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ABSTRACT

A new slender-ship theory of wave resistance is presented. Specifically,

a sequence of explicit slender-ship wave-resistance approximations is obtained.

These approximations are associated with successive approximations in a slender-

ship iterative procedure for solving a new (nonlinear integro-differential)

equation for the velocity potential of the flow caused by the ship. The zeroth-,

first-, and second-order slender-ship approximations are given explicitly and

examined in some detail.
(0)

The zeroth-order slender-ship wave-resistance approximation, r (0  is

obtained by simply taking the (disturbance) potential, 4, as the trivial zeroth-

order slender-ship approximation 4(0)= in the expression for the Kochin free-

wave amplitude function. The classical wave-resistance formulas of Michell (1898)

and Hogner (1932) correspond to particular cases of this simple approximation.

The low-speed wave-resistance formulas proposed by Guevel (1974), Baba (1976),

Maruo (1977) and Kayo (1978) are essentially equivalent (for most practical purposes)

to the first-order slender-ship low-Froude-number approximation, rZF which is a

particular case of the first-order slender-ship approximation r (1 . Specifically,

the first-order slender-ship wave-resistance approximation r(1) is obtained by

approximating the potential 4 in the expression for the Kochin function by the first-

order slender-ship potential $() whereas the low-Froude-number approximation rF(1)

is associated with the zero-Froude-number 
limit &) of the potential 1.

A major difference between the first-order slender-ship potential and

its zero-Froude-number limit ) resides in the waves that are included in the
p 1 Fod-ubrpotential (1).4(l
otential ) but are ignored in the zero-Froude-number potential Results

of calculations, due to C.Y. Chen, for the Wigley ship form show that the waves in

the potential ) have a remarkable effect upon the wave resistance; in particular,

they cause a large phase shift of the wave-resistance curve towards higher values

4 of the Froudc number. Comparison of the first-order slender-ship wave-resistance

' approximation with experimental results shows fairly good agreement, in considerable

improvement with respect to the Guevel-Baba-Maruo-Kaye low-speed theory.
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1. Introduction

The problem of predicting the wave resistance of a ship in steady rectilinear

motion in a quiescent sea is one of the classical and basic problems in ship hydro-

dynamics. It is also one of the most difficult. As a matter of fact, in spite of

considerable research activities, notably in the past decade, since the famous

pioneering study of Michell (1898), discrepancies between values of the wave-

resistance coefficient determined experimentally and predicted by various analytical

theories and numerical methods often are quite significant and may even be extremely

large in some cases, as is clearly apparent from the Proceedings of the recent Work-

shop on Ship Wave-Resistance Computations (1979).

In this study, a new slender-ship theory of wave-resistance is presented.

Specifically, a sequence of explicit slender-ship wave-resistance approximations is

obtained. These approximations are associated with successive approximations in a

slender-ship iterative procedure for solving a new (nonlinear integro-differential)

equation for the velocity potential of the flow caused by the ship. The zeroth-,

first-, and second-order slender-ship approximations are given explicitly and ex-

amined in some detail.

(0)The zeroth-order slender-ship wave-resistance approximation, r 0
, is obtained

by simply taking the (disturbance) potential, , as the trivial zeroth-order slender-

ship approximation (0)= 0 in the expression for the Kochin free-wave amplitude function.

The classical wave-resistance formulas of Michell (1898) and Hogner (1932) correspond

to particular cases of the zeroth-order slender-ship approximation r Specifically,

the Hogner approximation is obtained by neglecting the waterline integral (of order
3

b in the beam/length ratio b) in comparison to the hull integral (of order b) in

the expression for the zeroth-order slender-ship approximation to the Kochin free-

wave amplitude function. The Michell approximation, on the other hand, corresponds

to the consistent first-order thin-ship approximation to the zeroth-order slender-

ship approximation. A simple example is used to demonstrate that neglect of the

waterline integral or/and use of the thin-ship approximation may have important

effects.

The first-order slender-ship wave-resistance approximation, r I
, is obtained

by approximating the potential 0 in the expression for the Kochin function by the
" (1)(1)

first-order slender-ship potential 1 In the thin-ship limit, the potential

becomes the classical Michell potential; more precisely, the Michell potential cor-

responds to the first-order approximation in a thin-ship expansion of the potential

bi $(1) In the zero-Froude-number limit, the potential (i) becomes the potential 4jI)
f,0
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NOTE

This report is based upon three previous reports entitled:

"Potential Theory of Steady Motion of Ships, Parts 1 & 2",

MIT Dept. of Ocean Engineering Rep. No. 78-4, Sep. 1978, 43 pp.

"Part 3: Wave Resistance" MIT Dept. Ocean Eng. Rep. No. 78-5, Nov. 1978, 26 pp.

"Part 4: Low-Froude-Number Approximations" MIT OE Rep. No. 79-1, May 1979, 40 pp. '

A large part of the material included in this report has thus been presented

previously. In particular, the new integro-differential equation (5.1) for

determining the velocity potential of the flow caused by the ship, upon which

the present slender-ship theory is based, was first presented in a manuscript

entitled: "The Potential-Flow Problem in the Theory of Steady Motion of a Ship"

that was submitted for publication to the Journal of Ship Research in January 1979.
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I am indebted to Mr. Cheng-Yo Chen for his detailed review of the report,

and for permitting that figure A be included here. I also wish to thank Professor

Louis Landweber and Dr. Som D. Sharma for their continuous support throughout the

development of this work.
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which is a first-order slender-ship approximation to the zero-Froude-number

(double-hull) potential pn" It is shown in Noblesse and Triantafyllou (1980)

that the potential l)provides a fairly good approximation to the potential 4n

for longitudinal motion of a slender body. In particular, the potential Cl> is

proportional to the potential 0 for ellipsoidal hull forms.

The wave-resistance approximation associated with the use of the zero-Froude-

number potential 0 as an approximation to the potential in the expression for

the Kochin function is referred to as the low-Froude-number approximation, reF.

This wave-resistance approximation is identical to the (closely-related and essen-

tially-equivalent) low-speed wave-resistance formulas proposed by Guevel, Vaussy,

and Kobus (1974), Baba (1976), Maruo (1977), and Kayo (1978). The wave-resistance

approximation associated with the first-order slender-ship approximation (1) to

the zero-Froude-number potential 0 thus corresponds to a first-order slender-ship
(1)

approximation, rF , to the Guevel-Baba-Maruo-Kayo (GBMK) low-Froude-number approx-

imation r F.

The low-Froude-number wave-resistance approximation rlF , the first-order

slender-ship low-Froude-number approximation r (), and the zeroth-crder slender-ship

approximation r(0) (associated with the approximations = 0' =!l), and = 0,

respectively) are compared to one another in the particular case when the "ship"

hull is a vertical cylinder with elliptic waterline. For this particular case, the

(0) (1)approximations r , r and r , actually are proportional to one another.r F2b (1)

Specifically, we have r r /(l+b) , and rl = r F(l+2b) 2/(l+b) 4 , where b is the

beam/length ratio of the elliptical cylinder. The relative errors, E and E say,
a(0) () (0) (0)

associated with the approximations r and rZF , and defined as c =(rZF-r )/rlF

a(ri -rpr ) / rF , can then readily be determined in terms of the beam/length

ratio b. It may thus be found that we have c(0)= .174 and c M= .016 for b= .1, and(0)= .)306 and e (1 = .055 for b=.2. The first-order slender-ship low-Froude-number

approximation rF thus differs from the low-Froude-number approximation rIF by only

a few percent for a thin vertical elliptical cylinder.

Calculations by Chen and Noblesse (1980) for the case of a vertical cylinder

with a waterline in the shape of an ogive have shown that differences between the(1)
approximations rF and rZF are somewhat larger than for an elliptical cylinder with

same beam/length ratio, but remain small, of the order of a few percent for typical
, V values of b. This numerical study also includes results of calculations for ellip-

soidal hull forms; these show that the approximations rlF and rZF are practically

indistinguishable for values of the beam/length ratio equal to .1 or .2. Finally,

a b* figure A, due to C.Y. Chen , for the Wigley ship form show that the wave-resistance

oj
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curve corresponding to the approximation r(F is fairly close to the points

determined by averaging the numerical results obtained by several researchers on

the basis of the GBMK low-speed theory.

The first-order slender-ship low-Froude-number approximation r/F , associated

with the approximation = O , is a particular case of the first-order slender-ship

approximation r )
, which corresponds to the approximation =I as was noted

previously. A major difference between the potentials ) and (1) resides in the
(1) 

0
waves that are included in the potential but are ignored in the zero-Froude-

number potential .) For the present problem of determining the wave resistance,
0 ' (1)it naturally seems desirable to retain the waves in the potential ( . As a matter

of fact, comparison of the wave-resistance curves associated with the approximatione

r (I ) and the low-Froude-number approximation rF(l) in figure A show that the waves in
(1)

the potential 4 have a remarkable effect upon the wave resistance. The most im-

portant difference between the wave-resistance curves r(I) and rF) is a large phase
(1) 

t
shift. Furthermore, the curve r is slightly lower, in the mean, than che curve

r (F) and the amplitude of the oscillations in the curve r (I ) are somewhat less than
(1)

those in the curve r F

Figure A shows that the first-order slender-ship wave-resistance curve r

passes through the five brackets of experimental values f at the Froude numbers

F= .18, .20, .22, .24, and .266, whereas the curves associated with the low-Froude-
r(l) (0)

number approximation rF the zeroth-order approximation r , and the Michell

approximation r M are usually outside (well outside in some cases) these experimental

brackets. The points corresponding to the average of numerical results for the GBMK

low-speed theory clearly are in phase with the curve rF indeed fairly close to it

(somewhat below) as was noted previously, and these points also are usually outside

the experimental brackets. The results corresponding to the modification of the GBMK

theory by Nakatake, Toshima and Yamazaki (1979), in which a local nonuniform flow

transformation is used to incorporate the effect of the nonuniformity of the double-

hull flow upon the propagation of waves, are not significantly different from the

GBMK results, and in fact are quite close to the curve r(F) for values of
eF

the Froude number above .24, where a slight phase shift may be observed).

Also shown in figure A is the wave-resistance curve corresponding to the

simplified low-Froude-number asymptotic form of the GBMK theory proposed by Baba (1979).

This resistance curve is plausible at sufficiently low values of the Froude number,

say for F<.22, but the curve is well above the experimental brackets at the Froude
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numbers F=.24 and F=.266. A notable feature of the Baba resistance curve is that

its oscillations are considerably less than those of the other curves; it also

appears to increase more rapidly as the Froude number increases. Figure A also

shows five values of the wave-resistance coefficient obtained by Kitazawa and

Kajitani (1979) on the basis of a modified form of the GBMK theory in which the

boundary condition at the hull surface is satisfied more accurately. Two of these
(1)

values are fairly close to the first-order slender-ship curve r I
, but the other

three values are much below it; the results corresponding to the two highest Froude

numbers are well below the experimental results.

Figure A finally shows the numerical results obtained by Dawson (1979). These
(1)

results are somewhat below the first-order slender-ship wave-resistance curve r 9

but clearly appear to be in phase with it. Dawson's result at the Froude number .266

is somewhat below the experimental bracket, and the result at F=.20 is on the low

side of the experimental bracket. This suggests that Dawson's results may in fact
(1)be somewhat low. The first-order slender-ship wave-resistance curve r , on the

other hand, is slightly on the high side of the experimental brackets, perhaps as

a result of the various approximationse used for the purpose of simplifying the

numerical calculations. The approximation r(I) and the numerical results of Dawson

thus appear to be roughly in agreement.

In summary, on the basis of the results shown in figure A, the first-order

slender-ship wave-resistance approximation r(1) appears to yield results significantly

different from those predicted by the Guevel-Baba-Maruo-Kayo low-speed theory or the

several above-mentioned modifications of this theory, and in better agreement with

experimental results. As a matter of fact, among the five resistance curves and

the four sets of numerical values shown in figure A, only the first-order slender-

ship wave-resistance curve r (I ) passes through all the five experimental brackets.

a. I wish to thank Mr. Cheng-Yo Chen for permitting that figure A be included in
the present report. This figure is excerpted from Mr. Chen's Ph.D. dissertation,
currently in preparation.

