
AD-AS9. 650 HARVARD UNIV CAMBRIDGE MASS AIKEN COMPUTATION LAB F/6 9/2
DISTRIBUTED ALGORITHMS FOR SYNCHRONIZING INTERPROCESS COMMUNICA--ETC(U)
1980 J H REIF, P SPIRAKIS N0OO14-BO-C-0647

UNCLASSIFIED TR-2 NL.trAmmmmmmmm
IIIEEEEEEEEEEE

EEFEEEEh

DISTRIBUTED ALGORITHMS

FOR
SYNCHRONIZING INTERPROCESS COMMUNICATION

WITHIN REAL TIME

BY

John H. Reif

Paul Spirakis

TR-23-80

-4

F

'1%

. Ii I i I /l I liII

Distributed Algorithms for Synchronizing Interprocess Communication

Within Real Time-q

by

John 'Reif and Paul, Spirakis

Aiken Computation Lab., Harvard University, Cambridge, KA 02138
-hbis work was supported in part by the National Scic C _CiGrant

(tSF-CS79-2-l24-&nd the Office of Naval Research 00014 8- 0 7..

('SFMC7 h ,V N 01 -0

AcceSlorl F0,?

NTIS I2A&I
1) ,I1C T ek3 I'

17-

--

Distributed Algorithms for Synchronizing

Interprocess Communcation within Real Time

Abstract

-This paper considers a fixed (possibly infinite) set H of distributed asynchronous

processes which at various times are willing to communicate with each other.

We describe probabilistic algorithms for synchronizing this communication with boolean

"flag" variables, each of which can be written by only one process and read by at most

one other process. With very few assumptions (the speeds of processes may vary in time

within fixed arbitrary bounds, and the processes may be willing to communicate with a

time varying set of processes (but bounded in number), and no probability assumptions about

system behavior) we show our synchronization algorithms have real time response:

if at any time a pair of processes are mutually willing to communicate, they

establish communication within a constant time interval, with high likelihood (for the

worst case behavior of the system).

Our communication model and synchronization algorithms are quite robust and can be

applied to solve a large class of resource synchronization problems, as well as implement

Dijkstra's CSP in real time.

1. Introduction

Recently, [Rabin, 80], (Lehman and Rabin, 81], and [Francez,Rodeh, 80] have procosed

probabilistic algorithms for a number of synchronization problems. This pro.aczis:-

approach (where we make no probabilistic assumptions about the system behavior, but allow

probabilistic choice) leads to considerably simpler alaorit;7rs and shorter proofs, perhaps

because the corresponding deterministic algorithms had to consider complex situations

which would have very low probability, if probabilistic choices were taken. The probabi-

listic approach may also lead to improvement in the efficiency of synchronization algo-

rithms. An improvement in space efficiency is seen in (Rabin, 801. We demonstrate here that

a considerable improvement in time efficiency can be made by probabilistic synchronization.

4This paper takes the probabilistic approach to synchronization of corranwcticin in -

network of distributed, asynchronous processes. We are interested in direct interprocess

communication, rather than packet switching as considered in [Tonag, 80] and [Valiant, 80j.

00

-2-

Previously [Schwartz, 80] proposed a deterministic synchronization algorithm for

implementing CSP [Hoare, 78] on a fixed acyclic distributed network. Also (Lynch, 801

gave a algorithm for resource synchronization problems which may be adopted to communication

synchronization. Both algorithms are considerably less time efficient than our proposed

algorithm (for a specific comparison of time preference, see Section 2E).

(Francez and Rodeh, 801 also propose a probabilistic solution to synchronization of

communication, but make no consideration to the time efficiency of these solutions.

Our paper is organized as follows: We present in Section 2 a model for distributed

communication systems; the model ignores the details of message transmission but gives

a precise combinatorial specification (by time varying graphs) of the synchronization

problem of interest. This model also allows a precise definition of the relevant complexity

measures of synchronization algorithms, such as response time.

Section 3 presents our synchronization algorithms, and in Section 4 we prove various

properties of the synchronization algorithms which must hold with certainty, irrecardless

of probabilistic choice. Section 5 gives a probabilistic analysis of the performance of

our algorithms. Although our algorithms are quite simple we have taken considerable effort

in their design to improve their expected time performance.

