the ISAS concepts were used initially in the "Modular
Life Cycle Cost Model" (MLCCM), Technical Report AFFDL-TR-7840, April 1978.
The MLCCM is a computerized method of predicting and conducting aircraft LCC
trade studies, at the subsystem level, during the conceptual- and preliminary-aesign
stages of a new aircraft development program. The method is desig: .ed to accept, as
input parameters, the output design parameters of a sizing model and/or design and
pertormance data available during the conceptual- and preliminary-design program

phases.

The MLCCM method consists of cost estimating relationships (CER) developed for
each of the cost categries of the system life cycle ana for the following aircraft

sybsystems:

Structure

Crew system

Landing gear

Light controls

Cargo handling (cargo only)

-0 ap T

Engines

Engine installation
ECS

Electrical

oo

—
.

Hydraulic and pneumatic

—
.

k. Fuel system
l.  Avionics
m. Armament (fighter and attack only)

n. APU (cargo, transport, tanker only)

148




i
|
i

Table 7.1-1. Integrated Strike Avionics System ISA Life Cycle Cost Summary

INTEGRATED STRIKE AVIONICS SYSTEM 1980 $
ISA LIFE CYCLE COST SUMMARY $ MILLIONS
toncept I ] 11 111
RUT&E $ 249 $ 181 $ 157
Acgquisition
Avionics $2,203 $1,615 $1, 407
{ Spares 441 323 281
' Support Equip. 172 99 84
| fraining 11 8 7
) Data 20 13 11
Total Acquisition $2,847 $2,058 $1,790
| 0&S $4,979 $3,828 $3,363
tﬁOTAL LIFE CYCLE COSTS $8,075 $6,067 $5,310

Costs for these 14 subsystems are available for production and operating and support
(O&S) phases. RDT&E costs developed in the MLCCM are visible at the engine,
avionics, and airtrame level only. Input parameters to the CER's are obtained either
from available aircraft sizing models or from preliminary- and conceptual-design
data. Thesc data are entered into the computer in either an interactive or batch
riode, The output costs can be selected for one or all of the life cycle phases, and for

one or all of the aircraft subsystems, as shown in Table 7.1-1.

The MLCCM differs from the RCA Price L Model, initially recommended for this
study In thdat it requires considerably fewer minutely detailed inputs and, therefore,
involves a LCC level of effort more consistent with the intent of this study.

The results were then reviewed with in-house experts. This resulted in some

adjustinents to the cost levels. The final values reported herein provide correct

rankings, but should not be considered as absolute values.




et A

7.2 RESULTS

Three sets of advanced 1987 ISAS sensors were estimated. The LCC includes the cost
of sensors in each of the three systems with fuel excluded. The LCC's for the

following sensors have been estimated, as indicated, for each of the three concepts.

Concepts

1 I u
LF radar X
Ku-Band radar X X
Millimetre wavelength radar X
Common-aperture laser sensor X X X
Common-aperture active-passive TV X X X
Common-aperture FLIR X X X
Scanning laser X X
Common-aperature laser range finder X
Laser spot seeker X
JTIDS X
GPS/Navstar X

ISAS LCC ground rules for the estimate are as foliows:

1980 dollars

10 prototypes

Production aircraft: 500
Operational aircraft: 456 UE
Annual flying hours: 300/UE/yr !

Years of operation: 15

- e 0 oo

g. Includes profit and G&A

RDT&E. The development-cost element in the LCC includes contractor efforts :
required to develop such a system in each concept. Boeing has performed a substantial
and extensive evaluation of avionics in the Air-to-Surface study, B-1 OAS, B-52 OAS,
and Innovative Strategic Aircraft Design studies. This Boeing experience and supplier

support has assisted us in estimating the development cost.
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Acquisition Costs. Production costs are based on vendor estimates and the extensive
avionics background of The Boeing Company. The other investment portion of avionics '
acquisition cost is based upon percentages of hardware cost extracted from the
MLCCM. ;

Operating and Support Costs. Operating and support costs were estimated using the

MLCCM, and adjusted to reflect the impact of production-cost estimates finally

E agreed upon by Boeing Materiel, Engineering, and Finance organizations.




8.0 RANKING AND TRADE-OFF ANALYSIS

An analysis was perforined to accomplish a final ranking and trade-off of the
candidate ISAS concepts. In the initial ranking, that concept | had the best relative
ranking score; concepts Il and IIl were next, in that order. The trade-off resulted in a
decrease of concept | radar sensors to the radar senscr used by concept Il (Ku-band
multimode radar). The ranking and trade-off were based on the plan (ISAS task III)
discussed in appendix A of this report. The ranking and trade-off accomplished ISAS
task 1V.

8.1 RANKING PARAMETERS

The evaluation parameters used in ranking the ISAS candidates are survival- and
target-kill probabilities, crew workload, ECM susceptibility, weapon-selection factors,
life-cycle cost, and aircraft installation factors. Target-kill probability (PK) includes
the effects of fire-control concept sensor performance on target acquisition, classifi-
cation, and lock-on, Target-kill probability (PK) and survival probability (PS) are
combined into a figure of effectiveness (PKPS) that represents the probability that

(the target is destroyed and the airplane survives to leave the target area.
8.2 RANKING

Table 8.2-1 summarizes the results of the figure-of-effectiveness study reported in
volume I, AFWAL-TR-80-1145, the classified supplement to this report. The

normalized data in the table are unclassified.

Weighting factors for weather and missions have been included previously. Remaining
factors in the table are those that cannot be removed by reasonable weighting
processes. As is shown, concept I ranks first in each of the four cases. The poor
performance of concept 1l can be traced to the lack of an adequate radar for adverse-

weather operation.

The columns for relative score in Table 8.2-1 show that concept I is better than
concept Il by an average of about 6% and better than concept Il by an average of

about 35%. Use of a modifier to account for aircrew performance in screening the

o v

e -




89(8°1
1v90°1
0°1

94035 3ALlR

€ 1dasuo)
2 1dasuo)
T 1dasuo0)

(2Yy 3beuany

£ 9LbT°T £ 6211°¢ X X 111
2 62€0°1 2 %990 T X X 11
1 Bt 1 1 X X 1
£ 8258171 € 1€60°€ X X 111
4 SOE0°T 2 1690°1 X X II
1 1 1 T X X I
£ 262t°1 £ 6108°1 X X 111
2 9€£0°1 e 9280°1 X X I1
1 1 1 1 X X I
£ 619%°1 £ ££08° 1 X X 111
4 $120°1 4 §980°1 X X 11
1 1 1 1 X X I
3400§ 34098 uoLssadaddng uo 1 ssauddng I LADARY SZW
Auey anLje 3y yuey | aaLie |3y asuaag %0/ asuaag oN 1d3su0)
A43AL 130 14 000°€ A4aat1ag 14 002
ELEN dn dog

yuey pue 21035 anneay Sqlg '1-2'g aIgel




automatic cueing and classification system accounts for the small performance
difference between concepts | and Il. Without constructive aircrew participation in

concept 1 operation, the fully automatic concept 1l is the most effective concept.