2 2
b. The Wigley hull is defined by the equation y=±.05(l- 4x )(l-256z ), where
-.05<x<.05 and Ozi-.0625.

c. The approximation reI) shown in figure A does not include the nonlinear free-eFs
surface correction integral in expression (6.6) for the Kochin free-wave amplitude
function. This free-surface integral was neglected for simplicity.

d. The average values shown in figure A for the wave-resistance coefficient predicted
by th Gueel-Baba-Maruo-Kayo low-speed theory have been determined from the numerical
results given page 60 of the Proccedings of the Workshop on Ship Wave-Resistance
Computations (1979). Specificially. the following values were used:

I
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Froude number: .16 .18 .20 .22 .24 .266

Kitazawa & Kajitani: - - .55 .41 1.02 .69

Maruo & Suzuki: .20 .42 .62 .45 1.00 -

Miyata & Kajitani: - - - - - .61
Mori (potential flow): .20 .47 .59 .41 1.03 .62
Nakatake (Baba): .22 .48 .57 .40 1.03 .66
Nakatake (Guevel): .24 .45 .56 .40 - .65
Yim: - - - - 1.04 .65

average: .22 .46 .58 .41 1.02 .65

e. For simplicity, the nonlinear free-surface term K (I) in expression (9.3) for
the first-order slender-ship approximation to the Kocgin free-wave amplitude function
was ignored in the approximation r(I) shown in figure A. The near-field potential

i) in expression (9.1) for the first-order slender-ship potential (i) was also

neglected, as can be justified for low Froude numbers. Finally, calculations were
further simplified by replacing the wave potential l) given by equation
(9.1b) by its Michell thin-ship approximation, as is approximately justified by the
fairly small differences that may be observed in figure A between the zeroth-order
slender-ship wave-resistance curve r(0 ) and the Michell curve rM.

f. The experimental brackets shown in figure A correspond to the highest and lowest
of 11 experimental values consisting of the 9 values given page 52 of the Proceedings
of the Workshop on Ship Wave-Resistance Computations (1979) and the 2 values given in
Gadd and Hogben (1965). The one negative value given page 52 of the Proceedings of
the Workshop for the Froude number .18 was ignored however. Furthermore, the 11
experimental values at the Froude number .266 have been corrected for effects of
sinkage and trim by using both multiplicative and additive corrections determined from
the numerical results obtained by Gadd (1979), Guevel, Delhommeau, and Cordonnier
(1979, 1980), Dawson (1979), and Daube (1980) for the Wigley hull held fixed (no
sinkage and trim) and left free to heave and trim.

' 4
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2. Formulation of the problem

The problem examined in this study is that of predicting the wave resis-

tance experienced by a ship, with length L say, in steady rectilinear motion,

with speed U, at the free surface of an otherwise quiescent sea of large depth

and horizontal extent. Water is supposed to be homogeneous and incompressible,

with density p. Viscosity effects are ignored, and irrotational flow is assumed.

Effects of surface tension, wavebreaking, and spray formation at the ship bow

are also neglected.

The flow caused by the ship is rendered independent of time by observing

it from a moving system of coordinates attached to the ship. Specifically, the

Z axis is chosen vert 'al and pointing upwards, with the mean sea surface taken

as the plane Z=O. Tue X axis is in the mean sea plane, parallel to the direction

of motion of the ship, and pointing towards the bow. The Y axis is in the mean

sea plane, orthogonal to the X and Z axes, and oriented so that the X,Y,Z axes

form a right-handed Cartesian system of coordinates.

Flow variables are made nondimensional with respect to the length L and the

speed U of the ship, and the density of water p. The nondimensional coordinates

(x,y,z):(X,Y,Z)/L and velocity potential D¢/UL, where X and D are dimensional,

thus are defined, and the nondimensional flow velocity is given by

The velocity potential satisfies the Laplace equation V 2=O in the flow

domain. On the hull surface, the potential satisfies the condition ¢/')n=nx,

where n is the x component of the unit vector n normal to the hull surface and
X +

pointing into the water, and 3 /3nEVp.n is the derivative of in the direction

of the vector n. On the sea surface, given by the equation z=F2 (/4/x-IVII2),

the potential satisfies the condition

2 2 2_ 21 +".j' 2
/Pz + F (3 'Ix 2-1V 1/1x+7p '<v /2) = 0,

where F is the Froude number defined as FBU/(gL)1 /2 and IV412=(D$/Dx)2+( 4/ y)2+

(3*/ z)2 is the square of the magnitude of the fluid velocity vector V .

H The position of the sea surface is evidently not known a priori. The

sea surface boundary condition will then be transferred to the mean sea surface

z=0 by using a Taylor s(rici (Xhl;IilsIoln about the plane z=O. in the usuial mil1eir.

We may then obtain the nican-sca-surficc boundary condition

B11 /3z + F 22 /3x - F 2q(¢) + O(F 4.3) = 0, (2.1)

II
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where the term q(p) is defined as

q( ) = IVJ 2/ax - V'VpVi[2 /2 - (/ x-IVO2/2)a(4/z+F 2 /)x 2)/z, (2.2)

and the term O(F 4 ) represents terms that are at least of fourth power in the

Froude number F and of third power in the potential ,, or its derivatives, and

may presumably be neglected.

In accordance with the transfer of the sea-surface boundary condition to

the mean sea surface, the Laplace equation will be satisfied in the nmcan flow

domain, d say, bounded upwards by the plane z=O, or more precisely by the portion,

say, of the plane z=O outside the ship hull surface; we thus have

-22 = 0 in the mean flow domain d. (2.3)

The boundary condition on the hull surface will similarly be applied on the mean

hull surface, h say, that is the portion of the ship hull locaLed below the plane

z=O; this yields

C,//n = n on the mean hull surface h. (2.4)

A major difficulty of the above problem stems from the sea-surface boundary

condition (2.1, 2.2), which is nonlinear. However, the nonlinear term F 2q() in

equation (2.1) is of order F 2 , as may be seen from equation (2.2), and thus

can be presumed to be small in comparison with the linear term ;0/9z+F2 a 2/3x
2

for slender ship hull forms. The nonlinear term F 2q(O) may then be neglected

in a first approximation. More generally, this nonlinear term will be incorporated

in an iterative manner by expressing the sea-surface boundary condition (2.1) in

the form

+ F2 2 /3x = F2 q() on the mean sea surface o, (2.5)

2
and treating the term F q(",) on the right side as a nonhomogeneous term for the
linear condition ,/'z+F 2 .2 /,x2=0.

In summary, the problem of flow caused by steady rectilinear motion of a

ship in a calm sea is formulated in this study as the potential-flow problem

defined by th- .. laco equation (2.3) subject to the boundary conditions (2.4)

and (2.5) on th- ship hull and on the free surface of the sea, respectively. In

addition, the usual "radiat ion condition", specifying that waves are present

onlv behind the hip, I musLt be impos.d for uniqueness of the solution.

90
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3. The Green function

The above-defined boundary-value problem will be solved by formulating

an integral equation for the velocity potential 4 based on the use of a Green

function satisfying the linearized sea-surface boundary condition. Specifically,
4. 2

this Green function, which will be denoted by G( ,;F ) or simply by G, is the

linearized velocity potential of the flow created at point E(C,n,r<O) by a unit+

outflow at point x(x,y,z<0), stemming from a submerged source if z<O or from a

flux across the mean sea surface if z=0.

The Green function satisfies the radiation condition, namely that there are

no waves for F>x, and the equations

V2 6(x-&)6(y-n)6(z-) in z<0, (3.1a)

2G/2z + F2 2G/ x2 = 0 on z = 0, (3.1b)

if <0, and

V2G = 0 in z<0, (3.2a)

aG/az + F2 a 2G/ax 2 = -6(x- )6(y-n) on z = 0, (3.2b)

if z=0. Equations (3.1a,b) are well known. These equations, however, are valid

only if C is strictly negative, and equations (3.2a,b) are proper in the limiting

case =0, as is demonstrated in Noblesse (1981).

The Green function may be expressed in the form

C7 ; 2 )  2 ; 2 )

4,G(,;F = -l/Ik-xI + N('C,x;F2 ) + w(ZxF, (3.3)

2 2 2 1/2
where the first term on the right side, with )'-x1=(II-x) +(n-y) +(c-z) I

is the Green function for potential flow in an unbounded fluid, and the functions
- . 2 2

N( ,x;F ) and W(&,x;F ) stem from the presence of the sea surface and represent

a nonoscillatory near-field disturbance and a wavy disturbance, respectively.+

The function W, representing the waves behind the singularity at point x, is

given by the integral

W = H(x-C)(4/F2)f Im exp[(C+z)(l+t 2)/F 2+i{(E-x)+(n-y)tl(l+t ) /F 2]dt, (3.4)

where H(x-) is the Heaviside unit-step function, which takes the value 1 for

x- -,O and 0 for x-C<0, and Im represents the imaginary part.

The function N, representing a nonoscillatory near-field disturbance, is

givn by the integral

SN =I/r' + (2/iF2 )f 1 Tm exp(Z)E(Z)dt, (3.5)r
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whe re
-[(-x) 2 2 2 1/2r' --- [($-x)+(,1-y)'+( .+z) ]

is the distance between the field point Z and the mirror image of the singularity

point x with respect to the mean sea plane z=O, Z is the complex function of the

real variable t defined by

Z -E [( +z)(l-t2)i/+(uj-y)t+ij[-xl ](l-t2) i/F 2

and E1 (Z) is the exponential integral, which is defined as in Abramowitz and

Stegun (1965). For purposes of numerical evaluation, a convenient alternative

expression for the near-field disturbance N is

N = i/r' - (2/F2)[l-(C+z)/(r'+jC-xl)] + (2/irF 2 )fI Im[exp(Z)El(Z)+Zn(Z)+y]dt, (3.3a)

where y=0. 5 77 ... is Euler's constant. Expression (3.5) is well suited for obtain-

ing an ascending series of the near-field disturbance N, useful for evaluating
2

N for small values of r'/F . Indeed, the first term in this series is 1/r', and

the second term is shown in expression (3.5a). The third term in the series is

given in Noblesse (1978), where the expressions for VN corresponding to express-

ions (3.5) and (3.5a) may also be found.

An interesting alternative form of expression (3.5) is

N = -1/r' + (2/TrF2)f1 im[exp(Z)E (Z)-i/Z]dt. (3.6)

However, this expression is not well suited for purposes of numerical

evaluation. Neither is expression (3.6) suited for obtaining an asymptotic
2

expansion of the near-field disturbance N for large values of r'/F . A comple-

inentarv integral representation of N suited for obtaining such an asymptotic

expansion is

N = -1/r' + (2/1TF 2)QLRe[exp(Z')El(Z')-l/Z']dt + (4/F )fl / yIm exp(Z')dt, (3.6a)

where Re represents the real part, and Z' is the complex function defined by

2 1/2 2.1/2 2
EZ' - [(r,+z)(l+t2 ) /2+i( -x-n-y~t)](l+t 7 / / F

2
Indeed, an asymptotic expansion for large values of r'/F has been obtained in

Noblesse (1975) from expression (3.6a) in the particular case when n=y, for

which the last integial on the right side of equation (3.6a) vanishes. The

first term in this asymptotic expansion is (-I/r'). The four alternative

integral representations of the near-field disturbance N given above may be

found in Noblesse (1981).

I'



We have

N I/r' as r'/F 2  0 and N ' -1/r' as r'/F 2 
+ . (3.7a,b)

+

Equation (3.7b) shows that far behind the singularity x, as + -* , the near-field

disturbance -l/lE-xI+N in expression (3.3) for the Green function is approximately

equal to -2/(C2+2+22)I/2. This is negligible in comparison with the wave disturb-

ance W. We may then obtain

G %t (1/7F)J_. Im exp[(+z)(l+t 2)/F 2+i{(-x)+(n-y)t}(l+t2 ) i/2/F 2]dt as -". (3.8)

This result, which is well known of course, will be used further on in this study

(in section 6) for determining the amplitude of the free waves far behind the ship.

U

'1 !
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4. Basic integral identities for the velocity potential

In this section, basic integral identities for the velocity potential are

obtained by applying a classical Green identity to the potential 4- (x) and tile
-* -*

Green function G-G(F,,x) defined above. This Green identity is

fd'(V 2G-GV 24)dv = fa'(3G/Dz-GW*/2z)dxdy + fh (Gal/n-2G/n)da

+ fh ( G/n-Ga /n)da, (4.1)

where d' is the finite domain bounded by the hull surface h, the mean sea plane

z=O, and some surface h_ surrounding the hull h, as is shown in figure 1; J' is

the portion of the plane z=O between the intersection curves c and c- of the

hull surface h and the exterior surface h-, respectively, with the plane z=0. On

the surfaces h aid h , we have 34/an-V4.i and 3G/3n-VG-n where n is the unit out-

ward normal vector to h or h , as is shown in figure 1. Furthermore, dv and da

represent the differential elements of volume and area at point x of the domain

d' and the surfaces h or h , respectively.