We have also included two Appendices: (i) the first appendix applies our synchroni-

zation algorithms to implement resource granting systems similar to those of (Lynch, 801

and we give an example application to "hasty dining philosophers." (ii) The other appendix

gives more of the details of the probabilistic analysis of our algorithms.

2. Our Model for a Distributed Communication System (DCS),

and Its Complexitv Measures

2A. The Model

Let IT={l,2,...} be a fixed, (possibly infinite) collection of processes. We assuze

a (global) time t, on the nonnegative real line [0,-), whereby events of the system are

totally ordered. The processes of R are asynchronous; their speeds may vary over time

and they have no access to any global clock giving the time. Each process iE 11 consists

of a constant size set of synchronous subprocesses (i.e., with the same speeds), of which

we distinguis':

(I) The primary subprocess (the director) of i

(2) The implementing subprocess (thepO2cr) of i.

Intuitively, the director of i wishes at various times to communicate with directors

of various processes in I- [i, and the director of i has no means (i.e., shared

variables, etc.) of interacting with the directors of II- {i}, except via the communication

-3-

system. All communication by the director of i is implemented by the poller of i.

Thus systemwide communication is implemented by a distributed scheduler, the pollers of 11.

Note. The formal model DCS (for Distributed Communication System) described below,

has been designed so that

(1) we are not concerned with the values of the messages communicated between the

directors, but, instead, with simply the establishment of co7nunication. (This allows us

to avoid any message system dependent assumptions which may vary for any given application.)

(2) We are concerned only with direct (two way) communication between processes; we

are not concerned with packet switching, as in [Valiant, 80] and [Tonag, 80].

We assume a (possibly infinite) undirected graph H (the connections graph) with

vertices H, and undirected edges given by symmetric relation t c (fix I) - {(i,i): i E -}.

Then i j denotes i E 1 is physically able to corrmmnicate with j E 1 - {i}. H is

fixed for all time and can be considered to be essentially the hardware connections between

processes of H. We assume H has finite valence (i.e., only a finite number of processes

are connected to any given process iE IT).

For each time t 0, we assume a (possibly infinite) directed graph Gt (the willing-

ness digrcph) with vertices R and directed edges given by relation ---PC l Xi .

Then i -t *j denotes the director of i E T is willing to cor7mnicate with j E 7 - {i}

at time t. (In that sense we say i is the source and j is the target). We require

that i .. j if i -i; j (i.e., the director of i is willing to communicate only with

processes with which i is able to communicate with). Also, let i <-t j if both i -

and j -vi. (I.e., i < j denotes the directors of i,j are both willing to

communicate at time t.) For each time interval A on [0,-], let i --S j if i --. j

for all tE A, and let i j j if both i -- j and j - i. (-- and 4-- denote

the willingness to communicate holds over time intervals.)

The edges of G departing from iE TI are assumed to be stored locally at i,
t

specified by the director of i and read only by the poller of i.

We assume the following:

(Al) There exists a given fixed integer constant v> 0 such that ViE IT, Vt 0, the

outdegree of i in Gt (i.e., the cardinality of {jji -. j}) is upper bounded
by v.

(A2) We assume given fixed real constants rmin, rmax (0< rmin max) such that the

speed (steps per real time unit) of each process iE fl at any time t 0 is on

0 the interval [/r max , /rmin].

A step consists of either an assignment of a variable, a test, a logical or arithmetic

operator, or a no-Op.

t

i -4-

(A3) We assume that two-way communication between any two directors of processes i,j EI

requires only one step of i and j. (Thus, the directors of i,j are assumed to

communicate in short "bursts." In practice, this assumption can be easily circum-

vented to allow long intervals of one-way communication between directors between the

times that two-way communication between i,j is established.)

2B. Implementations of a DCS

An implementation of a DCS assigns a fixed program to each of the pollers of 11. The

implementation is symetric if the poller's programs are independent of the position of

i in the connections graph H.

For each t: !O, we assume a (possibly infinite) directed graph Mt with vertices 7

and directed edges given by relation -AAA-)C IC . Then i __'AA___)j denotes (the pollert - t
of) i opens communication with j Ef - {i} at time t.