The final ranking matrix is shown in Table 8.2-2. The table includes the rank based on
figure of effectiveness (PKPS), from Table 8.2-1, and ranks based on the other
required evaluation parameters. To obtain a final rank that is based on an overall
consideration of evaluation parameters, the individual ranks should be weighted
according to the relative importance or significance of the evaluation parameters.
Since subjective factors generally are involved in weight-assignment processes, several
weight-assignment schemes are tested to determine the sensitivity of the final rank to

the assignment of weights:

a. [If equal weights are assigned to the evaluation parameters, the summations of
rank numbers from left to right yield 12, 13, and 14 for concepts I, II, and Ill,
respectively. Thus, concept | has the highest rank and is followed by concepts II

and [II, in that order.

b. If, arbitrarily, the parameter (PKPS) is given unity weight and the other
parameters are given zero weight to emphasize kill capability and survivability,

the final rank is concept I (highest), concept i, and concept IIl.
¢. Ilf the concepts are ranked according to the number of evaluation parameters for
which each concept has the highest individual rank, then the final rank is concept

I (highest), concept llI, and concept 11.

On the basis of the above tests and other relevant factors, the final rank of the

concepts is I (highest), II (middle), and III (lowest).
8.3 TRADE-OFF ANALYSIS
The purpose of the trade-off analysis is to enhance the highest ranking concept with

selected features from the other contenders. Three areas where concept | does not

rank first are crew workload, concept installation, and life-cycle cost.
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Crew Workload. The target-kill-capability advantage that concept | holds over con-
cept Il can be traced to the crewman-participation factor in the concept | mechaniza-
tion. Crewman participation, however, resuits in a higher crew workload for the
concept 1 crew. From Table 8.3-1, it can be seen that crew participation in fire
control means a workload penalty of about 17% for concept I relative to concept Il.
The additional workload probably would not penalize a two-man crew but ray
significantly penalize a one-man crew, an important retrofit consideration. In the
case of a new aircraft, a second crewman and his equipment may add about 550 1b to
aircraft weight. This weight penalty and the penalty of additional fuel consumption

may make concept | undesirable,

A desirable trade-off is to mechanize concept | so that it has a fully automatic target-
cueing/classification backup capability. Thus, when the one-man crew becomes
overloaded with work and cannot devote adequate attention to fire control, concept |
performance is degraded only to the level of performance that is achievable with

concept ll.

Concept Installation and Life-Cycle Cost. The concept-installation weight data of

section 5.5 are summarized in Table 8.3-2.

As shown in Table 8.3-2, the fire-control equipment of concept III has the least impact
on aircraft takeoff gross weight. Relative to aircraft gross weights for concept Ill,
the gross-weight penalties associated with concepts Il and I are approximately 0.3%
and 2%, respectively. The 0.3% penalty (concept II) is justifiable on the basis of a
substantially higher figure-of-effectiveness for concept 1i relative to that of concept

IIl. A further increase in the relative-gross-weight penalty (from 0.3% to 2%) does not

appear to be compatible with the relatively small increase in figure-of-effectiveness

as concept Il is replaced by concept 1.

The objectionable weight penalty associated with concept 1 may be removed without
significantly affecting performance capability by deleting the long-wave and milli-

metre-wave radars from the concept | sensor suite. When these two sensors are

deleted, weight and life-cycle costs are decreased and the last major disadvantage of

concept | is removed.
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8.4 RECOMMENDED CONCEPT

Features of the preferred concept are—

a. Ku-band radar, and a full complement of EQ equipment (Sec. 5.2) 1

b. Screening of target-cueing/classification data by the crew when permitted by

workload

c. Fully automatic target-cueing/classification backup capability

The preferred concept was derived from concept I by —

a. Deleting the long-wave and millimetre-wave radars, which contributed little to
concept | effectiveness (thus, concept I weight and life-cycle cost are also

reduced.)

b. Adding to concept 1 the fully automatic target-cueing/classification capability

that is a feature of concept Il.

The performance capability of the preferred concept should approach that of concept I
when the crew participates in the target-cueing/classification process. When combat
stress decreases crew attention to the target-cueing/classification process, perform-

ance capability degrades to the concept Il level of performance.
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9.0 TECHNOLOGICAL DEFICIENCIES

This section discusses the technological deficiencies (part of ISAS task VIH) that must
be overcome to make the ISAS preferred concept available for a post-1987 aircraft.
Some additional technological items are discussed in recognition that the performance

of the preferred cornbination of sensors is weather sensitive,

9.1 DEFICIENCIES

Technological deficiencies identified during ISAS studies are listed in Table 9.1-1. The
list reflects the needs for the preferred concept as well as for other capabilities that
might be incorporated in the preferred concept if the developrment could be made
timely for ISAS, or if the ISAS environmental and/or operating conditions should
change. For example, item 7 lists millimetre-wavelength radar range as being
deficient even though the millimetre-wavelength radar is not part of the preferred
concept. However, if radar range can be increased significantly or if the cloud

conditions are less severe, then the millimetre-wavelength radar could be a part of the

preferred concept's sensor suite.

Itemn 1 notes the lack of a radar automatic fixed-target detection system, which is a

serious deficiency because of the importance of the function. The problem is made

very complex by the presence of nonhomogeneous terrain and man-made clutter. A

S el e e - Ay

timely satisfactory solution of the problem for ISAS is doubtful although there is

always some hope.

e

Item 2, a tactical radar with foliage penetration capability, does rot appear to be
available in time for a 1987 IOC. It is evident from a PK matrix for all ISAS mission
that the effectiveness of all ISAS systems decreases for cloudy or foggy weather
conditions, as well as for conditions where the target is concealed by foliage. Item 2
(foliage penetration) and items 3 and 4 (automatic recognition of moving and fixed
radar targets) are significant technological deficiencies. No breakthrough is antici-
pated in time to meet the 1987 ISAS IOC date. As noted in Table 9.1-1, most of the

work is still in the basic-research phase.
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The active three-dimensional classifier is, being developed and is expected to be

available as is the television-image-processor autocuer-autoclassifier.

The baseline millimetre-wavelength radar evaluated in the ISAS program is inadequate
because the sensor can not penetrate cloudy weather. Developments to improve
receiver noise or to improve gain through signal processing are potential problem
solutions, but no known current program is directed to extending millimetre-wave

length radar range.

