
r D - 4.AD-A94 674 BELL HELICOPTER TEXTRON FORT WORTH TX
F/B 9/2

THE DATA FROM AEROMECHANICS
TEST AND ANALYTICS - MANAGEMENT A ND--ETC(U)I UNCLASSIFIED BHT_699 099 025 VDL 2 USAAVRADCOM-TR-8O-D-30B NL

USAAVRADCOMTR-8-D-30B

AD AO9674EVEaS91
THE DATA FROM AEROMECHANICS TEST AND ANALYTICS
- MANAGEMENT AND ANALYSIS PACKAGE (DATAMAP)
Volume I -Systems Manual .

Richard B. Philbrick
B3ELL HELICOPTER TEXTRON
P. O. Box 482
Fort Worth, Tex. 76101

December 1980

Final Report

Approved for public release;I distribution unlimited.

Prepared for

4t APPLIED TECHNOLOGY LABORATORY

U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)
..,,-Fort Eustis, Va. 23604

81 ~1

",

.

-A-±

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This report has been reviewed by the Applied Technology Laboratory, US Army Research
and Technology Laboratories (AVRADCOM), and is considered to be technically sound.

DATAMAP is a computer software system which provides direct access to large data
bases, performs analysis and derivations, and provides the user with various options for
output display, interactively or through batch processing. DATAMAP was designed to
utilize the AH-1G Operational Loads Survey data but is general enough to accommodate
other large, time-based, data sets resulting from test or analysis.

Improvements have been made to DATAMAP to enhance its graphics, analysis, and
operational capabilities in order to expand its versatility and usefulness as an engineering
tool. Volume I of this report explains the general structure and capabilities of the
improved DATAMAP, and Volume II provides information on programming considerations.

This project was conducted under the technical management of D. J. Merkley of the
Aeronautical Technology Division.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unlau so
designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection
with a definitely related Government procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished,
or in any way supplied the said drawings, spe~ifications, or other data is not to be regarded by implication or
otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rightS or
permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such
commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

S.T

UNCLASSIFIED " >
SECURITY CLASSIFICATION OF T S PAGE he- DI- Fote ... d)

SECURY PPORT OCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

t .USAAVPADC R -- D-30B i- g -bC

_ ", TYPE OF REPORT & PERIOD COVERED

0 HE DATA FROM EROMECHANICS TEST AND
.4 NAL TICS - MANAGEMENT AND 4NALYSIS PACK- Final ,Zchnical iep.rt j iAGE (DATAMAP)# __ [. luj .,
Volume If~ Systems Manuale" [(i 91E T-9-99 5T_

L Richard B. /Philbrick) DbK5T-79-C-l5;
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRO AM ELEMENT, PROJECT, TASK

Bell Helicopter Textron- 61 RK NIT.N.-BER.

Fort Worth, Texas 76101 00 265 K
II. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE

Applied Technology Laboratory, US Army R I Decambet-,198 0
search & Technology Laboratories (AVRADCO , /UMBEROFPAES
Fort Eustis, Virginia 23604 187 il
14. MONITORING AGENCY NAME 8 ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report) A

Unclassified
IS., DECL ASSI FI CATI ON /DOWN GRADING

SCH EDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abltrolc entered in Block 20, If different frm. Report)

IS. SUPPLEMENTARY NOTES

Volume II of a two-volume report.
19 KEY WORDS (Continue on revere side If necesar) end Identify by block number)

Helicopters, Data Bases, Data Reduction, Data Management,
Computer Graphics, Interactive Graphics, Signal Processing,
Mathematical Analysis, Acoustic Analysis.

20. ABSTRACT (' e t- m t.. - ,O e ed If r-ee rey od Identify by block number)

The Data from Aeromechanics Test and Analytics - Management and
Analysis Package (DATAMAP) was designed and programmed as a com-
puter software tool for data management and processing of large,
time-based data bases. Particular attention is given to rotor-
craft-related analyses. The package will process data stored in
two basic formats. The first format is that used for the Opera-
tional Loads Survey (OLS) test data base and anticipated for use
in planned flight test programs. The second format is more-

SD IR 14n3 EDITION Of I NOV 6S IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (BN- Dl E tered)

'1

/ /-
-1- --

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Wh- D f.t-ed)

20. ABSTRACT (Continued)

general; it accommodates various data structures common to
analytical data bases. This particular input capability is
demonstrated by an interface between the Rotorcraft Flight
Simulation Program (C81) and DATAMAP. The package transfers
selected data to a large, direct access disc file and maintains
the data on a semi-permanent basis. Data are retrieved from
this file, processed, and displayed interactively or in batch.
Plot output is generated on a Tektronix 4014 or an incremental
plotter (e.g., Calcomp).

A small sample of available processing options includes
amplitude spectrum, harmonic analysis, digital filtering, auto-
spectral density, frequency response function, acoustic analyses,
and blade static pressure and normal force coefficient deriva-
tions. This program will accommodate data from multiple
sensors imultaneously for processing of functions with two
geometric' independent variables (e.g., chord and radius).
Output options include printout, single or multiple curve X-Y
plots, contour plots, and pictorial representation of 3-dimen-
sional surfaces. User input is free field with errors
diagnosed where possible. Prompting for available command
input is optional.

The package is written entirely in FORTRAN. Package specifica-
tions require nonstandard FORTRAN coding to be used, but the
package has been made as easily transportable as possible. In
particular, DATAMAP is installed on a Digital Equipment Cor-
poration VAX 11/780 as well as on the originally intended IBM
360 and 370 systems.

This report is in two volumes. Volume I is a user's manual and
Volume II is a systems manual for assistance in program main-
tenance, modification, and/or installation.

,, Accession For / _
NTIS GRA&I..

DIC 'J3Kf I
By

AvD i s r i b',,, t i on

UNCLASSIFIED
'1 SECURITY CLASSIFICATION OF THIS PAGE(Fen Dil Entered)

I0

PREFACE

DATAMAP Version 2.00 (formerly known as the Operational Loads
Survey Data Management System) was developed under Contract
DAAJ02-77-C-0053 for the Applied Technology Laboratory, U. S.
Army Research and Technology Laboratories (AVRADCOM) to pro-
cess the data measured by the AH-lG Helicopter Aerodynamic and
Structural Loads Survey (OLS). This survey, performed for
Applied Technology Laboratory (ATL), resulted in a comprehen-
sive base of helicopter test data including measurements such
as airfoil surface pressures, leading-edge stagnation point,
local flow magnitude and direction, blade accelerations,
bending moments, and the attendant responses in the control
system and airframe. The data base included 72,000 separate
digitized functions of time from 367 transducers. This data
base, together with the techniques used for measurement of the
data, is documented in Reference 1.

DATAMAP Version 2.00, documented in Reference 2, has been
successfully used to process the OLS data base for a number of
projects both at ATL (Fort Eustis, Virginia) and at Bell
Helicopter Textron (BHT). To enhance the usefulness of this
software, Contract DAAK51-79-C-0015 was awarded in May of 1979
by ATL. This contract required BHT to modify DATAMAP to
incorporate new analysis, operational, and graphic capabili-
ties, and also to provide an interface between the Rotorcraft
Flight Simulation Program (C81) and DATAMAP. Documentation
prepared under this contract for DATAMAP consists of two
volumes. Volume I provides user instructions and information

'Gerald A. Shockey, Joe W. Williamson, and Charles R. Cox,
AH-lG HELICOPTER AERODYNAMIC AND STRUCTURAL LOADS SURVEY,
Bell Helicopter Textron, USAAMRDL Technical Report 76-39,
Eustis Directorate, U.S. Army Air Mobility Research and
Development Laboratory, Fort Eustis, Va., February 1977,
AD A036910.

2Richard B. Philbrick, and Alfred L. Eubanks, OPERATIONAL
LOADS SURVEY - DATA MANAGEMENT SYSTEM, Bell Helicopter
Textron, USARTL Technical Report 78-52A and 52B, Applied
Technology Laboratory, Fort Eustis, Virginia, January 1979,
AD A065129 and AD A065270.

3 James R. Van Gaasbeek, and P. Y. Hsieh, ROTORCRAFT FLIGHT
SIMULATION PROGRAM C81 WITH DATAMAP INTERFACE, Volumes I and
II, Bell Helicopter Textron, USAAVRADCOM Technical Report
80-D-38A and 80-D-38B, Applied Technology Laboratory, U. S.
Army Research and Technology Laboratories, Fort Eustis,
Virginia,

.4

]3

on the analytical methods used in the software. Volume II,
the Systems Manual, details the various programming con-
siderations. Information on the C81 - DATAMAP interface is
also contained in Reference 3, which was produced for this
contract.

Technical program direction was provided by Mr. D. J. Merkley
of ATL. Principal Bell Helicopter Textron personnel associ-
ated with the current contract were Messrs. R. B. Philbrick,
A. L. Eubanks, W. R. Dodds, J. R. Van Gaasbeek, and P. Y.
Hsieh.

4

4;.:>

TABLE OF CONTENTS

PREFACE... 3

LIST OF ILLUSTRATIONS....................................... 8

LIST OF TABLES.. 10

1. INTRODUCTION.. 11

2. FILE CREATION PROGRAM................................... 13

2.1 MASTER FILE STRUCTURE.............................. 13
2.2 FILE CREATION PROGRAM FLOW 21
2.3 NON-BHT DATA FORMATS............................... 30

3. STRUCTURE AND FORMAT OF THE DATA TRANSFER FILE 35

3.1 DATA TRANSFER FILE FEATURES........................ 35

3.1.1 Format Types................................ 35
3.1.2 Physical File Characteristics 35
3.1.3 Record Types................................ 36
3.1.4 Data Structure.............................. 37
3.1.5 Sample Rates................................ 37
3.1.6 Info File Group Information 37

3.2 DTF RECORD FORMATS................................. 37

3.2.1 Specific Data Representation 37
3.2.2 Record Type Label........................... 38
3.2.3 Instruction Records......................... 38
3.2.4 Counter Records............................. 38
3.2.5 Item Code Records........................... 42
3.2.6 Data Records................................ 45
3.2.7 Info File Records........................... 45

3.3 DTF RECORD SEQUENCE................................ 49

3.3.1 Instruction Records......................... 49
3.3.2 Data Records................................ 49
3.3.3 Item Code and Counter Records 51
3.3.4 Info File Records........................... 51
3.3.5 Unspecified Record Types 52
3.3.6 Examples of Record Sequences 52

Io

TABLE OF CONTENTS (Continued)

Page

4. PROCESSING PROGRAM...................................... 54

4.1 STRUCTURE AND FLOW................................. 54
4.2 PROGRAM INITIALIZATION............................. 54
4.3 USER INTERFACE..................................... 57

4.3.1 User Interface Routines..................... 57
4.3.2 User Input Encoding......................... 60

4.4 PROCESSING... 89

4.4.1 Processing Flow............................ 89
4.4.2 Scratch Files............................... 94
4.4.3 Info File Retrival.......................... 98
4.4.4 Replacement/Addition of Analysis or De-

rivation Routines........................... 99

4.5 COMMAxND SEQUENCING................................ 101

4.5.1 Command Sequencing File.................... 101
4.5.2 Command Sequencing Routines101

4.6 MENUS.. 103
4.7 GRAPHICS... 1042

4.7.1 Tektronix/Calcomp Plotting Interface 104
4.7.2 X-Y Plots................................... 105
4.7.3 Contour Plots.............................. 106
4.7.4 Surface Plots.............................. 107

4.8 DATA RETRIEVAL..................................... 107

5. UTILITY ROUTINES.. 109

5.1 DIRECT ACCESS...................................... 109
5.2 STRING HANDLING................................... 111
5.3 SORTING.. 112
5.4 SUBROUTINES TO ENHANCE TRANSPORTABILITY 112

6. TRANSPORTABILITY CONSIDERATIONS........................ 113

6.1 THE DATAMAP LIBRARY............................... 113

6.2 DIRECT ACCESS...................................... 113
t6.3 CODING VARIATIONS................................. 114

6.4 COMPUTER WORD PROBLEMS............................ 114

6

00.

TABLE OF CONTENTS (Concluded)

Page

6.4.1 String Storage and Processing............... 114t
6.4.2 BHT-GDC Format Tape Processing.............. 115

6.5 SPECIAL ROUTINES.................................... 115
6.6 GRAPHICS.. 117

7. FILE AND LINKING REQUIREMENTS FOR DATAMAP PROGRAMS 121

7.1 PROGRAM LINK INPUT REQUIREMENTS.................... 121

7.2 PROGRAM RUN TIME FILE REQUIREMENTS................. 122

8. REFERENCES.. 129

APPENDIX A - FILE CREATION PROGRAM COMMON................... 130

APPENDIX B - PROCESSING PROGRAM COMMON VARIABLES............ 146

APPENDIX C - JOB CONTROL LANGUAGE (JCL)..................... 182

7

LIST OF ILLUSTRATIONS

Figure Page

I Absolute record #1 master directory record 14

2 Relative record #1 (partition offset + 1) parti-
tion initial record............................... 14

3 Relative record #2 (partition offset + 2) parti-
tion access record............................... 15

4 Directory relative record #1 (partition offset +
directory offset + 1), counter directory initial
record (more than 127 counters assumed) 15

5 Directory relative record #L (partition offset +
directory offset + L), counter directory continu-
ation record with termination 17

6 Directory relative record #1 (partition offset +
directory offset + I), item code directory for
counter 'C' (counter entry #2, Figure 4) 17

7 Information record for data of BHT-GDC format
origin.. 18

8 Information record for data of DTF origin 18

9 Master File structure............................. 20

10 File Creation Program flow diagram (first part). 22

11 File Creation Program flow diagram (last part) 23

12 CDC format input subroutine block diagram 27

13 DTF data format input subroutine block diagram 29

14 DTF instruction record format 39

15 Counter record format............................. 40

16 Time base field format........... 41

17 Item code record format................. 43

LIST OF ILLUSTRATIONS (Concluded)

Figure Page

18 Item code information field format 44

19 Data record format............................... 46

20 Info file record format........................... 47

21 Info file record group-information field format. 48

22 Storage of bundle sequences in data record se-
quences... 50

23 Examples of acceptable and unacceptable record
sequences... 53

24 General flow of Processing Program 55

25 User interface flow diagram (first part) 58

26 User interface flow diagram (second part) 59

27 Example of part of the command entry tree struc-
ture.. 73

28 Structure of typical "HELP" message75

29 Typical IENTOP instruction option sequence 88

30 Processing flow diagram (first part) 90

31 Processing flow diagram (second part) 91

32 Scratch file record assignments 95

33 First scratch file record......................... 96

34 Structure of a data directory block 97

35 Structure of command sequence file102

9

4 f

LIST OF TABLES

Table Page

1 PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF 32

2 USER INTEFACE TREE STRUCTURE FOR ENTRY SPECIFI-
CATION .. 61

3 USER INTERFACE INSTRUCTION MATRIX 76

4 PROGRAM LINKING REQUIREMENTS 123

II

II

1, 0 1'1

S. V

1. INTRODUCTIONF

This volume documents the source code for the Data from Aero-
mechanics Test and Analytics - Management and Analysis Package
(DATAMAP) and should assist the programmer/analyst in modifi-
cation, maintenance, and installation of the package. However,
the reader must be familiar with Volume I of this report
before reading Volume II, since many structural features,
concepts, and terms for the system are introduced and defined
in Volume I. Volume I describes the purpose, capabilities and
analytical techniques of the system, and provides instructions
for system commands.

The DATAMAP source code is organized, written, and commented
so as to minimize the difficulties of software maintenance and
modification. This document was written both to further
clarify the flow a' structure of the system and to provide
specific assistanc- for certain kinds of system modifications.
Section 2 of this volume documents the File Creation Program
and also explains the detailed structure of the Master File.
One of the allowed input formats for the File Creation Pro-
gram, the Data Transfer File (DTF) format, is described in
Section 3. Section 4 describes the Processing Program, includ-
ing interpretation of command steps, processing, and graphics.
various utility routines that are used throughout the programs
are described in Section 5. Section 6 discusses installation
of DATAMAP on non-IBM computers, while Section 7 lists the
specific file and linking requirements for DATAMAP. Appen-
dixes A and B list the meanings for each of the common vari-
ables in the File Creation Program and the Processing Program.
This information is essential to understand and maintain the
code. Appendix C gives the Job Control Language and/or Time-
sharing option commands to compile, link-edit, and execute the
code.

Two specific kinds of system modifications are documented with
particular detail. Section 2.3 discusses modification of the
File Creation Program to accept tape formats other than the
BHT Ground Data Center (GDC) standard tape format or the DTF
format. Interface requirements for replacement of a process-
ing module are discussed in Paragraph 4.4.4. When a new
processing module is to be interfaced or when a replacement
module requires new user instruction specifications, a modifi-
cation of the user interface tree structure is required. This
structure is discussed in detail in Paragraph 4.3.2.

Transportation of a large software system from the computer
system it was designed for (in this case an IBM 370/168 or an
IBM 360/65) to a different computer system can be a difficult

11A

and time-consuming process. In coding DATAMAP, an attempt has
been made to minimize these difficulties and assure the trans-
portability of the software' The code is written entirely in
FORTRAN and use of IBM extensions to American National Standard
(ANS) FORTRAN have been limited. However, requirements for
various system capabilities have made necessary the use of
certain system, hardware, and installation dependent code.
All such code is identified and explained in Section 6. in
addition, system, hardware, and installation dependent code is
identified in the program source statements with rows of
stars, '*,above and below the nonstandard code.

12

2. FILE CREATION PROGRAM

2.1 MASTER FILE STRUCTURE

The Master File is a large direct-access file containing re-
cords that are individually addressable by number and are 1024
bytes long. A numerically contiguous sequence of these re-
cords forms a partition and is referenced by an offset speci-
fied in the master file directory, which is always a-bsolute
record 1 (Fi4ure1).

The first four bytes of this directory are four characters
that when set to '$$$$' indicate that the entire file is
initialized so that any record may be referenced directly.
The next entry is an integer giving the total available size
of the Master File in records. The third entry is eight bytes
long and is a string called the superword, which is the key
for the Master File Utility Program to list or delete parti-
tions without individual passwords or to restore the whole
Master File from tape. Following the superword in the direc-
tory record is a sequence of 63 possible 16-byte partition
specifications. The first eight bytes of a partition specifi-
cation form a string containing the partition name. The next
four bytes form an integer giving the offset for the parti-
tion. The final four bytes give the length of the partition
in records.

The location of the initial record for a partition is specified
by adding one to the partition offset (Figure 2). This record
contains information about the partition as a whole. The
users name is contained as a string in bytes 1-16. In bytes
17-32 is the password, which the user must have to modify or
replace the partition. The third entry is the directory
offset, which when added to the partition offset gives the
oflse for relative addressing of the partition directory.
Entries four and five specify the partition directory size and
partition data area size respectively in records.

The next sequential record contains the date and time, in
string form as indicated by Figure 3, that the partition was
last accessed.

The first directory record comes after the data records in the
partition and always contains the initial record of the coun-ter directory (frequently the only record in the counter

directory). Figure 4 illustrates what this directory might
contain if there were more than 127 counters in the partition.
Each counter entry includes a counter followed by the relative

13

'A 13

i. "

ENTRY BYTES CONTENTS PARTITION ENTRY

1 4 =4H$$$$ IF INITIALIZED
2 4 TOTAL RECORDS
3 8 SUPERWORD
4 8 PARTITION NAME
5 4 PARTITION OFFSET 1
6 4 PARTITION LENGTH

190 8 PARTITION NAME
191 4 PARTITION OFFSET 63
192 4 PARTITION LENGTH

Figure 1. Absolute record #1
master directory record.

B

ENTRY BYTES CONTENTS

1 16 USER NAME
2 16 PASSWORD
3 4 DIRECTORY OFFSET
4 4 DIRECTORY SIZE
5 4 DATA AREA SIZE
6 8 DATE CREATED

I e.g. 12/19/77

Figure 2. Relative record #1 (partition offset +1)
partition initial record.

14

jV

CONTENTS
ENTRY BYTES

DATE LAST ACCESSED

8e.. 12 20/77
TIME LAST ACCESSED

2 8 e.g. 10.32.30

Fiaure 3. Relative record #2 (partition offset+2)
partition access record.

ENTRY BYTES CONTENTS COUNTER ENTRY

1 4 COUNTER

2 4 ITEM CODE DIRECTORY 1
RELATIVE LOCATION

3 4 COUNTER (=C)

4 4 ITEM CODE DIRECTORY 2
RELATIVE LOCATION (=I)

253 4 COUNTER
254 4 ITEM CODE DIRECTORY 127

RELATIVE LOCATION
255 4 0 => CONTINUATION

256 4 COUNTER DIRECTORY CONTINUE
RELATIVE LOCATION = L

Figure 4. Directory relative record #1 (partition offset +
directory offset +1), counter directory initial
record (more than 127 counters assumed).

15

*1!
V

location for the first (possibly only) record of the item code
directory for that counter. A negative counter signals the
end of the counter directory as shown in Figure 5.

The structure of each item code directory is identical to the
counter directory as shown in Figure 6. In the example, the
directory contains only three item codes (and thus uses only
one record), but an item code directory could contain multiple
records and hundreds of item codes as shown for the counter
directory. Each item code entry includes a relative location,
which points to an information record in the partition data
area. Thus, only t~e- iFaition off~set is added to this
pointer to obtain the information record location.

The information record for an item code/counter data stream
contains information about that data stream and marks the be-
ginning of data. There are two allowed formats for the in-
formation record and these formats are shown in Figures 7 and
8. For Bell Helicopter Textron - Ground Data Center (BHT-CDC)
format data input, the information record format in Figure 7
is used. For DTF input, the format in Figure 8 is used in-
stead. DATAMAP determines which format is used from the four-
byte integer in entry six. The values zero and one indicate
CDC format input (Figure 7), while the value two indicates DTF
input (Figure 8). For either format, some of the values in
the information record are required for processing the data
stream and others in this record are only present for informa-
tion pruposes. The first data record follows the information
record sequentially and affVdta records for that item code/
counter pair follow sequentially and contiguously.

The first four information record entries are the same for
either format and are available for future use if a program is
written to condense partitions that contain unused aieas
where time histories have been deleted. These entries refer
back to the corresponding item code directory record and
position within the record. Entry five, the data stream

length, is the same for either format. This entry must be
divided by the number of points in a record (adding one for ai
non-zero remainder) to arrive at the number of records in the

The number of data values in a record is obtained from the
number of bytes in a record, currently 1024, and the data word
length, which depends on whether the data are calibrated or
uncalibrated as stored (entry 6). A calibrated value isI stored as a four-byte floating number, while an uncalibrated
value is stored as a two-byte integer, giving 512 uncalibrated
data values per record or 256 calibrated data values per
record. Uncalibrated data can be calibrated using entries 27
and 28.

16

ENTRY BYTES CONTENTS COUNTER ENTRY

1 4 COUNTER
2 4 ITEM CODE DIRECTORY 128

RELATIVE LOCATION
3 4 COUNTER
4 4 ITEM CODE DIRECTORY 129

RELATIVE LOCATION
5 4 -=> END OF COUNTERS -

255 4 -1 =>ENDED
256 4 0

Figure 5. Directory relative record #L (partition offset +
directory offset +L), counter directory continuation
record with termination.

ENTRY BYTES CONTENTS ITEM CODE ENTRY

1 4 ITEM CODE
2 4 DATA INFO RECORD 1

RELATIVE LOCATION
3 4 ITEM CODE
4 4 DATA INFO RECORD 2

RELATIVE LOCATION
5 4 ITEM CODE (P)
6 4 DATA INFO RECORD 3

RELATIVE LOCATION (=K)
7 4 -1 => END OF ITEM CODES -

255 4 -1 => ENDED
256 4 0

Figure 6. Directory relative record #I (partition offset +
directory offset + I), item code directory for
counter 'C' (counter entry #2, Figure 4). k

17

Inf-

ENTRY BYTES CONTENTS

1 4 ITEM CODE
2 4 COUNTER
3 4 DIRECTORY RECORD LOCATION
4 4 SEQUENCE POSITION IN RECORD
5 4 DATA STREAM LENGTH (DATA POINTS)
6 4 i1=CALIBRATED, 0-UNCALIBRATED

7 4 START TIME8 4 STOP TIME
9 4 ALIGNMENT OFFSET (SEC)

10 4 ADDITIONAL OFFSET (SEC)
11 2 TRACK-BAND WORD
12 2 ANALOG FILTER RATE CODE
13 30 ITEM CODE DISCRIPTION
14 6 ITEM CODE UNITS
15 4 REFERENCE VALUE (REF)
16 4 DELTA CAI VALUE (M)
17 4 CAL CO12AND (VCC)
18 4 CAL SHIFT VALUE (VCS)
19 4 REPEN A
20 4 INTERCEPT VALUE (B)

21 4 DIGITAL FILTER CUTOFF (HZ)
22 4 DATA RATE REDUCTION (SKIP) FACTOR
23 4 INITIAL DATA RATE
24 48 ASSIGNMENT RECORD

FIELDS 6 THRU 13
25 4 DATA TYPE: IMIN/M X, 2HISTORy
26 4 ANALOG PLAYBACK SPEEDUP FACTOR
27 4 CAL SLOPE (XM)
28 4 CAL INTERCEPT (XB)

Figure 7. Information record for data of BHT-GDC
format origin.

tNTNY BYI''ES CONTI'NTS

1 4ITT CODE
2 4 COUNTIP3 4 DI FC'TOP\ RE CORD IOCAIItN

4 4 SEQUIKCE T1';VT ON IN P1<001)
5 4 DATA STRT-I:AN II, 'l_ (TAA Io I NTS)
6 4 .2-- . - DTT CAIjIIRAfTET)
7 8 t)LIClt') DAlI'"TN I),Y, " - "
8 4 AIICNNT<N1 OIF-, I ()

10 4 01 311A F I IIR ITOll
11 52 ITEM C2T)I :C t N
12 12 1 TEN ODUIT
13 4 0

15 8 MODI.. 14 4 ' lMV T RAT r (NU MB P IN . .
16 8 . . NlT N17 8 (NOOcN NT WI I tT18 8

1 9 8 .. I T I N UJ M B E R_
20 8 MODE- I ,cOD ______
21 4 DATA 'P: I MIN/AX, 2-ISTORY
22 12 -- TIM 0 MA' I;R li.ilM.SS.TTT
2 3 4 CC .CODE
24 4 0=UNSPECIF'IED, I=TEST, 2=ANALYTIC

Figure 8. Information record for data of DTF origin.

f 18

-..2 .

For the format in Figure 7, the sample rate (data points/se-
cond) of the data stored is obtained by dividing entry 23, the
initial sample rate on digital tape, by entry 22, the sample
rate reduction factor. The data type, entry 25, indicates
whether the data are time history or min/max data, although
use of this package for min/ max input data is not currently
planned. For the format in Figure 8, the sample rate is entry
14, which is stored as a four-byte floating word. The time
history - min/max indicator is entry 21.

For the format in Figure 7, entries 9 and 10 indicate the time
offsets in seconds applied to the data stream during transfer
from digital tape to the Master File. Entry 9 is for informa-
tion purposes and indicates the amount of data discarded in an
effort to line up the starting data point in time with all
other starting data points from the same counter. Entry 10
shows the amount of additional data discarded before a subse-
quent data point was saved on disc. A negative value for
entry 10 indicates no time alignment was done even though data
from other item codes for the same counter may be aligned.
The additional offset is then the absolute value of entry 10.
The corresponding entry numbers for the format in Figure 8 are
8 and 9.

The other entries are present largely for information and
display purposes and are all explained in Reference 4, except
for the digital filter cutoff, which is entry 21 for the
format in Figure 7 and entry 10 for the format in Figure 8.
This entry gives the cutoff of the low-pass digital convolu-
tion filter (in Hz) applied to the data during transfer from
tape to disc. A value less than or equal to zero indicates
that no filter was applied.

Now that the Master File and partition record structure have
been examined in detail, the overall structure of the Master
File can be considered by looking at Figure 9. The first
record of the Master File is the Master File directory record
which, for an existing partition, supplies an offset pointing
to the initial record of that partition. This initial record
contains a second offset pointing to the partition directory.S
The first record in the partition directory is the initial
record of the counter directory which, for a given counter,
points to the initial item code directory record for that
counter. The item code directory points, for a given item
code, to the information record in the data area for that item

code/ counter pair. The data stream follows the information
record contiguously.

4 L. J. Tieman, 'GROUND DATA CENTER STANDARD DIGITAL TAPE FOR-I.
MAT,' Bell Helicopter Textron Report 699-099-020, Fort Worth,
Texas, 21 April 1976.j

19

F MASTER FILE DIRECTORY

PART-
I TION
OFFSETL

- - -- - -PARTITION INITIAL RECORD

r --------- DATA STREAM INFORMATION-RECORD
I ITEM-

I DATA STREAM (COUNTER
DATA RECORDS jDATA DATA

DIRECTORY ENTRY AREA
II OFFSET__________ ____

PART-
ITION

-- COUNTER DIRECTORY RECORD

L -- ------------ ITEM CODE DIRECTORY RECORD PARTITION
DIRECTORY

MORE PARTITIONS

Figure 9- Master File structure.

20

Some advantages of the Master File structure are now evident.
First, a partition as a whole is easily portable since every
record in the partition is located with relative addressing.
Second, a partition directory is easily portable separate from
the partition since records within the directory are located
using a second order of relative addressing. Third, there is
no theoretical limit to the number of item codes or counters
stored or to the amount of data from an item code/counter data
stream that can be saved. Practically, physical disc space
limitations will limit these quantities.

2.2 FILE CREATION PROGRAM FLOW

The flow sequence of the File Creation Program is described
here with close reference to the flowchart on Figures 10 and
11 using the numeric label just outside each block.

Block 1 MAIN calls INLIST to read input commands according to
the free field format described in Volume I. READF is used to
interpret numeric input and group strings. MATCHR is called
to recognize keywords. PACK is used to transfer four charac-
ters to one four-byte word.
Block 2 MAIN lists the number of errors detected by INLIST
and then calls LISTCM to sort and list the data requests. Any
duplicate item codes or counters are noted and the duplicates
rejected.
Block 3 MAIN checks the number of errors detected by INLIST
and goes to an error termination point if one or more occurred
or if no input was requested; otherwise, the program goes to
Block 5.
Block 4 is an error termination in MAIN. The Master File has
not been disturbed at this point.
Block 5 If there are no input errors, MAIN calls SETUP1 to
read the first record of the Master File and check that the
Master File is initialized. If the Master File is not initia-
lized properly ('$$$$'), then the routine returns an error and
MAIN goes to Block 4. With proper initialization, SETUPi
double checks the initialization by attempting to read the
numerically highest record in the file. Failure on this read
attempt abnormally terminates the job.
Block 6 Assuming that the previously mentioned read attempt
succeeds, SETUP1 initializes the direct access scratch disc
file using the sequential alias for that file.
Block 7 SETUPi also provides WMS, RMS and FMS (routines which
do intermediate checking and apply the relative offsets
before performing direct access WRITE, READ and FIND calls
respectively) with preliminary offset and check values for the(I Master File and the scratch random access file. Control is
then returned to MAIN.

21

EAD AND QUALIFY INPUTr REQUESTS

15 SREDIPUT REQUESTS
SEIYAYERRORS DETECTED

3p

IS MASTER FILE INITIALIZED? N

YES

6 INITIALIZE DISC SCRATCH AREA

;E INITIAL RELATIVE OFFSETS

IS EFIDMTHFR SECESTED MO TRUNCAT E SAE

4ODE? YES A~tTTION4YES

.04N

REPMACE22

MODEI

~~YES

AN:N N

PA II LA"

N ITALII

Figure 11. File creation program flow diagram (last part).

23

Block 8 - MAIN then calls MAKRUM which sorts the partition
names by ascending location in the file and attempts to match
the name of the specified ADD/NEW/REPLACE partition.
Block 9 - (Still in MAKRUM) If a match for the requested
partition name is found, the program goes to block 10; if not,
the program goes to block 13.
Block 10 - (MAKRUM) A check is made on whether the requested
partition name was supposed to be 'NEW'. If so, an error has
occurred since a partition by that name already exists and the
program goes to block 4. If not, the program goes to block
11.
Block 11 - (MAKRUM) A check is made on whether the requested
partition name was supposed to be replaced. If so, the
program goes to block 12; if not, it goes to block 14.
Block 12 - (MAKRUM) The partition matched is removed from the
Master File directory and then the mode is changed from 'RE-
PLACE' to 'NEW'. Thus, the partition name will be retained
but different data will be added to the partition. Then the
program goes to block 14.
Block 13 - (MAKRUM) No match for the requested data set name
has been found so the program checks whether an 'ADD' or 'RE-
PLACE' has been specified. If so, an error has occurred so
the program goes to block 4. If not, the program goes to
block 14.
Block 14 - All gaps between the last record of a partition and
the first record of the next sequential partition are elimi-
nated. Any gap between the first sequential partition and the
Master File directory record is eliminated. The record space
following the partition to be modified is maximized. This
process of moving partitions up and down in the Master File
uses a scratch disc file so that a number of records are read
from the Master File to scratch and then from scratch to a new
location in the Master File. When this process is complete,
the total number of Master File records available for the
partition to be modified is computed. Then, the program goes
to block 15. As mentioned in Volume I, Section 3.2.1, the
entire Master File could be destroyed if too short a time
limit were specified for a run of the File Creation Program.
In particular, destruction of the Master File would occur if
block 14 of the File Creation Program were executing when the
time limit was encountered.
Block 15 - (MAKRUM) A comparison is made of the number of
Master File records available and the total number of records
requested for the partition. If fewer Master File records are
available than requested, the program goes to block 16; other-
wise, the program goes to block 17.
Block 16 - (MAKRUM) The space request is truncated to the

-4 amount of space available in the Master File. Then, the pro-
gram goes to block 17.

