AD=A094 674

UNCLASSIFIED

BELL HELICOPTER TEXTRON FORY WORTH TX F/6 9/2
THE DATA FROM AEROMECHANICS TEST AND ANALYTICS = MANAGEMENT AND==ETC(U)
DEC 80 R B PHILBRICK DAAKS51=79=C=-0015
BHT=699-099=025-VO_ =2 USAAVRADCOM=TR=-80-D=30B NL

USAAVRADCOM-TR-80-D-30B

AD A094674;Eg£l§/ A

THE DATA FROM AEROMECHANICS TEST AND ANALYTICS
— MANAGEMENT AND ANALYSIS PACKAGE (DATAMAP)
Volume Il - Systems Manual

Richard B. Philbrick

BELL HELICOPTER TEXTRON
P. O. Box 482

Fort Worth, Tex. 76101

December 1980

Final Report

| Approved for public release;
distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY

U.S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)
~_ Fort Eustis, Va. 23604

PY

i
1%

XY

5
=
-]

s T

- SeS 1 T ey T —— e " . "
" ‘l : i N .v ‘ l!
| | . - . G N e L)y
|
{

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This report has been reviewed by the Applied Technology Laboratory, US Army Research
and Technology Laboratories (AVRADCOM), and is considered to be technically sound.

DATAMAP is a computer software system which provides direct access to large data

bases, performs analysis and derivations, and provides the user with various options for

output display, interactively or through batch processing. DATAMAP was designed to '
utilize the AH-1G Operational Loads Survey data but is general enough to accommodate

other large, time-based, data sets resulting from test or analysis.

improvements have been made to DATAMAP to enhance its graphics, analysis, and
operational capabilities in order to expand its versatility and usefulness as an engineering
tool. Volume | of this report explains the general structure and capabilities of the
improved DATAMAP, and Volume Il provides information on programming considerations.

This project was conducted under the technical management of D. J. Merkley of the
Aeronautical Technology Division.

DISCLAIMERS

') The findings in this report are not to be construed as an official Department of the Army position unless so
designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection
with a definitely related Government procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished,
or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or
otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or
permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such
commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

{ ,/ ! ; v
HNCLASSIFI?E i
SECURITY CLASSIFICATION OF TS PAGE (When Data Entered)
X READ INSTRUCTIONS
- EPORT/%CUMENTAHON PAGE BEFORE COMPLETING FORM
4 1. REPORT NUMBER o Z. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER .-
19 “G3aav ~ -80-D- 4
%] “GEaavraDcdy) FI‘R 80-0-308 | |AD-NCTY é y
’ 14, TUITLE (o0d Subtlede e o mnrs- $\ TYPE OF REPORT & szoo COVERED
(Z, FHE DATA FROM ROMECHANICS JEST AND e T e e !
N1 | aNALYTICS - AGEMENT AND ANALYSIS PACK- |[Final ;zéchnlcal)(epofrt_;,}
AGE (DATAMAP)s . (5, FERFO ORG. o i
Volume 1T g Systens Manuale] (7o Ny WT-699-999-p25= - 14
[PdUTHQBE) o o s . - \\1\] R GRANT NUMBER(s) |
/'“ e e . . i e 1
{{{}{richard B. [Philbrick | I (oaaxs1-79- c- OﬂlS |
\\u I3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :RO AM ELK"EEINTTNPURMOBJECT TASK - *
Bell Helicopter Textron~— { ; o :
P. 0. Box 482 612308iT1g22p0nm76 3 /|7 J |
Fort Worth, Texas 76101 00 265 EK L
11. CONTROLLING OFFICE NAME AND ADDRESS Jj REPORT OATE
Applied Technology Laboratory, US Army R ‘IDecembem«1980 / ,
search & Technology Laboratories (AVRADCOPN-"¥ NUMBEROF PAGES © 7, / /
Fort Eustis, Virginia 23604 187 s i
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of thie report) — 7 !
i
Unclassified !
; 15a. DECL ASSIFICATION/DOWNGRADING :
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
1 Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract sentered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Volume II of a two-volume report.

19 KXEY WORDS (Contlnue on reverase side il necessary and idontily by block number)

Helicopters, Data Bases, Data Reduction, Data Management,
Computer Graphics, Interactive Graphics, Signal Processing,
Mathematical Analysis, Acoustic Analysis.

20. ABSTRACT (Continue an reverss aide if necessary sud identify by block numbder)

F The Data from Aeromechanics Test and Analytics - Management and

Analysis Package (DATAMAP) was designed and programmed as a com-
puter software tool for data management and processing of large,
time~-based data bases. Particular attention is given to rotor-

craft-related analyses. The package will process data stored in
two basic formats. The first format is that used for the Opera-
tional Loads Survey (OLS) test data base and anticipated for use
in planned flight test programs. The second format is more —

FoRM
DD | jan 72 473 EDITION OF 1 NOV 65 13 OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e

-
-~

.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

20. ABSTRACT (Continued)

“general; it accommodates various data structures common to

analytical data bases. This particular input capability is
demonstrated by an interface between the Rotorcraft Flight
Simulation Program (C81) and DATAMAP. The package transfers
selected data to a large, direct access disc file and maintains
the data on a semi-permanent hasis. Data are retrieved from
this file, processed, and displayed interactively or in batch.
Plot output is generated on a Tektronix 4014 or an incremental
plotter (e.g., Calcomp).

A small sample of available processing options includes
amplitude spectrum, harmonic analysis, digital filtering, auto-

spectral density, frequency response function, acoustic analyses,

and blade static pressure and normal force coefficient deriva-
tions. _This program will accommodate data from multiple
sonsorgigimultaneously for processing of functions with two
geometric\ independent variables (e.g., chord and radius).
Output Opfigns include printout, single or multiple curve X-Y
plots, contour plots, and pictorial representation of 3-dimen-
sional surfaces. User input is free field with errors
diagnosed where possible. Prompting for available command
input is optional.

The package is written entirely in FORTRAN. Package specifica-
tions require nonstandard FORTRAN coding to be used, but the
package has been made as easily transportable as possible. 1In
particular, DATAMAP is installed on a Digital Equipment Cor-
poration VAX 11/780 as well as on the originally intended IBM
360 and 370 systems,

This report is in two volumes. Volume I is a user's manual and

Volume II is a systems manual for assistance in program main-
tenance, modification, and/or installation.

/

PTIC Ta3

Unannomced

3

Distritution/

Avaiizi ity

Justiflicetion |

BY e

wAcce§sioH‘§;f_~an /] Vs
NTIS GRAXI

.
]

l
]

Nefan !

9

b e

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

g m o

PREFACE

DATAMAP Version 2.00 (formerly known as the Operational Loads i
Survey Data Management System) was developed under Contract
DAAJ02-77-C-0053 for the Applied Technology Laboratory, U. S.
Army Research and Technology Laboratories (AVRADCOM) to pro-
cess the data measured by the AH-1G Helicopter Aerodynamic and
Structural Loads Survey (OLS). This survey, performed for
Applied Technology Laboratory (ATL), resulted in a comprehen-
sive base of helicopter test data including measurements such
as airfoil surface pressures, leading-edge stagnation point,
local flow magnitude and direction, blade accelerations,
bending moments, and the attendant responses in the control
system and airframe. The data base included 72,000 separate
digitized functions of time from 367 transducers. This data
base, together with the techniques used for measurement of the
data, 1s documented in Reference 1.

C ot ol v

T TR DI,

—iane

DATAMAP Version 2.00, documented in Reference 2, has been s
successfully used to process the OLS data base for a number of v
projects both at ATL (Fort Eustis, Virginia) and at Bell '
Helicopter Textron (BHT). To enhance the usefulness of this
software, Contract DAAK51-79-C~0015 was awarded in May of 1979
by ATL. This contract required BHT to modify DATAMAP to
incorporate new analysis, operational, and graphic capabili-
ties, and also to provide an interface between the Rotorcraft
Flight Simulation Program (C81) and DATAMAP. Documentation
prepared under this contract for DATAMAP consists of two
volumes. Volume I provides user instructions and information

A e et

1Gerald A. Shockey, Joe W. Williamson, and Charles R. Cox, ‘
: AH-1G HELICOPTER AERODYNAMIC AND STRUCTURAL LOADS SURVEY,
. Bell Helicopter Textron, USAAMRDL Technical Report 76-39,
: Eustis Directorate, U.S. Army Air Mobility Research and
) Development Laboratory, Fort Eustis, Va., February 1977,
AD A036910.

2Richard B. Philbrick, and Alfred L. Eubanks, OPERATIONAL
LOADS SURVEY - DATA MANAGEMENT SYSTEM, Bell Helicopter

)) Textron, USARTL Technical Report 78-52A and 52B, Applied

‘ Technology Laboratory, Fort Eustis, Virginia, January 1979,

AD A065129 and AD A065270.

\ ’ 3James R. Van Gaasbeek, and P. Y. Hsieh, ROTORCRAFT FLIGHT

(SIMULATION PROGRAM C81 WITH DATAMAP INTERFACE, Volumes I and
. 11, Bell Helicopter Textron, USAAVRADCOM Technical Report
80-D-38A and 80-D-38B, Applied Technology Laboratory, U. S.
Army Research and Technology Laboratories, Fort Eustis,
Virginia,

i
]
[
{
i
i

‘v

Mok

¢
8
.

on the analytical methods used in the software. Volume II,
the Systems Manual, details the various programming con-
siderations. Information on the C81 - DATAMAP interface is
also contained in Reference 3, which was produced for this
contract.

Technical program direction was provided by Mr. D. J. Merkley
of ATL. Principal Bell Helicopter Textron personnel associ-
ated with the current contract were Messrs. R. B. Philbrick,
A. L. Eubanks, W. R. Dodds, J. R. Van Gaasbeek, and P. Y.
Hsieh.

v 2 APPSR, T S

B el

AN R SABIRIa 5 rmaoht AUYI SORINIONIIRRGI s 0. 5.

TABLE OF CONTENTS

Page
... 3
..................................... 8
.. 10
1. INTRODUCTION.....eiteetunrunennnnnnann. e 11 ¢
2. FILE CREATION PROGRAM.ttt it verneeoncoaananonnanenn 13
2.1 MASTER FILE STRUCTURE.t iuttueeeeeuenvsanconns 13
. 2.2 FILE CREATION PROGRAM FLOW.t uecanonnnn 21 :
: 2.3 NON-BHT DATA FORMATSt eereecenenenconnannss 30 k
» 3. STRUCTURE AND FORMAT OF THE DATA TRANSFER FILE........ 35 {J
; 3.1 DATA TRANSFER FILE FEATURES.............couuo.... 35 4
3.1.1 Format TyPeS .. iuuiieeeeeeennoennnnssenanons 35
3.1.2 Physical File Characteristics............. 35
3.1.3 ReCOrd TYPeS .. iioiiereenoeesnseenasennnnnon 36
3.1.4 Data Structure..........cccivetvecennncens 37
3.1.5 Sample Rates................. et 37
, . 3.1.6 Info File Group Information............... 37
f 3.2 DTF RECORD FORMATS.uuenuennsanennnannannss 37
3.2.1 sSpecific Data Representation.............. 37 \
3.2.2 Record Type Label..........cciiuiininnnnnnn 38 ‘
3.2.3 Instruction Records.............cvvveennn. 38 ¢
3.2.4 Counter RECOIXAS.......iuvieennarencanannns 38
, 3.2.5 TItem Code Records..........ovvviveunnnnnn. 42
g 3.2.6 Data ReCords.........oviiiivninnenennnnnn . 45 i
' 3.2.7 Info File RECOIAS....vvwuuirrnrnnnnennnnnn 45 ‘
g 3.3 DTF RECORD SEQUENCE. ..t ' vt veet i iteneenenannnn 49
: 3.3.1 Instruction RecOrdsS..........i.ieeeueneann 49
) 3.3.2 Data RECOFAS. ...vtvurnnrenereenneennnannns 49 i
= 3.3.3 1Item Code and Counter Records........ eess. 51
v 3.3.4 Info File Records........oeouvuiuununeanen. 51 4
. 3.3.5 Unspecified Record TYpe€S.....vcvvveeerenn. 52
N 3.3.6 Examples of Record Sequences............ .. 52 1
‘ .
R
i
iy
Y

_ ,--s
v e S 0. ar\
o
4

—— o e

TABLE OF CONTENTS (Continued)
Page
PROCESSING PROGRAM. . . . ittt it ttvenosnaoanonosacnssanaes 54
4.1 STRUCTURE AND FLOW. ...ttt et iineeeerninnceonnnas 54
4.2 PROGRAM INITIALIZATION.¢t vt eeeernnenacennocns 54
4.3 USER INTERFACE.ttt eneenssoosoanaseconnas 57
4.3.1 User Interface Routines..............c.co.. 57
4.3.2 User Input Encoding.........ceiuuneeennnnn 60
4.4 PROCESSING. ...ttt iontesnsansennnssnosnos 89
4.4.1 Processing FloWw.......ciuiiuiiniionennnnennn 89
4.4.2 Scratch FilesS.......civuiviiiennennneennnns 94
4.4.3 Info File Retrival.........citiiincennrnnn 98
4.4.4 Replacement/Addition of Analysis or De-

rivation Routines..........ccoeieivunnn.. 99
4.5 COMMAND SEQUENCING.ttt tieeerennnnonnnnns 101
4.5.1 Command Sequencing File................... 101
4.5.2 Command Sequencing Routines............... 101l
4.6 MENUS. ...ttt itntnseoanesessseesscoesonssasansenas 103
4.7 GRAPHICS. ...ttt ittt tittneeneeentoeneensnnnnnneas 104
4.7.1 Tektronix/Calcomp Plotting Interface...... 104
4.7.2 X=Y Plots. .. it itenetettneeeneanenannas 105
4.7.3 Contour Plots.......ciiiiiiinneiiteeennsans 106
4.7.4 Surface Plots....... ...ttt iinensennnnas 107
4.8 DATA RETRIEVAL. ...t iteetteronsnonstioecsnncansnnoe 107
UTILITY ROUTINES. .. ittt ittt sneossnceensnsnseacononnss 109
5.1 DIRECT ACCESS . . .t ittt titeeensenensetonenenennonns 109
5.2 STRING HANDLING. . ¢ . ittt it ettt ettt etoneennennenas 111
5.3 SORTING...... it tveeessenoonaesssassotasassnnnnas 112

5.4 SUBROUTINES TO ENHANCE TRANSPORTABILITY..........

.......................

..............................

....................................

oooooooooooooooooooooooooooooooo

...........................

N

TABLE OF CONTENTS (Concluded)

6.4.1 String Storage and Processing
6.4.2 BHT-GDC Format Tape Processing

6.5 SPECIAL ROUTINES. ...ttt eerenuronssenrennonoansos 115
6.6 GRAPHICS.ottt ereuienensenensoneeesonennnns 117
7 FILE AND LINKING REQUIREMENTS FOR DATAMAP PROGRAMS.... 121
7.1 PROGRAM LINK INPUT REQUIREMENTS.................. 121
7.2 PROGRAM RUN TIME FILE REQUIREMENTS............... 122
8. REFERENCES.t iiiiitetritieennteennnesonoeasesnnsns 129
APPENDIX A - FILE CREATION PROGRAM COMMON...........0o.0.. 130
APPENDIX B - PROCESSING PROGRAM COMMON VARIABLES.......... 146

APPENDIX C - JOB CONTROL LANGUAGE (JCL)......c.viuiiinnnnnen. 182

>
-

- . — -

P

Ve

D

C—~——

Fiqure

10
11
12
13
14
15
16

17

LIST OF ILLUSTRATIONS

Page

Absolute record #l1 master directory record...... 14

Relative record #1 (partition offset + 1) parti-
tion initial record....... ..o, 14

Relative record #2 (partition offset + 2) parti-
tion access record. .. vt i e e e 15

Directory relative record #l1 (partition offset +
directory offset + 1), counter directory initial
record (more than 127 counters assumed)......... 15

Directory relative record #L (partition offset +
directory offset + L), counter directory continu-
ation record with termination................... 17

Directory relative record #I (partition offset +
directory offset + I), item code directory for

counter 'C' (counter entry #2, Figure 4)........ 17
Information record for data of BHT-GDC format

Lo o o 1 o 18
Information record for data of DTF origin....... 18
Master File structure.............c.ooeuuuueen... 20

File Creation Program flow diagram (first part). 22
File Creation Program flow diagram (last part).. 23
GDC format input subroutine block diagram....... 27

DTF data format input subroutine block diagram.. 29

DTF instruction record format................... 39
Counter record format............ 40
Time base field format......... .. .c.iuuiuinn. ... 41
Item code record format............... 43

L

3 Srm

ethg

o ey

]

(RN VPR

s

f
[}
S

,!

Figure
18
19
20
21
22

23

24
25
26
27

28
29
30
31
32
33
34

35

LIST OF ILLUSTRATIONS (Concluded)

Page
Item code information field format.............. 44
Data record format.................... e e 46
Info file record format......... i, 47

Info file record group-information field format. 48

Storage of bundle sequences in data record se-
QUEIICES . + v v vt e st ae e seennssonnnoeenneensnsnns 50

Examples of acceptable and unacceptable record

SEQUENCES . o v ittt et sentosonsnnoesnesenosssensaoneas 53
General flow of Processing Program.............. 55
User interface flow diagram (first part)........ 58
User interface flow diagram (second part)....... 59

Example of part of the command entry tree struc-
B . it ittt et ittt et ee sttt sanaseessnaneoneeenn 73

Structure of typical "HELP" message.............
Typical IENTOP instruction option sequence
Processing flow diagram (first part)............
Processing flow diagram (second part)...........
Scratch file record assignments.................
First scratch file record..........
Structure of a data directory block.............

Structure of command sequence file..............

Table

LIST OF TABLES

Page
PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF......... 32
USER INTEFACE TREE STRUCTURE FOR ENTRY SPECIFI-
CATION.e0vveunnn. e e 61
USER INTERFACE INSTRUCTION MATRIX............... 76
PROGRAM LINKING REQUIREMENTS.v.ovvununnn.. 123

H

r"«"’!@r.i,g

ARG 1 P Krea s e

PPy U !

1. INTRODUCTION

This volume documents the source code for the Data from Aero-
mechanics Test and Analytics - Management and Analysis Package
(DATAMAP) and should assist the programmer/analyst in modifi-
cation, maintenance, and installation of the package. However,
the reader must be familiar with Volume I of this report
before reading Volume II, since many structural features,
concepts, and terms for the system are introduced and defined
in Volume I. Volume I describes the purpose, capabilities and
analytical techniques of the system, and provides instructions
for system commands.

The DATAMAP source code is organized, written, and commented
so as to minimize the difficulties of software maintenance and
modification. This document was written both to further
clarify the flow a- structure of the system and to provide
specific assistanc. for certain kinds of system modifications.
Section 2 of this volume documents the File Creation Program
and also explains the detailed structure of the Master File.
One of the allowed input formats for the File Creation Pro-
gram, the Data Transfer File (DTF) format, is described in
Section 3. Section 4 describes the Processing Program, includ-
ing interpretation of command steps, processing, and graphics.
Various utility routines that are used throughout the programs
are described in Section 5. Section 6 discusses installation
of DATAMAP on non-IBM computers, while Section 7 lists the
specific file and linking requirements for DATAMAP. Appen-
dixes A and B list the meanings for each of the common vari-
ables in the File Creation Program and the Processing Program.
This information is essential to understand and maintain the
code. Appendix C gives the Job Control Language and/or Time-
Sharing Option commands to compile, link-edit, and execute the
code.

Two specific kinds of system modifications are documented with
particular detail. Section 2.3 discusses modification of the
File Creation Program to accept tape formats other than the
BHT Ground Data Center (GDC) standard tape format or the DTF
format. 1Interface requirements for replacement of a process-
ing module are discussed in Paragraph 4.4.4. When a new
processing module is to be interfaced or when a replacement
module requires new user instruction specifications, a modifi-
cation of the user interface tree structure is required. This
structure is discussed in detail in Paragraph 4.3.2.

Transportation of a large software system from the computer
system it was designed for (in this case an IBM 370/168 or an
IBM 360/65) to a different computer system can be a difficult

-

P

B Y e 2T

R R

e

-

2 et il - 1,

"'“"""“"'—""_N:" i " o) e o o v G b can o e o

and time-consuming process. In coding DATAMAP, an attempt has
been made to minimize these difficulties and assure the trans-
portability of the software. The code is written entirely in
FORTRAN and use of IBM extensions to American National Standard
(ANS) FORTRAN have been limited. However, requirements for
various system capabilities have made necessary the use of
certain system, hardware, and installation dependent code.

All such code is identified and explained in Section 6. In
addition, system, hardware, and installation dependent code is
identified in the program source statements with rows of
stars, '*', above and below the nonstandard code.

12

v, . - B - - - .- o o T, el g, - .
O] . %‘,ﬁf’.,‘."n TS -3 ¢
.

» e

|

—

2. FILE CREATION PROGRAM

2.1 MASTER FILE STRUCTURE

The Master File is a large direct-access file containing re-
cords that are individually addressable by number and are 1024
bytes long. A numerically contiguous sequence of these re-
cords forms a partition and is referenced by an offset speci-
fied in the master file directory, which is always absolute
record 1 (Figure 1).

The first four bytes of this directory are four characters
that when set to '$$$$' indicate that the entire file is
initialized so that any record may be referenced directly.

The next entry is an integer giving the total available size
of the Master File in records. The third entry is eight bytes
long and is a string called the superword, which is the key
for the Master File Utility Program to list or delete parti-
tions without individual passwords or to restore the whole
Master File from tape. Following the superword in the direc-
tory record is a sequence of 63 possible 16-byte partition
specifications. The first eight bytes of a partition specifi-
cation form a string containing the partition name. The next
four bytes form an integer giving the offset for the parti-
tion. The final four bytes give the length of the partition
in records.

The location of the initial record for a partition is specified

by adding one to the partition offset (Figure 2). This record
contains information about the partition as a whole. The
users name is contained as a string in bytes 1-16. 1In bytes
17-32 is the password, which the user must have to modify or
replace the partition. The third entry is the director
offset, which when added to the partition offset gives the
offset for relative addressing of the partition directory.
Entries four and five specify the partition directory size and
partition data area size respectively in records.

The next sequential record contains the date and time, in
string form as indicated by Figure 3, that the partition was
last accessed.

The first directory record comes after the data records in the
partition and always contains the initial record of the coun-
ter directory (frequently the only record in the counter
directory). Figure 4 illustrates what this directory might
contain 1f there were more than 127 counters in the partition.
Each counter entry includes a counter followed by the relative

13

e

R 2 T

PARTITION ENTRY

ENTRY CONTENTS

1 4 =4H553S IF INITIALIZED
2 4 TOTAL RECORDS
3 8 SUPERWORD
4 8 PA NAME)
5 4 PARTITION OFFSET | 1
6 4 PARTITION LENGTH —] |
190 8 PARTITION NAME B
191 4 PARTITION OFFSET 63
192 4 PARTITION LENGTH f

Figure 1. Absolute record #l1
master directory record.

ENTRY BYTES CONTENTS
1 16 USER NAME
2 16 PASSWORD
3 4 DIRECTORY OFFSET
4 4 DIRECTORY SIZE
5 4 DATA AREA SIZE
6 8 DATE CREATED

e.g. 12/15/77
DATE CHANGED "

e.g. 12/19/77

~
«

Figure 2. Relative record #1 (partition offset +1)
partition initial record.

—

Yy —

. -~
o e P o pn

LI Wil B

Ficure 3,

ENTRY

253
254

255
256

Figure 4.

CONTENTS

ENTRY BYTES H
[DATE LAST ACCESSED i

1 8 e.q. 12/20/77 i
TIME LAST ACCESSED j

2 8 e.g. 10.32.30 :

partition access record.

BYTES CONTENTS

COUNTER
ITEM CODE DIRECTORY
RELATIVE LOCATION

L

COUNTER_(=C)
ITEM CODE DIRECTORY
RELATIVE LOCATION (=I)

Lo)

4 COUNTER
4 ITEM CODE DIRECTORY
RELATIVE LOCATION

0 —> CONTINUATION |
COUNTER DIRECTORY CONTINUE

o b

RELATIVE LOCATION = L

Directory relative record #1 (partition offset +
directory offset +1), counter directory initial
record (more than 127 counters assumed).

15

Relative record #2 (partition offset+2)

S

COUNTER ENTRY

« o e s

127

A T TN, SR 2 SN TR
_

\ e
|

location for the first (possibly only) record of the item code
directory for that counter. A negative counter signals the
end of the counter directory as shown in Figure 5.

The structure of each item code directory is identical to the
counter directory as shown in Figure 6. In the example, the
directory contains only three item codes (and thus uses only
one record), but an item code directory could contain multiple
records and hundreds of item codes as shown for the counter
d1rectory Each item code entry 1nc1udes a relative location,
which points to an information record in the partition data
area. Thus, only the partition offset is added to this™
pointer to obtaln the information record location.

The information record for an item code/counter data stream
contains information about that data stream and marks the be-~
ginning of data. There are two allowed formats for the in-
formation record and these formats are shown in Figures 7 and
8. For Bell Helicopter Textron - Ground Data Center (BHT GDC)
format data input, the information record format in Figure 7
is used. For DTF input, the format in Figure 8 is used in-
stead. DATAMAP determines which format is used from the four-
byte integer in entry six. The values zero and one indicate
GDC format input (Figure 7), while the value two indicates DTF
input (Figure 8). For either format, some of the values in
the information record are required for processing the data
stream and others in this record are only present for informa-
tion pruposes. The first data record follows the information
record sequentially and all data records for that item code/
counter pair follow sequentially and contiguously.

The first four information record entries are the same for
either format and are available for future use if a program is
written to condense partitions that contain unused areas

where time histories have been deleted. These entries refer
back to the corresponding item code directory record and
position within the record. Entry five, the data stream
length, is the same for either format. This entry must be
divided by the number of p01nts in a record (adding one for a
non-zero remainder) to arrive at the number of records in the
data stream.

The number of data values in a record is obtained from the
number of bytes in a record, currently 1024, and the data word
length, which depends on whether the data are calibrated or
uncalibrated as stored (entry 6). A calibrated value is
stored as a four-byte floating number, while an uncalibrated
value is stored as a two-byte integer, giving 512 uncalibrated
data values per record or 256 calibrated data values per
regord. Uncalibrated data can be calibrated using entries 27
and 28.

16

- o B oo, AL . YE T T

ENTRY BYTES CONTENTS COUNTER ENTRY
1 4 COUNTER l ’
2 4 [~ ITEM CODE DIRECTORY § 128 ‘
RELATIVE LOCATION J
3 4 COUNTER
4 4 [~ ITEM CODE DIRECTORY | 129
RELATIVE LOCATION
5 4 [-1 => END OF COUNTERS -
255 4 =L => ENDED !
256 4 0

Figure 5. Directory relative record #L (partition offset +
directory offset +L), counter directory continuation
record with termination.

ENTRY BYTES CONTENTS ITEM CODE ENTRY
1 4 ITEM CODE]
2 4 DATA INFO RECORD 1
RELATIVE LOCATION !
3 4 ITEM CODE
) 4 DATA INFO RECORD : 2
! RELATIVE LOCATION
5 4 ITEM CODE (P)
6 4 DATA INFO RECORD ; 3
RELATIVE LOCATION (=K)
7 4 —-T => END OF ITEM CODES -
255 4 -1 => ENDED
256 4 0

Figure 6. Directory relative record #I (partition offset +
directory offset + I), item code directory for
counter 'C' (counter entry #2, Figure 4). L

I.(F:I.'-(I/ v - vi

ENTRY BYTES CONTENTS

1 4 ITEM CODE
2 4 COUNTER
3 4 TORY RECORD TION
4 4 EQUENCE POSITION IN REC
5 4 ‘ DATA STREAM LENGTH (DATA POINTS
6 4 =CALIBRATED, 0=UNCALIBRATED
7 4 START T
8 4 STOP TIME
9 4 ALI NT OFFSET
10 4 - |
11 2 TRACK-BAND WORD
12 2 ANALOG FILTER RATE CODE ‘
13 30 TTEM CODE 5I§E§IPTTON
14 6 [— TTEM CODE UNITS | .
15 4 REFERENCE VALUE ZREFS
16 4 I BELTR CAL VALOE (ACAL)
17 4
18 4 SHI L
19 4 REFEREN Al °
20 4 [INTERCEPT VALUE (B) | {
21 4 DIGIT. I HZ
22 4 A 3 ﬂﬁﬁc’f!aﬁ (§Rfﬂ FACTOR|
23 4 INI A RATE
24 48 ASSIGRMENT RECORD
FIELDS 6 THRU 13
25 s "GATR TYPE: I=NIN/MAY, Z<NISTORY]
26 4 [ANALOC PLAYEACK SPEEDUD FACTOR]
27 4 @y s &
‘ 28 4 CAL INTE T (X8

Figure 7. Information record for data of BHT-GDC
format origin.

ENTRY BYTES CONTENTS
1 a T UYREN CobE
2 4 [T T counterR
3 4 B FCORD LOCATION
4 4 10N IN RECORD
5 4 i {DATA POINTS)
6 4 ‘
. - M .
. 8 4
! 9 4
) 10 4
‘ 11 52
12 12
" 13 4
14 4 MPLE AT
15 8 MODE 1. .
\ 16 8
) 17 8
, 18 8 - T
‘ 19 8 FLIGHT NUMBER
l 20 8 ' L CODE__~ T .
! g 21 4 - : 1IN/MAX, 2-TISTORY]
¥ 22 12 FTME OF MAGEUVER TiiT, MM, S8, TTT
; { 23 4 N CG_CODE J
'4 24 a |~ O=UNSPECIFIED, 1=TEST, 2=ANALYTIC] }
‘ i —

—

.

Figure 8. Information record for data of DTF origin.

' I .

For the format in Figure 7, the sample rate (data points/se-
cond) of the data stored is obtained by dividing entry 23, the
initial sample rate on digital tape, by entry 22, the sample
rate reduction factor. The data type, entry 25, indicates
whether the data are time history or min/max data, although
use of this package for min/ max input data is not currently
planned. For the format in Figure 8, the sample rate is entry
14, which is stored as a four-byte floating word. The time
history - min/max indicator is entry 21.

For the format in Figure 7, entries 9 and 10 indicate the time
offsets in seconds applied to the data stream during transfer
from digital tape to the Master File. Entry 9 is for informa-
tion purposes and indicates the amount of data discarded in an
effort to line up the starting data point in time with all
other starting data points from the same counter. Entry 10
shows the amount of additional data discarded before a subse-
quent data point was saved on disc. A negative value for
entry 10 indicates no time alignment was done even though data
from other item codes for the same counter may be aligned.

The additional offset is then the absolute value of entry 10.
The corresponding entry numbers for the format in Figure 8 are
8 and 9.

The other entries are present largely for information and
display purposes and are all explained in Reference 4, except
for the digital filter cutoff, which is entry 21 for the
format in Figure 7 and entry 10 for the format in Figure 8.
This entry gives the cutoff of the low-pass digital convolu-
tion filter (in Hz) applied to the data during transfer from
tape to disc. A value less than or equal to zero indicates
that no filter was applied.

Now that the Master File and partition record structure have
been examined in detail, the overall structure of the Master
File can be considered by looking at Figure 9. The first
record of the Master File is the Master File directory record
which, for an existing partition, supplies an offset pointing
to the initial record of that partition. This initial record
contains a second offset pointing to the partition directory.
The first record in the partition directory is the initial
record of the counter directory which, for a given counter,
points to the initial item code directory record for that
counter. The item code directory points, for a given item
code, to the information record in the data area for that item
code/ counter pair. The data stream follows the information
record contiguously.

L. J. Tieman, 'GROUND DATA CENTER STANDARD DIGITAL TAPE FOR-
MAT, ' Bell Helicopter Textron Report 699-099-020, Fort Worth,
Texas, 21 April 1976.

19

! PART-
- + ITION
OFFSET

-+ OFFSET

- - - - ="

DIRECTORY

- -

MASTER FILE DIRECTORY

[~ - PARTITION INITIAL RECORD i
\CCESS RECORD |

PARTITION ACCESS RD

e

DATA STREAM INFORMATION RECORD

DATA STREAM
DATA RECORDS

COUNTER DIRECTORY RECORD

ITEM CODE DIRECTORY RECORD

o —

MORE PARTITIONS

Figure 9. Master File structure.

20

ITEM~
COUNTER
DATA
ENTRY

o7

DATA
AREA
PART-
ITION
PARTITION
DIRECTORY

Some advantages of the Master File structure are now evident.
First, a partition as a whole is easily portable since every
record in the partition is located with relative addressing.
Second, a partition directory is easily portable separate from
the partition since records within the directory are located
using a second order of relative addressing. Third, there is
no theoretical limit to the number of item codes or counters
stored or to the amount of data from an item code/counter data
stream that can be saved. Practically, physical disc space
limitations will limit these quantities.

2.2 FILE CREATION PROGRAM FLOW

The flow sequence of the File Creation Program is described
here with close reference to the flowchart on Figures 10 and
11 using the numeric label just outside each block.

Block 1 MAIN calls INLIST to read input commands according to
the free field format described in Volume I. READF is used to
interpret numeric input and group strings. MATCHR is called
to recognize keywords. PACK is used to transfer four charac-
ters to one four-byte word.

Block 2 MAIN lists the number of errors detected by INLIST
and then calls LISTCM to sort and list the data requests. Any
duplicate item codes or counters are noted and the duplicates
rejected.

Block 3 MAIN checks the number of errors detected by INLIST
and goes to an error termination point if one or more occurred
or if no input was requested; otherwise, the program goes to
Block 5.

Block 4 1is an error termination in MAIN. The Master File has
not been disturbed at this point.

Block 5 If there are no input errors, MAIN calls SETUP1l to
read the first record of the Master File and check that the
Master File is initialized. 1If the Master File is not initia-
lized properly ('$$$$'), then the routine returns an error and
MAIN goes to Block 4. With proper initialization, SETUP1l
double checks the initialization by attempting to read the
numerically highest record in the file. Failure on this read
attempt abnormally terminates the job.

Block 6 Assuming that the previously mentioned read attempt
succeeds, SETUPl initializes the direct access scratch disc
file using the sequential alias for that file.

Block 7 SETUPl also provides WMS, RMS and FMS (routines which
do intermediate checking and apply the relative offsets

before performing direct access WRITE, READ and FIND calls
respectively) with preliminary offset and check values for the
Master File and the scratch random access file. Control is
then returned to MAIN.

21

-

READ AND QUALIFY INPUT REQUESTS

-

T
X

-~

LIST SORTED INPUT REQUESTS
SPECIFY ANY SZRRORS DETECTED

i)

‘REPLACE’

—T

FATAL ERRORS?

YES

s
< 1S MASTER FILE mxnumm—>—"°__,4

INITIALIZE DISC SCRATCH AREA

v

SET INITIAL RELATIVE OFFSETS

-

SORT PARTITIONS 3Y LOCATION
FIND MATCH FOR SPECIFIED PARTITION

MODE?

DELETE PARTITION,
SWITCE TO 'NEW' MODE

MAKE ROOM FOR ADDITIONS OR
NEW PARTITION BY MOVING

OTHER PARTITIONS UP OR DOWN

YES

" ADD '
OR ‘REPLACE’
MODE?

Figure 10. File creation program flow diagram (first part) .

IS REQUESTED
SPACE PRESENT?

TRUNCATE SPACE
REQUEST

22

-,

S,

.,
B s

S I [N -

oy MHTRANGE"

oM
10
SAVE PARTIT LN
N O DLSTTAL TAE

Figure 11.

File creation program flow diagram

23

(last part).

i Y

ey

Y Uy Py e Y

. v PeEk —— o " e

il

1
i
f
i
|
!

0 T e, -
I S

e =

-

-

Block 8 - MAIN then calls MAKRUM which sorts the partition
names by ascending location in the file and attempts to match
the name of the specified ADD/NEW/REPLACE partition.

Block 9 - (Still in MAKRUM) If a match for the requested
partition name is found, the program goes to block 10; if not,
the program goes to block 13.

Block 10 - (MAKRUM) A check is made on whether the requested
partition name was supposed to be 'NEW'. If so, an error has
occurred since a partition by that name already exists and the
program goes to block 4. 1If not, the program goes to block
11.

Block 11 - (MAKRUM) A check is made on whether the requested
partition name was supposed to be replaced. If so, the
program goes to block 12; if not, it goes to block 14.

Block 12 - (MAKRUM) The partition matched is removed from the
Master File directory and then the mode is changed from 'RE-
PLACE' to 'NEW'. Thus, the partition name will be retained
but different data will be added to the partition. Then the
program goes to block 14.

Block 13 - (MAKRUM) No match for the requested data set name
has been found so the program checks whether an 'ADD' or 'RE-
PLACE' has been specified. If so, an error has occurred so
the program goes to block 4. If not, the program goes to
block 14.

Block 14 - All gaps between the last record of a partition and
the first record of the next sequential partition are elimi-
nated. Any gap between the first sequential partition and the
Master File directory record is eliminated. The record space
following the partition to be modified is maximized. This
process of moving partitions up and down in the Master File
uses a scratch disc file so that a number of records are read
from the Master File to scratch and then from scratch to a new
location in the Master File. When this process is complete,
the total number of Master File records available for the
partition to be modified is computed. Then, the program goes
to block 15. As mentioned in Volume I, Section 3.2.1, the
entire Master File could be destroyed if too short a time
limit were specified for a run of the File Creation Program.
In particular, destruction of the Master File would occur if
block 14 of the File Creation Program were executing when the
time limit was encountered.