By expressing the integrand c3G/Dz-G3 /3z of the first integral on the right

side of equation (4.1) in the form (2G/z+F 2 2G/x 2)-G(32/az+F 2 2/x 2)+
F 2 (G4/Dx-0G/3x)/3x, and by using the relation

f,3(G /x-¢2G/3x)/Pxdxdy = fc(Ga /3x-42G/ax)dy + f (G2 /9x-42G/2x)dy,

we may obtain

fd'V2 Gdv - fo' (2G/3z+F 2 G/Dx 2)dxdy = fd,GV 2 dv - f ,G(2/2/z+F 2 2 /x 2)dxdy

+ fh(G /3n- G/3n)da + F2Jc(G7 /2x- DG/2x)dy + I., (4.2)

where Ia, is defined by

I- = fh (4,G/an-Gap/ n)da + r2fc (Ga4/9x-2G/3x)dy.

It can be shown that I., vanishes as the exterior surface h. is made ever larger.

This term can then be ignored in equation (4.2), and the finite domain d' and

region a' of the mean sea plane may be replaced by the unbounded mean flow domain

.4 d and sea surface a, respectively.

By expressing the potential in the integrands of the two integrals on

the left side of equation (4.2) in the form = where -4(x) as was

defined previously, and 4, represents the potential at point ,, i.e. , we

may obtain

CGdv -fJ$(G/,z+F G2G/Ix )dxdy C C'43)dtCt
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where C and C' are given by

C = fdV 2Gdv - fo(3G/Dz+F2 2 cIx2 )dxdy' (4.4)

C' = Jd(p-4,)V 2Gdv - f (-4,)CaG/z+F2 2G/x 2)dxdy.

It may be seen from equations (3.1) and (3.2) that we have C'-O if- as

x-&, that is if the potential is continuous everywhere in the solution domain

d and on its boundary o+h+c, as is assumed here. Use of equation (4.3), with

C'-O, in equation (4.2) then yields

CP* = SdGv2 dv - f G(34/3z+F 2 2/9x )dxdy + fh(GI /-n-43G /Dn)da

+ F2fc(3o/x-ODG/ax)dy, (4.5)

where C is given by formula (4.4).

Use of equations (3.1) and (3.2) in expression (4.4) for C shows that we

have C-l if the point I is in the mean flow domain d or on the mean sea plane C,

but strictly outside the hull surface h, whereas we have C.-O if $ is strictly in-

side h. We thus have

= fdGV 2  dv - foG ( !/3 z+-F 2 20/3x 2 )dxdy + fh(Ga/In- ag/n)da

+ F2fc (Gt/3x-pG/ax)dy (4.6)

for Z in d+a-h-c, and

0 = fdGV2pdv - fG(aO/9z+F2 a2 /3x2 )dxdy + fh(GI /9n-0G/Dn)da

+ F2fc(gM/3x-0G/3x)dy (4.6')
+

for in d.+a.-h-c, where d. and a. represent the domain and the portion of the
1 1 1 1

plane z=0, respectively, inside the hull surface h. It can also be seen from

equations (3.1) and (3.2) that we have C=1/2 if the point Z is exactly on the

hull surface h or its intersection c with the plane z=0, at least for points

where h+c is smooth; more generally, the value of 47C(or 2nC) at a point + of h

(or c) is equal to the angle at which d(or a) is viewed from the point F. We

then have

r/2 fdgV2 dv - fo1G(3/z+F232t/ x )dxdy + fh(G /n-OG/9n)da (4.6")
+ F2f (GD/3%- G/ x)dy

for exactly on smooth h+c. Equations (4.6) are well known, although the par-

ticular case of these equations corresponding to V 2=0=3t/Dz+F212 / x
2 is usually

ii
1°,
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given in the literature, and these equations are usually obtained from the Green

identity (4.1) in a manner different from that shown here.

The value of the constant C on the left side of equation (4.5) is discontinuous

across the hull surface, C being equal to 1 outside the ship and to 0 inside, as is

explicitly indicated in equation (4.6). This discontinuity in the value of C

evidently is accompanied by a corresponding discontinuity on the right side of

equation (4.5). Specifically, the latter discontinuity stems from the integrals

Ih G/nda and f c tG/xdy representing potentials due to dipole distributions on

the hull h and the waterline c, respectively. An integral identity valid for

any point -- outside, inside, or exactly on the hull surface - can be obtained

by eliminating the discontinuity in the value of C in equation (4.5). This can

be done by adding the term Ci. , on both sides of equation (4.5), with C. given byi

Ci = fd V2Gdv - ) 'r (G/ z4-F2 2G/x2)dxdy. (4.7)
i i

Equation (4.5) then becomes

II, = fdGV2¢dv - f G(; /oz+F 2 2 /3x2 )dxdy + fh(G; /3n-DG/n)da

+ F 2f(G/x-9G/ x)dy + C i4, (4.8)

where I is defined as

I = fd+d. V2Gdv - f+o. (9G/Dz+F 2a2 G/x 2 )dxdy.
i i

Equations (3.1) and (3.2) show that we have Il for any point Z in the lower

half space ;<O. By using the divergence theorem

fd.V2Gdv 
= fh G/ nda + f3. G/zdxdy

and the relation

fa 2G/9x 2dxdy = -fc3G/ xdy

in equation (4.7), we may obtain

= frhG/3nda + F CG/Dxdy.-4C
By substituting the above expression for C. into equation (4.8), and replacingt i

I by 1, we may finally obtain

,= d2dv faG( / z+F 2 2 / x2 )dxdy + fh [G; /3n-( -t) G/ njda

+ F2fc[G/Cx-( -,)aG/;x]dy_ . (4.9)

.1)
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The integral identity (4.9) is valid for any point F, whether outside, inside,

or exactly on the hull surface h. This new identity thus is essentially equivalent

to the set of the three classical identities (4.6), (4.6'), and (4.6"), which are

valid exclusively for outside, inside, or on the hull surface h, respectively.

As a matter of fact, these three identities can be derived from the identity (4.9)

by noting that we have fh aG/nda + F2 f c3G/axdy = 0, 1, or 1/2 for r outside, inside,

or on the hull surface h, respectively. This may be shown by writing the above

expression in the form

h @G/ nda + . G/ zdxdy - d y- V 2G/x dxdy =

ci i 1.~y afhG 0.G z+dxGdx

fd V2Gdv - f .(G/az+F2a2G/ax2)dxdy.
1 i

The above-stated result and the three integral identities (4.6), (4.6'), and (4.6")

then readily follow from equations (3.1) and (3.2).

An interesting feature of the integral identity (4.9), or of the related identities

(4.6), (4.6') and (4.6"), is the appearance of a waterline integral for the case of

a sea-surface piercing hull (no waterline integral is present in the case of a fully-

submerged body). A simple interpretation of the waterline integral may be obtained

by considering a sea-surface piercing hull as the "zero-submergence limit" of the

slightly-submerged body consisting of the mean hull h closed by a horizontal "lid" f;

specifically, the waterline integral can then be shown to stem from the effect of the

lid closing the slightly-submerged body h+. Details are given in appendix A. The

present study is concerned with the problem of potential flow about a ship, that is

the "exterior potential-flow problem". Integral identities corresponding to equations

(4.6), (4.6') and (4.6-) can evidently also be obtained for the "interior potential-

flow problem", that is for the potential, i say, defined in the interior domain d..

These integral identities, as well as identities obtained by adding the integral i

identities for the exterior and interior problems, are listed in Appendix B.

00

4

4
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3. Equation for determining the velocity potential

Use of equations (2.3), (2.4), and (2.5) in the fundamental integral identity

(4.9) yields

, = fh Gnxda - fh(-*) :G/nda + F2f c[GI/x-( -*,)G/:)xjdy - F2f0Gq()dxdy. (5.1)

Equation (5.1) is the basic equation obtained in this study for determining the

velocity potential 11 on the mean hull surface h+c and in the mean fluid domain

d+c. An alternative form of this equation will now be given.

Let n ny, n represent the x, y, z components of the previously-defined
x z I+

unit outward normal vector n to the mean hull surface. We also define the unit

vector t tangent to the mean waterline c, oriented as is shown in figure 1; the

x, y, z components of t are given by tx  t , 0. If the unit positive vector along
4 y

the x axis is denoted by i, we then have

/ .i= (n /n+tD/ +nxt t/td).i = n X /an+t x /31-n t a4/ad,x x zy

where 5 /Zn is the derivative of in the outward normal direction n to h, as was

defined previously, f represents the arc length along the mean waterline c

(oriented as is shown in figure 1), and /9L is the derivative of in the direc-

tion of the unit tangent vector t to c, finally, 4/3d represents the derivative

of ¢. in the direction "d" defined by the unit vector nxt, which is tangent to the

hull surface and pointing downwards. By using equation (2.4), we may then obtain

2
)13hx = n + t 4,/' - n t ,,/)d.

x x zV

By substituting the above expression for 34/Dx into the waterline integral in

equation (5.1), and replacing dy by t dZ, we may express equation (5.1) in the
y

form

) -T( ;). (5.2)

The potential 0(Z) in equation (5.2) is defined as

=fhGnx
d a + F2fcGn t de, (5.2a)

and the term T(Z;O) represents the transform of defined below. The transform

T(E; ) may be written as the sum of a linear part, L(C; ) say, and the nonlinear

part associated with the nonlinear free-surface flux q(O). Specifically, we

have

_+ -+ F f GqT~~) = LQr;4) + FG(<b)dxdy, (5.2b)

'7
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where the linear transform L(E1; ) is given by

= Jh(¢-¢,)aG/anda + F2fc [(O-O)aC/ax-G(t x /at-n t ao/d)lt di. (5.2c)
zy y

The potential O(F) in equation (5.2) is given explicitly in terms of the Froude

number and the geometry (shape) of the hull, as may be seen from equation (5.2a),

whereas the term T(C; ) is of course not known a priori.

A large class of ships operate at fairly low values of the Froude number. It

thus is interesting to briefly examine the limiting case of zero Froude number.

Study of this comparatively-simple limiting case will also provide useful know-

ledge for the case of nonzero Froude number. In the zero-Froude-number limit,

the velocity potential becomes the zero-Froude-number potential,% 0 say. The

potential 0 is the velocity potential of the flow about the hull surface when

the sea surface is replaced by the rigid plane z=0, as may be seen from the

zero-Froude-number limit of the sea-surface condition (2.5). The potential 0

thus is also identical to the potential of the flow of an unbounded fluid past

the hull and its mirror image with respect to the plane z=O (the double hull),

and indeed is often referred to as the "double-hull potential". Specifically,

the zero-Froude-number potential 40 satisfies the equations

V2 0 = 0 in d, a0/an = n on h, a0/az = 0 on a, (5.3a,b,c)

corresponding to equations (2.3), (2.4), and (2.5), respectively.

The equation corresponding to equation (5.2) for determining the zero-Froude-

number potential c 0 takes the form

( = - LO(E; 0 ), (5.4)

where the potential 40(Z), corresponding to the potential O() in equation (5.2),

is given by

0 = fhGonxda, ' (5.4a)

4 and the (linear) transform L0 ( ; 0 ) , corresponding to the transform T(&;$), is

defined as

LO(Z; O= fh[0(X) F,))-3C 0/ nda. (5.4b)

In equations (5.4a,b), GO is the zero-Froudc-number Green function given by

4C 0(,x) = -1/J -xI - 1r,

'1

t,
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where r' [-x) + -y)2 + (t+z) I as was defined below equation (3.5).

Equations (5.4a) and (5.4b) can be obtained as the zero-Froude-number limit

of equations (5.2a) and (5.2b,c), respectively. Equations (5.4) may also be

obtained from equations (5.3a,b,c) in a manner analogous to that used for

obtaining equations (5.2) from equations (2.3), (2.4), and (2.5): specifically

by applying the Green identity (4.1) to the zero-Froude-number potential 0

and Green function Go, as is shown in detail in Noblesse and Triantafyllou

(1980).