The mission survival data of Table 5-0, Volume II, emphasizes the desirability of
longer weapon standoff ranges. According to the sensor performance characteristics
of Section 5.2, it is obvious that the longer standoff launch range must be accompanied

by iinproved weapon sensor lock-on capabilities such as lock-on after launch.

Remaining items 9, 10 and 11 deal with the need to develop algorithms for the ISAS
sensor-integration task. These items are further discussed in the system 10 develop-

ment plan.
9.2 The Development Program

- The .development program consists of the ISAS phase Il program and the supporting
sensor-autép-‘rocessor programs shown in Figure 9.1-1. Technological deficiencies
relating to the preferred concept are expected to be solved by the above programs.
The AFWAL and other agencies scheduled have been extended, as necessary, to

provide the production hardware and software in a timely manner.
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1.

REFERENCE

Crew Workload Tactical Strike - Crew Workload Study, D180-26048-1, The Boeing

Company, to be released.
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APPENDIX
The ISAS statement of work requires that the contractor prepare, for USAF approval,
a plan showing how the ISAS concepts will be ranked impartially without bias. The
plan is to be presented before evaluations are started and must be included in the final
report.
The sections in this appendix are the plan that was submitted to Lt. Jimmy Offen,
ISAS project engineer, and Messrs. Don Sovine and Clint Coombs, AFWAL/AART-3, on

approximately 18 January 1980.

Boeing submitted two plans. The alternate (Section H) was approved with the

following changes:

1. Targets killed per dollar were deleted (C)

2. Probability of kill was added

3. Probability of survival was added

4. Graceful degradation was added
During study accomplishment, better visibility was provided when study requirements
were defined in detail and when the behavior and availability of numerical data
became known. Added changes are as follows:

l. The forms were streamlined and revised to provide better traceability.

2. Probability of kill and probability of survival were combined to provide figure

of effectiveness.

3. Gross weight comparisons were used in lieu of aircraft performance. (E)
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THE RANKING OF INTEGRATED STRIKE AVIONICS STUDY (ISAS) CONCEPTS
INTRODUCTION

The ISAS statement of work required that the contractor prepare, for USAF approval,
a plan showing how the ISAS concepts would be ranked impartially and without bias.
This report describes the ranking plan prepared by the Boeing Military Airplane

Company.

Figure A-1 shows the final ranking form that will result when using the plan. There
will be a final ranking form for each of the two altitudes considered in the study per
weapon considered. Since Boeing plans to consider four weapons (MK-82R, TMD, IR
Maverick, and WASP) this will mean two sets of four final ranking forms. Only one

target is used in this plan.

The horizontal field in Figure A-1 permits each significant strike avionics system
parameter to be listed. Under each parameter, such as Detection Range, the final
ranking for each of the three ISAS concepts is entered. Final ranking is accomplished
by summary ranks horizontally across the form. The concept with the lowest number

is overall best, next lowest is second, etc.

Figure A-1 form is a derivative of the form shown in Figure 2.2.3-2 on page 66 of the
Boeing ISAS proposal, D180-25264-1. A discussion of differences between the form
shown here and Figure 2.2.3-2 will be found in Appendix A of this report.

Appendix A also provides a list of definitions covering terminology used in this report.

This report discusses how rankings are derived for the parameters shown in Figure A-1.

The discussion is divided as follows:
A. Target Detection, Identification, and Acquisition

B. Weapon Selection
C. Targets Killed Per Dollar
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FINAL RANKING FORM

FIGURE £-1

WEAPQN =

ALTITUDE =
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A. TARGET DETECTION, IDENTIFICATION AND ACQUISITION

Target acquisition, identification and lock-on are interpreted in Appendix A. Repeat-

ed for convenience, the phases of target acquisition are:

Detection An object which could be the target is sensed.

Identification The object is distinguished and recognized as the pre-

briefed target.

Lock-on The object, having been detected and identified, is desig-

nated by a crosshair or cursor establishing its spatial
coordinates for rate tracking, lock-on, or weapon aiming.

The target has then been acquired.

Although the term target acquisition includes detection identification and designation,
all three terms are carried to the final ranking form because of the emphasis on
sensors. In this report the plan to handle target detection will be discussed as an

example. Target identification and acquisition would be handled similarly.

Variables

The many variables that influence target detection are pictured in Figure A-2. Even
though study assumptions have aborted some cases (see below) and study conditions
cancel others, a direct approach could result in one having to review over a thousand
data points in order to rank the concepts. The purpose of this part of the plan is to

combine the variables, by stages, into a more readily comprehensible form.

Starting from the right-hand side of Figure A-2 and moving to the left, the various

levels of combination are:

172




XTULYW 1T¥3W 40 JUN9IJ = WWOS

—_—— £ 37T ———
le— (s133HS 2) — WWO4 2 13A3T ———
e (SLIFHS 9) —— WWO4 L T3AIT ——ro
e— (SLIMS ¥2) — WWo4 0 13AIT ———
e 0801 fo—— 912 f—— 5 ——fe——s1 f—— 8l ——e—6 de— ¢ —
S3SYD 30 YITWAN IATLYINWND
0oL = "3°71°1
S1393v1
INIAOW %05 (9)
£°2°L LdIINOJ §'0 =371
0/3 IAVMAI0d °§ S1393v1
€921 1d3IN0D Q3XI4 %05 (®) R
4ISY1 b ‘10 ¢ -
L LdIINOD 13931 INIAOW (a3an12x3)
YAy JHA/4HD € 62 =311 - NO-X907
2°1 Ld3IN0) '1°8 "2 1334 0002 "¢ YIINIM °¥ "0y € "d00J '€
dvavy o "2 139¥Y1 Q3IXI4 1334 002 "€ YIS °€ *IN3QT oLy 2
€41 1d3IN0) ' =371 03YNISE0 "2 IHDINQIW 2 1334 000€ 2 03 "2 WWNNVW
WVAVY WA L A W3 L NOON *L 1334 002 "l "130 "1 oLny "L
SYOSNIS 704 le— uanivam |e INIL AONLILWY je—] -80¥d  fe— 39N0)
¢ NOISSIW ¢ S1d3IN0
_ SISVD 1TV OL NOWWOD 3V NMOHS LON SYILINVdvd
INYL = 1394yl
, SYOSN3S L3I9YYL INILVIQVY NON
W SIONY 00§ = Q33dS L4vHddIV

EReE g P

SIT8YIYYA NOIL3313Q L3I%YVL Z-v JINDI4




T G Ty~

Level Zero

In this level the sensors arc combined into packages corresponding to the concept
sensor configurations. Some sensors such as the laser (3-D Detector) are classitiers
only, not used for detection, and they are not included in detection range considera-
tions. Combination of sensors into concept packages reduces the total number of
variables from 1080 to 216. The data are entered on figure-of-merit matrices (FOMM)

like those of Figure A-3.
Level One

A weighting of missions is then accomplished to permit consolidating concept
performance over all missions. The distribution of targets versus range is used as a

basis for this consolidation. Level One FOMM's reduce the data to 54 variables.
Level Two

By consolidating the weather data in accordance with a weighting that corresponds to
their annual-average-frequency-of-occurrence the weather variables can be reduced
by a factor of three. Because of the cloud height and flight altitude relationships
some weather conditions drop out because they are not applicable. For example, the
clouds at 200 ft and 2,000 ft do not keep the airplane flying at 200 ft from seeing the

ground.
Time of day and season have not been included as variables. Year-round averages have

been used to accommodate all seasons and the sensor systems used are assumed

equally capable by day or night (e.g., FLIR, active TV, radar, etc.).