Block 15 - (MAKRUM) A comparison is made of the number of
Master File records available and the total number of records
requested for the partition. If fewer Master File records are
available than requested, the program goes to block 16; other-
wise, the program goes to block 17.

Block 16 - (MAKRUM) The space request is truncated to the
amount of space available in the Master File. Then, the pro-
gram goes to block 17.

24

R

N S - e : —— —

Block 17 - (MAKRUM) The space request (original or truncated)

is checked to assure that it provides a basic amount of space

for a partition or a partition increment. If the space is in-

adequate, the program goes to block 18; otherwise, the program)

goes to block 19.

Block 18 - Is an error return from MAKRUM to MAIN and a termi-

nation message indicating the problem is generated. At this

point, the directory has been reset, excluding the partition of

interest.

Block 19 - MAKRUM returns to MAIN, which calls SETUP2 to pre- :

pare for the partition creation/addition process. If in 'ADD' S

mode, the existing directory is transferred to the scratch

random access file where it will be added to and modified in

the data addition process. If in 'NEW' mode, the directory is

initialized in the scratch random access file. Control re-~

turns to MAIN and the program goes to block 20.

Block 20 - MAIN checks whether ALIGN has been specified and if

so, the program goes to block 21; otherwise, the program goes

to block 27.

Block 21 - MAIN calls a routine to provide alignment correc- Q

tion offsets for each item code desired for all counters.

These offsets will correct for time skew misalignment in the

data. The routine takes the lists of item-codes and counters ;

and provides a number of data points to be discarded (at the

original data rate) at the beginning of each item code/counter

pair data stream. An invalid offset is indicated with a -1.

Offsets are stored on disc by routine EXCORE. From here the

program proceeds to block 22.

Block 22 - MAIN tests the data input format that was specified

by the Instruction input. For a nonstandard input format,

control passes to block 23. For the standard BHT-GDC format

(e.g., OLS data), control is passed to block 24. For DTF for-

mat input, block 25 receives control.

Block 23 - MAIN calls subroutine STRNGF to process the non-

standard format data. A different version of this subroutine

must be provided for each specific nonstandard format. Con-

' sult Section 2.3 for specifications for this subroutine. When

' processing is complete, control passes to block 26. H

] Block 24 - MAIN calls subroutine GDCFRM to process standard

. BHT-GDC format input tapes. A separate block diagram and de-

- scription is provided for this subroutine. When processing

\ : is complete, control passes to block 26.

} Block 25 - MAIN calls subroutine DTFFRM to process DTF format
input. A separate block diagram and description is provided

: . for this subroutine. Wwhen processing is complete, control

v passes to block 26.

! Block 26 - MAIN calls RESTRD to copy the partition directory
! from the scratch random access file to the top of the parti-
tion. RESTRD returns to MAIN which then annotates the Master
File directory record to reflect the size and location of the
partition. Then, the program goes on to block 36.
Block 27 - MAIN checks to see whether a listing of the modi-
fied partition was requested. If so, the program goes to
block 37; if not, the program goes on to block 38.
Block 28 - MAIN calls MAP to list the item code/counter pair
data streams present in the partition along with some informa-
tion on each data stream. Then control returns to MAIN and
the program goes on to block 38.
Block 29 - MAIN checks whether a digital tape save of the re-
vised Master File is wanted. If not, the program goes on to a
normal exit at block 40. If so, the program goes to block 39.
Block 30 - MAIN calls SAVALL to save the partition on digital
tape. SAVALL then returns to MAIN and the program goes to
block 40.
Block 31 - Done.

At block 22 of the above flow sequence, the flow branches 1
to three different routines based upon the type of input.

For input that follows neither the BHT-GDC or the DTF format,
a special routine must be written as described in Section 2.3.
Following is a description of the GDC format input routine
with reference to Figure 12. The DTF input routine will be
described subsequently.

Block 1 In subroutine GDCFRM, an assignment record is read
from the input data tape.
Loop 2 A loop is entered to process the data that follow each
assignment record. The loop assumes that a new assignment
record has been read at the start of the loop. This loop
will be called loop 2.
Block 3 Subroutine FITEM is called to determine whether the
assignment record specifies any item codes that are required
for transfer. 1If none are found, then control is transferred
. to block 14. 1If one or more required item codes are found,
’ loop 4 is entered.
Loop 4 A loop is entered to process the several counters that
follow on the data tape. For each counter, the data for all
item codes specified in the assignment record will appear in

parallel.
‘ Block 5 A record is read from the input data tape.
) Block 6 The type of record found is tested. If an assign-

ment record is found, control branches immediately to the bot-
: tom of loop 2. For a data record, control branches to block
v 7. 1f a calibration record or end of data were found, a tape

R 5 g 4 R T OGP AT s

w o
1 I READ AN ASSIGNMENT RECORD l
J LOGP OVER ASSIGNMENT RECORDS

DESTRED N
ITEM CODFYS
PRESENT S
Vi
4 Loci OVER COUNTERS TN AN ASUTUNMENT KECOED

“ I KEAD A RECORD]

TYPE
RECoRrp

ALSTONMENT

FOUNDY

DATA

EEAD A
VAT ITBRAT TN

FECCGRD

THANSEER DATA
SCRATOH DI KI'A
Anly PEDATE CALY

TRILL

Ll Ton bt oV TTEM el FOR COUN

1 '

TRANDDE B

TIEM Cobh PRoM

SCRATCL PR e M

VU VLY
PEREORM PTDIRING, CALTHEATION

Tk UELRTENG SPECHb e
SETOANDT LAUVE THE OINTTIAL RLCORD
TH1Y DATAL UEDATL DIRICTORY ok
Dhlr BATA

ASSTUNMENT oz

OF DATA

RECORD

FOUND

Figure 12.

15
DONF

GDC format input subroutine block diagram.

27

«y

-~

IR

1
i

format error would have occurred. Branches to error message
codes are included at this point in the program for these oc-
curances but the paths are not shown to simplify the diagram.
Block 7 Subroutine FCNTR is called to test whether the counter
for the data record that was found is required for transfer.
If not, control branches to block 8. 1f the counter is re-
quired, the flow continues to block 10.

Block 8 The data tape is read until a calibration record is
found.

Block 9 Calibration factors are updated if possible by sub-
routine CALUPD.

Block 10 Data from the tape corresponding to the counter

and to all item codes listed in the assignment record are
transferred to a sequential scratch file by subroutine TRANSC.
Calibration factors are updated if possible by subroutine
CALUPD.

Loop 11 A loop is entered to process each item code listed

1n the assignment record that is required for transfer.

Block 12 Data for the current item code/counter pair are
transferred from the sequential scratch file to the Master
File. Subroutine SAVD is used if no digital filtering is
required. Calibration and/or sample rate reduction are ac-
complished by either of these subroutines as required.

Block 13 A test is performed to determine whether all required
data have been found. 1If so, control is transferred to block
15. If not, loop 4 is reexecuted.

Block 14 The input data tape is read until an assignment re-
cord 1s read or the end of the input data is encountered. For
the end of data, control is transferred to block 15. 1If an
assignment record is found, loop 2 is reexecuted.

Block 15 Subroutine GDCFRM is complete.

Following is a description of the DTF format input routine
with reference to Figure 13. Reference to Section 3 may be
required to follow the DTF record types.

Loop 1 Subroutine DTFFRM begins by entering a loop over in-
i1vidual DTF records or, for certain cases, sequences of DTF
records of the same type.
Block 2 Inside Loop 1, the routine tests whether an unproces-
sed DTF record is available in program memory. If so, control
is passed to block 5. If not, the flow branches to block 3.
Block 3 Subroutine INPDTF is called to attempt to read a DTF
record.
Block 4 Subroutine DTFFRM tests the result of the read attempt
in block 3. If an error was detected, control is passed to
block 10. If an end-of-file was encountered, control is passed
to block 11. Otherwise, the normal flow proceeds to block 5.

28

PRy

}
%

-

&

1 LOOP OVER INDIVIDUAL DTF RECORDS OR CONTIGUOUS
DTF RECORD SEQUENCES OF THE SAME TYPE

1S NEW
LTE RECORD
AVAILABRLY?

TRY TO READ
A RFECORD

CASE
P RECORD
TYPE

RESULT
OF READ

LRROR
1 UK 6 THRU 16 P o HREATER THAN 17 o®
< > o
LESS THAN 1

v 9

6 PROCE A 5
— COUNTLR KECORD

7 PROCESS SOME .
] 1o cone krcores

8 PROCESS S0M} 4
k—‘ DATA REUCORDS Y

9 e

PROCEFES AN 5

— INFO FILE RECORD

o WRITE

PEROR

MESHAGE

TRANSFLR ANY

INFO FILE DATA

END
FILF

orr

our

29

Figure 13. DTF data format input subroutine block diagram.

. R 3
P
. . : -)

3 Block 5 The record type field is tested and based upon the
value of the integer in this field, control is passed to one
of several blocks. If the integer is out-of-range {i.e., less
than 1 or greater than 16) control is passed to block 10.
Values of six through sixteen require no action and control is
passed to the bottom of loop 1. A value of one requires no
action except to test that no other type of record has been
read previously. Control is then passed to the bottom of loop
1. For values of 2, 3, 4, or 5, control is passed to blocks
6, 7, 8, or 9 respectively.

Block 6 A counter record is processed for counter and certain
other information that applies to all channels (item codes)

in the data that follow. A time base specification may be
processed.

Block 7 One or more item code records are processed for item
codes, item code sequence in the subsequent data, and possi-
bly for Info File information. A time base specification may
be processed.

Block 8 One or more data records are processed. The data are
transferred to a scratch disc file and then for each channel
the necessary filtering and/or interpolation processing is
performed and the data are stored in the Master File.

Block 9 An Info File record is processed. Each record contains
the basic structure and labels for one or more Info File groups.

-3

. “"—-"W’*
i

. e
P LY

2.3 NON-BHT DATA FORMATS

The File Creation Program can be modified to accommodate data 4
tape formats other than the standard BHT-GDC format through B
generation of an appropriate replacement for the program stub,

STRNGF. The rest of the File Creation Program will continue

to provide the following functions: read user instructions,

manage Master File space, manage partition directory, write

data to Master File. The subroutine STRNGF must handle all

the details of reading the data from digital tape, consult

with the common block /LIST/ containing the user instructions

(see Appendix A), provide appropriate information for each

item code/counter pair, and provide the data for transfer to

the Master File in record size blocks.

Generally, it is more desirable to write a program to convert

a data base to DTF format than to write a STRNGF subroutine

. and incorporate this routine in the FCP. This is true for

b two reasons. First, the DTF format is specifically organized
to accommodate certain data base structures such as parallel
data and variable sample rates. A STRNGF subroutine would have
to include code to convert these structures, if necessary. Se-
cond, the STRNGF subroutine must reference COMMON values from
the FCP. Thus, the STRNGF routine may require rewriting for
each revision of the FCP.

v

bl

—————

30

LIPS g
EY

AY

-

€4

()

1

Table 1 lists a prototype version of STRNGF showing the se-
quence that must be followed to store data. The routine
ADDAT is appended to actually write data to the Master File.
However, code must be provided to satisfy the required func-
tion of STRNGF as listed in the program comments. Data must
be selected from digital tape using the user instructions in
/LIST/. Appropriate data must be extracted from the tape or
provided in some other manner for the information record for |
each item code/counter pair. In some instances, STRNGF may i
need to translate the identifiers on the input digital tape to
four-character item codes and integer counters with values
between 1 and 999999.

STRNGF will most likely provide calibrated, REAL data for

transfer to the Master File. However, the option is available

when the program is executed on a system with INTEGER*2 capa-

bility to store the data in integer format. In this case,

STRNGF must call ADDAT with twice as many records containing

INTEGER*2 values as would be provided if the values were REAL. '
In addition, the appropriate calibration factors must be pro- :
vided, and the information record value INREC(6) must be set

to zero to indicate that integer values are present.

wWhen the sample rate is to be reduced, STRNGF must perform
this function before supplying the data to ADDAT. The sample
rate reduction factor must be inserted in the array location
INREC (28). Notice that the array location INREC(29) must
contain the original sample rate on tape before the sample
rate reduction factor is applied.

The subroutines LOCFIX, ADDAT and INIDAT are called by STRNGF.
The routines will appropriately manage storage of the data on
the Master File and annotation of the directory. The routines
also monitor error conditions so that the error returns must
be appropriately handled by STRNGF as shown in the prototype.

31

[aTaTaleYal

OONNNAONANOANNNAN OAAOHKNNANANNOOA ANNOON

TABLE 1. PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF

PR
NO!

SUBROUT INE STRNGF

OTOTYPE CSTRNGF®* ROUTINE FOR READING DATA 'FROM
N-BHT-GDC STANDARD TAPE FORMATS FOR THE DATAMAP

FILE CREATION PROGRAM,
DIMENSION INREC(256)

s

COMMON/LOCOM/ITEMN+ ICNTRN » IDROFF ,
IDAS12+1DRSIZITEMRC . ITEMSO

LOGICAL LCAL
COMMON/ INFO/IRSIZeMLOC+LOCOIPOLES yHIGHLCAL 4IRAT,

s
s

L

ISKIP s NPS oNPP 4 NOFF ¢ 1 SEQ+LSTRTeTADD INS1Z 4 INSIZD,

IRDATS + IRSAVS o ICNTR » XALIGN oMSE TN -
COMMON/KARD/ITEMTP(S510)+ITEMWI(S510) ,CALSH(26)
CALCM(26)+CXMI26) +CXB(26) t\NMATCH DCAL 126)

LOGICAL LALINJMAP1IT,SAVIToSTRANG.LOTFLDTIFIN,

1

LTHERE LEXTRNGLALL 1T oLALLCNLLSCAN

COMMON/LIST/ NITEMS JNCNTRS o ISPAC1 TAPES s 1ADNUSLALIN,

|
2
3
y

SE

NAME (2) sNPWD (4) s NUSER(4) sMAP LI T,SAVI T, STRANG .
oLOTF oNLOOK o LOTF INGLTHERE o LEX TRNo LALL I ToLALLCNJLSCAN

+NCIR(100) «NOFFSTL100) JNPWANT(100),
TTEMIS10)oFILT(S10) s 1CALIS10),ISKP{510),RATE(S510)
COMMON/F ILES/NRPS ¢NRSCoNSSCeNITT+NDIRNREAJNWRI »

NSAV.IALIWNIFO

1END = ©
Lw = IRS12/2

T UP INPUT FROM NON-STANDARD TAPE.

INSERT CODE AS APPROPRIATE.

LOOP OVER SUBSETS OF THE DATA ON TAPE.
00O 500 1 = 1., 10000

DETECY THE PRESENCE OF A SUBSEY OF THE REQUESTED DATA
CORRESPONDING TO ONE COUNTER AND ONE OR MORE ITEM CODESe
ASSIGN A NUMBER BETWEEN ONE AND THE DIMENSION OF THE ARRAY
*1TEMW® TO EACH ITEM CODE IN THE SUBSET (ADJUST THE DIMENSIONS
OF THE ARRAYS IN THE COMMON BLOCK /KARD/ AS NECESSARY). SETV
C1TEMW(N)® FOR EACH ITEM CODE NUMBER, °*N®, TO THE CORRESPONDING
ARRAY POSITION OF THE 1T7EM CODE IN THE ARRAY *1TEM®*, IF DATA
ARE 71O BE STORED IN INTEGER FORM, SET THE CORRESPONDING ®*CXM*
AND *CXB* ARRAY VALUES FOR CALIBRATION ON RETRIEVAL FROM THE
MASTER FILE. SET °*NMATCH® TO THE NUMBER OF ITEM CODES IN THE
SUBSEVe INSERT CODE AS NECESSARY TO PERFORM THESE FUNCTIONS.

LOOP OVER ITEMS IN THE SUBSETY
DO 400 J = 1e¢ NMATCH

SET THE VARIABLES *ICNTRN® AND ®*ITEMN® TO THE COUNTER AND
JTEM CODE RESPECYIVELY. SET THE ARRAY °C*INREC® wlTH SOME OF
REQUIRED VALUES FOR THE CORRESPONDING INFORMATION RECORD.
oo INREC(1) ITEM CODE = 1TEMN
ee INREC(O) 1 1F CALIBRATED DATA ARE TO BE STORED.,

0 IF INVTEGER DATA ARE TU BE STYORED
oo INREC(12-20) = ITEM CODE DESCRIPTION/UNITS WITH UNITS IN

THE LASY SIX BYTES

«e INREC(27) DIGYIVAL FILVTER CUTOFFe —140 1If NO FILTER
ee INRECI28)

APPLIED
e INREC(29)

nygn

SAMPLE RATE REDUCTION FACTOR,

ISKP(ITEMWL D))

SAMPLE RATE OF DATA ON TAPE BEFORE TME SAMPLE -
RATE REDUCTION FACTOR IS APPLIED

2 (YIME MISTORY DATA, NOT MIN/MAX)

Han

«o INREC(A2)

W

Ay

.

TABLE 1. PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF (Continued)

”~

CALL WMS(24INREC1LW,J,JERR)
IF(IERR J.NE. 0)GO TO 580

SET MCNTR TO THE ARRAY POSITION IN °NCTR® ARRAY FOR THE
CURRENT COUNTER, leEew SET MCNTR SO THAT

sevoees JCNIRN = NCYR(MCNTR)coosee

INSERT CODE AS NECESSARY

[aYalalalala]

CALL LOCFIXINERRJINFO,1ERR)
IF(NERR JNE. 0)G0 TO 550

LOOP OVER RECORDS OF OUTPUT FOR AN ITEM CODE
ISKIP =

1
MLOC = IDASIZ + 2
DO 300 XK = 1, 10000

[algXal

READ THE DATA FOR THE NEXT RECORD. IF OUT OF DATA.
BRANCH TO 350« GEY DATA (256 CALIBRATED OR 512 INTEGER
VALUES) INTO THE ARRAY °®INREC®, SET NUM TO NUMBER OF
PUINTS IN THE RECOROD.

annNnn

CALL ADDAT(INRECoNUM (] CHK)
IFLICHK .EQes 0)GO TO 300
1END = 1}
GO Y0 350
300 CONTINUE

ADD THE INFORMAYION RECORD FOR THE TIME HISTORY
THAT WAS JUST WRITTEN ON THE PART1ITION.

Nnono

350 CALL INIDAT(J«MCNTRNERRGINFOLIERR)
IF{NERR .NE. 0)GO TO 560
IDASIZ = MLOC -)
IFIMEND NE. 0)GO 10O 570
400 CONTINUE
500 CONTINUL
G0 YO 1000

DIRECT ACCESS WRITE ERROR STORING THE INFORMATJION FILE
ON SCRATCH DIRECY ACCESS DISC.

aANAN

S50 WRITE(NWRI.9000)1ERR
GO 7O 1000

[
C ERROR ADDING INFORMATION RECORD TO THE PARTITION.
[

560 WRITE(NWRI 9001 INERR, INFOL1ERR
G0 YO 1000

C
C OUT OF SPACE ON THE PARTITION
C

570 WRITE(NWRI,9002)]1ERR
GO 7O 1000

ERROR ANNOTATING DIRECTORY FOR START OF DATA STREAM
580 WRITE(NWRI,9003INERRINFO.I1ERR

1000 RETURN

N NN NOA

Q9000 FORMAT(3X.39H$$0ERROR STORING INFO RECORD ON SCRATCH.110/7)
9001 FORMAT(3X.42He¢SERROR STORING INFD RECORD ON PARTYITION .
» 3110/7)
9002 FORMAT{3Xe36HES8RAN OQUT OF SPACE ON THE PARITION //)
9003 FORMAT(3X+26Hs$$ERROR SETTING DIRECTORY //)
N

33

=, AN T

Rl T

-
HER

~

.
-

- ~,&

- —— - o

TABLE 1.

ONOONAONNNAN

ann

$00 ICHK = 1}

[aTa BN alala}

1000 RETURN

510 ICHK = 2 1

PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF (Concluded)

SUBROUT INE ADDAT(IDAT o NUM, ICHK)

ROUT INE FOR USE BY ROUTINE °*STRNGF®* TO WRITE DATA Y10 THE
MASTER FIlLE.

IDAT = DATA ARRAY
NUM = NUMBER OF VALUES IN DATA ARRAY
1SHOULD EQUAL *LIM® UNLESS LAST RECORD)
ICHK = PROBLEM RETURN
NQO PROBLEM
OIRECT ACCESS WRITE ERROR
OUT OF SPACE FOR MORE WRITES

DIMENSION IDATC(!)
LOGICAL LCAL
COMMON/INFO/ZIRSIZ+MLOCLOCR+IPOLES sHIGH LCAL 2 IRAT,
$ ISKIPJNPSoNPP NOFF s ISEQ+LSTRT s JADDs INSIZ+INS1Z0Ds
$ JRDATSLIRSAVS ICNTRL XALIGN 4MSE TN
COMMON/1LLOCOM/JTEMN . ICNTRN « IDROFF ,
s JOAS1Z2.IDRS1Z+ I1TEMRC , 1TEMSQ

[}

= O

ICHK = O
IF{NUM .LEs 0)GO TO 3000

Lw = 1IRS12/2

LIM = IRS1Z

IFLLCAL) LIM = LIM/2

CALL WMS(1+IDAT LW MLOCLIERR)

IF(IERR .GTe 0)GO TO 500

NPS = (MLOC-IDASIZ-2)sLIMS1ISKIP 4+ NUMSISKIP
MLOC = MLOC +)

IF(MLOC «GTe MLEN(1)-43GC TO S10

GO 70 1000

DIRECTY ACCESS WRITE ERRODR

G0 70 1000
OUTY OF DAYA SPACE IN THE PARYITION

s

END

34

s,

<

IT S

-
Vo o

3. STRUCTURE AND FORMAT OF THE DATA TRANSFER FILE

This section describes the required structure and content of a
DTF. That is, various rules are presented for the structure
and ordering of DTF records, and the proper content of these
recoxrds is specified. The program that creates a DTF has the
responsibility to ensure that the structure and content of the
DTF is correct. The File Creation Program (FCP) tests the
structure of the DTF for correctness and also tests certain
parts of the data content of the DIF for consistency. However,
the FCP cannot test the overall content of the DTF for accur-
acy. When an error is detected in the DTF, the FCP stops pro-
cessing additional DTF data, stores any data that were cor-
rectly processed before the error was detected, and terminates
the program run.

3.1 DATA TRANSFER FILE FEATURES

3.1.1 Format Types

There are two alternative DTF formats, internal and external.
The format selected must be consistent throughout any one DTF.
Internal format is used to transfer data between jobs running
on the same computer or on different computers with the same
word size, integer and floating word formats, and alphanumeric
character representation. Internal format is written and read
using direct transfer of computer words without FORTRAN format
conversion and uses binary integer and floating data formats
and the local character representation for alphanumeric data
assuming four left-justified characters per word (the term
"left-justified" is used here to indicate the first four
character positions in a word).

External format is used to transfer data between jobs running
on different computers. The records are written and read using
FORTRAN format conversion. External format is less efficient
than internal format but allows transfer of data between com-
puters with different internal data representations.

3.1.2 Physical File Characteristics

There is a constant logical record length for any one DTF al-
though this length may change between internal and external
format DTF's and between different computers. An internal re-
cord always contains 1024 words, while an external record
always contains 4096 characters. Thus, certain types of re-
cord have different information capacities for internal and
external formats. Whenever this section refers to a DTF

record, the information transferred by a single FORTRAN "READ"

statement is assumed. For external format records, the "READ"

35

V.. SV

R

is formatted and requires transfer of 4096 characters. Inter-
nal format "READ's" are unformatted and require transfer of)
1024 words. The physical block structure of a DTF may be dif- i
ferent for different computers and installations as long as '
the above requirements are satisfied. When a DTF is used to :
transfer data between different computers, special block struc-

tures may be required to satisfy the system requirements for

both computers. It is the local installation's responsibility

to assure that the data storage structure on tape or disc is

appropriate so that the correct data are transferred for each ’
READ.

The DTF is organized sequentially rather than using direct
access. The FCP reads the DTF using one pass through the file
without rewinding or backspacing.

3.1.3 Record Types

There are five different types of logical record identified by
a numeric label located at the start of each record. ’
1 = Instruction. An instruction record contains direc-
tions for the FCP to follow in transferring the DTF
data to the Master File.

2 = Counter. A counter record contains identifying
counter and other associated information for data
that follow (a counter is an integer between 1 and
999999 that is assigned to the data from a flight
test maneuver or a particular simulation of a mane-
uver by an analytic program).

3 = Item Code. An item code record contains item codes,
item code descriptions and units, and associated in-
formation for data that follow (an item code is a j
four-character label attached to a sensor or trans-
ducer for test data or to some time-dependent func-
tion output by a simulation program).

4 = Data. A data record contains data values.

5 = Info File. An Info File record contains basic in-
formation for Info File groups.

There are also eleven types of record that are ignored by the
FCP. This feature allows for later expansion of the DTF for-
mat and allows the format to be used for purposes other than
processing by DATAMAP. These types of record are labeled six
through sixteen.

a
|
B
“

3.1.4 Data Structure }

Data may be written in parallel. That is, values from more
than one channel for a specific time instant may be written
contiguously on the file. Data may also be written in series
as a special case of parallel. A bundle is defined as a set
of one or more data values from a like number of data channels
that all correspond to one instant of time and that are writ-
ten consecutively on the DTF.

3.1.5 Sample Rates

Data must be time based but the sample rate may be variable.
If the sample rate is variable, each bundle must contain the
time instant for the bundle as a data value in the bundle cor-
responding to a prespecified item code.

3.1.6 Info File Group Information

o

The DTF format will accomodate the information necessary to
write DATAMAP Info File groups. The FCP has the capability
to extract this information and generate a file of valid Info ’
File groups. This file must be concatenated with an Info

File base data set that contains the initial group for the

Info File and other groups if necessary. This concatenated

pair of data sets would form the Info File for the DATAMAP

Processing Program.

3.2 DTF RECORD FORMATS

3.2.1 Specific Data Representation

Internal format records are treated as sequences of words with
only two specific assumptions about the internal word size or
structure in the host computer. First, integer words must be
the same size (i.e., number cof bits) as floating words. Sec-
ond, a word must hold at least four characters in the inter-
nal character representation used by the computer. The DATAMAP
source code makes the same assumptions so that no new restric-
tion is imposed on the applicability of DATAMAP. Information
is stored as binary integer or floating numbers, or as char-
acter strings with four left-justified characters allocated to
each word. Unused word positions must be occupied in the file
even though the contents of the words are ignored.

External format data are treated as a sequence of characters.
The assumption is made that the computer system will be able

to translate the character representation on the DTF (e.g.,
ASCII) to the internal character representation of the com-
puter running DATAMAP (e.g., EBCDIC). A preprocessing step

may be required to translate character representations such as
from ASCII to EBCDIC. The capability is not specifically pro- ‘
vided in DATAMAP. Information is coded using the 'I', 'A',

and 'E' format specifications. Unused character positions

must always be occupied, although the contents of a position 3

may be ignored. Thus, a DTF external format record must §

always contain the full 4096 characters. f

3.2.2 Record Type Label

The first data field for every kind of record is the type ;
label. This label contains the number corresponding to the .
type of record as specified in Paragraph 3.1.3. For internal ;
format records, this label is an integer word. For external H
format records, this label is an integer coded in "I4" format. i

3.2.3 Instruction Records]

Instruction records (type number = 1) allow the control input
for the FCP to be carried inside the DTF. An instruction re-
cord, as depicted in Figure 14, can contain as many as 56
lines of instructions in either the internal or external for-
mats. The second field of the instruction record is an in-
teger indicating the number of lines actually stored in the
record. If more than 56 program instruction lines are re- 3
quired, more instruction records can be written. A line of ‘
instructions is 72 characters long, although the FCP requires
that the entries on the line may not extend past character
position 60. Positions 61 through 72 should contain blanks.

. .
g

3.2.4 Counter Records

The primary purpose of a counter record is to associate a
counter with a set of data. As indicated in Figure 15, time
base information may optionally be included in a counter re-
cord. Four of the other quantities, Gross Weight, Center of
Gravity, Model Number, and Ship Number, are used only for
labeling purposes. If they are left blank or zero, the opera-
tion of DATAMAP will not be impaired. The other fields are
stored on the Master File but are not used for any other pur-
pose.

Figure 16 shows the sub-fields of the time base field in the
counter records; the same time base sub-field organization is
used in the item code records. There are four entries in this
field. The second entry is reserved for the start time of
data but is currently ignored and assumed to be zero. Thus,
the time base 1is specified by the first, third, and fourth
entries. The first entry is an integer between zero and three
that indicates both the method of time base specification and

FField Contents

Record type
label = 1

Number of instruction
lines in record

Unusceod

Instruction line 1

Instruction line 2

Instruction line 3

® Instruction line 56

Intcinal External
Word Character
Numbers Format Positions Format
Bl S
1 , Binary 1-4 14
Integer
2 Binary 5-8 14
Integer
3-16 9-64
(56X)
17-34 184 65-136 18a4
35-52 18A4 137-208 18A4
53-70 18A4 209-280 ! 18A4
° : ®
|
. e
® ‘ ®
!
!
® ‘ []
|
1007 4025 !
- 18A4 - " 18A4
1024 4096

Figure 14. DTF instruction record format.

39

Field Contents

Record type label = 2

Time base
information

Unused

Counter

Flight Number

Gross Weight

Center of Gravity

CG Code
Model Number
Ship Number
Date

Time

Model Code

Test/Analytic

Indicator

0=unspec, 1=test,2=anal

Unused

Figure 15.

Internal Fxternal
- ~ ”~ N ~
Word Field Character Field
Numbers Format Positions Format
1 Binary 1-4 I4
Integer
2-5 See 5-36 See
Fig. 16 Fig. 16
6-21 37-200
22 Binary 201-208 I8
Integer
23-24 2A4 209-216 2A4
25 Binary 217-228 E12.6
Floating
26 Binary 229-240 E12.6
Floating
27 Ad 241-244 Ad
28-29 274 245-252 2A4
30-31 2A4 253-260 2A4
32-33 2A4 261-268 2A4
34-36 3A4 269-280 3A4
37-38 224 281-288 2A4
39 Binary 289-292 I4
Integer
40- 293-
1024 4096

Counter record format.

40

——re, . T

Field Contents

Time base type
(see text)

Start time (currently
ignored)

Time increment or
sample rate (in seconds
or samples per second)

Item code (currently
must be "TIME")

Figure 16.

Internal External
- N A N
Word Sub- Character Sub-
Numbers Field Positions Field
In Field Format In Field Format
1 Binary 1-4 I4
Integer
2 Binary 5-16 E12.6
Floating
3 Binary 17-28 E12.6
loating
4 Ad 29-32 Ad
I

Time base field format.

B

JUUINN SO

the meaning of the third and fourth entries. Following is a

description of the time base specification for each first entry

value.

0... The time base is not specified in this record.

l1... The time base 1s specified with a constant sample
interval. This interval is the third entry (in
seconds). The fourth entry is ignored.

2... The time base is specified with a constant sample
rate. This rate is the third entry (in samples per
second). The fourth entry is ignored.

3... The time base has a variable sample rate and is

specified with a time instant for each bundle. The
time instants are contained in the bundles as data
values corresponding to the item code named in
entry four. Currently, this item code name must be
"TIME". The third entry is ignored.

3.2.5 Item Code Records

Item code records serve to associate item codes, item code
descriptions, unit labels, and Info File information with the
subsequent data records. As shown in Figure 17, the fourth
field in the item code record is an integer indicating the
number of item codes listed in the record. Information for as

many as 32 item codes may be contained in one item code record.

Several contiguous item code records can be used to identify a
greater number of item codes. Each item code corresponds by
position in the list with the data values having the same
position in the subsequent bundles. For example, with two
contiguous item code records, the tenth item code entry in the
second record corresponds to the 42nd data value in each of
the subsequent bundles.

Time base information may be included in an item code record.
This field has the same format as shown in Figure 16.

Figure 18 is a breakdown of the information listed for each
item code. The item code itself must always be present. An
item code must be four characters in length and may not in-
clude a space, comma, slash, or single quote. The item code
description and the units label are used by the Processing
Program in displays so that if they were left blank the cor-
responding display fields would be left blaak as well. Most
of the balance of the information is for ar Info File if the
item code is to be associated with an Info File group. Refer
to the description of the Info File format in Volume I for a

42

i
1
!

T

<

Field Contents

Record type
label = 3

Time base
information
Unuseod

Number of items
in this record

Information for item
code number 1.
Sce Figure 18.

Information for item
code number 2.
S¢e Figure 18.

e Information for item

code number 32.
Sce FPigure 135.

Figure 17.

Internal External
el A
Word Field Character Field
Numbers Format Positions Format
1 Binary 1-4 14
Integer
2-5 See 5-36 See
Fig. 16 Fig. 16
6-~31 37-124
32 Binary 125-128 14
Integer
See See
33-63 Fig. 18 129~-252 Fig. 18
See See
64-94 Fig. 18 253-376 Fig. 18
o ®
°)
®)
e)
® [
994- See 3973- See
1024 Fig. 18 4096 Fig. 13
[

Item code record format.

43

Internal External
- - ~
-
Word Sub- Character Sub-
Numbers Field Positions Field
Sub-Field Contents In Field Format In Field Format
f | -
e Item Code 1 V! 1 1-4 A4
e Item Code 2-14 134 5-56 1374 -
Description
® Item Code 15-17 384 57-68 3A4
Units v
e Info File Group _ :
Affiliation 18 A4 69-72 a4 ¥
f -
e Info File Column Binary
Number 19 Integer 73-76 n T4
e Info File Row 20 Binary 77-80 14
Number Integer
e Info File Doublerow Binary _
0=top, 1=bottom 21 Integer 81-84 T4
e Info File Minor Binary
Position 22 Floating 85-96 £12.6
‘ .
" Binary _
® Modulo Value 23 EFloating 97-108 E12.6
e Unused 24-31 109-124

Figure 18. Item code information field format.

44

e

M

-
A nea

description of the fields. The last sub-field contains the
modulus value for modulo data. In particular, azimuth in de-
grees should be modulo 360. For non-modulo data, this value
must be set to zero. The modulus value must not be less than
Zero.

3.2.6 Data Records

Figure 19 shows the structure of a data record. The second
entry in the record is an integer that gives the number of
data values contained. Notice that an internal format record
can contain as many as 1020 data values while an external for-
mat data record can contain no more than 340 data values
because 12 characters are used for each value. Thus, more re-
cords are required to store data in external format than are
required for internal format. Section 3.3 will discuss the
storage of bundles of data values in data records.

Modulo data must be between zero and the modulus for the chan-
nel (inclusive). Modulo data are assumed to represent a piece-
wise continuous function that is monotonically increasing
except where the modulus limit is crossed, whereupon the func-
tion begins at zero again. The slope of the function before
and after the modulus crossing is assumed to approach the same
limit as the crossing is approached. Accordingly, when a
datum value for a modulo channel is less than the previous
datum value for the channel, a break or modulus crossing is
indicated. When a break occurs, interpolation is performed by
adding the modulus to the data after the break, interpolating,
and then subtracting the modulus from any interpolated value
that is greater than the modulus. Two points in succession
must not indicate breaks (i.e., the input data values must not
decrease for two points in succession).

3.2.7 1Info File Records

An Info File record contains the basic information for genera-
tion of one or more Info File groups. As shown in Figure 20,
basic Info File group information sets for as many as six
groups may be contained in an internal format Info File record.
An external format record can contain information for no more
than three groups. Figure 21 shows the contents of a set of
information for one group. Refer to Volume I, Section 5 for a
description of the various fields. The row positions and
labels are not required for one-dimensional groups.

Notice that Info File records do not contain all of the in-
formation required for production of Info File groups. Item
code records contain the item code names and point to the ap-
propriate group name and row/column/double-row element posi=-
tion within the group.

45

N -
v e r AN e

Field Contents

® Record type
label = 4

e Number of data
values in record

® Unuscd

o Data value 1

e Data value 340

® Data value 1020

Figure 19.

Floating

Data record format.

46

Internal External
— A\
Word Field Character Field
Numbers Format Positions Format
1 Binary 1-4 I4
Integer]
2 Binary 5-8 14
Integer]
3-4 9-16
5 Binary 17-28 | E12.6
2 Floating)
° e) °®
e) °)
344 Binary 4085- E12.6
Floating 4096
°)
) °
))
® ®
e e
1024 Binary

-V)

N ORI U A

-—

Internal External
Word Character ;
Field Contents Numbers Format Positions Format ‘
r e
® Record type 1 Binary 1-4 14
label = 5 Integer
® Number of groups 2 Binary 5-8 14
represented in record Intcger
e Unused 3-4 9-52 ////:
® First Info File S - I . 9
. See 513 See
Group Information 5-174 Pi 1400 Fic
See Figure 21 9. 27 21 ;
® Second Info File
. Sece - Sce
Group Information 175-344 Fiqoz1 1401,7 FiO(21
See Figure 21 - g. 2748 g-
® Third Info File .
. Se - >
Group Information 345-514 Fi (31 27494096 F?EO .
See Figure 21 g- | - 21
e Fourth Info File See
Group Information 515-684 .
Fig. 21

See Figure 21
e Fifth Info File

Group Information 685-854 Fiieo

See Figurc 21 - 21
Soieh e ne e | se

roup ntor n 1024 | Fig. 24

See Figure 21

Figure 20. Info file record format.