A particular result of the latter study is relevant to the present problem,

namely the fact that we have

L0 ; < << 00 (Z ) = €00(66, (5.5)

for motion of a slender body in the direction of its major dimension (length),

like a ship in forward motion. In the special case when the hull surface h is

the lower half of an ellipsoid, the potential 40( ) actually is proportional
to the exact potential 0(), that is we have Q0(t) = X00(), and the value of

the constant of proportionality A is close to unity. For instance, for an

ellipsoidal hull form with beam/length and draft/length ratios equal to .15

and .05, respectively, we have X=.97; in other words, the slender-ship approxi-

mation I 0 () is smaller than the exact potential *0(t) by about 3%. It is also

shown in Noblesse and Triantafyllou (1980) that equation (5.4) may be solved

efficiently by using an iterative procedure based on the straightforward

recurrence relation

ok 'Z - (k)+i)(W = 00 ('0 - Lo0(,;O0  , (5.6)

with k>O and the initial (zeroth) approximation 0 smply taken as O ,
(1)that the potential 0(cb corresponds to the first approximation 0 in the

so ~~~~~~~(k) frtapoiain ~ i h

sequence of slender-ship approximations 0 0 For instance, in the special

case of the above-defined ellipsoidal hull form, the relative error associated

with the second iterative approximation ) is approximately 10-

The fact that we have t( )%$( ) in the zero-Froude-number limit and

0(Z)"40 (&) in the slender-ship limit suggests that the velocity potential

0(0) defined by equation (5.2a) may provide a useful approximation for

common slender ships operating at low Froude number. Furthermore, it is

interesting to note that the potential i(t) becomes identical to the

classical Michell potential in the thin-ship limit. More precisely, the

Michell potential, 0M(&) say, given by
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=P fh C(- x, ,=0, z) n da,

corresponds to the first-order approximation in a thin-ship expansion of

the potential 0( ), as may easily be seen.

In the zero-Froude-number and thin-ship limits examined above, the waterline

integral in expression (5.2a) appears to be negligible in comparison with the

hull integral. However, the waterline integral may be expected to be significant

for a ship form with a blunt bow or/and stern, since we have In x=l=1t y at a

blunt end. The waterline integral in fact is of utmost importance, as has been

demonstrated by Eggers (1980) who showed that the velocity field associated with

the hull integral in expression (5.2a) is not continuous along the mean waterline

c, and that the waterline integral is precisely needed to render the velocity

continuous along c.

The potential (t) defined by equation (5.2a) is satisfactory both in the

thin-ship limit and in the zero-Froude-number slender-ship limit, and the velocity

field 7' is everywhere continuous. The potential D therefore seems to provide
an acceptable slender-ship approximation to the potential '. More generally,

the potential 0 may be regarded as the first-order slender-ship approximation
(1) (k)
( in the sequence of slender-ship approximations ( defined by the recurrence

relation

(k+l)' )(') - T(Z; 4 (k)), (5.7)
-4.

where T(F;$) is the transform defined by equations (5.2b,c), and the initial

(zeroth) approximation .(0) is simply taken as 0(0)-0.

Equations (5.2) do not require the ship to have port and starboard symmetry;

in fact the hull may be a multiple surface, as would be the case for a catamaran

or a SWATH ship. In the most common case of a single-hull ship with port and

starboard symmetry, equations (5.2) may be simplified somewhat by replacing

the mean hull h, waterline c, and sea surface o by their corresponding positive

(port) half h+, c+, and o+, as is shown in figure 2, and the Green function

G(Q,x) by the port- and starboard-ymmetry Green function, G(E,x) say, defined as
-- 4 -4 + -4

G(,,x) = G( ,x,y,z) + G(t,x,-v,z).

Thus, expression (5.2a) for the first-order slender-ship potential +(1)-d becomes

= Gnxda + F f ,+Cntdf. (5.8)
++ X V

Numerical evaluation of expression-, (,.2a) or (5.8) for the first-order slender-

ship potential will be examined further on (in section 9) in this study.

- I -
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6. The Kochin free-wave amplitude function and

the Havelock wave-resistance formula

The wave resistance of a ship can be determined from the wave pattern far

behind the ship, as is well known since Havelock (1934). The velocity potential

in the "far field" (at a large distance away from the ship) may be determined

in terms of the value of in the "near field" (on the mean hull surface h+c and

on the mean sea surface . in the vicinity of c) by means of the equation

2 2 F2r= jh(Gnx- 3C/ n)da + F f [G(n +t xI/Dt-n t / df - F G(W)dxdy. (6.I)
c x x zy V

Equation (6.1) may be obtained from equations (5.2) by replacing the term
-:()-¢() by P in equation (5.2c) since we have * 0 as (2+2+2)and

therefore *,<<Ji for T in the far field and x in the near field. In other words,

uquaLion (6.1) corresponds to the far-field limit of equation (5.2). However, it

is interesting that equation (6.1) in fact is valid also in the near field. More

precisely, equation (6.1) corresponds to equation (4.6) and is valid everywhere

in the domain d+--h-c, that is for S strictly outside the hull surface h+c.

If we are only interested in the wave pattern far behind the ship, expression

(6.1) for the potential (Q) can actually be greatly simplified by replacing the

Green function G(',x) by the asymptotic approximation (3.8). This yields

W 2 .21/2 2
(/Tr)Iml_ exp[ r(l+t2) /F21(+T t)(l+t2 /F2 K(t)dt as - (6.2)

where the function K(t) is given by

K(t) = F -2h(Enx- E/an)da + f [E(n2+t x/ t-n t /Dd)- DE/ax]t dt - f Eq( )dxdv, (6.3)
x z y y "

with the function E-E(x;t,F 2 ) defined as

E = exp[F-2 (l+t2)i/2{(l+t2)l/2 z- i(x+ty)) ] . (6.3a)

The equation of the free surface far behind the ship is given by C=F29(,n, =0)/E

since the nonlinear terms in the Bernoulli equation may be neglected at a suffi-

ciently large distance away from the ship. By using equation (6.2) we may then obtain
., (i/r)Refexp[i(+nlt)(l+t /22 )(+t2)1/2dt as . (6.4)

Equations (6.2) and (6.4) express the potential 4(Z) and the equation of the
free surface r(,,rj) far behind the ship in terms of a familiar superposition of

elementary plane waves. The function K(t) essentially gives the amplitude of the

free wave component at angle O=tan 1 t from the x axis; this function will be referred

to as the Kochin free-wave amplitude function, as it corresponds to a particular

case of the function introduced by Kochin (1936) for determining the drag and lift

acting upon a ship in steady rectilinear motion. The nondimensional wave resistance,I
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r say, defined as r=R/oU 2L2 where R is the dimensional wave drag, may be directly

obtained from the Kochin free-wave amplitude function K(t) by means of the

Havelock (1934) formula

r B R/0U 2 L2 
= (i/2,,)f JK(t)j:'(l+t 2) 1/ 2 dt. (6.5)

This formula may be obtained by performing the change of variable t=tano in

equation (12) page 118 of Eggers, Sharma, and Ward (1967).

Formula (6.3) for the Kochin free-wave amplitude function K(t) may be ex-

pressed in the form

-2 2 -2 2 2{ 2/l~' 1 /~
K(t) = F 2 (l+t )h exp{F-2(1+t2)z}E[nx/(l+t 2)-{nzi(n x+tn y)/(l+t2)/2 FIda

+ fcE[n2+i(l+t2 ) /2/F2+t 4/Dt-n t 9/Id]t de - f Eq($)dxdv (6.6)
x z y y a

where the function EBE(x,y;t,F ) is given by
E = exp[-iF-2 (+t2) 1/2(x+ty)]. (6.6a)

Expression (6.6) for the Kochin function K(t) can be evaluated numerically without

difficulty in principle, given the potential $ on the mean hull, the tangential

velocity components $/A1 and 34/Dd at the mean waterline c, and the nonlinear

free-surface flux q() on a. In practice, however, the rapid oscillations of the

exponential term E for small values of the Froude number F or/and large values of t

may cause a loss of accuracy. Furthermore, some terms in the integrands of the hull

and waterline integrals cancel out one another, as is shown below. This requires

that comparable methods be used for numerically evaluating the hull and waterline

integrals. For instance, it may be useful to partially group the two integrals in

the manner shown below, or in some similar fashion.

Let the mean waterline c be defined by the parametric equations

x = a(e) and y = b(L), (6.7a,b)

where f is the arc length along c as was defined previously. We then have

t =a' da/de and t =b=db/dt. We define the "tangent hull," ht say, tangent to
x y

the mean hull h along the mean waterline c. Specifically, the tangent hull ht is

defined by the equations

.4 x = a(1) + za(1) , y = b() + z( 4 ) , 0 > z > - (£) , (6.8a,b,c)

where aM() and 8(Z) are the partial derivatives ax/3z and 3y/z, respectively, at
t -4-z* tdfz

the waterline c. On the above-defined tangent hull h , we have nda=(x x d

We may then obtain n da=-(b'+z6')dfdz, n da=(a'+za')ddz, and n da={ab'-8a'+z(ar"- ')1
X V z g

- At h'Idfdz. At the waterline c, the unit outward normal vector n to his given by



23

n =-cb', n =ca', and n =c(ab'-Ba-) where c=l/[l+(cb'-Ba') 2]1 1/ 2 . If the potentialx y z
t, at the point x=a+za, y=b+z , z is taken equal to the potential at the corres-

ponding point x=a, y=b, z=O on c, the hull integral in expression (6.6) can be

expressed as the sum of an integral over the tangent hull ht plus an integral over
t tthe hull h+h . The surface integral over the tangent hull h t can be partially

integrated analytically in the form of a line integral along the mean waterline c,

which can be combined with the waterline integral in expression (6.6). We may

then express the Kochin function K(t) in the form

K(t) = cE[c 2 (b) 3+i(l+t 2)I/2b /F 2 +a'b'4/3+c(b') 2 ( a'--b')4/ad

-y(l-e) {b'/(l+t 2)+i(b'-ta)/F 2(l+t 2 ) 1/2+( b -6a)/F 2

-y2 e-F 2y(l-e)/(l+t 2 )22/(l+t2)+i(6'-t1'F2(l+t2)i/2 +(a'-S')t/F2}]d

+ F 2(l+t 2)f h+htexp{F - 2 (l+t 2)z}E [nx /(l+t 2)-{nz-i(nx+tn y )/(l+t ) /2 /F2 Ida

- f Eq( )dxdy, (6.9)

where we have

E = exp[-iF -2(l+t2 ) /2(x+ty)],

as was defined previously in equation (6.6a), and

2 1/2 2 1/2 2 2c = l/[l+(Ob'- a') I [l+i(a+t6)/(l+t2) I/tl+(a+ts) /(l+t2)] , and

e = exp[-F-2 (1+t 2)6{l-i(a+tB)/(l+t 2)i1/2}].

t

In the integral over the tangent hull h in expression (6.9), the potential 4 must

be taken equal to the potential at the mean watorline c, as was explained previously;

farthermore, the unit normal vector n must be taken to be pointing inwards, rather

than outwards.

The integrand of the integral over the hull h+ht in expression (6.9) vanishes
tas z--O since the hull h and the associated tangent hull h are tangent along the

mean waterline c and have opposite unit normal vectors n, as was noted above.

Furthermore, the exponential factor expF -2(l+t 2)z} renders the integrand small

for negative values of z, especially if we have (l+t 2)/F 2>>l. The modified hull

integral over h+ht in expression (6.9) therefore vanishes as (l+t 2)d/F 2_,, where

d is of the order of the draft of the ship, and this surface integral can be

neglected in comparison with the modified waterline integral in expression (6.9)

for2 2for sufficiently large values of the parameter (l+t )d/F

Typical values of the Froude number and of the draft for slow-speed ships may

be taken as F=.15 and d=.05. This yields d/F 22.22 and exp(-d/F 2)=.ll, which

r, indicates that the hull integral in expression (6.9) may be neglected in comparison

t
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with the waterline integral, as a first approximation. Furthermore, the slopes

3x/3zEa and Dy/azEB of the mean hull h at the waterline c are small for common

low-speed ships, so that the last terms (those involving a' and $') in the

waterline integral in expression (6.9) may be neglected. Finally, the term

c(b') (a-ab4')W/d also appears to be negligible for common low-speed ships,

partly due to the fact that 6 and a are usually small as was just noted, and that

we have /3d=-@4/z=O(F 2). Under the above approximations, we may then obtain

the following approximate expression for the Kochin function K(t):

c2 2_ (l+t 2)+a'3 /WbKWt = . E [  
(be Ile/}

2 21/2 21/2 2
+y(l-e){i(l+t2) b'/y(l-e)-i(b'-ta')/(l+t2) + -ab-}/ F Ide, (6.10)

where the nonlinear free-surface correction integral has been ignored. A main

recommendation of the above approximate expression for the Kochin function is

its relative simplicity. Indeed, equation (6.10) expresses the Kochin function

as a single integral on the mean waterline c, and only requires the value of the

potential 4 on c.