Assumptions

In handling the variables of Figure A-2, the following assumptions apply:

a. Missions are defined as follows:

Close Air Support - All tank targets are assumed stationary and fighting

(Target Location error of +0.5 KM)
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Battletield Interdiction - All targets are moving toward the FEBA (Target

Location error of +2.5 KM)

Deep Interdiction - 50% of the targets are stationary (Target Location error
ot +0.5 KM} and 50% ot the targets are moving along a line of communication

toward the FEBA (Target Location error of +10 KM)
p. The average speed of moving targets is 10 KT

Deletion and Replacement - All levels

During the preparation of the level zero through level two matrices it may be possible
to accomplish @ number of simplifying "common sense" deletions and replacements of
data.

The most obvious exarnple of potential simplification of detection range data is a case
where the minimum allowable weapon release range is equal to or greater than the
maximum target detection range. The case is useless and can be dropped from further

consideration.

Similarly where detection range exceeds the required probability-of-line-of-sight

(PLOS) range, the range at that PLOS should replace the original sensor range.

Sensor System Performance Matrix - Level Zero

The matrix table shown in Figure A-3 provides for initial data entry for the ranking
study. In accordance with the sensor list in the first column, data are taken from the
sensor performance curves generated in the ISAS Task I analysis and entered in the
appropriate columns to the right. The detection performance of the sensors is then
combined on a system level as peculiar to the concepts being ranked. There would be
24 Sensor Performance Matrices per weapon (16-2000 ft flight altitude cases and
8-200 ft flight altitude cases).

The weather, altitude, target and mission identifying data are shown in the upper left
hand (L.H.) corner of Figure A-3. Reference terrain is shown at the upper right hand

(R.H.) corner to qualify the line-of-sight limit that will be available for reference.
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Within the matrix each sensor is listed in vertical order at the left. A reference
column indicates in which concept(s) the sensor is used and provides the 0.5 probable

line-of-sight for the indicated (above at right and left) altitude and terrain.

The Target Detection column provides for entry of sensor detection ranges from the
data bank derived in the ISAS Task Il analysis. The number entered is the detection
range of the sensor with the maximum detection range at which all sensors have a
significant detection probability (PD). In the R.H. column of detection range the

probabilities of detection of all sensors at that range are entered and the PD's are

summed statistically to define a concept level P at which the detection ranges of

D
each concept will be determined. Several adjustments in range may be necessary to

ensure a PD that accommodates all concepts.

On the concept level composite curves of PD versus Range for all the sensors used in
the concepts must be prepared for all conditions (weathcr, mission, etc.). Thec

applicable curve furnishes the composite P for a concept and is entered opposite that

D
concept at the bottom of Figure A-3.

Example: Concept II, which combines a Ku band radar and common aperture EQ
sensors is used in this example. Formulation of data for the matrix table proceeds as

follows:

I.  From curves of sensor PD vs range (generated from vendor data) make

entries in accordance with the following:

. Examine all sensor performance data for Concept Il and pick out

} maxiinum detection range at which all sensors have a PD

Ky Radar Detection range is 40 KM at PD = .75,

Enter on line 2 of Figure A-3 form.

Common Aperture EO Detection Range is 39 KM. Enter on line 5 of
Figure A-~3 form (see handwritten entry).

’ - L e p
40 KM K Radar is highest detection range at Py = 0.75 (P,y,)

b.  Returning to curves of P
] b,

[y Vs range for the sensors coinmon aperture, EQ
5 at 40 KM is 0.72 (PDS)
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. The combined (system) probubility of detecting a tank target is 1- {I-
3 - D -
Py U-P ), Py = 0.93

In assembling the daty this conmmon P must be used for all concepts. Where this

D
i1s not possible, case handling will be required. The range at the common Pl) on
cach concept consolidated sensor curve is entered in Figure A-3 as that concept's

detection range.

Sensor System Mission Performance Ranking Matrix - Level One

The matrix form shown in Figure A-4 performs the next stage of data combination in
the ranking plan. It consolidates the effect of missions by removing them as a
variable. The system performances derived through Figure A-3 are tabulated for the
missions at the left in Figure A-4. They are then subjected to a weighting which
reflects the projected number of targets in each ISAS mission. There will be eight

level one matrices per weapon (four per altitude).

Example—-The Figure A-4 matrix is formulated as follows:

l. Weighting for the missions is extracted from the target distribution data
shown in Figure A-5. (The target distribution data shown is an unclassified
version of data provided in the ISAS Threat/Scenario docurment ADTC-TR-79-
38. The unclassified version will be used in this example. Threat/scenario
document data would be used in the ranking study.) At the ranges specified
for close support (C.A.S.), battlefield interdiction (B.1.) and deep interdiction
(D.L), target distributions are

C.S. 8%
B.I. 30%
D.I. Moving Targets 31%
D.I. Fixed Targets 31%
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FIGURE A-5
TARGET DISTRIBUTION
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2. A sample calculation using these weightings is shown below. The detection
range nuinbers were extracted from the appropriate level zero matrices and

are listed on the level one form.

Mission %/100 Weighted
C.A.5. Fixed Targets 08 x 9 = 0.72
B.I. Moving Targets 0.3 x 11 = 3.30
D.l. Fixed Targets 0.3l x 40 = 12.40
D.l. Moving Targets 031 x 9 = 279
Concept Il Weighted Detection Range 19.2] KM

3. The Concept Il Weighted Detection Range is then ready to enter in the
appropriate location (bottom row under Concept I Detection Range) in the

Sensor Performance Ranking Matrix.

Sensor System Performance in Weather - Level Two

In level two a further combination of mission variables is used to reduce the number of

). data matrices from eight to two per weapon. This is accomplished by weighting the

weather conditions required for the study. Figure A-6 shows the matrix to be used in
the combining process. For each weather condition (left-hand column) the applicable
detection range is entered in the "Detection Range" column to the right. The

] weighting factor for weather must then be applied.