<

= ——

o

£
‘f
‘

Internal External
A - - S
Word Sub- Character Sub-
Numbers Field Position Field
Sub-Field Contents In Field Format In Field Format
'
Group Name 1 A4 1-4 A4
Group Title 2-11 10A4 5-44 10A4
Column Title (current 12-17 6A4 45-68 6A4
16 characters max.)
Short Column Title/units 18-20 374 69-80 354
(current 8 characters max)
Feature near smallest column 21-26 6A4 81-104 6A4
position (current max 16)
Number of Column Positions 27 Binary 105-108 14
(current max = 18) Integer
Column Positions 28-59 F?égiiﬁg 109-492 [32E12.6
Row Title (current 60-65 6A4 493-516 | 64
16 characters max.)
Short Row Title/Units 66-68 3n4 517-528 3A4
(current 8 characters max.)
Feature near smallest rows 69-74 6A4 529-552 614
position (current max. 16)
Number of Row Positions 75 Binary 553-556 14
(current max = 18 Integer
Row Positions 76-107 F?g;iiﬁg 557-940 [32E12.6
Doublerow labels. _ 5a4, 941- 5a4,
Top then bottom 108-117 574 41-980 5a4
Keywords, Top then 118-119 2A4 981-988 224
bottom
Azimuth correction Binary 989-
angle 120 Floating 1000 E12.6
1001-
Unused 121-170 00 1348
Figure 21. 1Info file record group-information field format.
48
ey - = TR

3.3 DTF RECORD SEQUENCE }

A prescribed order for the different types of records must be t
followed so that the different types of information are avail-
able as required. This sequence has been made as flexible as
possible to accommodate the idiosyncrasies of various data
bases.

3.3.1 Instruction Records

U S,

I1f instruction records are included in a DTF, they must form a
contiguous group at the beginning of the DTF. No other type
of record may appear before the last instruction record. The
order of the instruction records must maintain the proper }
sequence of the control input lines. Thus, the first line of
the first instruction record must contain the intended first
instruction line, and the last active line of the last instruc-
tion record must contain an 'END' entry.

Instruction records are not required in a DTF. The FCP is
able to read instructions from the system input file. 1In
fact, the FCP must always read one line of instructions from ’
the system input file, and the instructions on this line may

indicate that data input is from a DTF and that control input

is also from the DTF (see Volume I).

-

3.3.2 Data Records

A sequence of bundles of data values that correspond to a
strictly monotonically increasing sequence of time instants
and that are written contiguously on a DTF is called a bundle
sequence. A sequence of data records containing a bundle
sequence may not include any interspersed records of another
type, any data records containing data values outside the
. bundle sequence, or any data records containing no data values.
' The number of data values for each bundle in a bundle sequence
must be a constant and must equal the number of item codes
specified for the bundle sequence.

As shown in Figure 22, a bundle may span more than one data
: record, or one or more bundles may be stored in each data
) record. A bundle may not span more than one data record if it
does not start at the beginning of a data record. Thus, un-
: » used space will frequently be present in a data record. All
. unused space in a data record must be at the end of the record.
} If there is sufficient unused space at the end of a data re-
cord to contain a bundle, that record must be the last for the
bundle sequence. The end of the bundle sequence is denoted by
¢ a record of some type other than a data record or by the end i
X of the DTF.

T e o S I T e S e o e

.
LTS S

-saouonbas pioosl e3ep UT sdduanbas alpung jo abeiols T aanbtg

— A 1K 1 XL

|

) >< | <] | B 1=1__ 1 X

— —— e ——— ——— o — ——— ot ——

]! | | !

TIOYHOLS FONINDIAS ITANNE FTEYLdIDDOVYND J40 STTIWYXI

A e gt vt ettt — T s et s ettt St gt A—

A >0 1A P XL] X | X,]

o) = . A >
e e R _IRC__J I

RN — PSR ———— [N [——

e N e S =

A5YH0LS FONINDAS dTANNG ITIYLdIADOV 40 SITIWYXI

@dp23dyd vIva NI dDvdS dISONA

qyoody viva

]

SANTIVA VIVa 40 JTANNd

o SQY003d QHIIJIOIJSNA TYNOILIAAY =

PRy A N

In Figure 22, three examples of unacceptable bundle sequence P -
storage are given. In the first example, bundles that do not ‘
start at the beginning of a record span more than one record. .
In the second example, one record does not contain as many

bundles as possible and this record is not the last for the

bundle sequence. In the third example, an empty data record

occurs.

3.3.3 1Item Code and Counter Records

Each bundle sequence must be preceded by a definition sequence,

which consists of one counter record and one or more item code

records. Either the counter record or the item code records

(but not both) may be implied. That is, the counter or item

code records may be left out of the definition sequence and

implied to be the same item code or counter records that

applied to the previous bundle sequence. Clearly, the first

definition sequence in the DTF may not have any implied re-

cords. ’

I1f more than one item code record is required, these records
must be in contiguous sequence with no interspersed records of
any other type. If an item code record specifies fewer than
128 item codes, it must be the last in this sequence. The
counter record may appear before or after the item code re-
cords.

3.3.4 1Info File Records

An Info File record must appear before all the item code re-
cords that reference the groups named in the Info File record.
An Info File record may appear inside a definition sequence
between a counter record and a set of item code records.
Otherwise, an Info File record may be placed anywhere in the
DTF that is not in violation of the rules stated so far.

An Info File group name should not appear twice in the Info
File records of a DTF. If this event should occur, the first
declaration of the group name, together with the accompanying
structure and labels, will be assigned all item code record
references to that group name. Groups will be generated for
all other mentions of the group name, but these groups will
contain only the "NULL" item code. Info Files with redundant
group names will work properly if the first group with the
redundant name is correct. That is, the subsequent, identical
group names will be ignored. However, this is both ineffici-
ent and confusing.

There may be several item code references to the same row/
column/double-row element of an Info File group. In this
event, the last reference in the DTF is used.

A

3.3.5 Unspecified Record Types d

Record types six through sixteen may be placed anywhere in the
DTF that is not in violation of the rules stated so far. 1In
such locations, these records will be ignored by the FCP.

3.3.6 Examples of Record Sequences

Figure 23 gives examples of acceptable and unacceptable record
sequences. Six examples of unacceptable sequences are given.
In the first example, the instruction records are not the first
records on the DTF. For example two, two item code records are
separated by a counter record. In the third sequence, there
are two counter records in sequence with no intervening data
records. In the fourth example, two item code records are
separated, this time by an Info File record. In example five,
the first bundle sequence in a DTF is not preceded by a com-
plete definition sequence. That is, there is no item code
record before the sequence and no item code record can be
implied. In the last example, there is no definition sequence
for the second bundle sequence. That is, the counter record
and item code record(s) cannot both be implied as the previous
counter and item code records.

’-‘.
%
¥
’
‘
¢
= INSTRUCTION RECORD
= COUNTER RECORD i
ITEM CODE RECORD ‘

= DATA RECORD

= INFO FILE RECORD

SEEGEL

= UNSPECIFIED RECORD TYPE (6-16)

EXAMPLES OF ACCEPTABLE SEQUENCES
L] G LT G GO L G0 (0] (O] [T ['
L [[0 G0 B D] (L0 1T GBI GBI B
L0 2l U] [l] Gl L)) Lol L B LT [

3

5

EXAMPLES OF UNACCEPTABLE SEQUENCES

BEERRE

HERNECIERCINEN
D] o[(sl] fal § fal] [al 0 L Gal o el 1 el |

Figure 23. Examples of acceptable and unacceptable record
sequences.

5
‘
53 i

4. PROCESSING PROGRAM

4.1 STRUCTURE AND FLOW

The DATAMAP Processing Program was designed to be broken into
overlays corresponding to various functions of the program.
Figure 24 shows a diagram of program flow from block to block
with the main block excluded. The Main program is not shown
in this figure and serves only to transfer control from block
to block and store certain utility routines used by more than
one block.

The Startup or Program Initialization block extracts setting
commands from the user and initializes and/or validates certain
files including the Master File. The User Command Interface
reads and checks the user commands and produces an instruction
matrix (common block /DIRECT/) that can be interpreted by the
other overlay blocks. The Processing block performs all the
data retrieval, data processing, and data display functions of
the program according to the instruction matrix. The Command
Sequence block performs the actual editing of command sequence
blocks. The Menu block generates non-data displays to assist
the user in generating processing commands. The Terminate
function is accomplished in program MAIN.

4.2 PROGRAM INITIALIZATION

Subroutine STRTUP is the control routine for this block. The
required and optional user inputs for this phase are described
in Section 5.1 of Volume I. The entries are read and inter-
preted using the READF and MATCHR utilities, as well as the
READ1 and READOP routines and code within STRTUP.

In addition to extracting user control options for the program
run, the Program Initialization block performs several other
setup functions. The first function performed in STRTUP is to
call the CPU timer initialization routine, SETIME. SETIME is
installation dependent and may be replaced by another routine
or entry name that starts the CPU timer (see Section 6.4).

After the user options have been specified, STRTUP calls
ALLSCR to initialize each of the direct access disc scratch
areas, including SCFl, SCF2, SCF3, and the temporary scratch
area. All of the scratch files are contained in a single
direct access data set and are addressed by a single I/0 file
reference number. The files are addressed individually as
different pseudo-devices using the RMS, WMS, and FMS subrou~-
tines. The pseudo-device numbers are listed in Section 5.1.
The scratch files may be "PERMANENT" or "TEMPORARY." 1If

54

' - ?‘.,”.I, r-'- - c'.‘-:: -
Ve -

-
.

.

PROCESSING BLOCK

DATA RETRIEVAL
DATA PROCESSING

PLOT/PRINT/
SCRATCH STORAGE

USER
START UP
COMMAND
INTERFACE
COMMAND MENU
SEQUENCE DISPLAY
EDITING

Figure 24.

L R

General flow of processing program.

55

TERMINATE

e e can

the scratch files are labeled to be "PERMANENT," then no i
specific initialization is performed. Instead, the first !
and last record in the data set are read to test the ini-

tialization, Then, certain information about each scratch

file that describes the file contents is stored in program

memory. Y“TEMPORARY" scratch files must be initialized by

writing dummy records on every record position of the sequen-

tial alias for the direct access file. This initialization

is performed using subroutine INIDAF as described in Section

5. Notice that the "TEMPORARY" designation means that the

scratch files will require initialization and does not des-

cribe the planned disposition of the files after the Proces-

sing Program run is complete. Thus, "TEMPORARY" scratch

files may later be stored on a permanent basis.

The information that the scratch files are "PERMANENT" or
"TEMPORARY" cannot be stored in the scratch files because an
attempted direct access read from an uninitialized file could
result in immediate termination of the program run. In-
stead this information is specified by parameter communica-
tion from the computer system, by user option specification .
(see Volume I, Section 5.1), or by default. Parameter com- :
munication is accomplished for IBM systems using subroutine

PARMGT. A parameter string value of "PERM" indicates "PERMA-

NENT" or any other value indicates "TEMPORARY." If parameter
communication from the system to a program is not available

for a particular computer operating system, then a dummy PARMGT
subroutine may be used that indicates a "PERMANENT" or "TEMPOR-

ARY" setting by default. In either case, the user can over-

ride the setting during the Initialization Phase.

3 R Y WP
.

After ALLSCR returns, STRTUP calls INFOST. This routine reads
the initial group of the Info file and stores the keywords,
item codes, and associated numeric values in common block
/SINGIF/. Then STRTUP calls EDINIT to read the initial record
of the direct access Command Sequence (Edit) file, to check
the size of the file, and to set certain variables based on
this size.

AL A A AT VA ¢ .

X e g

Following the EDINIT call, STRTUP extracts the name of the
Master File partition that is to be accessed in the first .
partition access slot during the program run (although the ¥
partition can be changed during the program run). Then DASTRT |
is called to find the partition and to set up the retrieval

routines to address the partition data. If the partition name

is successfully found and the Master File is properly initial-

ized, STRTUP transfers the current date into the system output

label, DEFCOM (in common block /DEFLT/), and exits. If the

partition name is not found, the user is requested to enter a

corrected partition name. The user may request a menu listing

of partitions and subroutine MPARTX is used for this listing. i :

"

56 .

A b TR TR

4.3 USER _INTERFACE

The User Interface generates an instruction matrix for each
command step. This matrix is generated by extracting from the
user a sequence of entries that specify option selections for
the matrix values. Relatively few of the instruction matrix
values are specified for each command step, since a small sub-
set of the total number of command specifications is required
for execution of each different command. For example, a MENU
command will not require specification of the static pressure
or outside air temperature instructions.

A pseudo tree structure directs the program in specifying a
sequence that includes all entries required for execution of
the command step that is being generated. Each element of a
sequence depends upon the options selected for the previous
elements of the same sequence. For convenience in specifying
defaults, generating HELP messages, and explaining the entry
sequences, each sequence 1is broken into one or more substeps
as explained in Volume I. This tree structure, together with
allowed options and HELP message strings, is stored as data in
common blocks. The user interface code interprets the stored
tree structure and maintains the syntax for user input. Thus,
a change in user commands that does not conflict with the
current command syntax should require only a change in the
block data statements and array sizes and no change in the
executable user interface code. Paragraph 4.3.1 discusses
this code, while Paragraph 4.3.2 covers the requirements for
the block data tree structure.

4.3.1 User Interface Routines

USER is the main routine for the user interface block. Fig-
ures 25 and 26 depict the flow for subroutine USER, which
encompasses most of the general logic for the user interface
block. The other routines for this block are briefly de-
scribed below.

INISTP is the first routine called by USER to set the default
values for the step, to initialize certain pointers, to calcu-
late the CPU time for the previous step execution, and to
print the 'NEW STEP' message that prompts the user for the
next command step.

LININP is used to obtain a scanned, valid line of user input.
LININP will obtain the line from system input or the command
sequence file (using EDINP) according to the edit mode indica-
ted by the variable LED (in the common block /LEDIT/). The
line is scanned by READF to check for line errors, to evaluate
numeric entrys, and to delimit string entries.

H INITIALIZE DEFAULTS AND STEP VARIABLES r

LOOP JIVER SUBSTEPS

YES TE SUBSTEP,
HELP' MQOE? XIT 'HEL?'
NO F J

LO0P JVER JSER ENTRIES READ

DEFAULT SET
FOR REMAINING
ENTRIES?

YES

INPUT USER LINE
WITH BASIC SCAN

SUBSTEP

ZANCEL

CONTROL LIST
FUNCTION?

SET DEFAULT VHECK ENTRY
MODE, EXIT
“HELP'

INTERPRET ENTRY

r\ NOTE IF BAD
! on

UPDATE TREE

N

STEP 1

SET 'SCAN' MODE
SCAN STEP

HELP' MODE

- -

)

MORE ENTRIES

NO /
ONLINE?

‘- (] (] 2

!
, Figure 25. User interface flow diagram (first part). %
‘ N
Il I]
£ 58 Lo
Y
b(! ¢ |
N j
AT e - = e Sl .
R TS e St
’* ',.‘:/ , -

-
s S

LoD

100
NOTE SUBSTEP
COMPLETE, RESET
POINTERS
SET TIMER L_ L
FOR STEP
NOTE SUBSTEP
COMPLETE, REQUEST
SLASK T0 END STEP
5AVE YES SAVE
r— STEP COMMAND? +
o LIST INPUT LINE
STEP

INSTRUCTION
MATRIX

SAVE
STEP

‘J RESET EDIT,
SAVE STEP

Figure 26.

OR EOF INPUT?

CURRENT
EDIT MODE?

59

SET FOR
PROCESS ING
{IC=2)

SET FOR MENU
(IC=q)

SET FOR EDIT
INITIALIZATION
(ICw3)

SET POR
TERMINATE
(ICw=6)

RESET EDIT ﬁ

User interface flow diagram (second part).

o '

MATCHR is used to match individual strings of characters with
an array of four-character keywords stored in common block/
WLIST/.

INTERP is called to interpret each individual user entry. The
various categories of entries are numbers, nulls (defaults),
keyword strings, non-keyword strings (e.g., an item code),
specified defaults (i.e., defaults specified by a slash that
terminates a substep), and comment entries. INTERP assures
that the entry conforms to the allowed values for the current
tree position and codes the entry in the instruction matrix.

The HELP mode prompting message generation routine, HELPR, is
called by LININP when the HELP indicator, IHELP, is set to
one. HELPR prints a prompting message for the current entry
and looks ahead in the tree structure to print prompting
messages for subsequent entries.

TREEUP updates the tree structure position and the substep
number, ISBSTP, as necessary.

EDSAVE (see Paragraph 4.5.1) is used to save a command step on
the command sequencing file.

LISTAD maintains the listing of the current command step in-
cluding default entries. NTOSTR (see Section 4.2) is used to
convert numeric values to string form.

Subroutine USERLC is used to perform the required actions for
certain commands inside the user interface block. The pro-
cessing required for these commands is trivial. This routine
performs processing for the commands "UTILITY," "SET," "COM-
MENT," "BUILD," "EDIT/NEW," and "NOEDIT."

4.3.2 User Input Encoding

The basic tree structure for the user interface is contained

in the two-dimensional array NPOINT. The structure consists
of many "nodes" and each node specifies a required entry for a
command. A complete command is a specific path through one or
more nodes. Some nodes allow branching in the command path
depending upon the entry for the node. Each node has a speci-
fic index number. The second array subscript for NPOINT
corresponds to the tree node index. Thus, each tree node is
mapped to a unique, positive integer (e.g., 6), which specifies
three words in NPOINT (e.g., NPOINT (1,6), NPOINT (2,6),

NPOINT (3,6)). The first subscript is dimensioned to three

and these three allowed values correspond to three kinds of
information stored in the array. Table 2 lists the present
tree structure as defined by NPOINT. Figure 27 shows a general
example of part of the NPOINT structure.

60

* v
, pitan .
U SO0, SN AT it s s s a3 e e e+ e mom e .44

€0€ 0 502 (8Z) 3AXL NNIW T € 6 .
(£S) INIWNOYY ANODHS
LZE 8T0€E ZPS NOIINDIXE FAONANGAS ANVHWWOD 9 € 8
1§ 900¢€ €8T (SZ) IWYN FONANOIS ANVWWOD T € L
(ZG) INIWNO¥Y ISH¥Id
¥Ze 800€ GES NOILNDAXA FONINOIS ANVIWWOD L € 9
(92)
vET vHo€ 68T NOIIDONNA FONINGIS ANVIWOD T € S
(62) ‘L% .
(1% ‘0% (300D WALI ¥O dno¥O ‘€425 ‘9% . .
1ST ‘'6E£‘'6E€'6E) ‘6%- 0€9 'Zd0S‘TADS) ADUNOS ¥IVA ‘T € 2
o o
(12'12 g »
‘LE'BE‘SE‘EEEE :
‘1€'1€°62°'62°92 w
‘9Z'9Z‘0T'1Z2'12 (g) *
€€ ‘12'12'02) SZ- 6% NOILOFTAS NOIIDVY FAI¥NIA 1 rA €
(221121021 61T
‘GIT'LIT ‘6T 6T LT (2) _
12 ‘9T‘ST‘®T) OTT- 0TL NOILDATAS NOILOV FZXTIUNY T r4 Zz -
{85 ‘€T ‘0
‘b ‘0 ‘6 ‘86 ‘L
T ‘0's‘'v'€’'Z) 1- T (1) X9INI NOIIVDIJIDAdS - T T ’
0071 SNOILdO D07 FAFYL IX3N 201 dT13H NI9 JILS 2071 ‘
(N’€)INIOAN (N'Z)INIOAN (N’'T)INIOAN ONINVAW XYINA -I1¥0 -49nS ML

NOILVYDIJIDAdS AUINI Y04 TINLONYLS YL FHOVAYALNI ¥ISN °Z IATIVL

TA 650% €LT (£Z) FIONV HIOWIZY €2 € $ £4
8Z1 (ZALS 6LT (¥Z) SITOXD IO YIAWAN 2Z2Z £ €2
61T €20€ $91 (12) 13Sad0 IMII T2 € A4
€11 zzo¢ 9sT (61) ¥IINNOD € € 1£4
88 8%0¢ 09€ (ZT) dWIL ¥IV IAISINO € z 0z
(62)
(zL (30D WALI YO dno¥dD ‘€405 21
IsT ‘LZ'6E£'6E°6E) 18- 0€9 ‘ZADS‘T4DS) ADYWNOS VYIVA ‘T € 6T
($S) INIZWNOYY QYIHL

0€E 680€ 6%S NOILNDAXA FONANDAS ANYWWOD 8 € 81
08 y00€ PIT (0T) OFYI ONIAWWA z LT
1L L%0T Z0T (8) OF¥d WAWIXVH 2 r4 91
29 S%0Z S8 (g) O=¥a Mva¥d ¥Iddn ¢ 4 ST
6S z1o2g 6L (%) SOINOWMVH A0 ¥ILFWAN r4 (A
6€T 0 961 (LZ) ONIMIS INIWWOD T € €T
0TT 6T0€ TST (8T) YAGWNN DINOWMVH %1 Z At
6TT 180¢ ¥91 (1Z) 135430 ANIL 2L £ 11
L0T S202 9bT (LT) sniavy Jorod ¢ Z 0T
00T SNOILAO 2071 FTAL IXIN 0071 d13H N39S Jdals D01
(N'€)INIOAN (N’'Z)INIOAN (N’T)INIOAN ONINVIN X¥INI -I30 -dAS NI

(QENNIINOD) NOIIVDIAIDAAS A¥INI J¥Od MINLONYIS IMLI FOVIWHINI ¥dSn "7 FTAVL

62

¢

LLT Z60¢€ 652 (PE) EWVN dNO¥D ¥ £ 0¥ |
61 | .
6ST (601°0L) 86~ 622 (0€) INTVA FTYOS ¥O TIV ‘¥ € 6€ w
LOT 9€0€ 9% T (LT) sniavy agvid ¢ Z 8¢
r 88 120¢€ 09¢€ (ZT) dWAL ¥YIY AAISINO € 4 LE :
€02 690€ L6Z (62) €30S ¥0 ‘ZJ40S ‘Td0S 8€ € 9¢ r
011 190¢ 1sT (8T) ¥AAWAN OJINOWMVH € Zz S€ h
€6 7502 69¢ (€T) TUNSSTUd DIIVIS €€ z e B
< 88 $€02 09€ (Z1) 4WdL ¥IY IAISINO € z €€ - m
€6 €502 69¢€ (€T) IYNSSTId OIIVIS 1€ 4 A ° mwwﬁ ,
88 2€02 09¢ (2T) aWar ¥IY EAISLAO € z 1€ 1
€6 Zs0z 69€ (€1) FINSSTYL DIIVIS 6C 4 0€ | M
88 0£02Z 09€ (2T) 4WAL ¥IV IAISINO € z 62 m
6S1 (80T'1S) S6- 62¢ (0€) INTVYA FTVOS YO TIV 9T € 8¢ w
LLT 080€ 652 (%€) FWYN dno¥D 6T € Lz w :
£0T 820¢€ L62 (62) Zads 10 TADS € € 92 w
88 0502 09€ (ZT) dWIL ¥IV¥ AAISLNO OT r4 T4
007 SNOIIAO 2071 FTWLI IXIAN 207 d13H NAD d3aLS 0071 .
; (N’€)INIOAN (N’'Z)INIOAN (N'T)INIOAN ONINVIW AYINI -I1¥0 -9nsS II¥L '
(QINNIINOD) NOIIVDIAIDAJS XMINT Y04 TINIONILS FAYL FOVAYAINI ¥Isn -7 I19Vl .
| .
_ ,m. 1
B -
: e - T R o T LTEETT M Ll e S - g

86 $90¢2 1 £A ($1) 3d01S 4ITVD SYL 8% 4 SS
8v€ poo¢€ LED (6S) ITONY ¥OLOILIA HE Z %S
LOT 1Z0€ 9%1 (L1) sniavy ¥orod z¢ 4 €S
%01 £902 8€T (9T) IHOIAM TIDIHIA OF Z 4
891 z90€ 1424 (Z€) INIWATE MOY ¥O TIV 82 £ TS
€6 190¢€ 69€ (€T) MINSSIYd DIIVIS ST r4 0S
(0ST'9S Ind1no
‘09'09°65'85 LS HLIM
681 LS5'95'9S) 65~ 8LZ (L€) QOHIIW INdINO TIV 14 6%
£6 SS02 69€ (€T) INSSTYA DIIVIS 0T Zz 8¥
L $00€ 90T (6) NOIIONNd MOGNIM 9T Zz LY
89 $00€ L6 (L) saT0d J0 ¥IAWAN S 4 9%
59 9%02 16 (9) OMa MVIYd ¥AMOT ST Z SY
TeT 0 €8T (SZ) AWYN FONINOIS ANVWWOD S € 144
A4 6¥0% 891 (zz) NolIWMNA 2% 3 £¥
611 EVOE $91 (12) I3siado IMIL 1% € rA 2
ETT Zvoe 9s1 (6T) YIINNOD ¥ £ 184
D07 SNOILAO D071 IMIL IXAN 201 d13H N9 dJdLs 201
(N'€)INIOAN (N'Z)INIOAN (N‘T)INIOAN ONINVIW X¥INZ -1¥90 -dnS ML
(QEANIINOD) NOIIVOIJAIDAdS AMINA ¥0d TINLONYIS TIYI FOVIYIINI ¥ISn °Z 19Vl

64

e o ————— ——

89T 6L0€ PPz (Z€) INIWITI MOY ¥O TIV 6€ £ 0L
6ST (o11'8L) TOT- 6ZZ (0€) ANIVA FIVOS ¥O TIV 9¢€ € 69
99¢ LLO% Z9% (6€) SIXV I01d d-€ IST 65 4 89
99¢ 9L0% Z9% (6€) SIXY 1014 a~¢£ IST 8S 14 L9
L22 SLOY F4 (0%) FIVIS ¥OSYND 9§ P 99
10T 1Z0¢€ 06T (ST) IJADYAINI 4I'IVD SYI SS < S9
(PL (62) (ano¥wo ¥oO ‘€40S
09¢ ‘€eL’'€L'EL) SL- SS¥ 'Z4Ds’140S) ADWNOS VIVA %S £ ¥9
L01 120€ 9%1 (LT) sniavy ¥0I0¥ 2ZS 4 £9
€LT 6H0% 1SZ (€€)INIWTTA NWATOD WO TIV IS £ 29
(62)
(zL'1L (20D WALI ¥0 dNo¥o ‘€ddS 0§
16T ‘6€'6€£'6€) 69- 0€9 ‘zddS ‘T4DS) IDWNOS VIVA ‘SE € 19
9T¥ 960% 2% (09) €30S ¥O ‘Z40Ss ‘TdIS 6% ¥ 09
GGE 890% L%y (T19) IWINOd I01d IOVAINS 6% 4 6S
GG¢E L90% L%y (T19) IV¥WYOd I01d YNOINOD 6% v 8S
012 0 zoe (6€) ATYDS SIXY-X 6% ¥ LS
012 990% zog (6€) ITYIS SIXY-X 6% ¥ 9
207 SNOILdO D07 IAYL IXIN 207 d13H N9 daIs 201
(N’€)INIOAN (N’Z)INIOAN (N'T)INIOAN ONINVIW XYINI -I¥0 -dnS IML

(QINANIINOD) NOIIVIIAIDIdS XVINF ¥O4 TUALONYIS TTYL FOVAYIINI ¥ISN

"¢ d'19VL

65

ped

¥4

0

L

e ————— "
P oL AN\ ian .

o¥e

6€€

¥LZ
ELT
891
8¢T
I8¢
ELT
891
494
Zee
L9¢
LLT
69T
ETT
LLT

60V

€607
£60%

670%

160€

060€

L60€E

LOTE

£80¢€

L80%

980%
(¥8's8°'¥8) L8-
660€

(11T'28) %OT-
T10€

880€

1% 42

(Z%) IYAYAINI ¥NOINOD
(9s)

9L

SL
SL
8L
£L
L
Lz
0L
69
B89
L9
99
9
9
19
19

N MmO M M H F F O O O O MM O 9H¢ K

98

S8
8
£8
Zs8
18
08
6L
8L
LL
9L
SL
vL
€L
L
1L

D071 SNOILJO D01 ATYL IXAN
(N’€)INIOAN

(N’Z)INIOAN

A4 FI¥OS D071 X NI SIAYIAA
68¢€ (8%) ANTIVA FIYDS X NIW
162 (€€) INIWIATA NWATOD YO TI¥
4724 (Z€) INIWATI MOY ¥O TIV
6LT (¥2) SITOXO 40 YADWAN
L8% (S9) NOILOITIS MO¥-TTINOd
152 (€€) INIWIATI NWATIOD ¥O TIV
bze (Z€) INANATE MO¥ YO 11V
T€€ (T%) SIXV I01d d-¢ aNZ
T€€ (T#) SIXV 107d d-€ QNZ
6LE (LY) TYANIINI-X
6GZ (¥€) IWYN dnouD
622 (0€) ANTVYA ITIYIS ¥O TIV
9sT (6T) YIINNOD
6GZ (¥€) TWYN 4NO¥D
2071 dT3H
(N'T)INIOAN ONINVAN AYINI

(QINNIINOD) NOILVOIJIDAIS A¥INA ¥O4 FINLOMYLS ITIL FOVAYILNI dISN

NID d3Ls D01

-I¥0
*Z J19VL

-dNs JI4L

66

W.,.
1

S~ B - e e e et e e

!
,

Zve 0 LZH(LS) FTIVOS D07 X NI SAAYOAA €6 ¥ 101

L8Z 0 90% (G€) ANTIVA FTIYOS X NIW €6 ¥ 001

08T 0T1€E G592 INIWATI NWNTOO ¥0 TI¥ Z6 £ 66

88€ 0 8LS (99) FONVHO ONILLIAS NNJ T r4 86

08T €01€ 69Z (S€) INIWITI NWNTIOD ¥O TIV 08 € L6
w EEE 0 €T% (SS) ANTYA FTIYDOS ¥dsSn 88 i4 96

474 Z0T% L1S (6%) X NI D207 ¥3IAYASHO L8 17 G6

24 €T Zs€ (€%) FNIYA YNOINOD 98 v) ~

(oot S8 ”

08¢ ‘TOT'00T) T16- 96€ (6%) TYANAINI-X ‘%8 4 £6
_ 18¢€ S0TE L8% (S9) NOILOITIAS MO¥-ATIINOA OF 3 z6

€LT 650% TSz (€€) INIWATI NWNTOD ¥O TIV Z8 € 16

tA 6%0% €LT HINWIZY 18 € 06

(8S) INAWNOMY HINNOA

SHe 0 9SS NOIINDAXH ASNANDIS ANVWWOD 8T € 68

18¢€ L60€ L8% (59) NOILOITAS MO¥-ITLNOA 1L € 88

344 S60% LOS (¥%) X NI D01 ¥IAYISIO LL ¥ L8

D07 SNOILdO D01 IAFIL IXAN 007 dTdH Nd9 ddaLs 201

: (N‘€)INIOAN (N’'Z)INIOAN (N'T)INIOAN ONINVIW AMINI -1¥0 ~-9dnS dIIL
m. (QINNIINOD) NOILVDIJAIOAdS XYINI ¥Ood MEALONYIS TIWI HOVAYIAINI ¥ISn 7 IT1dVL \

w . 1% 0 879 (89) IOTIS SSIIOV NOILIIMVA STT € 911
| 90% 9T11¢E 809 (L9) FWVYN NOILII¥Yd 8ST € STIT
W 911 0 009 (0Z) FQOD WALI gIMSVH 8ST € PIT
(11) s1dAdT
£8 0 TLS JNOINOD J0 YAGWNN XVH ¥6 v €11
18€ L60€E L8% (S9) NOILOITIS MO¥-ITIAN0d 1L € Tt
€62 Z80¢ L6V (1TS) FIVIS SIXV-X €L € TIT1
€62 €80€ L6¥ (TS) TI¥OS SIXV-X 69 € 011
€62 0L0€ L6¥Y (1S) TIVOS SIXV-X 6€ € 60T
€62 1S0€ L&Y (1S) AIVDS SIXV-X 82 € 80T
18¢€ 6¥0% L8% (S9) NOIIDITIS MO¥-IIENOd 6L € LOT
81 %0€ zLe (9€) INAWATI MOY ¥O TIV SOT € 901
081 901€ G9Z (G€) INAWATI NWNTIOD ¥O TIV¥ 26 € SOT
m 81 ZLOE zLe (9€) INAWITI MOY ¥O TIV 66 € %ot
$81 zLog ZLe (9¢) INAWATE MOM ¥0 TIV L6 € €01
652 0 LZS (9%) 2 NI D01 ¥IAYISEO S6 ¥ 201
007 SNOILAO D07 FFULI IXAN 007 J19H NAD ddis 0201
(N'€)INIOAN (N‘Z)INIOAN (N’'T)INIOAN ONINVAN XYINZ -I¥0 -4dnS INL
(QANNIINOD) NOILVDIAIOAdS XAMINA ¥O4 HUNIONYLS FIYL AOVAYIINI ¥ASN 7 TIVL
LTy

68

»e

P

e -

“ . (€L) NOIIVT
SLY LPTZ $69 -TYHOD OLAY YOI IFSAI0 XWW 021 z Lz1

(8)
1L P12 ZOT ALISNAQ OINY ¥Od Odd XVW 02T Z 9zl

(€L) NOIIVIZWNOD
SLY £b12 ¥69 SSOY¥YD ¥Od IFSII0 XVW 611 Z szt

(ZL) SISXTYNY
. SSO¥D ANV ISNOISTY
Hhv Aﬂmaxmmavowa- mmo momonaomqmmmqmsmmzmmHH m¢-

(6Z) NOIIONNA %21 ’
€02 0€1E YA 42 FONTHIHOO ¥0d INANI ‘LTI € €21 o
O
(69T
‘6T '6HT 6T 6¥1 (12)
LSY ‘8PT'6FT ' 6VT)LST- 899 SISXTIVYNY JIISNOOV J0 AJAL 2 zZ zz1
(Le1’821 (0L)
LYY ‘8Z1'8ZT)0ST- €69 FdXL SISXTUYNY SOIISIIVIS 2 zZ 121
(%7474 (LZT'92T)0ET~ S%9 (69) FAXL SISXIYNY OLAY 2 Z 021
%7474 (gZ1'8T1)82T- s$9 (69) FAXIL SISXTUYNY SSO¥D z rA 61T
(8) ALISNAA-SSOID 6TT
w 1L o%TZ Z0T ¥O ISNO4STM ¥0d O0F9d XV ‘Z Z 811
(8) NOILONNJ
1L 8E12Z Z0T1 FONFYTHOD YOI OFII XVW 2 Z L1T 3
201 SNOILAO D01 FFYL IXAN 201 4d13H N9 J3ILS 201
: (N’€)INIOAN (N'Z)INIOAN (N’'T)INIOAN ONINVAN XYINA -140 -d9nS AL \
ﬂ. (QANNIINOD) NOIIVOIAIDAAS XN4LNI ¥0d TANLONNIS FATYI FOVJUAINI ¥dsn "2 IIdVL N
\
‘.
’
- - : T L e A TR Ly AT

-

(sL) SN1d

8% 8ZT¢ GG, JO YIAAWNN ISIAL MIVNOS-IHD 121 Z LET
(€€) SSO¥D ANV ISNOAS

€LT PETE 697 -39 Y04 NOIILOATIS NWNI0D SEI € 9€T
(z€) sso¥D anv

891 9€TE FHZ ISNOASHY ¥Od NOILDATAS MOd €€T € Ge€T
(s9) NOIIONNA

I8¢ 670% L8% TONTMAHOO YOI MOY¥-ITdNOA ZE€T € PET
(HL) SSO¥D ANV ASNO4SHY d0d

8LY GETE 00, INANI ANODAS ATIA HOIVEOS TE€I € €€1
(Z€) NOIIONNI FONI

891 veETE Pz -¥3HOD Y04 NOILDATIS MO¥ OfFT € ZET
(62) INANI IS¥Ild - TVNAIAIQ
-NI ONIWNSSY SSO¥D ANV

€02 €e1E Zbb ASNOASHY ¥Od ATId HOIVEDS #2T € TeT
(L) INANI FTId HOIVHEDS

8LY ZETE 00/ (NODAS NOIIONNI FINTIIHOD €21 € O0fT
(62) INANI SJOIISIIVIS ANV

€02 4% {5 V2 OlLAY ¥0d ATId HOIVEDS 221 £ 621

(zL) sassaD0Ed LZT
OLNY ANV SJOIISIIVIS ‘921

Ly (#'621)8%T~ 689 ¥Od NOIIODITIAS TTIWIASNT ‘12T € 8ZT

D01 SNOILAO D201 ATIIL IXAN 0071 dT1dH N39S dJ3aIs 201

(N'€)INIOAN (N’Z)INIOAN (N’T)INIOAN ONINVAW XYINA =190 -dnsS dAIHL

(QAANIINOD) NOIIVOIJIOAdS X¥INFT ¥OJd THNIONYLS ITYL FOVIANIAINI ¥dIsSA T IT1dvVL

70

et e e = b P S S R O S %

(6L) HIAIM

Z1s 6%12Z Gz8 -aNVY YILTId ONVE MOWYYN ZT1 zZ 8%I
(8L) NOIIVIIWYOD

L0OS 8Z1¢ ZI8 OILNV ¥od IDAT3S FZITVWHON LT z L¥T

- - - -~ - - 991
(9,) ALISNAQ OINY ¥Od

L6 8Z1¢ 18, ONIOVYIAY INIOd INADVLAY ¥¥1 Z S¥T
(6)

68% S¥12 L9L ALISNIA OINV ¥Od MOQNIM 92T rARNERE 2 ¢
(8L) NOIIVITYHOD

L0S vZ1€ Zz18 SSO¥o ¥od 10d73S AZITVWION SZT A% A §

- - - - - - I

(9L) ALISN3d
SSO¥D ANV ASNOJSAY ¥0d

L6% L ZARS 18L ONIOVMIAV INIOd INIOVLQY 0PI z 1%l
(6) ALISNIA SSOY¥D

68% : %12 L9L ANV ISNOdSHY ¥0d MOANIM 8TT Z 0%T
(9.) NOIILONNA FONIYIHOD dO4

L6% AL 18, ONIOVYAAY INIOd INIOVLAVY BE1 Z 6E1
(6) NOIL

68% 6€£12 L9. =-ONNd FONTIFHOD ¥OJ MOANIM LTI Z 8tcl

707 SNOILdO D207 TTUL IXAN 2071 d1dH N3I9 dIaLs 201

(N‘€)INIOAN (N’Z)INIOAN (N’'T)INIOdN ONINVIW ZX¥INI -130 -9nS dNIL

(@INANIINOD) NOIIV¥DIZIOAdS XYINE ¥OJ FYALONYLS ITIL IOVIYIINI ¥3asn °¢ 379vYL

. e ce e —

. — - I R ,,u\/arloo‘

.
L - P e o T e WL EER o S

M
1 911 0 SZ6 (0Z) FA0D WALI OMISVHWNN 8ST € 6SIT
(o’‘sTT
1€S ‘ST 'FIT)VLI- Z216 (¥8) NOIIOV ALITIIN T Z 8SIT
(€8) SIAVOAA JO YITWNN
T LZS €60% ZZv FIVDS-X MO¥-I19N0d WOLILOd SST ¥ LST
(Z8) dNIVA NIW
4 ¥ZSs £60% 968 HIVIS-A MOY-IT4NOd WOLIOG SST ¥ 9ST
] (9sT (18) TTYAYIINI ST
8TS ‘LST'9ST)OLT- 088 TIVOS-X MOY-T19N0d WOLILOd ‘€SI ¥ &SI
v (95) s3AAVOIA A0 YAAWNN N ,
6€E SST¥ YAA 7% TIVOS-X MO¥-FT1dNOd 4oL ST ¥ ®ST \ .
(8%) FNIYA NIW SN
¥LZ SSTV 698 JIYIS-X MOd-FT1dn0od 40L ZSIT ¥ €SI)
(esT (L%) TVAYEINI ‘ M
L92 ‘FGT'€ST)99T- 058 FIYIS-A MO¥-ATINOd dOL TST ¥ Zs1
(o%)
Lz rAa% 4 GZE I071dd ¥0d IDdT1dS JosdND 0ST ¥ IST .
012 1S1¥% Z0¢€ (%) 107140 ¥Od FIVOS X 6% ¥ 0SI :
(08) 8¥1
STS $00€ g€8 TAATT NOILDIFYYOD DILSNOOVY ‘2ZZI Z 6¥%1
207 SNOIILAO 20T ITIL IXIN 207 JdT13H NID d3Ls 201]
L (N’‘€)INIOAN (N‘Z)INIOAN (N'T)INIOAN ONINVAN XYINI -I1¥30 -901S IMIL .
ﬂ. (popnTouo)) NOIIVWOIAINAdS XMINHT ¥0d TINLONYIS FIUL FOVAWAINI ¥asn °¢ FIEVL
F \
r :
-

|—» IENTOP (T)

L3 TENTOP (U)

L—)»IENTOP(V)

NPOINT(1,N) NPOINT (2,N) NPOINT(3,N)
HELP SUBSEQUENT ENTRY
MESSAGE TREE POSITION OPTION LIST
LWORDS (&) POINTER POINTER POINTER
A M+3000 T
. . L]
[- L]
NPOINT (1,M) NPOINT(2,M) NPOINT (3,M)
HELP SUBSEQUENT ENTRY
MESSAGE TREE POSITION OPTION LIST
LWORDS (B) i POINTER POINTER POINTER
B -P U
LISTP(P) R . .
LISTP(P+1)
LISTP (P+2)
LISTP (P+3)=3000+Q . . .
LISTP(P+4)
L] . L]
NPOINT(1,Q) NPOINT (2,Q) NPOINT (3,Q)
HELP SUBSEQUENT ENTRY
MESSAGE TREE POSITION OPTION LIST
LWORDS (C) §—— POINTER POINTER POINTER
c R+3000 v
. . L]
. L] L]
Figure 27. Example of part of the command entry tree structure.