24

Block 17 - (MAKRUM) The space request (original or truncated)
is checked to assure that it provides a basic amount of space
for a partition or a partition increment. If the space is in-
adequate, the program goes to block 18; otherwise, the program
goes to block 19.
Block 18 - Is an error return from MAKRUM to MAIN and a termi-
nation message indicating the problem is generated. At this
point, the directory has been reset, excluding the partition of
interest.
Block 19 - MAKRUM returns to MAIN, which calls SETUP2 to pre-
pare for the partition creation/addition process. If in 'ADD'
mode, the existing directory is transferred to the scratch
random access file where it will be added to and modified in
the data addition process. If in 'NEW' mode, the directory is
initialized in the scratch random access file. Control re-
turns to MAIN and the program goes to block 20.
Block 20 - MAIN checks whether ALIGN has been specified and if
so, the program goes to block 21; otherwise, the program goes
to block 27.
Block 21 - MAIN calls a routine to provide alignment correc-
tion offsets for each item code desired for all counters.
These offsets will correct for time skew misalignment in the
data. The routine takes the lists of item-codes and counters
and provides a number of data points to be discarded (at the
original data rate) at the beginning of each item code/counter
pair data stream. An invalid offset is indicated with a -1.
Offsets are stored on disc by routine EXCORE. From here the
program proceeds to block 22.
Block 22 - MAIN tests the data input format that was specified
by the instruction input. For a nonstandard input format,
control passes to block 23. For the standard BHT-GDC format
(e.g., OLS data), control is passed to block 24. For DTF for-
mat input, block 25 receives control.
Block 23 - MAIN calls subroutine STRNGF to process the non-
standard format data. A different version of this subroutine
must be provided for each specific nonstandard format. Con-
sult Section 2.3 for specifications for this subroutine. When
processing is complete, control passes to block 26.
Block 24 - MAIN calls subroutine GDCFRM to process standard
BHT-GDC format input tapes. A separate block diagram and de-
scription is provided for this subroutine. When processing
is complete, control passes to block 26.
Block 25 - MAIN calls subroutine DTFFRM to process DTF format
input. A separate block diagram and description is provided
for this subroutine. When processing is complete, control
passes to block 26.

25

Mew

Block 26 -MAIN calls RESTRD to copy the partition directory
from the scratch random access file to the top of the parti-
tion. RESTRD returns to MAIN which then annotates the Master
File directory record to reflect the size and location of the
partition. Then, the program goes on to block 36.
Block 27 - MAIN checks to see whether a listing of the modi-
fiedT partition was requested. If so, the program goes to
block 37; if not, the program goes on to block 38.
Block 28 - MAIN calls MAP to list the item code/counter pair
data streams present in the partition along with some informa-
tion on each data stream. Then control returns to MAIN and
the program goes on to block 38.
Block 29 - MAIN checks whether a digital tape save of the re-
vised Master File is wanted. If not, the program goes on to a
normal exit at block 40. If so, the program goes to block 39.
Block 30 - MAIN calls SAVALL to save the partition on digital
tape. SAVALL then returns to MAIN and the program goes to
block 40.
Block 31 - Done.

At block 22 of the above flow sequence, the flow branches
to three different routines based upon the type of input.
For input that follows neither the BHT-GDC or the DTF format,
a special routine must be written as described in Section 2.3.
Following is a description of the GDC format input routine
with reference to Figure 12. The DTF input routine will be
described subsequently.

Block 1 In subroutine GDCFRM, an assignment record is read
from the input data tape.

Lo 2A loop is entered to process the data that follow each
assignment record. The loop assumes that a new assignment
record has been read at the start of the loop. This loop
will be called loop 2.
Block 3 Subroutine FITEM is called to determine whether the
assignment record specifies any item codes that are required
for transfer. If none are found, then control is transferred
to block 14. If one or more required item codes are found,
loop 4 is entered.
Loop 4 A loop is entered to process the several counters that
follow on the data tape. For each counter, the data for all
item codes specified in the assignment record will appear in
parallel.
Block 5 A record is read from the input data tape.
Block 6 The type of record found is tested. If an assign-
ment record is found, control branches immediately to the bot-
tom of loop 2. For a data record, control branches to block

7. If a calibration record or end of data were found, a tape

26

REAL) AN ASS IGNMENT RECORID

t.IVE l\ [A ASSIGNMENT RECORDS T

I I SPH' No'

I'll NI

vi:

4 I 1 P v '-'t I' !'I TN AN A.; I4;NNT. N1 PIc.L 'S

I- I
10 All A Pf.CI IV[

I) A:!; 5;NM[N':'

hATA

I IA I'T A

1't1 ''.11€

EN T, I' A

I
I AN 1 ,I'A ' I ,,:IX !P",111:;I I

Fiqur 12. I foma inu surutn bloc diagram.!A- 1

,,% I l " I 7I , I I :

N1

N,

Tf ~ ~ ;I: MIT& 'IF]' DIAT"A P' U'

i' Figure 12. GDC format input subroutine block diagram-

22

format error would have occurred. Branches to error message
codes are included at this point in the program for these oc-
curances but the paths are not shown to simplify the diagram.
Block 7 Subroutine FCNTR is called to test whether the counter
for the data record that was found is required for transfer.
If not, control branches to block 8. If the counter is re-
quired, the flow continues to block 10.
Block 8 The data tape is read until a calibration record is

Block 9 Calibration factors are updated if possible by sub-
routine CALUPD.
Block 10 Data from the tape corresponding to the counter
and to all item codes listed in the assignment record are
transferred to a sequential scratch file by subroutine TRANSC.
Calibration factors are updated if possible by subroutine
CALUPD.
Loop 11 A loop is entered to process each item code listed
in the assignment record that is required for transfer.
Block 12 Data for the current item code/counter pair are
transferred from the sequential scratch file to the Master
File. Subroutine SAVD is used if no digital filtering is
required. Calibration and/or sample rate reduction are ac-
complished by either of these subroutines as required.
Block 13 A test is performed to determine whether all required
data have been found. If so, control is transferred to block
15. If not, loop 4 is reexecuted.
Block 14 The input data tape is read until an assignment re-
cord is read or the end of the input data is encountered. For
the end of data, control is transferred to block 15. If an
assignment record is found, loop 2 is reexecuted.
Block 15 Subroutine GDCFRM is complete.

Following is a description of the DTF format input routine
with reference to Figure 13. Reference to Section 3 may be
required to follow the DTF record types.

Loop 1 Subroutine DTFFRM begins by entering a loop over in-
dividual DTF records or, for certain cases, sequences of DTF
records of the same type.
Block 2 Inside Loop 1, the routine tests whether an unproces-
sed DTF record is available in program memory. If so, control
is passed to block 5. If not, the flow branches to block 3.
Block 3 Subroutine INPDTF is called to attempt to read a DTF

Block 4 Subroutine DTFFRM tests the result of the read attempt
in Slock 3. If an error was detected, control is passed to
block 10. If an end-of-file was encountered, control is passed
to block 11. Otherwise, the normal flow proceeds to block S.

28

]V

I LOOP OVER INDIVIDUAL 1ME1 RECORDS ON CONTIGUOUS
DTF RECORD SEQ~UENCES OF THlE SAME? TYPE

22 ISNEW I TRY T(I RE AP

N"O

FS11 1N

IIAI
Figure 1 11F dat forma inpu surutn bl iarm

7 S :q,29kyI1,
4~ I -- pI .

P', ,I AN4.. -4

Block 5 The record type field is tested and based upon the
value of the integer in this field, control is passed to one
of several blocks. If the integer is out-of-range (i.e., less F
than 1 or greater than 16) control is passed to block 10.
Values of six through sixteen require no action and control is
passed to the bottom of loop 1. A value of one requires no
action except to test that no other type of record has been
read previously. Control is then passed to the bottom of loop
1. For values of 2, 3, 4, or 5, control is passed to blocks
6, 7, 8, or 9 respectively.
Block 6 A counter record is processed for counter and certain
other information that applies to all channels (item codes)
in the data that follow. A time base specification may be
processed.
Block 7 One or more item code records are processed for item
codes, item code sequence in the subsequent data, and possi-
bly for Info File information. A time base specification may
be processed.
Block 8 One or more data records are processed. The data are
transferred to a scratch disc file and then for each channel
the necessary filtering and/or interpolation processing is
performed and the data are stored in the Master File.
Block 9 An Info File record is processed. Each record contains
the basic structure and labels for one or more Info File groups.

2.3 NON-BHT DATA FORMATS

The File Creation Program can be modified to accommodate data
tape formats other than the standard BHT-GDC format through
generation of an appropriate replacement for the program stub,
STRNGF. The rest of the File Creation Program will continue
to provide the following functions: read user instructions,
manage Master File space, manage partition directory, write
data to Master File. The subroutine STRNGF must handle all
the details of reading the data from digital tape, consult
with the common block /LIST/ containing the user instructions
(see Appendix A), provide appropriate information for each
item code/counter pair, and provide the data for transfer to
the Master File in record size blocks.

Generally, it is more desirable to write a program to convert
a data base to DTF format than to write a STRNGF subroutine
and incorporate this routine in the FCP. This is true for
two reasons. First, the DTF format is specifically organized
to accommodate certain data base structures such as parallel
data and variable sample rates. A STRNGF subroutine would have
to include code to convert these structures, if necessary. Se-
cond, the STRNGF subroutine must reference COMMON values from
the FCP. Thus, the STRNGF routine may require rewriting for
each revision of the FCP.

e30

~30

2 ,I-i-

Table 1 lists a prototype version of STRNGF showing the se-
quence that must be followed to store data. The routine
ADDAT is appended to actually write data to the Master File.
However, code must be provided to satisfy the required func-
tion of STRNGF as listed in the program comments. Data must
be selected from digital tape using the user instructions in
/LIST/. Appropriate data must be extracted from the tape or
provided in some other manner for the information record for
each item code/counter pair. In some instances, STRNGF may
need to translate the identifiers on the input digital tape to
four-character item codes and integer counters with values
between 1 and 999999.

STRNGF will most likely provide calibrated, REAL data for
transfer to the Master File. However, the option is available
when the program is executed on a system with INTEGER*2 capa-
bility to store the data in integer format. In this case,
STRNGF must call ADDAT with twice as many records containing
INTEGER*2 values as would be provided if the values were REAL.
In addition, the appropriate calibration factors must be pro-
vided, and the information record value INREC(6) must be set
to zero to indicate that integer values are present.

When the sample rate is to be reduced, STRNGF must perform
this function before supplying the data to ADDAT. The sample
rate reduction factor must be inserted in the array location
INREC (28). Notice that the array location INREC(29) must
contain the original sample rate on tape before the sample
rate reduction factor is applied.

The subroutines LOCFIX, ADDAT and INIDAT are called by STRNGF.
The routines will appropriately manage storage of the data on
the Master File and annotation of the directory. The routines
also monitor error conditions so that the error returns must
be appropriately handled by STRNGF as shown in the prototype.

3

'1

i 31

I
w • .

TABLE 1. PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF

SUBROUTINE STRNGF
C
C PROTOTYPE &STRNGFQ ROUTINE FOR READING DATA-FROM
C NON-BHT-GOC STANDARD TAPE FORMATS FOR THE DATAMAP
C FILE CREATION PROGRAM.
C

DIMENSION INREC(256)
COMMON/LOCOM/ITEMN.ICNTRN.IDROFF.

$ IDASIZ.IDRSIZ.ITEMRC.ITEMSO
LOGICAL LCAL
COMMON/INFO/IRSIZ.MLOC.LOCO.IPOLES.HIGH.LCAL.IRAT.

" ISKIP.NPS.NPP.NOFF.ISEO.LSTRT.IADD INSIZ.INSIZD.
" IRDAIS.IRSAVS.ICNTR.XALIGN.MSETN
COMMON/KARD/ITEMTP4510).ITEMWI510).CALSH(26).

$ CALCMI26).CXM126).CXB(26).NMATCH.DCAL426)
LOGICAL LALIN.MAPIT.SAVIT.STRANG.LDTF.LDTFIN.

I LTHERE.LEXTRN.LALLIT.LALLCN.LSCAN
COMMON/LIST/ NITEMS.NCNtRS.ISPAC.ITAPES.IADNU.LALIN.

I NAMEE2).NPWDS4).NUSER(4I MAPIT.SAVIT.STRANG
2 *LDTF.NLOOK.LDTFIN.LTHERE.LEXTRN.LALLIT.LALLCN.LSCAN
3 .NCIR(0O).NOFFSTIIOO)*NPWANT(IO0)
4 ITEM4SIO).FILT(5IO).ICAL(510).ISKP(51.OIRATE(S)O)
COMMON/FILES/NRPS.NRSC.NSSC.NIT.NDIR.NREA.NWRI.

I NSAV.IALI.NIFO
C
C

lEND = 0
LW = IRSIZ/2

C
C SET UIP INPUT FROM NON-STANDARD TAPE.
C INSERT CODE AS APPROPRIATE.
C
C LOOP OVER SUBSETS OF THE DATA ON TAPE.
C

DO 500 I = I. 10000
C
C DETECT THE PRESENCE OF A SUBSET OF THE REQUESTED DATA
C CORRESPONDING TO ONE COUNTER AND ONE OR MORE ITEM CODES.
C ASSIGN A NUMBER BETWEEN ONE AND THE DIMENSION OF THE ARRAY
C 9ITEMW° TO EACH ITEM CODE IN THE SUBSET (ADJUST THE DIMENSIONS
C OF THE ARRAYS IN THE COMMON BLOCK /KARD/ AS NECESSARY). SET
C 0ITEMW(N)D FOR EACH ITEM CODE NUMBER, *N*. TO THE CORRESPONDING
C ARRAY POSITION OF THE ITEM CODE IN THE ARRAY IT7EM0. IF DATA
C ARE TO BE STORED IN INTEGER FORM. SET THE CORRESPONDING 'CXM'
C AND tCXBO ARRAY VALUES FOR CALIBRATION ON RETRIEVAL FROM THE
C MASTER FILE. SET 'NMATCH* TO THE NUMBER OF ITEM CODES IN THE
C SUBSET. INSERT CODE AS NECESSARY TO PERFORM THESE FUNCTIONS.
C
C LOOP OVER ITEMS IN THE SUBSET
C

DO 400 J = 1. NMATCH
C
C SET THE VARIABLES IlCNTRNO AND IlTEMN* TO THE COUNTER AND
C ITEM CODE RESPECTIVELY. SET THE ARRAY -INREC- WITH SOME OF
C REQUIRED VALUES FOR THE CORRESPONDING INFORMATION RECORD.
C .. INREC(I) = ITEM CODE = ITEMN
C .. INREC(6) I IF CALIBRATED DATA ARE TO BE STORED.
C = 0 IF INTEGER DATA ARE To BE STORED
C .. INREC(12-20) = ITEM CODE DESCRIPTION/UNITS WITH UNITS IN
C THE LAST SIX BYTES
C .. INRECI27) = DIGITAL FILTER CUTOFF, -1.0 IF NO FILTER
C APPLIED
C .. INREC128) = SAMPLE RATE REDUCTION FACTOR.
C = ISKP(ITEMW(J))
C .. INREC129) = SAMPLE RATE OF DATA ON TAPE BEFORE THE SAMPLE
C RATE REDUCTION FACTOR IS APPLIED
C .oINREC(42) = 2 (TIME HISTORY DATA. NOT MIN/MAX)

-
of

32

re.,. -.

TABLE 1. PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF (Continued)

CALL WMS' 2.1INREC.LW.JIERR)
IF(IERR *NE. 0)60 TO 580

C
C SET MCNTR TO THE ARRAY POSITION IN 'NCTRI ARRAY FOR THE
C CURRENT COUNTER. I.E.. SET MCNTR SO THAT
C ICNIRN = NCTRIMCNTR) ..
C INSERT CODE AS NECESSARY
C

CALL LOCFIX(NERR.INFO;iERR)
IF(NERR .NE. 0)G. TO 550

C
C LOOP OVER RECORDS OF OUTPUT FOR AN ITEM CODE
C

ISKIP 1
MLOC = IDASIZ * 2
D0 300 K P A 0 000

C
C READ THE DATA FOR THE NEXT RECORD. IF OUT OF DATA.
C BRANCH TO 350. GET DATA 4256 CALIBRATED OR 512 INTEGER
C VALUES) INTO THE ARRAY *INREC*. SET NUM TO NUMBER OF
C PUINTS IN THE RECORD.
c

CALL ADOAT(INREC.NUM.ICHK)
IFIICHK *EO. 0)GO TO 300

lEND = I
GO 10 350

300 CONTINUE
C
C ADD THE INFORMATION RECORD FOR THE TIME HISTORY
C]HAT WAS JUST WRITTEN ON THE PARTITION.
C
350 CALL INIDAT(J.MCNTR.NERR.INFOD.ERR)

IF(NERR *NE. O)G0 TO 560
IDASIZ = MLOC - I
IFIIEND *NE. O)GO 10 570

400 CONTINUE
500 CONTINUE

G0 To 1000
C
C DIRECT ACCESS WRITE ERROR STORING THE INFORMATION FILE
C 04 SCRATCH DIRECT ACCESS DISC.
C
550 WRITEINWRI.9000)IERR

GO TO 3000
C
C ERROR ADDING INFORMATION RECORD TO THE PARTITION.
C
560 WRITE(NWRI.900INERR.INFO.IERR

GO TO 1000
C
C OUT OF SPACE ON THE PARTITION
C
570 VRITEINWRI.9002)IERR

GO TO 1000
C
C ERROR ANNOTATING DIRECTORY FOR START OF DATA STREAM
C
580 WRIVE(NWRI.9003NERR.INFO.IERR

C
C
1000 RETURN

C
C
9000 FORMAT(3X.39H***ERROR STORING INFO RECORD ON SCRATCH.I0//)
9001 FORMAT(3XE.42HA**ERROR STORING INFO RECORD ON PARTITION

1 3110/I
9002 FORMATt3X.36H**ORAN OUT OF SPACE ON THE PARITION //)
9003 FORMAT43X.260***ERROR SETTING DIRECTORY /I

END

33

... . I

TABLE 1. PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF (Concluded)

SUBROUTINE ADDAT(IDAT.NUM.ICHK)
C
C ROUTINE FOR USE BY ROUTINE *STRNGF* TO WRITE DATA TO THE
C MASTER FILL.
C
C IDAT = DATA ARRAY
C mum = NUMBER OF VALUES IN DATA ARRAY
C ISHOULD EQUAL 'LIM- UNLESS LAST RECORD)
C ICHK = PROBLEM RETURN
C 0 = NO PROBLEM
C I = DIRECT ACCESS WRITE ERROR
C 2 = OUT OF SPACE FOR MORE WRITES
C

DIMENSION IDAT()
LO(ICAL LCAL
COMM(tN/INFO/IRSIZ.MLOC.LOCO.IPOLES.HIGH.LCAL.IRAT.

" ISKIP.NPS.NPP.NOFF.ISEO.LSTRT.IADD.INSIZ.INSIZD.
" IRDATS.IRSAvS.ICNTR.XALIGN.MSETN
COMMON/LOCOM/ITEMN.ICNTRN|.IDROFF.

S IDASIZ.IDRSIZ.ITEMRC.ITEMSO
C
C

ICHK = 0
IFINUM *LE. O)GO TO 1000

C
LW = IRSIZ/2
LIM = IRSIZ
IFILCAL) LIM = LIM/2
CALL WMS(i.IDAToLW.MLOC.IERR)
IFfIERR .GT. 0)GO TO 500
NPS (MLOC-IDASIZ-2I*LIM*ISKIP + NUM*ISKIP
MLOC = MLOC 4 1
IF(MLOC *GT. MLEN(1-41GO TO 510
GO TO 1000

C
C DIRECT ACCESS WRITE ERROR
C
500 ICHK = I

GO T0 1000
C
C OUT OF DATA SPACE IN THE PARTITION
C
510 ICHK = 2

C
C
1000 RETURN

END

34

70

3. STRUCTURE AND FORMAT OF THE DATA TRANSFER FILE

This section describes the required structure and content of a
DTF. That is, various rules are presented for the structure
and ordering of DTF records, and the proper content of these
records is specified. The program that creates a DTF has the
responsibility to ensure that the structure and content of the
DTF is correct. The File Creation Program (FCP) tests the
structure of the DTF for correctness and also tests certain
parts of the data content of the DTF for consistency. However,
the FCP cannot test the overall content of the DTF for accur-
acy. When an error is detected in the DTF, the FCP stops pro-
cessing additional DTF data, stores any data that were cor-
rectly processed before the error was detected, and terminates
the program run.

3.1 DATA TRANSFER FILE FEATURES

3.1.1 Format Types

There are two alternative DTF formats, internal and external.
The format selected must be consistent throughout any one DTF.
Internal format is used to transfer data between jobs running
on the same computer or on different computers with the same
word size, integer and floating word formats, and alphanumeric
character representation. Internal format is written and read
using direct transfer of computer words without FORTRAN format
conversion and uses binary integer and floating data formats
and the local character representation for alphanumeric data
assuming four left-justified characters per word (the term
"left-justified" is used here to indicate the first four
character positions in a word).

External format is used to transfer data between jobs running
on TThrent computers. The records are written and read using
FORTRAN format conversion. External format is less efficient
than internal format but allows transfer of data between com-
puters with different internal data representations.

3.1.2 Physical File Characteristics

There is a constant logical record length for any one DTF al-
though this length may change between internal and external

* format DTF's and between different computers. An internal re-
cord always contains 1024 words, while an external record
always contains 4096 characters. Thus, certain types of re-
cord have different information capacities for internal and
external formats. Whenever this section refers to a DTF
record, the information transferred by a single FORTRAN "1REJAD"
statement is assumed. For external format records, the "READ"

35

is formatted and requires transfer of 4096 characters. Inter-
nal format "READ's" are unformatted and require transfer of
1024 words. The physical block structure of a DTF may be dif-
ferent for different computers and installations as long as
the above requirements are satisfied. When a DTF is used to
transfer data between different computers, special block struc-
tures may be required to satisfy the system requirements for
both computers. It is the local installation's responsibility
to assure that the data storage structure on tape or disc is
appropriate so that the correct data are transferred for each
READ.

The DTF is organized sequentially rather than using direct
access. The FCP reads the DTF using one pass through the file
without rewinding or backspacing.

3.1.3 Record Types

There are five different types of logical record identified by
a numeric label located at the start of each record.

1 = Instruction. An instruction record contains direc-
tions for the FCP to follow in transferring the DTF
data to the Master File.

2 = Counter. A counter record contains identifying
counter and other associated information for data
that follow (a counter is an integer between 1 and
999999 that is -assigned to the data from a flight
test maneuver or a particular simulation of a mane-
uver by an analytic program).

3 =Item Code. An item code record contains item codes,
item code- descriptions and units, and associated in-
formation for data that follow (an item code is a
four-character label attached to a sensor or trans-
ducer for test data or to some time-dependent func-
tion output by a simulation program).

4 =Data. A data record contains data values.

5 =Info File. An Info File record contains basic in--
formation for Info File groups.

There are also eleven types of record that are ignored by the4 FCP. This feature allows for later expansion of the DTF for-
mat and allows the format to be used for purposes other than
processing by DATAMAP. These types of record are labeled six
through sixteen.

36

3.1.4 Data Structure

Data may be written in parallel. That is, values from more
than one channel for a specific time instant may be written
contiguously on the file. Data may also be written in series
as a special case of parallel. A bundle is defined as a set
of one or more data values from a likenumber of data channels
that all correspond to one instant of time and that are writ-
ten consecutively on the DTF.

3.1.5 Sample Rates

Data must be time based but the sample rate may be variable.
If the sample rate is variable, each bundle must contain the
time instant for the bundle as a data value in the bundle cor-
responding to a prespecified item code.

3.1.6 Info File Group Information

The DTF format will accomodate the information necessary to
write DATAMAP Info File groups. The FCP has the capability
to extract this information and generate a file of valid Info
File groups. This file must be concatenated with an Info
File base data set that contains the initial group for the
Info File and other groups if necessary. This concatenated
pair of data sets would form the Info File for the DATAMAP
Processing Program.

3.2 DTF RECORD FORMATS

3.2.1 Specific Data Representation

Internal format records are treated as sequences of words with
only two specific assumptions about the internal word size or
structure in the host computer. First, integer words must be
the same size (i.e., number of bits) as floating words. Sec-
ond, a word must hold at least four characters in the inter-
nal character representation used by the computer. The DATAMAP
source code makes the same assumptions so that no new restric-
tion is imposed on the applicability of DATAMAP. Information
is stored as binary integer or floating numbers, or as char-
acter strings with four left-justified characters allocated to
each word. Unused word positions must be occupied in the file
even though the contents of the words are ignored.

External format data are treated as a sequence of characters.I The assumption is made that the computer system will be able
to translate the character representation on the DTF (e.g.,
ASCII) to the internal character representation of the com-
puter running DATAMAP (e.g., EBCDIC). A preprocessing step

37

may be required to translate character representations such as
from ASCII to EBCDIC. The capability is not specifically pro-
vided in DATAMAP. Information is coded using the 'I', 'A',
and 'E' format specifications. Unused character positions
must always be occupied, although the contents of a position
may be ignored. Thus, a DTF external format record must i
always contain the full 4096 characters.

3.2.2 Record Type Label

The first data field for every kind of record is the type
label. This label contains the number corresponding to the
type of record as specified in Paragraph 3.1.3. For internal
format records, this label is an integer word. For external
format records, this label is an integer coded in 1"14"1 format.

3.2.3 Instruction Records

Instruction records (type number = 1) allow the control input
for the FCP to be carried inside the DTF. An instruction re-
cord, as depicted in Figure 14, can contain as many as 56
lines of instructions in either the internal or external for-
mats. The second field of the instruction record is an in-
teger indicating the number of lines actually stored in the
record. If more than 56 program instruction lines are re-
quired, more instruction records can be written. A line of
instructions is 72 characters long, although the FCP requires
that the entries on the line may not extend past character
position 60. Positions 61 through 72 should contain blanks.

3.2.4 Counter Records

The primary purpose of a counter record is to associate a
counter with a set of data. As indicated in Figure 15, time
base information may optionally be included in a counter re-
cord. Four of the other quantities, Gross Weight, Center of
Gravity, Model Number, and Ship Number, are used only for
labeling purposes. If they are left blank or zero, the opera-
tion of DATAMAP will not be impaired. The other fields are
stored on the Master File but are not used for any other pur-
pose.

Figure 16 shows the sub-fields of the time base field in the
counter records; the same time base sub-field organization is
used in the item code records. There are four entries in this4 field. The second entry is reserved for the start time of
data but is currently ignored and assumed to be zero. Thus,
the time base is specified by the first, third, and fourth
entries. The first entry is an integer between zero and three
that indicates both the method of time base specification and

38

II
Inti nal External

Word Character
Field Contents Numbers Format Positions Format

a Record type 1 Binary 1-4 14
label : 1 Integer

e Number of instruction 2 Binary 5-8 14
lines in record Integer

* Unused
3-16 9-64

e Instruction line 1 17-34 18A4 65-136 18A4

* Instruction line 2 35-52 18A4 137-208 18A4

e Instruction line 3 53-70 18A4 209-280 18A4

1007 4025
e Instruction line 56 - 18A4 - 18A4

1024 4096

Figure 14. DTF instruction record format.

it C

39

777

Internal External

Word Field Character Field
Field Contents Numbers Format Positions Format

* Record type label = 1 Binary 1-4 14
Integer

" Time base 2-5 See 5-36 See

information Fig. 16 Fig. 16

" Unused 6-21 37-200

" Counter 22 Binary 201-208 18
Integer

" Flight Number 23-24 2A4 209-216 2A4

" Gross Weight 25 Binary 217-228 E12.6
Floating

" Center of Gravity 26 Binary 229-240 E12.6
loating

" CG Code 27 A4 241-244 A4

" Model Number 28-29 2A4 245-252 2A4

" Ship Number 30-31 2A4 253-260 2A4

" Date 32-33 2A4 261-268 2A4

" Time 34-36 3A4 269-280 3A4

" Model Code 37-38 2A4 281-288 2A4

" Test/Analytic Indicator 39 Binary 289-292 14
O=unspec,l=test,2=anal Integer

- Unused 40- 293-
1024 4096

Figure 15. Counter record format.

40

r2I

Internal External

Word Sub- Character Sub-
Numbers Field Positions Field

Field Contents In Field Format In Field Format

* Time base type 1 Binary 1-4 14
(see text) Integer

e Start time (currently 2 Binary 5-16 E12.6
ignored) Floating

o Time increment or 3 Binary 17-28 E12.6
sample rate (in seconds loa ting
or samples per second)

o Item code (currently 4 A4 29-32 A4

must be "TIME")

Figure 16. Time base field format.

41

PRO

-, F -

the meaning of the third and fourth entries. Following is a
description of the time base specification for each first entry
value.

0 ... The time base is not specified in this record.
1 ... The time base is specified with a constant sample

interval. This interval is the third entry (in
seconds). The fourth entry is ignored.

2 ... The time base is specified with a constant sample 4
rate. This rate is the third entry (in samples per
second). The fourth entry is ignored.

3 ... The time base has a variable sample rate and is
specified with a time instant for each bundle. The
time instants are contained in the bundles as data
values corresponding to the item code named in
entry four. Currently, this item code name must be
"TIME". The third entry is ignored.

3.2.5 Item Code Records

Item code records serve to associate item codes, item code
descriptions, unit labels, and info File information with the
subsequent data records. As shown in Figure 17, the fourth
field in the item code record is an integer indicating the
number of item codes listed in the record. Information for as
many as 32 item codes may be contained in one item code record.
Several contiguous item code records can be used to identify a
greater number of item codes. Each item code corresponds by
position in the list with the data values having the same
position in the subsequent bundles. For example, with two
contiguous item code records, the tenth item code entry in the
second record corresponds to the 42nd data value in each of
the subsequent bundles.

Time base information may be included in an item code record.
This field has the same format as shown in Figure 16.

Figure 18 is a breakdown of the information listed for each
item code. The item code itself must always be present. An
item code must be four characters in length and may not in-
clude a space, comma, slash, or single quote. The item code
description and the units label are used by the Processing
Program in displays so that if they were left blank the cor-* 4 responding display fields would be left blank as well. Most
of the balance of the information is for ar. Info File if the4 item code is to be associated with an Info File group. Refer
to the description of the Info File format in Volume I for a

'1 42

- .0

i-

!4

Internal External

Word Field Character Field
Field Contents Numbers Format Positions Format

" Record type 1 Binary 1-4 14

label = 3 Integer

* Time base 2-5 See 5-36 See
in formation Fig. 16 Fig. 16

" Unused 6-31 37-124

" Number of items 32 Binary 125-128 14
in this record Integer

* Information for item See See
code number 1. 33-63 Fig. 18 129-252 Fig. 18
See Figure 18.

" Information for item See See
code number 2. 64-94 Fig. 18 253-376 Fig. 18
See Figure 18.

*0 0

*0

*0 0

0 0

o Information for item 994- See 3973- See
code number 32. 1024 Fiq. 18 4096 Fig. 13
See Fl'iqu-e 1S.

Figure 17. Item code record format.

4.I[

4•

Internal External

Word Sub- Character Sub-

Numbers Field Positions Field
Sub-Field Contents In Field Format In Field Format

" Item Code 1 A4 1-4 A4

" Item Code 2-14 13A4 5-56 13A4
Description

" Item Code 15-17 3A4 57-68 3A4

Units

" Info File Group 18 A4 69-72 A4
Affiliation

" Info File Column 19 Binary 73-76 14
Number Integer

" Info File Row Binary
Number

Integer

" Info File Doublerow 21 Binary 81-84 14
0=top, 1=bottom Integer

e Info File Minor 22 Binary 85-96 E12.6
Position Floating

" Modulo Value 23 Binary 97-108 E12.6
Floating

" Unused 24-31 109-124

Figure 18. Item code information field format.

(I

it

44
.. . . -" ,,~ ~~. , 1 I I I II

description of the fields. The last sub-field contains the
modulus value for modulo data. In particular, azimuth in de-
grees should be modulo 360. For non-modulo data, this value
must be set to zero. The modulus value must not be less than
zero.

3.2.6 Data Records

Figure 19 shows the structure of a data record. The second
entry in the record is an integer that gives the number of
data values contained. Notice that an internal format record
can contain as many as 1020 data values while an external for-
mat data record can contain no more than 340 data values
because 12 characters are used for each value. Thus, more re-
cords are required to store data in external format than are
required for internal format. Section 3.3 will discuss the
storage of bundles of data values in data records.

Modulo data must be between zero and the modulus for the chan-
nel (inclusive). Modulo data are assumed to represent a piece-
wise continuous function that is monotonically increasing
except where the modulus limit is crossed, whereupon the func-
tion begins at zero again. The slope of the function before
and after the modulus crossing is assumed to approach the same
limit as the crossing is approached. Accordingly, when a
datum value for a modulo channel is less than the previous
datum value for the channel, a break or modulus crossing is

5 indicated. When a break occurs, interpolation is performed by
adding the modulus to the data after the break, interpolating,
and then subtracting the modulus from any interpolated value
that is greater than the modulus. Two points in succession
must not indicate breaks (i.e., the input data values must not
decrease for two points in succession).

3.2.7 Info File Records

An Info File record contains the basic information for genera-
tion of one or more Info File groups. As shown in Figure 20,
basic Info File group information sets for as many as six
groups may be contained in an internal format Info File record.
An external format record can contain information for no more
than three groups. Figure 21 shows the contents of a set of
information for one group. Refer to Volume I, Section 5 for a
description of the various fields. The row positions and

* labels are not required for one-dimensional groups.

Notice that Info File records do not contain all of the in-I formation required for production of Info File groups. Item
code records contain the item code names and point to the ap-
propriate group name and row/column/double-row element posi-
tion within the group.