The smaller the values of F2 /d(l+t 2), 1l0 and 10, the more accurate the

approximate expression (6.10) for the Kochin function K(t) will be. In particular,
tthe tangent hull h is identical to the hull h in the case of a hull in the form

of a cylinder orthogonal to the plane z=O, and the hull integral in expression

(6.9) vanishes exactly if the potential 4(t) is taken as the zero-Froude-number

potential 4 0(x,y). By putting a=O, =0, c=l, y=l, and e=O in equation (6.10),

we may then obtain

2 2 2 2 1/2
K(t) = )CE[{(b') -1/(l+t )+a / }b'+it(a'+tb-)4/F (l+t ) Idt. (6.11)

The terms i(l+t2 ) /2t 4/F2 and in x /F2 (+t2)1 /2  in the waterline and the hull

integrals, respectively, in expression (6.6) have been combined into the term

it2b'O/F2(l+t2) I/2 in expression (6.11). The fact that the latter term vanishes

as t-0 evidently indicates that the abovementioned terms in the waterline and

the hull integrals in expression (6.6) cancel out one another as t-'O. For large

4 values of (lI+t2 ) i/2/F2 the major contribution to the integral (6.11) stems from

points of stationary phase, if any. Points of stationary phase are defined by the

relation dx/d+tdy/dt:a'+tb'=O. The term it(a-+tb),/F 2(l+t2) I1 2 in equation (6.11),
2 1/2 2 2 2 1/2

which stems from the terms i(l+t )/t 4/F and i(n +tn )4/F (l+t )In the
y x y

waterline and the hull integrals in equation (6.6), thus vanishes at a point of

'1A
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stationary phase. The terms (W')3 and b/(l+t 2) in expression (6.11), corres-22

ponding to the terms n t and n /(l+t 2 ) in the waterline and the hull integrals
xy x

in expression (6.6), may also be shown to cancel out at the point of stationary

phase t=-a/b'. These cancellations of terms in the waterline integral and in

the hull integral in expression (6.6), for t=O and at points of stationary phase,

indicate that partial combination of the hull and waterline integrals, in the

manner shown above or in some similar fashion, may be useful. The cancellations

also demonstrate the importance of the waterline integral.

In the common case of a single-hull ship with port and starboard symmetry,

the Kochin free-wave amplitude function K(t) is an even function of t, and tile

Havelock formula (6.5) becomes

r = (l/)1 0 1K(t)1 2 (l+t 2 )/dt. (6.12)

Furthermore, expressions (6.6) and (6.9) for the Kochin function may be expressed

in terms of integrals over the positive (port) halves c+, h+, a+ of the mean

waterline c, hull h, and sea surface G.

The Havelock wave-resistance formulas (6.5) or (6.12), expressions (6.6) or

(6.9) for the Kochin free-wave amplitude function K(t), and equation (5.2) for

determining the velocity potential 4 in the "near field" of the ship form a complete

set of equations for evaluating the wave resistance of a ship in steady rectilinear

motion in a calm sea, given the speed of the ship and the shape and position of its

hull. The position of the hull is not known precisely beforehand, due to the sinkage

and trim experienced by the ship. Equations for determining the sinkage and trim,

which requires evaluation of the hydrodynamic lift and moment exerted upon the

ship, must then be added to the above set of equations. However, equations for

determining the hydrodynamic lift and moment and the resulting sinkage and trim will

not be considered explicitly in this study, which is concerned with the basic hydro-

dynamical problem of predicting the flow caused by a ship and the ship wave resistance,

given its speed and the shape and position of its hull.

Equation (5.2) for determining the velocity potential 4 may be solved by using

an iterative procedure, as was discussed in the previous section. Specifically, a
(0) (1) (2)

sequence of slender-ship iterative approximations 4(0)= 0, M= l , .may be

defined, as is indicated by the recurrence relation (5.7). Corresponding sequences
(0) ()(0) (1)

of sLender-shlp approxlriat [0ov.; K K ,... and r , r ,... to the Kochin free-

V' wave amplitude function K and the wave resistance r can readily be defined, by sImply

replacing by 4 (k) and K by K (k) with k = 0,1,..., in equations (6.6) and (6.5).

The zeroth-, first-, and second-order slender-ship wave-resistance approximations are

*1
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given and examined in some detail in the following sections. The classical

Michell (1898) and Hogner (1932) wave-resistance formulas and the low-Froude-

number wave-resistance formulas proposed by Guevel, Vaussy, and Kobus (1974),

Baba (1976), Maruo (1977), and Kayo (1978), which can be related to the zeroth-

(0) (1)
and first-order approximations r and r ( , respectively, will also be con-

sidered.

I}

'I
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7. The zeroth-order slender-ship wave-resistance approximation

In this section, the zeroth-order slender-ship wave-resistance approxima-

tion r (0 ) corresponding to the zeroth approximation (0) 0 is considered. By

putting 4)-0 into expression (6.6), we may obtain the following expression for

the zeroth-order slender-ship approximation to the Kochin free-wave amplitude

function:

K(O)(t) = JEn2t de + F-2j {F-2(l+t2)z)En da, (7.1)
c x y h x

where E HE(x,y;t,F 2 ) is the exponential function defined by formula (6.6a).

An alternative expression for K(O)(t) convenient for computational purposes

is given by expression (6.9):

K() (t) = c E[C2(b') -y(1-e)/(l+t 2)]bdl + F 2h+htexp{F 2(l+t 2)z}Enxda, (7.1a)

where ht is the tangent hull associated to h and defined by equations (6.8),

and the functions c, y, and e are defined below equation (6.9). The waterline

integral in formula (7.1a) is expressed in terms of the shape of the mean water-

line c, defined by the functions a(1)Ex and b(1)Ey, the slopes a(C)%x/az

and 6(e)-y/;z of the mean hull h along the waterline c, and the "equivalent-draft

function" 6() related to the local draft and shape of the framelines of the

ship. The hull integral, on the other hand, depends on the precise shape of

the "lower hull", at some depth below the mean waterline. This integral is

negligible in comparison with the waterline integral for sufficiently large

values of (l+t 2)d/F 2 .

The above-defined zeroth approximation, corresponding to the trivial

slender-ship approximation f--0, may seem extremely crude. It will however

be noted that the approximation (7.1) corresponds to the free waves associated

with the first-order slender-ship potential 4 (l)4 given by equation (5.2a).

Further support for the zeroth approximation K (0 ) is provided by considering

expression (6.11) for the Kochin function K(t), obtained in the particular

case when ct*0, a-0, and F 2/d+O, for the limiting case when t4O, corresponding

to the transverse waves in the spectrum of free waves following the ship. By

using the relation (b') 21(a') in expression (6.11), we may obtain

K(t=O) ' -f exp(-ix/F 2)(a'-4) /A)a'b'df as u- 0, a-0, and F 2/d-0. (7.2a)
ic

In the same limiting case, expression (7.1a) becomes

K(0)(t=O) nu -f exp(-ix/F 2)(a) 2bd as a-0, 6-0, and F 2/d0. (7.2b)
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For a slender ship, with beam/length and draft/length ratios of order e say,

2we have 3 /3t=O(c )<<a-=O(l). At the bow and stern of a blunt-ended ship

form, both a' and D /aZ vanish; however, the result aO/DZ<a' remains valid,

as may be shown by considering the particular case of flow about an ellipsoid,

for instance. It may then be seen from equations (7.2a,b) that for common
2 (0)low-speed ships, for which a, 6, and F /d are small, we have K (t)K(t) for

small values of t. Finally, it is interesting that the classical wave-resistance

formulas of Hogner (1932) and Michell (1898) correspond to particular limiting
(0)

cases of the zeroth-order slender-ship approximation K defined by formula (7.1),

as is discussed in some detail below.

For a ship with a fine waterline, that is, if the angle between the mean

waterline c and the x axis is sufficiently small, we have n 21t y<<Inx <<l and
x y

the waterline integral in formula (7.1) may be neglected in comparison with the

hull integral. The latter integral in fact is identical to the approximation,

K. say, proposed by Hogner (1932), that is we have

KH(t) = F -2fhexp{F 2(l+t 2)z}exp{-iF- 2(l+t2 ) /2(x+ty)}nxda. (7.3)

The Hogner approximation K, may thus be obtained as the fine-waterline limit of

the zeroth approximation K

In the case of a single-hull ship with mean hull h defined by the equation

y=±b(x,z), the surface integral in equation (7.3) can be transformed into the

double integral

-2 21/2 2 )1/2 -2 2 1/2 t~~)3~~)-xxz
KH(t) = 2 fh exp[F (l+t2 )/{(l+t )/z-ix}]cos[F (l+t2)itb(x,z)]Tb(x,z)!?xdxdz,

y
where h is the projection of h onto the ship centerplane y=0. If the ship is

y -2 2 1/2
thin, that is if b(x,z) is sufficiently small that the term cos[F (l+t ) tb(x,z)]

may be approximated bv 1, the Hogner approximation.K becomes the famous Michell

thin-ship approximation, KM say, first obtained by Michell in 1898 and given by

KM(t) = 2ffhexp[F 2(l+t2 ) 2{(l+t2 ) 2z-ix}]3b(x,z)/Ixdxdz. (7.4)

y
More precisely, the Michell approximation (7.4) corresponds to the first-order

approximation in a consistent thin-ship expansion of the zeroth approximation K

If the equation of the mean hull h is expressed in the form z=-d(x,y), the

U' surface interal in equation (7.3) can he transformed into the double integral

KH(t) =fh exp{-F-2(+t 2)d(xY)}exp{-iF 2(l+t ) /2(x+ty)Vd(x,v)/?xdxdv,
'z

'I
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where h is the projection of h onto the mean sea plane z=O. If the ship is

flat, that is if d(x,y) is sufficiently small that the term exp{-F -2(l+t 2)d(x,y)

may be approximated by 1, we may obtain the flat-ship approximation, Kj say,

proposed by Hogner (1932) and given by

Kj(t) = fexp{-iF 2 (+t 2 ) /2 (x+ty)}d(x,y)/9xdxdy. (7.5)
z

The Hogner approximation (7.3) in fact was obtained by Hogner (1932) as an

interpolation formula between the flat-ship approximation (7.5) and the Michell

thin-ship approximation (7.4).

If the ship is both thin and flat, that is if the term exp{-iF 2(l+t2 ) /2ty

in formula (7.5) for the Hogner flat-ship approximation and the term exp{F -2(l+t 2)z}

in formula (7.4) for the Michell thin-ship approximation may be approximated by

1, both of these approximations yield the Maruo-Tuck-Vossers slender-ship approxi-

mation, KMTV, given byJ bow -2 2 1/2

KMTV = sterneXpiF- (1+t2)i/2x}A'(x)dx, (7.6)

where A'(x)TdA(x)/dx and A(x) is the cross-sectional area of the mean hull h.

The slender-ship approximation (7.6) was obtained by Maruo (1962), Tuck (1964),

and Vossers (1962) by using the method of matched asymptotic expansions.

The thin-ship approximation exp{-iF 2(l+t2 ) /2ty}%l and the flat-ship

approximation exp{F -2(l+t 2)z}%l are obviously not uniformly valid with respect

to t and F. As a matter of fact, differences between the approximations K

KH, KM, K' and KMTV can be quite large. This may be seen clearly in the case

of a simple planar hull for which the foregoing approximations can be evaluated

analytically. We consider the hull form defined by the equation

y=(b/2)(l-2JxI+z/d), where O>z>-d(1-21xI), -1/2<x<1/2,

and b and d are constants representing the beam/length ratio and the draft/length

ratio, respectively. The nondimensional wave resistance rER/pU2L 2 may be expressed

in the form

r =(16b 2 d 2 /, )f'k(t) (I+t 2 t ,/

0dt
where the function k(t) 1(1+t2 ) /2K(t)/4bd is given below. For shortness, the

notat ion

2 1/2 2 2 1/2 2 2 2, =(l+t )  12F 2  b=L(l+t2 //2F2 dl~ /

will be used.