73

- wromen

——

|

e

¥
(

NPOINT (1,N) gives the subscript location in LWORDS (in common
block /HLPWDS/) for the appropriate HELP message for the entry
options corresponding to the tree node N. The actual subscript
location given will be for the LWORDS value specifying the
number of characters in the HELP message. The actual message
is contained in the subsequent LWORDS words in A4 format.
Figure 28 shows the structure of a typical HELP message in
LWORDS.

NPOINT (2,N) specifies the subsequent tree position for the
entry sequence in one of three ways. If the value is zero,
the entry sequence (command) is complete. If the value is
positive, the three lowest order decimal digits are the tree
node index for the next entry. For example, NPOINT(2,N) =
3009, specifies that NPOINT(1,9), NPOINT(2,9) and NPOINT (3,9)
provide pointers for the next entry. The thousands digit
gives the substep number for the next entry. A negative
NPOINT(2,N) value implies a branch in the tree structure at
the current position and points to a sequence of pointer en-
trys in the array LISTP (in common block /ENTOPT/). The se-
quence of values contained in LISTP, in turn, points to possi-
ble next tree nodes in a manner identical to that described
for positive or zero values of NPOINT(2,N). The manner of
choosing the appropriate value from LISTP is described in the
next paragraph.

NPOINT(3,N) is an integer value that points to the first
position of a sequence in the array IENTOP (in common block
/ENTOPT/). Each sequence in the IENTOP array corresponds to
one value for the second subscript of the instruction matrix,
IDIRCT. The first word in an IENTOP sequence gives the second
subscript value for the corresponding pair of entries in the
instruction matrix. Table 3 lists the meaning of the instruc-
tion matrix positions. Following the second word in the
IENTOP sequence are one or more numeric values that specify
allowed options for the entry. The second word is an integer
that specifies the number of option specifications. The
option specifications in IENTOP are integers that can have
three interpretations. A positive value less than 1000 speci-
fies an allowed keyword entry for the option from the keyword
list IAA (in common block /WLIST/). A value of 1000 specifies
that a non-keyword, four-character, string entry (e.g., an
item code) is an allowed option. A negative integer specifies
that a numeric entry is allowed. The absolute value of a
negative integer points to the first of two floating entries
in the RANGOP array (in common block /ENTOPT/) which give the
lower and upper bounds for the numeric entry. Numeric or
string specifiers must always be the last entry in an IENTOP
sequence. Figure 29 shows the structure of a typical IENTOP
sequence. If the current NPOINT(2,M) value is negative so as
to point to the first element of a sequence in LISTP, each

74

B it oh AR S - e goc, s g ¢

+
1
i
!
]
NPOINT(1,M)
° POINTER=N
NUMBER OF FIRST FOUR CHARACTERS CHARACTERS CHARACTERS (CHARACTERS
CHARACTERS CHARACTERS S THRU 8 9 THRU 12 13 THRU 16 17 AND 18
IN THE IN 'HELP' IN 'HELP' IN 'HELP' IN 'HELP' IN 'HELP'
. MESSAGE MESSAGE MESSAGE MFESSAGE MESSAGE MESSAGE
’ E.G. 18 E.G. 'SCFl! E.G. ',SCF! E.G. '2 OR' E.G. '_GRO' E.G. 'UP__'
LWORDS (N} LWORDS (N+1) LWORDS (N+2) LWORDS (N+3) LWORDS (N+4) LWORDS (N+1843/4)
Figure 28. Structure of typical "HELP" message.
'm—
F - w——

i
v
|
1

T

dHSKH
WIIW
SVdL

DILSNOdY
OILSILVYLS
OLNvY
SSO¥D
ISNOdSTH
JONIYIHOO
XV
JOVIIAY
ONIdWYd
WNYLOIdS
YALIId

O INOWIVYH

ALITILN
LNIWINOD
JAYS
aiind
JLYNIWYAL
NNIW
LIS
JLNOIXA
LITION
LIQd
AV1dSId
JATYIA
HZATUNY

NI O~SOO0

NOILOV 3AIYAA

NOILOY SISXAIVNY

NOILVOIJIDIAdS ANVMWWOO

€

76

[4

T

xx"TOALNOD
LINYIAd

LINVAId
TVILINI

XIYLVW NOILOAYLSNI JOVAVILINI ¥ISN

SNOI.LdO

NOILONYLSNI

ONINVINW
NOILONYLSNI

‘g T4Vl

YAIWNN
XIILVHN

YIdvdL
4 ANISOO

lolc¢: &
ISINOAN

4
0°0

Al

MmO~ 0o m ™

JITVH
3NON
ONINNVH
¥ydd¥L SOD

S+d°T NYHL "0

L N¥HL 2
S+d°T N¥HL "0
S+3°'T NYHL T°

00T NYHL T

A £ 17
LTYNIQ
q40'1s
sS1a1d
014a
OTANW

OoW

~NmM P

NOILONNA MOONIM

ZONANGAYI WNWIXVH

STT0d 30 YIAWNN
XONANOTYA MYTId ¥IMOT
XONANOTIA AVAIL ¥yIddn

SOINOWNVH J0 JIAGWAN

¢ NN O~

¥xTOYINOD IINVAIA
LINVIAAd TIVILINI

SNOILdO

NOILONYLSNI

ONINVHIW
NOILONYLSNI

(QINNIINOD) XI¥IVW NOILOAWISNI IOVAWIINI ¥ISN "€ A1GVL

YIEWNN
XTYIVW

77

»/J’f

O

O M W ~

000T NYHL 0°0
000T NYHL 0°0

ONIYLS
YHLOVEVHO ¥

L9L2€ MYHL T
¥Z MYHL T
00§ NYHL 0T

S+3°T NYHL OT

0%+ NYHL 0%~

0°¢ MYHL S°

0°8T MIHL 0°'T
JLVINOIVO

09+ NYHL 09-
JLVINDTIVYO
*8Z2T MYHL T
S+d°T NYHL "0

—~

- o~ o~

—~ N = N —

—

xxTOYLNOD LINvA3Qa

SNOILdO

NOILONYLSNI
(QINANIINOD) XIVIVW NOIIONYISNI FOVIYIINI ¥dSn

NOIIVdNA ZZ
AWIL IISAI0 12
qA0D WALI 0z
JAINNOD 61
VAGWNAN D INOWIVH 8T
snIavyd ¥oroy LT
g2¥04 HNIILVIOWJIIINNOD
¥O IHOIEM SSO¥9 JIHS 91
NOIIVINDIVD QdFASYIV ANAL
¥Ood IdIDYAINI NOISHIANOD ST
NOIIVINDIVD QAAdSVIV AMIL
¥Od 3AJO'IS NOISHAANOD vI
TINSSTId IIIVIS €T
TINIVIAINAL IV dAISINO 2T
STANTT
HNOINOD JO YATGWNN XYW 11
XONINGIYA ONIJWYA 01
ONINVAW YAGNNN
NOILONYLSNI XIHIVIW
‘€ 479V
e - - S e TR

78

PR G,

——

etede

000T NY¥HI 0°0

TIV TIV
(WALI) ONIYILS
JALOVIVHD ¥
dno¥s

€408

Z2aons

- 1408

666666 NJYHL T
LAS

JSYH

NOILILIVd

LIgd

HOLVIOS

0J4NI

- YLva

(asvo 1¥I1NAIS ‘dIAVS ION

Jra1ada
JIDNVYHD
- MIN

ONIYLS
- JILOVIYHO ¥

T O000T NYHL T°T-

10° = 09¢€ MYHL 0°0

—~ N

S
4
€
4
1
8
L
9
S
4
€
4
T
)

NOISNHWICQ LS¥YId
INdNI €40S I0 ZJdS ‘T40S

J29N0s LNdNI

NOILOATIS (NAW

INIWNOD

NOIIONNA FONANOIS ANVWWOD

JWYN AD01d
AONANGES ANVINWOD

SATIAD J0 YIIWNN

JTONY HLOWIZV

o€

62

82

Lz

9¢

Se
e
1 X4

¥ ¥ TOYLNOD
LINv4dd

(QANNIINOD) XI¥IVIW NOILONYLISNI FDVAYAINI ¥ISn

LINvddad
TVILINI

SNOILdO
NOILONYLSNI

ONINVIN
NOILONYLSNI

‘g dIdYL

- .- . . ———
PP RN e

YADWNN
XIYIVW

79

Sitiar e Boa e

— . 4 - - - - — o — - e - g L - -
- - - - - 8¢t
L0Tdd 0T
LO1IdT 6
aavy @8
ddday L
Jovaans 9
dNOLNOD S
INIdd ¥
LO1dV ¢
LOTdN ¢
T INON Lo1ld T NOILOATAS ILN4LNO LE
79 MIHL T ¢ NOILVDIAIDAdS INIWITI MOd
r4 TIY TIV T ‘INdANI dno¥9 ITIA OANI 9t s
NOILVYDIAIDAdS
PO MIHL T <2 LNIWITI NWNT0D
Z TV TIV T ‘INdANI dN0¥D d1Id OJANI SE
ONINYLS
T - YIdLOVYVHO ¥ 1 JWYN do¥D JI1Id OJNI 14>
79 NYHL 1 ¢ LNILXH NOISNIWIQ NE
Z TI1Y TIV T ‘INdNI €405 X0 ZJaDS ‘TdOS £E
Y9 NMHL T 2 LNILX3 NOISNIWIA AN?
4 TIV TIY¥ T ‘INdNI €40S I0 ZJDS ‘TADS Z¢
- - - - - 1€
¥ x"TOYLNOD LINVIAIa SNOILdO ONINVIW YIIWNN
LINVIIA TYILINI NOILONYLSNI NOILONYLSNI XIYLVH
(QINNIINOD) XIYIVIW NOILDNYISNI HOVINIAINI ¥yIsn "€ IT9VL

v
.j
.

‘

(ISWNOd TVOINANITAD ¥Ood)
NOIIDOTBIA FIYOIQ O¥dAZ FHI NI
YO (IVWYOd IDFY ¥0d) SIXV
F19YIYYA INIANAJIANI LSHIA

000T+ HHI NO IO1d FOVIAINS Yod
€ x0°0 NYHI 000T- T NOILISOd 3XHT S,YIAYASHO 44
9+3° T+
N¥HL 9+3°1- 2
Z olnv oLy I TIAFT YNOINOD WNWINIKW 7
9+3°T NYHL 0 2
Z olny olnyY I TYANAINI YNOLNOD 4
TANI 9
NN s
SVL ¥
ZVAN €
NWNTI0D 2 TIGVINVA INIANIJIANT
Z TdWI Mmod T @NOJHS ¥0o3 FI¥IS INdINO 184
a4s010 ¢
rA FS01D qosdnNd 1 TOYINOD ¥OS¥ND SIOIHAVEO (1} 2
TdNI 6
WAIW 8
SYL L
ZVUHR 9
NWNI0D §
MOd ¥
WIVH ¢
OFdd 2 TIIVIYVYA INIANIJIANI
r4 TIWI TWIL T IS¥Id ¥od FIVOS INALNO 6€
»xTOYINOD I1I0VJddd SNOILdO ONINVIN JAGWNN
ITnvdad IVILINI NOILONYLSNI NOILONYLSNI XITYIVW

(QINNIINOD) XIMIVW NOIION¥ISNI HDOVAYAINI ¥IsSn "€ IATdVL

81

e —

1
. L+3° T+ 1014
_ MHL [+3°T- 2 A-X NV ¥0d SIXV X, FHL
r4 oLNV OLNY T NO ANTIVA QI13dv1 WAWINIW 0S
] ‘@dIAIDA4S 39 AVIW JTVOS D01
*101d X-X NV 303 (SIXV
L+3°T QYHL 0 € FI9VINVA INIANIJFAANI)
9501 2 SIXY X, THI NO SINIVA
Z olNnv oLNY T Q31dIGV] NIIMIIY TVAYELINI 6%
i L+3° T+ 1014
N¥HL L+3°1- ¢ A-X NV ¥0d SIXV X IHL
Z oLOY ornyY T NO dANIVA QITIIVT WAWINIW 8%
garoITAS 3 XVIW ATVOS
9501 L0114 A-X NV ¥0id
[+3°T N¥HL 0 € (SIXV I19VI¥YA INIANIJIA)
001 2 SIXY X: JHI NO SINIVA
Z oInv OLOY T QIT3AW] NAIAMIIL TYAYALINI Ly
SIXVY FIdVI¥vVA INIANIIIA
000T+ qHI NO LO1d dAJVAIAS d0d
€ x0°0 N¥HL 000T- T NOILISOd dXT S, ¥IAYISHO 9%
(IVod
YO INANITAD ¥0Jd) NOILOHNIA
ATYOId XIININ dHL NI
¥0 (IVINOA I0d¥ ¥0Jd) SIXY
IdYINVA INIANIJIANI ANZ
000T+ IHI NO I071d FOVJI¥NS ¥Od
€ x0°0 A¥HI 000T- T NOILISOd FAT $,¥IAYISHO SH
»xTOYINOD 11INVJad SNOILdO ONINVIW MIGWNN
I70YJ3d IVILINI NOIIONYISNI NOILONIYLSNI XTIV
W. (QIANIINOD) XINIVW NOIIONYISNI FOVIYALNI ddSN ‘¢ FIGYL
B, ooupunr Al et

-

-
-

82

e g ——

P A RSy

—

WA g

T2 w»

LNAWNDOYY NOILNDIAXI

(3sv¥D 1YIDIA4LS) JONANGIS ANVWWOD HIFNOJI 8%
SIXV IVHI 404 NISOHD
SI ONITVYOS 95071 NIHM
SIXV X, FHL NO FANTIONI
€ 4 O NYHL T T Ol SAAVYDAA A0 YATWNN LS
SIXY IVHI 404 NISOHD
SI SNITYIS 95071 NIHM
SIXVY ,X: FHI NO dANTONI
£ € 9 NYHI T T Ol S3IAYOIA A0 VAGWNN 9g
L+d° T+
O¥HL L+3°T- 2 NOILISOd NWNTOD
Z ANON INON T Jod HANIVA ddIT1ddns ¥dsn SS
INFWNOYY NOILND
(3SYD IVIDAAS) ~-3IXT FONANGIS ANVIWWOD QUE 49
INTWNOYY NOILND
(ASYD 1IVIDAIS) -I¥d FAONANOAS ANYWWOD ANZ £S5
. INTWNOYY NOILND
(ISYD 1TVIDAAS) -3IXd FONANOIS ANVWIWOD IST zs
NN ¥ 0€ NOIIDNYISNI SY
SY¥I € (QdI1JIDAAS ANTIVA TTIIVIVUVA
VA 2517 A INFANIJFANI IS¥1d ¥od
Z TdWI TANI T HIVOS ‘INANI ZdDS ¥O TJIDS 1S
x»xTOYINOD IINnvazd SNOIIdO ONINVIW JIGWNN
I'Invaad TIVILINI NOILONYISNI NOIIONYISNI XIYIVH
(@INNIINOD) XIMIVW NOILOAYISNI HOVAMAINI ¥Isn € dA19YL

83

"
i
N
W,
=

P
"

et e
*

MOIS 0T
MoING 6
SOIION 8
SOIL L
QIdooN 9
amge s
dIVH %
TINd €
TIVI 2
T - NIVH T ONILIIS NNA 99 \
| 4
WOLIOd € o
dor 2 NOIILOd1dS
Zz HIodg HIOd T INAWITI MO¥IATILNOA 59
- - - - - 9 3 ,
- - - - - €9 .
- - - nd - 29 N
hfolct: 4 101d ¥NOINOD ’ q
r4 IoTg ITL0 1 ¥0 FOVJAINS ¥Od IVWNOJL 19 _ :
|
€d0S €
Z2dos 2 INdINO Jod :
1 - Td0S 1 NOILOII3S ATId HOIVMEOS 09 ! _
ANTIQNOHD FHI ONY “ .
SNOILLNE JIAVT AYVANNOL
dHI J0 ¥0ILD2dILIA ONIINIOL o
S S¥ 06+ NYHI 06~ 1 Q@UVOINI FHI NIIMIIL IFTONY 65 M,
»xTONINOD I1nvadd SNOIILdO ONINVIW VAGHON h)
I1Nva3d IVILINI NOILONYISNI NOIIONYISNI XIYIVK . .

(QINNIINOD) XIVIVW NOILDNYILSNI ADVINIINI ¥ISN "€ FTdVL

i

Gl

-

K} . Ten

£ =00 "000T NYHL 0°0

TVNAIAIQNI
T - JdTIWASNI

INd

ada

24dda

q94da

vda

MOTYVN

@IIHL

T - JAYLOO

LId

NOILVIAJIQ

JONVIYVA

T - NVIW

NOILVIIIYOD
T - ALISNAA

aNoods
(4 LSYI1d LSYId

(owreN uoT3T3IRJd)
T - INON

Ad000N
Xd0O

—~ N —t N — N ~ N ~ANMH S ANOFHN OO ~ N —~

~—

LdS430 XVH

NOILOATAS HTAWIASNA

SISXTYNY JILSNODVY J0 AJXL

ddXAL SISATVUNVY SDILSILVLS

ddXL

SISATTYNY OLNV ¥YO SSOY¥D

LOTS SSIAIOV NOILIIYVd

NOILILYvYd

€L

L

TL

oL

69

89

L9

¥x'TOILNOD LINVA3d SNOILJO
LINYAIA IVILINI NOILONYLSNI

(QIANIINOD) XINIVW NOILONWISNI HTOVAYAINI ¥IASA

ONINVANW
NOILONYLSNI

‘€ TIAVL

YIIWNN
XIYLVH

ey

SR Y

85

SEAAYOIA 40 YIWNN

£ £ CTMHL T T MOY-T19N00 WOLLOE LO1dd €8
PEI'T NYHL €T~ 2 LNIOd LYVLS
(4 oLnvy oLny T MO¥-T79N0d WOLLOd LO71dd Z8
PEd°T NEHL ¥ T~ ¢
001 ¢ NOILOITdS TVAYIINI
Z oLnv oLV T MOY¥-d71400d WOLIOY 101dd 18
TIAFT NOILOTWIOO
S 0°0 "00T MYHI "00T- T YOLVANALLY OILSNOJY 08
HLJIM
S 0°8 0°66 NYHL 0°'T T -0NVd YALTId ANV MOWYVN 6L
WIONON ¢ NOILVITRIOD
Z WRION WION T Jod ILOHTIS HZITVIWHON 8L
= = - - = LL
€ 0°0 967 MYHL "0 T JOVYIAVY Ol SINIOd INIOVLAY 9L
SNId
€ 0°L 00T MY¥HL € T J0 YAAWAN ISIL FYVNCS-1HD SL
£40S €
240s ¢
T = Td43s T dT1I4 HOLWYOS LNANI dNODHS YL
¥ x"TOYLNOD LINVYddq SNOILdO ONINVINW JIIWON
LINvadda TYILINI NOILOMYLSNI NOIILONYLSNI XI3wYH

(QANNIINOD) XIYIVW NOILDNYISNI FOVJYIINI dISn € JTAVL

86

(31

*d xTpuaddy uT (/I743Q/ YOO0Tdq UOUMOD) TVAQI AeIXe 939Sxy
‘santea 31neiap A1ddns sjord sy3z sjeirsuab eyl saurznox
-qns 3yl 9yl ‘00 03 39S 9Iv SUOTITsTod 949 I9AISSQO 93IY3 TR U3YM«

AdOD ¥
NOILILIVd ¢
JASVHNN 2
T - ASYHW T NOILOV ALITILN 8
¥¥TOYLNOD LINVAAA SNOILdO ONINVIW YADIWNN
LINVIId TVILINI NOILOMYLSNI NOILONYLSNI XIULVH

(papnTouU0)) XIVIVW NOILDNYILSNI HOVANAINI ¥YISN € ITAVL

87

',.,.

';"‘:TV.»““ -

¢

o

e T

. (R

*sousnbss uoTido uoTIONIISUT JOLNII TeoTdil “6Z 2anbrtg
{9+N) dOLNIT {S+N) dOINAI (P+N) dOINTT {£+R) JOILNIX (Z+N)dJdOLNAI (T+N) JOLNITI (N) dOINIT
(te- *9°Q) (11 *9°3) (L9 *9°3) (89 9°3) (99 *9°3) (s *9°3) (8Z *9°3)
YALNIOd
IONVY SNOILJO
AUINT NOILdO NOILdO NOILdO NOIL4O NOILONYLSNI HIGWAN
OINTWON qEOMKIA QaoMXaN QUOMKZN QYOMAIN 40 dIAWON NOILONYISNI
, QHOM qHOM QYoM QHOM qdOoM
2ONANDAS FONANDAS 3ON3ANDIS 4ON3NDdS qON3INDAS
NOIL4O HIS NOILJO HLy NOILJO QUE NOILdO aNZ NOILdO IST
N=43INIOd
(H’E) INTO4N
bt .~ - D R
PRGN

I .

e

.
Ty s
A Th

il SN

element of this sequence corresponds by sequence position to
one of the options from IENTOP. For example, if the LISTP
sequence contained the values 3021, 3045, 3064, 3082, the
option sequence in IENTOP is 48, 24, 39, 40 and the keyword
number 24 is selected, then the next tree position would be
45,

The instruction matrix, IDIRCT, is a two-dimensional array
with the first subscript dimensioned to two. The second sub-
script corresponds to the instruction matrix number as listed
in Table 3. IDIRCT(1,N) indicates the selected option for the
instruction and IDIRCT(2,N) contains the number or non-keyword
string if such an option was selected. An IDIRCT(1,N) value
that is positive and less than 1070 indicates the position in
the IENTOP option sequence for the option selected. For
example, if the corresponding IENTOP sequence held five al-
lowed options and the third option position was selected, then
IDIRCT(1,N) would equal the integer three. An IDIRCT(1l,N)
value of 1000 indicates that the entry is a non-keyword string
held in IDIRCT(2,N). An IDIRCT(1,N) value of -1 indicates
that the instruction is a floating number that is held in
IDIRCT(2,N). This floating number must be accessed with an
equivalenced array which is normally DIRECD.

Default values are coded in the arrays IDVAL and PVAL (in
common block /DEFLT/). IDVAL must be dimensioned the same as
IDIRCT and the second index corresponds to the option number
for the options listed in Table 3. IDVAL(1l,N) indicates a
default control number, and IDVAL(2,N) indicates a default
value as described in Appendix B.

4.4 PROCESSING

4.4.1 Processing Flow

The control routine for the processing block is PROCES and the
flow for this routine is shown in Figures 30 and 31. PROCES
first calls the three routines, PROSET, INPSET and OUTSET,
which interrogate the instruction matrix and, as necessary,
set up input functions and set control values. The routines
also check for errors in the instruction matrix. For example,
a reference to a nonexistent Info File group will be detected
in routine COMPGP, which is called by INPSET.

PROCES then must loop over all row and column positions for
the specified input data. Normally, the outside loop is over
column positions and the inside loop is over the row positions.
However, for ensemble averaging, this order is reversed. 1In
the non-ensemble averaging case, PROCES enters a DO loop that
covers the column positions (radial stations). Inside this
loop, PROCES calls ATTGET to retrieve and/or calculate the

e C

PRESET
PROCESS

i

PRESET
INPUT

PRESET
OUTPUT

e A .

ENSEMBLE
AVERAGING?

Liob VR CHTUMN el T ONS

b OVER D RCW PR T N

v

RUTHTEVE

DATA

.
?
I
_ !
N CR T ODATA |
[CHARY ;
Ui FINALY |
i

L

A
|

LOOF VIR CTIME SECTUONS

!

RETRIEVE
DATA

M

INTEGRATI

< "“ .

Figure 30. Processing flow diagram (first part).

~—
R

90

AL SN

S Tt v A gy o e e s — -

o

s

: 300
\

OUTPUT DATA
{TEMPORARY
OR FINAL)

¢ t

LOOP OVER ROW POSITIONS

!

LOOP OVER COLUMN POSITIONS
GET ATTACHED
PARAME]

‘RS

--

FETRIEVE

DATA

T

PROCESS

DATA

S
i e

GUTPUT DATA

e T gy W

(TEMPORARY
OF FINAL)
i
[e
N READI
SLOFE S
' CALCULATE
! RLADE 51071

(TEMPORARY
SRCOPINAL)Y

‘vt i

. FINAL
' DISPOSITION

‘ . OF DATA
3

RETURN

-

Figure 31. Processing flow diagram 'second part).

~—

*
S St

I vl 3T Y (U

attached parameters for the appropriate counter and time span.
ATTGET is called once for each column position since the
counter or start time within a counter could change with
column number if the input is from a scratch file. ATTGET
will not recalculate or retrieve the attached parameters if
the currently stored attached parameter data are appropriate.
In addition, ATTGET will not calculate the attached parameters
if these parameters are not required for processing or display
in the current step and the output is not to a scratch file.

Following the ATTGET call, PROCES enters a second, nested DO
loop which covers the row positions (chord positions). The
flow inside this loop is quite straightforward. GETDAT re-~
trieves the appropriate data stream(s) for a row/column inter-
section, PRO1l calls the appropriate routine to process the da-
ta, and TSAV1 stores the data either on the temporary scratch
file or on SCFl, SCF2, or SCF3. GETDAT may retrieve the data
stream from the Master File according to the user item code or
Info File specification, or GETDAT may call RTRVSC to retrieve
the data from SCFl, SCF2, or SCF3.

PRO1 addresses most of the available processing routines.
PROl1 does not address processes that must treat data from

more than one row/column position simultaneously (e.g., Cn

integration). For such processes, PROl passes the input data
straight through to output, treating the data in the same way
that data is handled for a DISPLAY command. When the output
of a process is to be stored on SCFl, SCF2, or SCF3 and the
processing has been completed by PROl, TSAV1 calls SCADD to
save the data for the current row and column. Otherwise,
TSAV1 saves the data in one of three ways. Data streams that
contain a single data point are saved in a portion of the
array XBUFF. Multiple point data streams are written to the
temporary scratch file. However, if a single row position is
being processed in the command step, the output data is not
written to the temporary scratch file. If the data is to be
printed, one of the printout routines (XYPRNT or XYPRN2) is
called to print the data stream immediately.

when the row position DO loop completes, PROCES checks whether
the specified process is an integration over multiple chord
positions (i.e., Chr Cor €4 integrations). If not, PROCES
jumps ahead to a call to TSAV2. If so, PROCES enters a DO
loop that covers data stream sections. Possibly every data
point for every row (chord) position will not fit into the
program scratch storage array. Thus, each data stream is
broken into 128 point (one-half of a scratch file record)
sections and all the data for each section is processed simul-
taneously. GETEMP retrieves the data stream sections from the

92

a

q
Ey
L
j
ré‘

temporary scratch file and PRO2 selects the appropriate inte-
gration. When the loop has covered all the data stream sec-
tions, PROCES calls INTEMP to supply the appropriate labels
for the process output.

2e g g ovn;

After the call to INTEMP, PROCES calls TSAV2 to store the re-
sults of the integration. If the output is to be stored on
SCFl, SCF2, or SCF3, TSAV2 calls SCADD to save the data for
the current coiumn. In addition, attached parameter data are R
stored using more calls to SCADD if those data have not al-
ready been stored for the current counter. If the output is $
printout, TSAV2 calls XYPRNT or XYPRN2 to print the output

data stream immediately. When neither of the above output o
methods is selected and a single-column position is to be i
processed in the command step, the processed data are left in ‘ f
the scratch storage array, XBUFF. Otherwise, the data are

saved by one of two methods. If the output is a single data

point for the column (i.e., one azimuth position), this point

is stored in the XBUFF array. If the output is multiple data

points for the column, the data are written to the temporary g

scratch file.

The same call to TSAV2 may be executed after a jump around the)
DO loop that performs the integrations. In this case, re- :
guired storage or printout of the data may have already been
performed by TSAV1. If the output is to SCF1l, SCF2, or SCF3
and the column position represents a new counter, TSAV2 calls
3 SCADD to save the attached parameters. If the output is]
F printout, this printout has already been performed in TSAVl.
For graphic output, the output data are stored in XBUFF or on
temporary scratch unless only one column is to be processed in
the command step.

At this point, at address 400, the block diagram depicts the
flow for processing that uses ensemble averaging. Ensemble
’ averaging is available for a restricted set of analyses that
. does not include the multiple chord position integrations.
) The outside loop for ensemble-averaged processing is over row
positions and the inside loop is over columns. Inside the
loops, attached parameter data are retrieved using subroutine
ATTGET, input data are retrieved using subroutine GETDAT, and
the appropriate process subroutine is selected by subroutine
PROl. Results of a process need not be stored until the loop
over the columns is complete and subroutine TSAV1 is used for
this purpose. Outside the loop over row positions, flow joins
the flow from non-ensemble-averaged processing.

T
A

\
{ when the flow sequences from ensemble-averaged and non-ensem-
‘ ble~averaged processing rejoin, PROCES checks whether the
_ specified process is a differentiation over the column posi-
¢ tions (radial stations). If not, PROCES jumps ahead to call

DISPOS. 1If so, PROCES calls SLOPST to retrieve the appropriate
data from the temporary scratch file and to execute SLOPE to
calculate the blade slope for each radial position. Then

TSAV3 is called to store the output from SLOPST.

The final routine called by PROCES is DISPOS. DISPOS selects
the proper routine to perform the output. If the output is to
SCF1, SCF2, or SCF3 or to printout, then the output process
has been completed in TSAV1, TSAV2 or TSAV3 and DISPOS simply
returns. Otherwise, DISPOS calls the appropriate routine for
the graphic output selected: MULTPL for multiple curve X-Y
plots, SINGPL for single curve X-Y plots or to add a curve to
an X-Y plot, CONSET for a contour plot, and SURSET for a
surface plot.

wWhen DISPOS returns, PROCES sets the subroutine argument, IC,
to one and returns. MAIN transfers program control back to
USER.

4.4.2 Scratch Files

Scratch files SCFl, SCF2, and SCF3 are written by subroutine

SCADD and data are retrieved from these files by subroutine

RTRVSC. Subroutine INFSCR is used to obtain information about

the contents of a scratch file. The scratch files are direct

access and Figure 32 shows the assigned purpose for the

scratch file records. The first scratch file record contains

labels, information on the data stored, row positions, and .
column positions. Along with each column position stored, 1
there is a directory for the associated attached parameter

data and other information including the counter for the col-

umn. The column position and attached parameter location

pointers may continue into the second record of the scratch

file. Figure 33 shows the contents of the first record of the

scratch file.

Data directory records begin at record three of the scratch
file. Each data directory record contains several data
directory blocks and each block contains the record locations
for the data corresponding to the top and bottom double-row
elements for one row/column pair. Along with the data loca-
tion pointers, some information regarding each data stream is
included. Space is provided for one data directory block for
each matrix intersection for the allowed number of rows and
columns. Figure 34 shows a data directory record. Data
directory blocks require 12 words (48 bytes) and scratch file
records contain 256 words (1024 bytes) so that 21 blocks are
written to each record. The block address for a given row/
column intersection is determined by varying the row position
first and then the column position.

AD-AQ%% 674

UNCLASSIFIED

BELL HELICOPTER TEXTRON FORT WORTH TX F/6 972
THE DATA FROM AEROMECHANICS TEST AND ANALYTICS = MANAGEMENT AND=-ETC(U)
DEC 80 R B PHILBRICK DAAK51~79=C~0015
BHT=699=099=025~VOL =2 USAAVRADCOM=TR=-380-D~308 NL

{

ey -~

e

i
¢

ErEn

DATA

ARLA
RECuLKD

SECOND
LATH
ARLA

RFCAORI:

FILE LAS
INFOURMAT U b "
MATIUN CONTINURL T » s DIRECTORY
KECORD RECORD
RECORD 1 RICORD ¢ RI'CURL 8 RECORD 24K

K= (IMANIMUM ALLOWED ROWS) x {(MAXIMUM ALLOWED

Figure 32.

RECORD 31+K

COLUMNS) + 20)/71

RECORD 4+K

Scratch file record assignments.