45

Internal External

Word Field Character Field

Field Contents Numbers Format Positions Format

" Record type 1 Binary 1-4 14
label = 4 Inteqer

" Number of data 2 Binary 5-8 14
values in record Integer

" Unused 3-4 9-16

value 1 Binary 17-28 E12.6

Data value I Floating

" Data value 340 344 Binary 4085- E12.6
Floating 4096

0 5'
B

o Data value 1020 1024 Binary
Iloating

Figure 19. Data record format.

46

I - .' I i -

- --- ,

Internal External

Word Character

Field Contents Numbers Format Positions Format

" Record type 1 Binary 1-4 14

label = 5 Integer

* Number of groups 2 Binary 5-8 14
represented in record Integer

" Unused 3-49

" First Info File See 5 - See

Group Information 5-174 Fig. 21 1400 Fig. 21

See Figure 21 2

" Second Info File See I-
Group Information 175-344 1401- ig. ee

See Figure 21 Fiq. 21 2748 i Fi. 21

" Third Info File See 2749- See
Group Information 345-514 Fig.21 4096 Fig. 21

See Figure 21

" Fourth Info File See
Group Information 515-684 See
See Figure 21 Fig. 21

o Fifth Info File
Group Information 685-854 See

See Figure 21 2

o Sixth Info File 855-

Group Information 1024 Fig. 21
See Figure 21

Figure 20. Info file record format.

-1 47

Internal External

Word Sub- Character Sub-
Numbers Field Position Field

Sub-Field Contents In Field Format In Field Format

* Group Name 1 A4 1-4 A4

* Group Title 2-11 1OA4 5-44 1OA4

o Column Title (current 12-17 6A4 45-68 6A4
16 characters max.)

* Short Column Title/units 18-20 3A4 69-80 3A4
(current 8 characters max)

0 Feature near smallest column 21-26 6A4 81-104 6A4
position (current max 16)

o Number of Column Positions Binary
(current max = 18) Integer

* Column Positions 28-59 Binary 109-492 32E12.6
Floating

0 Row Title (current 60-65 6A4 493-516 6A4
16 characters max.)

e Short Row Title/Units 66-68 3A4 517-528 3A4
(current 8 characters max.)

e Feature near smallest rows 69-74 6A4 529-552 6A4
position (current max. 16)

* Number of Row Positions Binary 553-556 14
(current max = 18 Integer

* Row Positions 76-107 Binary 557-940 32E12.6blating 5-4 21.

o Doublerow labels. 108-117 5A4, 941-980 5A4,
Top then bottom 5A4 5A4

0 Keywords, Top then 118-119 2A4 981-988 2A4
bottom

a Azimuth correction 120 Binary 989-
angle Floating 1000 E12.6

e Unused 121-170 L// 10011348

Figure 21. Info file record group-information field format.

48

* a.

FF TF

3.3 DTF RECORD SEQUENCE

A prescribed order for the different types of records must be
followed so that the different types of information are avail-
able as required. This sequence has been made as flexible as
possible to accommodate the idiosyncrasies of various data
bases.

3.3.1 Instruction Records

If instruction records are included in a DTF, they must form a
contiguous group at the beginning of the DTF. No other type
of record may appear before the last instruction record. The
order of the instruction records must maintain the proper
sequence of the control input lines. Thus, the first line of
the first instruction record must contain the intended first
instruction line, and the last active line of the last instruc-
tion record must contain an 'END' entry.

Instruction records are not required in a DTF. The FCP is
able to read instructions from the system input file. In
fact, the FCP must always read one line of instructions from
the system input file, and the instructions on this line may
indicate that data input is from a DTF and that control input
is also from the DTF (see Volume I).

3.3.2 Data Records

A sequence of bundles of data values that correspond to a
strictly monotonically increasing sequence of time instants
and that are written contiguously on a DTF is called a bundle
sequence. A sequence of data records containing a bunde
sequence may not include any interspersed records of another
type, any data records containing data values outside the
bundle sequence, or any data records containing no data values.
The number of data values for each bundle in a bundle sequence
must be a constant and must equal the number of item codes
specified for the bundle sequence.

As shown in Figure 22, a bundle may span more than one data
record, or one or more bundles may be stored in each data
record. A bundle may not span more than one data record if it
does not start at the beginning of a data record. Thus, un-
used space will frequently be present in a data record. All
unused space in a data record must be at the end of the record.
If there is sufficient unused space at the end of a data re-
cord to contain a bundle, that record must be the last for the
bundle sequence. The end of the bundle sequence is denoted by
a record of some type other than a data record or by the end
of the DTF.

49

0 W)

z W

©0 0

0 EAu z

.)

0U V
.I

II-.....

4 ca

ca L I- u

u fz

4-

I Q

u u

50

E-4,

* V

• III I II I II I '[Z "-'-'"_ n" I" " :[p~l_ . iC_

In Figure 22, three examples of unacceptable bundle sequence
storage are given. In the first example, bundles that do not
start at the beginning of a record span more than one record.
In the second example, one record does not contain as many
bundles as possible and this record is not the last for the
bundle sequence. In the third example, an empty data record
occurs.

3.3.3 Item Code and Counter Records

Each bundle sequence must be preceded by a definition sequence
which consists of one counter record and one or more item code
records. Either the counter record or the item code records
(but not both) may be implied. That is, the counter or item
code records may be left out of the definition sequence and
implied to be the same item code or counter records that
applied to the previous bundle sequence. Clearly, the first
definition sequence in the DTF may not have any implied re-
cords.

If more than one item code record is required, these records
must be in contiguous sequence with no interspersed records of
any other type. If an item code record specifies fewer than
128 item codes, it must be the last in this sequence. The
counter record may appear before or after the item code re-
cords.

3.3.4 Info File Records

An Info File record must appear before all the item code re-
cords that reference the groups named in the Info File record.
An Info File record may appear inside a definition sequence
between a counter record and a set of item code records.
Otherwise, an Info File record may be placed anywhere in the
DTF that is not in violation of' the rules stated so far.

An Info File group name should not appear twice in the Info
File records of a DTF. If this event should occur, the first
declaration of the group name, together with the accompanying
structure and labels, will be assigned all item code record
references to that group name. Groups will be generated for
all other mentions of the group name, but these groups will
contain only the "NULL" item code. Info Files with redundant
group names will work properly if the first group with the
redundant name is correct. That is, the subsequent, identical
group names will be ignored. However, this is both ineffici-I ent and confusing.
There may be several item code references to the same row/
column/double-row element of an Info File group. In this
event, the last reference in the DTF is used.

'1.~ 51

10w

3.3.5 Unspecified Record Types

Record types six through sixteen may be placed anywhere in the
DTF that is not in violation of the rules stated so far. In
such locations, these records will be ignored by the FCP.

3.3.6 Examples of Record Sequences

Figure 23 gives examples of acceptable and unacceptable record
sequences. six examples of unacceptable sequences are given.
In the first example, the instruction records are not the first
records on the DTF. For example two, two item code records are
separated by a counter record. In the third sequence, there
are two counter records in sequence with no intervening data
records. In the fourth example, two item code records are
separated, this time by an Info File record. In example five,
the first bundle sequence in a DTF is not preceded by a com-
plete definition sequence. That is, there is no item code
record before the sequence and no item code record can be
implied. In the last example, there is no definition sequence
for the second bundle sequence. That is, the counter record
and item code record(s) cannot both be implied as the previous
counter and item code records.

4

52

7T7 =INSTRUCTION RECORD

~j = COUNTER RECORD

=ITEM CODE RECORD

~ DATA RECORD

=INFO FILE RECORD

~ = UNSPECIFIED RECORD TYPE (6-16)

EXAMPLES OF ACCEPTABLE SEQUENCES

EXAMPLES OF UNACCEPTABLE SEQUENCES

Figue2. xmle facetbe n nccpalercr
*sequences

53

4. PROCESSING PROGRAM

4.1 STRUCTURE AND FLOW

The DATAMAP Processing Program was designed to be broken into
overlays corresponding to various functions of the program.
Figure 24 shows a diagram of program flow from block to block
with the main block excluded. The Main program is not shown
in this figure and serves only to transfer control from block
to block and store certain utility routines used by more than
one block.

The Startup or Program Initialization block extracts setting
commands from the user and initializes and/or validates certain
files including the Master File. The User Command Interface
reads and checks the user commands and produces an instruction
matrix (common block /DIRECT/) that can be interpreted by the
other overlay blocks. The Processing block performs all the
data retrieval, data processing, and data display functions of
the program according to the instruction matrix. The Command
Sequence block performs the actual editing of command sequence
blocks. The Menu block generates non-data displays to assist
the user in generating processing commands. The Terminate
function is accomplished in program MAIN.

4.2 PROGRAM INITIALIZATION

Subroutine STRTUP is the control routine for this block. The
required and optional user inputs for this phase are described
in Section 5.1 of Volume I. The entries are read and inter-
preted using the READF and MATCHR utilities, as well as the
READ1 and READOP routines and code within STRTUP.

In addition to extracting user control options for the program
run, the Program Initialization block performs several other
setup functions. The first function performed in STRTUP is to
call the CPU timer initialization routine, SETIME. SETIME is
installation dependent and may be replaced by another routine
or entry name that starts the CPU timer (see Section 6.4).

After the user options have been specified, STRTUP calls
ALLSCR to initialize each of the direct access disc scratch
areas, including SCFI, SCF2, SCF3, and the temporary scratch
area. All of the scratch files are contained in a single
direct access data set and are addressed by a single I/O file
reference number. The files are addressed individually as
different pseudo-devices using the RMS, WMS, and FMS subrou-
tines. The pseudo-device numbers are listed in Section 5.1.
The scratch files may be "PERMANENT" or "TEMPORARY." If

*.

'L

54

. .

.

PROCESSING BLOCK

USER
e DATA RETRIEVAL

START UP 9 DATA PROCESSING
COMMAND

* PLOT/PRINT/
INTERFACE SCRATCH STORAGE

COMMAND I MENU

SEQUENCE DISPLAY TERMINATE
EDITING

Figure 24. General flow of processing program.

5I.

'155

-
-

the scratch files are labeled to be "PERMANENT," then no
specific initialization is performed. Instead, the first
and last record in the data set are read to test the ini-
tialization, Then, certain information about each scratch
file that describes the file contents is stored in program
memory. "TEMPORARY" scratch files must be initialized by
writing dummy records on every record position of the sequen-
tial alias for the direct access file. This initialization
is performed using subroutine INIDAF as described in Section
5. Notice that the "TEMPORARY" designation means that the
scratch files will require initialization and does not des-
cribe the planned disposition of the files after the Proces-
sing Program run is complete. Thus, "TEMPORARY" scratch
files may later be stored on a permanent basis.

The information that the scratch files are "PERMANENT" or
"TEMPORARY" cannot be stored in the scratch files because an
attempted direct access read from an uninitialized file could
result in immediate termination of the program run. In-
stead this information is specified by parameter communica-
tion from the computer system, by user option specification
(see Volume I, Section 5.1), or by default. Parameter com-
munication is accomplished for IBM systems using subroutine
PARMGT. A parameter string value of "PERM" indicates "PERMA-
NENT" or any other value indicates "TEMPORARY." If parameter
communication from the system to a program is not available
for a particular computer operating system, then a dummy PARMGT
subroutine may be used that indicates a "PERMANENT" or "TEMPOR-
ARY" setting by default. In either case, the user can over-
ride the setting during the Initialization Phase.

After ALLSCR returns, STRTUP calls INFOST. This routine reads
the initial group of the Info file and stores the keywords,
item codes, and associated numeric values in common block
/SINGIF/. Then STRTUP calls EDINIT to read the initial record
of the direct access Command Sequence (Edit) file, to check
the size of the file, and to set certain variables based on
this size.

Following the EDINIT call, STRTUP extracts the name of theMaster File partition that is to be accessed in the first
partition access slot during the program run (although the
partition can be changed during the program run). Then DASTRT
is called to find the partition and to set up the retrieval
routines to address the partition data. If the partition name
is successfully found and the Master File is properly initial-
ized, STRTUP transfers the current date into the system output
label, DEFCOM (in common block /DEFLT/), and exits. If the
partition name is not found, the user is requested to enter a
corrected partition name. The user may request a menu listing
of partitions and subroutine MPARTX is used for this listing.

56

I -I l l I I - V a

4.3 USER INTERFACE

The User Interface generates an instruction matrix for each
command step. This matrix is generated by extracting from the
user a sequence of entries that specify option selections for
the matrix values. Relatively few of the instruction matrix
values are specified for each command step, since a small sub-
set of the total number of command specifications is required
for execution of each different command. For example, a MENU
command will not require specification of the static pressure
or outside air temperature instructions.

A pseudo tree structure directs the program in specifying a
sequence that includes all entries required for execution of
the command step that is being generated. Each element of a
sequence depends upon the options selected for the previous
elements of the same sequence. For convenience in specifying
defaults, generating HELP messages, and explaining the entry
sequences, each sequence is broken into one or more substeps
as explained in Volume I. This tree structure, together with
allowed options and HELP message strings, is stored as data in
common blocks. The user interface code interprets the stored
tree structure and maintains the syntax for user input. Thus,
a change in user commands that does not conflict with the
current command syntax should require only a change in the
block data statements and array sizes and no change in the
executable user interface code. Paragraph 4.3.1 discusses
this code, while Paragraph 4.3.2 covers the requirements for
the block data tree structure.

4.3.1 User Interface Routines

USER is the main routine for the user interface block. Fig-
ures 25 and 26 depict the flow for subroutine USER, which
encompasses most of the general logic for the user interface
block. The other routines for this block are briefly de-
scribed below.

INISTP is the first routine called by USER to set the default
values for the step, to initialize certain pointers, to calcu-
late the CPU time for the previous step execution, and to
print the 'NEW STEP' message that prompts the user for the
next command step.

LININP is used to obtain a scanned, valid line of user input.
LININP will obtain the line from system input or the command
sequence file (using EDINP) according to the edit mode indica-
ted by the variable LED (in the common block /LEDIT/). The
line is scanned by READF to check for line errors, to evaluate

numeric entrys, and to delimit string entries.

'1 57

LUOP)VER SUaSTEPS

~,. ~ VES TE SUESTEP,

LOOP OVER .7".TIE READ

YES DEFAULT SET

FOR REMAINING
.4TRIES.

:4o

YES ENTRY
4VAILABLE?

CONT1L CONTROL LIST

Figur 25. L HEKETY ucrmUso.er itraefo iga frtpr)

ITR -R-. -M INER YES L13T

N TzIBA c.v SE

NO CMPLETE S
SO TEP SE

ET TIMER

t NOTE SUBSTEP

~COMPLETE, REQUEST

5Ae E AVE
SLASH TO END STEP

COPY COMADSE

INSTRUCTION YS 2
MUATRIX

LIST CEK CANCEL

YES SCN EL

MOE?

NT FE BAD1

SE YES EDTDIT
SL S

SET FOa

POC2SOMIN? (OE IND

MEND SUET FOR MENU

EDITT SOIT FO EI

TERMINA T E Y ES T ZD TEMNT

, ~ ~ ~ ~ ~ ~ ~ ~~O INPUT? 26 sritraefo iga.(eon6ar)

40DI

EDI59E

ORBUL

ASE DT URET EEUE u
SAV STE EDI MOEL DT2

ElMR

MATCHR is used to match individual strings of characters with
an array of four-character keywords stored in common block/
WLIST/.

INTERP is called to interpret each individual user entry. The
various categories of entries are numbers, nulls (defaults),
keyword strings, non-keyword strings (e.g., an item code),
specified defaults (i.e., defaults specified by a slash that
terminates a substep), and comment entries. INTERP assures
that the entry conforms to the allowed values for the current
tree position and codes the entry in the instruction matrix.

The HELP mode prompting message generation routine, HELPR, is
called by LININP when the HELP indicator, IHELP, is set to
one. HELPR prints a prompting message for the current entry
and looks ahead in the tree structure to print prompting
messages for subsequent entries.

TREEUP updates the tree structure position and the substep
number, ISBSTP, as necessary.

EDSAVE (see Paragraph 4.5.1) is used to save a command step on
the command sequencing file.

LISTAD maintains the listing of the current command step in-
cluding default entries. NTOSTR (see Section 4.2) is used to
convert numeric values to string form.

Subroutine USERLC is used to perform the required actions for
certain commands inside the user interface block. The pro-
cessing required for these commands is trivial. This routine
performs processing for the commands "UTILITY," "SET," "COM-
MENT," "BUILD," "EDIT/NEW," and "NOEDIT."

4.3.2 User Input Encoding

The basic tree structure for the user interface is contained
in the two-dimensional array NPOINT. The structure consists
of many "nodes" and each node specifies a required entry for a
command. A complete command is a specific path through one or
more nodes. Some nodes allow branching in the command path
depending upon the entry for the node. Each node has a speci-
fic index number. The second array subscript for NPOINT
corresponds to the tree node index. Thus, each tree node is
mapped to a unique, positive integer (e.g., 6), which specifies
three words in NPOINT (e.g., NPOINT (1,6), NPOINT (2,6),
NPOINT (3,6)). The first subscript is dimensioned to three
and these three allowed values correspond to three kinds of
information stored in the array. Table 2 lists the present
tree structure as defined by NPOINT. Figure 27 shows a general
example of part of the NPOINT structure.

60

g
.-

CY)

20

O- P-4-

C; OHrI(4 t. - - O

44 U .Ar-4 r- 04 Cn sY

1-4 szj 0 n0 r-4C'.-I .0 r-4N ON
wz U 0 r 4 *r. -4 4 Cn)f M)
P4- *4 -0 -0 .-N r- N .. %

U) - O N L r r I tC ~ C f 0 C0 7 L
E.4 C..z C1-O -4 ('J S4

OHE- - C' -4 0 r-44C14NC.)N C .*4 00 wc '0 0
-0 LA (A U) '~- . 0 0 1-1

r-I r- r rI 4 'IkOCn r-4 qtO 0 0 0 0
1 r-4 7 -C ICN C' n 4 1It C") cYn CY)C 0n C

0
~z4 -

-U

0D 0ON LA c") N LA
-4 C") m nco CY) 00 "4 0~ 4 r-4 r- 10-1 LA) -4 LA N1

6 2 '- 0 A
w z 0 C'4 " -

F 0 -z E--1
r-f - 0 NO H- :

U H- u
W UCz En z IzL)

Hu u-4 U
U) cnP4 z -4 Z Zi'0z1 2 -0

1--4 a- H i

U4 E-4 UU-)Uw w

WU p'I-<4
cn '-4 0

N Pa ~~~N '4 N ON40 Ox !
C~U'- U' WU U U U)

'4 v-I .- fl : -4 r- -4 k0 r-4

N N fl M M n cn c

HO - N m" in %D r- N co 0%

- 61

N(r- 31 0 01, 0 c O) Ln
~z a r-4 r4 mY 0' 04 r-4 0 m~ LA CO 4 r-4 N N

0 - -4 r4 r-4 in '.0 N- wO mf r4 O rI -4 r-4 r-4

0 0 E-4
U tP

0 N

1- '-0 CY*)

1-4

w 0- H -I ' r NCN wa

P4 x C o r- -4 .44 .4:V 0 O r- Ii CN N1 (1 Ict
U C) 0 C00)0 0 O 0 0 0 0 0

I>4

-40

0 Ho It ' -I L0 NI 1'4 01% 0 0 t.0 -t 0 cn
ZPJ i 04 ' '.0 to U 01, 0" L) 0p -4 qt4 (A '. LOA D '0 N N
" -. j ,-A -4 -4 r- N- O r-4 .-4 LI) k-0 CM r-A e4 1-

oZ

0
U -46

-, H 0 B

(n u~ NnL '

r-4 N- U '- -; ' w '

z N "- '- A r-4H

- 14 Z a~- 0 WN 44En
E-4 - ri O - r-4 Wz

(nz 44LI -0 H -u w

w >4 W - U

0 uL
Hw 00 0 ,

00 LI- 1-

9 wp N m NC m N N N m m Nn , n c

0 0 N- C4 M J LA 0 N r- w 0O 0 'H N mA lq

E H- 'H '-I .-4 P-4 N4 N- N- N- N- -

62

(n Ny r, 0 C) N 0'
z 0 o N LO w en 00 e) OD e) r-4 0 O 0 LO N-

H- 0 0 C 14 N I -4 0 0 ' ON 0 0 (ON 0 al -I C4 00 P- r-I -I .-

00 ON-

C0 0
o N wi -1 r-I

W) O 0E4 C O 0) 0 C1 N1 en) 14 14 .- i 0% r-I "0 C1
la PL LA N Co LA en) LA) e) U) en LA) '0 k.0 C1 eY) 00 ON
(I) 2 0 0 0 ON 0> 0 0 0 0 0 0 0 0 0 m' 0

>f

2x

-40

en ' LA ON al~ 0. LA CN (71 (D ONrIm0 N La%
E2 0 k0 N 0' (14 0o k0' 0 0.' 0 U) -4 4 ko 0 1* N. 0 V

CN 04 0 iI y y ~ -I N 1 0 1

r- y -) I m 0 0 ' -n r

ON Nm

C' en - e - e O n -

EH H0H H e
U U)) U)

44 >-4 U- M -

IY <w L ~44U
24 W P P40 u

z w) 1= 0 Q 0Q 0

I.- 1- w P 0 4 i Wi 1- - -4 11 0 -i~U 0 04

'I(n 0 U) 0 4 0 m) 0 U) 0 U) w) 0 m e 0

-4 0 w' ON 0 01 C a
wU r-4 en '-I N en N en m en en en en en en en 4 -q

N00

o-I I P4

I~~ U0
IX A'0 N %D r 0 0 en (1 ') LA '.0 N- co o 0
H- N N N1 Na N mn en) en en en) en e e n e R11

63

k%.

* 0

En CY N04 - a% 0 4 N- OD
z r-4 r4 CN m~ A wO i4 (Y) CD Cm 4. 0 0 .44 wO
0 -4 '-4 r4 i-4 k.0 0 ON -4 0) i-I ,-I i-I cn) ON

0O0H

0

0 U
" 0o L-

4 1 .04.

1-4 '~ 0

W~ 0H E- (14 0' (7D 144 44 Ln Lnr-i r-i (N m r-A q44 LA)
04 X q44 44 44t 0 0 LA 0 - - k0 kD %.0 q '0 k0

ul 0 0 0 0 0 0 0 LAn - 0 0) 0 0 0 0
(r) 44) C' N n ILn m' m N m' m' N

>44

0z to~ OA'0 '0 C v4 N 0 '0N c.0 44N C' 44 CY
"-4 0 -4 r-4 r-I r-4 ON 0 ,4 m' N m 04N '4 -4 -4 1

Ln

CYn

En C') CY) 4
M' 4 %- D ON -4

24 -D N r, - LA
z- U)
P4 -~ w 2t zr4

E--4 4 u 0 0

0'H N o L

Ix C4 -) ul w -4 44

04 44~ 0 CO M U) C4 U E- H
W 0 '4 W4 4 " '0 u 94 u u

E-4zw H 4 H- 0-4 w

0 H 0C~ 0z
U)

0- N A L D 0 0-4 MA C 0 N M4 C

E- cn m' m' m' ' N N N N 44 N m' N N N N

0 ~ ~ ~ .(n Ln % - CO 0' 0 -4 N m' 44 LA)

64

-. -

0 0 LA LA %D r- r- N O r-I NI 0D 0

o 0 E-1

o U ON) m
1-4 -0 N0

-4 Z - r-4

W~. 0~ r-co%- - O'N LA4 (NI N k. N- 0 N
En 0 00 0) '.r-4 0 0 rN 4 0 0 0 0 r4I a

>4 Itt 0 Tv4 44 1 4do' IN r- cn INt fltt4 I cn

-go

0 N (N N- r- N a In
P 0 0 4' 4 m' c r-I %D LA 0 LA) CN (N ON4 4

0N .-I r-4 CV) "4 4" (N

U -4 4 0 CV) LA
. 0 .0 w0 N -q0(

E-4 ~~ UU - CxiO O V. V

cn E- Cx) ,I 4- 0 x E -4
2~4 N~ OP4UCx- E-AC~U

L> r-4 E-4 r- U) E

0 4-0

U w -) "p0 0 0-

0 2 0 00~- 0 Q'. QV 0
cn 13 0) 4 C41 1 0

uI4 U)UN ~)0 4U u En cn .-0 ,-
14 N x Uc-) U) CU)' a ~ Ckn 4U H U r-4 i- . e

-' (34 0% 0% ON C' LAO r4 N 4 4 Ln .o o a% %o a%
wN 4' .' .' 4' 4' c LA LA L LA LA LA LA m mV

(N0

) II)

C'0 00 0 0 r-i N Y) 4' LA %D N- OD 0% 0
HE- LA ULA LA LA %D ko %0 %D %0 %D '0 %D %D %D N-

*'11 65

Mi, "

C'-) N- CCO NN N wO M r-I WO wO mV It Q 0
H- ZO rr4 r-I .I r-4 N N N -4 -4 CY) r-4 '-4 -4 CN C') N*
Z '. k '"o N %o - r

4
4

0 OHE-
U P.4 PL
,- zo0

H z~ '-4 I

< I - CO
U- '-N w

0J E-4W4O :

Wx OH E O-4 o r 4 0' '0 N- CY N- N C) r-4 ON (Y) (Y) ,1J4
P4 x. co CO -4 0 0"1 N O 00co C) 0 0m 0N If 0 0"4 ON

W)~z 0 C0 1-4 0 O 0> C 0 r-4 0 0 0 0 0 0 0
z C (Y) I CY) In mi ' C~ C) C) Cl C) ~ ~4~ 4

z 2

-4 ' . ' ' 0 r4 - -- 0N 14 -I 0M N Cl)

m m'

m) E-4 C4-E -4 OD

0
t

N

E-i 0 ~ >

Zcz)1H04H ml0 (4 u 0

ON 0 u- R w -

'-2 4 4' ~' 0 N 4 0 N: c CO) U)
44 ~ Z -. u. '. 4 P40 N 4

N0 0C. N4 Nu

w' P4 Cl 1 z' z4 W, wl (l C4 l~ '~

- N Hl m' m) 0. N O 0 0 >4 C '' U '0

C1 0
.4w

17 66

U) ~ ~ ON r-4 (Vn LOa) 4 0 LO 14 r 0 - (N

0- -0 E-4

- 0-

C) CN w
,-.i - N 0

W E-4~ 0o r 1 1 f 1 Y 4

PL O) N It ::r 0 U) C)

(n) 0 0) C r-4 <7%0 r-4 r-14
44 cy) 0) 14 1:14 0 -0 r-4 0td 0) C 0) 0 0

z z
-4 0

0r to m - r- t- - m L D N

0~ 0m
AU

LA 1-4 r- N U) cr n U C',L) '
C) ") O '-

- - --- ''.
C) H- Lf) H '0 Ht Ln 4

H- 't fzz zl z Z - Z m~' 4
U)'- 0 a) N 0 L N -C

"- WL U') w~N U)

W 0 4: C)1 W- E-) C))

N 011C fl0 >

0~ 0 0 0 w)
N 0 4 0) 4::zXC)0 ~ 4

WU 40 U))04

w-4 1 r- W4 E-4 U) 0(nL '0 N a) 0(
E-4 N N4 E-4 C4 w) w4 W~) a) a 4 w ' Ix w~

(N 00 4 40 (

04 9mo 0N N ~ 4l 0) En0 NW)

-- .- r- r- co- 1 d n D r

-0 0-

14Ln w~ wO mO mO CO m~ w~ m~ r-I 0 -4
N ,-i -4 .-4 -1 (In C14 N N C wO r-I -0 t

0

N- N -0~L N C O 0
0 0 0 Z- 0 0 0 0 -

U C,4 WV V V ' V

-40

w0 H N N N r-(a% N - N N sI O
AZ4 >4 r- N 0 N4 COp U') r- 0's0' OD N 0 0

En LA N N -N N 0 ~ 0 0. a 0

LA 'c. CY CV n d m MO)CY Y

0 m ~ - .

U)) OD

0o t. k)

ko ~ CY) Nn NY E-N4)
E- U 0 N-

V) 0 0) U)) % 4 0
NH E- Ncns- -

HN U)) wU-1E-

uU) W U

I LA
5~~ ~ LA N0' 0 0' WO 0's H' zV z- ~4 C O L

0 0 0 0 0 0 0 0 - - IsI sI
Hs- s- s- s- s- s- ,-I r4 p4 sI sI sI sI sI -I -4

(S0

0 4 44 0 xx 68

41.

ot OH Nz Nn t0 r1l r- N

0 E 4

0

o u -
O- -l) - 00 ON-

H4 (14L N N '-4
u ei W e-

u~ "'L r-4 - -4 r-44r 4 r-4
W 0LA 0 - - - - 0

(n r-4 r-4 N4- m nN 0 -41I4-

N CN 4 r- (- - - - V) IN N C*4IU

0

r4 4 iD 0 >4 tO(4 OtO 4 t

u W 0 2 u
H- (nCx U) WA

0 W u z) 0
4O p ~ 4 U) 2 0L En I 0

CD I "0 U-
0) W 4 P4U M~~t

(n N~ 0 P4 0

a: 0'. OD .. 0-8 n0L N

44-LA I H4 Cx.U U) u- ~ - 00-E4 4 E-
'-4~i U U4) H- WA' r- A

U)0 mU 4 X

E-4 (N U)0 M E- ~ '4 CO 0 0 0
9T4 1 6uI -IvI (

E-4 r- -

C,4 0 -4 r-4 -l -4 r-4 -4 -4

4 P

69

~~10

S cYn
'U) r4 Y OD mOD O r4I OD cn U

I E- r- 0 C-- 0 %.0 - OD to0 r- aD
2 0 44 ~ (N4 qt (1 r-4 4r cn 1-4 r 44

00O

2o C)
" -0

4-4 E-4 '~
0-4 Z -4 4

W 0OH- - CN C1 (Y) 44 ~ U, Q' '-0 OD

CY) C") C") C.') C") 144 c) m" cn

>4

HE-4
z -u

0 H- in N1 C> N1 44 0t tn 44 U,
44 Z P4 OD1* 0 144 it 0 OD 44 '0 Ln

"" 4- DN , 4 CN C4

C)~C r, 0- pC 0

H CLICj)I4~Q 0Cz~ E-')

U)d 0 1 p A 0
A0 0 w -P n u

U)e ~ ' 0c) UY)

8~ ~ ~ ~ E 4
C)" < P4 E 21 0 - ZNu E~nNE- E-)C1 00 8zNOf C

CX 4C U) U 1-4 1- r1 4U) 0: 1- 4 2 (

N'- i H w) V) -~ Z Z 0- NU2 U

r-4 rHC " W ~ uA1C 2L 00 WIU)L

UHt W) -C C -4 0 2 " C" 0 0 '-'
U) "U) F-4) 1 p) H CZL4 -

1-4. u4 O (n 12 P-4 w 44 U 0 L)U 4 N LV) U -
N 00 .- r-.- 4- Z- ,4 m- q4 so -l . D .-4

z wH 1-4 W ' E-) w" P C"U) C" C") CV) u) V)

W) M ~ 04 EnS L) U) M4(4 Cl u. N

C, 0 r4 r-4 4 '-4 "1 ,4 ,4 ,4 r4 P-4 r-4

0 1 70

U

I tO@ C ~ I 0 O Q

OD ONOOH n L

O It
-4

0 -4

E-4 Z11 .- r 4
4 i-

C) O N 1.44 (N) C' ' N c' CD) (

H -4

z z

N1. - N -4 (N .4 ~LO
FX4 04 0 .D O I r-4 'O C 4 (

N)