Let i *-A&--i j if both i -AAA--+ j and j -AAA--_j i. Then, i #--AA-- j denotes
t t t t

i,j achieve mutual cornunication at time t. (Also, we extend the notation to intervals

on [0,] as for Gt).

For each i,j ElI such that i " j we assume a comunication pcrt PORT.. (con-

trolled by the poller of i) which is open at time t2!0 if i _-AAA__j (i.e., the
t

poller of i has opened communication with j) and closed otherwise. Thus, i - j
t

if and only if PORT.. and PORT. . are simultaneously open at time t. We assume 2-way

communication between i,j is possible at any time PORT and PORT are simultaneously

open, but we make no particular assumptions (beyond A3) about this communication.

An implementation is proper if it satisfies the following restrictions:

(Rl) i --AAA-- j only if i 4-*j (i.e., the poller of i opens communication with j onlyt t
when both i and j are simultaneously willing to communicate).

(R2) We require that -_AA be a (partial) matching: if -_AAA-j then neither j'-AAA-,i
t t t

nor I_..AAA--_. j, for any j' E1- {i} (i.e., i does not open communication with more
t

than one process at a time).
2(R3) Vi,j Ell and V time intervals A of maximal length (5 r /rmin), if i -AA-- j
max minA

then i *--AAA-- j for some t in A.
t

(Thus the poller of i opens communication for the least possible time and further-

more it never)ens communication with j without achieving communication with j.)

(R4) Each program variable X of the system may be written by exactly one process i E

and either X is read by only one other process j En- {i} (in this case X is a

fl G from i to j) or X is local to i (X is read only by i). Let this also

hold for the subprocesses (in particular, the director and poller) of each process

jti E.

i -5-

(R5) Furthermore, the communication graph Gt is distributedly stored. We assume for

each i 11, an integer variable D. and integer array E. of length v (written by1 1

the director of i, read only by the poller of i) such that for each t2O0.

(i) Di is the outdegree of i in Gt (by Al, Di 5v).

(ii) Ei(1),...,Ei(D i) are the targets of the edges of Gt departing from i. Also,

we assume the directors of H have no other flags which may be read by other

processes.

iC. Global State of the DCS

For each t2:0, let Rt be a mapping 11. 2 giving the speed of each process of H

at time t. We assume the speed schedule R= {Rtlt z0} is chosen by an oracle P! (our

worst "enemy") at time t= 0. Also, we assume for each t :0, ?I chooses (for the

directors of) the willingness digraph Gt at time t. (Thus Gt may vary dynamically

in time, depending on the choices of the oracle 4). However, for each t 0, the digraph

Mt is defined by the pollers of H, (which attempt a distributed synchronization of the

DCS, depending on our given implementation).

In addition, we allow the pollers of H to freely make probabilistic choices as in

[Rabin, 80]. Let Lt = the probabilistic choices made by pollers of H, up to time t.

Then, the global system state at time t is given by

Et = <R t GtlMttLt't>

and the global history up to time t is

rt = {nt,: Ot' t}

Thus, we have a probabilistic game, where the omnipotent oracle d plays against the team

of pollers of H. We wish measures of the success of the pollers of H.

1D. Complexity Measures on DCS Implementations

We define here complexity measures for the performance of a DCS implementation.

Let the response time of a DCS implementation, for any oracle -W, be the random

variable T giving the length of the time interval required for the establishment of

communication between any two processes.

C Let T= maxfmean(Td)/all oracles 41}. For each E, 0:5:5, let the c-error resnorsc

T(C) (note: this is a function, not a random variable) be the upper bound on the inverse

of the cumulative distribution function of T . Thus, V time interval A T(E), V. E 7,1,)

V oracle oi i 4;-.-1j implies i 4--AAA--)j for some t E A, with probability 1- E.
t

-6-

The DCS implementation is real time if VC, OS E< 1, T(E) is a constant, independent

of any parameters of H (except v, which we assumed to be a constant upper bound on the

outdegree of vertices of G t). Note that t is bounded by a fixed constant.

For all 11,12 d and time intervals A, let n l 112 if ViEII 1 , j Efl 2, i j

(i.e., this implies all managers of n1 and TI2 are mutually willing to communicate

during A).