95

—— -

START
WORD

L

64

9

B2
TRPOFE L

LCPOFE*]
ICPOFE+ 2
TCPOEY 43
ICPOFY +4
ICPUFE+,
LEPOFE+6
ICIOEF+ 7
ICPOFF+ R
ICPUEF+9
1CPOFF+ 10
ICPOFF+ i1
ICPOFF+12
TCPOFF+ 18
ICPOFF+14
ICPORF+15

ICPOFF+29

Figure 33.

ENTRY CONTENTS

- e N e s N B W

T T CO VI VI VI

OVEIRALL UNITS (3A4)

ROW POSITION SCALE VARIABLE (4Ad)

ROW PUSITION SCALE VARIABLE (SHORTENED) (2A4)
ROW POSITION TOPOGRAPHIC FEATURE (4A4)

COLUMN POSITION SCALE VARIABLE (4A4)

COLUMN POSITION SCALE VARIABLE (SHORTENED) (2A4)
COLUMK POSITION TOPOGRAPHIC FEATURE (4A4)
FIRST DIMENSION SAMPLING INTERVAL

FIRST DATA RECORD LOCATION

ATTACHED PARAMETER INDICATOR: 0=UNIVERSAL, 1=BY COLUMN

LTYPE (FROM /PRCOM/)

LXAX (FROM /PRCOM/)

SHIP' MODEL {A4,A2)

SHII" NUMBER (A4,A2)

SHIP GROSS WEIGHT (A4,A2)

SHIP LONGITUDINAL CG (A4,A2)
NUMBER OF CUOLUMNS P ENT
NUMBER OF ROWS PRESENT

TOP DOUBLE-ROW ELEMENT KEYWORD
BOTTOM DOIBLE-ROW ELEMENT KEYWORD
GENERAL LABEL FOR DATA (13A4)

INDEPENDENT VARIABLE: 0=NO DATA, 1=TIME, 2stREL, 3=HARM

TOP DOUBLE-ROW LABEL INDICATOR: 1=LABIL, 2=NU LABEL

HOTTOM DOUBLE-ROW LABLL INDICATOR: 1-LABEL, 2-No LABEL

AZIMUPH OFFSET FOR INF©D FILE GROUR

TOP DOUBLE-ROW LABEL {5AQ)

BOTTOM DOUBLE-ROW LARLL (5A4)

LUSCRD UNIT COMBINATION INDICATOR

LABEL FOR SECUND DATA INPUT (i.e., FOR CRO
UNIT LABEL FOR SECOND DATA INPUT (13A4)

ROW POSITION NUMBER 1 UNOCCUPTED: =1.E+19

LAST AVAILARLE ROW POSITION UNOCCUPIED= =1 ,E#139
COLUMN POSITION NUMBER 1
FIRST DIMENSION VALUE PR FIR
DATA STREAM NUMBER OF ENTRIES
RECORD LOCATION FOR AZIMUTH DATA
NUMBER OF POINTS OF AZIMUTH DATA
RECORD LOCATION FOR AIRSPEED DATA
NUMBER OF POINTS OF AIRSPEED DATA
RECORD LOCATION FOR RPM DATA
NUMBER OF POINTS QF RPM DATA
RECORD LOCATION FOR STATIC PRES
NUMBER OF POINTS OF STATIC PRESSURE DATA

RECORD LOCATION FOR OUTSIDE AIR TEMPERATURE DATA
NUMBER OF PQINTS OF OUTSIDE AIR TEMPERATURE DATA
COUNTER (INTEGER}

COLUMN POSITION NUMBER 2

DATA POINT

COLUMN POSITION NUMBER 3

First scratch file record.

96

FROCESS) (1 3A4)

START LENGTH
WORD (WORDS}

L+l
L+2
L+1
L+6
L+7
L+8
L+9
L+12

- e e =

Figure 34.

ENTRY CONTENTS

TOP DOUBLE-ROW ELEMENT START LOCATION IN FILE

TOP DOUBLE-ROW ELEMENT MINOR GEOMETRIC POSITION
TOP DOUBLE-ROW SHORT DATA STREAM LABEL (3A4)

TOP DOUBLE-ROW ELEMENT NUMBER OF DATA POINTS
BOTTOM DOUBLE-ROW ELEMENT START LOCATION IN FILE
BOTTOM DOUBLE-ROW ELEMENT MINOR GEOMETRIC POSITION
BOTTOM DOUBLE-ROW SHORT DATA STREAM LABEL (3A4)
BOTTOM DOUBLE-ROW ELEMENT NUMBER OF DATA POINTS

Structure of a data directory block.

97

— g ——

v —

Data records begin after the last reserved data directory ﬂ
record. Data streams are written to the lowest available data .
records in the order received by SCADD.

The temporary scratch file has a different format from SCF1l,
SCF2, or SCF3. This file will not hold data streams corre-
sponding to every row and column intersection simultaneously.
The directory for this file is contained in the common block
/GENSCR/ (see Appendix B). The flow of PROCES is such that
this file should be required to hold no more than one data
stream for one row element of each column position and one
data stream for each row element of one column position. Data
streams corresponding to column positions are entered first
followed by data streams corresponding to row positions. When
an integration is performed, the row position data streams are
condensed to one data stream, which is written as a column
position data stream on the scratch file. The row position
data streams for the next column position must then be written
to a higher location on the scratch file to avoid overwriting
the new column position data stream.

4.4.3 Info File Retrieval

The information stored on the Info File is retrieved and pro-
vided to the Processing Block by several different routines.
INFOST is called in the Program Initialization Block to read
and transfer the information from the initial group into the
common block /SINGIF/ (see Appendix B). In the processing
block, subroutine SINGGP interrogates this common block to
extract the appropriate item code for a particular key-

word. If INFOST encounters unit conversion instructions, it
calls subroutine UNINIT to read and store these instructions
in common block /SINGIF/. UNINIT can read and store in
program memory as many as 64 unit conversion lines. In the
processing block, subroutine CONVCK tests dependent variable
unit labels against the stored units and reports a conver-
sion 1if one is specified. 1If the Info File includes more
than 64 unit conversion lines and the lines stored in program
memory do not match the output dependent variable units, then
CONVCK scans the additional unit conversion lines for a match.
The input and processing of the initial group of the Info
File by INFOST and UNINIT constitutes a complete test for for-
mat accuracy of the initial group.

For Info File geometric groups, the processing block calls
subroutine COMPGP to scan the Info File and find the specified
group name. COMPGP then calls subroutine READGP to read and
transfer the group information into the common block /INFGRP/.
The processing block calls subroutine INF02 to extract the
proper item code and geometric position from /INFGRP/ for

each specified row/column intersection.

98

. el e e e e e e — s e e . e
:-‘. hes Sy v N .‘ :
5’.‘

All of the geometric groups are tested for format accuracy
the first time that the menu subroutine INFRED is called :
(see Section 4.6). INFRED calls subroutine READGX to per- i
form the format testing for each group.

4.4.4 Replacement/Addition of Analysis or Derivation Routines

Most routines that execute specific analyses or derivations Q
on input data are accessed by PROl through an interface ;
routine. For example, to calculate blade displacement, PRO1 ;}
calls the interface routine DSPSET and DSPSET calls BLDISP to

perform the actual calculations. The interface must take the ;
input data as stored in the program and provide these data to J
the processing subroutine in the required format. The main]
stream of input data is contained in the array XBUFF. Data i
for the top double-row element always begin at array element
one and data for the bottom double-row element begin in the
second half of XBUFF at location IBFSIZ/2 + 1 where IBFSIZ
(in common block /SIZES/) is the array size of XBUFF.

For cross processes (e.g., for cross-correlation analysis),
XBUFF may contain as many as four separate time histories.
These histories correspond to the top and bottom double-row
elements of the first and second input functions for the
cross process. Following are the time history start points ;
in XBUFF for this case. i

e T

1 - Top double-row, first input function

[V

IBFSIZ/4 + 1

Top double-row, second input function

IBFs1z/2 + 1 Bottom double-row, first input function

3*IBFSIZ/4 + 1 Bottom double-row, second input function

For cross processes with a single double-row element input
(i.e., the top double-row element), the first input function
begins at location one in XBUFF and the second function is
stored beginning at location IBFSIZ/2 + 1. Both input data
functions must be the same length (in time and in number of
datum points) for cross processes.

The presence of top and/or bottom double-row elements is ,
indicated by the value M12INP (in common block /CNTLIP/) where r
the allowed values are:

0 = both double-row elements present
1 = top double-row element present only
2 = bottom double-row element present only

99

T

The number of data points in the data stream(s) is given by
the two-element array IDATPR (in common block /CNTLIP/) where
IDATPR(1) is the number of data points for the top double-row
element and IDATPR(2) is the number for the bottom double-row
element. Attached parameter data are contained in the common
block /ATTPAR/ as explained in Appendix B. Array XSPARE (in
common block /BSPARE/) is available for intermediate storage
of data. In particular, XSPARE will store intermediate results
for ensemble averaging processes.

After the process is completed, the interface routine must
assure that the output data streams are stored in XBUFF with
the top double-row element data stream starting at XBUFF(1)
and the bottom double-row element data stream, if present,
starting at XBUFF(IBFSI1Z/2 + 1). M120UT should be set to
indicate the presence of the top and/or bottom double-row
elements using the same allowed values as M12INP. IDATPR
should be set to give the amount of data for each double-row
element. The output keywords, KEYWD1l and KEYWD2, should be
set to indicate the type of data present. If a double-row
element is not present, the corresponding keyword should be
set to zero. If a double-row element is present, there are
three cases for output keyword selection. The keyword for
output from analysis should be identical to the corresponding
input keyword, KEYQl or KEYQ2. The keyword for a derivation
output, which could in turn become the input to a second
derivation, should be set by reference to the KWDAT array in
subroutine PROSET. The keyword for other derivation output
could be set to any non-zero value.

Then the labels and label pointers should be set. When the
process is a derivation, the dependent variable description,
ITEMDS (in common block /LABELS/), should be changed as neces-
sary along with the dependent variable units, IUNITS. LTYPE
(in common block /PRCOM/) should be set to eight. When the
process is an analysis, ITEMDS should not be changed but LTYPE
should be set to indicate the type of analysis as listed by
HLABLS (in common block /PLABLS/). In either case, LXAX (in
common block /PRCOM/) should be set to indicate the independ-
ent variable as listed by XLABLS (in common block /PLABLS).

The interface routine must also set the double-row element
labels, LBDTOP and LABBOT, and the indicators for these
labels, LTOPON and LBOTON. All of these arrays and vari-
ables are in common block /MLABLS/. The settings that are
required depend upon the relationship between the input and
output double-rows. These relationships and the appropri-
ate settings are listed below.

There are both input double-row elements and these are
individually processed into both output double-row ele-
ments in the same order. The arrays and variables should
be left unchanged.

100

+ There are both input double-row elements and these
are processed together to create the top output double-
row element or to create both output double-row elements.
Both LTOPON and LBOTON should be reset to zero.

There is only a top double-row element, which is pro-
cessed into the top double-row element on output. The
arrays and variables should be left unchanged.

There is only a top double-row element, which is pro-
cessed into both double-row elements on output. LTOPON
and LBDTOP should be left unchanged, and LBOTON should
be reset equal to LBDTOP.

These variables and indicators depend upon original data
sources and should never be reset to labels contained within
the interface routine itself.

4.5 COMMAND SEQUENCING

4.5.1 Command Sequencing File

The Command Sequence File is a direct access file with a
structure as shown in Figure 35. Each record contains 16
command lines with 64 characters (16, 4-byte words) per line.
Each block requires 7 records for 112 available lines.

The first word of the directory record is an integer that
specifies the total number of records in the file. Following
the first word is a sequence of two-word entries, correspond-
ing to the command sequence blocks, which gives the four-
character block name in the first word and the record location
in the second. An empty block is indicated by a blank block
name.

4.5.2 Command Sequencing Routines

Access to the Command Sequence file is initialized by the
routine EDINIT in the Program Initialization block. EDINIT
first reads the directory record for the file and sets certain
control values based on the size of the file. Then EDINIT
checks the location pointers in the directory record for
reasonableness. Finally, EDINIT reads the last file record to
check that the command sequence file is properly initialized.

The main routine for the Command Sequencing block, EDCNTL, is

called to perform any of the functions: EDIT/NEW, EDIT/CHANGE,
EDIT/DELETE, BUILD or EXECUTE. EDCNTL first searches the Com-
mand Sequence directory record for the block name entered. 1If
the name is found and the function is EDIT/NEW or BUILD, an

101

: BLOCK 1 BLOCK 1 BLOCK 2 .
o FILE
DIRECTORY FIRST o o e LAST FIRST e s s o ®
RECORD RECORD RECORD RECORD
! RECORD 1 RECORD 2 RECORD 8 RECORD 9

Figure 35. Structure of command sequence file.

AP g

‘ { i

‘)
|
' ‘
!
b

error message is generated. An error message is also gener-
ated when the name is not found and the function is EDIT/
CHANGE, EDIT/DELETE or EXECUTE.

For the EDIT/NEW or BUILD function, EDCNTL sets the variable
LED (in common block /LEDIT/) to the appropriate value (EDIT/
NEW = 1, BUILD = 2) and searches for an unused command se-
quence block. If a blank block name is found, the name is set
to the specified name and the command line storage area is
preset with dollar signs for every line. Upon return from
EDCNTL, the User Interface block causes the individual command
steps to be saved using the EDSAVE routine.

For the EXECUTE function, EDCNTL sets the variable LED to
three and sets appropriate pointers for retrieval of the named
block. Upon return from EDCNTL, the User Interface block
causes individual command steps to be retrieved using the
EDINP routine. Subrouting INTERP isolates any parameters
passed to the command sequence and stores these parameters in
the arrays NLARG and LARG of common block /LEDIT/. EDINP
retrieves these parameters as they are referenced by the
command sequence.

For the EDIT/DELETE function, EDCNTL modifies the correspond-
ing file directory entry to show a blank name.

For the EDIT/CHANGE function, EDCNTL reads the indicated com-
mand sequence block into the array LINE (in common block
/CNGBLK/). Then EDITCH is called to allow the user to modify
the sequence. Upon return from EDITCH, the argument ISAVE can
have a value of one to indicate that the modified sequence
should replace the original sequence or zero to indicate that
the original sequence should be left unchanged on the command
sequence file.

4.6 MENUS

Menu displays are controlled by the routine MENU. This
routine simply calls the appropriate routine to create the
specified menu display. Following is a listing of these sub-
routines and the functions they perform.

MCOUNT - List the counters on the Master File partition
or partitions that are currently accessed.

MITEMS - List the item codes for a given counter that
are present on the currently accessed partition.

INFRED - List the Info File initial group and the geomet-
ric groups by name. For the first call to
INFRED, use subroutine READGX to test the
format of each geometric group for accuracy.

103

- v en -

R

Vo XA ST R ST REL S0

Py
N

.

s
£

LSCRAT - List the contents of the scratch files.

EDITLS - List the Command Sequence blocks present on the
Command Sequence file.

MPARTS - List the partitions on the Master File and
indicate the partition(s) that is currently
accessed.

MNMASK - List the item codes that are currently masked.

MENSET - List the current run settings.

4.7 GRAPHICS

4.7.1 Tektronix/Calcomp Plotting Interface

DATAMAP generates plots on the Tektronix 4014 screen that are
nearly identical to corresponding plots generated on a Calcomp
or Houston Instruments DP-1. In addition, differences in the
source code required for the Batch mode load module and the
Interactive Graphics load module are held to a minimum. These
features of the software have been implemented through the
generation of a group of plotting interface routines and
through the use of a modified version of the Calcomp Preview
routines. Calcomp Preview is a set of routines provided by
Tektronix in the PLOT-10 software. The PLOT and PLOTS routines
supplied by Tektronix have been replacad by BHT modified
versions for this specific application.

The plotting interface routines replace the functions of the
Calcomp LINE and AXIS routines. In addition, the plotting
interface routines perform five functions required by the
Processing Program. First, certain residual differences
between calls to the Calcomp routines and calls to the Tektronix
and Calcomp Preview routines are handled by this interface.

: ‘ For example, the interface routine STPLT handles the difference

: between clearing the screen on the Tektronix and moving the

. plot origin to start a new frame on the Calcomp. Second, the
interface routines generate the Tektronix screen format for
plotting and also handle positioning of the cursor on the
left-hand side of the screen for printed user input and

' computer messages. Third, data plot curves that exceed the

allowed plotting area are clipped by these routines. Fourth,

the facility to generate dashed curves is provided by these

' routines. Finally, access to the graphic cursor and evalua-
i{ tion of cursor-specified locations in user coordinates is
ij provided by the plotting interface.

‘ The plotting interface calls only four Calcomp routines: PLOT,
! PLOTS, NUMBER and SYMBOL. LINE and AXIS are not used. In

, 104

addition, three Tektronix PLOT-10 routines are accessed by the
plotting interface and four additional PLOT-10 routines are
called by the modified PLOT and PLOTS routines. The modified
PLOTS calls the routines INITT, TERM and CHRSIZ and PLOT calls
MOVABS and DRWABS. The plotting interface calls the routines
MOVABS, ANMODE, and SCURSR. Dummy versions of these last three
routines are provided for the Batch mode load module. The
PLOTS subroutine that is used for the Interactive Graphics
mode controls the size and positioning of the plotting area on
the Tektronix for the full-screen plotting mode. This routine
sets multipliers and offsets as necessary for the plotting
area in common block /CLCOMP/ and then PLOT uses these values
in interpreting the plot commands on the Tektronix.

To begin each plot frame, either STALL or STPLT must be
called. STALL should be called for the first plot frame to be
generated by the current program run. STPLT is called other-
wise. Following the call to STALL or STPLT, AXES or AREA must
be called to define the allowed plotting area. AXES will
generate a box around the area, annotate X and Y AXES and,
depending on the IGRID and NOTICS settings (in common block
/DRW/), draw tic marks inside the box and/or a grid inside the
box. AREA will simply define the allowed plotting area with-
out generating any axes.

LYNX is called to draw data curves. LYNX will generate con-~
tinuous curves or dashed curves and/or curves with characters
centered on every N'th point. LYNX cannot draw lines outside
the allowed plotting area. DRAWN is called to draw a line
outside the allowed plotting area according to the dash code
used by the last call to LYNX (see Appendix B).

INSET relocates the cursor on the left-hand side of the
screen for printed input or output. The cursor is located on
the number of raster points down from the top specified by
LNCNT.

PLOC activates the graphic cursor and evaluates the user
specified location in units of the current plot frame. The
resultant values and the user typed character are returned to
the calling routine for processing or output. One position is
evaluated for each call to PLOC.

ENPLT ends all plotting by the Processing Program.

4.7.2 X-Y Plots

Simple, multiple curve, double scale, and comparison X-Y plots
are all generated through the routine XYPLOT. XYPLOT calls

STPLT or STALL as necessary to initialize the plot frame. X
and Y scaling values are determined using SCALEV and the axes

105

are drawn using AXES. For double-scale X-Y plots, subroutine
DAXES is called instead, and this routine calls AXES twice.
This portion of the code is skipped if a curve is being added
to an existing plot frame.

LYNX is then called to draw the curve on the plot. For
double-scale plots, DLYNX is called, which in turrn call LYNX.
Following the call to LYNX, labels are drawn for the plot if
the curve is the first for the current frame. For a multiple
curve plot, a sample of the type of dashed line used by LYNX
is drawn using the routine DRAWN. This line is then annotated
appropriately.

PLOC is then called if graphics cursor activation was speci-
fied by the user. INSET is called and the returned arguments
from PLOC are printed. If the returned character from PLOC is
a 'C', then the program loops back to call PLOC again. Other-
wise the program proceeds to call INSET and return.

4.7.3 Contour Plots

For contour plot generation, subroutine DISPOS calls subrou-
tine CONSET. Based on the two independent variables for the
output function, CONSET calls NOFRST or YSFRST. NOFRST is
selected when the first or time-related dimension is not one
of the two independent variables, while YSFRST is called when
the first dimension is one of the two independent variables.
Both of these routines retrieve the output data and interpo-
late the input data matrix to obtain a new data matrix with
the prescribed number of rows and columns for the plot format
selected.

CONSET then calls either CONCYL or CONREC for a cylindrical or
rectangular format, respectively. These two routines follow
the same general flow. After STPLT or STALL, and AREA are
called, a box or circle is drawn around the allowed plotting
area. Then the interval between contour levels is set using
SCALEV and/or user supplied values.

wWhen the vertical or Z scale is set, CONTUR is called to draw
the contour plot. CONTUR finds the sequences of X-Y positions
that form the individual contours. However, CONNEC is called
by CONTUR to actually draw the contours using LYNX. In addi-
tion, CONNEC uses DRAWN to draw line samples with level anno-
tation in the label area.

Upon return from CONTOUR, additional labels are drawn under

the plot and then INSET is called to reposition the cursor for
printed I/0 for the next command step.

106

YR s) AT TOY

vt ot 1

4.7.4 Surface Plots y

tour plot generation. Subroutine DISPOS calls subroutine SUR-
SET. Based on the same criterion used by CONSET, SURSET calls
NOFRST or YSFRST. Upon return from the selected routine, SUR-
SET calls SURCYL or SURREC to draw a surface plot using re-
spectively a cylindrical or rectangular format.

Surface plot generation follows the same general flow as con- f
'

As with CONCYL and CONREC, SURCYL and SURREC follow the same ‘
general flow pattern. Either STPLT or STALL and then AREA are

called and a box is drawn around the allowed plotting area.

PLSURD is then called to draw the surface. GTFORM is used by

PLSURD to generate the perspective transformation from three-
dimensional point locations to point locations on a viewing

plane.

Upon return from PLSURD, SRRCRF is called to draw annotation
around the allow: 1 plotting area.

o g n
e e

Upon return from SRRCRF, labels are drawn below the plotting
area, INSET is called, and control is transferred from SURCYL
or SURREC to SURSET. Next, control is returned to DISPOS. !

4.8 DATA RETRIEVAL

Measured data are retrieved from the Master File with the rou-
tines DATAIN and FINDIT. FINDIT locates the appropriate data
in the Master File. Two separate FINDIT calls are required to
locate an item code/counter pair. The first call locates the
specified counter in the counter directory and transfers part
or all of the corresponding item code directory into the ITEMD
array (in common block /DATSET/). The second call locates the
specified item code in the item code directory and transfers
the information record for the data stream into the ITMINF ar-
ray (in common block /DATSET/). Both of these calls to FINDIT
are performed by DATAIN so that a single call to DATAIN is re-
quired to input data for a specified item code/counter pair.

' During the second execution of FINDIT, the requested item code
is compared with the list of masked item codes. If this item
code matches a masked item code entry, FINDIT returns with an
indication that the item code was not found. Otherwise, based

) on the requested time offset and the time history length spe-
cified, DATAIN calculates the appropriate first record and

. : reads the requested data. Calibration is performed if the

1 data are stored on the Master File in integer format.

j Part or all of the counter directory and the most recently
used item code directory are kept in the arrays ICTRD and

ITEMD so as to minimize reads of directory records. Thus, if

there are fewer than 128 counters, the counter directory need

107

- S e oy i

——

not be read more than once. Similarly, the item code direc- f
tory need not be read more than once if that directory has
fewer than 128 entries and if the counter does not change. In
addition, the information record need not be re-read until a
different counter/item code pair is required.

FINDIT checks the required data against the data present to
prevent unnecessary reads of directory records and information
records.

: 108

L el .
~

(A - » . . SR ¥- e rm—— -
% Hﬁggw' ' v

LA
{

5. UTILITY ROUTINES

Certain subroutines are used in more than one of the DATAMAP
programs. These routines have been written to be general in
nature.

5.1 DIRECT ACCESS

All direct access READ, WRITE and FIND operations are pro-
cessed by the routines RMS, WMS and FMS, respectively. For
example, instead of a direct access read statement using the
IBM format,

READ (NRI'IXXX)IARRAY

the File Creation Program and Processing Program make the
call,

CALL RMS(1l,IARRAY, ISIZE, IXXX, IERR)

Of course, the normal IBM format, or some equivalent format
for a different computer system, is used in the RMS, WMS and
FMS routines.

The routines use the common block /MASS/ to retain device num-
bers, offsets and sizes. Calls to RMS, WMS and FMS specify a
pseudo-device number which is an index for the arrays in
/MASS/. In the example, the integer 'l' is the pseudo-device
number. The array MDEV contains the actual I/0 file numbers
(data set reference numbers) for the direct access files. The
array MOFF contains offsets to be used in addressing records
in the direct access file. Thus, an MOFF value provides
relative addressing to a group of contiguous records that

form a subset of all the records present in the direct access
file. These subsets are called pseudo-devices. Thus, if

8
5248

MDEV (2)
MOFF (2)

then pseudo-device '2' is direct access file number eight and
the first record of pseudo-~device two is actually record 5249
on direct access file number eight.

The array MLEN gives the number of records assigned to each
pseudo-device. The array MTOT gives the total number of re-
cords and MSIZ gives the record size in four-byte words for
the direct access file that contains the corresponding pseu-
do~device.

Sk
y

RT3

T . T

The routines RMS, WMS and FMS check that the requested rela-
tive record number is within the assigned pseudo-device area
and that the resultant absolute record number does not exceed
the boundaries of the corresponding direct access file. These
routines also check that the requested record size is less
than or equal to the record size for the direct access file.

Initialization of the direct access files and setup of the
/MASS/ common block are performed in routines other than RMS,
WMS and FMS. The programs and routines that perform initial-
ization on the direct access files are listed in Section 6.1.
Setup of the /MASS/ common block is performed for the File
Creation Program in routines SETUP1 and SETUP2. For the
Processing Program, /MASS/ 1s set up in the routines INITSC,
DASTRT and EDINIT.

IBM 0S and MVS system direct access files can be initialized
in one of two ways: a write can be specified as the first
file operation of the program run or every available record in
the file can be written on using a sequential alias for the
direct access file number. The former method is not used
because the File Creation Program and Processing Program
DEFINE FILE statements specify more records for a direct
access file than would ever likely be physically provided for
the file. Thus, the normal system initialization of the file
would always result in an error.

The pseudo-device numbers in the File Creation Program are

1l = Initially is all of Master File and then during the
data transfer is the partition of the Master File.
2 = Scratch file temporarily containing the partition

directory.

The pseudo-device numbers in the Processing Program are

1l = Initially is set to read all of the Master File and
after the Startup Block is executed, is set to read
the partition of the Master File that is specified for
access using slot one.

2 = Directory for partition accessed through slot one

3 = SCF1

4 = SCF2

5 = Temporary Scratch

6 = Command Sequence File

7 = SCF3

8 = Partition accessed through slot two

9 = Directory for partition accessed through slot two.

10 = All of Master File

110

s

¥
{

——

-
—— 2

-

5.2 STRING HANDLING

Several routines are used by the system to process strings.
Subroutine PACK transfers the leftmost character (i.e., the
first character) from each of four sequential words to the
leftmost four bytes of a single word. The sequence of the
characters is maintained. Thus the sequence of string words
'TAWWW', 'BXXX', 'CYYY', 'DZZZ' becomes 'ABCD'.

Subroutine SHFSTR transfers a contiguous sub-string from a
string containing four characters per four-byte word to a set
of contiguous character locations in a second string contain-
ing four characters per four-byte word. Both SHFSTR and PACK
use 'LOGICAL*1' variables, which is IBM-dependent code (see
Section 6.2).

NTOSTR 1is a routine that converts floating numeric values to
strings. NTOSTR is used by INTERP to convert numeric command
entries to string form for storage of command lines.

READF performs scanning and some interpretation of free-field
user input lines. The calling routine must read the command
line into the array ICHAR (in common block /KARD/) storing one
character per four-byte word. READF evaluates numeric entries
as floating numbers, calculates the starting character posi-
tion and number of characters for string entries, and notes
the position in the entry sequence of null entries. This
information is returned in the common block /KARD/.

Subroutine MATCHR is frequently called following a call to
READF to find a match between a character string and one ele-
ment of an array of four-character strings. The first charac-
ter of the test string is compared with each of the first
characters from the keywords stored in the array IAA (in
common block /WLIST/). Subsequently, the following character
from the test string is compared with the corresponding char-
acters for all the keywords that matched for the previous
character. 1If, after every character of the input string has
been processed, there is more than one keyword that compares
character for character, the entry is considered ambiguous and
the return argument IOUT is given the value zero.

If no keywords match the test string, then IOUT is set to
minus one. When a single keyword matches the test string, the
corresponding index for the keyword is returned.

A maximum of four characters from the test string are examined
by MATCHR. Additional characters are ignored. Fever than
four characters may be provided and then only the characters
supplied are processed. Thus, fewer than four characters may

111

—— e Mg iRie T A
DNIFRL B o

f Yo

be an acceptable entry to match a keyword, even though the
matched keyword contains more characters than the test string
supplied. If an unambiguous match is found for the test
string before all the test characters have been processed, the
remainder of the available test characters (up to the fourth
character) are still compared and a mismatch will result in a
return with IOUT= -1.

5.3 SORTING

Several routines are used by the File Creation Program and the
Processing Program to sort arrays in ascending order of float-
ing or integer value. These routines are SORTM, SORTO, SORT1,
SORT2, SORT3, and SORTMF. These routines all use the binary
sort algorithm and retain the same flow pattern. The routines
differ in the number of associated arrays carried along with
the array to be sorted and whether the array to be sorted
contains floating or integer values.

SORTMF sorts an index array corresponding to the array to be
sorted. Then the routine SORTID, which calls SORTMF, carrys
through the sort using the location pointers in the index ar-
ray. The sort is carried through on a matrix of array values
with the column elements corresponding to the index pointers.

5.4 SUBROUTINES TO ENHANCE TRANSPORTABILITY

Certain subroutines are used to concentrate non-standard code
in a single location. These routines are described in Section
6 and are only listed here for completeness. The subroutines
are QUIKIO, READLN, DATEQQ, INIDAF, PARMGT, and NEXTAP. The
routines WMS, RMS, FMS, SHFSTR, and PACK also perform this
function but they have additional reasons for use.

112

vy

)
)

A

6. TRANSPORTABILITY CONSIDERATIONS

DATAMAP has been written so as to make conversion of the
software to another computer system as simple as possible.
However, certain installation and system dependent code has
been required in the programs to achieve the requirements for
the system. Such code is always flagged in the source listings
and a corresponding process that is valid for the local in-
stallation can be inserted in the place of the invalid code.
The various types of nontransportable codes will be discussed
here.

6.1 THE DATAMAP LIBRARY

As mentioned in Section 5.4, six subroutines are used to con-
centrate certain non-standard code in a single location.
These six routines are contained in the "DATAMAP Library" or
"DATMAPLB." DATMAPLB should be made available during the
link-edit process for each of the DATAMAP programs. The six
subroutines, DATEQQ, INIDAF, NEXTAP, PARMGT, QUIKIO, and
READLN are all described in subsequent parts of Section 6.

6.2 DIRECT ACCESS

DATAMAP uses the IBM direct access capability extensively.

All of the READ, WRITE and FIND calls are restricted to the
routines RMS, WMS and FMS. Thus, conversion of the actual
reads and writes for direct access files should be reasonably
simple if there is a corresponding process at the new instal-
lation. In addition, the file definition statements (DEFINE
FILE) are always grouped near the beginning of the main routine
for each program. The files are always set up with 256 four-
byte words per record, the records being unformatted.

Four of the DATAMAP programs perform the initialization pro-
cess of writing dummy data on each record of a direct access
file. The initialization functions of the Master File Ini-
tialization Program and the Command Sequence File Initializa-
tion Program are clear from their titles. The File Creation
Program initializes a direct access scratch file in the sub-
routine SETUPl. The Processing Program initializes scratch
files in the subroutine INITSC. Subroutine INIDAF is called
to perform each of the initializations. INIDAF writes on each
direct access record in the sequential mode using subroutine
FASTIO (see Section 6.4). In many cases, conversion to another
initialization method could be accomplished by modification of
INIDAF without change to the specific routines that call
INIDAF.

113

6.3 CODING VARIATIONS

DATAMAP uses certain nonstandard IBM FORTRAN features.
LOGICAL *1 variables are used in the routines SHFSTR and PACK
to address individual bytes of four-~byte words for character
manipulation.

INTEGER *2 variables are used extensively in the data handling
portions of the File Creation Program to process the standard
BHT-Ground Data Center (GDC) tape tormat. The routines that
use INTEGER *2 variables are READD, FITEM, FCNTR, TRANSC,
CALUPD, SAVD and SAVF. All of these routines would probably
need to be replaced in the STRNGF routine to handle data input
that is not in DTF or BHT-GDC format.

INTEGER *2 variables are also used in the Processing Program
in the data retrieval routine DATAIN.

The following form of input statement is used in DATAMAP to
detect end files or errors on input.

READ(NREA, 9000, ERR=500,END=500)1ist
All DATAMAP programs restrict use of this form to the sub-
routine READLN so that conversion of this statement type could
be performed on this subroutine alone. READLN is one of the
subroutines on DATMAPLB.

6.4 COMPUTER WORD PROBLEMS

Certain problems could be introduced in the conversion of
DATAMAP to a new computer system from changes in size and
format of the computer word.

6.4.1 String Storage and Processing

Strings are stored either with one left-justified character
per word or with four left-justified characters per word.
Strings are read or printed in Al or A4 format. Thus, conver-
sion for string processing should not create much of a problem
when at least four characters can be stored per word (instal-
lation on mini-~-computers with 16-bit (2-byte) integers would
present significant problems). However, for systems where
more than four characters are stored in a word, the calls to
the Calcomp SYMBOL routine present a problem since SYMBOL
expects a continuous sequence of characters. SYMBOL is called
by routines XYPLOT, XYCMLB, CONREC, CONCYL, SURREC, SURCYL,
ANNOT, and MCHAR.

114

-

The READF routine has two integer values set in a data state-
ment, IBITS and NBYT. IBITS must be set to the number of bits
in a character byte and NBYT must be set to the number of cha-
racter bytes that can be stored in a word.

Special problems can arise in the interpretation of a string
by arithmetic means. All of the character encoding methods
that have been considered (BCDIC, EBCDIC, ASCII, and CDC
internal display code) encode the digits 0-9 in a continuous
sequence and in order from lowest unsigned arithmetic inter-
pretation of a byte to highest (this i1s not true for the
seven-track tape encoding of BCDIC). READF uses this assump-
tion in the evaluation of numbers. READF and certain subrou-
tines in the SYMBOL/NUMBER replacement package (see Section
6.6) also assume that the first character in a word is in the
position of the most significant bits arithmetically when the
word is evaluated as an integer. Just the reverse situation
is true on the Digital Equipment Corporation (DEC) VAX 11/780,
where the first character in a word occupies the least signi-
ficant bits of the word. Alternate code is provided as com-
mentary in the READF subroutine and in the SYMBOL/NUMBER
replacement subroutines to correct this situation.

6.4.2 BHT-GDC Format Tape Processing

One of the options for the File Creation Program (FCP) is to
read BHT-GDC format data input. This format includes data
coded in IBM internal floating word format, IBM internal
integer word format, and EBCDIC characters (see Reference 4).
This mixture of data encoding methods is not a problem for
DATAMAP versions installed on an IBM computer. However, for
other computer systems, each BHT-GDC format input record may
require conversion after input and before processing. The
most logical point for insertion of such code is in the sub-
routine READD of the FCP. This conversion has been accom-
plished for the DEC VAX 11/780.

6.5 SPECIAL ROUTINES

Certain installation-provided routines are used in DATAMAP.
Most installations have corresponding routines or, alterna-
tively, the routine functions are not critical to program
operation. The function of each of these routines is described
here.

DATAMAP uses subroutine FASTIO to avoid FORTRAN conversion
routines for input and output using fixed length records. A
second reason for using FASTIO is to read blocks that have no
byte count appended. The first argument for FASTIO is one of
the character strings 'READ' or 'WRITE' to indicate a sequential
input or output operation, respectively. The second argument

115

!

4
§
}
»
4
¥

)

is the 1/0 file number (data set reference number) for the op-
eration. The third argument is the array which contains the
data for output or which will receive the data for input. The
fourth argument is the number of bytes to be transferred. The
fifth and sixth arguments use the IBM system dependent coding
technique. The arguments are FORTRAN statement labels for a
jump on return from the subroutine. The character '&' is
appended to the front of the label in the subroutine argument.
The fifth and sixth arguments give the return locations for an
end-of-file condition or an error condition, respectively.

Subroutine FASTIO could be replaced, if necessary, by 'A' for-
mat READ and WRITE statements (i.e., (3(255A8),45A8) for GDC
tapes) or an appropriate system routine (e.g., BUFFER IN for
Control Data machines). The detection of end file and error
conditions provided by FASTIO is critical only in subroutine
READD of the File Creation Program. Subroutine READD is used
only for standard BHT-GDC tape input.

DATAMAP restricts all FASTIO calls to the subroutines QUIKIO }
and INIDAF. Both of these subroutines are in DATMAPLB. /

DATAMAP calls the local BHT assembly language subroutine DATE
to return the current Gregorian date. DATE returns the date
in the format "mm/dd/yy." All calls to DATE are made through
subroutine DATEQQ, which is on DATMAPLB. DATEQQ must return
the date in an eight-character format but strict adherence to
the format, "mm/dd/yy" is not necessary. For example, the
DATE subroutine on the NASA Ames Research Center VAX 11/780
returns the date in a nine-character format (e.g., "28-MAY-
80"). For the NASA installation, DATEQQ was rewritten to
convert the above format and return an eight-character date
(e.g., "28MAY'80).