H 0- 0 00H

E-4 w) 0

00 00 EU 4

U) 4 U OD 0 U OD

0 u0

>4 04- Ix 0z)s-

08 u U0

'I 0 Q00 00) C.) 0.
3:E4U

4

OD1 ODz 00 Ln0~ W

1 N O CO 0LA '0 4 N (NC1

0 4- (Y) r-4 .4 N N .4 qN
(

I.P

w '4 *

71

k-4-

~ 0

~~~e -U) LA 0 tL -na

w. 20 H A Nn Ln Nv N L A A LA

'-z

00 N.- 44) a n C1 % C4

cn 0 C4o D N O ON4 N- 1- *

I-4~E (IE-4
0 A L 1-4)

0 ~4'4 4- N t w El nm 1

E-4 v P- i4 <DL <- 9c4 r' I 0 I -.OD

W44 z-r 44 44 >4 >.I 4 ,44

0 LA 0 LTv0 ' N N L

~~- 04 wl' 00 A ' O 0 -

w 0 0z 0z gd- U U

U) -) L) c4 r

U)p 1- E- z E- > 4 > '-

00 0 r-' H1 C1 cy) it Ln Lnu C D

2 W 00 v v 04 m4 > 0 m 0 0r '- 0
0 U r -4 r.4 U- - - - - - -

C1 It v v- OCO 04~ CTV)

Ui O r-- (N4 1-4 %01C i.C c O

Vz Cl44 n LA LA LA LA LALA n n LA LA
r 0 r4- -4 1-I 4 r-I 1-4 1-4 r- - - r-4

Iti I N 444 4 4 44 4 4 44 72



NPOINT(1,N) NPOINT (2 ,N) NPOINT( 3,N)

HELP SUBSEQUENT ENTRY

%tESSAGE TREE POSITION OPTION LIST

LWORDS (A) POINTER POINTER POINTER IENTOP(T
A M1+3000 T

NPOINT(1,M) NPOINT(2,M) NPOINT(3,M)

HELP SUBSEQUENT ENTRY
MESSAGE TREE POSITION OPTION LIST

LWORDS(B)* POINTER POINTER POINTER rENTOP(I)
B -P U

LI STP (P)

LISTP (P+1)
LISTP (P+2)
LISTP(P+3)=3000+0
LISTP(P+4

NPOINT(1,Q) NPOINT(2,Q) NPOINT(3,Q)

'1HELP SUBSEQUENT ENTRY
K ESSAGE TREE POSITION OPTION LIST

*LWORlS (C)< POINTER POINTER POINTER IENTOP(V

Fiue27. Example of part of the command entry tree structure.

Irmo



NPOINT (1,N) gives the subscript location in LWORDS (in common
block /HLPWDS/) for the appropriate HELP message for the entry
options corresponding to the tree node N. The actual subscript
location given will be for the LWORDS value specifying the
number of characters in the HELP message. The actual message
is contained in the subsequent LWORDS words in A4 format.
Figure 28 shows the structure of a typical HELP message in
LWORDS.

NPOINT (2,N) specifies the subsequent tree position for the
entry sequence in one of three ways. If the value is zero,
the entry sequence (command) is complete. If the value is
positive, the three lowest order decimal digits are the tree
node index for the next entry. For example, NPOINT(2,N) =
3009, specifies that NPOINT(l,9), NPOINT(2,9) and NPOINT (3,9)
provide pointers for the next entry. The thousands digit
gives the substep number for the next entry. A negative
NPOINT(2,N) value implies a branch in the tree structure at
the current position and points to a sequence of pointer en-
trys in the array LISTP (in common block /ENTOPT/). The se-
quence of values contained in LISTP, in turn, points to possi-
ble next tree nodes in a manner identical to that described
for positive or zero values of NPOINT(2,N). The manner of
choosing the appropriate value from LISTP is described in the
next paragraph.

NPOINT(3,N) is an integer value that points to the first
position of a sequence in the array IENTOP (in common block
/ENTOPT/). Each sequence in the IENTOP array corresponds to
one value for the second subscript of the instruction matrix,
IDIRCT. The first word in an IENTOP sequence gives the second
subscript value for the corresponding pair of entries in the
instruction matrix. Table 3 lists the meaning of the instruc-
tion matrix positions. Following the second word in the
IENTOP sequence are one or more numeric values that specify
allowed options for the entry. The second word is an integer
that specifies the number of option specifications. The
option specifications in IENTOP are integers that can have
three interpretations. A positive value less than 1000 speci-
fies an allowed keyword entry for the option from the keyword
list IAA (in common block /WLIST/). A value of 1000 specifies
that a non-keyword, four-character, string entry (e.g., an
item code) is an allowed option. A negative integer specifies
that a numeric entry is allowed. The absolute value of a
negative integer points to the first of two floating entries
in the RANGOP array (in common block /ENTOPT/) which give the
lower and upper bounds for the numeric entry. Numeric or
string specifiers must always be the last entry in an IENTOP
sequence. Figure 29 shows the structure of a typical IENTOP
sequence. If the current NPOINT(2,M) value is negative so asto point to the first element of a sequence in LISTP, each

74

6. .



NPOINT(IM)
POINTER=N

NUMBER OF FIRST FOUR CHARACTERS CHARACTERS CHARACTERS CHARACTERS

CHARACTERS CHARACTERS 5 THRU 8 9 THRU 12 13 THRU 16 17 AND 18
IN THE IN 'HELP' IN 'HELP' IN 'HELP' IN 'HELP' IN 'HELP'
MESSAGE MESSAGE MESSAGE MESSAGE MESSAGE MESSAGE
E.G. 18 E.G. 'SCFI' E.G. ',SCF' E.G. '2 OR' E.G. ' GRO' E.G. 'UP_'

LWORDS(N) LWORDS(N+I) LWORDS(N+2) LWORDS(N+3) LWORDS(N+4) LWORDS(N+18+3/4)

Figure 28. Structure of typical "HELP" message.

f~7

.1

75

II IIV

* f •



00
E- 4-

co o
P-4

W

U)

E-4 0 -

E- E- 4ii
Z 0- 4 -44 '-

0)E-4 z). w

E-4 cl

V)

z2

W Z 
u N w E ~n E-4-U

L) 0 - I W2 '

i 2 z 0'

0 4 P- - 4 2O(
04 ) 04 0 4P4E40L

E43 U) a (n0< U Z

m 0 -wmzq14- - 1NMI 0r NrIrI rIC4 0

,,+,,

c.

rz

SE-4-

W U



C') eo

C-4 E-4~ 0

L) If)L
o+ + +

E-4 z 0
E-1 L) 0 E-4 z

E-i -l 1 0J P 4E

") E-4 P4 I H -4I0 I

8HE- I u 44 44 4 N0
F w I z CoU m En 04 *C'J Ip,4 C.I-i1: 4

U

Czz

0 ZO(0 E-1
z0 U)O

pq co0~

I, 77

Wiw



W.2 0

0

0 C

"Z H ' U-0

2 U) 0+L 0 0
0 + W 0 0- 0 0

1-4 O ) V.0 0o C) * 0 ID Ix~ 0 0
E- z C14 + * + 0, w r -

0 N -fU r44 C -

") V) E-'E4-N

u 0z
Ln0 00R

z ) E- ID R* L 4 -
E-42 0 -P4 Ur- 0 E- U) C4 0

L) 1'B

FX -1 (N r-I N '-i r-A ,-I -4 -4 -4 r-j i-I .

2 0 "

U)0 ~0 ~ P 0C

0 u0 < 1%9
cy) E-4 Zz~ rC E- .
c H2 E-1 0 H al 4

l0M U)~ w-4 WS

w~2 Ix U))H
P4P. P-4 - ~ C

1-' _4 w). U) 0
2 U)) W

'-4 m

N" :) HA D 0 ;z 0 0 0 E -4 44

x P

78



00

C)J

E-4 44

zC> I- CYN
Z 0 C) C) w0NC

k0 r P4 0- 14r 0
H-lz U) wH p -

C-) 0 z ON '-
I '- U) u 0 C.-

E-4 Z'-4
E- HU 0 H 4 U E-

Z H .) 4~ 0 9 EHE
V) 0 . - -1 H z u H < )P -

w z 0> 1 1.44 ) u C H Q W-4 zP4 U)4 U)U)wUwCm m) ec0
U) P-4 0

44 r-4 r -4 1-4 CN m( O C- '40ADr - ,: r--4(N

Hf z
z 0 H

U))

0 U) ziu
1-40 wz u u E

c) H-4Z 4 z zz 0

R '- F 4 0 (

E-4 W w. U w~ U ~ H 0

HfZ 0~ 0
P- P4 U)

01~ r4

U)CzU)

79

ID~f *w * .



0 E-4 e'j ,- C

00

-4

E- F-4~ I4 z

2zz

0
'-44

EH w

E1U 0 01 U'
(n R-U "D z. H H. 0 'E.-

zf -4 I "2 0r0 4 H 4 HH 0
2- E-4 04 - H0O P4z.P 00Q 4

U)4 0 ~ ,-E- E-4 ,-4 ,-E 4 0,- W-

9z 1 4r-4 N r-4 14 U ecI r-4C -1 04 r-4 04 C n L)k - 0O

0
E-4

0 L) X L)X z

c' E-HZ P4 '-4
U'- Z2 4 0 0~

oo P-4 0 0L1 H

zNI L) L) 04

1-4 44 W 4 X41

i- ~ 0 0 u 0

u ci z 0- .- 4f Z-

x 80
'"1

9J7 CV nk -O

$n -. m n - n m



4'

0

0 -0

x <$--I

00-

00

o

E-4 8

0

E-4 Z -

H):: 0 w
z~~U 9 0-lgtR : ) Nzo0 0WW

E-4 P4e 3 d
0 U zj 0 U) PI r4 C 1

) 0 -4 0040 04 -
w -2I U U- iL0 4 1

o3 - tL r ,w - - crU %0 -4 CN r4C-4 rz I~

'-40 0~ ~ 0 0C4 E-4
c~~PZ 0 0) 1

Z El
E-U 0 AVUC

2U) ") - 4

W4 0 '8F4 O0

0 $4 N CfwlP

I I
81:

P40 -



0 E4c

w 0c

0

~ ~ 4 ~0 0 0H

9 -4~ 0 I.)0

z w

0 + +

E-4 Z
0

H 0 NN

ul 00 00 0 +N 0++CN

z X -4 00 0 0 ++ 0 
++

E-4 A -4-- 00 H-

NZ I+ 1+ ~I0~ + g

Z- NN CYi N- Zl - 1 - 1

z w0 .) Oj N4 0 0>4

Z 0 t 004 0 >1~N-

w E-4 ~iN E-4 p ow No

Z 8 w 0 P4.~ U) 4O Or.

0'- 0 > 00 0 0 P4 ~ w~ > > -

N 0 N P E-4Pi X HEZ . W 4

r-N NC) L) ci 0 N4>
w 

ZO4X >N4W WE- < wU

En~~~~>~ u UnL o -f>

N~ N cpN - < E-4 z4 H Hz :

Ef~ -4 Hi N IS44 
H 0 Z 0wz 4Ox 0 0I E-4-4 NP

'4) Ed.44U

.- 4

82



CZ -4 I 4

0
0

H 4 E-4 -

0

u 0 U) U )U
:: "-4U) 4 -. 4.
E- HU 0
U) R -4 4 Z 4 y

E-4 Q i40 r4-

0 -) PL4 PW P4 P

E-44

'-4 E-4 E

Z P-4 0 x u) CH '4'-

w U) mW ) w)
--q 0 0 (E-4 O H aE-

E-f HZ -WZ H z w wH

4H4E4H

u > U 0; 04 0 ~ .r 040 C.'00
En4 E4 ::

0 1-4U 0Z 0 0z Ui)

61z V) ozw

wW>4 HU N U. Il.U U U. L

E- L *IL L LfA '.0 Ln U

83

-~ .~-> 7'



K

o- 4 r.4 LA -- , I I I (I

Z 4

o o
H-4Z +

c, 0
P -4U EnP Z

E -4 U 0E

U-... R--' "' 0" 0'' U, I '.I( (
v  

104.; t Dt '
z E-4 -404C') -4H E- Z 0 u i-r,4

En 0 M 0 U u 0UQ~ UU000 1

MO E- C3+ P 0 E- tU

rzn 2- IV I)~U U i I - N ff HZN 0~ U o - AC

U +
,fC.,~ ,.., ...I71 +CV ~'

144

0 0 U) Zn

9 Z4O 0 0
U) -4 E-H

0 0 Om

0 H- '-4 W
cnI HZ UI-1%6 U,

CZ E-4 2 U H-

E-4 QI

Z1

H-4Z F40 -I. 4 00

1%1
El4 -4 H

W 00 4 0 0-~ U, E

Nm U, r3 4U 0 (I 4

84



w 0 0

;4rI (14 -4 r-4 m

6 4) u'~0

H (nrz I 1 44

L) ) 02

4~~ ~ rf pz- '4 -

H4 0J E48 0 >
U) -4 >4 0 -4 '-n V014 -

i) 0 00 02N- WZIU wz- 00 - -

44r-i4 r-4 (1 r4('. N 4Nr d -4C'M44 r-( C kD~ -W -4 C14 r-I

UV)

E-4)- 1 1

U)0 U) >41-
") .- U) E-

U))E-4

H0 0E -4 44 44

E-' 4 E-1 c 0 HL iz

E--44 (

-4 
P4 N U

85



X

1-q f - CY) CY) I N LA LO N N cn

-4c -4~ 0 0

00

HX 0- LA 0"
U, 00 N

z E-H -1 N C) ~ 0 0 0 l0l
E- PL44 Z44 C4H ~ z 0 0 -~ E- E-
En 0 U U I 00 0 0ri -.4

U 1-

44 00
w >

U) 0 9

U w 0H rQ
4-4 UR H Hn a-I 0 0 O

E-4 HZ E-- N) E- M U"-00 0
U'- "- E-4 H 0 m A Uc

En u E-4 H gwz
0- 1 0) U) 8~ FI u4 0 0 46Z SU
W 0) .I 2I- u 0 HW H'4-4 N~

H L Z 3 g U Oa 000

U- c 00 OD O

86 C o C

etar



r- 4

U w0

0 -E-4 '-

Z O z 1

1.41
C-4 E-4 4

E- P-4(i 0fl'U
z Hw

•( o

H 00 >H 0)0.
F-4 ~ (/4-
E4Z 4- H- 4)

E'4 H 4

(n U) U) " $A Cfar4

r. Z O P. 14

U0-1 0 04E-

4 -H :31-

w - 1 ()-4 4)(24

z 0

-- - .

U)

0 4) )0
" a - 4-

m H-4Z z 1

0E- U0 4
En '4 ONlG)C

HZ4 Z a)

4-) 4-)

'04-
H0

- 87

- 7



1zo t I
A.K rJE.Z Z09 0 4-

o w Q

E-.L) z Z

0
4-1

z .- 4

zA. W : .r
- mi -4 E4)0

z 4J-

C. z L j 0 r
ODO I-.

N -l 0

0 ra a +
SU 9Z z Z
I-z2 0

A. w.'
E40 w. 0w

I.) M

1.01

0 0-4m - +

*m E . .1

D U) 0

~t0
'.44

z z

88

lK".r



.7 -- ... 'S "

element of this sequence corresponds by sequence position to
one of the options from IENTOP. For example, if the LISTP
sequence contained the values 3021, 3045, 3064, 3082, the
option sequence in IENTOP is 48, 24, 39, 40 and the keyword
number 24 is selected, then the next tree position would be
45.

The instruction matrix, IDIRCT, is a two-dimensional array
with the first subscript dimensioned to two. The second sub-
script corresponds to the instruction matrix number as listed
in Table 3. IDIRCT(I,N) indicates the selected option for the
instruction and IDIRCT(2,N) contains the number or non-keyword
string if such an option was selected. An IDIRCT(I,N) value
that is positive and less than iOA0 indicates the position in
the IENTOP option sequence for the option selected. For
example, if the corresponding IENTOP sequence held five al-
lowed options and the third option position was selected, then
IDIRCT(I,N) would equal the integer three. An IDIRCT(I,N)
value of 1000 indicates that the entry is a non-keyword string
held in IDIRCT(2,N). An IDIRCT(I,N) value of -1 indicates
that the instruction is a floating number that is held in
IDIRCT(2,N). This floating number must be accessed with an
equivalenced array which is normally DIRECD.

Default values are coded in the arrays IDVAL and PVAL (in
common block /DEFLT/). IDVAL must be dimensioned the same as
IDIRCT and the second index corresponds to the option number
for the options listed in Table 3. IDVAL(I,N) indicates a
default control number, and IDVAL(2,N) indicates a default
value as described in Appendix B.

4.4 PROCESSING

4.4.1 Processing Flow

The control routine for the processing block is PROCES and the
flow for this routine is shown in Figures 30 and 31. PROCES
first calls the three routines, PROSET, INPSET and OUTSET,
which interrogate the instruction matrix and, as necessary,
set up input functions and set control values. The routines
also check for errors in the instruction matrix. For example,

*i a reference to a nonexistent Info File group will be detected
in routine COMPGP, which is called by INPSET.

PROCES then must loop over all row and column positions for
the specified input data. Normally, the outside loop is over
column positions and the inside loop is over the row positions.
However, for ensemble averaging, this order is reversed. In
the non-ensemble averaging case, PROCES enters a DO loop that
covers the column positions (radial stations). Inside this
loop, PROCES calls ATTGET to retrieve and/or calculate the

89



PRESET

PROCESS

P RE S ET

PNES;T

OUTPUT

I .ATp; 1 N:

Al I

Figure 30. Processing fIlo digrm(frs ar)

90~f



3400

LOOP WVER HOW POSITFIONS

I(XP OVR COLUMN POSITIONS

CET ATTACIID

PAR;LMEI' S

k VPDATA

OC NI.S

L'AI. I LA''

'WA tT :IA lTA

I
1) 1 S I, OS I T I ON

Figure 31. Processing flow diagram 'second part).

91

-- G



attached parameters for the appropriate counter and time span.
ATTGET is called once for each column position since the
counter or start time within a counter could change with
column number if the input is from a scratch file. ATTGET
will not recalculate or retrieve the attached parameters if
the currently stored attached parameter data are appropriate.
In addition, ATTGET will not calculate the attached parameters
if these parameters are not required for processing or display
in the current step and the output is not to a scratch file.

Following the ATTGET call, PROCES enters a second, nested DO
loop which covers the row positions (chord positions). The
flow inside this loop is quite straightforward. GETDAT re-
trieves the appropriate data stream(s) for a row/column inter-
section, PRO1 calls the appropriate routine to process the da-
ta, and TSAV1 stores the data either on the temporary scratch
file or on SCFI, SCF2, or SCF3. GETDAT may retrieve the data
stream from the Master File according to the user item code or
Info File specification, or GETDAT may call RTRVSC to retrieve
the data from SCF1, SCF2, or SCF3.

PRO1 addresses most of the available processing routines.
PRO. does not address processes that must treat data from
more than one row/column position simultaneously (e.g., Cn
integration). For such processes, PRO passes the input data
straight through to output, treating the data in the same way
that data is handled for a DISPLAY command. When the output
of a process is to be stored on SCFI, SCF2, or SCF3 and the
processing has been completed by PRO1, TSAVl calls SCADD to
save the data for the current row and column. Otherwise,
TSAVl saves the data in one of three ways. Data streams that
contain a single data point are saved in a portion of the
array XBUFF. Multiple point data streams are written to the
temporary scratch file. However, if a single row position is
being processed in the command step, the output data is not
written to the temporary scratch file. If the data is to be
printed, one of the printout routines (XYPRNT or XYPRN2) is
called to print the data stream immediately.

When the row position DO loop completes, PROCES checks whether
the specified process is an integration over multiple chord
positions (i.e., Cn' Cc, Cm integrations). If not, PROCES
jumps ahead to a call to TSAV2. If so, PROCES enters a DO
loop that covers data stream sections. Possibly every data
point for every row (chord) position will not fit into the
program scratch storage array. Thus, each data stream is
broken into 128 point (one-half of a scratch file record)
sections and all the data for each section is processed simul-
taneously. GFTEMP retrieves the data stream sections from the

92

' 7f



temporary scratch file and PRO2 selects the appropriate inte-
gration. When the loop has covered all the data stream sec-
tions, PROCES calls INTEMP to supply the appropriate labels
for the process output.

After the call to INTEMP, PROCES calls TSAV2 to store the re-
sults of the integration. If the output is to be stored on
SCFl, SCF2, or SCF3, TSAV2 calls SCADD to save the data for
the current column. In addition, attached parameter data are
stored using more calls to SCADD if those data have not al-
ready been stored for the current counter. If the output is
printout, TSAV2 calls XYPRNT or XYPRN2 to print the output
data stream immediately. When neither of the above output
methods is selected and a single-column position is to be
processed in the command step, the processed data are left in
the scratch storage array, XBUFF. Otherwise, the data are
saved by one of two methods. If the output is a single data
point for the column (i.e., one azimuth position), this point
is stored in the XBUFF array. If the output is multiple data
points for the column, the data are written to the temporary
scratch file.

The same call to TSAV2 may be executed after a jump around the
DO loop that performs the integrations. In this case, re-
quired storage or printout of the data may have already been
performed by TSAVl. If the output is to SCFI, SCF2, or SCF3
and the column position represents a new counter, TSAV2 calls
SCADD to save the attached parameters. If the output is
printout, this printout has already been performed in TSAVl.
For graphic output, the output data are stored in XBUFF or on
temporary scratch unless only one column is to be processed in
the command step.

At this point, at address 400, the block diagram depicts the
flow for processing that uses ensemble averaging. Ensemble
averaging is available for a restricted set of analyses that
does not include the multiple chord position integrations.
The outside loop for ensemble-averaged processing is over row
positions and the inside loop is over columns. Inside the
loops, attached parameter data are retrieved using subroutine
ATTGET, input data are retrieved using subroutine GETDAT, and
the appropriate process subroutine is selected by subroutine
PRO1. Results of a process need not be stored until the loop
over the columns is complete and subroutine TSAVl is used for
this purpose. Outside the loop over row positions, flow joins
the flow from non-ensemble-averaged processing.

When the flow sequences from ensemble-averaged and non-ensem-
ble-averaged processing rejoin, PROCES checks whether the
specified process is a differentiation over the column posi-
tions (radial stations). If not, PROCES jumps ahead to call

93

I.



DISPOS. If so, PROCES calls SLOPST to retrieve the appropriate
data from the temporary scratch file and to execute SLOPE to
calculate the blade slope for each radial position. Then
TSAV3 is called to store the output from SLOPST.

The final routine called by PROCES is DISPOS. DISPOS selects
the proper routine to perform the output. If the output is to
SCFI, SCF2, or SCF3 or to printout, then the output process
has been completed in TSAVl, TSAV2 or TSAV3 and DISPOS simply
returns. Otherwise, DISPOS calls the appropriate routine for
the graphic output selected: MULTPL for multiple curve X-Y
plots, SINGPL for single curve X-Y plots or to add a curve to
an X-Y plot, CONSET for a contour plot, and SURSET for a
surface plot.

When DISPOS returns, PROCES sets the subroutine argument, IC,
to one and returns. MAIN transfers program control back to
USER.

4.4.2 Scratch Files

Scratch files SCF1, SCF2, and SCF3 are written by subroutine
SCADD and data are retrieved from these files by subroutine
RTRVSC. Subroutine INFSCR is used to obtain information about
the contents of a scratch file. The scratch files are direct
access and Figure 32 shows the assigned purpose for the
scratch file records. The first scratch file record contains
labels, information on the data stored, row positions, and
column positions. Along with each column position stored,
there is a directory for the associated attached parameter
data and other information including the counter for the col-
umn. The column position and attached parameter location
pointers may continue into the second record of the scratch
file. Figure 33 shows the contents of the first record of the
scratch file.

Data directory records begin at record three of the scratch
file. Each data directory record contains several data
directory blocks and each block contains the record locations
for the data corresponding to the top and bottom double-row
elements for one row/column pair. Along with the data loca-
tion pointers, some information regarding each data stream is
included. Space is provided for one data directory block for
each matrix intersection for the allowed number of rows and
columns. Figure 34 shows a data directory record. Data
directory blocks require 12 words (48 bytes) and scratch file
records contain 256 words (1024 bytes) so that 21 blocks are
written to each record. The block address for a given row/
column intersection is determined by varying the row position
first and then the column position.

94

r-,
* .1~



A0A094 674 BELL HELICOPTER TEXTRON FORT WORTH TX F/ 9/2

HrAA 
-RO 674EHNC 

ETAN NLTC 
AAGMN 

N-ECU

DE DAT RO P EHIL IC TETA D AA 5I 79AEMN ANECC00
UNCLASSIFIED BHT-699 099 025 VOL 2 USAAVRAOCOM-TR-80-0-308 NL

22 flllllll lfllffmEh EE0hE
EEEEEEmhhohhhE
somhmhmhmhl
EEmohEEmhEEEohI
EohhohmhmhhEEE



I . NERA F O Ui v\riu[ A'IA DAC?; [AtA DAIA

0. N~ rI N CAON i.2 IRE ?D D R A;"' .H . DI RECT')RY AID,* DIII.

REOURD I RICURL RECORD 2- EC*A>)I- i,-CRl' -K

REC ? I RI CORA 2 RI Cu Rl I RECO RD 2 *K RE CORD l!II RECOR JD I E i '

KIMX\MImM ,LjOWI:L RUWS) 4 IMAXIMUM ALLOWED COLUMNS) 20)1211

Figure 32. Scratch file record assignments.

I

A, 
95

fi

-- --



I'

START LENGTH
WORD (WORDS) ENTRY CONTENTS

1 I O'RALL UNITS (3A4)

4 4 ROW POSITION SCALE VARIABLE 14A4)

2 ROW POSITION SCALE VARIABLE (SHORTENED)(2A4i

10 4 ROW POSITION TOPOGIRAPHIC FEATURE (4A4)

14 4 COIUMN POSITION SCALE VARIABLE (4A4)

18 2 COLUMN POSITION SCALE VARIABLE (SHORTENED) (2A4)

20 4 COLUMN POSITION TOPOGRAPHIC FEATURE (4A4)

24 V FIRST DIMENSION SAMPLING INTERVAL

21 I FIRST DATA SECORD LOCAT ION

26 ATTACIIEDI PARAIMETER INDICATOH: 0=UNIVERSAL, I=BY COLUMN

27 LTYPE (PROM /PRCOM/I

2h I IXAX (PROM /PRCOM')

29 2 S:I MODEL (A4,A2)

2 SUI' NUMBER (A4,A2)

II 2 qiii I IROSS WEIGHT (A4,A2)

15 2 SUIP LONGITUDINAL CC (A4,A2)

I NUMBER OF COLUMNS PRESENT

9- NUMBER OF ROWS PRESENT

S9 1 TOP DOUBLE-ROW F, ELEMENT KEYWO)RD

40 B HTTIM DO[BLE-ROW ELEMENT KEYWORD
41 II I;ENSEAI, LABEL El lR DATA I] (A4

14 1 INDEPENDENT VARIABLE: O=NO DATA. I=TIME, 2=I RE.,, I-HA

TOP DOUBLE-ROW LABEL INDICATOR: ILABPI., 2=N0 AI .

16 I II)TTOM DOIBIL-ROW i111 ]N)IICAIR: I ABI_, 2 N, LAB;I

7 I AZIMU"T151 OFFSET F'B IN' Ii. G41'

SLABE BL TTIM D()Ui-SOW IA:1L SA41

6i I I,i.SCBD U NIT COMBINATION INDICATOR

f.9 Ii ABEL I'PU SECOND DATA INPT (i.e., FOR CRI)- ' RLVOCSS I (i A4)

2 I UN i EASF l. FOP SECOND DATA INPUT ( IA4

1R111>1 1 HOW POISSITION NUMBER I DNtIPI[I[)I -UI.I+PE

LAlT AVAILARLE HO1W PIIS7TIIN I'N) ID= -[P.S+ t 5

C(|, 1 1 CII MNIPOSI TIO:N NUMBER I

I} I2 I El IT IIIMi NiIION "AIE IOP El D IMA ITA N0ANT

I CDIIP' 1 IATA S'TRAM NUMBER )I ENTii I I1

IC 11,-' P.4 [ RDIAII.H L.(1ATION FOR AlIMI"Ti) DATA
ICI "F.S NUMB P OF POINIS OF AZ I MUTI DATA

I V I.1 I 6R :IRU [EVAT I ON FuR A I OSPED DAT"

PP' i NUMBEIR IF POINTS o AIRSPEEI UATA

ICIll E7A I lI1C(lRD IOATI"N FOR RPM DATA

CIIt-IFF9 I NUMBED OF POINTS OF RPM DATA

Ci) P . IS I RECORD L(ICATION FOR STATIC PRESISUR.E ATA

I ilOPE!'1l I NUMBER OF POINTS OF STATIC PRESSURE DATA

lIEPOI. 12 1 RECORD LOCATION FOR OUTSIDE AIR TEMPERATURE DATA

iCP I' I I NUMBER OF POINTS OF OUTSIDE AIR TEMPERATURE DATA

IC PO F I4 I COUNTER (INTEGERI

ICP*IIFR-5 I COLUMN POSITION NUMBER 2

ICPOIFF,29 I COLUMN POSITION NUMBER 3

I
Figure 33. First scratch file record.

0, 96



START LENGTH ETYCNET
WORD (WORE") ETYCNET

Ll I To P DOUBLE-BOW ELEMENT START LOCATION IN FILE

L.2 t TOP DOURLE-BOW ELEMENT MINOB GEOMETRIC POSITION

13- 1 To P DOURIE-ROW S11ORT DATA STREAM LABEL (3A4)

L:~6 ITot) DOURL.E-ROW EI;tMFNT NUMBER OE DATA POINTS

L.17 IBOTTOM DOUBLE-ROW ELEMENT START LOCATION IN FILE

L-B I BOTTOM DOURLE-BOW LEMPENT MINOR GEOMETRIC POSITION

1.9 3BOTTOM DOURLEBROW SHIORT DATA STREAM LABEL 1 3A4)

. 12 1 BOTTOM DOUBLE-ROW ELIEMENT NUMBER OE DATA POINTS

Figure 34. Structure of a data directory block.

97

Oww -1 W . w



Data records begin after the last reserved data directory
record. Data streams are written to the lowest available data
records in the order received by SCADD.

The temporary scratch file has a different format from SCFl,
SCF2, or SCF3. This file will not hold data streams corre-
sponding to every row and column intersection simultaneously.
The directory for this file is contained in the common block
/GENSCR/ (see Appendix B). The flow of PROCES is such that
this file should be required to hold no more than one data
stream for one row element of each column position and one
data stream for each row element of one column position. Data
streams corresponding to column positions are entered first
followed by data streams corresponding to row positions. When
an integration is performed, the row position data streams are
condensed to one data stream, which is written as a column
position data stream on the scratch file. The row position
data streams for the next column position must then be written
to a higher location on the scratch file to avoid overwriting
the new column position data stream.

4.4.3 Info File Retrieval

The information stored on the Info File is retrieved and pro-
vided to the Processing Block by several different routines.
INFOST is called in the Program Initialization Block to read
and transfer the information from the initial group into the
common block /SINGIF/ (see Appendix B). In the processing
block, subroutine SINGGP interrogates this common block to
extract the appropriate item code for a particular key-
word. If INFOST encounters unit conversion instructions, it
calls subroutine UNINIT to read and store these instructions
in common block /SINGIF/. UNINIT can read and store in
program memory as many as 64 unit conversion lines. In the
processing block, subroutine CONVCK tests dependent variable
unit labels against the stored units and reports a conver-
sion if one 4s specified. If the Info File includes more
than 64 unit conversion lines and the lines stored in program
memory do not match the output dependent variable units, then
CONVCK scans the additional unit conversion lines for a match.
The input and processing of the initial group of the Info
File by INFOST and UNINIT constitutes a complete test for for-
mat accuracy of the initial group.

For Info File geometric groups, the processing block calls
subroutine COMPGP to scan the Info File and find the specified
group name. COMPGP then calls subroutine READGP to read and
transfer the group information into the common block /INFGRP/.
The processing block calls subroutine INF02 to extract the
proper item code and geometric position from /INFGRP/ for
each specified row/column intersection.

98



All of the geometric groups are tested for format accuracy
the first time that the menu subroutine INFRED is called
(see Section 4.6). INFRED calls subroutine READGX to per-
form the format testing for each group.

4.4.4 Replacement/Addition of Analysis or Derivation Routines

Most routines that execute specific analyses or derivations
on input data are accessed by PROl through an interface
routine. For example, to calculate blade displacement, PROl
calls the interface routine DSPSET and DSPSET calls BLDISP to
perform the actual calculations. The interface must take the
input data as stored in the program and provide these data to
the processing subroutine in the required format. The main
stream of input data is contained in the array XBUFF. Data
for the top double-row element always begin at array element
one and data for the bottom double-row element begin in the
second half of XBUFF at location IBFSIZ/2 + 1 where IBFSIZ
(in common block /SIZES/) is the array size of XBUFF.

For cross processes (e.g., for cross-correlation analysis),
XBUFF may contain as many as four separate time histories.
These histories correspond to the top and bottom double-row
elements of the first and second input functions for the
cross process. Following are the time history start points
in XBUFF for this case.

1 - Top double-row, first input function

IBFSIZ/4 + 1 - Top double-row, second input function

IBFSIZ/2 + 1 - Bottom double-row, first input function

3*IBFSIZ/4 + 1 - Bottom double-row, second input function

For cross processes with a single double-row element input
(i.e., the top double-row element), the first input function
begins at location one in XBUFF and the second function is
stored beginning at location IBFSIZ/2 + 1. Both input data
functions must be the same length (in time and in number of
datum points) for cross processes.

The presence of top and/of bottom double-row elements is
indicated by the value M12INP (in common block /CNTLIP/) where
the allowed values are:

0 = both double-row elements present
1= top double-row element present only
2 = bottom double-row element present only

I99

'iI



The number of data points in the data stream(s) is given by
the two-element array IDATPR (in common block /CNTLIP/) where
IDATPR(l) is the number of data points for the top double-row
element and IDATPR(2) is the number for the bottom double-row
element. Attached parameter data are contained in the common
block /ATTPAR/ as explained in Appendix B. Array XSPARE (in
common block /BSPARE/) is available for intermediate storage
of data. In particular, XSPARE will store intermediate results
for ensemble averaging processes.

After the process is completed, the interface routine must
assure that the output data streams are stored in XBUFF with
the top double-row element data stream starting at XBUFF(1)
and the bottom double-row element data stream, if present,
starting at XBUFF(IBFSIZ/2 + 1). M12OUT should be set to
indicate the presence of the top and/or bottom double-row
elements using the same allowed values as M12INP. IDATPR
should be set to give the amount of data for each double-row
element. The output keywords, KEYWDI and KEYWD2, should be
set to indicate the type of data present. If a double-row
element is not present, the corresponding keyword should be
set to zero. If a double-row element is present, there are
three cases for output keyword selection. The keyword for
output from analysis should be identical to the corresponding
input keyword, KEYQI or KEYQ2. The keyword for a derivation
output, which could in turn become the input to a second
derivation, should be set by reference to the KWDAT array in
subroutine PROSET. The keyword for other derivation output
could be set to any non-zero value.

Then the labels and label pointers should be set. When the
process is a derivation, the dependent variable description,
ITEMDS (in common block /LABELS/), should be changed as neces-
sary along with the dependent variable units, IUNITS. LTYPE
(in common block /PRCOM/) should be set to eight. When the
process is an analysis, ITEMDS should not be changed but LTYPE
should be set to indicate the type of analysis as listed by
HLABLS (in common block /PLABLS/). In either case, LXAX (in
common block /PRCOM/) should be set to indicate the independ-
ent variable as listed by XLABLS (in common block /PLABLS).

The interface routine must also set the double-row element
labels, LBDTOP and LABBOT, and the indicators for these
labels, LTOPON and LBOTON. All of these arrays and vari-
ables are in common block /MLABLS/. The settings that are
required depend upon the relationship between the input and
output double-rows. These relationships and the appropri-
ate settings are listed below.

There are both input double-row elements and these are
individually processed into both output double-row ele-

C' ments in the same order. The arrays and variables should
be left unchanged.

* --100

t i ioo



* 1
There are both input double-row elements and these
are processed together to create the top output double-
row element or to create both output double-row elements.
Both LTOPON and LBOTON should be reset to zero.

There is only a top double-row element, which is pro-
cessed into the top double-row element on output. The
arrays and variables should be left unchanged.

There is only a top double-row element, which is pro-
cessed into both double-row elements on output. LTOPON
and LBDTOP should be left unchanged, and LBOTON should
be reset equal to LBDTOP.

These variables and indicators depend upon original data
sources and should never be reset to labels contained within
the interface routine itself.

4.5 COMMAND SEQUENCING

4.5.1 Command Sequencing File

The Command Sequence File is a direct access file with a
structure as shown in Figure 35. Each record contains 16
command lines with 64 characters (16, 4-byte words) per line.
Each block requires 7 records for 112 available lines.

The first word of the directory record is an integer that
specifies the total number of records in the file. Following
the first word is a sequence of two-word entries, correspond-
ing to the command sequence blocks, which gives the four-
character block name in the first word and the record location
in the second. An empty block is indicated by a blank block
name.

4.5.2 Command Sequencing Routines

* Access to the Command Sequence file is initialized by the
routine EDINIT in the Program Initialization block. EDINITfirst reads the directory record for the file and sets certain
control values based on the size of the file. Then EDINIT
checks the location pointers in the directory record for
reasonableness. Finally, EDINIT reads the last file record to
check that the command sequence file is properly initialized.

The main routine for the Command Sequencing block, EDCNTL, is
called to perform any of the functions: EDIT/NEW, EDIT/CHANGE,
EDIT/DELETE, BUILD or EXECUTE. EDCNTL first searches the Com-
mand Sequence directory record for the block name entered. If
the name is found and the function is EDIT/NEW or BUILD, an I

101 j

-".-



BLOCK 1 BLOCK 1 BLOCK 2
FILE

DIRECTORY FIRST * LAST FIRST
RECORD RECORD RECORD RECORD

RECORD 1 RECORD 2 RECORD 8 RECORD 9

Figure 35. Structure of coimmand sequence file.

102



error message is generated. An error message is also gener-
ated when the name is not found and the function is EDIT/
CHANGE, EDIT/DELETE or EXECUTE.

For the EDIT/NEW or BUILD function, EDCNTL sets the variable
LED (in common block /LEDIT/) to the appropriate value (EDIT/