Weather Welghting Factor

The ISAS Threat/Scenario document provides data determining the year-round prob-
ability of a cloud-free line of sight for a range of altitudes froin ground level to 8,000
ft altitude. This cata is plotted in Figure A-7. Based on these annual averages, a
cloud-free line of sight would occur about 50% of the time from 3,000 ft flight
altitude (10-307 Jookdown) and 70% of the time from 200 teet. The plan reported here

assurnes that clear weather prevails for the sume percentage of time as the cloud-free

lines-of-sight.
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As an example, clear weather is assumed 50% of the tune at 3,006 ft flight altituce.

The remainder of the time the weather is either:

da. 2,000 tt cloud ceiling

b. 200 ft cloud ceiling
Cc. target is totally obscured by clouds

The ISAS Threat/Scenario document (page 303) also provides data showing the

probability of cloud cover on an annual basis over Germany. Figure A-8 is a plot of
data similar to that contained in the ISAS Threat/Scenario document. [t will be used ; i
in this report to avoid classified data problems. In this example of weighting, cloud 5
cover at 2,000 {t and above is expected 37% of the time. Similarly cloud cover E
starting at 200 ft is expected 46% of the time. The ceiling is 50 it or less 1% of the
time. These percentages provide a ratio which permits distribution (or weighting) of
the remaining weather when there is less than a 50% chance of a cloud-free line of
sight. The weightings for the various weather conditions as scaled to their respective

parts of 50% are:

Clear = 50%
Weighting - 2,000 ft ceiling = 0.22 ]
Weighting - 200 ft ceiling = 0.274
Weighting - 50 ft or less = 0.006
!
Sum 100%

The range data tabulated in Figure A-6 are modified by the appropriate weighting and

totaled to provide a new all-weather range factor.
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Example—

The detection datd entered in Figure A-6 are:

Input
Ranges Weighting
Clear 19.21 KM x .5 = 9.61
Obscured (ground fog to 50 ft) 9 KM x .006 = .05
200 ft ceiling 5 KM x .274 = 1.37
2000 ft ceiling 8 KM x .22 - 176 ’
12,79 KM

Concept Il Weighted "all-weather" Detection Range

Ranking

The weighted data output of Figure A-6 is used to derive concept ranking for detection
capability, The weighted ranges are normalized to the highest range number and then
a rank 1, 2, or 3 is assighed to each concept range. First rank is to the highest

number, second to the next highest, etc.

Example—
Weighted Detection Absolute
Range Scaling Rank
Concept | 11 .74 3
Concept 1l 13 I.0 1
Concept IIf 12 .80 2
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Scoring

The tinal rankings on Figure A-l are summed horizontally across the tield of the Final
Ranking Form. All factors are assurned equally important and no weighting is used.
Final rank is determined by score with the lowest score being overall number one, next

lower number two, etc.

187




B. WEAPON SELECTION

The ability of each concept to successfully deliver weapons over the scope of weather
and mission variables will be scored one weapon at a time, for each altitude. When the
Figure A-l final ranking forms are compared with each other the concept's weapon
selection ranks can be consolidated to determine the most versatile concept tor

weapon delivery.

Weapon Selection Ranking iatrix

Figure B-1 illustrates the data form that will be used for weapon selection ranking.

This matrix has the concepts arrayed on the vertical axis and the ISAS missions on the

st

horizontal.

"Points" to be entered are obtained by processing the Figure A-3 Sensor Performance
Yy p g g

e

Matrix-Level Zero sheets, by weapon, to establish the total number of weather
conditions on each mission where the concept's sensors provide sufficient target

acquisition range to allow a successful weapon release. Notes have been entered in

o "

Figure B-1 at Concept II to illustrate that in a 3,000 ft altitude release condition threc
of the four weather conditions (200 and 2000 {t clouds and target obscured by fog)
prohibit locked-on launch of an Imaging IR Maverick making it possible to grant only a
maximum of one "point" per mission for an Imaging IR Maverick at that relecase
condition. The only permissible release is clear weather - for a maximum of one

release.

The concept scores are obtained by summing points across the matrix for each

concept. The concept with the highest score ranks # 1, next highest #Z2, etc.

The versatility of the concepts can be ranked over all weapons by summing their

rankings for each of the four weapons at a common release altitude.
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C. COST PER TARGET KILLED

The measure of system effectiveness chosen to rank variations of concept candidates

is the target killed per dollars spent (KM)

KM = I/(CAR-AL = CPW:NW) (1
where:
CAR = production cost of the "n+]" aircraft where n is based upon a 20

biltion buy.

AL = aircraft lost per target killed
CPW = COst per weapon
NW = number of weapons expended per target killed

In order to derive the number of aircraft lost and wcapons expended per target killed

1t Is necessary to determine the number of sorties or attacks required to kill a target

(NSTK)' A target kill is detined as 70% of its elements killed. The optimurn methou
of achieving this is to ensure that the probability of killing a single target element
(Pep)is 7.

Theretore, NSTK can be determined by the following process:

Para = PstaPswiPraPrtyrPuk (2)
where:

PK/A = probability of killing a target per attack

PSTA = probability that an attacker survives to the target area

PSWL = probability that an attacker survives to weapon launch
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probability of target acquisition

PTl = probability of target identification
PWF =  probability of weapon system function
PWK = probability of weapon killing the target given launch
N N
. (1L p STK . STK + 1§
pKE = 7=1-(1-XX1 lK/A) -)\(1-PK/A)
where:
NSTK = the highest integer in NSTK
X =  the proba ty that NSTK +1 attacks are required
An estimate of NSTK can be made by solving:
A= Ln (1-7)/(1-Py;0)
then setting N = A and using (3) to solve for "x" yields:

STK

N
X = (= 1=20-P ) ST e

K/A)
so then
Ngtk = Nsg
and
Ny =N N

where:

NWA = the number of weapons expended per attack

(3)

(4)

(5)

(6)

()




The number of aircraft lost is determined by:

AL (I-PM ) (8)

= NgtK S

where:

P,.c = the probability that an attacker survives through exit

MS
The probabilities of attacker survival are scenario dependent in that it defines
capability of each defense type, the number of each type. The capability of a defense
type is defined by the probability of an attacked survival per exposure PS/E and the
probability of exposure PE’ l.e., the expected offset capability against the attacker
RO divided by one-hulf of the attack corridor width. The number of encounters is

dependent upon the depth of the target behind the FEBA.