Subroutine TIMOD returns the current time of day into twelve
sequential character locations of the argument array. The
format for the returned time is a character string 'hh.mm.ss.
fr'. The right-most character is set to a blank. DATAMAP
uses the first eight characters that are returned and ignores
the last four. Several of the DATAMAP programs call TIMOD.
For conversion to another computer system, a replacement TIMOD
subroutine should be written and inserted on DATMAPLB. This
routine should call local routines to obtain the time of day
and make format conversions as necessary. Alternatively, a
dummy TIMOD subroutine can be written that always returns a
blank array.

DATAMAP calls subroutines TIMEX and SETIME to monitor exe-
cution time in the Processing Program. For the BHT and USARTL
(AVRADCOM, St. Louis, Missouri) installations, these subrou-~
tines are entries to the DATE subroutine. SETIME is called to

116

initialize the CPU timing process. The argument to SETIME is
a REAL value specifying a time limit in minutes. This number
must be greater than zero and less than 1440. This argument A
is not critical to the DATAMAP application, except that a L
reasonably large number must be defined. TIMEX is called to :
obtain the CPU time consumed. All arguments are returned as

REAL values. The first argument is the CPU time used since

the last call to SETIME. The second argument is the CPU time

used since the last call to TIMEX. The third argument is not

used by DATAMAP. This argument gives the time not yet con-

sumed from the interval specified in the call to SETIME.

SETIME is called in the Processing Program in subroutine

STRTUP. TIMEX is called in the Processing Program in sub-

routines USER and INISTP.

SETIME and TIMEX can be replaced with subroutines that call
local CPU timing subroutines. Alternatively, these routines
could be replaced with dummy subroutines. A dummy SETIME
should have one argument and perform no action and a dummy
TIMEX should have three arguments that are each set to zero on)
return. The replacement subroutines should be inserted on ,
DATMAPLB.

_,..-—,
P

- v

Subroutine PLTIME is a special routine at BHT that estimates
the required plotting time for a Calcomp plot and outputs this
time to the computer operator. Subroutine PLTIME is called in
subroutine ENPLT for Calcomp plots only. For Tektronix plots,
the PLOTS subroutine has a dummy entry for PLTIME. A do-
nothing subroutine with no arguments may be substituted for
PLTIME.

Subroutine CORE is a BHT-written routine for operation on IBM
computers that allows FORTRAN format conversion of character
strings stored in main memory. Most non-IBM installations

: have an equivalent FORTRAN capability that is invoked with the

' DECODE instruction. CORE is called with two arguments, the

i input character array to be converted and the number of char-

X acters in the array. The conversion is performed by a subse-
quent READ statement that specifies a dummy file reference

e number and the required format for conversion. The use of

' CORE is limited to subroutine CONVERT in the File Creation Pro-

; gram. Alternate code is provided in CONVRT to invoke DECODE,

) but this code is commented and thus inactive.

6.6 GRAPHICS

z
{ The graphic software was discussed extensively in Section 4.7.
. However, the graphics features related specifically to trans-
portability of the code are discussed here. For non-inter- :
g active, off-line graphic output, the software assumes that the
\ Calcomp routines PLOTS, and PLOT are provided by some system P

{
¥ 117

ve - - w— -

r " .

A

library. These routines must be either the actual Calcomp
routines or simulations of these routines for plotting on
another device. The plotting interface assumes a plotting
area for a plot frame of 8.5 inches horizontal and 11 inches
vertical. Approximately 9.7 inches vertical and 7.7 inches
horizontal are actually used for a frame. The plotting inter-
face moves to a new plot frame position by incrementing the
basic pen origin horizontally to the right at least 8.5 inches.
The user may specify a larger increment by changing the default
value for the variable PLTWID (in common block /MDEP/) or by
specifying a larger value for PLTWID in the Initialization
Phase of a Processing Program run.

Plotting on a graphics terminal assumes that a Tektronix 4014
and the PLOT-10 software package are available. Substitute
PLOT and PLOTS subroutines are provided for the interactive
and interactive graphics modes of operation. These routines
call Tektronix PLOT-10 subroutines to actually draw the indi-
vidual vectors that compose a plot. In addition, the substi-
tute PLOT and PLOTS subroutines can write a copy of each of
the PLOT command arguments to file 22 for the COPY capability
(see the SET/COPY and UTIL/COPY commands in Section 5 of
Volume I).

A package of subroutines that emulates the Calcomp SYMBOL and
NUMBER routines is provided with DATAMAP. This package is
written entirely in FORTRAN, but the code does use the LOGICAL
*] data type extensively so that it may not be easily trans-
portable. As mentioned in Paragraph 6.4.1, commented alter-
native code is included in these subroutines for installation
on the DEC VAX 11/780. The QUICK plotting capability (see
Section 5 of Volume I) for the interactive graphics mode of
operation requires this package.

The plotting interface should generate plots without modifica-
tion on a Tektronix 4010 (the reduction in screen size may
make the plots harder to read). However, the different hard-
ware character size could cause printed computer messages and
user command input lines to overlap the plotting area. 1In
addition, when the APLOT plotting option is used, INSET will
not relocate the cursor to the correct vertical position on
the left-hand side of the screen so that printed input and
output lines could overlap each other. This problem can be
eliminated by resetting the value of the integer INCTEK (in
common block /SIZES/) from -13 to -22. Some of the problems
of printed messages overlapping the plot area can be elimina-
ted by resetting the allowed number of characters in an input
line to 30. (See common block SIZES in Appendix B.)

P P

YR S

Conversion of the program to run on some other graphics termi-
nal would depend on the presence of several software items.

A Calcomp emulation package would be required that provided
the routines PLOT and PLOTS. The PLOTS routine, called once
for each plot frame for the interactive graphics mode, must
set up a simulated plot area of 9.51 vertical inches and 7.51
horizontal inches. The origin must be set initially at the]
lower left-hand corner of the simulated plot area. For the)
normal plotting mode (i.e., for the HALF plot setting), this 5
entire simulated plot area must be mapped to the available ?
screen area. For the FULL plot setting, the simulated plot
area is expanded so that the plot annotation area is off the
available screen area and the actual plot occupies as much of
the available screen area as possible while retaining the
proportion of the plot. This expansion is different for each
. type of plot and the proper expansion is communicated to PLOTS
[with the first argument. Following is a list of the allowed
|

arguments, the type of plot, and the required plotting area.

L}

1

Normal plot area setting for HALF mode, 7.51 hori- "
zontal by 9.51 vertical.

At

2 - X-Y plot, 7.51 horizontal by 6.81 vertical.

w
!

Cylindrical format contour plot, 7.51 horizontal by
, 7.07 vertical.
| 4 - Rectangular format contour plot, 7.51 horizontal by

6.43 vertical.

5 =~ Cylindrical format surface plot, 7.51 horizontal by
6.27 vertical.

6 - Rectangular format surface plot, 7.51 horizontal by
6.27 vertical.

' The Tektronix PLOT-10 routine ANMODE is always called when the

. program changes from drawing plot lines to reading or writing
characters. Some corresponding function may be required for
other plot devices.

' The Tektronix PLOT~10 routine MOVABS is used to reposition the

cursor for character input or output after graphics lines and/

or characters have been drawn. After a fresh frame has been

created, the cursor is moved to the upper left-hand corner of

the screen. Wwhen a curve is added to an existing frame, the

cursor is moved to a raster position at the left-hand side of

the screen which corresponds to the next line of character

printout after the last line printed or entered. The program :
keeps track of this position with the variable LNCNT (in com- 1
‘ mon block /STATUS/). When the screen is cleared for a new i

. T e,
I T

-.,.
K

119

LM o

plot, LNCNT is set to a raster number corresponding to the top
line on the screen for alphanumeric 1/0. For every alphanu-
meric line that is read or written, LNCNT is modified by ad-
ding INCTEK (in common block /SIZES/). Both the ANMODE and
MOVABS calls occur in the subroutine INSET. For application
to a different graphics terminal, the ANMODE and MOVABS calls
could be replaced and the LNCNT information might or might not
be useful.

Subroutine PLOC accesses the screen cursor using subroutine
SCURSR. SCURSR returns the cross-hair location in terms of
the Tektronix raster locations. For a different graphics
device, the graphics cursor function might be eliminated or
some substitute for the cursor position evaluation might be
found.

Y~ , —

-
-~

7. FILE AND LINKING REQUIREMENTS FOR DATAMAP PROGRAMS

This section describes the data sets that are required to
link-edit each DATAMAP program and lists the FORTRAN file re-
ference numbers that are referenced during the execution of
each of these programs.

7.1 PROGRAM LINK INPUT REQUIREMENTS

Following is a listing of the data sets required to link all
of the DATAMAP programs. For each program, one or more of
these data sets will be required. The data set names are only
for reference; the actual file or data set names may be dif-
ferent depending upon the computer installation.

DATMAPLB - This data set is a library of the subrou-
tines described in Section 6.1, of any as-
sembly language subroutines that are pro-
vided with DATAMAP, and of any special
routines that must be provided for con-
version of DATAMAP. For example, if a
substitute TIMOD subroutine is written or
provided, it should be included in this
library.

PLOT10 This data set is a library of the Tektronix
PLOT-10 subroutines. It is not provided
with DATAMAP.

FORTLIB - This data set represents all subroutines
provided by the computer system. It is
not provided with DATAMAP.

CALCOMP -~ This data set represents either a library
of CALCOMP subroutines or of CALCOMP
emulation subroutines for an off-line plot
device. It contains, as a minimum, the
subroutines PLOT, PLOTS, SYMBOL, and
NUMBER. It is not necessarily provided
with DATAMAP.

NEWCPREV - This data set includes the object code for
the substitute PLOT and PLOTS subroutines
for Tektronix operation that were discussed
in Section 6.6.

SYMBPACK - This data set includes the object code for
the substitute routines for the CALCOMP
SYMBOL and NUMBER subroutines as discussed
in Section 6.6.

121

PR T

e

A

NPLDEVTO - This data set is an object module for a
single subroutine called NPLDEV, which
always returns a single argument equal to
three (integer), which indicates Tektronix
plot output.

NPLDEVCO - This data set 1s an object module for a
single subroutine called NPLDEV, which al-
ways returns a single argument equal to
one (integer), which indicates Calcomp
plot output.

DUMMYS - The object code for the dummy subroutines
ANMODE, MOVABS, SCURSR, and PLTIME.

CHRSIZ -~ Object module for the single dummy sub- |
routine CHRSIZ (one argument).

INISYM - An object module for a single dummy sub-
routine called INISYM with no arguments.

INITL - This data set is the object code for most
of the Master File Initialization Program.

EDINIT - This data set is the object code for most
of the Command Sequence File Initializa-
tion Program.

MANAGE - This data set is the object code for most
of the Master File Maintenance Program.

TYBTH - This data set is the object code for most
of the Question and Answer Program to Create
User Input for the File Creation Program.

FCP - This data set is the object code for most
of the File Creation Program.

PROCESS - This data set is the object code for most of
the Processing Program.

Table 4 lists the subset of the above-listed data sets re-
quired to link each DATAMAP program. The link instructions
must adhere to the sequence of libraries specified in this
table. Notice that there are several different configurations
for the DATAMAP Processing Program.

7.2 PROGRAM RUN TIME FILE REQUIREMENTS

Each DATAMAP program accesses several Input/Output (I/0) files

that must be satisfied either explictly or implictly (i.e.,

by default) by the computer system command language (e.g., IBM

Job Control Language). Each file is referenced with a FORTRAN

file reference number with the possible exception of the output

122

)
i
5
'
4

vy

TABLE 4. PROGRAM LINKING REQUIREMENTS

Program

Required Input

Master File Initialization
Program

Command Sequence File Initiali-
zation Program

Master File Maintenance Program

Question and Answer Program to
Create User Input Data Sets
for the File Creation Program

File Creation Program

Processing Program
(Tektronix interactive graphics
version with QUICK plot mode)

Input:

Libraries:

Input:

Libraries:

Input:

Libraries:

Input:

Libraries:

Input:

Libraries:

Input:

Libraries:

INITL
DATMAPLB
FORTLIB
EDINIT
DATMAPLB
FORTLIB
MANAGE
DATMAPLB
FORTLIB
TYBTH
DATMAPLB
FORTLIB
FCP
DATMAPLB
FORTLIB

PROCESS

NPLDEVTO
NEWCPREV
SYMBPACK

DATMAPLB
PLOT10
FORTLIB

TABLE 4. (Concluded) L
Processing Program Input: PROCESS
(Tektronic interactive graphics NPLDEVTO
version without QUICK plot mode NEWCPREV
and without using the SYMBOL/ INISYM
NUMBER package provided) {
Libraries: DATAMAPLB !
PLOT10 i
CALCOMP |
FORTLIB
.) !
Processing Program Input: PROCESS 1
(Batch version using the NPLDEVCO
SYMBOL/NUMBER package pro- DUMMYS
vided) CHRS1Z
SYMBPACK
Libraries: DATMAPLRB
CALCOMP
FORTLIB
Processing Program Input: PROCESS
(Batch version without using NPLDEVCO
the SYMBOL/NUMBER package DUMMYS
provided) INISYM
Libraries: DATMAPLB
CALCOMP
FORTLIB
; H
)
\j ‘
(
.
[
?a
ot
1
t’ 124
1
R e T W" e

r.

rl

ot

-
e .‘.T\ I(

file for off-line graphics. Following is a listing of the
files that must be satisfied for execution of each DATAMAP
program together with an explanation of the required con-
tent and structure of each file. In the listing, record
sizes are given as the actual data referenced by FORTRAN I/0
statements. System appendages, if any, must be added to the
record sizes.

Master File Initialization Program

01 - Master File, direct access disc file with 256-
word records.

05 - System Input (e.g., cards or card images)
06 - System Output (e.g., line printer)
09 - Alias for file 0l1l. The same data set as file

01 addressed sequentially. This file may not
be required for non-IBM installations depend-
ing upon the rewritten INIDAF subroutine (see
Section 6).

Command Sequence File Initialization Program

01 - Command sequence file, direct access disc file
with 256-word records.

05 - System Input (e.g., cards or card images)

06 - System Output (e.g., line printer)

09 - Alias for file 01. The same data set as file

01 addressed sequentially. This file may not
be required for non-IBM installation depending
upon the rewritten INIDAF subroutine (see Sec-
tion 6).

Master File Maintenance Program

01 - Master File, direct access disc file with 256-
word records.

05 - System Input (e.g., interactive terminal or card
images)

06 - System Output (e.g., interactive terminal or

line printer.

125

- - ‘W‘ - -

g

RESTORE Input. File containing a partition
or Master File image. 256-word records read
with FASTIO or replacement in QUIKIO (e.q.,

SAVE Output. A partition or Master File image
may be written on this file. 256-word records
written with FASTIO or replacement in QUIKIO

Sequential Scratch File. Disc file that will
be used during movement of partitions on the
Master File during a RESTORE operation. 256-
word records written with FASTIO or replacement
in QUIKIO (e.g., 256A4 formatted records).
Space is required for 100 records.

System Input (e.gqg., interactive terminal).
System Output (e.g., interactive terminal).

Instruction set. Card images of at least 72

Master File, direct access disc file with 256~

System Output (e.g., line printer)

Direct Access Scratch File. Direct access disc
data set with 256-word records. Space must be

07 -
256A4 formatted records).
08 -
(e.g., 256A4 formatted records).
09 -
Question and Answer Program (TYBTH)
05 -
06 -
08 -
characters.
File Creation Program (FCP)
01 -
word records.
05 - System Input (e.g., card images)
06 -
12 -
available for 1000 records.
13 -

Sequential Scratch File. The structure of this
file is different for DTF input processing and
for BHT-GDC format input processing. For BHT-
GDC format tape input, the record size is re-
lated to the processing of BHT-GDC format re-
cords. Thus, for systems that do not use 8-bit
bytes and 4-byte words, the record size must be
related to the actual handling of the data input
records in subroutines READD and TRANSC. For IBM
and similar systems, the records must be 6400 bytes
in length. The records will be written and read

126

oy

ol

. -
e dli——— . .

14

20

21-40

with FASTIO or appropriate replacement in QUIKIO
(e.g., 10(160A4) formatted records). For DTF data
input, the reccrds must be 1020 words. These re-
cords are written and read using FORTRAN unfor-
matted READS and WRITES. The number of records
that are required for this file is difficult to
predict in advance of any single job. About

150 records with a possibility of dynamic ex-
tension of the file should be sufficient.

Alias for file 12. The same data set as file

12 addressed sequentially. This file may not

be required for non-IBM installation depending
upon the rewritten INIDAF subroutine (see Sec-
tion 6).

Time Alignment File. This file contains time
alignment corrections for BHT-GDC format data
input when the ALIGN option is specified in
the user command input. For DTF input or for
GDC format input without the ALIGN option,
this file will not be referenced.

Data input file(s). For DTF input, file 21
should be the DTF. Internal format DTF's are
input with FORTRAN unformatted READ statements.
1024 words are read for each record. Exter-
nal format DTF's are input with FORTRAN for-
matted READ statements and 4096 characters are
read for each record. For DTF input, files
22-40 are not referenced. At IBM installa-
tions, for BHT-GDC format input, the FCP refer-
ences the first data tape as file 21 and each
succeeding tape as a file reference number one
higher than the previous file. Thus, if seven
tapes are specified as input in the user com-
mand input, files 21 through 27 will be refer-
enced.

Processing Program

01

05
06
11

Master File, direct access disc file with 256-
word records.

System Input (e.g., card images or terminal)
System Output (e.g., line printer or terminal)

Scratch Files. Direct access disc file with
256-word records.

127

12

13

14
22

23

Alias for file 11. The same data set as file
12 addressed sequentially. This file may not
be required for non-IBM installations depending
upon the rewritten INIDAF subroutine (see Sec-
tion 6). This file is not referenced for a
permanent scratch file that does not require
initialization.

Command Sequence Storage File. A direct access
disc file with 256-word records.

Info file. Card image format.

Temporary plot copy file. Temporary disc file
for storage of a single plot frame. Has three-
word records that are written ana read with
FORTRAN unformatted WRITE and READ statements.
This file is not referenced in the batch mode
of operation or if the copy mode is not set in
the interactive or interactive graphics modes
of operation.

Semi-permanent plot copy file. Disc file for
storage of one or more plot frames until a
batch job transfers the plots to an off-line
graphics device. Has three-word records that
are written and read with FORTRAN unformatted
WRITE and READ statements. This file is not
referenced in the batch mode of operation or if
the COPY mode is not set in the interactive or
interactive graphics modes of operation.

128

Sa "4

8. REFERENCES

Gerald A. Shockey, Joe W. Williamson, and Charles R. Cox,
AH-1G HELICOPTER AERODYNAMIC AND STRUCTURAL LOADS SURVEY,
Beil Helicopter Textron, USAAMRDL Technical Report 76-39,
Eustis Directorate, U.S. Army Air Mobility Research and
Development Laboratory, Fort Eustis, Va., February 1977,
AD A036910.

Richard B. Philbrick, and Alfred L. Eubanks, OPERATIONAL
LOADS SURVEY - DATA MANAGEMENT SYSTEM, Bell Helicopter
Textron, USARTL Technical Report 78- 52A and 52B, Applied
Technology Laboratories, Fort Eustis, Virginia, January
1979, ADA065129 and ADA065270.

James R. Van Gaasbeek, and P. Y. Hsieh, ROTORCRAFT FLIGHT
SIMULATION PROGRAM C81 WITH DATAMAP INTERFACE, Volumes I
and II, Bell Helicopter Textron, USAAVRADCOM Technical
Report 80-D-38A and 80-D-38B, Applied Technology Laboratory,
U. S. Army Research and Technology Laboratories, Fort
Eustis, Virginia.

L. J. Tieman, 'GROUND DATA CENTER STANDARD DIGITAL TAPE

FORMAT, ' Bell Helicopter Textron Report 699-099-020, Fort
Worth, Texas, 21 April 1976.

129

. g .
et

APPENDIX A - FILE CREATION PROGRAM COMMON d

/CALASC/ Stored initial calibration factors for the item
codes present in an assignment record as supplied by
that assignment record.

CM

CB

/CNDATA/ Common block used to store information related to
the counter for transfer of DTF data.

IDFLTM

CGROSW

CCENGU

ICGCOD

IMODEL

ISHPNM

ICDATE

ICTIME

IMODCD

ICTEST

COFFST

CRECLN

ICGRSW

ICENGV

Array that holds the slope values for calibra-
tion. CM(N) corresponds to the N'th requested
item code present in the current assignment
record.

Array that holds the intercept values for
calibration.

Flight number in 2A4 format l
Gross weight (REAL)

Center of gravity (REAL;

Center of gravity code in A4 format.
Model number in 2A4 format

Ship number in 2A4 format

Flight date in 2A4 format {
Flight time in 3A4 format
Model code in 2A4 format

Test/Analytic Indicator (INTEGER).
0 = unspecified, 1 = test, 2 = analytic

Offset from start of data on DTF bundle se- :
quence to first data value meant for tranfer. ’

Number of seconds of data wanted for trans-
fer from current bundle sequence.

Gross weight in 2A4 format.

Center of gravity in 2A4 format.

130

/DATAPE/ Information on the data tape being read.

IRCNTR =~ Current record number on the data tape being
read.

NTPERR ~ Number of tape errors encountered so far in
reading the data tapes.

/DTFINF/ Common block of general DTF record processing
variables.

IDRTYP

Record type for current DTF record stored in
IDTREC. Zero means no record present.

NDILIN ~ For instruction records, set to next available
line of instructions.

NDILNS ~ For instruction records, set to number of avail-
able instruction lines in the record.

LNCONT - Set to true if a counter record has been read
for the next data bundle sequence.

LNITEM - (LOGICAL) Set to TRUE. if an item code record
or record sequence has been read for the next
data bundle sequence.

LRAVAL - (LOGICAL) Set to .TRUE. if tHe DTF record cur-
rently stored in IDTREC has not yet been pro-
cessed.

LDTEND - (LOGICAL) Set to .TRUE. if an end of file has
been encountered on the DTF.

; LALLIN - (LOGICAL) Set to .TRUE. when every DTF record
. encountered so far has been an instruction
‘ record.

NUMREC - (INTEGER) Sequential number of the current DTF
. record stored in IDTREC.

, LDTFST - (LOGICAL) Set to .TRUE. if the first data bundle
) sequence has not yet been processed (so that
both an item code and counter record must be
read for processing).

(LDTIME - (LOGICAL) Set to .TRUE. if a time base field
3 has been processed for the next bundle sequence.

: LBYPAS - (LOGICAL) Set to .TRUE. if none of the counters
v and/or none of the item codes from the next
¢ bundle sequence are desired for transfer.

S 4

131

- =

g

fT -

-y
.

(R c
e

. -
2 —ra e

B
:

ITBTYP - (INTEGER) Time base type for next data sequence
on DTF. 1 = FSRTSI = sample interval 2 = FSRTSI =
sample rate. 3 = ITBITM = item code for vari-
able sample rate time base channel.

FSRTSI - (FLOATING) Constant sample interval or sample
rate as specified by ITBTYP

ITBITM - (A4) Item code for variable sample rate as
indicated by ITBTYP.

/EXCORB/ Common block used by routines EXSET and EXCORE for
extended core simulation. These routines set up a
two-dimensional matrix of simulated memory while
actually storing and retrieving the values from a
direct access disc file.

NROWSX - Number of rows (most rapidly varying index) in
the simultated array.

NCOLSX - Number of columns (less rapidly varying index)
in the simulated array.

NRECOF - Offset to the first storage record available to
EXSET/EXCORE in the direct access file ad-
dressed by these routines.

NRECPR - Direct access record number currently held in
the array EXTREC. If NRECPR = -1, no reccrd is
present.

NPRMOD - Indicator of whether the record currently
stored in the array EXTREC has been changed
without storing the changed version on the
disc.

NEXDEV - RMS, WMS, FMS pseudo-device number for direct
access storage.

NRSIZE - Size of a direct access record in four-byte
words.
EXTREC - Storage array for records from direct access
disc.
132

/FILC/ Convolution filter multipliers. 4
Fl - Central value for the convolution function. f
FILTM - Array holding values for the convolution func- '

tion.

NFILT - Number of convolution function values held in
FILTM.

/FILES/ I/0 file reference numbers.

3 NRPS - Master File (=1)

!
? NRSC - Direct access scratch file (=12)
E NssC - Sequential scratch file (=13)
g NITT - Data Input File (=21 for first tape) 9
i NDIR - Time skew alignment tape (=20) :
NREA - System input (=5)
NWRI - System output (=6)
NSAV - Digital tape for copy of a partition (=15)
IALI - Sequential alias for the direct access scratch
file (=14)

/INFILE/ DTF input Info File information

NINFRC - Scratch file offset for the next Info File
) group to be processed.

NGRUPS - Number of Info File groups currently stored.

. : IGRUPS - Two-dimensional array, which serves as a
, directory of the Info File groups that are f
) stored.
:’ IGRUPS(1,N) = Group Name (A4) i
0 H
? IGRUPS(2,N) = Scratch file offset for the start §
. of this group.

IGRUPS(3,N) = Number of columns.

T4
st

f
)
S

|
|

133

L 3 iR

/INFO/

IGRUPS(4,N) Number of rows.

IGRUPS(5,N) Number of double~row elements.

This block contains a set of control and information

values for processing and transferring the data.

IRSIZ

MLOC

LOCO

IPOLES

HIGH

LCAL

Number of two-byte words in a Master File re-
cord (=512)

Next available partition record number in the
data storage area.

Not used

Set to zero if no filtering is required for at
least one of the requested items present on the
current assignment record.

Initially set to the lowest digital filtering
breakpoint requested for any of the item codes
present on the current assignment record. For
transfer to the Master File, HIGH is set to the
requested digital filter breakpoint for the
item to be transferred.

Set FALSE if item code data about to be trans-
ferred to the Master File is not to be calibra-
set TRUE otherwise.

ted,

Sample rate for the data on digital tape corre-
sponding to the current assignment record.

Sample rate reduction factor to be applied in
transferring data for the currently specified
item code to the Master File.

Initially, the number of points of data wanted
for a particular counter given the sample rate
of the data on tape. NPS must be divided by
ISKIP to calculate the proper number of points
to transfer to the Master File. After transfer
of a data stream, NPS is the number of data
values transferred multiplied by ISKIP.

This value indicates the number of values for
each item code present on the scratch disc file
before transfer to the Master File.

This value indicates the total number of data
samples that should be skipped before data

from a particular item code are transferred to
the Master File. NOFF should reflect both the
alignment and absolute offsets.

ISEQ ~ This value gives the word position for the
first data value on a data record which corres-
ponds to the item code to be transferred to the
Master File.

LSTRT - Equivalent to ISEQ. i

IADD - Increment that must be applied to a location
on an input data record to reach the next data
value for the same item code. Equivalent to
the number of item codes present in the assign-
ment record.

INSIZ - Number of two~byte integer words in a data re-
cord on tape (=3240).

Ay

INSIZD - Number of two-byte integer word in a data re-
cord stored on the scratch file after the in-
formation bytes have been stripped from the
front (=3200).

v W e e -

IRDATS - Not used

IRSAUS ~ Not used

ICNTR - Current counter for the data transferred from
tape.
XALIGN - Time skew alignment offset in seconds to be ap- \

plied to the current item code/counter.

MSETN Sequence number in Master File directory of

the partition currently being processed.

/ITMDAT/ Common block of item code related variables for DTF :
input processing. i

NMTCHS - Number of item codes in the current bundle
: that have been requested for transfer by the
v user instruction (Init-DTFITM)

B Pl

T

ITIMEB - Sequential position in the bundle of the
time base item code. (Init-DTFITM)

. FILMIN - Minimum roll-off point of the digital filters
. selected for the current bundle. (Init-
ot DTFITM)

e 4

-
- ar .

135

|
¢
!

o

{
)
\

|

NBUNS

FMODL

Z - Number of items in the current bundle. (Init-
DTFITM)
O - Modulo specifications for each of the selected

items in the current bundle. Subscript is from
sequence of selected item codes only. The same
subscript is used for ITEMW and ITEMTP. (Init~
DTFITM)

ITMTRN - List of keys indicating whether or not a se-

/KARD/

ITEMT

ITEMW

CALSH

CALCM

CXM

CXB

NMATCH

lected item code has been transferred from
scratch to the master file. 0 = not trans-
ferred, 1 = transferred. Subscript is same as
for FMODLO, ITEMW, and ITEMTP.

Common block to keep track of data from the current
assignment record.

P

ITEMTP(N) gives the position in the sequence of
item codes present on the current assignment
record of the N'th requested item of the items
on the assignment record.

- ITEMW(N) points to the word in the ITEM array
which contains the item code which corresponds
to the N'th requested item of the items on the
assignment record.

- The CALSH array gives Calibration Shift values
from the assignment or calibration record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays.

- The CALCM array gives Calibration Command
values from the assignment or calibration
record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays.

- The CXM array gives calibration slope values
from the assignment or calibration record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays.

- The CXB array gives calibration intercept
values from the assignment or calibration
record which correspond to the same item codes
as the ITEMTP and ITEMW arrays.

Number of requested item codes present on the
current assignment record.

136

e IR . TR . oAU Ew - . .

'
i
4
)
)
i
i

¥

Lo 2 SR

DCAL

/KARD1/

/LIST/

NITEM

NCNTRS

ISPAC

ITAPE

IADNU

LALIN

NAME

NUSER

MAPIT

SAVIT

This

Delta cal values from the assignment or cali-
bration record which correspond to the same
item codes as the ITEMTP and ITEMW arrays.

common block corresponds identically to common

block /KARD/ as described in Appendix B.

This

block contains the interpreted user instruc-

tions for transfer of data from tape to the Master

File.

S -

S

Number of item codes stored in the ITEM array.
Number of counters stored in the NCTR array.

Requested number of direct access records for
the Master File partition to be created, re-
placed, or modified.

Number of input data tapes to be read.

Mode with regard to Master File partition.
IADNU= 1, Add to existing partition
IADNU= 0, New partition

IADNU=-1, Replace partition

Logical variable
LALIN = TRUE., Use time skew alignment
LALIN FALSE., Do not use time skew alignment

Array containing partition name.
Array containing partition password.
Array containing user name.

Logical variable
MAPIT= .TRUE., Generate partition listing after
completion of all data transfers.
MAPIT= .FALSE., Do not generate a partition
listing.

Logical variable
SAVIT= .TRUE., Save partition on digital tape
after completion of all data trans-

fers.
SAVIT= .FALSE., Do not save partition on digi-
tal tape.

137

B w

.

e

STRANG

LDTF

NLOOK

LDTFIN

LTHERE

LEXTRN

LALLIT

LALLCN

LSCAN

NCTR

NOFFST

NPWANT

ITEM

FILT

Logical variable.

———— ey

STRANG=.TRUE., Input data are not in standard
BHT-GDC format.

STRANG=.FALSE., Input data tapes are in stand-
ard BHT-GDC format.

Logical variable. True if data input is in
DTF format. False otherwise.

Product of the number of item codes and the
number of counters requested for transfer.

Logical variable. True if user instructions
are to be read from the DTF. False otherwise.

Logical variable. True if FRSTLN has read a
line of user input into ICHAR and has left the
line for further processing by INLIST.

Logical variable. True if DTF input is in
external format. False otherwise.

Logical variable. True if all item codes
that occur on a DTF are wanted for transfer.

False otherwise.

Logical variable. True if all counters that
occur on a DTF are wanted for transfer. False

otherwise.

Logical variable. True if only a scan of DTF
input for format validity without transfer

of data is desired.

False otherwise.

Array of requested counters.

Offsets to be applied to time histories from
the counters in NCTR which correspond by index.
Offsets are stored in seconds as floating num-

bers.

Length of time history to be transferred for
the counters in NCTR which correspond by index.
Times are stored in seconds as floating num-

bers.

Array of requested item codes.

Break frequencies for low pass digital filters
to be applied to the time history from the item
codes in ITEM which correspond by index. Break

138

BRE O

frequencies are stored in Hz. Negative or zero
values indicate no filtering should be applied.

ICAL - Indications of whether to store time histories
in calibrated or integer format. The indica-
tions correspond by index to the item codes in
ITEM. ICAL(N) = 0 means no calibration and
ICAL(N) = 1 means calibration.

ISKP - Sample rate reduction factors for the time his-
tories from the item codes in ITEM which corre-
spond by index. Values are stored as integers
(e.g., a value of four means every fourth
sample will be transferred to the Master File).

RATE - Specified sample rate for storage of data from
a DTF.

/LOCOM/ Information for data transfer process.
ITEMN - Current item code to be transferred.
ICNTRN -~ Current counter to be transferred.
IDROFF - Offset for the partition directory in records.
IDASIZ - Number of records in the partition data area.
IDRSIZ - Number of records in the directory.

ITEMRC - Record number for portion of item code direc-
tory which contains current item code.

ITEMSQ - Sequence position in directory record for cur-
rent item code.

/MASS/ Identical to /MASS/ common block in Appendix B.

/SCRAT/ This common block specifies a general scratch area.
KDUMMY - General scratch array.
/SIZES/ General constants stored as variables for use
throughout the program.
MAXCN - Maximum number of counters that may be speci-

fied for transfer in one run of the File
Creation Program.

139

(TP, P - s 1ggrony —— =
€

0
'
[
i
"

Y

IDAFWD

INBYTE

CTRMAX

INFSPC

IDAFBT

KDSIZE

MAXIT

NCREAD

IBIG

NCHARS

ISZDSR

LACCSZ
LTRPSZ
IFLBSZ

NTRPSZ

MIFGRI

Number of words in a record in the direct
access files assessed by the File Creation
Program.

Number of bytes in a GDC format tape input
block.

Maximum size entry for a counter.

Number of scratch direct access records re-
served for prototype initial records of time
histories.

Number of bytes in a record in the direct ac-
cess files accessed by the File Creation
Program.

Size of the scratch common array KDUMMY in
/SCRAT/

Maximum number of item codes that may be speci-
fied for transfer to the Master File.

Number of character positions to be examined
by READF for character input. Characters other
than blanks may not be allowed towards the

end of the line.

Large integer for use as limit for DO Loop
where exit from the loop will be by a decision
jump.

Largest character position in an instruction
input line that may contain a non-blank char-
acter.

Size in words of a sequential scratch record
for DTF data transfer.

Size of the LACCUM array
Not used

Size of the area in KDUMMY allocated to the
pre-filter accumulators.

Size of the area in KDUMMY allocated to pre-
interpolation accumulators.

Number of groups that may be specified in an
internal format DTF record.

140

Number of groups that may be specified in an
external format DTF record.

MXIFGP - Max number of info file groups that may be
specified in one DTF.

MXIFRC - Max number of rows and/or columns that may be
specified for an info file group.

MXDASR - Highest direct access scratch record that can
be used for temporary storage of info file
data during DTF data transfer.

INCLMS Largest character position in an Info File

output line that can be non-blank.

/TMPRCM/ Common block of values used for transfer of data
records from DTF to scratch file.

LSTRTD (LOGICAL) TRUE if a bundle corresponding to
the required starting offset is found. Rela- '
vent for initial transfer of data to scratch ’

file. (Init-CPYTSC, Set-TMPRSM)

TOFFST -~ Required starting offset. Before LSTRTD =
B .TRUE., this is the total offset from the start
of data on the DTF to the first required data.
1 When LSTRTD = .TRUE., this is the offset excluding
F time in the scratch records that are skipped.
(Init-CPYTSC, Set-TMPRSM)

NBNSKP - Number of bundles in skipped scratch records
for TMPRSM. (Init-CPYTSC, Set-TMPRSM)

TFRSTP =~ Initial time for previous record processed by
TMPRSM. (Init-CPYTSC, Set-TMPRSM)

;' TMAX - Max time to copy to the scratch file excluding
i skipped records. (Init-TMPRSM)

TSAVED - Time stored on scratch file excluding skipped
2 ’ records. (Init-TMPRSM)

. LCMPLT - (LOGICAL) .TRUE. if all necessary data is
. saved on the scratch file already. (Init-

CPYTSC, Set-TMPRSM) .
¥ TCORRl - For variable sample rate data, the time for §
{ the first bundle before correction. (Init- ;

TMPRSM) i
¢ i
¢ '
r
..,

y 141
7
1
-r oy #‘J‘-—- - ‘_‘:-‘;' " - -
‘ £ 2, [} -

T g T

TSUBTR -

LNODAT -
LENDAT -

NRPRVI -

LOCREC(8)

ITEMFD(8)

LOCL(8) -

Time to subtract from variable sample rate
time instants during transfer of data to the
scratch file.

(LOGICAL) .TRUE. if no data record is available
in IDTREC. (Init-CPYTSC, Set-CPYTSC)

(LOGICAL) .TRUE. if the end of the input DTF
data is encountered. (Init-CPYTSC, Set-PRFORM)

For DTF input with data bundles greater than the
capacity of a data record. Number of records
that have been processed for the current bundle.

- Location on the input bundles of the data
from the item codes in the current set.
(Init-SETUP)

- Item code for each position in the current
set. (Init-SETUP)

Starting record offsets on the Master File
partition for the data streams corresponding
to each item code. Actual locations given
are the record positions for the info records.
(Init-SETINF)

VLAST(8) -Last data value for each time history in the

current set. Used to extend the time histories
to satisfy convolution filter edge requirements.