IMw'
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The function, I say, corresponding to the watertiiio integral in thew

zeroth-order approximation (7.1) is given by

kW= 4b dF ?(cos-cosb)(-b t)(b 2+4d 2+4b 2d )

The function, ki, corresponding to the hull integral in expression (7.1) and

the Hogner approximation (7.3) is given by

[b +4 (IL')k bt-I(sin0)/-(sinax)/a]j/(l-b t )-4dF_(1-cosi)/[1+4dY(1+tl)j

+ 4d(~ - ,Y)) '(ilOt f14 (1+ t 2)] + 4dF (coL-*'Lo-)/ k1 -1, t )

rihe function, 00, corresponding to the zeroth-order approximation (7.1) is

given by k(0 )= k w+k H' By adding the above expressions for k W and k.1 , we may

then obtain

[1)2t2)+4d 2(1+Lt2)]k ()=b 2t 2[(sinmi)I -(sina)Ia]I(l-b 2t 2 4dF 2(l-cosa)I[l+4d 2(l+t)

+ 4d 2(1+t 2)I(I-1/exp:')/'k-(s-ni)/a]l/[1+4d 2(l+t 2)] + 4dF 2(b 2+4d 2)(cos9-cos'.)/(h +4d 2+4b 2d

The function, k.corresponding to the Michell approximation (7.4) is given by

'm [(1-l/exp0)/,-(sin-t)/ x+4dF 2(1-cosct)]/[l+4d 2(l+V)],

(0)
which is identical to the limit b=0 of the functions k. and k .The function,

k"corresponding to the Hogner flat-ship approximation (7.5) is given by

kM=[(sin )/b-(sint)/a]j/(l-b 2t 2),

which is identical to the limit d=0 of the functions k H and k Finally, the

function, kMTV, corresponding to the Maruo-Tuck-Vossers approximation (7.6) is

given by

k,,rv= -sn),x

which is identical to the limits b=0 and d=0 of the functions kMand kM, respectively.
Differences between the above functions are most striking and in~portant for

large values of t. In the limit t--, the waterline integral k W and the hull integral

4(Hogner approximation) k H become
k F 2(cos6-cosc)/(d+b4d+b 2d)t2 as t
W

kH F 2[(cosot)/d-2(bsin +2dcosi)/(b +4d 2)J/b 2t 4as t -

VWe thus have k<was t---, and

k~0  k Was t

00
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As t- , the Michell thin-ship approximation kM and the Hogner flat-ship approxi-

mation kN become

kM n 2 (l-cosa)/dt 2  as t -,

N ,, 2F 2(sin)/b2t 3 as t -.

We thus have k<k<<kM in the limit t-. However, the waterline integral k1l,

2
and the Michell approximation kM are of the same order, nanely l/t2, as t--.

As a matter of fact, the above-given large t asymptotic approximation of the

Michell function k.M may be seen to correspond to the thin-ship limit b=O of

the large t approximation of the waterline integral kW. Finally, the Maruo-Tuck-

Vossers approximation kfl V vi.lds

MTVVkMTrV 1  as t-'- ,

so that the Havelock wave-resistance integral would in fact be divergent. Indeed,

the derivative A'(x) of the ship cross-sectional area A(x) must be continuous and

vanish at the bow and stern for the wave resistance to exist. This condition is

extremely restrictive, and in fact is not satisfied for usual ship forms. If the

beam/length ratio b and the draft/length ratio d are small, of the same order of

(0)
magnitude E say, the functions kw, kk, k kM, and kN are of the form

F2/ ntn+l
k - F t as t o ,

where n=l for the waterline integral kW , the zeroth approximation k (0) and the

Michell approximation kM, n=2 for the Hogner flat-ship approximation k,, and n=3

for the Hogner approximation kH .

In the limit t=0, corresponding to transverse waves, the Maruo-Tuck-Vossers

approximation kMTV and the Hogner flat-ship approximation k are identical,

given by

k, 1-F2 sn12
k = MTV = l-2Fsin(i/2F) for t = 0.

The Michell approximation kM and the Hogner approximation kH are also identical,

and given by

kH = kM = F2[{l-i/exp(d/F 2)}/d-2sin(i/2F 2)+4d{l-cos(i/2F2 )]/(l+4d 2 ) for t = 0.

This expression for k H and kM may be seen to become identical to the expression
C

for kj and kMTV in the limit d-0. However, this limit is obviouslv not uniform

.1
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wi th respect to the Froude number. In particular, we have kl if d<<F 2<l,

whereas we have k=F 2/d=O if F 2<<d<<. In the limit t=O, the waterline in-

tegral kW is given by

W= -4dF 2{l-cos(l/2F 2)}/(l+4d 2/b 2+4d 2 ) for t = 0.

We thus have kw<kH for t=O, and
k (0 ) n kH  as t - 0.

The fact that kW .k as t- o, even though kw<<kH for t=0, emphasizes the

importance of the waterline integral in expression (7.1) for the zeroth-order

slender-ship approximation. It may be interesting to examine in passing the

effect of using the thin-ship approximation y=O in the exponential term E in

the expression for the waterline integral, which then becomes
exp{-iF- 2 (l+t2 )1/2x~n2t d .
C x y

This "thin-ship waterline integral" is of the same type as the Maruo-Tuck-Vossers

integral (7.6). We thus may expect the Havelock wave-resistance integral to be

divergent in general (except for hull forms having a smooth waterline with cusped

ends) if the thin-ship approximation is used in the waterline integral. For

instance, for the simple planar hull examined previously, the function, k say,

corresponding to the above-defined "thin-snip waterline integral" is given by

k = -4b 2dF 2 (l-cosa)/(b 2+4d 2+4b2 d ),

for which the Havelock integral (6.12) is divergent.

The above simple example thus demonstrates that the use of the thin-ship or/and

flat-ship approximations may have important effects. In particular, these approx-

imations are clearly not uniform with respect to the Froude number and the integra-

tion variable t in the Havelock integral (6.5). Use of such approximE'tions evidentl:

is inherent to the methods of solution based on a systematic thin- or flat-ship per-

turbation scheme, due to the necessity of transferring the boundary condition at

4 the hull surface to the ship centerplane or waterplane, respectively. It was pre-

viously discussed in Noblesse (1976) that this transfer of the hull boundary condition

may be overly and unnecessarilv rcstri L iv, and may in fact be far more limiting

than the linearization of the boundary condition at the sea surface. An essential

V feature of the present slender-ship theory is precisely to avoid transferring the

hull boundary condition, which is imposed on the exact hull surface.

Ne
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8. The first-order slender-ship low-Froude-number approximation

The next approximation in the sequence of slender-ship wave-resistance

(I)
approximations is the first-order slender-ship approximation, r )

, obtained

by taking the potential p in expression (6.6) for the Kochin free-wave amplitude

function K(t) as the first-order slender-ship potential 4(i) given by equation

(5.2a). This first--order slender-ship approximation will be considered in the

following section. In the present section, we briefly examine the simpler approx-

imation obtained by taking the potential as the zero-Froude-number limit (1)

of the potential (1). The potential ()0 is givenbygive

( = _ 2 2 2-1/2 2 2 2-112
4T 0

1 )(Z) - _[{(_x)+(n-y) +0-z) E +{( -x) +(-v+(,-+z)' In x (x)da(X), (8.1)

as may be seen from equation (5.4a). In the common case of a single-hull ship

with port and starboard symmetry, expression (8.1) can readily be expressed as

an integral over the positive (port) half h+ of the mean hull h.

The potential () may be regarded as a first-order slender-ship approxima-

tion to the (exact) zero-Froude-number (double-hull) potential 009 as was noted

previously in section 5 and is specifically indicated in equation (5.6). The

low-Froude-number wave-resistance approximation, r F say, associated with the

zero-Froude-number potential 0 is essentially identical to the low-speed

wave-resistance formulas proposed by Guevel, Vaussy, and Kobus (1974), Baba (1976),

Maruo (1977), and Kayo (1978), as will be shown below. The wave-resistance approxi-

mation associated with the first-order slender-ship approximation (1) to the

zero-Froude-number potential 0 thus corresponds to a first-order slender-ship

(1 ))approximation, rF say, to the Guevel-Baba-Maruo-Kayo low-Froude-number approxima-

tion reF.

It is interesting to compare the low-Froude-number wave-resistance approximation
(1)

rCF, the first-order slender-ship low-Froude-number approximation r PF , and the zeroth-

order slender-ship approximation r (0 ) , associated with the approximations 0=0W

and 0 0o, respectively. This comparison is particularly simple in the

special case when the hull h is a vertical cylinder with elliptic waterline c, and

the nonlinear free-surface flux q in expression (6.6) is ignored. Indeed, the wave-

resistance approximations r (), eF , and reF can then be shown to be proportional

to on1 another. Specifically, we have

(0) 2 (1) 2 4
r r F/(l+b) rCF CF (+ 2 )) /(+1)

p'
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where b is the beam/length ratio of the elliptical cylinder. The relative errors
(0) F 0) F (1)

(r -r )/r and (r r () then are given by

(0( 2 -) b2  3
[2b(l+b/2)/(l+b)2 2bll+b(l+b/2)/(l+b)]/(l+b)

We t u h v () =( ) (0) =(i
We thus have -.ad c .016 for b=.l, and c ( .306 and c =.055 for

b=.2. The first-order slender-ship low-Froude-number approximation r F may then

be seen to differ from the low-Froude-number approximat ion reF by only a few per-

cent for a thin ellipse. More generally, the second-and higher-order slender-ship
(k)

low-Froude-numbr wave-resistance approximations r ,  k2. associated with the
sequence of slender-ship iterative approximations k) defined by the recurrence

relation (5.6), can also be shown to be proportional to the appioximation rtF, and
(k)

rapid convergence of the sequence of approximations r(F to rCF may be proved.

Details will be given elsewhere.
(1), rssac

It is noteworthy that the relative error, c , between the wave-resistance

approximations r() and rZF is significantly less than the relative error between

the corresponding potentials 0() and 0* Indeed, for the present case of an ellip-

t ical eviindr we have M( + /(l+b), as is shown in Noblesse and Triantafyllou (1980).
(0 (l) (1) .091 for

This yields the relative error 1 )4 -=b/(l+b). We thus have n ( 9)

b=.l and -l(I)=.167 for b=.2, which may be compared to c (1).016 for b=.l and e(1)=.055

for b=.2. This suggests that evaluation of the wave resistance by means of the Have-

lock and Kochin formulas for determining the energy contained in the waves following

the ship may be preferable to pressure integration over the hull. Specifically, use

of the first-order approximation i)-to the potential yields a Havelock-Kochin

wave-resistance approximation comparable to the wave resistance which may be obtained

by hull-integration of the pressure determined from the second-order approximation
(2)

Calculations bv Chen and Noblesse (1980) for the case of a vertical cylinder

with a waterline in the shape of an ogive have shown that differences between the

o (I) and r are somewhat larger than for an elliptical cylinder withapproximations F CF

same beam/length ratio, but remain small, of the order of a few percent. Furthermore.
J (i CF aresgnificantly smaller for
differences between the approximations r CF and r are s

a slender hull than for a thin cylindrical hull with same waterline. This stems

from the fact that the potential (I ) is a better approximation to the potential

for a slender body than for a comparable thin cylinder; for instance, the potential

is about 13% smaller than the potentfal 0 for an elliptical cylinder with beam/

-t iv rat(io equal to J5, hut f,) is only about 3% smaller than for an ellip-

soidal hull form with the same valkix of the beam/length ratio and with draft/length

ri
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ratio equal to .05. Calculations reported in Chen and Noblesse (1980) in fact

show that the approximations r(F and rCF are practically indistinguishable for

ellipsoidal hull forms with beam/length ratios equal to .1 or .2.