NEW = 1, BUILD = 2) and searches for an unused command se-
quence block. If a blank block name is found, the name is set
to the specified name and the command line storage area is
preset with dollar signs for every line. Upon return from
EDCNTL, the User Interface block causes the individual command
steps to be saved using the EDSAVE routine.

For the EXECUTE function, EDCNTL sets the variable LED to
three and sets appropriate pointers for retrieval of the named
block. Upon return from EDCNTL, the User Interface block
causes individual command steps to be retrieved using the
EDINP routine. Subrouting INTERP isolates any parameters
passed to the command sequence and stores these parameters in
the arrays NLARG and LARG of common block /LEDIT/. EDINP
retrieves these parameters as they are referenced by the
command sequence.

For the EDIT/DELETE function, EDCNTL modifies the correspond-
ing file directory entry to show a blank name.

For the EDIT/CHANGE function, EDCNTL reads the indicated com-
mand sequence block into the array LINE (in common block
/CNGBLK/). Then EDITCH is called to allow the user to modify
the sequence. Upon return from EDITCH, the argument ISAVE can
have a value of one to indicate that the modified sequence
should replace the original sequence or zero to indicate that
the original sequence should be left unchanged on the command
sequence file.

*, 4.6 MENUS

Menu displays are controlled by the routine MENU. This
routine simply calls the appropriate routine to create the
specified menu display. Following is a listing of these sub-
routines and the functions they perform.

MCOUNT - List the counters on the Master File partition
or partitions that are currently accessed.

MITEMS - List the item codes for a given counter that
are present on the currently accessed partition.

INFRED - List the Info File initial group and the geomet-
ric groups by name. For the first call to

r! INFRED, use subroutine READGX to test the
format of each geometric group for accuracy.

4

"10

Ln



LSCRAT - List the contents of the scratch files.

EDITLS - List the Command Sequence blocks present on the
Command Sequence file.

MPARTS - List the partitions on the Master File and
indicate the partition(s) that is currently
accessed.

MNMASK - List the item codes that are currently masked.

MENSET - List the current run settings.

4.7 GRAPHICS

4.7.1 Tektronix/Calcomp Plotting Interface

DATAMAP generates plots on the Tektronix 4014 screen that are
nearly identical to corresponding plots generated on a Calcomp
or Houston Instruments DP-I. In addition, differences in the
source code required for the Batch mode load module and the
Interactive Graphics load module are held to a minimum. These
features of the software have been implemented through the
generation of a group of plotting interface routines and
through the use of a modif version of the Calcomp Preview
routines. Calcomp Preview is a set of routines provided by
Tektronix in the PLOT-10 software. The PLOT and PLOTS routines
supplied by Tektronix have been replaced by BHT modified
versions for this specific application.

The plotting interface routines replace the functions of the
Calcomp LINE and AXIS routines. In addition, the plotting
interface routines perform five functions required by the
Processing Program. First, certain residual differences
between calls to the Calcomp routines and calls to the Tektronix
and Calcomp Preview routines are handled by this interface.
For example, the interface routine STPLT handles the difference
between clearing the screen on the Tektronix and moving the
plot origin to start a new frame on the Calcomp. Second, the
interface routines generate the Tektronix screen format for
plotting and also handle positioning of the cursor on the
left-hand side of the screen for printed user input and
computer messages. Third, data plot curves that exceed the
allowed plotting area are clipped by these routines. Fourth,
the facility to generate dashed curves is provided by these
routines. Finally, access to the graphic cursor and evalua-4 tion of cursor-specified locations in user coordinates is
provided by the plotting interface.

The plotting interface calls only four Calcomp routines: PLOT,
PLOTS, NUMBER and SYMBOL. LINE and AXIS are not used. In

104

' -



addition, three Tektronix PLOT-10 routines are accessed by the
plotting interface and four additional PLOT-10 routines are
called by the modified PLOT and PLOTS routines. The modified
PLOTS calls the routines INITT, TERM and CHRSIZ and PLOT calls
MOVABS and DRWABS. The plotting interface calls the routines
MOVABS, ANMODE, and SCURSR. Dummy versions of these last three
routines are provided for the Batch mode load module. The
PLOTS subroutine that is used for the Interactive Graphics
mode controls the size and positioning of the plotting area on
the Tektronix for the full-screen plotting mode. This routine
sets multipliers and offsets as necessary for the plotting
area in common block /CLCOMP/ and then PLOT uses these values
in interpreting the plot commands on the Tektronix.

To begin each plot frame, either STALL or STPLT must be
called. STALL should be called for the first plot frame to be
generated by the current program run. STPLT is called other-
wise. Following the call to STALL or STPLT, AXES or AREA must
be called to define the allowed plotting area. AXES will .
generate a box around the area, annotate X and Y AXES and,
depending on the IGRID and NOTICS settings (in common block
/DRW/), draw tic marks inside the box and/or a grid inside the
box. AREA will simply define the allowed plotting area with-
out generating any axes.

LYNX is called to draw data curves. LYNX will generate con-
tinuous curves or dashed curves and/or curves with characters
centered on every N'th point. LYNX cannot draw lines outside
the allowed plotting area. DRAWN is called to draw a line
outside the allowed plotting area according to the dash code
used by the last call to LYNX (see Appendix B).

INSET relocates the cursor on the left-hand side of the
screen for printed input or output. The cursor is located on
the number of raster points down from the top specified by
LNCNT.

PLOC activates the graphic cursor and evaluates the user
specified location in units of the current plot frame. The
resultant values and the user typed character are returned to
the calling routine for processing or output. One position is
evaluated for each call to PLOC.

ENPLT ends all plotting by the Processing Program.

4.7.2 X-Y Plots

Simple, multiple curve, double scale, and comparison X-Y plots
are all generated through the routine XYPLOT. XYPLOT calls
STPLT or STALL as necessary to initialize the plot frame. X
and Y scaling values are determined using SCALEV and the axes

1

'1

10

j ,



are drawn using AXES. For double-scale X-Y plots, subroutine
DAXES is called instead, and this routine calls AXES twice.
This portion of the code is skipped if a curve is being added
to an existing plot frame.

LYNX is then called to draw the curve on the plot. For
double-scale plots, DLYNX is called, which in turn call LYNX.
Following the call to LYNX, labels are drawn for the plot if
the curve is the first for the current frame. For a multiple
curve plot, a sample of the type of dashed line used by LYNX
is drawn using the routine DRAWN. This line is then annotated
appropriately.

PLOC is then called if graphics cursor activation was speci-
fied by the user. INSET is called and the returned arguments
from PLOC are printed. If the returned character from PLOC is
a 'C', then the program loops back to call PLOC again. Other-
wise the program proceeds to call INSET and return.

4.7.3 Contour Plots

For contour plot generation, subroutine DISPOS calls subrou-
tine CONSET. Based on the two independent variables for the
output function, CONSET calls NOFRST or YSFRST. NOFRST is
selected when the first or time-related dimension is not one
of the two independent variables, while YSFRST is called when
the first dimension is one of the two independent variables.
Both of these routines retrieve the output data and interpo-
late the input data matrix to obtain a new data matrix with
the prescribed number of rows and columns for the plot format
selected.

CONSET then calls either CONCYL or CONREC for a cylindrical or
rectangular format, respectively. These two routines follow
the same general flow. After STPLT or STALL, and AREA are
called, a box or circle is drawn around the allowed plotting
area. Then the interval between contour levels is set using
SCALEV and/or user supplied values.

When the vertical or Z scale is set, CONTUR is called to draw
the contour plot. CONTUR finds the sequences of X-Y positions
that form the individual contours. However, CONNEC is called
by CONTUR to actually draw the contours using LYNX. In addi-
tion, CONNEC uses DRAWN to draw line samples with level anno-
tation in the label area.

Upon return from CONTOUR, additional labels are drawn under
the plot and then INSET is called to reposition the cursor for
printed I/O for the next command step.

106
a -ja-

i-

- .- ---



,A

iI
*; 4.7.4 Surface Plots

Surface plot generation follows the same general flow as con-
tour plot generation. Subroutine DISPOS calls subroutine SUR-
SET. Based on the same criterion used by CONSET, SURSET calls
NOFRST or YSFRST. Upon return from the selected routine, SUR-
SET calls SURCYL or SURREC to draw a surface plot using re-
spectively a cylindrical or rectangular format.

As with CONCYL and CONREC, SURCYL and SURREC follow the same
general flow pattern. Either STPLT or STALL and then AREA are
called and a box is drawn around the allowed plotting area.
PLSURD is then called to draw the surface. GTFORM is used by
PLSURD to generate the perspective transformation from three-
dimensional point locations to point locations on a viewing
plane.

Upon return from PLSURD, SRRCRF is called to draw annotation
around the allow, plotting area.

Upon return from SRRCRF, labels are drawn below the plotting
area, INSET is called, and control is transferred from SURCYL
or SURREC to SURSET. Next, control is returned to DISPOS.

4.8 DATA RETRIEVAL

Measured data are retrieved from the Master File with the rou-
tines DATAIN and FINDIT. FINDIT locates the appropriate data
in the Master File. Two separate FINDIT calls are required to
locate an item code/counter pair. The first call locates the
specified counter in the counter directory and transfers part
or all of the corresponding item code directory into the ITEMD
array (in common block /DATSET/). The second call locates the
specified item code in the item code directory and transfers
the information record for the data stream into the ITMINF ar-
ray (in common block /DATSET/). Both of these calls to FINDIT
are performed by DATAIN so that a single call to DATAIN is re-
quired to input data for a specified item code/counter pair.
During the second execution of FINDIT, the requested item code
is compared with the list of masked item codes. If this item
code matches a masked item code entry, FINDIT returns with an
indication that the item code was not found. Otherwise, based
on the requested time offset and the time history length spe-
cified, DATAIN calculates the appropriate first record and
reads the requested data. Calibration is performed if the
data are stored on the Master File in integer format.

Part or all of the counter directory and the most recently
used item code directory are kept in the arrays ICTRD and
ITEMD so as to minimize reads of directory records. Thus, if
there are fewer than 128 counters, the counter directory need

107

"L



I not be read more than once. Similarly, the item code direc-
tory need not be read more than once if that directory has
fewer than 128 entries and if the counter does not change. In
addition, the information record need not be re-read until a
different counter/item code pair is required.

FINDIT checks the required data against the data present to
prevent unnecessary reads of directory records and information
records.

108



5. UTILITY ROUTINES

Certain subroutines are used in more than one of the DATAMAP
programs. These routines have been written to be general in
nature.

5.1 DIRECT ACCESS

All direct access READ, WRITE and FIND operations are pro-
cessed by the routines RMS, WMS and FMS, respectively. For
example, instead of a direct access read statement using the
IBM format,

READ(NRI'IXXX)IARRAY

the File Creation Program and Processing Program make the
call,

CALL RMS(1,IARRAY,ISIZE,IXXX,IERR)

Of course, the normal IBM format, or some equivalent format
for a different computer system, is used in the RMS, WMS and
FMS routines.

The routines use the common block /MASS/ to retain device num-
bers, offsets and sizes. Calls to RMS, WMS and FMS specify a
pseudo-device number which is an index for the arrays in
/MASS/. In the example, the integer 'Il is the pseudo-device
number. The array MDEV contains the actual I/O file numbers
(data set reference numbers) for the direct access files. The
array MOFF contains offsets to be used in addressing records
in the direct access file. Thus, an MOFF value provides
relative addressing to a group of contiguous records that
form a subset of all the records present in the direct access
file. These subsets are called pseudo-devices. Thus, if

MDEV (2) = 8
MOFF (2) = 5248

then pseudo-device '21 is direct access file number eight and
the first record of pseudo-device two is actually record 5249

on direct access file number eight.

The array MLEN gives the number of records assigned to each
pseudo-device. The array MTOT gives the total number of re-
cords and MSIZ gives the record size in four-byte words for
the direct access file that contains the corresponding pseu-do-device.

109



The routines RMvS, WMS and FMS check that the requested rela-
tive record number is within the assigned pseudo-device area
and that the resultant absolute record number does not exceed
the boundaries of the corresponding direct access file. These
routines also check that the requested record size is less
than or equal to the record size for the direct access file.

Initialization of the direct access files and setup of the
/MASS/ common block are performed in routines other than RMS,
WMS and FMS. The programs and routines that perform initial-
ization on the direct access files are listed in Section 6.1.
Setup of the /MASS/ common block is performed for the File
Creation. Program in routines SETUP1 and SETUP2. For the
Processing Program, /MASS/ is set up in the routines INITSC,
DASTRT and EDINIT.

IBM OS and MVS system direct access files can be initialized
in one of two ways: a write can be specified as the first
file operation of the program run or every available record in
the file can be written on using a sequential alias for the
direct access file number. The former method is not used
because the File Creation Program and Processing Program
DEFINE FILE statements specify more records for a direct
access file than would ever likely be physically provided for
the file. Thus, the normal system initialization of the file
would always result in an error.

The pseudo-device numbers in the File Creation Program are

1 = Initially is all of Master File and then during the
data transfer is the partition of the Master File.

2 = Scratch file temporarily containing the partition
directory.

The pseudo-device numbers in the Processing Program are

1 = Initially is set to read all of the Master File and
after the Startup Block is executed, is set to read
the partition of the Master File that is specified for
access using slot one.

2 = Directory for partition accessed through slot one
3 = SCFl
4 =SCF2
5 = Temporary Scratch
6 = Command Sequence File
7 = SCF3
8 = Partition accessed through slot two

9 = Directory for partition accessed through slot two.
10 = All of Master File

110



% .

5.2 STRING HANDLING

Several routines are used by the system to process strings.
Subroutine PACK transfers the leftmost character (i.e., the
first character) from each of four sequential words to the
leftmost four bytes of a single word. The sequence of the
characters is maintained. Thus the sequence of string words
'AWW', 'BXXX', 'CYYY', 'DZZZ' becomes 'ABCD'.

Subroutine SHFSTR transfers a contiguous sub-string from a
string containing four characters per four-byte word to a set
of contiguous character locations in a second string contain-
ing four characters per four-byte word. Both SHFSTR and PACK
use 'LOGICAL*l' variables, which is IBM-dependent code (see
Section 6.2).

NTOSTR is a routine that converts floating numeric values to
strings. NTOSTR is used by INTERP to convert numeric command
entries to string form for storage of command lines.

READF performs scanning and some interpretation of free-field
user input lines. The calling routine must read the command
line into the array ICHAR (in common block /KARD/) storing one
character per four-byte word. READF evaluates numeric entries
as floating numbers, calculates the starting character posi-
tion and number of characters for string entries, and notes
the position in the entry sequence of null entries. This
information is returned in the common block /KARD/.

Subroutine MATCHR is frequently called following a call to
READF to find a match between a character string and one ele-
ment of an array of four-character strings. The first charac-
ter of the test string is compared with each of the first
characters from the keywords stored in the array IAA (in
common block /WLIST/). Subsequently, the following character
from the test string is compared with the corresponding char-
acters for all the keywords that matched for the previous
character. If, after every character of the input string has
been processed, there is more than one keyword that compares
character for character, the entry is considered ambiguous and
the return argument IOUT is given the value zero.

If no keywords match the test string, then IOUT is set to
minus one. When a single keyword matches the test string, the
corresponding index for the keyword is returned.

A maximum of four characters from the test string -re examined
by MATCHR. Additional characters are ignored. Fever than
four characters may be provided and then only the characters
supplied are processed. Thus, fewer than four characters may

11

~ -. V

-4



be an acceptable entry to match a keyword, even though the
matched keyword contains more characters than the test string
supplied. If an unambiguous match is found for the test
string before all the test characters have been processed, the
remainder of the available test characters (up to the fourth
character) are still compared and a mismatch will result in a
return with IOUT= -1.

5.3 SORTING

Several routines are used by the File Creation Program and the
Processing Program to sort arrays in ascending order of float-
ing or integer value. These routines are SORTM, SORTO, SORT1,
SORT2, SORT3, and SORTMF. These routines all use the binary
sort algorithm and retain the same flow pattern. The routines
differ in the number of associated arrays carried along with
the array to be sorted and whether the array to be sorted
contains floating or integer values.

SORTMF sorts an index array corresponding to the array to be
sorted. Then the routine SORTID, which calls SORTMF, carrys
through the sort using the location pointers in the index ar-
ray. The sort is carried through on a matrix of array values
with the column elements corresponding to the index pointers.

5.4 SUBROUTINES TO ENHANCE TRANSPORTABILITY

Certain subroutines are used to concentrate non-standard code
in a single location. These routines are described in Section
6 and are only listed here for completeness. The subroutines
are QUIKIO, READLN, DATEQQ, INIDAF, PARMGT, and NEXTAP. The
routines WMS, RMS, FMS, SHFSTR, and PACK also perform this
function but they have additional reasons for use.

112

* - ..i77



6. TRANSPORTABILITY CONSIDERATIONS

DATAMAP has been written so as to make conversion of the
software to another computer system as simple as possible.
However, certain installation and system dependent code has
been required in the programs to achieve the requirements for
the system. Such code is always flagged in the source listings
and a corresponding process that is valid for the local in-
stallation can be inserted in the place of the invalid code.
The various types of nontransportable codes will be discussed
here.

6.1 THE DATAMAP LIBRARY

As mentioned in Section 5.4, six subroutines are used-to con-
centrate certain non-standard code in a single location.
These six routines are contained in the "DATAMAP Library" or
"DATMAPLB." DATMAPLB should be made available during the
link-edit process for each of the DATAMAP programs. The six
subroutines, DATEQQ, INIDAF, NEXTAP, PARMGT, QUIKIO, and
READLN are all described in subsequent parts of Section 6.

6.2 DIRECT ACCESS

DATAMAP uses the IBM direct access capability extensively.
All of the READ, WRITE and FIND calls are restricted to the
routines RMS, WMS and FMS. Thus, conversion of the actual
reads and writes for direct access files should be reasonably
simple if there is a corresponding process at the new instal-
lation. In addition, the file definition statements (DEFINE
FILE) are always grouped near the beginning of the main routine
for each program. The files are always set up with 256 four-
byte words per record, the records being unformatted.

Four of the DATAMAP programs perform the initialization pro-
cess of writing dummy data on each record of a direct access
file. The initialization functions of the Master File Ini-
tialization Program and the Command Sequence File Initializa-
tion Program are clear from their titles. The File Creation
Program initializes a direct access scratch file in the sub-
routine SETUPI. The Processing Program initializes scratch
files in the subroutine INITSC. Subroutine INIDAF is called
to perform each of the initializations. INIDAF writes on each
direct access record in the sequential mode using subroutine
FASTIO (see Section 6.4). In many cases, conversion to another
initialization method could be accomplished by modification of
INIDAF without change to the specific routines that call
INIDAF.

ja

113

lp -



6.3 CODING VARIATIONS

DATAMAP uses certain nonstandard IBM FORTRAN features.
LOGICAL *1 variables are used in the routines SHFSTR and PACK
to address individual bytes of four-byte words for character
manipulation.

INTEGER *2 variables are used extensively in the data handling
portions of the File Creation Program to process the standard
BHT-Ground Data Center (GDC) tape format. The routines that
use INTEGER *2 variables are READD, FITEM, FCNTR, TRANSC,
CALUPD, SAVD and SAVF. All of these routines would probably
need to be replaced in the STRNGF routine to handle data input
that is not in DTF or BHT-GDC format.

INTEGER *2 !ariables are also used in the Processing Program
in the data retrieval routine DATAIN.

The following form of input statement is used in DATAMAP to

detect end files or errors on input.

READ(NREA, 9000,ERR=500,END=500)list

All DATAMAP programs restrict use of this form to the sub-
routine READLN so that conversion of this statement type could
be performed on this subroutine alone. READLN is one of the
subroutines on DATMAPLB.

6.4 COMPUTER WORD PROBLEMS

Certain problems could be introduced in the conversion of
DATAMAP to a new computer system from changes in size and
format of the computer word.

6.4.1 String Storage and Processing

Strings are stored either with one left-justified character
per word or with four left-justified characters per word.
Strings are read or printed in Al or A4 format. Thus, conver-
sion for string processing should not create much of a problem
when at least four characters can be stored per word (instal-
lation on mini-computers with 16-bit (2-byte) integers would
present significant problems). However, for systems where
more than four characters are stored in a word, the calls to
the Calcomp SYMBOL routine present a problem since SYMBOL
expects a continuous sequence of characters. SYMBOL is called

4by routines XYPLOT, XYCMLB, CONREC, CONCYL, SURREC, SURCYL,
ANNOT, and MCHAR.

11

, 114

]0

2 I .



The READF routine has two integer values set in a data state-
ment, IBITS and NBYT. IBITS must be set to the number of bits
in a character byte and NBYT must be set to the number of cha-
racter bytes that can be stored in a word.

Special problems can arise in the interpretation of a string
by arithmetic means. All of the character encoding methods
that have been considered (BCDIC, EBCDIC, ASCII, and CDC
internal display code) encode the digits 0-9 in a continuous
sequence and in order from lowest unsigned arithmetic inter-
pretation of a byte to highest (this is not true for the
seven-track tape encoding of BCDIC). READF uses this assump-
tion in the evaluation of numbers. READF and certain subrou-
tines in the SYMBOL/NUMBER replacement package (see Section
6.6) also assume that the first character in a word is in the
position of the most significant bits arithmetically when the
word is evaluated as an integer. Just the reverse situation
is true on the Digital Equipment Corporation (DEC) VAX 11/780,
where the first character in a word occupies the least signi-
ficant bits of the word. Alternate code is provided as com-
mentary in the READF subroutine and in the SYMBOL/NUMBER
replacement subroutines to correct this situation.

6.4.2 BHT-GDC Format Tape Processing

One of the options for the File Creation Program (FCP) is to
read BHT-GDC format data input. This format includes data
coded in IBM internal floating word format, IBM internal
integer word format, and EBCDIC characters (see Reference 4).
This mixture of data encoding methods is not a problem for
DATAMAP versions installed on an IBM computer. However, for
other computer systems, each BHT-GDC format input record may
require conversion after input and before processing. The
most logical point for insertion of such code is in the sub-
routine READD of the FCP. This conversion has been accom-
plished for the DEC VAX 11/780.

6.5 SPECIAL ROUTINES

Certain installation-provided routines are used in DATAMAP.
Most installations have corresponding routines or, alterna-
tively, the routine functions are not critical to program
operation. The function of each of these routines is described
here.

DATAMAP uses subroutine FASTIO to avoid FORTRAN conversion
routines for input and output using fixed length records. A
second reason for using FASTIO is to read blocks that have no
byte count appended. The first argument for FASTIO is one of
the character strings 'READ' or 'WRITE' to indicate a sequential
input or output operation, respectively. The second argument

11

i 115

L:I.



77.

is the I/O file number (data set reference number) for the op-
eration. The third argument is the array which contains the
data for output or which will receive the data for input. The
fourth argument is the number of bytes to be transferred. The
fifth and sixth arguments use the IBM system dependent coding
technique. The arguments are FORTRAN statement labels for a
jump on return from the subroutine. The character '&' is
appended to the front of the label in the subroutine argument.
The fifth and sixth arguments give the return locations for an
end-of-file condition or an error condition, respectively.

Subroutine FASTIO could be replaced, if necessary, by 'A' for-
mat READ and WRITE statements (i.e., (3(255A8),45A8) for GDC
tapes) or an appropriate system routine (e.g., BUFFER IN for
Control Data machines). The detection of end file and error
conditions provided by FASTIO is critical only in subroutine
READD of the File Creation Program. Subroutine READD is used
only for standard BHT-GDC tape input.

DATAMAP restricts all FASTIO calls to the subroutines QUIKIO
and INIDAF. Both of these subroutines are in DATMAPLB.

DATAMAP calls the local BHT assembly language subroutine DATE
to return the current Gregorian date. DATE returns the date
in the format "mm/dd/yy." All calls to DATE are made through
subroutine DATEQQ, which is on DATMAPLB. DATEQQ must return
the date in an eight-character format but strict adherence to
the format, "mm/dd/yy" is not necessary. For example, the
DATE subroutine on the NASA Ames Research Center VAX 11/780
returns the date in a nine-character format (e.g., "28-MAY-
80"). For the NASA installation, DATEQQ was rewritten to
convert the above format and return an eight-character date
(e.g., "28MAY'80).

Subroutine TIMOD returns the current time of day into twelve
sequential character locations of the argument array. The
format for the returned time is a character string 'hh.mm.ss.
fr'. The right-most character is set to a blank. DATAMAP
uses the first eight characters that are returned and ignores
the last four. Several of the DATAMAP programs call TIMOD.
For conversion to another computer system, a replacement TIMOD
subroutine should be written and inserted on DATMAPLB. This
routine should call local routines to obtain the time of day
and make format conversions as necessary. Alternatively, a
dummy TIMOD subroutine can be written that always returns a
blank array.

DATAMAP calls subroutines TIMEX and SETIME to monitor exe-
cution time in the Processing Program. For the BHT and USARTL
(AVRADCOM, St. Louis, Missouri) installations, these subrou-tines are entries to the DATE subroutine. SETIME is called to

116

d ' .; -

m I N I :6



initialize the CPU timing process. The argument to SETIME is
a REAL value specifying a time limit in minutes. This number
must be greater than zero and less than 1440. This argument
is not critical to the DATAMAP application, except that a
reasonably large number must be defined. TIMEX is called to
obtain the CPU time consumed. All arguments are returned as
REAL values. The first argument is the CPU time used since
the last call to SETIME. The second argument is the CPU time
used since the last call to TIMEX. The third argument is not
used by DATAMAP. This argument gives the time not yet con-
sumed from the interval specified in the call to SETIME.
SETIME is called in the Processing Program in subroutine
STRTUP. TIMEX is called in the Processing Program in sub-
routines USER and INISTP.

SETIME and TIMEX can be replaced with subroutines that call
local CPU timing subroutines. Alternatively, these routines
could be replaced with dummy subroutines. A dummy SETIME
should have one argument and perform no action and a dummy
TIMEX should have three arguments that are each set to zero on
return. The replacement subroutines should be inserted on
DATMAPLB.

Subroutine PLTIME is a special routine at BHT that estimates
the required plotting time for a Calcomp plot and outputs this
time to the computer operator. Subroutine PLTIME is called in
subroutine ENPLT for Calcomp plots only. For Tektronix plots,
the PLOTS subroutine has a dummy entry for PLTIME. A do-
nothing subroutine with no arguments may be substituted for
PLTIME.

Subroutine CORE is a BHT-written routine for operation on IBM
computers that allows FORTRAN format conversion of character
strings stored in main memory. Most non-IBM installations
have an equivalent FORTRAN capability that is invoked with the
DECODE instruction. CORE is called with two arguments, the
input character array to be converted and the number of char-
acters in the array. The conversion is performed by a subse-
quent READ statement that specifies a dummy file reference
number and the required format for conversion. The use of
CORE is limited to subroutine CONVERT in the File Creation Pro-
gram. Alternate code is provided in CONVRT to invoke DECODE,
but this code is commented and thus inactive.

6.6 GRAPHICS

The graphic software was discussed extensively in Section 4.7.
However, the graphics features related specifically to trans-
portability of the code are discussed here. For non-inter-
active, off-line graphic output, the software assumes that the
Calcomp routines PLOTS, and PLOT are provided by some system

11

117

AI
o,4'



r004
library. These routines must be either the actual Calcomp
routines or simulations of these routines for plotting on
another device. The plotting interface assumes a plotting
area for a plot frame of 8.5 inches horizontal and 11 inches
vertical. Approximately 9.7 inches vertical and 7.7 inches
horizontal are actually used for a frame. The plotting inter-
face moves to a new plot frame position by incrementing the
basic pen origin horizontally to the right at least 8.5 inches.
The user may specify a larger increment by changing the default
value for the variable PLTWID (in common block /MDEP/) or by
specifying a larger value for PLTWID in the Initialization
Phase of a Processing Program run.

Plotting on a graphics terminal assumes that a Tektronix 4014
and the PLOT-10 software package are available. Substitute
PLOT and PLOTS subroutines are provided for the interactive
and interactive graphics modes of operation. These routines
call Tektronix PLOT-10 subroutines to actually draw the indi-
vidual vectors that compose a plot. In addition, the substi-
tute PLOT and PLOTS subroutines can write a copy of each of
the PLOT command arguments to file 22 for the COPY capability
(see the SET/COPY and UTIL/COPY commands in Section 5 of
Volume I).I
A package of subroutines that emulates the Calcomp SYMBOL and
NUMBER routines is provided with DATAMAP. This package is
written entirely in FORTRAN, but the code does use the LOGICAL
*1 data type extensively so that it may not be easily trans-
portable. As mentioned in Paragraph 6.4.1, commented alter-
native code is included in these subroutines for installation
on the DEC VAX 11/780. The QUICK plotting capability (see