CLOSE BATTLE

SUPPORT  INTERGICTION INTERDICTION
FEBA 5 KM 20 KM 100 KM
The three legs of an attackers' flight profile are:
TO =  penetration to target area
AT = penetration after active target detection system turn on 1o weapon
launch

EXIT=  through exit

The probability of attacked survival on any leg (P ) is determined by:

SLEG

N

N
LEG
) = -] -
[SLEG_i:l(l (1 PS/E PE PA)) (9)
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where:

1 . defense type index

N - number of types in game

NLEG - number of potential encounters on this leg

PA - probability that the defense is available
then

(10)

Psra = PsToPsAT

and

Poni = PsTaPsExiT (n

Once the variations of the concept candidates have been ranked then a rating factor

for each concept can be determined by:

N
CR. = KM (12) (12)
kel K

where:

concept index

—
1

=
"

variation index

The concepts will then be ordered from the highest CR) to the lowest and given the

integer rank of 1, 2, ..., to the maximum number of concepts to be considered.
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D. ECM SUSCEPTIBILITY
Introduction

Electromc wartare {(EW) ts becoming an important factor in modern warfare. EW is
accomplished through the use of Electronic Support Measures (ESM), and uctive
Electronic Countermeasures (ECM). ESM is passive detection of electromagnetic
radiaaon from emitting targets such as ISAS radars. Active electronic countermeas-
ures 15 the transmission of electromagnetic energy which prevents or reduces an
enemy's eftective use of the electromagnetic spectrum. This makes the use of
electronic counter-countermeasures (ECCM) a necessity in order to reduce system

susceptibility to ECM,

The Soviet Union considers jamming resources as weapon systefns to be used in concert
with other attacks on enemy systems. Their objectives are to disrupt communication,
command and control, and especially control of weapons. Their basic ECM approach is
"brute-force," i.e., use maximum effective radiated power (LRP) in licu of sophistica-

tion, even though they have deception jammers.

The ISAS Threat/Scenario document provides a listing ot airborne as well as ground
jammers that could affect ISAS operation especially at high altitudes. In this threat
evaluation only ground jammers will be considered. The typical jammers against radar
and cormnmunication systems are the narrowband and wideband noise jammers, and the

. . —~ . . . .
deception jammers operating at the corresponding UJ.S. communication frequencies.

Concept Ranking

This ECM susceptibility evaluation is limited to qualitative estimates which should be
satisfactory for the concept comparisons and ranking. Each ISAS sensor is evaluated
against all types of countermeasure techniques and the corresponding sensor suscept-
ability is estimated such as "very high" etc. This is based on the ISAS sensor capability
versus each ECM threat without the considerations for mission targets, raid size,

operating range and the number of jammers/threats in the target area.

A summary matrix of the ISAS sensors and systern susceptibilities to various counter-
measures is shown in Table D-1. Representative data are used here for security

reasons.

194

it e Dl aa \.AL‘\;..“.-A..LAJ



In the case of the radar sensors a high power sidclobe jarnmer (stand-off jamnmer)
which could saturate a radar receiver front-end, even though radar antenna sidelobes
are 35 to 45 db down, will be considered. The possibility of jumming an E-O sensor
will be considered. The effect of IR active countermeasure against IR sensors will
also be evaluated. The vulnerability of laser spot secker signal systemn to

deception/spoofing will also be examined.

ECAM susceptibility scoring of the individual sensors is represented in the last column

of Table D-1. The "Total Score" is based on the following:

Degree of Susceptibility Weighting Points

Very High

High

NMiedium

Low

Very Low
None/NA/Negl.

O - N W B

The concept scoring is the summation of the individual "Total Score" of sensors
included in each concept. However, some weighting may be required; for example
with three radars in Concept I, where each radar might be highly susceptible, the
probability that all three radar sensors will be jammed completely and simultaneously
is quite low. It should be three times harder to jam 3 systems than a single radar in
another concept; hence the effective "average" radar susceptability for Concept I will

be given by:

(N1+N2+N3)/(3 X 3) = NAvg

The above weighting approach is not applicable to multiple sensors that could be
inoperable simultaneously by a single jammer. In Concept Il no account will be taken

for the ECM susceptibility of the long range radar in the cooperative aircraft.

The concept ranking and total scores of the three concepts are illustrated in the

following table:
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Table D=2. I1SAS CANDIDATE CONCEPT RANKING FOR ECM SUSCEPTIBILITY

Concept Total Rank
I S1 I (Lowest Si)
| S, 2 (Medium §,)
il Sy 3 (Highest Si)
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E. EFFECT ON AIRCRAFT PERFORMANCE

Task II Analysis will include a first order analysis to determine if there are excessive
installation costs or adverse effects on performance on weapon carrying capability.

These considerations are made with respect to F-4, F-15, F-16, and A-10 aircraft.

The results of the above study will be reviewed and categorized. Two categories will
be established for each concept on each airplane. They will be: (l) can be installed
without significant cost or performance penalty, (2) cannot be internally installeg
without significant redesign due to excessive cost and performance penalties. For
each low penalty installation in one of the four airplanes each concept will score a
"point." The concept ranking will be based on point summation. Highest score will

rank first. The scores will be reviewed and any case handling adjustment in score will

be justified and documented.




Co LIFE COYCLL COSTS (LUQ)

I accordance with task V ot the ISAS statement of work, bocing has begun developing i
hite cycle costs tor the ISAS concepts. These costs when complete will be normalized

dsing tne lowest LUC as standard. The ranking of concept LCC's will be assigned in

orager trom lowest LCC (1) to highest (3).
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G. CREW WORKLOAD EVALUATION

Scenario Developrment

fforemost in the task to evaluate the crew work{oad for each of the Integrated Strike
Avionics concepts is the development of scenarios for the significant variables. These
variables are injtially; mission type, attack altitude, weather, weapon delivery
parameters, sensor suites, and integration/automation levels for the candidate con-
cepts. It is thought, that during the course of the analysis, the number ot variables
may be reduced by identifying those which are the sarne or which have little cifect in
case-to-case comparisons. In the development of the scenarios, each mission phase is
being identified and analyzed to determine similar mission phases for each of the tihrce
mission types and to determine the number of variations needed to be considered.
Again, duplication or slight differences will be used to reduce the analysis effort and
point out the critical areas for comparison. For instance, a cursory examination of the
crew workload in the Battlefield Interdiction and Deep Interdiction missions would
seem to indicate that many mission phases and varidables [le identical, and that both
missions might pe considered as one mission with only timeline differences with 2
reduced number of variables. The final number of scenarios selected will be called the

screening scenarios that can be applied to all strike avionics concepts.

An example of various mission phases for the Deep Interdiction Mission is 1flustrated in

Figure G-1. A typical variation, in this case a pop-up at standoff and minimum time

exposure ranges, is illustrated in Figure G-2. The target acquisition range will depend
on the sensors available for acquisition (avionics suite contiguration) and mission
conditions (weather, mission altitude, line-of-sight probability, weapon delivery
parameters, etc). These factors will influence the stand-off range and hence the
survivability of the strike aircraft as a function of pop-up exposure time and launch

range from target defenses.