LACTUM(2048) - Array that contains data records to

be written to the Master File partition. The
first record starts at subscript 1 and each
succeeding record starts at a subscript IDAFWD
larger.

/TRNCOM/ General common variables for transfer at DTF data
to Master File.

NORECS -

NITSET -

NLEADR -

Number of data records to be written to the
Master File for each item code in the current
set of item codes being transferred from
scratch.

Number of item codes in the current item code
set for transfer from scratch to the Master
File.

Number of points required before and after the
data interval to be transferred for the current
convolution filter.

142

ro . g vapere - - TSy

IAFLSZ

LASFLT

LASDAT

NSKIP

NUMCRR
NBUNDL

NBUND1
NBUNDZ2

NSRSKP
TINC

‘ TLEADR

TINCMN
! XOFFST
v NBUNSR

LENDSC

IRCRAW

Size of the pre-filter accumulators in KDUMMY
for each item code in the item code set.

Position of the last filtered data value in
each pre-filter accumulator.

Position of the last unfiltered data value in
each pre-filter accumulator.

Not used

Number of values in each data accumulator buffer
(LACCUM) for transfer to the Master File.

Number of bundles in current bundle sequence
excluding bundles on records to be skipped.

Not used
Not used

Number of scratch records to skip before data
to be processed is encountered.

Sample interval for data to be written to the
pre~filter buffers. (Init-CPYTSC)

Equivalent amount of time required for filter
initialization for the current set of item
codes to be transferred from scratch.

Sample interval for data to be written to the
pre~interpolation buffers. (Init-CPYTSC)

Time offset from first data point required

for any kind of processing (i.e., transfer

or filtering) to first data point required for
transfer.

Max number of bundles stored in a scratch file
record.

(LOGICAL) True if the end of the scratch file has
been encountered for the current transfer from
scratch.

Number of records read from the scratch file
in the current pass.

143

- e e oo ey,

e em— -

. T

| S
el

TR SN

K

MXNTRP -~

TNEXT -

FILTRT -~

FMODLX -~

ISKIPR ~

ISKIPX -~
NRESLT -
NPTOUT ~
NXNTRP =~
NPRAW -
NPT -
NEXTND ~
NEXSTR -

Maximum number of values that can be accommo-
dated by the pre-interpolation buffers.

Time for next value to be placed in pre~filter
buffer by interpolation (Init-SETIME, Set-
INTRPG)

Low-pass filter break-frequency for item code
set to be transferred from scratch. (Init-
SETUP)

Modulo value for item code set to be transferred
from scratch (Init-SETUP)

Skip rate specified by user for current item
code set. A positive value specifies that
the rate was not specified. (Init-SETUP)

Skip rate to be applied to points in the pre-
filter buffer by the filtering or unfiltered
skipping process. (Init-SETUP)

Number of interpolated data values in each
interpolated data buffer.

Number of data points to be generated for
each item code in the current transfer.
(Init-SETUP)

Next relative point location to be added in
the pre-interpolation array -~ 'INTRPR'
(Init-SETAPE, Set-INTRPG)

Number of points in the raw data input buffer.
(Init-SETAPE, Set-INTRPG)

Bundle number from the current scratch input
record that is being processed from the pre-
filter buffers.

Number of points that must be simulated as
values equal to the last available value and
appended to the end of available data to
satisfy the edge requirement for the convolu-
tion filter (Init-SETUP) N

Number of points that must be simulated as
values equal to the first available value and
appended to the start of available data to
satisfy the edge requirement for the convolu-
tion filter (Init-SETUP)

144

" menk . empESA W

' NBPROS - Bundle number in the bundle sequence that is

currently being processed from the scratch
file.

/WLIST/ List of keywords to decode user input instructions.
N - Number of keywords present in the IAA array.
IAA - Two-dimensional array of keywords. Second
array index corresponds to the keyword number.

The four-character keywords are stored with one
left justified character per four-byte word.

/WLIST1l/ Coded start and stop times for current counter and
item code.

ISTART =~ Coded start time as described in the BHT-GDC
Standard Digital Tape Format.

ISTOP - Currently set to zero.

!
X !
“

b,

¥

{

:

v

3.4
.‘A

1

4 145
f

: APPENDIX B 4
PROCESSING PROGRAM COMMON VARIABLES

/ATTPAR/ Area for storage of processed attached parameter
information. The time base for the data stored is
normally the sequence of zero degrees azimuth in-
stants. When appropriate azimuth data are not
available, this time base is synthesized with an
interval between instants of two-tenths of a second.

NVAL - Total number of time instants represented in
the time base, TMAZMO. These instants may be
either synthesized or real azimuth equal zero
degrees time instants as explained above.

NCNTR Counter which corresponds to the current data

stored in ATTPAR.

S e o

Tl ~ First time instant in time base.
T2 ~ Last time instant in time base.

' LTMAZM

Total number of time instants in the time base
TMAZMO, which are real azimuth values. The
real azimuth values must form a contiguous se-
quence beginning with TMAZMO(1l).

5 e g o W SO

ot

LTASVA

Total number of true airspeed values present

in the TASVAL array. If LTASVA is greater than
zero, the first TASVAL value must correspond to g
the first TMAZMO time. |

sk -

LRPMVA Total number of rotor speed values present in
| the RPMVAL array. If LRPMVA is greater than
. . zero, the first RPMVAL value must correspond to %
! the first TMAZMO time.

LOATVA Total number of outside air temperature values
o present in the OATVAL array. If LOATVA is
' greater than zero, the first OATVAL value must
) correspond to the first TMAZMO time.

N LSTATV Total number of static pressure values present :
N in the STATVL array. If LSTATV is greater than)
‘l zero, the first STATVL value must correspond to
(l the first TMAZMO time. f

q 146

. T e

XSTRSC

XINTSC

NMAXSC

AZMGRP

NPRCRA

TMAZMO

TASVAL
RPMVAL

OATVAL

STATVL

/BSPARE/ Area

XSPARE

/BUFFER/ Area

XBUFF

Time corresponding to the first data value on
the scratch file (SCFl or SCF2) used for input.

Time interval between data values on the scratch
file (SCFl or SCF2) used for input.

Number of data values present for the first
time history on the scratch file (SCFl or
SCF2) used for input.

Azimuth offset specified by Info File geometric
group.

Partition access slot pseudo file (i.e., 1 or
9) for the partition source for the current
attached parameter data.

Array of time instants forming a time base for
the values in the arrays TASVAL, RPMVAL, OATVAL
and STATVL. These time instants may or may not
correspond to instant of zero degrees azimuth
as explained in the heading for common block
/ATTPAR/.

Array of true airspeed values in knots.
Array of rotor speed values in RPM.

Array of outside air temperature values in
degrees centigrade.

Array of static pressure values in psia.

for data storage in processing.

Array for storage of data or scales during
processing. This array must always be at
least three-quarters the size of XBUFF.

for data storage in processing.
Array for storage of data or scales during

processing. The number of words in this array
must correspond to IBFSIZ in the block SIZES.

/CLCOMP/ Common block used exclusively by the PLOT and PLOTS
emulation package for the Tektronix, and by the PLOC
subroutine.

147

XMULT

YMULT

XACUM

YACUM

ILEFT

IBOTT

Multiplier used to convert simulated horizontal
plot paper position in inches to horizontal
raster position on the Tektronix screen.

Multiplier used to convert simulated vertical
plot paper position in inches to vertical
raster position on the Tektronix screen.

Horizontal offset to plot origin in plot paper
coordinates.

Vertical offset to plot origin in plot paper
coordinates.

Horizontal raster position on the Tektronix
screen that corresponds to the initial hori-
zontal paper position of 0.0.

Vertical raster position on the Tektronix
screen that corresponds to the initial verti-
cal paper position of 0.0.

/CNGBLK/ Communication and work area for command sequence
editing function.

NLINES

NAMSEQ

LOCAT,

IWORK

LINE

LINECH

MERGEL

Number of lines in the command sequence block
to be edited.

Name of the command sequence block to be
edited. Held in 'A1' format.

IDEL1l, IDEL2 - Work arrays corresponding to line

numbers for command sequence editing.

Work array used for display of user input line
error diagnostics.

Array corresponding to command sequence block
before, after, and during editing. The second
index corresponds to line number. Each line
is stored in 16A4 format.

Array to hold line changes during editing prior
to a renumbering operation ($N).

Array to hold renumbered command sequence block
during the renumber operation ($N).

/CNTLIP/ Directive and information values for data input and
processing

IPRCOD

IPRTYP

IPRTWO

ISCFIP

NFREE

NCOLS1I

NROWSI

LROWP
TIME1l

DURATN

ICYCLS

Processing code assigned in an ANALYZE, DERIVE
or DISPLAY command step. Set in PROSET and
interpreted in PRO1l or PRO2.

Certain types of processes are grouped together
for the process flow. IPRTYP = 4 indicates a
process using data from multiple row positions
for each column position (e.g., a Cn integra-

tion) which would be accomplished in PRO2.
IPRTYP = 5 indicates a process using data from
multiple column positions simultaneously (i.e.,
blade slope) which is accomplished in SLOPST.
Any other value for IPRTYP indicates a process
accomplished in PROL.

Set to one if process must have two input data
streams. Set to one otherwise.

s

Not used
Source of input data. Allowed values: '

SCF1

SCF2

SCF3

Info file group specifies item code(s)
User specified item code

Info file specifies item code required
for derivation by keyword

Attached parameter data is sufficient

for derivation

~ Uk W
o n i n

Number of columns (3rd dimension) to be input
for processing.

Number of rows (2nd dimension) to be input for
processing.

Not used

Time specified by user as either the beginning

of the input time history to be used or a time

instant included in the rotor cycle just before

the beginning of data which will occur at azi- ‘
muth equals zero degrees.

Length of the input time history in seconds
when ICYCLS is less than zero.

Length of the input time history is rotor
cycles. ICYCLS = 0 specifies that a single
instant corresponding to a user specified azi-
muth value will be input. ICYCLS less than

149

zero specifies that the length of the time his-
tory is given by DURATN.

AZIM - Specifies a single rotor azimuth position for
input when ICYCLS = 0.

M12INP - Specified which double-row elements are present
input. The values:

0 = Both double-row elements
1 = Top double-row element only
2 = Bottom double-row element only
NCOLI - When NCOLSI = 1, this variable specifies which

column element is input.

NROWI - When NROWSI = 1, this variable specifies which
column element is input.

IDATPR - A two-element array which specifies how many
data points are present in the current input
data record. IDATPR(1l) corresponds to the top
double-row element and IDATPR(2) corresponds
to the bottom double-row element.

IEPROS - Set to one for ensemble averaging. Set to
zero otherwise.
/CNTLOP/ Directive and informaticn values for data process-

ing and output.

MODOUT - Output mode. Allowed values are:

3 1 - Plot single curve
f 2 - Plot multiple curves
\ 3 - Add a curve to an existing plot frame
; 4 - Print data
. 5 - Contour plot
6 - Surface plot
- 7 - Keep results on a scratch file while
A2 destroying any data already present on
, the file
) 8 - Add results to a scratch file along with
. any data already present on the file.
9 - Comparison plot

10 - Double scale plot

ISFOUT - Scratch file to be used for output when
MODOUT = 7 or MODOUT = 8. Allowed values are:

150

Ml20UT -

OUTMAX -

OUTMIN -

LSCALE -

LSCALY -

1 = sCF1
2 = SCF2
3 = SCF3

Specifies which double-row elements are present
on output. The values are:

0 = Both double-row elements
1 = Top double-row element only
2 = Bottom double-row element only

Maximum output value from any output time
history created during the current command
step.

Minimum output value from any output time
history created during the current command
step.

Maximum number of output values in the first
dimension.

Maximum first dimension scale value that
occurs for the function that is being pro-
cessed.

Minimum first dimension scale value that oc-
curs for the function that is being processed.

Specifies parameter for first independent
variable for plot output. Allowed values are:

1l = Time, Frequency or Harmonic Number
2 = Azimuth

3 = True airspeed

4 = Rotor speed

Specifies parameter for second independent
variable for plot output. Important only for
3-dimensional plot representations (i.e.,
SURFACE or CONTOUR). Allowed values are:

Row or column
Azimuth

True airspeed
Rotor speed

W N
Woouu

- Maximum second double-row element dependent

variable value for all rows and columns. Only
set 1f both double-row elements are processed.

151

OUTMN2 - Minimum second double-row element dependent
variable value for all rows and columns. Only
set if both double-row elements are processed.

/CURRNT/ Block to contain information on status of user
interface overlay process.

ISBSTP Current substep being processed.

IENTRY

Current entry in substep being processed.
Set to -1 when substep complete, -2 when
command step complete. . 1

ITREE Current tree position in command input process.

Line held in ICHAR is first line of a new
command step when LINHLD = 1. This variable
is relevant only when MODSCN = 1 (input
scanning only).

LINHLD

IEOF

Normally set to zero. Set to one if end of
file condition was found on last system input.

IUENT

Sequence number of entry to be processed on
current line of user input.

Number of entries available on current line
of user input.

NUENTS

IDEFLT

when set to one, default values are specified
for the remainder of the current substep and
slash terminating the substep is present. When
set to zero, the above conditions do not per-
tain.

IOPT

Entry option selected for a particular tree
position.

NEXT - Number of next substep to be entered.

/DATSET/ Control values and buffer arrays for retrieval of
data from the Master File.

{
{
ICTRDN - Sequential record number for the portion of

the counter directory currently present in 4
ICTRD. If ICTRDN = 0, then no portion of the
counter directory is present in ICTRD. The '
sequential record number need not correspond !
to the relative record number in the directory. }

152

ITMDN Sequential record number for the portion of

the item code directory currently present in
ITEMD. The sequential record number need not
correspond to the relative record number in the

directory.

ITMDN1 Relative record number for the portion of the
item code directory currently present in
ITEMD.

INFOLC Relative record number for the informatiocn

record for the current item code and counter.

ICTRC

Current counter corresponding to the item code
directory present in ITEMD.

ITEMC

Current item code corresponding to the infor-
mation record in ITMINF and the information
record location given by INFOLC.

ITMDA Record number for the data record contained in
ITMDAT as offset from INFOLC. This ITMDA+
INFOLC gives the relative record number for

the record in ITMDAT.

ITMPNT

Sequential data point in the current data
stream which corresponds to the appropriate
next data point if DATAIN is called with the
‘ continuation mode (FSEC less than zero).

CB,CM Calibration factors for integer to floating

point conversion during retrieval.

SRATE

Calculated sample rate for the current item
code/counter pair data stream

LAST Total number of samples in the current item

code/counter pair data stream

ICAL Equals one if the current item code/counter
v . pair data stream is stored as calibrated data
and zero if the data stream is stored as
L uncalibrated integers.

NPRMOD - Indicator of partition access slots that are
in use. 1 = first slot taken, 2 = second 1
slot taken, 3 = both slots taken.

, T . -

NPRCRN - Indicator of source of data in ICTRD array.
1 = first slot partition, 2 = second slot
partition, 0 = no data in ICTRD. -

R ARSE

ol

. -
- . P sa_

153

gy @ \’ ——— -

r_:,"‘__,._,-
i

/DEFLT/

NMASK

NMPARI

NMPAR2

MASKIT

ICTRD

ITEMD

ITMINF

ITMDAT

DEFCOM -

IDVAL -~

Number of masked item codes listed in array
MASKIT.

Name of partition addressed through the first
access slot. Stored as 2A4.

Name of partition addressed through the se-
cond access slot. Stored as 2A4.

Array of masked item codes each stored as a
4-character name. The first NMASK array loca-
tions are occupied.

Array containing all or a portion of the
counter directory.

Array containing all or a portion of the item
code directory.

Array containing the information record for
the current item code/counter pair.

Array containing a data record for the current
item code/counter pair. The particular data
record is indicated by ITMDA.

Default user input matrix and general system label

General system label. The current date is
added to this lakel in STRTUP. The label is
stored 13A4 with additional space available.

Two-dimensional array showing the appropriate

defaults for user entries. IDVAL(1l,N) controls

the nature of the default. L = IDVAL(2,N)
gives the actual default value. The possible
values for IDVAL(1l,N) are:

no default allowed

standard keyword default, L

standard numeric default, IPVAL(L)

keyword default unless there is a

previously entered value which then

becomes the default

5 = numeric default unless there is a
previously entered value which then
becomes the default

6 = no standard default but previous

entry, if any, becomes the default

D W N
o

154

-

LT _k’fn:,’.‘.:.. .

IPVAL -

U Py Ty " T e

Array containing numeric default entries
pointed to by IDVAL.

/DIRECD/ Provides provisional user command directives and
comment for use in the user interface while command
is developing.

IDIRCD -

KMMNTD -

NKMMCH -

/DIRECT/ User

IDIRCT -

Two-dimensional instruction matrix of user
interface entries which is provisional until
the command step is complete. When the step
is complete, this array is copied to IDIRCT.
IDIRCD is commonly equivalanced to DIRCD.

Provisional comment which is copied to KOMMNT
when the COMMENT command step is complete.

Number of characters in the provisional
comment, KMMNTD.

interface communication block

Two-dimensional instruction matrix containing
user interface control values. Each instruc-
tion, as indicated in Table 3, will have one or
more options and may include a communicated
string or numeric value. For instruction N,
IDIRCT(1,N) contains the option selection coded
as an integer value (which may be negative),
and IDIRCT(2,N) contains any string or numeric
value communicated. Numeric values communi-
cated in IDIRCT(2,N) are always in floating
format and are accessed using an equivalent
REAL array which is usually called DIRECD.

/DRW/ Block of plotting information

XMIN -

DX -

Minimum allowed X value on plot in user coor-
dinates.

Increment in user coordinates of X axis corres-
ponding to one annotated interval on an X-Y
plot. On a three-dimensional plot (SURFACE or
CONTOUR), DX corresponds to 1 inch in the hori-
zontal direction.

Maximum absolute horizontal position in paper
or screen coordinates. Currently set to 7.5

155

i

— .

o~

~
v

TSl T

XL -

YMIN -

DY -

INSL -

LRL

XOFF -

YOFF -

IGRID

Minimum absolute horizontal position in paper
or screen coordinates. Currently set to 0.0

Minimum allowed Y value on plot in user
coordinates

Increment in user coordinates of Y axis corres-
ponding to one annotated interval on an X-Y
plot. On a three-dimensional plot (SURFACE or
CONTOUR), DY corresponds to 1 inch in the ver-
tical direction.

Maximum absolute vertical position in paper or
screen coordinates. Currently set to 10.0

Minimum absolute vertical position in paper or
screen coordinates. Currently set to 0.0

Array which specifies a schedule for generation
of dashed lines. Allowed values for JUNQ are

0 thru 9. When a dashed line is generated, a
sequence of dashes having a length of one tenth
inch times each integer in sequence is gener-
ated. A gap of one-tenth of an inch is in-
serted between each dash.

A logical variable. True if point last plotted
was inside allowed plotting area; false other-
wise.

Not used
Not used

Cumulative X offsets from device origin which
have been applied in a frame.

Cumulative Y offsets from device origin which
have been applied in a frame.

Number of DX intervals in the allowed plotting
area.

Number of DY intervals iz the allowed plotting
area.

If IGRID = 1, a grid will be drawn for X-Y
plots. 1If IGRID = 0, the grid will not be
drawn.

156

e o S T

T =

L

LOGX -

LOGY -

ZSCALE

NOTICS

MODFUL

DPLOFF

IDPLOF

NCCX

ISEQ

DONE -

ZLENX

/DRW2/ Common
YMIN22 -

If LOGX = 0, the X scale is linear. If LOGX
is greater than zero, the X scale is logarith-
mic with LOGX cycles.

If LOGY = 0, the Y scale is linear. If LOGY
is greater than zero, the Y scale is logarith-
mic with LOGY cycles.

Scaling factor applied to the plot. DX/ZSCALE
corresponds in user coordinates to one inch

in the X direction, DY/ZSCALE to one inch in
the Y direction. For X-Y plots, ZSCALE = .7.
For 3-D plots, ZSCALE = 1.0

mam ha e et

If NOTICS = 1, no tic marks will be drawn for
the X and Y scales. If NOTICS = 0, tic marks :
will be drawn. i

Set to one for Tektronix full-screen mode, set ;
to zero otherwise. =

Vertical offset for second set of axes using
DPLOT option. Set to this offset while curves
are being drawn on the second set of axes.

Set to zero otherwise.

Set to one if two sets of axes are present.
Set to zero otherwise.

Set to zero for a continuing curve. Set to
one if the next curve segment that is drawn
will start fresh.

Current sequence position for the curve that
is being drawn in the dash-dot sequence speci-
fied by JUNQ.

Amount of the current dash or gap that has been
drawn in the current curve.

wWidth in screen or paper units (e.g., inches)
of each dash or gap in the currently used dash-
dot sequence.

for double-scale plots (DPLOT option).
Equivalent top axes variable (for the DPLOT

option) to the YMIN variable when the DPLOT
option is not used.

157

L N
Bopr 2w

DY22 -

YH22 -

YL22 -

INSL22

YPLUS2

XL22

Equivalent to DY for the top axes when DPLOT
is used.

Equivalent to YH for the top axes when DPLOT
is used.

Equivalent to YL for the top axes when DPLOT
is used.

Equivalent to INSL for the top axes when DPLOT
is used.

Vertical offset from lower set of axes to upper
set when DPLOT 1s used.

Equivalent to XL for the top axes when DPLOT is
used.

/ENTOPT/ Entry options and tree structure for user command

steps
IENTOP -~

NPOINT -

Array containing sequences of entry options
coded by keyword number. If a sequence begins
at location 'I' then:

IENTOP(I) = Entry number according to allowed
entry list.

IENTOP(I+1) = K = Number of entry options.

IENTOP(I+2) thru IENTOP(I+1+K) = Entry options
coded by keyword. If IENTOP(I+1+K)
= 1000, the option is a four char-
acter string. If IENTOP(I+1+K) =
-L is less than zero then the op-
tion is a number with allowed range
between RANGOP(L) and RANGOP(L+1).

Array containing the tree structure for user
input entries. Significance of values is:

NPOINT(1,N) = position in LWORDS giving HELP
string for this entry.

NPOINT(2,N) = IENTOP position giving allowed

option for this entry.

NPOINT(3,N) = L, points to subsequent entry
positions. If L greater than zero,
L gives next N subsequent entry. 1If
L = 0, command is complete. If L
less than zero, -L points to sequence
in LISTP with each LISTP value cor-
responding to an IENTOP option and

158

-

)

giving a new NPOINT position for the
subsequent entry.

LISTP - Array of pointers as explained under NPOINT. ;
RANGOP - Ranges for numerical entries as explained under
IENTOP '

/FILES/ Input and output file numbers.

NRPS - Master file, file number is normally set to
one.
NREA - System input file, file number is normally
five.
NWRI ~ System output file, file number is normally)
six. .
NscCl - Direct access file corresponding to SCFl when A

the scratch files are not concentrated on one L?
file. File number is normally seven. b

NSC2 - Direct access file corresponding to SCF2 when ;
the scratch files are not concentrated on ;
one file. File number is normally eight.

NAL1 - Sequential alias for NSCl. File number is
normally nine.

NAL2 - Sequential alias for NSC2. File number is ¢
normally ten.

NCSG - Direct access file corresponding to temporary
scratch file. Alternatively, SCF1l, SCF2, SCF3,
and the temporary scratch could be concentrated
on this file. File number is normally eleven.

NALG - Sequential alias for NSCG. File number is j
normally twelve. :

NEDI - Direct access file for storage of command i
sequence blocks. File number is normally ;
thirteen. f

NINF - Info file. File number is normally fourteen.

NPRI - File reserved for printout. Currently an

alias for NWRI.

159

S o e e — ”) —— o ——
R
. L
. L i o
h

NPTM - File for temporary storage of the last plot]l
!

frame drawn when the COPY mode was set.

NPCP - File for storage of plot frame copies for
later replotting on an off-line plot device.

/FILLRC/ Contains the parameters which describe the digital
filter transfer function in Z-transform space. In
particular, the transfer function H(Z) is given by

N M -1
) AD, AID, + All, Z
H(Z) = — 1 ¢ -~ =
K=l 1 + 2 Blk K=1 1 + BIl.2 © + BI2;A

where the common block variables A0, Bl, AIO, AIl, .
BIl, and BI2 are given by the equation. The vari- ‘
able NRE is related to the number of real poles and
is given by N in the equation. Similarly, NCPLX is
related to half the number of complex poles and is
given by M in the equation. NENDPT is used for
double filtering operations and gives the number of
values that may be discarded at the end of the time
interval.

.

/GENSCR/ Information and pointers for temporary scratch file.

NEXCLG - Next available record number for storage of
data identified by column where a single row is
present.

NEXRWG - Next available record number for storage of
data identified by row number where multiple
rows are present.

IGRWLC - Two-dimensional array giving the starting re-
cord number in the temporary scratch file for
data from a row element corresponding to the
second subscript value. The first subscript
corresponds to the top and bottom double-row
elements for subscript values of one and two,
respectively.

160

IGRWLN

IGCLLC

IGCLLN

LNLBTP

Two-dimensional array giving the length in data
samples for the stored time history from a row

element corresponding to the second subscript.

The first subscript corresponds to the top and

bottom double-row elements for subscript values
of one and two respectively.

Two-dimensional array giving the starting re-
cord number for data from a column element cor-
responding to the second subscript. The first
subscript corresponds to the top and bottom
double-row elements for subscript values of one
and two, respectively.

Two-dimensional array giving the length in data
samples for the stored time history from a col-
umn element corresponding to the second sub-
script. The first subscript corresponds to the
top and bottom double-row elements for sub-
script values of one and two, respectively.

Three-dimensional array giving labels for anno-
tation of lines on multiple line plots. The
first subscript is dimensioned to three and
corresponds to three words on twelve allowed
characters for the label (3A4). The second
subscript corresponds to the top and bottom
double-row element for values of one and two,
respectively. The third subscript corresponds
to row or column position. If multiple columns
are present, this subscript corresponds to
column position. Otherwise, the subscript
corresponds to row position.

/JHLPWDS/ Strings and control value for generation of HELP
prompting for the user.

LWORDS -

IHELP -

Array of strings used in generation of HELP
messages. There is one string for each avail-
able entry option. The word immediately
preceding each string is an integer giving the
length of the string in characters. The
strings are stored in nA4 format.

If IHELP = 1, then HELP is active. If IHELP =
0, then HELP is not active.

/INFGRP/ Block for storage of information provided by an
Info file group.

rm ‘: "4/’_,' - [#]

l6l

T ""?'—'l:'-“

MXGLGP
MXRWGP

KEYWDT

KEYWDB

NKEYS

NMCURR

NKPOUT

ROWPGP
COLPGP

MXITBM

POSMX

Number of column elements for the group.
Number of row elements for the group.

Four-character keyword corresponding to the
top double-row element for the group.

Four-character keyword corresponding to the
bottom double-row element for the group.

Set to one if top double-row element present,
set to two if both double-row elements present.

Not used.

NKPOUT = 0 if both double-row elements wanted.
NKPOUT = 1 if top double-row element wanted or
NKPOUT = 2 if bottom double-row element wanted.

Array of geometric row positions.
Array of geometric column positions.

Three-dimensional array giving four-character
item codes for row, column, double-row element
intersections. The first index gives the
double-row element where top and bottom corres
pond to index values of one and two respec-
tively. The second index gives the column
element number and the third index gives the
row element number.

Three-dimensional array giving a third geomet-
ric position parameter (e.g., vertical chord
position) for the physical location of sensors
corresponding to each item code. The first
index gives the double-row element, the second
index gives the column element, and the third
index gives the row element.

/KARD/ Block for communicating user input lines for scan and
return of information about the lines.

ILOC

An array corresponding to the user entries in
the line ICHAR. ILOC(I) corresponds to the
I'th entry. If ILOC(I) is positive, then the
I'th entry is a string beginning at character
position ILOC(I). 1If ILOC(I1) is zero, then the
I'th entry is a null. If ILOC(I) is negative,
then the I'th entry is numeric and -ILOC(I) is

the index in the XNUM array for the numeric
value.

the line ICHAR. INUM(I) corresponds to the
I'th entry. If the I'th entry is a string,
then INUM(I) gives the number of characters
in the entry.

X INUM - An array corresponding to the user entries in ?;
]

4
XNUM - An array giving numeric values extracted from
ICHAR as explained under ILOC. 1?
4
ICHAR - An array of characters forming one line of
i user input. The characters are stored in the
format 72Al. !
/KWCNTL/ Gives prescribed keywords to check that data on 4
scratch file to be used on input are appropriate t
for certain derivations. '
KwWMI1 - Prescribed keyword for the top double-row ele- ?
ment input for a process. y
KWMI2 - Prescribed keyword for the bottom double-row !
element input for a process. f
NKWM - Number of prescribed double-row elements re- %
{ _ quired for process. :
{
|
/LABELS/ Plot labels. Most of these labels are extracted j
from the information record preceding each data :
stream in the Master File. !
i
IDATE - Date the data stream was recorded. The format
is 2A4. Currently not set or used. g
ITIME -~ Time of day the data stream was recorded. The f
format is 2A4. Currently not set or used. 1
!
ICLABL - Current counter in string format A4,A2. ¢
ITEML =~ 1Item code in format A4. g
. . . by
LUSQRD - Indicator for modification of input units k]

labe(s) to achieve correct output units labels.
Values are

-3 = cross process with normalized units.

-—

“

A §

-
-

|

IMODEL
ISHIPN
ISHPGW
IMODLC
ICGLNG
ICGCOD
IFLTNM
IUNITS

ITEMDS

LINLAB

IUNIT2

ITEMD2

-2 = cross process with units per herz.
-1 = cross process

0 = no change

1l = square first units label

2 = square units label per hertz

- Ship model in format A4,6A2.

- Ship number in format A4,A2.

- Ship gross weight in format A4,A2.

- Ship model code in format 2A4.

- Ship longitudinal CG in format A4,6A2.

- Ship CG code in format A2.

- Flight number in format A4,A2.

- Dependent variable units in format 2A4.

- Discription of dependent variable in format
7A4,A2.

- Dependent variable label for multiple line
plots.

- Unit label for second input function for pro-
cesses that require two inputs (e.g., cross-
correlation).

Data label for second input function for pro-
cesses that require two inputs (e.g., cross-
correlation).

/LEDIT/ Control and information values for command sequence
storage on retrieval. ‘

LED

NAMFIL

- Current command sequence (EDIT) mode.
0
1l
2
3
- Four-character name of the current command

sequence block being edited, built, or exe-
cuted.

normal mode
EDIT/NEW mode
BUILD mode
EXECUTE mode

v

NUMFIL

LOCFIL

LEDLIN

LEDLRC

LNPREC

LWDPLN

LARGCH

LMXARG

MXARGC

NLNTMP

NLARG

LARG

Pointer to the current block in the command
sequence file being generated or read.

Pointer to the current line in the command
sequence file being generated or read.

Total number of command lines available on
the command sequence file. If LEDLIN = -1
then the EDIT capability is not available.

Number of direct access records in a command
sequence block.

Number of command lines that can be stored
in a command sequence block.

Number of words allotted to each command line
where four characters are stored in each word.

Set to character that specifies an execution
argument or parameter. Currently set to 1lHY%.

Maximum number of arguments that can be passed
during execution of a command sequence.

Maximum number of characters that can be passed

in one command sequence argument.

Number of characters available on the temporary

character line, LNTEMP.

Array. Each variable contains the number of
characters stored for the corresponding index
of LARG.

Two-dimensional array of parameter inputs. Se-
cond index corresponds to NLARG index. String
is stored over multiple values of the first
index.

/MASS/ Offsets, pointers and check values for the direct
access routines RMS, WMS, FMS.

NDEVS
MDEV

Dimension for the arrays in this block.
Array giving direct access I1/0 file numbers.

MDEV(I) is the I/0 file number for pseudo-
device I.

165

BN

D]

v

-

P__J._ . LSl 4 } AU
et e T o, . - -
, 1

MOFF

MLEN

MTOT

MSIZ

/MDEP/ Computer, installation, or hardware dependent values

IBAUD

IPLDEV

PENBGX

PENBGY

PLTWID

NPBLKS

Array giving offsets to arrive at correct
direct access record numbers. For pseudo-
device I, MOFF(I) should be added to the re-
quested record number to arrive at the proper
record number for direct access device MDEV(1).

Array giving lengths of the pseudo-devices.
MLEN(I) is the number of direct access records
available to pseudo-device I.

Array giving total length of direct access
devices. MTOT(I) is the total number of direct
access records available on direct access file
MDEV(I).

Array giving record size in four-byte words
for each pseudo-device. MSIZ(I) is the record
size for pseudo-device I.

Data communication rate in characters per
second between the Tektronix graphics terminal
and the computer.

Plotting device

1 = Calcomp or incremental plotter
calcomp emulation (e.g., DP-1)

2 = Other device

3 = Tektronix

Deviation in X of the initial positioning of
the incremental plctter pen from the standard
starting position which is 1/2-inch to the
right of the perforations for DP-1 paper.

Deviation in Y of the initial positioning of
the incremental plotter pen from the standard
starting position which is the 1/2-inch above
the perforations at the bottom of the page.

Total width in inches of a page of plot for
determining spacing of frames. This value

does not affect the size of the plot frames
as drawn.

Number of blocks allowed in a page of printout

where each block contains five data lines and
one blank line.

166

t
i
i
{

v

TWARN

ITSTEP

IDONE

/MENBUF/ Buffer block for menu generation

IX - Array for generation of menus p
/MLABLS/ Block for output labels. 4
RDLBL - Row axis label of up to 16 characters stored
4A4. :
. . . !
RULBL - Abbreviated row axis label of up to eight
characters stored 2A4.
RTLBL - Label for a geographic feature near the lowest
valued row position. The label may contain up
to 16 characters stored 4A4.
CDLBL - Column axis label of up to 16 characters !
stored 4A4.
CULBL - Abbreviated column axis label of up to eight
characters stored 2A4.
CTLBL - Label for a geographic feature near the lowest i
valued column position. The label may contain
up to 16 characters stored 4A4.
LTOPON - Set to one if a top double-row element origin
label is present in LBDTOP. Set to zero other-
wise.
LBOTON - Set to one if a bottom double-row element origin

Number of CPU seconds which will be consumed
before the computer begins to issue time
warnings to the user.

Control value for printout of command step exe-

cution times. If ITSTEP = 1, the times will be A
printed. If ITSTEP = 2, the times will not be b
printed.

Variable indicating whether the scratch

files are already initialized. 1If IDONE =

1, then the files were initialized before the
program run began. Otherwise, the files

must be initialized at the start of the run.

label is present in LABBOT. Set to zero other-
wise.

167

LBDTOP

LABBOT

LABGEN

IPCTL

IPCLBL

LBCEX1

LABEX1 -

“ MODEZ -
3.
\{ MODSCN -
(
‘
u
¢
ot
b4
4
}
‘ p;bf R T i
S n\l‘.‘/ . -
%

e

Label for origin of top double-row element, if
any. 5SA4 format.

Label for origin of bottom double-row element,
if any. 5A4 format.

General label for independent variable(s).
This label is entered when a derivation is
performed or multiple items are used from an
Info file. Stored as 7A4,A2 format.

Control for counter label ICLABL.

1
2

Single counter in output
Multiple counters in output

Counter label. Contains counter in string form
for single counter output or the string 'MULTI-
PLE' for multiple counter output.

Control for row, column, or time label.
allowed values are:

The

1 = Column position label in Info file
supplied coordinates

Column position label as provided
by the user

Row position label in Info file
supplied coordinates

Time associated label

No label

e W N
1 1}

Label as controlled by LBCEXl. LABEX1l(1l) con-
tains the numeric value while LABEX1(2) and
LABEX1(3) contain a string label. XLBCEX is
normally equivalenced to LABEX1.

/MODES/ Operating modes for the program.

Batch/interactive mode selection.

1 = Batch
2 = Interactive
3 = Interactive graphics

Scan mode for user input.

Normal

0 =
1 = Scan for line errors only

168

~ -~
e L -

>
— e .2

IQUICK

ICPSET

ICPRLG

NCPRES

. . [PUNSIOY S -\

Set to one for QUICK plot mode. Set to zero
for SLOW plot mode.

Set to one for COPY mode. Set to zero for
NOCOPY mode.

Set to one if the COPY mode has ever been set
in the current run. Set to zero otherwise.

Number of PLOT call records stored on the
temporary plot storage file. Set to zero if
no frame has been stored or if NOCOPY mode
is set.

/PRCOM/ Common for process communication.

KOUNTR
KITEM
TIMOFF
RECLEN
TINT
NPTS
XSTRTV
XINTVL
NMAXVL
PMINOR
INDEPN

LTYPE

KEYWD1

Current counter stored as an integer
Current item code stored in A4 format.
Not used

Not used

Sample interval

Number of points in output record.
Starting independent variable value.
Independent variable sampling interval.
Number of samples in processing record.
Not used

First independent variable indicator
time

frequency

1
2
3 harmonic number

Pointer to proper HLABLS label
Pointer to proper XLABLS label

Top double-row element keyword for output data
stream.