Section 5 of Volume I) for the interactive graphics mode of
operation requires this package.

The plotting interface should generate plots without modifica-
tion on a Tektronix 4010 (the reduction in screen size may
make the plots harder to read). However, the different hard-
ware character size could cause printed computer messages and

* user command input lines to overlap the plotting area. In
addition, when the APLOT plotting option is used, INSET will
not relocate the cursor to the correct vertical position on
the left-hand side of the screen so that printed input and
output lines could overlap each other. This problem can be
eliminated by resetting the value of the integer INCTEK (in
common block /SIZES/) from -13 to -22. Some of the problems
of printed messages overlapping the plot area can be elimina-
ted by resetting the allowed number of characters in an input

line to 30. (See common block SIZES in Appendix B.)

S~ 118

*40



Conversion of the program to run on some other graphics termi-
nal would depend on the presence of several software items.
A Calcomp emulation package would be required that provided
the routines PLOT and PLOTS. The PLOTS routine, called once
for each plot frame for the interactive graphics mode, must
set up a simulated plot area of 9.51 vertical inches and 7.51
horizontal inches. The origin must be set initially at the
lower left-hand corner of the simulated plot area. For the
normal plotting mode (i.e., for the HALF plot setting), this
entire simulated plot area must be mapped to the available
screen area. For the FULL plot setting, the simulated plot
area is expanded so that the plot annotation area is off the
available screen area and the actual plot occupies as much of
the available screen area as possible while retaining the
proportion of the plot. This expansion is different for each
type of plot and the proper expansion is communicated to PLOTS
with the first argument. Following is a list of the allowed
arguments, the type of plot, and the required plotting area.

1 - Normal plot area setting for HALF mode, 7.51 hori-

zontal by 9.51 vertical.

2 - X-Y plot, 7.51 horizontal by 6.81 vertical.

3 - Cylindrical format contour plot, 7.51 horizontal by
7.07 vertical.

4 - Rectangular format contour plot, 7.51 horizontal by
6.43 vertical.

5 - Cylindrical format surface plot, 7.51 horizontal by
6.27 vertical.

6 - Rectangular format surface plot, 7.51 horizontal by
6.27 vertical.

The Tektronix PLOT-10 routine ANMODE is always called when the
program changes from drawing plot lines to reading or writing
characters. Some corresponding function may be required for
other plot devices.

The Tektronix PLOT-10 routine MOVABS is used to reposition the
cursor for character input or output after graphics lines and/
or characters have been drawn. After a fresh frame has been
created, the cursor is moved to the upper left-hand corner of
the screen. When a curve is added to an existing frame, the
cursor is moved to a raster position at the left-hand side of
the screen which corresponds to the next line of character
printout after the last line printed or entered. The program
keeps track of this position with the variable LNCNT (in com-
mon block /STATUS/). When the screen is cleared for a new

119



•4..
a

plot, LNCNT is set to a raster number corresponding to the top
line on the screen for alphanumeric I/O. For every alphanu-
meric line that is read or written, LNCNT is modified by ad-
ding INCTEK (in common block /SIZES/). Both the ANMODE and
MOVABS calls occur in the subroutine INSET. For application
to a different graphics terminal, the ANMODE and MOVABS calls
could be replaced and the LNCNT information might or might not
be useful.

Subroutine PLOC accesses the screen cursor using subroutine
SCURSR. SCURSR returns the cross-hair location in terms of
the Tektronix raster locations. For a different graphics
device, the graphics cursor function might be eliminated or
some substitute for the cursor position evaluation might be
found.

41

, 120

- .. (



7. FILE AND LINKING REQUIREMENTS FOR DATAMAP PROGRAMS

This section describes the data sets that are required to
link-edit each DATAMAP program and lists the FORTRAN file re-
ference numbers that are referenced during the execution of
each of these programs.

7.1 PROGRAM LINK INPUT REQUIREMENTS

Following is a listing of the data sets required to link all
of the DATAMAP programs. For each program, one or more of
these data sets will be required. The data set names are only
for reference; the actual file or data set names may be dif-
ferent depending upon the computer installation.

DATMAPLB - This data set is a library of the subrou-
tines described in Section 6.1, of any as-
sembly language subroutines that are pro- 1
vided with DATAMAP, and of any special
routines that must be provided for con-
version of DATAMAP. For example, if a
substitute TIMOD subroutine is written or
provided, it should be included in this
library.

PLOT10 This data set is a library of the Tektronix
PLOT-10 subroutines. It is not provided
with DATAMAP.

FORTLIB - This data set represents all subroutines
provided by the computer system. It is
not provided with DATAMAP.

CALCOMP This data set represents either a library
of CALCOMP subroutines or of CALCOMP
emulation subroutines for an off-line plot
device. It contains, as a minimum, the
subroutines PLOT, PLOTS, SYMBOL, and
NUMBER. It is not necessarily provided
with DATAMAP.

NEWCPREV This data set includes the object code for
the substitute PLOT and PLOTS subroutines
for Tektronix operation that were discussed
in Section 6.6.

SYMBPACK This data set includes the object code for
the substitute routines for the CALCOMP
SYMBOL and NUMBER subroutines as discussed
in Section 6.6.

121



NPLDEVTO This data set is an object module for a
single subroutine called NPLDEV, which
always returns a single argument equal to
three (integer), which indicates Tektronix
plot output.

NPLDEVCO This data set is an object module for a
single subroutine called NPLDEV, which al-
ways returns a single argument equal to
one (integer), which indicates Calcomp
plot output.

DUMMYS - The object code for the dummy subroutines
ANMODE, MOVABS, SCURSR, and PLTIME.

CHRSIZ - Object module for the single dummy sub-
routine CHRSIZ (one argument).

INISYM - An object module for a single dummy sub-
routine called INISYM with no arguments.

INITL This data set is the object code for most
of the Master File Initialization Program.

EDINIT - This data set is the object code for most
of the Command Sequence File Initializa-
tion Program.

MANAGE - This data set is the object code for most
of the Master File Maintenance Program.

TYBTH This data set is the object code for most
of the Question and Answer Program to Create
User Input for the File Creation Program.

FCP - This data set is the object code for most
of the File Creation Program.

PROCESS - This data set is the object code for most of
the Processing Program.

Table 4 lists the subset of the above-listed data sets re-
quired to link each DATAMAP program. The link instructions
must adhere to the sequence of libraries specified in this
table. Notice that there are several different configurations
for the DATAMAP Processing Program.

7.2 PROGRAM RUN TIME FILE REQUIREMENTS

Each DATAMAP program accesses several Input/Output (I/O) files
that must be satisfied either explictly or implictly (i.e.,
by default) by the computer system command language (e.g., IBM

C' Job Control Language). Each file is referenced with a FORTRAN
file reference number with the possible exception of the output

122

16



- &&

TABLE 4. PROGRAM LINKING REQUIREMENTS

Program Required Input

Master File Initialization Input: INITL
Program Libraries: DATMAPLB

FORTLIB

Command Sequence File Initiali- Input: EDINIT
zation Program

Libraries: DATMAPLB
FORTLIB

Master File Maintenance Program Input: MANAGE

Libraries: DATMAPLB
FORTLIB

Question and Answer Program to Input: TYBTH
Create User Input Data Sets
for the File Creation Program Libraries: DATMAPLB

FORTLIB

File Creation Program Input: FCP

Libraries: DATMAPLB
FORTLIB

Processing Program Input: PROCESS
(Tektronix interactive graphics NPLDEVTO
version with QUICK plot mode) NEWCPREV

*, SYMBPACK

Libraries: DATMAPLB
PLOT1O
FORTLIB

I

' 123

A iiii il



TABLE 4. (Concluded)

Processing Program Input: PROCESS
(Tektronic interactive graphics NPLDEVTO
version without QUICK plot mode NEWCPREV
and without using the SYMBOL/ INISYM
NUMBER package provided)

Libraries: DATAMAPLB
PLOT1O
CALCOMP
FORTLIB

Processing Program Input: PROCESS
(Batch version using the NPLDEVCO
SYMBOL/NUMBER package pro- DUMMYS
vided) CHRSIZ

SYMBPACK

Libraries: DATMAPLB
CALCOMP
FORTLIB

Processing Program Input: PROCESS
(Batch version without using NPLDEVCO
the SYMBOL/NUMBER package DUMMYS
provided) INISYM

Libraries: DATMAPLB
CALCOMP
FORTLIB

12

- 124

L . "2 .. .. .



file for off-line graphics. Following is a listing of the
files that must be satisfied for execution of each DATAMAP
program together with an explanation of the required con-
tent and structure of each file. In the listing, record
sizes are given as the actual data referenced by FORTRAN I/O
statements. System appendages, if any, must be added to the
record sizes.

Master File Initialization Program

01 - Master File, direct access disc file with 256-
word records.

05 - System Input (e.g., cards or card images)

06 - System Output (e.g., line printer)

09 - Alias for file 01. The same data set as file
01 addressed sequentially. This file may not
be required for non-IBM installations depend-
ing upon the rewritten INIDAF subroutine (see
Section 6).

Command Sequence File Initialization Program

01 - Command sequence file, direct access disc file
with 256-word records.

10

F 05 - System Input (e.g., cards or card images)

06 - System Output (e.g., line printer)

09 - Alias for file 01. The same data set as file
01 addressed sequentially. This file may not
be required for non-IBM installation depending
upon the rewritten INIDAF subroutine (see Sec-
tion 6).

Master File Maintenance Progra

01 - Master File, direct access disc file with 256-
word records.

05 - System Input (e.g., interactive terminal or card
images)

06 - System Output (e.g., interactive terminal or
line printer.

125



07 RESTORE Input. File containing a partition
or Master File image. 256-word records read
with FASTIO or replacement in QUIKIO (e.g.,
256A4 formatted records).

08 SAVE Output. A partition or Master File image
may be written on this file. 256-word records
written with FASTIO or replacement in QUIKIO
(e.g., 256A4 formatted records).

09 Sequential Scratch File. Disc file that will
be used during movement of partitions on the
Master File during a RESTORE operation. 256-
word records written with FASTIO or replacement
in QUIKIO (e.g., 256A4 formatted records).
Space is required for 100 records.

Question and Answer Program (TYBTH)

05 - System Input (e.g., interactive terminal).

06 - System Output (e.g., interactive terminal).

08 - Instruction set. Card images of at least 72
characters.

File Creation Program (FCP)
10

01 - Master File, direct access disc file with 256- B

word records.

05 - System Input (e.g., card images)

06 - System Output (e.g., line printer)

12 - Direct Access Scratch File. Direct access disc
data set with 256-word records. Space must be
available for 1000 records.

13 - Sequential Scratch File. The structure of this
file is different for DTF input processing and
for BHT-GDC format input processing. For BHT-
GDC format tape input, the record size is re-
lated to the processing of BHT-GDC format re-
cords. Thus, for systems that do not use 8-bit
bytes and 4-byte words, the record size must be
related to the actual handling of the data input
records in subroutines READD and TRANSC. For IBM
and similar systems, the records must be 6400 bytes
in length. The records will be written and read

126

1W-,



with FASTIO or appropriate replacement in QUIKIO
(e.g., 10(160A4) formatted records). For DTF data
input, the records must be 1020 words. These re-
cords are written and read using FORTRAN unfor-1
matted READS and WRITES. The number of records
that are required for this file is difficult to
predict in advance of any single job. About
150 records with a possibility of dynamic ex-
tension of the file should be sufficient.

14 Alias for file 12. The same data set as file
12 addressed sequentially. This file may not
be required for non-IBM installation depending
upon the rewritten INIDAF subroutine (see Sec-
tion 6).

20 Time Alignment File. This file contains time
alignment corrections for BHT-GDC format data
input when the ALIGN option is specified in
the user command input. For DTF input or for
GDC format input without the ALIGN option,
this file will not be referenced.

21-40 Data input file(s). For DTF input, file 21
should be the DTF. Internal format DTF's are
input with FORTRAN unformatted READ statements.
1024 words are read for each record. Exter-
nal format DTF's are input with FORTRAN for-
matted READ statements and 4096 characters are
read for each record. For DTF input, files
22-40 are not referenced. At IBM installa-
tions, for BHT-GDC format input, the FCP refer-
ences the first data tape as file 21 and each
succeeding tape as a file reference number one
higher than the previous file. Thus, if seven
tapes are specified as input in the user com-
mand input, files 21 through 27 will be refer-
enced.

Processing Program

01 - Master File, direct access disc file with 256-
word records.

05 - System Input (e.g., card images or terminal)

06 - System Output (e.g., line printer or terminal)

11 - Scratch Files. Direct access disc file with

256-word records.

1

'1

, 127

"lI

4 Vi .



12 - Alias for file 11. The same data set as file
12 addressed sequentially. This file may not
be required for non-IBM installations depending
upon the rewritten INIDAF subroutine (see Sec-
tion 6). This file is not referenced for a
permanent scratch file that does not require
initialization.

13 - Command Sequence Storage File. A direct access
disc file with 256-word records.

14 - Info file. Card image format.

22 - Temporary plot copy file. Temporary disc file
for storage of a single plot frame. Has three-
word records that are written and read with
FORTRAN unformatted WRITE and READ statements.
This file is not referenced in the batch mode
of operation or if the copy mode is not set in
the interactive or interactive graphics modes
of operation.

23 - Semi-permanent plot copy file. Disc file for
storage of one or more plot frames until a
batch job transfers the plots to an off-line
graphics device. Has three-word records that
are written and read with FORTRAN unformatted
WRITE and READ statements. This file is not
referenced in the batch mode of operation or if
the COPY mode is not set in the interactive or
interactive graphics modes of operation.

128



8. REFERENCES

1. Gerald A. Shockey, Joe W. Williamson, and Charles R. Cox,
A-IG HELICOPTER AERODYNAMIC AND STRUCTURAL LOADS SURVEY,
Bell Helicopter Textron, USAAMRDL Technical Report 76-39,
Eustis Directorate, U.S. Army Air Mobility Research and
Development Laboratory, Fort Eustis, Va., February 1977,
AD A036910.

2. Richard B. Philbrick, and Alfred L. Eubanks, OPERATIONAL
LOADS SURVEY - DATA MANAGEMENT SYSTEM, Bell Helicopter
Textron, USARTL Technical Report 78-52A and 52B, Applied
Technology Laboratories, Fort Eustis, Virginia, January
1979, ADA065129 and ADA065270.

3. James R. Van Gaasbeek, and P. Y. Hsieh, ROTORCRAFT FLIGHT
SIMULATION PROGRAM C81 WITH DATAMAP INTERFACE, Volumes I
and II, Bell Helicopter Textron, USAAVRADCOM Technical
Report 80-D-38A and 80-D-38B, Applied Technology Laboratory, 4)
U. S. Army Research and Technology Laboratories, Fort
Eustis, Virginia.

4. L. J. Tieman, 'GROUND DATA CENTER STANDARD DIGITAL TAPE
FORMAT,' Bell Helicopter Textron Report 699-099-020, Fort
Worth, Texas, 21 April 1976.

I

129



APPENDIX A - FILE CREATION PROGRAM COMMON

/CALASC/ Stored initial calibration factors for the item
codes present in an assignment record as supplied by
that assignment record.

CM - Array that holds the slope values for calibra-
tion. CM(N) corresponds to the N'th requested
item code present in the current assignment
record.

CB - Array that holds the intercept values for
calibration.

/CNDATA/ Common block used to store information related to

the counter for transfer of DTF data.

IDFLTM - Flight number in 2A4 format

CGROSW - Gross weight (REAL)

CCENGU - Center of gravity (REAL;

ICGCOD - Center of gravity code in A4 format.

IMODEL - Model number in 2A4 format

ISHPNM - Ship number in 2A4 format

ICDATE - Flight date in 2A4 format

ICTIME - Flight time in 3A4 format

IMODCD - Model code in 2A4 format

ICTEST - Test/Analytic Indicator (INTEGER).
0 = unspecified, 1 = test, 2 = analytic

COFFST - Offset from start of data on DTF bundle se-

quence to first data value meant for tranfer.

CRECLN - Number of seconds of data wanted for trans-
fer from current bundle sequence.

ICGRSW - Gross weight in 2A4 format.

ICENGV - Center of gravity in 2A4 format.

13

-1 130



/DATAPE/ Information on the data tape being read.

IRCNTR - Current record number on the data tape being
read.

NTPERR - Number of tape errors encountered so far in
reading the data tapes.

/DTFINF/ Common block of general DTF record processing
variables.

IDRTYP - Record type for current DTF record stored in
IDTREC. Zero means no record present.

NDILIN - For instruction records, set to next available
line of instructions.

NDILNS - For instruction records, set to number of avail-
able instruction lines in the record.

LNCONT - Set to true if a counter record has been read
for the next data bundle sequence.

LNITEM - (LOGICAL) Set to TRUE. if an item code record
or record sequence has been read for the next
data bundle sequence.

LRAVAL - (LOGICAL) Set to .TRUE. if the DTF record cur-
rently stored in IDTREC has not yet been pro-
cessed.

LDTEND - (LOGICAL) Set to .TRUE. if an end of file has
been encountered on the DTF.

LALLIN - (LOGICAL) Set to .TRUE. when every DTF record
encountered so far has been an instruction
record.

NUMREC - (INTEGER) Sequential number of the current DTF
record stored in IDTREC.

LDTFST - (LOGICAL) Set to .TRUE. if the first data bundle
sequence has not yet been processed (so that
both an item code and counter record must be
read for processing).

LDTIME - (LOGICAL) Set to .TRUE. if a time base field
has been processed for the next bundle sequence.

LBYPAS - (LOGICAL) Set to .TRUE. if none of the counters
and/or none of the item codes from the next
bundle sequence are desired for transfer.

'I

131

w -,



ITBTYP - (INTEGER) Time base type for next data sequence
on DTF. 1 = FSRTSI = sample interval 2 = FSRTSI =
sample rate. 3 = ITBITM = item code for vari-
able sample rate time base channel.

FSRTSI - (FLOATING) Constant sample interval or sample
rate as specified by ITBTYP

ITBITM - (A4) Item code for variable sample rate as
indicated by ITBTYP.

/EXCORB/ Common block used by routines EXSET and EXCORE for
extended core simulation. These routines set up a
two-dimensional matrix of simulated memory while
actually storing and retrieving the values from a
direct access disc file.

NROWSX - Number of rows (most rapidly varying index) in
the simultated array.

NCOLSX - Number of columns (less rapidly varying index)
in the simulated array.

NRECOF - Offset to the first storage record available to
EXSET/EXCORE in the direct access file ad-
dressed by these routines.

NRECPR - Direct access record number currently held in
the array EXTREC. If NRECPR = -1, no record is
present.

NPRMOD - Indicator of whether the record currently
stored in the array EXTREC has been changed
without storing the changed version on the
disc.

NEXDEV - RMS, WMS, FMS pseudo-device number for direct
access storage.

NRSIZE - Size of a direct access record in four-byte
words.

EXTREC - Storage array for records from direct access
disc.

132

2 -



1i

/FILC/ Convolution filter multipliers.

Fl - Central value for the convolution function.

FILTM - Array holding values for the convolution func-
tion.

NFILT - Number of convolution function values held in
FILTM.

/FILES/ I/O file reference numbers.

NRPS - Master File (=1)

NRSC - Direct access scratch file (=12)

NSSC - Sequential scratch file (=13)

NITT - Data Input File (=21 for first tape)

NDIR - Time skew alignment tape (=20)

NREA - System input (=5)

NWRI - System output (=6)

NSAV - Digital tape for copy of a partition (=15)

IALI - Sequential alias for the direct access scratch
file (=14)

/INFILE/ DTF input Info File information

NINFRC - Scratch file offset for the next Info File
group to be processed.

NGRUPS - Number of Info File groups currently stored.

IGRUPS - Two-dimensional array, which serves as a
directory of the Info File groups that are
stored.

IGRUPS(l,N) = Group Name (A4)

IGRUPS(2,N) = Scratch file offset for the start
of this group.

IGRUPS(3,N) =Number of columns.

'1
133

- . J-



IGRUPS(4,N) = Number of rows.

IGRUPS(5,N) = Number of double-row elements.

/INFO/ This block contains a set of control and information
values for processing and transferring the data.

IRSIZ - Number of two-byte words in a Master File re-
cord (=512)

MLOC - Next available partition record number in the
data storage area.

LOCO - Not used

IPOLES - Set to zero if no filtering is required for at
least one of the requested items present on the
current assignment record.

HIGH - Initially set to the lowest digital filtering
breakpoint requested for any of the item codes
present on the current assignment record. For
transfer to the Master File, HIGH is set to the
requested digital filter breakpoint for the
item to be transferred.

LCAL - Set FALSE if item code data about to be trans-
ferred to the Master File is not to be calibra-
ted, set TRUE otherwise.

IRAT - Sample rate for the data on digital tape corre-
sponding to the current assignment record.

ISKIP - Sample rate reduction factor to be applied in
transferring data for the currently specified
item code to the Master File.

NPS - Initially, the number of points of data wanted
for a particular counter given the sample rate
of the data on tape. NPS must be divided by
ISKIP to calculate the proper number of points
to transfer to the Master File. After transfer
of a data stream, NPS is the number of data
values transferred multiplied by ISKIP.

NPP - This value indicates the number of values for
each item code present on the scratch disc file
before transfer to the Master File.

NOFF - This value indicates the total number of data
samples that should be skipped before data

1

,i 134

- -



from a particular item code are transferred to
the Master File. NOFF should reflect both the
alignment and absolute offsets.

ISEQ - This value gives the word position for the
first data value on a data record which corres-
ponds to the item code to be transferred to the
Master File.

LSTRT - Equivalent to ISEQ.

IADD - Increment that must be applied to a location
on an input data record to reach the next data
value for the same item code. Equivalent to
the number of item codes present in the assign-
ment record.

INSIZ - Number of two-byte integer words in a data re-
cord on tape (=3240).

INSIZD - Number of two-byte integer word in a data re-
cord stored on the scratch file after the in-
formation bytes have been stripped from the
front (=3200).

IRDATS - Not used

IRSAUS - Not used

ICNTR - Current counter for the data transferred from
tape.

XALIGN - Time skew alignment offset in seconds to be ap-
plied to the current item code/counter.

MSETN - Sequence number in Master File directory of
the partition currently being processed.

/ITMDAT/ Common block of item code related variables for DTF
input processing.

NMTCHS - Number of item codes in the current bundle
that have been requested for transfer by the
user instruction (Init-DTFITM)

ITIMEB - Sequential position in the bundle of the
time base item code. (Init-DTFITM)

FILMIN - Minimum roll-off point of the digital filters
selected for the current bundle. (Init-• * DTFITM)

135

I

1 t-* 'a



NBUNSZ - Number of items in the current bundle. (Init-
DTFITM)

FMODLO - Modulo specifications for each of the selected
items in the current bundle. Subscript is from
sequence of selected item codes only. The same
subscript is used for ITEMW and ITEMTP. (Init-
DTFITM)

ITMTRN - List of keys indicating whether or not a se-
lected item code has been transferred from
scratch to the master file. 0 = not trans-
ferred, 1 = transferred. Subscript is same as
for FMODLO, ITEMW, and ITEMTP.

/KARD/ Common block to keep track of data from the current
assignment record.

ITEMTP - ITEMTP(N) gives the position in the sequence of
item codes present on the current assignment
record of the N'th requested item of the items
on the assignment record.

ITEMW - ITEMW(N) points to the word in the ITEM array
which contains the item code which corresponds
to the N'th requested item of the items on the
assignment record.

CALSH - The CALSH array gives Calibration Shift values
from the assignment or calibration record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays.

CALCM - The CALCM array gives Calibration Command
values from the assignment or calibration
record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays.

CXM - The CXM array gives calibration slope values
from the assignment or calibration record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays.

CXB - The CXB array gives calibration intercept
values from the assignment or calibration
record which correspond to the same item codes
as the ITEMTP and ITEMW arrays.

NMATCH - Number of requested item codes present on the
current assignment record.

13

!i 136

. - -.. i J'



DCAL - Delta cal values from the assignment or cali-
bration record which correspond to the same
item codes as the ITEMTP and ITEMW arrays.

/KARDl/ This common block corresponds identically to common
block /KARD/ as described in Appendix B.

/LIST/ This block contains the interpreted user instruc-
tions for transfer of data from tape to the Master
File.

NITEMS - Number of item codes stored in the ITEM array.

NCNTRS - Number of counters stored in the NCTR array.

ISPAC - Requested number of direct access records for
the Master File partition to be created, re-
placed, or modified.

ITAPES - Number of input data tapes to be read.

IADNU - Mode with regard to Master File partition.
IADNU= 1, Add to existing partition
IADNU= 0, New partition
IADNU=-l, Replace partition

LALIN - Logical variable
LALIN = TRUE., Use time skew alignment
LALIN = FALSE., Do not use time skew alignment

NAME - Array containing partition name.

NPWD - Array containing partition password.

NUSER - Array containing user name.

MAPIT - Logical variable
MAPIT= .TRUE., Generate partition listing after

completion of all data transfers.
MAPIT= .FALSE., Do not generate a partition

listing.

SAVIT - Logical variable
SAVIT= .TRUE., Save partition on digital tape

after completion of all data trans-
fers.

SAVIT= .FALSE., Do not save partition on digi-tal tape.

137



STRANG - Logical variable.
STRANG=.TRUE., Input data are not in standard

BHT-GDC format.
STRANG=.FALSE., Input data tapes are in stand-

ard BHT-GDC format.

LDTF - Logical variable. True if data input is in
DTF format. False otherwise.

NLOOK - Product of the number of item codes and the
number of counters requested for transfer.

LDTFIN - Logical variable. True if user instructions
are to be read from the DTF. False otherwise.

LTHERE - Logical variable. True if FRSTLN has read a
line of user input into ICHAR and has left the
line for further processing by INLIST.

LEXTRN - Logical variable. True if DTF input is in
external format. False otherwise.

LALLIT - Logical variable. True if all item codes
that occur on a DTF are wanted for transfer.
False otherwise.

LALLCN - Logical variable. True if all counters that
occur on a DTF are wanted for transfer. False
otherwise.

LSCAN - Logical variable. True if only a scan of DTF
input for format validity without transfer
of data is desired. False otherwise.

NCTR - Array of requested counters.

NOFFST - Offsets to be applied to time histories from
the counters in NCTR which correspond by index.
Offsets are stored in seconds as floating num-
bers.

NPWANT - Length of time history to be transferred for
the counters in NCTR which correspond by index.
Times are stored in seconds as floating num-
bers.

ITEM - Array of requested item codes.

FILT - Break frequencies for low pass digital filters
to be applied to the time history from the item
codes in ITEM which correspond by index. Break

* -. 138



I
frequencies are stored in Hz. Negative or zero
values indicate no filtering should be applied.

ICAL - Indications of whether to store time histories
in calibrated or integer format. The indica-
tions correspond by index to the item codes in
ITEM. ICAL(N) = 0 means no calibration and
ICAL(N) = 1 means calibration.

ISKP - Sample rate reduction factors for the time his-
tories from the item codes in ITEM which corre-
spond by index. Values are stored as integers
(e.g., a value of four means every fourth
sample will be transferred to the Master File).

RATE - Specified sample rate for storage of data from

a DTF.

/LOCOM/ Information for data transfer process.

ITEMN - Current item code to be transferred.

ICNTRN - Current counter to be transferred.

IDROFF - Offset for the partition directory in records.

IDASIZ - Number of records in the partition data area.

IDRSIZ - Number of records in the directory.

ITEMRC - Record number for portion of item code direc-
tory which contains current item code.

ITEMSQ - Sequence position in directory record for cur-
rent item code.

/MASS/ Identical to /MASS/ common block in Appendix B.

"5, /SCRAT/ This common block specifies a general scratch area.

KDUMMY - General scratch array.

throughout the program.

MAXCN - Maximum number of counters that may be speci-
fied for transfer in one run of the File
Creation Program.

139

41_ 1.2*



IDAFWD - Number of words in a record in the direct
access files assessed by the File Creation
Program.

INBYTE - Number of bytes in a GDC format tape input
block.

CTRMAX - Maximum size entry for a counter.

INFSPC - Number of scratch direct access records re-
served for prototype initial records of time
histories.

IDAFBT - Number of bytes in a record in the direct ac-
cess files accessed by the File Creation
Program.

KDSIZE - Size of the scratch common array KDUMMY in
/SCRAT/

MAXIT - Maximum number of item codes that may be speci-
fied for transfer to the Master File.

NCREAD - Number of character positions to be examined
by READF for character input. Characters other
than blanks may not be allowed towards the
end of the line.

IBIG - Large integer for use as limit for DO Loop
where exit from the loop will be by a decision
jump.

NCHARS - Largest character position in an instruction
input line that may contain a non-blank char-
acter.

ISZDSR - Size in words of a sequential scratch record
for DTF data transfer.

LACCSZ - Size of the LACCUM array

LTRPSZ - Not used

IFLBSZ - Size of the area in KDUMMY allocated to the
pre-filter accumulators.

NTRPSZ - Size of the area in KDUMMY allocated to pre-
interpolation accumulators.

MIFGRI - Number of groups that may be specified in an
internal format DTF record.

14

140

.4.. V



MIFGRE - Number of groups that may be specified in an
external format DTF record.

MXIFGP - Max number of info file groups that may be
specified in one DTF.

MXIFRC - Max number of rows and/or columns that may be
specified for an info file group.

MXDASR - Highest direct access scratch record that can
be used for temporary storage of info file
data during DTF data transfer.

INCLMS - Largest character position in an Info File
output line that can be non-blank.

/TMPRCM/ Common block of values used for transfer of data
records from DTF to scratch file.

LSTRTD - (LOGICAL) TRUE if a bundle corresponding to
the required starting offset is found. Rela-
vent for initial transfer of data to scratch
file. (Init-CPYTSC, Set-TMPRSM)

TOFFST - Required starting offset. Before LSTRTD =
.TRUE., this is the total offset from the start
of data on the DTF to the first required data.

.1 When LSTRTD = .TRUE., this is the offset excluding
F time in the scratch records that are skipped.

(Init-CPYTSC, Set-TMPRSM)

NBNSKP - Number of bundles in skipped scratch records
for TMPRSM. (Init-CPYTSC, Set-TMPRSM)

TFRSTP - Initial time for previous record processed by
TMPRSM. (Init-CPYTSC, Set-TMPRSM)

TMAX - Max time to copy to the scratch file excluding
skipped records. (Init-TMPRSM)

TSAVED - Time stored on scratch file excluding skipped
records. (Init-TMPRSM)

LCMPLT - (LOGICAL) .TRUE. if all necessary data is
saved on the scratch file already. (Init-
CPYTSC, Set-TMPRSM)

TCORRI - For variable sample rate data, the time for

the first bundle before correction. (Init-
TMPRSM) "

141

* .. :-: ;-L, . .. - ~- ... F - - -7- -



TSUBTR - Time to subtract from variable sample rate
time instants during transfer of data to the
scratch file.

LNODAT - (LOGICAL) .TRUE. if no data record is available
in IDTREC. (Init-CPYTSC, Set-CPYTSC)

LENDAT - (LOGICAL) .TRUE. if the end of the input DTF
data is encountered. (Init-CPYTSC, Set-PRFORM)

NRPRVI - For DTF input with data bundles greater than the
capacity of a data record. Number of records
that have been processed for the current bundle.

LOCREC(8) - Location on the input bundles of the data
from the item codes in the current set.
(Init-SETUP)

ITEMFD(8) - Item code for each position in the current