Crew Workload Evaluation

The approach to the evaluation of the crew workload for each avionic concept will be i
based on a subjective evaluation using the scenarios and variables discussed apove,

crew detailed functional task allocations, and weapon/aircraft/crew interface matri-

ces. These analyses in combination with mission timelines will be used as a basis to
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1 Take-oftf
1-2 Climb
2-3 Cruise out
2 3 34 Descent
45 Run-in to terget
8 5-8 Pop-up
] 67 Target scquisition &
4 5 8 weapon delivery
1 ® 7-8 Weapon guidance
10 [} assistance (if required)
89 Damage assessment
(if required)
910 Return to base
10 Land

FIGURE G-1 INTERDICTION MISSION PHASES

(1) RUN-IN TO TARGET, POP-UP AT STAND-OFF RANGES

/-— NAVIGATION UPDATE TARGET SEARCH Variables:
& ACQUISITION Altitude (probability LOS)
Weather
DESCENT POP.UP :‘VEL’E':SJNE LAUNCH Z.arré;et designation time
RUE-IN :
RUN-OUT ® TARGET

I MAX. TARGET ACQUISITION RANGE |
| MAX. STAND-OFF WEAPON RANGE |

{2) RUN-IN TO TARGET, POP-UP AT MINIMUM TIME EXPOSURE RANGES
Variables: Altitude

NAVIGATION TARGET SEARCH Weather
UPDATE & ACQUISITION Target designation time
ETC.
DESCENT POP-UP
RUN-IN WEAPON LAUNCH
> & LEAVE
RUN-OUT
® TARGET

MINIMUM WEAPON
LAUNCH RANGE

FIGURE G-2 TYPICAL INTERDICTION RUN-IN TO TARGET
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subjectively estimate the crew workloud by mission phase tor each avionic concept, its
associate scenarios and variables. As the evaluation progresses, results will indicate
whether a one-or two-man crew is necessary to accormnplish the mission based on each
scenario and variables applied to the individual concepts. The final result of this
effort will be the construction of subjective crew task loading miatrices (a measure of
workload) for each screened scenario that is applied to an individual strike avionic
concept. These crew subjective task loading matrix values for critical nmission phases
will then be weighted for a value to be applied tor the particular strike avionics

concept. The study flow process is illustrated in Figure G-3,

The key analysis elements of the study are the crew functional task allocations,
weapon/aircraft/crew interface, and subjective crew task loading matrices which arc
used to provide the crew workload weighted value. A brief description of ecach

follows:

Crew Functional Task Allocation - Table G-1 illustrates the crew functional task
allocation analysis for each strike avionics concept. The chart lists the major
tunctional task and corresponding crew tasks associated with the inajor functional
task. The right side of the table divides the (nission into its corresponding phases. A
series of symbols is used to describe in which of the three categories the man task is
placed based on the integration/automation level of the specific strike aviomcs

concept for each listed crew task. The three task categories are:

l. The circle indicates tasks that cannot be automated and theretore niust

remain an operator task.

2. The triangle indicates those tasks that are man-machine function, i.c., tasks
that are accomplished or monitored by the machine (automation) but must be
displayed (information) to the operator. Many of these tasks need only be

displayed to the operator when systems are out-of-tolerance conditions.

3. The square indicates a machine (automated) function with a inan override
requirement. Again, information displayed is required for human operator

judginent.
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STRIKE
AVIONICS

CONLEPT

15S10M

.« LAY WEAPON
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INTERDICTION REW

. JEEP INTERFALE
INTERDILT 1ON

.t

STRIKE
SCREENED —J—:\,;—'

SCENARIC

l CONCEPT L1 SAME AL CONCEPY
N —
VAR LABLES
ACTiTJDE
« WEATHER
. WEAPON /
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JIRIKE
AyIONISC o r oRPT ]
CONCEPT 111 L' SAME AL LUNLE
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FIGURE G-3 CREW WORKLOAD EVALUATION STUCY FLOW

TABLE G-1 CREW FUNCTIONAL TASK AlLOC«TIOh

CONCEPT

FUNCTION CREW TASK

;’E‘!E'R"if)u

r =

MOMITOR AJRCRAFT SYSTEMS ® MOK[TOR LIMITS OF A[RCRAFY SYSTEMS

@ EXECUTE PROPER PROCEDURES FOR
® ABNORMAL ITIES; BACKUP AUTO SYSTEMS

MONTTUR ¢ LGHT SYSTEMS ® CONTROL, MONITOR AND BACKUP
@ ACT N SECTES TO AUTO SYSTEMS

©® MANAGE BY EXCEPTION DELEGATED FLUNCTION

@ OBSERVE S EED CONTROL (A/S. G/5, M.,
A0A)

MAYIGATLON

@ MONITOR AND CONTROL WEADING

® SELECT MAYIGATION MODE
® SELECT WAYPOINTS AND DESTINATIONS

@ MONITOR AND UPDATE PRESENT POSITION

@ MONITOR BEARING, DISTANCE, AND TIME
TO WAYPOINT

® OBSERVE GMY, ELAPSED, AMD SENSOR TuRm
On TIMES

® MONITOR DELTA TIME ON TRACK

® MONITOR ALTITUDE, ALTITUDE RATE,
FLIGHT PROGRAM ALTITUDE

® SYSTEM STATUS MONITOR

® SELECT EQUIPMENT

- - -

ETC.
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The shaded symibols indicate those tasks that can be shared by both crew mernbers i a

two-1man crew aircraft.

In identitying the categories ot the tasks, no degrated mode of tfailure analysis is
considered. Tins approach is reasonable since the final output of the cvaluation is the
relative comparison of the crew workload tor each of the strike avionics concepts.
tach relative comparison will be responsive to the distinctive features of the
particular concept being evaluated. This study is not sensitive to all the variables
(weather, display or sensor field ot view, etc.) that complicate the sensor target

acquisition ranking considerations.

This analysis provides a measure of crew task automation of cach avionics concept

which 1s used in estimating the subjective crew task loading.

Weapon/Aircraft/Crew Interface

The eftect of various weapon systemns on the crew workload is identified by Table G-2.
The basic crew function is listed along with the aircrait equipment necessary and the
crew/weapon interfaces. This provides a measure of the complexity of the target
acquisition/weapon delivery problem of cach strike avionics concept using the four

selected weapons.

Crew Subjective Task Percentage Matrices - Utilizing the analysis data from the
Functional Task Allocation and Weapon/Aircraft/Crew Interface, a crew subjective
task percentage matrix is constructed for each mission, scenario, and concept. A
sample format is shown in Figure G-4. Again, these estimuates will not consider
degraded niode analysis, variations in standard crew skill, and stress factors. A
subjective crew task percentage is estimated tor each box relating mission phases with
major tunctional tasks. Values from | to 100 are assigned for each crew member task
at eazch rnission phase as a judgment of workload. A value of 100 percent represents
the highest possible workload percentage value for a crew member function task
during a mission phase. The summation of all numerical values tor a mission phase is

the task loading value of that crew member during that mission phase.