The low-Froude-number approximation K F to the Kochin free-wave amplitude

function K is defined by equation (6.6) or the equivalent equation (6.9), :n which

the potential is taken as the zero-Froude-number potential iO" An interesting

alternative expression for the low-Froude-number Kochin function : CF will now he

obtained. We start from equation (6.3). By using the hull boundary condition

(5.3b), from which follows the relation n +t 3 /I-nzt y / d=t x as was
x x 0 z y 0 0

shown in section 5, equation (6.3) yields

KF (t) = F 2fh(E3%o/3n- 03E/n)da + fc(E34o /3x- 3dEx)tydf - foEq( 0)dxdy, (8.2)

where E:E(x;t,F') is the exponential function defined by equation (6.3a). Both

the potential pO and the function E satisfy the Laplace equation in d, and we have

0 i/r as r=(x +y +z )i/2z and E is exponentially small as z+--. We then have

the Green identity

fh(E,) /in-,0sE/3n)da = f(E3 o/;Z-4o 0 E/3z)dxdy = F
2fO'2 E/3x 2dxdy,

where equation (5.3c) and the relation DE/3z+F 2 D2E/3x2=0 on z=O were used. By
t t o 2E/ x 2  

2the form 2(3E!3x-E
expressing the term in 0 5x0 /3x)/3x+[ 40 /9x , and

using the identity

('b0/,,o)/x-E 0o/-,x)/'ixdxdy= c(+ 0 E/x-E 0 /3x)dy,

we may then obtain

F fh(EO0/)n-0 3E/Dn)da + fc(E 0/3x- oaE/3x)tydl = fE3 2 O./x 2 dxdy,

where the relation dy t dt on c was used. Use of this identity in equation (8.2)
v

finally yields

KF(t) = f0E[ O /3x -q(%o)Idxdy , with E = exp[-iF (l+t ) (x+ty)]. (8.3)

4 If the nonlinear free-surface correction term q(%o) is neglected and the mean

sea surface a is replaced by the entire plane z=O, equation (8.3) becomes identical

to the low-speed approximation that was first obtained, in a different manner, by

Guevel, Vaussy, and Kobus (1974). It was subsequently noted by Kayo (1978) that

integration in Guevel's formula had to be restricted to the portion of the plane

z=O outside the hull, that is the mean sea plane a, for uniqueness. Expression

(8.3) for the low-Froude-number Kochin function KCF was previously derived from

"1
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expression (8.2) by Maruo (1977), in a manner different from that shown here.

if the linear term 2 l 0/ax2 and the nonlinear term q(4o) are grouped (as is

shown below) expression (8.3) becomes identical to the low-speed approximation

obtained by Baba (1976), by using yet a different approach. By making use of

equations (5.3a,c), expression (2.2) for the nonlinear correction term q( o0

can be put in the form

q00ol= J O 2 /Ix + (3o/ X)V 2 
0 - V.IVyo2V o/2,

where V is the two-dimensional differential operator (,/,x,.)/y). We may then

obtain

2x2 )= (l- 0/x)( 0 /3x-IV01%
2 /2)/ax - 3(340 /3y)( 0 /x-fO 

2 /2)/y, (8.4)

which is identical to expression (11) in Baba (1976).

In summary, the Guevel-Baba-Maruo-Kayo low-Froude-number wave-resistance

approximation reF has been shown to be essentially equivalent (for most practical

(1)1

(1)The latter approximation, associated with the potential % may be regarded as

a particular case of the first-order slender-ship approximation r , associated

with the potential c(p) ; specifically, the potential 4) is the zero-Froude-

number limit of the first-order potential 4(1). A major difference between the

(1) (1)1
potentials ( and 0i0- resides in the waves that are present in the potential
(1) but are ignored in the zero-Froude-number potential i ()". For the present

problem of wave resistance, it clearly is appropriate to retain the waves in the

potential (i)

'1
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9. The first-order slender-shipapproximation

The first-order slender-ship wave-resistance approximation r is obtained

by taking the potential in expression (6.6) for the Kochin free-wave amplitude

function K(t) as the first-order slender-ship potential s M 0 given by equation

(5.2a), or equation (5.8) in the case of a single-hull ship with port and starboard

symmetry. Bv using expression (3.3) for the Green function, the poteutial

may be expressed in the form

(1) (1) (1) 2 (1) 2
(;F) ( N I;F ) + ( ;F1

where 0() is the zoro-Froude-number potential given by equat ion (S.1) , and the
(1) - 2 (1) -+ 2

potentials N (Fr;F ) and p (t,;F ) are defined below. rhL nonoscillatory near-

field potential (i is defined by

4 7 N (&;F 2) = fh(N+i/r')n da + F2c (N-i/r-)n t dC (9.1a)

* 2
where NEN( ,x;F ) is the function given by the integral (3.5) or the alternative

2 2 1/2
integral representations (3.5a) or (3.6a), and r-[(-x) +(n-y) +(C+z) . The

wave potential (1) in equation (9.1) is given by

p(1) F fhWn da + F
2 fWn2 ty d , (9.1b)4r W  ( ;F2 ) F2wxd

W xc x y
- 2

where WrW(,x;F ) is the wave function defined by the integral (3.4).

By using equation (3.4) in equation (9.1b), we may express the wave potential

(i) in the form

(1) t 2 2 2 1/2 2 1/2 (0) 2)
I W (t;F) Tmf exp[F2(I+T2)I{(l+r2)I2+i($+Tn)l]K O(T;F2)d- , (9.2)

where the (r;F 2 ) is defined as

K(0 ) (T;F 2  En2t de + F2fh exp{F-2 (l+T2 )z}En da (9.2a)

in which c- and h, represent the portions of the mean waterline c and hull h between
t,2

the ship bow and the plane x=,, and E E(x,y;T,F ) is the function given by

I-2 9 1/2(
E(x,v;-,F ) = exp[-iF (l+rt) x .

4(0) 2
Comparison of equations (9.2a) and (7.1) shows that the function K (t;F 2 ) is

(j , (0) 2
closely related to the zeroth-order slender-ship approximation K (t;F 2 )

to the Kochin free-wave amplitude function.

The nonoscillatory near-field potential I) vanishes as F-0 (and thus is
i' .~~~(1) frsfiinl

negligible in comparison with the zero-Froude-number potential for sufficiently

small values of the Froude number); indeed, we have
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N+l/r' = O[F2 /(r) 2 and F 2(N-/r') = -2F 2/r + O[F4 /(r') 2 as F O.

It must however be noted that these asymptotic approximations are not uniformly

valid with respect to r'. As a matter of fact, we have

N+l/r' = 2/r' - (2/F 2)[l-(z+c)/(r+jx-&j)I + O(r'/F 4 ) as r'+O, and

F 2(N-/r') = -2[l-J(r'+Ix-&I)] + O(r/F 2 ) on c as r'+O.

The integrand of the waterline integral in expression (9.1a) may thus be seen to

be a continuous function. The function N can be evaluated numerically without

difficulty by using expressions (3.5) and (3.5a), as is discussed in Noblesse (1978).

Indeed, the integrand of the integral in expression (3.5a) is a continuous function

for -l<tl and O<r'<o; the integrand of the integral in expression (3.5) is also

continuous for -l<t<l provided r' is not zero (a logarithmic singularity emerges

as r' O). Expression (3.5a) is well suited for evaluating the function N7 for small
2

values of r'/F , whereas expression (3.5) is better suited for large or moderate

values of r'/F 2 (for r'/F 2 greater than about 2.5). In particular, the integral

in expression (3.5a) vanishes as r'-O, whereas the integral in expression (3.5)

vanishes as r'- -. Furthermore, the three-terms ascending series derived from

expression (3.5a) in Noblesse (1978) can be used for sufficiently small values of
2r'/F , and the asymptotic expansion associated with expression (3.6a) and given in

Noblesse (1975) can be used for small values of ly-nl/F 2 and large (or even moderate)
2values of r'/F . For practical purposes, an approximate expression for the function

N may actually be sufficient. A fairly-simple algebraic approximation to the function

N, obtained by combining the above-mentioned ascending series and asymptotic expansion,

will be given elsewhere.

By using equation (9.1) in equation (6.6), we may express the first-order slender-

ship approximation to the Kochin free-wave amplitude function in the form

K(1) = K(0)+ K() ( 1)+ K(I). K(I),93
K K K 0 + KN + KW -K 93

where the functions K K 0 , N , KI , and K G are defined below.

The function K (0 ) corresponds to the zeroth-order approximation defined previously

by equation (7.1), that is we have

K(O) (t;F 2  f En2t d + F-2r hex{F-2(1+t2)!En 2a. (9.4)
t x y ( hexp x

The functions K I ) and (I) correspond to the use of the approximations ='i and
Srespectively, in the term- in expression (6.6) that depend linearly on ;

we thus have

".. .........
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((1)+ 1) = F 2 (3+t 2 )l/ 2 ft 2 1/2

0 + t i+F2(t /at-nCt a/d)/(l+t2) 1 / 2 dy

- F-(l+t )fhexp{F- 2(l+t2)z}El[nz-i(nx+tny)/(l+t2 ) i2da, (9.5)

where -S (x;F ) represents the nonoscillatory near-field potential 1)+ 1)

In equations (9.4) and (9.5), the function EEE(x,y;t,F 2) is given by

E(x,y;t,F 2 exp[-iF- 2(l+t2 ) /2(x+ty)].

Equation (9.5), with io taken as the wave potential 4 W, also defines the
function However, it may be more convenient to express the function (1)

in the form
(1 ; 2 )  (1 2)d
(1)t 2 (l/)f k l)(-;t;F (9.6)

which may be obtained by using expression (9.2) for the potential Wl) The function
(1) 2

kW (r;t,F ) is given by

kl (T;t,F ) F (l+t )22 f E[ii+F 2 (t 4/aL-n t 3/hd)/(l+t ) /2It de
c x zy y

-4 2 -2 2 2 2 1/2
- F-(l+t2)fhexp{F (2+T +t )C}E[n z-i(n x+tn y)/(l+2t ) Ida , (9.6a)

where the functions EEE(E,n;t,F 2 ) and ,;t,F 2 ) are defined as

E(2,n;tF 2 ) exp[-iF-2 ( 2+t2)/2 (c+t()0)

(1,n;T,F 
2 ) - Im expjiF 2(l+T2 ) 1/2(+T)] K(0)(t;F 2

with KO (T;F 2 ) given by equation (9.2a). Finally, the function K il ) in equation
a

(9.3) is associated with the integral over the mean sea surface a in equation (6.6),

and is given by

(1) 2 -2 2 1/2 (1)K (t;F 2) = J exp{-iF- (l+t ) / (x+ty)}q( )dxdy (9.7)
a

where the nonlinear free-surface flux q((1) ) is defined by equation (2.2).

If the mean waterline c, the mean hull h, and the mean sea surface o in the

vicinity of c are subdivided into small rectilinear segments and planar triangular

elements, the waterline, hull, and sea-surface integrals can be expressed as sums

of analytical functions, corresponding to analytical integration over the elementary

rectilinear segments and triangles. The details of this numerical implementation of

the first-order slender-ship approximation to practical hull forms will, however,

not be examined in this study, which is primarily concerned with the exposition

of the theory.

iI
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For practical applications, the first-order slender-ship wave-resistance

approximation r(1 ) is regarded as the main result of the present slender-ship

theory of wave resistance. However, second-and higher-order approximations can

also be defined. Two second-order approximations indeed are briefly examined in

the following section.

ri
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10. The second-order slender-ship approximation
(2)

A second-order slender-ship wave-resistance approximation r can be defined

by taking the potential 4 in expression (6.6) for the Kochin free-wave amplitude

function K(t) as the second-order slender-ship potential s(2) given by

(2) -t (1) -' (1) 2f (1
4(() = ,(() - L(t;()) - F 0oGq((l))dxdy , (10.1)

()(1)
where L(;4 ) is the linear transform of ) defined by equation (9.2c). An

interesting alternative to the above second-order potential may be obtained by

seeking a solution of equation (5.2), in which the nonlinear free-surface correction

integral will be neglected, in the form 4(Z) = k('W(F) k(t)4(1 )Ci), where

k() is assumed to be a slowly-varying function.

The term =-, O(x)-O(-)_ k(x)4(x)-k(Z) () = k -kP, in equation (5.2c)

may be expressed in the form Similarly,

the terms / _ 'D(kl)/'C and ',/d = h(k )/d may be expressed in the forms

'(k-)/3t-k,9 /D+k,3 /W1 and D(k)/ad-k, /Dd+k*/Dd, respectively. The equation

)(Z) (Z) - L(10.2)

obtained by neglecting the nonlinear free-surface correction term in equation (5.2b),

can then be expressed in the form

= ,+ kL(;) -

By multiplying this equation by ', and using the relations k,* = 0* and k

we may obtain

, + (L1;) - ,L( ;4). (10.3)

which may be regarded as an alternative form of equation (10.2).

If the (Neumann-Kelvin) potential 4 were actually proportional to the first-

order slender-ship potential 0 z (1), the term 0,0-0, would vanish, and equation

(10.3) would yield the solution

(()) - 2 (10.4)OW = 0 (0 [ .(04

Use of the assumption iL('+E(l )1<<[ (1) 1) 6 in equation (10.4) yields

= - L(1) ).