set. (Init-SETUP)

LOCL(8) - Starting record offsets on the Master File
partition for the data streams corresponding
to each item code. Actual locations given
are the record positions for the info records.
(Init-SETINF)

VLAST(8) -Last data value for each time history in the
current set. Used to extend the time histories B
to satisfy convolution filter edge requirements.

LACCUM(2048) - Array that contains data records to
be written to the Master File partition. The
first record starts at subscript 1 and each
succeeding record starts at a subscript IDAFWD
larger.

/TRNCOM/ General common variables for transfer at DTF data
to Master File.

NORECS - Number of data records to be written to the
Master File for each item code in the current
set of item codes being transferred from
scratch.

NITSET - Number of item codes in the current item code
set for transfer from scratch to the Master
File.

NLEADR - Number of points required before and after thedata interval to be transferred for the current
convolution filter.

142

3n n. . . ....



IAFLSZ - Size of the pre-filter accumulators in KDUMMY
for each item code in the item code set.

LASFLT - Position of the last filtered data value in
each pre-filter accumulator.

LASDAT - Position of the last unfiltered data value in
each pre-filter accumulator.

NSKIP - Not used

NUMCRR - Number of values in each data accumulator buffer
(LACCUM) for transfer to the Master File.

NBUNDL - Number of bundles in current bundle sequence
excluding bundles on records to be skipped.

NBUNDI - Not used

NBUND2 - Not used

NSRSKP - Number of scratch records to skip before data
to be processed is encountered.

TINC - Sample interval for data to be written to the
pre-filter buffers. (Init-CPYTSC)

TLEADR - Equivalent amount of time required for filter
initialization for the current set of item
codes to be transferred from scratch.

TINCMN - Sample interval for data to be written to the
pre-interpolation buffers. (Init-CPYTSC)

XOFFST - Time offset from first data point required
for any kind of processing (i.e., transfer
or filtering) to first data point required for
transfer.

NBUNSR - Max number of bundles stored in a scratch file
record.

LENDSC - (LOGICAL) True if the end of the scratch file has
been encountered for the current transfer from
scratch.

IRCRAW - Number of records read from the scratch file
in the current pass.

143



MXNTRP - Maximum number of values that can be accommo-
dated by the pre-interpolation buffers.

TNEXT - Time for next value to be placed in pre-filter
buffer by interpolation (Init-SETIME, Set-
INTRPG)

FILTRT - Low-pass filter break-frequency for item code
set to be transferred from scratch. (Init-
SETUP)

FMODLX - Modulo value for item code set to be transferred
from scratch (Init-SETUP)

ISKIPR - Skip rate specified by user for current item
code set. A positive value specifies that
the rate was not specified. (Init-SETUP)

ISKIPX - Skip rate to be applied to points in the pre-
filter buffer by the filtering or unfiltered
skipping process. (Init-SETUP)

NRESLT - Number of interpolated data values in each
interpolated data buffer.

NPTOUT - Number of data points to be generated for
each item code in the current transfer.
(Init-SETUP)

NXNTRP - Next relative point location to be added in
the pre-interpolation array - 1INTRPR'
(Init-SETAPE, Set-INTRPG)

NPRAW - Number of points in the raw data input buffer.
(Init-SETAPE, Set-INTRPG)

NPT - Bundle number from the current scratch input
record that is being processed from the pre-
filter buffers.

NEXTND - Number of points that must be simulated as
values equal to the last available value and
appended to the end of available data to
satisfy the edge requirement for the convolu-
tion filter (Init-SETUP)

NEXSTR Number of points that must be simulated as

values equal to the first available value and
appended to the start of available data to
satisfy the edge requirement for the convolu-

£tion filter (Init-SETUP)

144

. . . . .. , .. ..



NBPROS - Bundle number in the bundle sequence that is
currently being processed from the scratch
file.

/WLIST/ List of keywords to decode user input instructions.

N - Number of keywords present in the IAA array.

IAA - Two-dimensional array of keywords. Second
array index corresponds to the keyword number.
The four-character keywords are stored with one
left justified character per four-byte word.

/WLISTI/ Coded start and stop times for current counter and
item code.

ISTART - Coded start time as described in the BHT-GDC
Standard Digital Tape Format.

ISTOP - Currently set to zero.

1

.;.

I.



APPENDIX B

PROCESSING PROGRAM COMMON VARIABLES

/ATTPAR/ Area for storage of processed attached parameter
information. The time base for the data stored is
normally the sequence of zero degrees azimuth in-
stants. When appropriate azimuth data are not
available, this time base is synthesized with an
interval between instants of two-tenths of a second.

NVAL - Total number of time instants represented in
the time base, TMAZMO. These instants may be
either synthesized or real azimuth equal zero
degrees time instants as explained above.

NCNTR - Counter which corresponds to the current data

stored in ATTPAR.

Tl - First time instant in time base.

T2 - Last time instant in time base.

LTMAZM - Total number of time instants in the time base
TMAZMO, which are real azimuth values. The
real azimuth values must form a contiguous se-
quence beginning with TMAZMO(1).

LTASVA - Total number of true airspeed values present
in the TASVAL array. If LTASVA is greater than
zero, the first TASVAL value must correspond to
the first TMAZMO time.

LRPMVA - Total number of rotor speed values present in
the RPMVAL array. If LRPMVA is greater than
zero, the first RPMVAL value must correspond to

*the first TMAZMO time.

LOATVA - Total number of outside air temperature values
present in the OATVAL array. If LOATVA is
greater than zero, the first OATVAL value must
correspond to the first TMAZMO time.

LSTATV - Total number of static pressure values present
in the STATVL array. If LSTATV is greater than
zero, the first STATVL value must correspond to
the first TMAZMO time.

r 146

A . -.-



XSTRSC - Time corresponding to the first data value on
the scratch file (SCFl or SCF2) used for input.

XINTSC - Time interval between data values on the scratch
file (SCFl or SCF2) used for input.

NMAXSC - Number of data values present for the first
time history on the scratch file (SCFl or
SCF2) used for input.

AZMGRP - Azimuth offset specified by Info File geometric
group.

NPRCRA - Partition access slot pseudo file (i.e., 1 or
9) for the partition source for the current
attached parameter data.

TMAZMO - Array of time instants forming a time base for
the values in the arrays TASVAL, RPMVAL, OATVAL
and STATVL. These time instants may or may not
correspond to instant of zero degrees azimuth
as explained in the heading for common block
/ATTPAR/.

TASVAL - Array of true airspeed values in knots.

RPMVAL - Array of rotor speed values in RPM.

OATVAL - Array of outside air temperature values in
degrees centigrade.

STATVL - Array of static pressure values in psia.

/BSPARE/ Area for data storage in processing.

XSPARE - Array for storage of data or scales during
processing. This array must always be at
least three-quarters the size of XBUFF.

/BUFFER/ Area for data storage in processing.

XBUFF - Array for storage of data or scales during
processing. The number of words in this array
must correspond to IBFSIZ in the block SIZES.

/CLCOMP/ Common block used exclusively by the PLOT and PLOTS
emulation package for the Tektronix, and by the PLOC
subroutine.

14

r

.. . - I - II I -,,*...r:



XMULT - Multiplier used to convert simulated horizontal
plot paper position in inches to horizontal
raster position on the Tektronix screen.

YMULT - Multiplier used to convert simulated vertical
plot paper position in inches to vertical
raster position on the Tektronix screen.

XACUM - Horizontal offset to plot origin in plot paper
coordinates.

YACUM - Vertical offset to plot origin in plot paper
coordinates.

ILEFT - Horizontal raster position on the Tektronix
screen that corresponds to the initial hori-
zontal paper position of 0.0.

IBOTT - Vertical raster position on the Tektronix
screen that corresponds to the initial verti-
cal paper position of 0.0.

/CNGBLK/ Communication and work area for command sequence
editing function.

NLINES - Number of lines in the command sequence block
to be edited.

NAMSEQ - Name of the command sequence block to be
edited. Held in 'A41 format.

LOCAT, IDELI, IDEL2 - Work arrays corresponding to line
numbers for command sequence editing.

IWORK - Work array used for display of user input line
error diagnostics.

LINE Array corresponding to command sequence block
before, after, and during editing. The second
index corresponds to line number. Each line
is stored in 16A4 format.

LINECH - Array to hold line changes during editing prior
to a renumbering operation ($N).

MERGEL - Array to hold renumbered command sequence block
during the renumber operation ($N).

/CNTLIP/ Directive and information values for data input and
processing

148

6



IPRCOD - Processing code assigned in an ANALYZE, DERIVE
or DISPLAY command step. Set in PROSET and
interpreted in PROl or PRO2.

IPRTYP - Certain types of processes are grouped together
for the process flow. IPRTYP = 4 indicates a
process using data from multiple row positions
for each column position (e.g., a Cn integra-
tion) which would be accomplished in PRO2.
IPRTYP = 5 indicates a process using data from
multiple column positions simultaneously (i.e.,
blade slope) which is accomplished in SLOPST.
Any other value for IPRTYP indicates a process
accomplished in PRO1.

IPRTWO - Set to one if process must have two input data
streams. Set to one otherwise.

ISCFIP - Not used

NFREE - Source of input data. Allowed values:

1 = SCFl
2 = SCF2
3 = SCF3
4 = Info file group specifies item code(s)
5 = User specified item code
6 = Info file specifies item code required

for derivation by keyword
7 = Attached parameter data is sufficient

for derivation

NCOLSI - Number of columns (3rd dimension) to be input
for processing.

NROWSI - Number of rows (2nd dimension) to be input for
processing.

LROWP - Not used

TIME1 Time specified by user as either the beginning
of the input time history to be used or a time
instant included in the rotor cycle just before
the beginning of data which will occur at azi-
muth equals zero degrees.

DURATN - Length of the input time history in secondswhen ICYCLS is less than zero.

ICYCLS - Length of the input time history is rotor
cycles. ICYCLS = 0 specifies that a single
instant corresponding to a user specified azi-
muth value will be input. ICYCLS less than

149

Iw

4. -.. V



zero specifies that the length of the time his-
tory is given by DURATN.

AZIM - Specifies a single rotor azimuth position for
input when ICYCLS = 0.

M121NP - Specified which double-row elements are present
input. The values:

0 = Both double-row elements
1 = Top double-row element only
2 = Bottom double-row element only

NCOLI - When NCOLSI = 1, this variable specifies which
column element is input.

NROWI - When NROWSI = 1, this variable specifies which
column element is input.

IDATPR - A two-element array which specifies how many
data points are present in the current input
data record. IDATPR(l) corresponds to the top
double-row element and IDATPR(2) corresponds
to the bottom double-row element.

IEPROS - Set to one for ensemble averaging. Set to
zero otherwise.

/CNTLOP/ Directive and information values for data process-

ing and output.

MODOUT - Output mode. Allowed values are:

1 - Plot single curve
2 - Plot multiple curves
3 - Add a curve to an existing plot frame

*4- Print data
5 - Contour plot
6 - Surface plot
7- Keep results on a scratch file while

destroying any data already present on
the file

8- Add results to a scratch file along with
any data already present on the file.

9 - Comparison plot
10 - Double scale plot

ISFOUT - Scratch file to be used for output when
MODOUT = 7 or MODOUT = 8. Allowed values are:

* ;..~150I e



RIK

1 = SCFl
2 = SCF2
3 = SCF3

M12OUT - Specifies which double-row elements are present
on output. The values are:

0 = Both double-row elements
1 = Top double-row element only
2 = Bottom double-row element only

OUTMAX - Maximum output value from any output time
history created during the current command
step.

OUTMIN - Minimum output value from any output time
history created during the current command
step.

NMAXOT - Maximum number of output values in the first
dimension.

OUTXMX - Maximum first dimension scale value that
occurs for the function that is being pro-
cessed.

OUTXMN - Minimum first dimension scale value that oc-
curs for the function that is being processed.

LSCALE - Specifies parameter for first independent
variable for plot output. Allowed values are:

1 = Time, Frequency or Harmonic Number
2 = Azimuth
3 = True airspeed
4 = Rotor speed

LSCALY - Specifies parameter for second independent
variable for plot output. Important only for
3-dimensional plot representations (i.e.,
SURFACE or CONTOUR). Allowed values are:

1 = Row or column
2 = Azimuth
3 = True airspeed
4 = Rotor speed

OUTMX2 - Maximum second double-row element dependent
variable value for all rows and columns. Only
set if both double-row elements are processed.

15

i 151

., Um. - --



OUTMN2 - Minimum second double-row element dependent
variable value for all rows and columns. Only
set if both double-row elements are processed.

/CURRNT/ Block to contain information on status of user
interface overlay process.

ISBSTP - Current substep being processed.

IENTRY - Current entry in substep being processed.
Set to -1 when substep complete, -2 when
command step complete.

ITREE - Current tree position in command input process.

LINHLD - Line held in ICHAR is first line of a new
command step when LINHLD = 1. This variable
is relevant only when MODSCN = 1 (input
scanning only).

IEOF - Normally set to zero. Set to one if end of
file condition was found on last system input.

IUENT - Sequence number of entry to be processed on
current line of user input.

NUENTS - Number of entries available on current line
of user input.

IDEFLT - When set to one, default values are specified
for the remainder of the current substep and
slash terminating the substep is present. When
set to zero, the above conditions do not per-
tain.

IOPT - Entry option selected for a particular tree
position.

NEXT - Number of next substep to be entered.

/DATSET/ Control values and buffer arrays for retrieval of
data from the Master File.

ICTRDN - Sequential record number for the portion of
the counter directory currently present in
ICTRD. If ICTRDN = 0, then no portion of the
counter directory is present in ICTRD. The
sequential record number need not correspond
to the relative record number in the directory.

152



ITMDN Sequential record number for the portion of
the item code directory currently present in
ITEMD. The sequential record number need notcorrespond to the relative record number in thedirectory.

ITMDNl - Relative record number for the portion of the
item code directory currently present in
ITEMD.

INFOLC - Relative record number for the information
record for the current item code and counter.

ICTRC - Current counter corresponding to the item code
directory present in ITEMD.

ITEMC - Current item code corresponding to the infor-
mation record in ITMINF and the information
record location given by INFOLC.

ITMDA - Record number for the data record contained in
ITMDAT as offset from INFOLC. This ITMDA+
INFOLC gives the relative record number for
the record in ITMDAT.

ITMPNT - Sequential data point in the current data
stream which corresponds to the appropriate
next data point if DATAIN is called with the
continuation mode (FSEC less than zero).

CB,CM - Calibration factors for integer to floating
point conversion during retrieval.

SRATE - Calculated sample rate for the current item
code/counter pair data stream

LAST - Total number of samples in the current item
code/counter pair data stream

ICAL - Equals one if the current item code/counter
pair data stream is stored as calibrated data
and zero if the data stream is stored as
uncalibrated integers.

NPRMOD - Indicator of partition access slots that are
in use. 1 = first slot taken, 2 = second
slot taken, 3 = both slots taken.

NPRCRN - Indicator of source of data in ICTRD array.
1 = first slot partition, 2 = second slot
partition, 0 = no data in ICTRD.

153

o 7 ,,/



7---

NMASK - Number of masked item codes listed in array
MASKIT.

NMPARI - Name of partition addressed through the first
access slot. Stored as 2A4.

NMPAR2 - Name of partition addressed through the se-
cond access slot. Stored as 2A4.

MASKIT - Array of masked item codes each stored as a
4-character name. The first NMASK array loca-
tions are occupied.

ICTRD - Array containing all or a portion of the
counter directory.

ITEMD - Array containing all or a portion of the item
code directory.

ITMINF - Array containing the information record for
the current item code/counter pair.

ITMDAT - Array containing a data record for the current
item code/counter pair. The particular data
record is indicated by ITMDA.

/DEFLT/ Default user input matrix and general system label

DEFCOM - General system label. The current date is
added to this label in STRTUP. The label is
stored 13A4 with additional space available.

IDVAL - Two-dimensional array showing the appropriate
defaults for user entries. IDVAL(I,N) controls
the nature of the default. L = IDVAL(2,N)
gives the actual default value. The possible
values for IDVAL(I,N) are:

1 = no default allowed
2 = standard keyword default, L
3 = standard numeric default, IPVAL(L)
4 = keyword default unless there is a

previously entered value which then
becomes the default

5 = numeric default unless there is a
previously entered value which then
becomes the default

6 = no standard default but previous
entry, if any, becomes the default

iI

154

..
I..- I-



IPVAL - Array containing numeric default entries
pointed to by IDVAL.

/DIRECD/ Provides provisional user command directives and
comment for use in the user interface while command
is developing.

IDIRCD - Two-dimensional instruction matrix of user
interface entries which is provisional until
the command step is complete. When the step
is complete, this array is copied to IDIRCT.
IDIRCD is commonly equivalanced to DIRCD.

KMMNTD - Provisional comment which is copied to KOMMNT
when the COMMENT command step is complete.

NKMMCH - Number of characters in the provisional
comment, KMMNTD.

/DIRECT/ User interface communication block

IDIRCT - Two-dimensional instruction matrix containing
user interface control values. Each instruc-
tion, as indicated in Table 3, will have one or
more options and may include a communicated
string or numeric value. For instruction N,
IDIRCT(I,N) contains the option selection coded
as an integer value (which may be negative),
and IDIRCT(2,N) contains any string or numeric
value communicated. Numeric values communi-
cated in IDIRCT(2,N) are always in floating
format and are accessed using an equivalent
REAL array which is usually called DIRECD.

* :/DRW/ Block of plotting information

*. XMIN - Minimum allowed X value on plot in user coor-
dinates.

DX Increment in user coordinates of X axis corres-
ponding to one annotated interval on an X-Y
plot. On a three-dimensional plot (SURFACE or
CONTOUR), DX corresponds to 1 inch in the hori-
zontal direction.

XH -Maximum absolute horizontal position in paper
or screen coordinates. Currently set to 7.5

155

(If



XL - Minimum absolute horizontal position in paper
or screen coordinates. Currently set to 0.0

YMIN - Minimum allowed Y value on plot in user
coordinates

DY - Increment in user coordinates of Y axis corres-
ponding to one annotated interval on an X-Y
plot. On a three-dimensional plot (SURFACE or
CONTOUR), DY corresponds to 1 inch in the ver-
tical direction.

YH - Maximum absolute vertical position in paper or
screen coordinates. Currently set to 10.0

YL - Minimum absolute vertical position in paper or
screen coordinates. Currently set to 0.0

JUNQ - Array which specifies a schedule for generation
of dashed lines. Allowed values for JUNQ are
0 thru 9. When a dashed line is generated, a
sequence of dashes having a length of one tenth
inch times each integer in sequence is gener-
ated. A gap of one-tenth of an inch is in-
serted between each dash.

INSL - A logical variable. True if point last plotted
was inside allowed plotting area; false other-
wise.

LRL - Not used

LHL -Not used

XOFF - Cumulative X offsets from device origin which
have been applied in a frame.

YOFF - Cumulative Y offsets from device origin which
have been applied in a frame.

NX Number of DX intervals in the allowed plotting
area.

NY Number of DY intervals in the allowed plotting
area.

IGRID If IGRID = 1, a grid will be drawn for X-Y
plots. If IGRID = 0, the grid will not be
drawn.

156

I~w F4W ~w ' ",.. . .



LOGX - If LOGX = 0, the X scale is linear. If LOGX
is greater than zero, the X scale is logarith-
mic with LOGX cycles.

LOGY - If LOGY = 0, the Y scale is linear. If LOGY
is greater than zero, the Y scale is logarith-
mic with LOGY cycles.

ZSCALE - Scaling factor applied to the plot. DX/ZSCALE
corresponds in user coordinates to one inch
in the X direction, DY/ZSCALE to one inch in
the Y direction. For X-Y plots, ZSCALE = .7.
For 3-D plots, ZSCALE = 1.0

NOTICS - If NOTICS = 1, no tic marks will be drawn for
the X and Y scales. If NOTICS = 0, tic marks
will be drawn.

MODFUL - Set to one for Tektronix full-screen mode, set
to zero otherwise.

DPLOFF - Vertical offset for second set of axes using
DPLOT option. Set to this offset while curves
are being drawn on the second set of axes.
Set to zero otherwise.

IDPLOF - Set to one if two sets of axes are present.
12 Set to zero otherwise.
F

NCCX - Set to zero for a continuing curve. Set to
one if the next curve segment that is drawn
will start fresh.

ISEQ - Current sequence position for the curve that
is being drawn in the dash-dot sequence speci-
fied by JUNQ.

DONE - Amount of the current dash or gap that has been
drawn in the current curve.

ZLENX - Width in screen or paper units (e.g., inches)
of each dash or gap in the currently used dash-
dot sequence.

/DRW2/ Common for double-scale plots (DPLOT option).

YMIN22 - Equivalent top axes variable (for the DPLOT
option) to the YMIN variable when the DPLOT
option is not used.

157

Ld U' -



DY22 - Equivalent to DY for the top axes when DPLOT
is used.

YH22 - Equivalent to YH for the top axes when DPLOT
is used.

YL22 - Equivalent to YL for the top axes when DPLOT
is used.

INSL22 - Equivalent to INSL for the top axes when DPLOT

is used.

YPLUS2 - Vertical offset from lower set of axes to upper
set when DPLOT is used.

XL22 - Equivalent to XL for the top axes when DPLOT is
used.

/ENTOPT/ Entry options and tree structure for user command
steps

IENTOP - Array containing sequences of entry options
coded by keyword number. If a sequence begins
at location 'I' then:

IENTOP(I) = Entry number according to allowed
entry list. 12,

IENTOP(I+l) = K = Number of entry options. B

IENTOP(I+2) thru IENTOP(I+1+K) = Entry options
coded by keyword. If IENTOP(I+I+K)
= 1000, the option is a four char-
acter string. If IENTOP(I+I+K) =
-L is less than zero then the op-
tion is a number with allowed range
between RANGOP(L) and RANGOP(L+l).

NPOINT - Array containing the tree structure for user
input entries. Significance of values is:

NPOINT(I,N) = position in LWORDS giving HELP
string for this entry.

NPOINT(2,N) = IENTOP position giving allowed
option for this entry.

NPOINT(3,N1 = L, points to subsequent entry
positions. If L greater than zero,
L gives next N subsequent entry. If
L = 0, command is complete. If L
less than zero, -L points to sequence
in LISTP with each LISTP value cor-

Aresponding to an IENTOP option and

158



giving a new NPOINT position for the

subsequent entry.

LISTP - Array of pointers as explained under NPOINT.

RANGOP - Ranges for numerical entries as explained under
IENTOP

/FILES/ Input and output file numbers.

NRPS - Master file, file number is normally set to
one.

NREA - System input file, file number is normally
five.

NWRI - System output file, file number is normally
six.

NSCI - Direct access file corresponding to SCFI when
the scratch files are not concentrated on one
file. File number is normally seven.

NSC2 - Direct access file corresponding to SCF2 when
the scratch files are not concentrated on
one file. File number is normally eight.

NALl - Sequential alias for NSCl. File number is
normally nine.

NAL2 - Sequential alias for NSC2. File number is
normally ten.

NCSG Direct access file corresponding to temporary
scratch file. Alternatively, SCFI, SCF2, SCF3,
and the temporary scratch could be concentrated
on this file. File number is normally eleven.

NALG Sequential alias for NSCG. File number is
normally twelve.

NEDI - Direct access file for storage of command
sequence blocks. File number is normally
thirteen.

NINF - Info file. File number is normally fourteen.

NPRI - File reserved for printout. Currently an
alias for NWRI.

-159



NPTM - File for temporary storage of the last plot
frame drawn when the COPY mode was set.

NPCP - File for storage of plot frame copies for
later replotting on an off-line plot device.

/FILLRC/ Contains the parameters which describe the digital
filter transfer function in Z-transform space. In
particular, the transfer function H(Z) is given by

N M -

ADk  +AIDk + AIlk Z
-1

K=I 1 + Z-IBlk  K=l 1 + BIlkz 1 + B12kA-2

where the common block variables AO, Bl, AIO, AIl,
BIL, and B12 are given by the equation. The vari-
able NRE is related to the number of real poles and
is given by N in the equation. Similarly, NCPLX is
related to half the number of complex poles and is
given by M in the equation. NENDPT is used for
double filtering operations and gives the number of
values that may be discarded at the end of the time
interval.

/GENSCR/ Information and pointers for temporary scratch file.

NEXCLG - Next available record number for storage of
data identified by column where a single row is
present.

NEXRWG - Next available record number for storage of
data identified by row number where multiple
rows are present.

IGRWLC - Two-dimensional array giving the starting re-
cord number in the temporary scratch file for
data from a row element corresponding to the
second subscript value. The first subscript
corresponds to the top and bottom double-row
elements for subscript values of one and two,

I 

respectively.

r1

r I  160 :

..-..-. ,.



IGRWLN -Two-dimensional array giving the length in data
samlesforthestored time history from a row

eleentcorresponding to the second subscript.
The first subscript corresponds to the top and
bottom double-row elements for subscript values
of one and two respectively.

IGCLIJC - Two-dimensional array giving the starting re-
cord number for data from a column element cor-
responding to the second subscript. The first
subscript corresponds to the top and bottom
double-row elements for subscript values of one
and two, respectively.

IGCLLN - Two-dimensional array giving the length in data
samples for the stored time history from'a col-
umn element corresponding to the second sub-
script. The first subscript corresponds to the
top and bottom double-row elements for sub-
script values of one and two, respectively.

LNLBTP -Three-dimensional array giving labels for anno-
tation of lines on multiple line plots. The
first subscript is dimensioned to three and
corresponds to three words on twelve allowed
characters for the label (3A4). The second
subscript corresponds to the top and bottom
double-row element for values of one and two,
respectively. The third subscript corresponds
to row or column position. If multiple columns
are present, this subscript corresponds to
column position. Otherwise, the subscript
corresponds to row position.

/HLPWDS/ Strings and control value for generation of HELP
prompting for the user.

LWORDS - Array of strings used in generation of HELP
messages. There is one string for each avail-
able entry option. The word immediately
preceding each string is an integer giving the
length of the string in characters. The
strings are stored in nA4 format.

IHELP - If IHELP = 1, then HELP is active. If IHELP=
0, then HELP is not active.

/INFGRP/ Block for storage of information provided by an
Info file group.

161



MXGLGP - Number of column elements for the group.

MXRWGP - Number of row elements for the group.

KEYWDT - Four-character keyword corresponding to the
top double-row element for the group.

KEYWDB - Four-character keyword corresponding to the
bottom double-row element for the group.

NKEYS - Set to one if top double-row element present,

set to two if both double-row elements present.

NMCURR - Not used.

NKPOUT - NKPOUT = 0 if both double-row elements wanted.
NKPOUT = 1 if top double-row element wanted or
NKPOUT = 2 if bottom double-row element wanted.

ROWPGP - Array of geometric row positions.

COLPGP - Array of geometric column positions.

MXITBM - Three-dimensional array giving four-character
item codes for row, column, double-zow element
intersections. The first index gives the
double-row element where top and bottom corres-
pond to index values of one and two respec-
tively. The second index gives the column
element number and the third index gives the
row element number.

POSMX Three-dimensional array giving a third geomet-
ric position parameter (e.g., vertical chord
position) for the physical location of sensors
corresponding to each item code. The first
index gives the double-row element, the second
index gives the column element, and the third
index gives the row element.

/KARD/ Block for communicating user input lines for scan and
return of information about the lines.

ILOC An array corresponding to the user entries in

the line ICHAR. ILOC(I) corresponds to the
I'th entry. If ILOC(I) is positive, then the
I'th entry is a string beginning at character
position ILOC(I). If ILOC(1) is zero, then the
I'th entry is a null. If ILOC(I) is negative,
then the I'th entry is numeric and -ILOC(I) is

162

A4 i .
" - II-•



the index in the XNUM array for the numeric
*value.

INUM An array corresponding to the user entries in
the line ICHAR. INUM(I) corresponds to the
I'th entry. If the I'th entry is a string,
then INUM(I) gives the number of characters
in the entry.

XNUM An array giving numeric values extracted from
ICHAR as explained under ILOC.

ICHAR An array of characters forming one line of
user input. The characters are stored in the
format 72A1.

/KWCNTL/ Gives prescribed keywords to check that data on
scratch file to be used on input are appropriate
for certain derivations.

KWMIl - Prescribed keyword for the top double-row ele-
ment input for a process.

KWMI2 - Prescribed keyword for the bottom double-row
element input for a process.

NKWM - Number of prescribed double-row elements re-
quired for process.

/LABELS/ Plot labels. Most of these labels are extracted
from the information record preceding each data
stream in the Master File.

IDATE - Date the data stream was recorded. The format
is 2A4. Currently not set or used.

ITIME - Time of day the data stream was recorded. The
format is 2A4. Currently not set or used.

ICLABL - Current counter in string format A4,A2. -t

ITEML - Item code in format A4.

LUSQRD - Indicator for modification of input units
labe(s) to achieve correct output units labels.
Values are

-3 = cross process with normalized units.

1.0

~163

,£



~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .. .. .. .... ...... -- . ..---- ,-

-2 = cross process with units per herz.
-1 = cross process
0 = no change
1 = square first units label
2 = square units label per hertz

IMODEL - Ship model in format A4,A2.

ISHIPN - Ship number in format A4,A2.

ISHPGW - Ship gross weight in format A4,A2.

IMODLC - Ship model code in format 2A4.

ICGLNG - Ship longitudinal CG in format A4,A2.

ICGCOD - Ship CG code in format A2.

IFLTNM - Flight number in format A4,A2.

IUNITS - Dependent variable units in format 2A4.

ITEMDS - Discription of dependent variable in format
7A4,A2.

LINLAB - Dependent variable label for multiple line
plots.

IUNIT2 - Unit label for second input function for pro-
cesses that require two inputs (e.g., cross-
correlation).

ITEMD2 - Data label for second input function for pro-
cesses that require two inputs (e.g., cross-
correlation).

/LEDIT/ Control and information values for command sequence
storage on retrieval.

LED - Current command sequence (EDIT) mode.

0 = normal mode
1 = EDIT/NEW mode
2 = BUILD mode
3 = EXECUTE mode

NAMFIL - Four-character name of the current command
sequence block being edited, built, or exe-
cuted.

164

, . ,



NUMFIL - Pointer to the current block in the command
sequence file being generated or read.

LOCFIL - Pointer to the current line in the command
sequence file being generated or read.

LEDLIN - Total number of command lines available on
the command sequence file. If LEDLIN = -1
then the EDIT capability is not available.

LEDLRC - Number of direct access records in a command
sequence block.

LNPREC - Number of command lines that can be stored
in a command sequence block.

LWDPLN - Number of words allotted to each command line
where four characters are stored in each word.

LARGCH - Set to character that specifies an execution
argument or parameter. Currently set to IHWI.

LMXARG - Maximum number of arguments that can be passed