The crew task loading output will be one ranking per altitude per weapon for each

concept. Each case crew task loading will be normalized to reflect a value of 1.0 for a
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WEAPON

BASIC CREW FUNCTION

TABLE G-2 PRELIMINARY WEAPON/AIRCRAFT/CREW INTtRFACE

AIRCRAFT EQUIPMENT

CONCEPT __

CREW/WEAPUN INTERFACES

MK 82 R

TACTICAL
MUNITIONS
OISPENSER
(T™MD)

AGM-65D
(IN MAVERICK)

VISUAL SEARCH/ACQUISITION
AIRCRAFT CONTROL FOR LAUNCH

SAME AS MK 82 R

VISUAL OR SENSOR SEARCH/
ACQUISITION,

ATRCRAFT CONTROL FOR
LOCK-ON,

SEEKER LOCK-ON

FIRE CONTROL LAUNCH
CONTROL,

SENSOR DISPLAY,
FLIR VIDEQ DISPLAY

SAME AS MK 82 R
EXCEPT CCIP IS
HUB POINT

FIRE CONTROL LAUNCH
CONTROL ,

SENSOR DISPLAY,
FLIR VIDEQ DISPLAY

EQUIPMENT CUWTRULS
FIRE CUNTKOL UISPLAY({ON rUD)
STATUS UISPLAYS

SAME AS MK 82 R

EQUIPMENT CONTROLS,
FIRE CONTROL DISPLAY,
FLIR VIDEO DISPLAY,
STATUS DISPLAYS

WASP SENSOR SEARCH/ACQUISITION, FIRE CONTROL EQUIPMENT CONTROLS,
TRANSFER TARGET LOCATION, LAUNCH CONTROL FIRE CONTROL LISPLAY,
AIRCRAFT CONTROL FOR SENSOR-NAVIGATION DISPLAY STATUS DISPLAYS
1 LAUNCH
FUNCTIONAL TASKS
1 - MAN CREW <L = E “
MISSION -1 < S = -~ ::
CONCEPT az| 52| & —a ]l z5 Al & | 8=
o o — ) (&) Ld — [ =z — =
MISSION® DESCRIPTION 2 =25 = E |23 %32 £ |5F
PHASE SZ|85| £ | 3 |22 22|88 & |==
1 TAKE-QFF 40 | 10 15 5
1-2 CLIMB 30 | 10 10 5
2-3 CRUISE ouT 25 7 10 2 15
3-4 DESCENT 25 | 12 15 5 5
4-5 RUN-IN TARGET 3% | 1% 15 5
5-6 POP-UP 3% | 10 40
TARGET ACTN ;
6-7 WEABON DELTUERY Y 25 | 5 35 | 30
7-8 WEAPON GUIDANCE 35 | 15 5 35
8-9 DAMAGE ASSESSMENT 25 { 10 10 5 20
9-10 RETURN TO BASE 251 10 15 5
10 LAND 35 | 10 15 5
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* MISSION PHASES CORRESPOND TQ INTERDICTION MISSION PHASES SHOWN IN FIGURE G-1°

F IGURE G-4 CREW SUBJECTIVE TASK PERCENTAGES - MISSION., CCHCEPT —,
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task loading ot 80 (80% considered routine workload). Ranking of the concept is
deternined from the normalized summation of the numerical values generated in the
study. The first ranking will be the lowest workload, the second, the next lowest, etc.
The best concept from a crew workload standpoint is the concept which has the least

numerical value for crew task loading. In the cases of a two-man crew, the added

loading from common duties or coordination tasks will be adjusted. Coordination task

loading will not be added and common duties added only once.
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H. ALTERNATE PLAN

The list of parameters across the Final Ranking Matrix of Figure A-1 includes a
signiticant number of items that are not independent of each other. Target
Acquisition Range, for example, is a function of Target Lock-on Range which is &
function of Identification Range - a function of Detection Range. Weapon selection 1s
in turn a function of these ranges. Cost per Target Killed is based on the result of all

of these.

The contractor suggests an alternate plan which would remove the target acquisition
elements and the weapon selection-element from the list of ranking parameters. The
data to investigate the deleted elements will still be obtainable within the data
generated in arriving at cost per target killed, but redundancy would be removed from

the final ranking.
Raw data input to the systems analysis model will be provided troin the detailed sensor
performance data from which the inputs to I'igure A-3, Sensor Performance Matrix -

Level Zero, would have been derived.

Figure H-1 tlustrates the revised Final Ranking Form.
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APPENDIX A

DIFFERENCES AND DEFINITIONS

As integrated strike avionics studies have progressed, it has occasionally been
necessary to "pin down" a term by establishing a definition for it so that it will receive
consistent handling. The study is also providing a degree of insight that encourages
reformulation of some of the categories and formats that date back to the Boeing ISAS

proposal. A discussion of definitions and changes pertinent to this report follows:

Definitions

For the purposes of this study, the following definitions apply to Target Acquisition,

Identification, and Lock-on:

Target Acquisition - is the process whereby the aircrew/sensor searches and detects
various objects, inspects these objects, and then decides that one of them is actually
the prebriefed target for lock-on and weapon delivery (Reference | and 2). The
target-acquisition task is completed with lock-on, at which point the weapon-delivery

task commences.

Detection - An object is distinguishable from its background or sur-

roundings (potential target).

Classification - An object is recognized as natural, man-made, fixed or

mobile (possible target).

Identification - An object is recognized as the prebriefed target, i.e.,

SAM site, tank, truck.

Target Lock-on - The target position is designated in three-dimensional
space and can be tracked as it changes position relative

to the weapon delivery system.

————
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Differences

Figure I-1 is a copy of Figure 2.2.3-2 "Typical Ranking Matrix" from Boeing ISAS
proposal D180-25264-1. A number of the parameters listed across the matrix have
been deleted and others changed, in the plan reported here. These are briefly

discussed below.

Probability of Attack - In this report this parameter has been expanded into three
subparameters of target acquisition - Detection, ldentification, and Lock-on. These

subparameters are defined in this Appendix.

Target Error - CAS, BI, DI - These errors influence the sensor capabilities that
establish ranges and probabilities of detection, identification, and lock-on. They are

redundant and have been deleted because their importance does not merit ranking.

Exposure Time, Probability of Survival, Targets Destroyed per Mission - These
parameters are included in Cost per Target Killed. They can be traced in data sheets
related to cost per target killed.
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