It may then be seen from equation (10.1) that the potential 0(&) defined by equation
(2).+

(10.4) is approximately equal to the second-order potential ()(L), if the nonlinear

free-surface correction term is ignored. The potential 0(21 given by

'i
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M)( ) [()(2)2 1 ()+L(E;())] _ FjaGq(0) )dxdy (10.5)

thus provides an alternative, computationally-equivalent, second-order slender-

ship approximation to the velocity potential 4.
(2)

In the zero-Froude-number limit, the second-order potential () and the
modified second-order approximation (2)become the potentials (2) and 0

respectively, given by

(2) - ) - L (1) (10.6a)

(2 [4(1)()2 /[() (1) (0 b

M= 0 (1)()L(;40 )
where 0) -0 is the first-order potential given by equation (5.4a) and L0( ;))

is the linear transform of O)l) defined by equation (5.4b). It is proved in

Noblesse and Triantafyllou (1980) that the modified second-order approximation

(2 is actually exact in the particular cases of ellipsoidal hull forms. Further-

more, calculations for two-dimensional flows about ogives for various values of

the thickness ratio, have shown that the potential 0)- provides a fairly-accurate

approximation to the exact potential 0 (even for large values of the thickness
(2) (lhuhti

ratio), superior to the straightforward second-order potential 0 (although this

approximation is quite satisfactory for values of the thickness ratio equal to

.1 and .2). These results for the zero-Froude-number case suggest that the modified

second-order slender-ship potential '(2) given by equation (10.5) may provide a

fairly-accurate approximation to the velocity potential 4.

5,

I

5.

I
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Appendix A. Interpretation of the waterline integral

Let us consider the closed body consisting of the mean hull surface h closed

by a horizontal "lid", t say, slightly submerged a depth 6 below the mean sea plan(-

z = 0, so that the "lid" £ becomes the "interior waterplane" o. in the zero-,4ub-
1

mergence limit 6 = 0. The integral identity corresponding to equation (4.9) for

the fully-submerged body h+Z is

fdGV 2 dv- f3+o0(C /z+F 2 2 /x 2 )dxdy + fh+t[G /an-(c-,*)3G/Dn]da , (A.1)

where d is the mean flow domain outside the body h+C. This identity may be expressed

in the form

= fdG 2 dv - fG( /3z+F2 3 2 /Dx 2 )dxdy + fh[G /5n-( -4,)5G/ n]da + I ,

where the term I is given by

I = -f G(5 /3z+F 2 2 2/5x 2)dxdy + ft[Ga/z-(-*)5G/3z]dxdy
1

since we have Dp/5n 5'/Sz and SG/3n - IG/Sz on the horizontal lid C.

By expressing the integrand of the integral over the lid e in the form

G(50 /3z+F 22 /x 
2 ) - (- )(G/az+F 2 2G/x) - F 2[G /Sx-(+-4,)SG/x]/x

and using the identity

fe3[GM¢/Dx-( - ,)3G/x]/ xdxdy = -fc[(G90/x-(O-O,) G/axldy,

we may then obtain

2 2 2 2 2 2
I = -J G(30iz+F 2 2/qx )dxdy + fJG( /z+F 2 2/ax )dxdy

2G/x2)dxdy + F2 fc[GC3/x-(O-*)3G/3xldy.

In the zero-submergence limit 6+0, the first two integrals cancel out one another

and the third integral vanishes, so that the above expression reduces to the water-

line integral

I = F2fc[G/Ix-(+- )(/x]dy.

The identity (A.1) for the slightly-submerged closed body h+f thus becomes the

identity (4.9) for the sea-surface piercing hull h, and the waterline Integral in

equation (4.9) may be seen to stem from the effect of the lid C closing the

sl ight Iv-stubmerged hul I .

I
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Appendix B. Integral identities for the interior problem and for the

combined exterior-interior problems

The "interior potential" , defined in the interior domain d., can he shown

to satisfy the identities

= rdGV2,i dv C( ( i/ z+F2 2 i/x2 )dxdy - h(G30i/ n_,i G/an)da

2 1

- f2f c(G;'/.3x-4iG/Dx)dy (B.la)

in the interior domain, that is for in d.+o.-h-c

0 =fd.GV 2 idv - fa. G(3 i 2a2/zx 2)dxdy - fh(G a / n-4 G/n)da
0 .1

- Fc (G I/ x- DG/9x)dy (B.lb)

in the exterior domain, that is for in d+-h-c, and

12 = fdGv2 *dv f G(4ilDz+F 2 2 i/ax2 )dxdy - fh(G /n- iG/9n)da

1 Fc.(G./x- i3G/Dx)dy 
(B.lc)

if Z is exactly on the boundary surface h+c (provided h+c is smooth at the polut ,

The integral identity corresponding to equation (4.9) takes the form

0= d GV2 idv - f G(3 i /z+F 2a2 1 x 2)dxdy - fh[Ga /n-( - )G/anlda
1 .1

F2 f [G 1 /x-('-)@G/x]dy. (B.2)
c

This integral identity, like equation (4.9), is valid for any point , whether inside,

outside, or exactly on the surface h+c, and indeed is equivalent to the set of the

three classical identities (B.la,b,c).

If we add the integral identities (4.6) and (B.lb), we may obtain the relation

f 2 dVdv + Jd.GV2 idv f G(D /az+F 2 2/ax 2)dxdy - f G(i /az+F 2 2i /x 2)dxdv

h 1

[G/n-/n)(-4)G/nda 2i+ fhG( n- / n-( -i) / n~a +F2J[G( /ax-a i/ax)-( -4i)2G/axldy.

Addition of the integral identities (4.6') and (B.la) yields the same relation,
i

except for the fact that , on the left side is replaced by 4. We then have the

relation

= f GV24dv - fz=O G(a/z+F 2 2/ax 2)dxdy

+ f[C(a4/an-d / n)-( -4 ) C/)n d a + F2 [G ( / )x-;) P x)-( - )IG/;Ixldy, (B.3)

where 4 on the left side and in the first two integrals on the right side corresponds

to € or ¢ for points outside or inside the hull surface h+c, respectively. Naturally,

*1
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the integral relation (B.3) can also be obtained by adding identities (4.9)

and (B.2). Indeed, this yields

1 1 i = fz<0GV 2dv fzG(3/z+F2 a 2/x 2)dxdy

+ h[G(/3n /n)-(-)G/n]da + [G(/x-i/x)-(-i)G/xdy

where Ci hG/3nda+F 2fcG/Dxdy. It was shown below equation (4.9) that we have

C.=O or 1 for i outside or inside h+c, so that the expression (1-Ci),+C is
1~ - i

identical to or for outside or inside h+c, and the above relation is

identical to relation (B.3).

1*

I
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Appendix C. Alternative expressions for the Kochin function

It was shown in section 8 that expression (6.6) for the low-Froude-number

Kochin free-wave amplitude function KeF , obtained by taking the potential as

the zero-Froude-number potential 00 . could be expressed in the Guevel-Baba-Maruo-

Kayo form shown in equation (8.3). An expression for the Kochin function similar

to expression (8.3) can also be obtained if the potential in expression (6.3)

is approximated by the first-order slender-ship zero-Froude-number potential Cl()

or more generally by any waveless potential, say, that vanishes sufficiently

2 2 1/2
rapidly as (x +y to permit the use of Green's identity for the potential

and the function E in the unbounded exterior domain d.
2

By writing the expression n +t 3p/4C-n t /d in the waterline integral
x x zy

in equation (6.3) in the form n x(n- _4/3n) + n x /3n+tx3/9-nz t y3t/d n x(n x-9/;n)
+ ),/3x , we may obtain

K(t) = F-2fh(E4/3n-WEPn)da + fc(E4/ax-4E/3x)ty d - f Eq()dxdy

+ F 2fhE(nx-3i/n)da + fcE(n - /3n)nx t yd. (C.1)

By applying Green's identity to the functions E and * in the mean flow domain d, as

was done for deriving equation (8.3) from equation (8.2), we can finally obtain

K(t) = F2 fhE(nx-3/3n)da + f c(n -n)nxtydP + F-2jE[3iP/Dz+F 232/3x2 -F 2q()]dxdy.(C.2

If the potential is taken as the zero-Froude-number potential ,0 we have 4/dn=n

on h+c and 3 /3z=O on a, and equation (C.2) becomes identical to equation (8.3) for

the low-Froude-number approximation K F. On the other hand, if * is taken as the

(1)potential ) , equation (C.2) yields the following alternative expression for the
(1)

first-order slender-ship low-Froude-number approximation K

K(F) (t) = F- 2 fhE(nx-a (l) / 3n)da + fcE(nx-3l)/3n)nxtydt + f E[D2  0I /ax 2 _q( ( 1) )]dxdv

(C.3)
Another expression for the Kochin function K(t) may be obtained if the potential

in equation (6.3) is approximated by the first-order potential 0(I) or its zero-

(1)
Froude-number limit , which are defined in the domain d. inside the hull surfaceFrodenumerlimt '(1)fo (1)

h as well as in the exterior domain d. The potential or () is continuous

across the hull surface h+c. Equation (C.1) may thus be expressed in the form

K(t) = F-2 fh i(Ea/3n-ODE/,n)da + f c.(E/,/x-4DE/3x)tydt - f Eq(p)dxdy, 1

+ F_fh E(nx-30/Tn)da + f E(nx-' /n)n t df , (C.4)
C. x x y

where h. and c. represent the interior sides of the mean hull surface h and waterline

c. In other words, the derivatives ;0/3n and 3a/ax, which are discontinuous across

h+c, are evaluated on the interior side of h+c in equation (C.4), whereas
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they are evaluated on the exterior side of h+c in equation (C.1).

Both the potential p and the exponential function E satisfy the Laplace

equation in the interior domain di , so that we may use the Green identity

fh (Ea /n- aE/an)da = fo. (PaE/az-Eaiz)dxdy.1 1

By using the fact that the function E satisfies the relation 4E/az+F a E/ax =0

on a. , we may express the integrand 3E/az-E34/az in the form F 23(E /Nx-OpE/3x)/x1 2 ~
-E(ap/3z+F 220X 2). Use of the relation

fa 3(E /3x-aE/3x)/3xdxdy = -fc (Ea /ax- aE/ax)t de
1 1y

then yields

fh i ( E)/n- E/hn)da = -F 2 fc. (E /ax-pE/ax)tyde - f E(as/z+F2 a 2/ax2 )dxdy.

Equation (C.4) may finally be expressed in the form

K(t) = F 2 fh E(nx-ap/Tn)da + fc E(nx-a/n)n tyd2

F2f 12 2 2 1 ~ (s~xy C5
F-2fo. E(a3/az+F a 2/ax )dxdy - foq(,)dxdy. (C.5)

a

If the potential ip in equation (C.5) is taken as the first-order slender-ship

potential ( , we have at/az+F a 2/ax2
= 0 on a. , and equation (C.5) becomes

l) =F-2fhiE(n-a4P(1I) d ci ~E(nxaA(1 )/an)n tyd - (1)

K (1)(t) = / n)da + Xt - a Eq(4 )dxdy. (C.6)

Equation (C.6) provides an alternative form of the expression for the first-order

slender-ship approximation K (1 ) defined by equations (9.3) through (9.7). If the
(1)

potential 4 is taken as the zero-Froude-number potential 1 , equation (C.5) yields

(1) = f ~ (1) +( Ea 1 )'' 2 (1) 2
S(t) F E(nx-a43@ /n)da + f Enx-ao)n nxydt - f Ea2 1/ax dxdy

- FOEq( 0))dxdy. (C.7)

An alternative form of expression (C.6) may be obtained by using the relation

[ A 1)/3n]h - [a(1)/Dnlh = n

where the notation [ ]h and C ]h implies that the term within the brackets,
namely ; ()n, is evaluated on the exterior and interior sides of the mean hull

surface, respectively. This then yields

n - [30 /anh= n + n - [a /an]hX X Xh

and equation (C.6) may be expressed in the form

K (I )(t) =K(O)(t) + F- 2 fh (nx-a3(1)/an)da + fcE(nx-3(1) /@n)nxtd - foEq( (1) )dxdy,(C.If
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where equation (7.1) was used. The following alternative form of expression (C.7):

K(1) K)(t) + F- 2 hE(n -00( 1 )/an)da + f E(nx_0l)-/n)n-tdt fEa2 (/ax 2 dxdF() +

- Eq(% 0 )dxdy (C.9)

may be obtained likewise.

I

I
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