169

. T‘“ \ PRGN 2 -1 ORI 5 ome 1. .5 LML TR P o ST AR
¥

SRS <....:,‘. e e - Wp#—’ . : A *

2 = Same as 'l' but next input line
is already present in ICHAR

MODINP - Command input source.

0
1

System input
Edit file

MODSCR - Scratch file mode. 1If MODSCR = 1, all scratch
files are concentrated on the device with the
number given by NSCG. If MODSCR = 0, each
scratch file is located with a different file
number given by NSCl, NSC2 and NSCG.

MODROT ~ Rotor selection mode. If MODROT = 1, the main

rotor is selected. If MODROT = 2, the tail
rotor is selected.

/PARMS/ Common to hold parameters passed to the program from
the computer system command language.
IPARCN - Number of characters that were transferred.

IPARMS - Array to hold the characters that were passed.

/PLABLS/ Stored labels and information for output.

HLABLS

An array containing eight labels to be added
to the beginning of the dependent variable
description. Each label has the format 534.

XLABLS

An array containing seven possible X-axis
labels. Each label is stored in the format
6A4.

LINSKP Array of integers which provide the schedules
for dashed lines which are later stored in
JUNQ(/DRW/). From a LINSKP entry, each decimal
digit is transferred to one JUNQ value. Al-
lowed values for each LINSKP entry are 0 through
9999.

ULABLS

First independent variable unit labels.) F

/PLSPCL/ Common for control of the special plotting modes
QUICK and COPY. '

170

Bottom double-row element keyword for output
data stream.

Top double-row element keyword for input data
stream.

Bottom double-row element keyword for input
data stream.

Two word array giving the third or minor posi-
tion value for the current item code(s) in
process. The first array value corresponds to
the top double-row element and the second array
value corresponds to the bottom double-row
element.

/SCRTBL/ Block for storage of directory blocks of the input
and/or output scratch files.

ISCOIN -

ISCLIM -

XSCRT -

/SCRTCH/

IOFFXB -

IRPOFF -

ICPOFF -

Y - -

For scratch file output. Set to zero if the
scratch file has not been addressed (SCADD
call) with a data stream that was not missing.
Set to one if the scratch file has been ad-

dressed with a data stream that was not missing.

For scratch file output. Set to zero if the
scratch file has not been addressed with a data
stream that was not missing for the current
column. Set to one otherwise.

Array for storage of directory blocks of the
input and/or output scratch files. The first
half of XSCRT holds directory data for the de-
signated output scratch file (if any). The
second half of XSCRT holds directory data for
the designated input scratch file.

Offset in words to the beginning of scratch
file output information stored in XBUFF
(/BUFFER/)

Offset in words from XBUFF(l) to the beginning

of row position storage for output to a scratch
file.

Offset in words from XBUFF(l) to the beginning

of column position storage for output to a
scratch file.

171

—W-' -~ -
s

~re—

[

RS <y

~—
p YA

KDROFF - Offset in words from XBUFF(l) to the beginning
of the data directory buffer to scratch file
ouput.

NPREC - Number of data directory blocks in a scratch
file record.

ICOLM - Array giving the current column number being
worked on for each scratch file.

INILOC - First available data record for either scratch
file.

INITBG - Indicates whether scratch files have been ini-
tialized. Set to zero if not. Set to scratch
file size in records if so.

MXRWSC - Maximum number of row positions allowed for a
scratch file.

MXCLSC - Maximum number of column positions allowed for
a scratch file.

MSCLOC -~ Array giving the next available data storage
record for each scratch file.

IPANAV - Array which gives the multiple storage condi- H
tion for each scratch file where index = 1 is
SCFl and index = 2 is SCF2. 1If IPANAV(I) = 0
then all the data stored on the scratch file r

was written in one KEEP command step. 1If
IPANAV (I) = 1 then the data stored on the
scratch file was written with one KEEP and one
or more ADD command steps.

ICURR - Data directory record currently in XBUFF for
the scratch file currently being written on.

IXBINP - Offset in words to the beginning of scratch
file input information stored in XBUFF(/BUFFER/)

ICURIP - Data directory record currently in XBUFF for
the scratch file currently being read from.

IXDIRI - XBUFF offset to directory record buffer area
for scratch file input.

IXDAT1 - XBUFF offset to data record buffer area for
scratch input.

172

e -

vi

- .

IRPOFX

ICPOFX

MODE]2

ROWPOS

COLPOS

MAXCOL
MAXROW
ZMAX

ZMIN

LABCNT

POSUP

POSDN

XBUFF offset to row position storage for
scratch file input.

XBUFF offset to column position storage for
scratch file input.

Indicator for one or both double-row elements.
MODE12 1 implies one double~row element while
MODE12 2 implies both double-row elements.

n

Array which contains physical row element
positions.

Array which contains physical column element
positions.

Number of column positions present.
Number of row positions persent.

Maximum data value present in a row/column
pair time history.

Minimum data value present in a row/column
pair time history.

Label control value for generation of LINLAB
(in /LABELS/) when input is from a scratch
file or multiple items are specified by an
Info file group. Allowed values are:

Column position label

Column label using user-supplied
coordinates

Row position label

Time related label

Originally saved label

[}

b W N

Array of minor positions (e.g., vertical posi-
tion on chord section) corresponding by index
to the row elements, and also to the top
double-row element.

Array of minor positions (e.g., vertical posi-
tion on chord section) corresponding by index
to the row elements, and also to the bottom
double-row element.

173

——

s et

/SINGIF/ Information extracted from the initial group of the
Info file.

j NUNIN -~ Number of input unit conversion specifications 1
that are currently stored in common (the input
unit conversion capability is not yet imple-
mented). 1

NUMOUT - Number of output unit conversion specifications)
that are currently stored in common.

MOREIN - Info File line number where more input unit)
conversion specifications begin (the input unit)
conversion capability is not yet implemented).
Set to zero if none. 1

MOROUT - 1Info File line number where more input unit con-
version specifications begin. Set to zero if 1
none.

NGRUPS - Number of group names and starting lines num- ‘

bers stored in IGRUP and IGRPLC.

b MORGRP - 1Info File line number for the line just before
the first geometric group that is not recorded

in IGRUP and IGRPLC. Thus, MOREGRP is the num- !

ber of Info File lines that are skipped before

the next Info File group is read. 13

-

MSCAND - Initially zero. Reset to one at the end of
the first successful call to the INFRED pro-
gram. This variable indicates whether the ﬂ
Info File geometric groups have been scanned
for correct format with a MENU/INFO/ call.

KEYWRD - Array of four-character keywords which give
the meaning for the corresponding item codes. ﬁ

ITEMK - Two~dimensional array of item codes which
correspond by the first index of the array !
v to the KEYWRD with the same index.

" VALUES - Two~dimensional array of numeric values which i
correspond by both indices to the item codes
in ITEMK.

4

IGRUP Array of geometric group names in the Info
File that have corresponding locations stored
in IGRPLC. The group names are contiguous at

the bottom of IGRUP with unused space at the

ST X s

e S-S

174

—— 0

i
i
1
i

vt

IGRPLC

UNCNSL

UNCNIN

IUNCNV

top. The four-character group names are stored
in A4 format.

Array of group locations in the Info File that
correspond by index to the group names in IGRUP.
The values given are the number of Info File
lines that should be skipped to reach the first
line of an Info File group.

Array of unit conversion slope factors. Factors
correspond by index to the unit labels in IUNCNV.

Array of unit conversion Y-intercept terms.
Terms correspond by index to the unit labels in
IUNCNV.

Array of unit conversion unit labels. The se-~
cond index corresponds to the indices of
UNCNSL and UNCNIN. The first index is di-
mensioned to six. The first three values
correspond to the original unit label. The
last three values correspond to the converted
unit label.

/SIZES/ Various fixed numeric values for the program.

IBFSIZ

IMRSIZ

ISCSI1Z

ISRSIZ

ISPSIZ2

ICOLMS

INCTEK

ICOMSZ

NDIRCS

Size in words of the XBUFF scratch data area.
Size in words of a Master File record.

Size of the scratch files in records.

Size in words of a scratch file record.

Size of the scratch files in records when all
scratch file pseudo-devices are assigned to

the same I/0 file number.

Number of characters allowed in a user input
line.

Vertical raster spaces required for each
character line printed on the Tektronix.

Number of characters allowed in the user
comment line.

Number of user entry options in the user inter-
face output matrix, IDIRCT.

175

e e T

A large integer for use as a dummy limit for
Size in words of the IX scratch area for the
Size of the initial part of the scratch file
Size in words of a scratch file column

Size in words of a data directory block.
Number of words of keyword information held
by the routine PROSET for each process option.

Maximum number of keywords allowed for the

Maximum number of item codes which may be
associated with each keyword in the initial

Maximum number of character positions available

Maximum number of values for each of the

Maximun number of character positions for a

Specified number of rows for final output
matrix for generation of a contour plot when
the independent variables are the third and

Specified number of columns for final output
matrix for generation of a contour plot when
the independent variables are the third and

b .

IBIG -

DO loops.
MENBSZ -

menu generation routines.
IDB1SZ -

directory.
ICLDSZ -

directory block.
IDBLKZ -
NKV -
NKEYSD -

initial group of the Info file.
NITMSD -

group of the Info file.
ICOLIF -

for one line of the Info file.
MAXATT -

attached parameters.
INCLMS -

line in the Info file.
NCONRW -

second dimensions.
NCONCL -

second dimensions.
NCNRW1 -

Array giving the specified number of rows for
final output matrix for generation of a contour
plot when the independent variables include

the first dimension. Wwhen the plot format is
cylindrical, the first array value is used.
when the plot format is rectangular, the

second array value is used.

176

PR R

4

NCNCL1

NSURRW

NSURCL

NSRRW1

NSRCL1

MXEDLN

NEDSIZ

NEDCHR

NPCYAV

MXRCHR

MAXGRP

MXUNCN

Array similar to NCNRW1l giving the specified
number of columns for the final output matrix
for generation of a contour plot.

Specified number of rows for final output
maxtrix for generation of a surface plot when
the independent variables are the third and
second dimensions.

Specified number of columns for final output
matrix for generation of a surface plot when
the independent variables are the third and

second dimensions.

Array giving the specified number of rows for
the final output matrix for generation of a
surface plot when the independent variables
include the first dimension. When the plot
format is cylindrical, the first array value
is used. When the plot format is rectangular,
the second array value is used.

Array similar to NSRRW1l giving the specified
number of columns for the final output matrix
for generation of a surface plot.

Maximum number of command lines which can be
stored in a command sequence block.

Number of computer words in a command seguence
file (Edit file) direct access record.

Number of characters which are stored for a
command line of the command sequence file
(Edit file).

Specified number of data values which are
generated to represent one rotor cycle in the
cycle averaging (AVERAGE) process.

Number of characters that are read during an
input from system input, the Info File, or
the Command Sequence Storage File.

The maximum number of geometric group names
and locations that can be stored in the arrays
IGRUP and IGRPLC.

The maximum number of unit conversion speci-
fications that can be stored in the arrays
UNCNSL, UNCNIN, and IUNCNV.

MXMASK - The maximum number of masked item codes that
can be stored in the array MASKIT.

TSTINF - Test value that is used for comparison with a
datum value to determine whether the datum
value indicates the data are missing. A value
less than TSTINF indicates data are missing.
TSTINF must be set greater than SETINF.
Currently, TSTINF is not used throughout the
program.

SETINF - Prototype data missing value. When data are
missing for a time history, the first datum
value should be set to SETINF. SETINF must
be less than TSTINF.

/SLIST/ Block to contain listing of the developing command
step or, if no entries have been made for the
current step, contain a listing of the previous
command step.

NCPOS

Character position on the ISLIST line currently
being generated.

NCROW

ISLIST line currently being generated corres-
ponding to the second index of ISLIST.

ISLIST

Array which contains listing of the developing
command step. The lines are stored in 18A4
format with the second index referencing the
lines.

ISLNOW

Indicates whether ISLIST contains the currently
developing step or the previously completed
step listing. Allowed values:

0 = listing of currently developing step
1 = listing of previous step

B /SMPNTR/ Common used for the SYMBOL/NUMBER emulation package. j

LOCSYM - Array of pointers set by INISYM. A character
code (e.g., under EBCDIC) is interpreted as
an unsigned integer. The integer is used as
an index and the value of LOCSYM for that index
is the pointer to the correct character in the
list of allowed characters. A pointer of zero
indicates there is no allowed character for the
code.

/STATUS/ Various information on the status of the program.

LNCNT - Vertical raster position on the Tektronix
screen for return of the cursor after a plot
is generated.

KOMMNT - Array containing the current user comment for
output. Comment is stored in 18A4 format.

NKOMCH - Number of the last non-blank character cur-
rently in KOMMNT.

IFRSTP - Indicator for the current plot frame. Allowed
values are:

0 = No plots have been generated in
this run.

-1 = single curve plot frame was just
generated.

I = (positive) Multiple curve plot frame
is currently on screen or paper
containing I curves.

CLBPOS - Used for comarison plot option (LPLOT). This
variable is the vertical position of the top
horiztonal line that will form part of the box
around the annotation for the current curve.

IDBLPT - Set to zero normally. Set to one if a double-
scale plot (DPLOT) is being drawn or was the
last plot frame drawn.

/SURPLT/ Control and label values for surface on contour
plot generation.

‘ ROW1 - Numerically lowest row position for the final
! output matrix used for surface or contour
plot generation.

ROW2 - Numerically highest row position for the final
output matrix used for surface on contour plot
generation.

COL1 - Numerically lowest column position for the final
output matrix used for surface or contour
plot generation.

COL2 - Numerically highest column position for the
final output matrix used for surface or contour
plot generation.

179

! NCR -
; NCC -

NTYPEF -

DELZ -
LABVRT -
i LABTOP =

LABHOR -

SETLEV -

VXUSED -

VERMAX -

NWDS -

ITRNPS -

Number of rows for the final output matrix
used for surface or contour plot generation.

Number of columns for the final output matrix
used for surface or contour plot generation.

Format for contour or surface plot.

1
2

Cylindrical format
Rectangular format

Indicates whether rows and columns should be
transposed in generation of the final output
matrix.

0
1

No transposition
Transposition

uwn

Dependent variable increment between contour
levels for a contour plot.

Label for the vertical axis of a rectangular
format contour plot.

Geographic feature label to be placed at the
top of a rectangular format contour plot.

Label for the horizontal axis of a rectangular
format contour plot.

Contour height indicator for CONNEC routine.
For each plot, this value is initially set to

-1 x 1035 as an indicator that no contours
have been drawn yet.

/VSIZE/ Common block used exclusively for the Versatec plot-
ting adaptation of DATAMAP.

Inches of plot that have been used so far in
current Versatec "frame."

Maximum number of inches that can be plotted
before a new Versatec "frame" must be started.

/WLIST/ Keyword block.

Number of keywords stored in IAA.

180

L W

IAA

Two-dimensional array containing keywords
to be matched with user command entries.
Keywords are four characters long stored
one character per word in 4Al format. The
second array index corresponds to the key-
word number.

181

~—y

-

Appendix C - Job Control Language (JCL)

FOLLOWING ARE SEVERAL EXAMPLES OF 1BM J08 CONTROL LANGUAGE
(JCL) SEQUENCES AND I8M TSU CUMMAND LANGUAGE .CLISTS TO 6BE
USED TO CUMPILEs LINK=EDIT, AND EXECUTE THE VARIOUS

OATAMAP PROGRAMS. THEYE EXAMPLES ARE NOT COMPLETE AND
SECTION 7 OF THIS VOLUME SHOULD BE CONSULTED FOR A COMPLETE
DESCRIPTION OF FILE AND LINK-FEDIT REQUIREMENTS. THESE
EXAMELES DU GIVE DEMONSTRATIONS OF HOW VARIOUS REQUIREMENTS
THAT ARE SPECIFIED IN SECTION 7 ARE ACTUALLY ACCUMPLISHED
USING JCL OR CLISTS. THESE EXAMPLES HAVE BEEN CONSTRUCTED
TU WORK ON BHT®*S COMPUTER INSTALLATION OF 1BM 370/166°S
RUNNING UNDER MVSe SOME CHANGES wILL BE REQUIRED FOR
OFPERATION ON UTHER I8M SYSTEMS,

EXAMPLE 1 = TO EXECUTE THE FILE CKEATIUN PROGRAM TU READ
sHY=60C FURMAT INFUT DATA TAFES,

Z7/7C0SAReE JU3 (FEABU20T ,GIE+62CCA9,LP3ETS) s *LICK 2841,
7/ MSGLEVEL=1 sMSGLCLASS=ASCLASS=T NOTIFY=ESLR

Z¥SETUP DSN=FNGR«NE WUL &

/3 LETUP DEN=ENGR.F1£6£29¢66
/%SE Tyx DSN=ENGRFt 3IE2194
/%58 YU DSN=ENGR,F3196Cz4
7% ETup OSN=ENGR.F73C7461
/7 %5F JUFP DSN=ENGR.F246(312
7/ *SETUF DOSN=ENGRFAZ 80703
/38 TUpP DSN=ENGR.FELETZAE

/7/757tk1 EAtC FGM=Fz-ARCZ,.VIME=20
Z/75TERLIY DD LSN=ENGR«TEST1+DISP=SHR

7/FTUIFCC]Y DU DSN=£SAR.ULSMAS DI1SP=0ULD

Z7/FT10SFCC)1 DD DSN=ESARSFCFINPUTeDATA 4DISP=CHR
//7FTCeFGCL DD SYSULUT =4

Z/FT18FCGCL DD UNLITSSYSDALDSN=ESARKUNIT14,01 SP=NEW,

77 SPACE=Z(CYLs2)oLCB=(RECFM=F 4BLRSIZE=1024 s DSURG=DA)

//7FT12FCC1 LD USN=LSAR.UNIT14,UNIT=AFF=FT14FCO1,

/77 VUL=REF=84FTLI4F(C1,015P=0LD,

/77 DCB=(RECHM=SF 3L KS125=1C024 sDSOURG=DA)

/7/FTI12FCC) DD UNLIT=SYSDAWDISE=NEWsSPACE=(CYLe(305))s
/7 UCB=(RE CFrM=F s HLKS12E=6400C)

//7SYSULUME DD SYS0OUT=A

Z/FTI20rC0L DU UNTT=TPS USN=ENGR.NEROLS 4L 1SP=0LD
/7/-T21FCCL1 UD UNIT=AFF=FT2(FCC1,

77 DSN=ENGRF 1653966 4D1SP=LLD
//ZETIZFEGLY VD UNIT=AFF=FTICFOLT,
77 USNZENGReFE2E21944,01SP=ULD
7/FTE3FCC1 LD UNIT=AFF=FTICFOCT,
77 UDSN=ENGR.FZ156€24,01SP=0LD
/7/7FT2aF0C1 LD UNIT=AFF=F12CFCC1,
77 USNZENGReF 7507461 ,D15SP=0LD
Z/FTi5F0C1 DD UNIT=ACF=F T (F OO,
/7 USNZENGReF 2860212 +DISP=0OLD
Z7/7FTZEFCC] uD UNLIT=AFF=FTZCFO001,
77 USN=FNGR.FAZECT(3,0ISP=GLLD
7/FTZTFICT DD UNIT=AFF=FTzCFCC1,
77 DSNZENGReFEUSELESDI1SP=ULD
77
182

Demmy

ExAmPL: & = TO :XeCUTE THE FILE CREATION PRUGRAM WITH DATA
TRANSHIR FILE (LDTF) FORMAT ODATA INPUT. IN THIS CASE, THE
DATS INPUT JE ¢ DISC FILF THAT HAS BEEN PREVIUUSLY CREATED.
NLTICt THAT THE KRECCRD FORMAT FUOR Trt TEMPURARY SEWUENTIAL
SCRATCH FILE (FT15FCC1) HAS CHANGED AND THAT AN INFQO FILE
GRLUP GUTPUT FILE DATA SET 1S DECLARED (FTOSFLGL) .

/7 SARCY Juu (FELBC20CsGIELE620GG9sDPIESTS) e 'DICK 841",
/77 MEGLEVEL=1 sMEGCLASS=L 4CLASS=TNUTIFY=ESAKR
/7 TEPL EXEC POM=Ft ARCZ 9 TIME=Z

Z7/7S5TEPLIL DU LENSERGReTEST1,D1SP=5HR

7770 1F0CT DL USN=ESARGUOLEMAS4DISF=0LD

/7/FTOSFOC0Y LU DEN=EcSARUTFETUB+DISHF=SHK

J/FTCEFOCL DL SYLOUT=4

77FTCCFCCL DD UNIT=SYSDADSN=FSARGINIVILZC,

/77 DISH=(NEWCATLG) +SPACE=(TRKs(6s6))

I44 DLE =(RECFM=FUL +BLKSIZE=310CoLRECL=EC)

//F7T14F 004 DD UNIT=SYSDAWDSN=FSARUNIT1I4,DISP=NEW,
77 SPACE=(CYLe3)sU(B=(RECFM=F ¢BLKESIZ2E=1024 +DSEGRG=DA)
Z/ZFT1eFLC]l DD DLSN=LSARSUNITI4,UNIT=AFF=FT14FCO01,

/7 VOL=REF=3FT14FC(1+D1SP=0CLD,

77/ DCB=(RECFM=F +ALKS1Z¢ =1C24 4DSCRG=DA)

/70 T13H0CL UD UNTT=SYSDALDISP=NEWSPACE=(CYLe(30:))
/77 ULUCU=(RECFM=VDSBLKSIZLE=€C400+,LRECL=40ESR)
Z/75YSUBUME DD SYSOUT=A

Z7FTelFC(1 DD USN=ESERDIFDFTALDISP=EHFP

/7

FXAMFLE 2 = TU EXECUTE THF PROCESSING PRUGRAM IN A BATCH
MUbEe NOTICE THAT TWQ DATA SETS ARE CONCATENATED Tu
FUNM THE INFU FILEe ALSO NOTICE THAT THt SCRAYCH FILES
DATA SET 1S ASSUMED TU FXIST ALREADY AND THAT THE SCRATCH
FILES ARE DLCLAREO TO BE PERMANENT wlTH THE PASSED
FARAMITER SPERMSY,

//7LSEREC 0B (ATARQOQU +G3ELE309SS00UP3ELTS 'ODICK 2E41°%,

7/ MEGLEVEL=1eMSGULASS=2CLASS=HNOUTIFY=ES

/77 EXEC FOM=ETAR(EG«TIME=2(4 FARM=IPERM?®

/7/7STEPLIY DO DSN=ZENGReTEST1,D1SP=SHR

Do
AR

//FT1IZFC01 DD DSN=ESAR«SCRATCHeDATA,DISP=0LD
77FT11F001 DD DSN=ESAReSCRATCHeDATALDISP=0LD
7/FTCEFCC]1 DD DSN=ESAR.PRUCESINCDATA 0 15P=SHR
//FT{6FCG1 DO SYSULT=A

//FTLIEGCL DD DSN=ESARSOLSMAS ,DISP=SHR
//FT14FGC1 DD DSN=FESAR. INFOBASE oDISP=5HR

4 DU OSN=ESARSCEIGRUPSDATASDISP=5HK
Z/7FT13F00L VU USN=ESARCOMSEQ.DISP=SHR
Z7/7PLATTARPE DU UNLT=(TRPS+sDEFER),

/77 VULUME=PRIVATE yDCB=(DEN=2),

/77 LABEL=EXPDT=9EQCS

7/

183

PONE 2PN

- e s AT g St T

EXAMPLE 4 =~ TU EXECUTE THE PROCESSING FROGRAM UNDER TSU.
FOR THIS EXAMPLEs A TEMPORARY SCRATCH FILES DATA SET IS
ALLOCATED ANL THE PARAMETER *TEMP'!]S PASSED TO THE

PRUGRAM. THE PLOT COPY DATA SETS ARKE DECLARED AS DUMMYS
SUlg?AT NO PLOT COP1ES SHUOULD BE ATTEMPTED USING TrlS ‘
CcL - H

CONTRUL NUMSG

FREE OA(CESPR.CLIST?®)

FREE F(FTCIFGCL HTCSFCO01 FTCO6FO0CY FT22FCO01 FYZ3FCOL) .
FREF F(FT11FCUL FTIZ2FOC] FTI3FGOL FTI14F0LOL)

FRFE ATTR(SCRATX)

CONTROL MSG

ATTk SCRATX RECFM(F) DSUORG(DA) LRECL(
ALLOC DA(VTIEMP) USING(SCRATX) NEw SP(
FREE ATTRUSCKATX)

PROC 2 EDIT INFUO PROUGI(ENGR+PRODI(ATAROC3)) MFILE(ESAROLSMAS) {

024) BLKSIZE(1024)
) CrL

1
-
H

ALLOC F(FT12FC0CL1) ULDA(VTEME) SHR

ALLOC F(FT11FCO01) UA(VTIEMP) SHR

ALLOC F(FTI13F001) DA(*EEDITe®*) SHR

ALLCC F(FTLLFSCY) DA(*LMFILES®) SHK

ALLUC FUFT1A4F(C1) DA(*LINFQOe"®) SHR '
ALLULC FUFTCEFULOGL) DA(®)

ALLOC F(FTCEFUOL) DA(S) 3
ALLOC F(FT22F0061) LUMMY |
ALLOC F(FYZ3FCC1) uUMMY i
CALL *LPRUGe®* 'TEMP® {
FREE F(FTOCIF(QULL FTZ2FCC1 FTE3FCOL)

FREE FULFT11F L0l FTI2FGGY FTI2FLLY FTL14FCGOL) .
DELETE VTIEMe)

CRIMPLE & = TU EXECUTE THE PRUCESSING PROGRAM UNDER TSU.
IN THIS EXAMIFLF s TRHE SCRATCH FILFS ARE ASSUMED TO BE A
FLhMANINT DATA SET. AND TOU BLEN INITIALIZED BY A PREVIOQUS
PROCESSING PROGRAM RUNe THE PARAMETER *PERM® [S PASSED TO
THE PROGRAM, ALSO. THE PLUOT COPY DATA SETS ARE ALLUCATED.

PRUC & EDIT INFUO PRUG(ENGRPRUDI(ATAR(Z)) MFILLE(ESAR.OLSMAS)
CCNTROL NOMSG

FRFE DA('tSARSCLISTY)

FREE F(FTOIFC0O1 FTOSrOOl FTICE6FCO]1 ¢Ti2ra0l FT23F001)
FTIZFOO0Y FT13FCO01 FT14F001)

FREE F(FT11FOC1

CUNTROL MSG

ALLOC F(FT1£FCC1) DA(VPERM) SHR

ALLUC F(FT11FCC1) DA(VPERM) SHR

ALLOC F(FT13F0G1) DA(CEFEDIT.*) SHR

ALLOC F(FTCLIFO001) LA(CMFILES?) SHK

ALLUC F(FT14FCO01) LA('CLINF0.°) SHR

ALLGC FUFTC(SFLC1) LA(®)

ALLUC F(FTLO6FCO01) LA(®R)

ATTK VCUF RECFM(Vet:9S) DSORG(PS) LRFCL(16) 6LKSIZE(3124)
ALLOC DA(TEMPCOP) USINGIVCUF) NEw SHACE(L) CYL

ALLUC F(FTI122FCCL) LA(TEMPCUP) *
ALLOC DAUKEEPCUP) USINGI(VCOP) NEW SPACEt(1s1) CYL

ALLUL F(FT23Fil1l) DA(KFERCULIP)

FREE ATTROVCUF)

CALL *EPRhUG® *PFRM®
FRCE F(FTOIFCC] FTIZFO0O1 FT:22F001)
FrRit F(FTI1FCCL +T1ZFCCY FT14FCC] FT14FCO1L)
DELETE TeMFCOP
184
‘.;« ’ %‘
' L 4 T ‘)

EXAMFELE 6 - Tu PLOT FROM THE PLOT COPY FILE THAT WAS !
CREATED IN EXAMMLE Ee b
Z7ESAKGT JOB (PLLTCUPY sG3E +62009900.DF3E+TE)o*DICK 28417, ’
v MSGLEVEL=1sMSGCLASS=8 4CLASS=GyNOTIFY=ESAR
77 { XEC PGM=FE£RZB,TIMF=5

JZ7STEPLIAN DO DEN=ENGReTEST1,D1SP=SHR
Z/F123F00UY1 DD OSN=ESARCKIEPCOP«DISP=SHR
Z/7ET06RL0C0CY LD SYSLDUT=A

Z/7FLOTTARPE DO UNIT=(TPS++DEFER)

/77 VOLUME=PRIVATE ,t ABEL=EXPULT=GEL0(S,
/77 OCB=(DEN=T) :
/77 {

£ XAMPLE 7 = 70O RUN THE FI1LE MAINTENANCE PROGRAM UNDER
TSUe THE SAVE, RESTORE AND SCRATCH FILES ARE NOT
DECLARED SU THE THE °*SAVES AND *RESTORE®* CUMMANDS SHOULD
NOT BE USED wlTH THIS CLIST.

PROC & PRUGIENGReTESTI(FEARGQ)) MFILZ(ESARCOLSMAS)

CONTRUL NOMSG
FREE DA(®ESARSCLIST®)
FREE F(FTCO1FLEGL FTCSFCC1 FYCGFCCL) 9
FRFEF ATTR(SCRATX)
CUNTROL MSG6
ALLUC F(FI1T1FGOL) DA('E
ALLOC F(FTOCEFOC1) DA(%*)

: ALLOC F(FTOUEFCGOL) VA(®)

! CALL °*LFROG.*

FREE F(FICIFCC1)

MFILE«®*) SHR i

EXAMFLE & - T0O EXECUTE THE FILE MAINTENANCE PROGHRAM IN A

, sATCH MUDEe THE SAVE, RESTOREe AND SCRATCH FILES ARE
DECLARED IN THIS JCL SO THAT THE SAVE AND/OR RESTORE
CUMMANDS COULD BE USED.

J//7ESARZC JOU (MAINTAINSG3E463C99900,DP364TS

77 MSGLEVEL=1+¢MSGCLASS=A4CLASS=GsNUTIFY=

77 CXACC FGM=FEARGG, TIME=Z0

/7/7STEPLIL DD DSN=ENGR«TEST1,DISP=SHR

7/FTCIFGC]1 DD DSN=ESAROLSMAS (DISP=0LD

//F1CSFO0C]1 DD DSN=FSAR<FMPINPUT.DATADISP=SHR

; //7ETU6FO0CG] DD SYSUUT=A

) 77ETUTIFGC1 DD DSN=ESARPARTISAVE UNIT=TPS,D1SP=ULD
/7/7FTOEFO00Y DO DSN=ESARCPARYSAV1 UNIT=TPS,D1SP=NEW,

)+®*DICK ZE41l*t,
ESAR

b
! 77 LABEL=EXPDT=9€3¢€5,
! 77 DCB=(RECFM=FH ,BLKSIZE=E192,LRECL=10Z4)
- 77FTCSEOO1 DD UNIT=SYSDAsDISP=NEW ¢SPACE=(CYLs(3sZ))s
i 77 DCB=(RECFM=F(3 sBLKSIZE=4096+LLRECL=1024)
; 77

\"4‘

185

- ad - " - . sy - STy v W 3 -~ P T R N
H‘Fgng wiﬁap'-rw

EXAMPLE 9 — TQ EXECUTE THE QUESTION AND ANSWER PROGRAM TO
CREATE COMMAND INPUT FUR THE FILE CREATION PROGRAM (TY3TH).
THIS CLIST ALLUCATES THE COMMAND INPUT FILE AS °*NEW?® SO

THE FILE SHOULD NUOT EXIST SEFORE THIS CLIST IS EXECUTED.
THE DATA SET NAMI THAT SHOULD BE USED FOR THIS FILE MUSY

BE PASSED AS THE FIRST PARAMETER TO THE CLIST.

PROC 1 INPSET PROG(ENGR.PROD1(FEARS55))

CONTROL NOMSG

FREE DA(*ESAR.CLIST®)

FREE F(FTOSF001 FTO06F001)

FREE F(FTO08F001)

FREE ATTR(SCRATX)

CONTROL MSG

ATTR SCRATX RECFM(F.H) LRECL(80) BLKSIZ2E(2480)
ALLOC DA(EINPSETL) SP(10) TRACKS USING (SCRATX)
FREE ATTR(SCRATX)

ALLOC FIFTOBFO00L) DAIELINPSET,.)

ALLOC F(FTOS5F001) DA(*)

ALLQAOC F(FTO06F001) DA(¥)

CALL *6PROG.?

FREE F(FTO08F001)

SXAMPLE 10 — TO CXeCuTe THE COMMAND SEQUENCE FILE INITIALIZ-
ATION PROGRAM UNDER TSQO. THIS COMMAND SEQUENCE FILE DATA SET
MUST BE ALLOCAT:ZD 3EFORE THIS CLIST 1S EXECUTED AND THE

DATA SET NAME MUST SE PASSED AS THE FIRST PARAMETER TO THE
CLIST.

PROC 1 EDITFILE

CONTROL NPMSG

FREE DA(CESAR.CLIST?)

FREE F(FTO1F001 FTOSF001 FTOOF001 FTO9FO001)
CONTRUL MSG

ALLOC F(FTO9FOCO01) DA(*EZDITFILES") SHR
ALLOC F(FTO1FO001) DA(CEEDITFILES®) SHR
ALLOC F(FTO5F0Q01) DA(*)

ALLOC F(FTO6F001) DA(x*x)

CALL *ENGRe.TESTI(FEAR1)"*

FREE F(FTO1F001 FTO9F0O01)

EXAMPLE 11 = TU COMPILE ANY S0OURCE. FUR THIS EXAMPLEs THE
SOURCE INPUT IS5 ON DATA SET "ESAR.SOURCEL.FORT® AND THE
OBJECT OECK IS WRITTEN TU DATA SET 'SESAR.0UBJECT.OBJ?,

Z//7ESAR4 J0B (COMPILO00+G38463099900+sDP384TS),e *DICK 28417,
77 MSGLEVEL=1,NOTIFY3ZSARMSGCLASS=A+TIME=(54+400)+CLASS=D
//FORTX EXEC PGM=IFEAA3REGION=256K

//7SYSPRINT DD SYSOUT=$%

Z/7STSTERM DD SYSOUT=%

/7/75YSUT]1 DD UNIT=VIOsSPACE=(TRK+100)

//7SYSUT2 DD UNIT=VIO,SPACE=(CYL,3)

//SYSLIN DD UNIT=SYSDADISP=(NEWsCATLG)}»DCB=BLKSIZE=3120,
/77 SPACE=(CYL+10)+DSN=ESAR.OBIECT.OBY

7/75YSIN DD DSNSESARSOURCE FORTSDISP2(OLDDELETE)

44

186

P

~

-~
v w

e &

B aaiale &

EXAMPLE 1& = TO LINK THE FILE CREATION PROGRAM ON TSUe
THE LBJECT DECK 1S ASSUMED TU BE ESARCUBJIECT.OBJI. THE
LUAD MOOULE 1S LEFT ON THE PARTITION *FEAROZ® UF THE
LIBRERY *FNGR.FRUDI®.

LINK Lodi (T LUAD(*LNGR«PRUDI(FEARGZ)®) MAP FURTLIEB LIB('ESARDATMAFLB?®
YENGRoFOKTLEB®)

EXAMPLE 13 = Tu LINK THE BATCH VERSION OF THE PRUCE SSING
FRUGRAM UM TSUe THE MAJUR PART OF THF PRUCESSING PRUGRAM
UBJECT IS "ESAROBIUECT0OBI®s wHILE THE ADDITIONAL UBJECT DECKS
SEFSARCOSYMBPALK.OBU®y *ESARNPLDFVCUCUBU®y AND "ESAR«DUMMYS.UBJ®
ARE USED (SEE SECTIUN 7). IN ADDITION, THE LISRARIES
PECARSJDATMAPLEB® AND *ENGR.FORTLIG® ARE USEDe *ENGReFOKTLIG®
CUNTALINS THE CALCOMP PLOTTING SUBROUTINES

LINK (UBJECT SYMBPACK NPLDEVCO DUMMYS) LOAD(PENGRTEST1(ATARQE)*) MAP
S1ZE(ALOLULL10L50G00) FORTLIB LIB('SESAR«DATMAPLE?®* "ENGR.FURTLIBY)

TAAMPLE 14 - TU LINK THE INTERACTIVZ VERSION OF THE PROCESSING
PRUGRAM ON TS0e Trf MAJOR PBART OF THE PRUCESSING PRUOGRAM 1S
CBJIECT 1S IN PISARCLHJIFCTOBU®s wHILE THY ADDITIONAL OBJECT DECKS
SESARSOYMBPACK.OBUY®y *LSARNEWCPREV.OBJU®y AND *ESARSNKLDEVTU.USJ®
ARE USED (SEEf SECTION 7). IN ADDITION, THE LIBRARIES
‘EOSARSGDATMAPLE e *ENGRTCSLUADI® s AND '"ENGRFURTLIB® ARE USED.
PENGRSTCSLULDL® CONTALINS THE TEKTRUNIX PLUTIO LIBRARY,.

LINK (CBILCT SYMORPACK NEWCPREV NPLDEVTU) LUAD(*ENGRPRODI (ATARCS)®) MAP

S1ZE(4LO0CO01C0000) rORTLIB LIB(*ESAR.VATMAPLB?® PENGRTCSLUAD1® *ENGKReF
ORTLIuV®)

187

7300.80