during execution of a command sequence.

MXARGC - Maximum number of characters that can be passed
in one command sequence argument.

NLNTMP - Number of characters available on the temporary
character line, LNTEMP.

NLARG - Array. Each variable contains the number of
characters stored for the corresponding index
of LARG.

LARG Two-dimensional array of parameter inputs. Se-
cond index corresponds to NLARG index. String
is stored over multiple values of the first
index.

/MASS/ Offsets, pointers and check values for the direct

access routines RMS, WMS, FMS.

NDEVS - Dimension for the arrays in this block.

MDEV - Array giving direct access I/O file numbers.
MDEV(I) is the I/O file number for pseudo-device I.

165

..... m~ ~~ V . .



MOFF Array giving offsets to arrive at correct
direct access record numbers. For pseudo-
device I, MOFF(I) should be added to the re-
quested record number to arrive at the proper
record number for direct access device MDEV(I).

MLEN - Array giving lengths of the pseudo-devices.
MLEN(I) is the number of direct access records
available to pseudo-device I.

MTOT Array giving total length of direct access
devices. MTOT(I) is the total number of direct
access records available on direct access file
MDEV(I).

MSIZ - Array giving record size in four-byte words
for each pseudo-device. MSIZ(I) is the record
size for pseudo-device I.

/MDEP/ Computer, installation, or hardware dependent values

IBAUD - Data communication rate in characters per
second between the Tektronix graphics terminal
and the computer.

IPLDEV - Plotting device

1 = Calcomp or incremental plotter
calcomp emulation (e.g., DP-I)

2 = Other device
3 = Tektronix

PENBGX - Deviation in X of the initial positioning of
the incremental plotter pen from the standard
starting position which is 1/2-inch to the
right of the perforations for DP-l paper.

PENBGY - Deviation in Y of the initial positioning of
the incremental plotter pen from the standard
starting position which is the 1/2-inch above
the perforations at the bottom of the page.

PLTWID - Total width in inches of a page of plot for
determining spacing of frames. This value
does not affect the size of the plot frames
as drawn.

NPBLKS - Number of blocks allowed in a page of printout
Awhere each block contains five data lines and

one blank line.

1i 166



TWARN - Number of CPU seconds which will be consumed
before the computer begins to issue time
warnings to the user.

ITSTEP - Control value for printout of command step exe-
cution times. If ITSTEP = 1, the times will be
printed. If ITSTEP = 2, the times will not be
printed.

IDONE - Variable indicating whether the scratch
files are already initialized. If IDONE =
1, then the files were initialized before the
program run began. Otherwise, the files
must be initialized at the start of the run.

/MENBUF/ Buffer block for menu generation

IX - Array for generation of menus

/MLABLS/ Block for output labels.

RDLBL - Row axis label of up to 16 characters stored
4A4.

RULBL - Abbreviated row axis label of up to eight
characters stored 2A4.

RTLBL - Label for a geographic feature near the lowest
valued row position. The label may contain up
to 16 characters stored 4A4.

CDLBL - Column axis label of up to 16 characters
stored 4A4.

CULBL - Abbreviated column axis label of up to eight
, characters stored 2A4.

CTLBL - Label for a geographic feature near the lowest
valued column position. The label may contain
up to 16 characters stored 4A4.

LTOPON - Set to one if a top double-row element origin
label is present in LBDTOP. Set to zero other-
wise.

LBOTON - Set to one if a bottom double-row element origin
label is present in LABBOT. Set to zero other-
wise.

1.6

167

, , .



LBDTOP - Label for origin of top double-row element, if
any. 5A4 format.

LABBOT - Label for origin of bottom double-row element,
if any. 5A4 format.

LABGEN - General label for independent variable(s).
This label is entered when a derivation is
performed or multiple items are used from an
Info file. Stored as 7A4,A2 format.

IPCTL - Control for counter label ICLABL.

1 = Single counter in output
2 = Multiple counters in output

IPCLBL - Counter label. Contains counter in string form
for single counter output or the string 'MULTI-
PLE' for multiple counter output.

LBCEX1 - Control for row, column, or time label. The
allowed values are:

1 = Column position label in Info file
supplied coordinates

2 = Column position label as provided
by the user

3 = Row position label in Info file
supplied coordinates

4 = Time associated label
5 = No label

LABEXI - Label as controlled by LBCEX1. LABEXI(l) con-
tains the numeric value while LABEXl(2) and
LABEXl(3) contain a string label. XLBCEX is
normally equivalenced to LABEX1.

/MODES/ Operating modes for the program.

MODEZ - Batch/interactive mode selection.

1 = Batch
2 = Interactive
3 = Interactive graphics

MODSCN - Scan mode for user input.

0 = Normal
1 = Scan for line errors only

168

- -" . -I .. ..



IQUICK - Set to one for QUICK plot mode. Set to Zero
for SLOW plot mode.

ICPSET - Set to one for COPY mode. Set to zero for
NOCOPY mode.

ICPRLG - Set to one if the COPY mode has ever been set
in the current run. Set to zero otherwise.

NCPRES - Number of PLOT call records stored on the
temporary plot storage file. Set to zero if
no frame has been stored or if NOCOPY mode
is set.

/PRCOM/ Common for process communication.

KOUNTR - Current counter stored as an integer

KITEM - Current item code stored in A4 format.

TIMOFF - Not used

RECLEN - Not used

TINT - Sample interval

NPTS - Number of points in output record.

XSTRTV - Starting independent variable value.

XINTVL - Independent variable sampling interval.

NMAXVL - Number of samples in processing record.

PMINOR - Not used

INDEPN - First independent variable indicator

1 = time
2 = frequency
3 = harmonic number

* LTYPE - Pointer to proper HLABLS label

LXAX - Pointer to proper XLABLS label

KEYWDI - Top double-row element keyword for output datastream.

169

mom,



2 = Same as 'I' but next input line

is already present in ICHAR

MODINP - Command input source.

0 = System input
1 = Edit file

MODSCR - Scratch file mode. If MODSCR = 1, all scratch
files are concentrated on the device with the
number given by NSCG. If MODSCR = 0, each
scratch file is located with a different file
number given by NSCI, NSC2 and NSCG.

MODROT - Rotor selection mode. If MODROT = 1, the main
rotor is selected. If MODROT = 2, the tail
rotor is selected.

/PARMS/ Common to hold parameters passed to the program from

the computer system command language.

IPARCN - Number of characters that were transferred.

IPARMS - Array to hold the characters that were passed.

/PLABLS/ Stored labels and information for output.

HLABLS - An array containing eight labels to be added
to the beginning of the dependent variable
description. Each label has the format 5A4.

XLABLS - An array containing seven possible X-axis
labels. Each label is stored in the format
6A4.

LINSKP - Array of integers which provide the schedules
for dashed lines which are later stored in

,, JUNQ(/DRW/). From a LINSKP entry, each decimal
digit is transferred to one JUNQ value. Al-
lowed values for each LINSKP entry are 0 through
9999.

ULABLS - First independent variable unit labels.

4/PLSPCL/ Common for control of the special plotting modes
QUICK and COPY.

170

~'1,



IWy

KEYWD2 - Bottom double-row element keyword for output
data stream.

KEYQ1 - Top double-row element keyword for input data
stream.

KEYQ2 - Bottom double-row element keyword for input
data stream.

POSZ - Two word array giving the third or minor posi-
tion value for the current item code(s) in
process. The first array value corresponds to
the top double-row element and the second array
value corresponds to the bottom double-row
element.

/SCRTBL/ Block for storage of directory blocks of the input
and/or output scratch files.

ISCOIN - For scratch file output. Set to zero if the
scratch file has not been addressed (SCADD
call) with a data stream that was not missing.
Set to one if the scratch file has been ad-
dressed with a data stream that was not missing.

ISCLIM - For scratch file output. Set to zero if the
scratch file has not been addressed with a data
stream that was not missing for the current
column. Set to one otherwise.

XSCRT - Array for storage of directory blocks of the
input and/or output scratch files. The first
half of XSCRT holds directory data for the de-
signated output scratch file (if any). The
second half of XSCRT holds directory data for
the designated input scratch file.

/SCRTCH/

IOFFXB - Offset in words to the beginning of scratch
file output information stored in XBUFF
(/BUFFER/)

IRPOFF - Offset in words from XBUFF(1) to the beginning
of row position storage for output to a scratch
file.

ICPOFF - Offset in words from XBUFF(1) to the beginning
of column position storage for output to a
scratch file.

171



1 KDROFF - Offset in words from XBUFF(l) to the beginning
of the data directory buffer to scratch fiil
ouput.

NPREC - Number of data directory blocks in a scratch
file record.

ICOLM - Array giving the current column number being
worked on for each scratch file.

INILOC - First available data record for either scratch
file.

INITBG - Indicates whether scratch files have been ini-
tialized. Set to zero if not. Set to scratch
file size in records if so.

MXRWSC - Maximum number of row positions allowed for a
scratch file.

MXCLSC - Maximum number of column positions allowed for
a scratch file.

MSCLOC - Array giving the next available data storage
record for each scratch file.

IPANAV - Array which gives the multiple storage condi-
tion for each scratch file where index = 1 is
SCFl and index = 2 is SCF2. If IPANAV(I) = 0
then all the data stored on the scratch file
was written in one KEEP command step. If
IPANAV (I) = 1 then the data stored on the
scratch file was written with one KEEP and one
or more ADD command steps.

ICURR - Data directory record currently in XBUFF for
the scratch file currently being written on.

IXBINP - Offset in words to the beginning of scratch
file input information stored in XBUFF(/BUFFER/)

ICURIP - Data directory record currently in XBUFF for
the scratch file currently being read from.

IXDIRI - XBUFF offset to directory record buffer area
for scratch file input.

IXDATl - XBUFF offset to data record buffer area for
scratch input.

1

~172

- - - -



I£ 9

IRPOFX - XBUFF offset to row position storage for
scratch file input.

ICPOFX - XBUFF offset to column position storage for
scratch file input.

MODEl2 - Indicator for one or both double-row elements.
MODEl2 = 1 implies one double-row element while
MODEl2 = 2 implies both double-row elements.

ROWPOS - Array which contains physical row element
positions.

COLPOS - Array which contains physical column element
positions.

MAXCOL - Number of column positions present.

MAXROW - Number of row positions persent.

ZMAX - Maximum data value present in a row/column
pair time history.

ZMIN - Minimum data value present in a row/column A
pair time history.

LABCNT - Label control value for generation of LINLAB
13 (in /LABELS/) when input is from a scratch
F file or multiple items are specified by an

Info file group. Allowed values are:

1 = Column position label
2 = Column label using user-supplied

coordinates
3 = Row position label
4 = Time related label
5 = Originally saved label

POSUP - Array of minor positions (e.g., vertical posi-
tion on chord section) corresponding by index
to the row elements, and also to the top
double-row element.

POSDN - Array of minor positions (e.g., vertical posi-
tion on chord section) corresponding by index
to the row elements, and also to the bottom
double-row element.

173

- -. -



/SINGIF/ Information extracted from the initial group of the
Info file.

NUNIN - Number of input unit conversion specifications
that are currently stored in common (the input
unit conversion capability is not yet imple-
mented).

NUMOUT - Number of output unit conversion specifications
that are currently stored in common.

MOREIN - Info File line number where more input unit
conversion specifications begin (the input unit
conversion capability is not yet implemented).
Set to zero if none.

MOROUT - Info File line number where more input unit con-
version specifications begin. Set to zero if
none.

NGRUPS - Number of group names and starting lines num-
bers stored in IGRUP and IGRPLC.

MORGRP - Info File line number for the line just before
the first geometric group that is not recorded
in !GRUP and IGRPLC. Thus, MOREGRP is the num-
ber of Info File lines that are skipped before
the next Info File group is read. 13

B
MSCAND - Initially zero. Reset to one at the end of

the first successful call to the INFRED pro-
gram. This variable indicates whether the
Info File geometric groups have been scanned
for correct format with a MENU/INFO/ call.

KEYWRD - Array of four-character keywords which give
the meaning for the corresponding item codes.

ITEMK - Two-dimensional array of item codes which
correspond by the first index of the array
to the KEYWRD with the same index.

VALUES - Two-dimensional array of numeric values which
correspond by both indices to the item codes
in ITEMK.

IGRUP - Array of geometric group names in the Info

File that have corresponding locations stored
in IGRPLC. The group names are contiguous at
the bottom of IGRUP with unused space at the

174

tw



in A4 format.

IGRPLC - Array of group locations in the Info File that
correspond by index to the group names in IGRUP.
The values given are the number of Info File
lines that should be skipped to reach the first
line of an Info File group.

UNCNSL - Array of unit conversion slope factors. Factors
correspond by index to the unit labels in IUNCNV.

UNCNIN - Array of unit conversion Y-intercept terms.
Terms correspond by index to the unit labels in
IUNCNV.

IUNCNV - Array of unit conversion unit labels. The se-
cond index corresponds to the indices of
UNCNSL and UNCNIN. The first index is di-
mensioned to six. The first three values
correspond to the original unit label. The
last three values correspond to the converted
unit label.

/SIZES/ Various fixed numeric values for the program.

IBFSIZ - Size in words of the XBUFF scratch data area.

IMRSIZ - Size in words of a Master File record.

ISCSIZ - Size of the scratch files in records.

ISRSIZ - Size in words of a scratch file record.

ISPSIZ - Size of the scratch files in records when all
scratch file pseudo-devices are assigned to
the same I/O file number.

ICOLMS - Number of characters allowed in a user input
line.

INCTEK - Vertical raster spaces required for each
character line printed on the Tektronix.

ICOMSZ - Number of characters allowed in the user
comment line.

NDIRCS - Number of user entry options in the user inter-
face output matrix, IDIRCT.

175



IBIG - A large integer for use as a dummy limit for
DO loops.

MENBSZ - Size in words of the IX scratch area for the
menu generation routines.

IDBlSZ - Size of the initial part of the scratch file
directory.

ICLDSZ - Size in words of a scratch file column
directory block.

IDBLKZ - Size in words of a data directory block.

NKV - Number of words of keyword information held
by the routine PROSET for each process option.

NKEYSD - Maximum number of keywords allowed for the
initial group of the Info file.

NITMSD - Maximum number of item codes which may be
associated with each keyword in the initial
group of the Info file.

ICOLIF - Maximum number of character positions available
for one line of the Info file.

MAXATT - Maximum number of values for each of the
attached parameters.

INCLMS - Maximum number of character positions for a
line in the Info file.

NCONRW - Specified number of rows for final output
matrix for generation of a contour plot when
the independent variables are the third and
second dimensions.

NCONCL - Specified number of columns for final output
matrix for generation of a contour plot when
the independent variables are the third and
second dimensions.

NCNRW1 - Array giving the specified number of rows for
final output matrix for generation of a contour
plot when the independent variables include
the first dimension. When the plot format is
cylindrical, the first array value is used.
When the plot format is rectangular, the
second array value is used.

176

I -- ~ *~-- ~ ~7. 7



NCNCL1 - Array similar to NCNRWl giving the specified
number of columns for the final output matrix
for generation of a contour plot.

NSURRW - Specified number of rows for final output
maxtrix for generation of a surface plot when
the independent variables are the third and
second dimensions.

NSURCL - Specified number of columns for final output
matrix for generation of a surface plot when
the independent variables are the third and
second dimensions.

NSRRWl - Array giving the specified number of rows for
the final output matrix for generation of a
surface plot when the independent variables
include the first dimension. When the plot
format is cylindrical, the first array value
is used. When the plot format is rectangular,
the second array value is used.

NSRCLI - Array similar to NSRRWl giving the specified
number of columns for the final output matrix
for generation of a surface plot.

MXEDLN - Maximum number of command lines which can be
stored in a command sequence block.

NEDSIZ - Number of computer words in a command sequence
file (Edit file) direct access record.

NEDCHR - Number of characters which are stored for a
command line of the command sequence file
(Edit file).

NPCYAV - Specified number of data values which are
generated to represent one rotor cycle in the
cycle averaging (AVERAGE) process.

MXRCHR - Number of characters that are read during an
input from system input, the Info File, or
the Command Sequence Storage File.

MAXGRP - The maximum number of geometric group names
and locations that can be stored in the arrays
IGRUP and IGRPLC.

MXUNCN - The maximum number of unit conversion speci-
fications that can be stored in the arrays
UNCNSL, UNCNIN, and IUNCNV.

177

- - -



MXMASK - The maximum number of masked item codes that
can be stored in the array MASKIT.

TSTINF - Test value that is used for comparison with a
datum value to determine whether the datum
value indicates the data are missing. A value
less than TSTINF indicates data are missing.
TSTINF must be set greater than SETINF.
Currently, TSTINF is not used throughout the
program.

SETINF - Prototype data missing value. When data are
missing for a time history, the first datum
value should be set to SETINF. SETINF must
be less than TSTINF.

/SLIST/ Block to contain listing of the developing command
step or, if no entries have been made for the
current step, contain a listing of the previous
command step.

NCPOS - Character position on the ISLIST line currently
being generated.

NCROW - ISLIST line currently being generated corres-
ponding to the second index of ISLIST.

ISLIST - Array which contains listing of the developing
command step. The lines are stored in 18A4
format with the second index referencing the
lines.

ISLNOW - Indicates whether ISLIST contains the currently
developing step or the previously completed
step listing. Allowed values:

0 = listing of currently developing step
1 = listing of previous step

/SMPNTR/ Common used for the SYMBOL/NUMBER emulation package.

LOCSYM - Array of pointers set by INISYM. A character
code (e.g., under EBCDIC) is interpreted as
an unsigned integer. The integer is used as
an index and the value of LOCSYM for that index
is the pointer to the correct character in the
list of allowed characters. A pointer of zero
indicates there is no allowed character for the
code.

.9

178

, , . . . .---. - ,..... -... .. . .. . .- .------. , .

Aa

moo



I

/STATUS/ Various information on the status of the program.

LNCNT - Vertical raster position on the Tektronix
screen for return of the cursor after a plot
is generated.

KOMMNT - Array containing the current user comment for
output. Comment is stored in 18A4 format.

NKOMCH - Number of the last non-blank character cur-
rently in KOMMNT.

IFRSTP - Indicator for the current plot frame. Allowed
values are:

0 = No plots have been generated in
this run.

-1 = Single curve plot frame was just
generated.

I = (positive) Multiple curve plot frame
is currently on screen or paper
containing I curves.

CLBPOS - Used for comarison plot option (LPLOT). This
variable is the vertical position of the top
horiztonal line that will form part of the box
around the annotation for the current curve.

IDBLPT - Set to zero normally. Set to one if a double-
scale plot (DPLOT) is being drawn or was the
last plot frame drawn.

/SURPLT/ Control and label values for surface on contour
plot generation.

ROWl - Numerically lowest row position for the final
output matrix used for surface or contour
plot generation.

ROW2 - Numerically highest row position for the final
output matrix used for surface on contour plot
generation.

COL1 - Numerically lowest column position for the final
output matrix used for surface or contour
plot generation.

COL2 - Numerically highest column position for the
final output matrix used for surface or contour
plot generation.

179

-3----



NCR - Number of rows for the final output matrix
used for surface or contour plot generation.

NCC - Number of columns for the final output matrix
used for surface or contour plot generation.

NTYPEF - Format for contour or surface plot.

1 = Cylindrical format
2 = Rectangular format

ITRNPS - Indicates whether rows and columns should be
transposed in generation of the final output
matrix.

0 = No transposition
1 = Transposition

DELZ - Dependent variable increment between contour
levels for a contour plot.

LABVRT - Label for the vertical axis of a rectangular
format contour plot.

LABTOP - Geographic feature label to be placed at the
top of a rectangular format contour plot.

LABHOR - Label for the horizontal axis of a rectangular
format contour plot.

SETLEV - Contour height indicator for CONNEC routine.
For each plot, this value is initially set to
-1 x 10:35 as an indicator that no contours
have been drawn yet.

/VSIZE/ Common block used exclusively for the Versatec plot-
ting adaptation of DATAMAP.

VXUSED - Inches of plot that have been used so far in
current Versatec "frame."

VERMAX - Maximum number of inches that can be plotted
before a new Versatec "frame" must be started.

4/WLIST/ Keyword block.
NWDS - Number of keywords stored in IAA.

180

... .. - .. . .. .. .



IAA -Two-dimensional array containing keywords
to be matched with user command entries.
Keywords are four characters long stored
one character per word in 4A1 format. The
second array index corresponds to the key-
word number.

181



Appendix C -Job Control Language (JCL)

FOLLOWING ARE SEVERAL EXAMPLES OF IBM JOB CONTROL LANGUAGE
(JCL) SEQUENCES AND I8M TSO COMMAND LANGUAGE CLISTS TO BE
USED TO CUMPILE. LINK-EDIT* AND EXECUTE THE VARIOUS
DATAMAP PROGRAMS. THESE EXAMPLES ARE NOT COMPLETE AND
SECI ION 7 OF THIS VOLUME SHOULD BE CONSULTED FOR A COMPLETE
DESCPIPTION OF FILE AND LINK-FDIT A!-OUlREMENTS. THESE
EXAMPLES DU GIVE DEMONSTRATIONS OF uiOW VARIOUS REQUIREMENTS
THAT ARE SPECIFIED IN SECTION 7 ARE ACTUALLY ACCUMPLISHED
USING JCL OR CLIS75. THESE EXAMPLES HAVE BEEN CONSTRUCTED
TO WORK ON BHTGS COMPUTER INSTALLATION OF IBM 370/16b@S
RUNNtm& UNDER MVS. SOME CHANf.ES WILL BE REQUIRED FOR
OPERA71ON ON U7HER IBM SYSTFMS.

EXAMPLE 1 - TO EXECUTE TH-E FILE CkEATION PROGRAM TO READ
oHT-G6jC FORMAT INsI-uT uAIA TAPES.

//EEARcb JU!3 (FEAB(20C.G.62C999,1)P3e.?S),SbICK 2841',
M/ MLEVL.MSCLASF=ACLASS=,NU7iFY=S4R

/*s!VTUP~ 1SN=FNG.R.Nfw(OLI
/*,-TUPDSN=ENGR.F~%39e,6

/*SETUf' DSN=ENOR.Ft352194
/* ETUP SN=ENUP.F3196C24

/*tFTuP D5N=ENGR.F7.3C7461
/*f$F 1,p DSN=ENGR.F?46C 312
/*5(101- UbN=ENGR.F4AB(,7C3

/*S TUP DSN=ENLR.F,4E2P5
//S7k6I- ExLL. 61-GMFzAR02.TIME=20
//LT-1LI1 DU) 1SN=ENGR.TESTl.DISP=SHR
//FTCIFCC1 1)1) DSN=ESAH.OLSMA5.DISP=ULD
//F7CCIFCCI 01D USN=ESAR.FCPINPUT.DATA..DISP=SHR
//F1CtFG(C1 VU1 5YSLUU1A
//1-TI41-CCI1 1)) UNITrSYS)A.USN=ESAk.UNIT14.)ISP=NEW.
// SPAC(CYL3)UCb=tE.CFM=FBLKSIZ=124.S3RG=DA)
//V-12-CCI &AL) 1SNSAR.UN1714.UNII=AFF=V'TI4FCOi,

IIVOL= "F=*.FlIA-CC1.OiS P=ULD.
II DCA(REIMFo'jLKSILr-IC4DSRG=OA)

//FT1I'FCCI DD UNIT=SYSDA.OISP=NEW.$PACtE-(CYL.(3.L))#
/1uC8=(RC-M=F.hLKSIZE=64.C)

//!5Y!;ULUM- LDU Y 3 UUT=fi
//F1?(1-CC1 OLU UNIT=TPS.US>N=ENR.NEWOLS.u)SF-LD
//FTZIFCCI 1)0 UNIT=AFF=FTPcFCel.

IIUSN=FNGR.F16539bb,.D1SPLLD
I/F .-(tIULJ) UNIT=AIF~FFTC'FfCI.

vSN=ENN(R.Frt3 2194.OISP=ULD
//FT2.3FOCI UU1 UNIT=AFF=FTrCF00I,

u/1SNNGR.F.1'I,6C24.UI5P=GLD
//F1Z4FQ)C1 1)0 UN11=AFF=FWC-CC1.

IIU5N=Nk.FC,4b,1)ISP=0LD
//F't-.e-C1 DD uN1T=AFF=FT (FCt1.

//FT'etFtf1 D UNI7=AFF=F1;CFOOI,
// N=NG.F4!C7(.D1EP=uLD

//FT27FCI 01) UNI1IAFF=F1iCFCC1,

182



EXAmPLL Z 10 tAtCUTE THE FILE CREA71ON PRuG~RAM WITH DATA
TRANbf-L,~ VILL (uTF) FORMAT DATA INPUT. IN THIS CASE* THE
DATt INPUT IE I DISC FILF THAI HAS BEEN PkEVIUJSLY CR-ATED.
NLTICt THAT ITHE RECORD FORMAT FOR T-f- TEMPURARY SL-UUENTIAL
SCIkATCri FILE (F11It-CCI) HAS CHANGED AND THAT AN INFO FILE
u~RLAJP uU-PUI FILE DATA SET 15 DECLAREO (FT~cFGG1).

//SAkc9 JUtj (F-b2CGF6 v9D~vS9UL ;841'.
iiM$GLIV ~L=.Mf-OCLACFS=A.CLASS=TNUT71FY=ES-AR

//'-TFP1 E'XEC PO.M FtARC2.71ME=.C
//bTFPLI [' DU USN=ENuR.7LSTI ,DlSP=SHR

//rO~-C~1 L USN~E SARo0LI-MAS9DISP=OLD
//FTOSFOGIl uu OSN tSAR.uTFSTUB .DISV=SHk
//F'4,F-(C1 DU SYtUUT=A
//FC(-FC(i UD uNIT=SYSOA.DSN=r SAR.1NI-tlC-2C.

// DIET- =(NF.,CATL,) .SPACF=( iRK. (b9b)).
// V(RFCF4FuBLKSIE=31C.LkrCL=EG) 1

//FT1lAFODA DO UNIT=SYSUA.DSN=FSARoDNI14.DISP=NEW.
// SPACL=(CYLo3).u~ti=(RECt-M=F.BLKSIZE=1O24.DSGRG=DA)
//F7iZFtC1 DD USNSA.UN1UNIT=AFF=TIAFCOI.

// VOL=RF=*oF7I4FCC,.DISP=UjLD9
// CBARE(.FM=Ff3LKSIZE=IC-4.DSOR.,=UA)

//t-7130-OCI uD ONIT=SYSDA.DISP=NEW.SPACE=(CYL.(3.9j).
// UCd=(RECFM=VzS.BLKSILE=t4OO.LRECL=4OE4)
//S;YsuJLUMP DO SYSOUI=A
//t-T~rIIC(I DD U5N=ESAP.DIF.D'[A.DISP=SHP

FXAMFPLE 2 - IL EXECUTE TmF PROCESSING PROG6RAM IN A BATCH
ML'bEo NOTICE THAT TWU DAIA SETS ARE CQNCATENATED TU
FORIM THE INFU FILE. ALSO NOTICE THAI THL SCRATCH FILES
DAIA SFI IS ASSUMFD TO FXIST ALREADY AND THAT THE SCRATCH
FILES ARE DECLLARED TO BE PERMANENT WITH THE PASSED
FAkAm,-TER $PERM$.

//LSARtC JOBs (*TARO6UOG3E, 309q'DCotsPzeIS),IDICK 2641*9
//MSGLEVEL=.Mt,CLASS=.CLAS=H.NOTIFY=ESAk
//EXEC -LM=TAR6.TIp.E=2CP-ARM=IPFRMI

//STEPLItS DO DSN=ENGR.TESII .DISP=SHR
//1-Ti 2rt-CC.I DO DSN=ESAR.SCkATCH.0ATA.DI SP=OLD
//FTIII-O(, DO DSN=ESAR.SCRATCHoDATA.DISP=OLD
//FTCFFCl UD USN=ESAQ.PPOCESIN.DbTA.OISP=SHR
//FTCbFCCI 00 SYsuuT=A
//FTC IFOCI 1 0 DSN=ESftR.OLSM0SDISP=SHR
//FTI4FOC1 DD DSN= SAR.NFQ3A.SE9DISP=SHR

IIDD USN=E5AR.CEIGRUPS.DA1A.DlSP=SHk
//FiI. FOOI Os USN=ESAR.COMSF0.DISP=SHR
h/PLUTTAPL DO UNII=(TPS99DEF ER)9

// VULUPE=PRIVATE.UCE=(OEN=2)9
IILABEL=EXPDI=4EO-C5

183



EXAMPLE 4 -TO EXECUTE THlE PROCESSING Pk~GRAM UNDER TSU.
FOR THIS EAAMPLE, A TEMPORARY SCRATCH FILES DATA SET IS
ALLOCATED ANI) THE PARAMETER *TEMPS IS PASSED TO THE
PRUGRAM. THE PLOT COPY DATA SETS ARE DECLARED AS OUMMYS
SO THAT NO PLUT COPIES SHUULD BE A7TMPTED USING THIS
CLI ST.

PROC 2 EDIT INFO PROG(ENGR.PRODI(ATAR03)) MFILE(ESAR.OLSMAS)
CONTRUL NUMbG
FREE DA(9ESAR.CLIST*)
FRIFE F(FIC1FC I-TC5FCOI FTC6FOCI FT22FCOI F723FCOI)
FREF F(FTlIFOGI FT12FCC FTIZFC.I FT14FOGIl)
FRFE AlTk(SCRATX)
CONTkOL MSG
ATTH SCRAIA RECFMtF) USORGtDA) LRECLEIOZ4) iLKSIZE(1O;4)
ALLOC VA(VIEMP) USIN6(SCRATX) NFW SP(2) CIL
FREE ATTR(SCkA7X)
ALLOC F(FI12FOCI) UA(VYFMP) SHR
ALLOC F(F711FCOI) UA(V7EtaP) SHR
ALLOC F(FT13FOOl) vA(ICEDIT.I) SHR
ALLOC, F(FICIFCCI) OA(OGMFILE.6) SHk
ALLuC F(F1*F(C1) DA('t.INFO.6) SHP

ALLLC F(FTC5F,.1) UAI*)
ALLOC PFFtf-DC.1) UA(*)
ALLOC F(F7'22FCO1) UUMMY
ALLOC F(FTZ3FOCI) uUMMY
CALL *L.PKO(x.* 1TEMPI
FEFf F(FlGIF(jGl FTk2FCC.I FT23FC('I)
FREE F(F11IFC,1 FT12FOGIe FT12FrGl F714FCCd)
DELETE V7EMP

EXAMPLE t - TO EXECUTE THE PRuCE$SING PRO.IAM UNOLR ISO.
IN THIS EXAMPLE. TatE SCRATCH FILFS ARE ASSUMED TO BE A

1-Lt.MANEN7 DAIA SE.T.AND TO BEEN IN1T1ALIZED BY A PRFV1OUS
PkOCESSING PR~sRAM RUN. THE PARAMETER~ *PERM* IS PASSED TO
THE PPOGRAM. ALSO. IHE PLOT COPY DATA SETS ARE ALLOCATED.

PROC ! EDIT INFO PkLG(ENGR.PQIJDI(AT0AP(2-)) MFJLE(ESAR.OLSMAS)
CONTROL NOMSc,
FRFE D)AC ESAk.CLISll)
FREE FIET01FOQI #--TCS5F0OI FTC6FG0l t T~i-,)O FT23FOOI)
FkEE F(F'I1lFOCI FTI,-FOOI FT13FCOI FTI4FO1I)
CONTRUL MSG
ALLOC F(F712FCCI) D)A(VPERM) SHP
ALLUC F(FTIIFCCI) U)A(VPERM) SHP
ALLOC F(FTI.3FGDCI) 0A(6&EOIT.') SHR
ALLOC FtU-1CIFOCI) UA(&GMFILf.') SHR
ALLOC F(FTIAFCOl) OA('&INFO.') SHR
ALLOC F(F7CEFLCI) LA(*)
ALLUC F(Fl~bFCOI) i.A(*)
ATTN VCUI- RECsFM(Vtt-,S) DSOkG(PS) LRFC.L(16) oLKSIZE(3114)
ALLOC DA(7EMPCOP) USING(VCOP) NEW SPACE(IJ CYL
ALLOC F(fli2FCCI) aA(TEMPCOP)
ALLOC DAI.(EEPCOP) %USINGtVCOP) NEW SPAC(19I) CYL
ALLUL F(FT.13FZL) bA tKf- PCiP~
FREE f ATTPCVCUI-)
CALL '&PksU(,' *PFkM*
FR E F(FIOIFCC1 FT:ZFOOI 7ZOI

DELETE TtmrFcop

184



EXAMPLE 6 -TU PLOT FROM THE PLOT COPY FILE THAT WASF
CREATED IN EXAMP~LE 5e

//ESAtkU1 JOB~ (PLLTCUPY9, E.6?99OODF3E.TE).*DICK b4l'v
1/ MSGLEVEL=1.MSGCLASS=ACLASS=G,NOTIFY=ESAR

j/ xEC P(.M=F-Rk8oTIMF=S
//E-TEPLIHi UU USN=EN(,R.TESTI.DISP=SHR
//F123FIfl DD DSN=ESAR.KfEPCOP*DISP=5HR

//e-'Lb#.-CC1 DO SYbUUfr=A
//FZLOTTAPF 00 UNIT=(TPS99D1FER)*

DCL3=(DEN=Z)

EXAMPLE 7 - TO RUN THE FILE MAINTENANCE PkOGRAM UNDER
TSU. THE SAVE* RESTORE AND SCRATCH FILES ARE NOT
DECLAREU SO THIE THE @SVFG AND IRESTORE' COMMANDS SHOULD
NOT BE USED 011H THIS CLIST.

PROC t. PRuu,4ENC K.lESTI(FEAR9Q)) MFIL-=IESAR.DLSMAS)
CON'RUL N0OMSG
FRLE DA(IESAiRCLISI')
FREE F(FTf(IFCCI FT05FCCI F!C6FCCI)
FPFF AITRISCRJTX)
COjNTkCL MS.
ALLCJC FCF1CtTIFOds) DA(IGMFILL.0) SHR
ALLOC I(FT05FOC1) DA(*)
ALLOC F(F7C6F0OI) OA(*)
CALL PR(.
FREF F(FICIFCCI)

EXAMPLE b - TO EXECUTE THE FILE MAINTENANCE PROGkAM IN A
dATCH MUiDE. THE SAVE* RESTORE* AND SCRATCH FILES ARE
DECLARED IN THIS JCL SO1 THAT THE SAVE AND/OR RESTORE
COMM4ANDS COULD BE USED%

f/ESDRZ, JOB (MAINJAIN.G36.63C99gOO.DP36.TS).'DICK 2641'.
f4 SGLEVEL=I .MSGCLASS=A.CLASS=G.NUTIFY=ELAR

/1 C PC M=FEAR's9.TIME=E0
//STkPLIL D USN=ENGR.TESTI.DISP=SHR
//FT(lF40l DO DSN=ESAk.OLSMAS.DISP=OLD

//FIC5FOCI DO DSN=FSAR.FMPINPUT.DATAoD1SP=SHR
/,fFTC,6FOCI DO SYSCUUT=A
//iFTC-7FGCI UU L)SN=FSAR.PARISAVE.UNIT=TPS.DISP=ULD
//F1ObFOGI UO OSN=ESAR.PARTSAVI.UNIT=TPS.DISPNEW.

LALELEXPDT9Se3i5.
// DC(RECFM=FBLKSIZEE92.LRECL=IOE4)

//FTCcyfOOI DD UNIT=SYSDA.OTSP=NEW.SPACE=(CYL9(3.2)3.
//DCBi=(RECFM=FMi.LKSIZE=40969LRECL=1O24)

185

hwl>- ' -



EXAMPLE 9 - TO EXECUTE THE QUESTION AND ANSWER PROGRAM TO
CREATE COMMAND INPUT FUR THE FILE CREATION PROGRAM (TYSTH).
THIS CLIST ALLOCATES THE COMMAND INPUT FILE AS ONEW' SO
TilE FILE SHOULD NUT EXIST dEFORE TIS CLIST IS EXECUTED*
THE DATA SET NAM.E THAT SHOULD BE USED FOR THIS FILE MUST
RE PASSED AS THE FIRST PARAMETER TO THE CLIS7.

PROC, 1 1NPSET PROG(ENGR.PRODl(FEAR55))
CONTROL NOMSG
FREE DA(*ESAR.CLIST')
FREE F(FT05FOOI FT06FOUI)
FREE F(FT08FOO1)
FREE ATTR(SCRATX)
CONTROL MSG
ATIR bCRATX RECFM(Ft-) LRECL(80) tLKSIZE(243O)
ALLOC DA(&INPSET.) SP(lu) TRACKS USING(SCRATX)
FREE ATTR(SCRATX)
ALLOC F(FT08FOOI) DA(&INPSET.)
ALLOC F(FT05FOO1) DA(*)
ALLOC F(FTObFO01) DA(*)
CALL O&PROG.'
FREE F(FT08FOO1)

EXAMPLE 10 - TO EXECUTE THE COMMAND SEQUENCE FILL INITIALIZ-
ATION PROGRAM UNDER TSO. THIS COMMAND SEQUENCE FILE DATA SET
MUST tjE ALLOCAT&-) 3EFORE THIS CLIST IS EXECUTED AND THE
DATA SET NAME MUST BE PASSED AS THE FIRST PARAMETER TO THE
CLI ST.

PROC I EDITFILL
CONTROL NPMSG
FREE DA(6ESAR.CLISTt)
FREE F(FTOIF0OI FT06FOOl FT06FOOl FTO9FO0l)
CONTROL MSG
ALLOC F(FTO9FOO1J UA(*&EITFILE.') SHR
ALLOC F(FTOIFOOI) 0A(9&EDITFILE.@) SHR
ALLOC F(FTOSF00I) DA(*)
ALLOC F(FT06FOOI) D)A(*)
CALL OENGR.TESTI (FEARI )
FREE F(FTOIFOOI FT09FOOI)

EXAMPLE 11 - TO COMPILE ANY SOURCE. FOR THIS EXAMPLE. THE
SOURCE INPUT Ib ON DATA SET 6ESAR.SUvRCE.FORT& AND THE
OBJECT DECK IS WRITTEN TO DATA SET %ESAR.oUBJECTaO8J'.

* //ESAR4 JOB (COMPlLOO.G3a8.3099900.DP38.TS),*DICK 2841'.
IfMSGLEVEL=1,NOTIFY= ESAR.MSGCLASS=A.TIME=(5.00).CLASS=D

//FORTX EXEC PGM=IFEAAJ.*REGION=256K
//5YSPRINT OD SYSOUT=S
/ISTSTERM DD SYSOUT=S
//SYSUTI DO UNIT=VIOqSPACE=(TRK,100)

* //SYSUT2 DD UNIT=VIOSPACE=(CYL93)
//SYSLIN DD UNIT=SYSDA.DISP=(NEW.CATLG),DCB RLKSIZE=312O.

If SPACE=(CYL*10).DSN=ESAR.OBJECT.OBJ
//aYSIN DU LSNESAR.SOURCE.FORTDISP=(OLDDELETEI

186

fi. ~:'~ ~9~ -- I



EXAMPLIF Ii TO LINK IHE FILE CREATION PROGRAM ON TSU.
7Wl' LbiJPC7 DECK IS ASSUMED TO bE ESAR.It36JECT.CsbJ. THIE
LOAD MOOuLE 1S LEFT ON THE PARTITION OFEAROLS OF TH-E
LIBRPARY OFNGR.pRuDI 0

LINK& L)uJL LUJAD(%LNGR.PROUI(FEARG2)@) MAP FLRTLIB LI8BCESAR.DATmAPLB'

fENG .fOQkTLl6@

,XAMPLE 1 7 *T LINK TH-E BATCH VERSION OF THE PROCESSING
V-PLGRAM ON TSU. TrIE MAJOR PART OF THF PROCESSING PROGRAM
4bJECT IS 'E5AR.OBJECT.08J*. WH)-t THE ADDITIONAL OBJECT DECKS
OESAR.SYMB-PALK.OBJos §ESAR.NPLDFVCO.OBJ'. AND 'E5AR*DUMMYS.UbJo
ARE USED (SLE SECTION 7). IN ADDJ'TION. THE LIaRARIES
*E5AR.DATMAP~u$ AND lENGR.FOPTLId9 ARE USED. OENGR.FORTLIB*
CONTAINS THE CALCOMP PLOTTING SUBROUTINES

LINK (OEbJiCl S'rMbPAfCK NPLDFVCO DUMMYS) LOAO(*ENGR.TEST1(ATARO6)8) MAP
5IZEt4t0GG91c.4G) FOk1LIbj LI6(9FSAk.OATMA.LB* 'ENGR.FUIRLIBI)

'AAMPLE 14 - 10 LINK TH-E INTERACTIVE VLKSION OF THE I.ROCESS:ING,
PROGRAM ON ISO. THE MAJOR PART OF THE PRUCESSING PROGRAM IS
LutsJEC 15I IN 8-SAR.UUjJFCT.ObJ2% WH-ILE THIE ADDITIONAL OBJECT DECKS
9ESAFk.SYMfPACK.OE1J% -ESAR.NFWCPREV.O5Jv AND 9ESARvNlPLDFVTO.ObJ'
AkE USED (SEE SECTION 7). IN ADDITION. TiHE LIBRARIES
*L5Am.DA7MAPLb*9 *ENGR.TCSLOADI's AND 'ENGR*FORTLI60 ARE USED.
9ENGP.TCSL6UAO1 CONIAIKS THE TEKTRUNIX PLuIIG LIRRARY.

LINK (LbJLCT YMLJACI( NEWCOREV NPLDFVTU) LCAD(lENGR.PRODI(ATARC5)') MAP
SIZf(A(.OC00vICOCG) tFORTLIB LIB(OESARoUATMAPLBO OENGR.1CSLOADO OENGk.F

187 70.4



DATI