PROPOSITION 1: V oracle d, V time interval A such that IAI >T(C) Vnif 2 C T,
if 11 then i 4-AAA--)j with probability 1-, ViE111,j ET 2

(i.e., connection is established between all directors of i and 112 within the time

interval A, with probability Z 1 - E.

Thus, real time response implies that the DCS implementation has a Very robust type

of fairness.

We also consider the cases where the director of any given process iE '1 may assign

a priority to the processes jE T1 - {i} which i wishes to communicate with.

In the simplest case, the director of i distinguishes the first target of corzruni-

cation, say Ei(1). For each t O, -' is the relation on x ×T sucn that Vi,j
1 t

i ---)' j iff Ei(l) = j at time t (and let i ---' j if i t-' j Vt E A).

Let the insisting response tine of a DCS implementation be the random variable T,

for each oracle .4, giving the length of a time interval required for the establishment of

communication, with the first target. Let

To = max{mean(T;)/all oracles d}

For each E, 0:5E< 1 let the E-error insisting response T'(E) to be an upper bound

on the inverse of the cumulative distribution function of T a. Thus, for every interval

>T'(E), for every i,j EI, for every oracle ., (i - j and j -V i) implies

i 4---AAA--j for some tE A with probability 2!1 -c. The insisting DCS implementation is
A

real time if VE O:C< 1, T'(E) is a constant, independent of any parameter of H

(except v). obviously, T' is bounded by a fixed constant if we have real time insisting

DCS implementation.

It is useful to observe, given T'(c), any given process iEIT may determine (with

any given probability) whether any other process j I T - {i} is willing to communicate

with i over a given time interval.

PROPOSITION 2: V oracles d, V time intervals AeT'(e) and Yi,j CI, if i -' j

but there is no t E A such that i <-AAA --) j
t

then j --ii (i.e., j is not willing to communicate with i sometime

during A) with probability 2 1 - c.

-7-

This proposition may be used for timing out insisting requests to communicate with a

specific process.

2E. Results and Previous Work

The primary results for this paper are:

COROLLARY 1: There is a reaZ time impZementation of DCS such that

(1) the worst case mean response T= O(v 3)

(2) the E-error response T(E) is T(E) =O(v 3 log(l/E))

Furthermore, a more sophisticated probabilistic analysis of our implementation, not

given in this paper, implies a worst case mean response time O(v 2).

COROLLARY 2: There is a real time insisting implementation of DCS such that

(1) worst case mean insisting response T' O(v)

(2) the E-error response T'() is T'(C)=O(v log(i/E)).

These results follow from a single general theorem of Section 4.

Our implementations are Proper (satisfy restrictions Rl-R4), symmetric, and are

completely independent of the connection graph H (H may be any finite or infinite graph

with finite valence).

The best previous result is due to [Schwartz, 79] and is restricted to the case H

is finite and its edges can be directed to form a digraph H' which is acyclic. Let

X(H) be the minimum vertex coloring of any such H'. The deterministic DCS implementation

of [Schwartz, 80] has insisting response time T' lower bounded by v-X(H). Note that his

implementation is not reaZ time, since in general X(H) is of order niU. Also, his

DCS implementation is not v syr.eriic, since processes are required to know their color in

Also [Lynch, 80] gives a solution to a distributed resource allocation problem, which

I,(H)may be adopted to yield a DCS implementation with response time v

In Appendix I we show that a class of generalized resource allocation problems related

4I to those of (Lynch, 80] may be efficiently solved by our DCS implementation. Our innovation,

which results in real time response, is to allow pollers to make probabilistic choices as

in [Rabin, 80].

o

-8-

3. The Implementation of a DCS

To implement a DCS, we must give an algorithm for the poller of each process in H.

We present here two such implementations. Both satisfy restrictions Rl-R4, required by

proper implementations, and both are symmetric: (i.e., each poller has the same algorithm

regardless of its position in the graph H).

Pollers have Algorithm 1 in our "noninsisting" implementation, and Algorithm 2 in our

"insisting" implementation. We show in Section 4 that both implementations have real

time response.

3A. Informal Description of the Pollers' Algorithms

In both Algorithms, the poller repeatedly throws a fair coin and then executes a

phase. Each phase is either asking or answering and is chosen by the coin throw with

probability 1/2.

Informal Description of Algorithm 1 (for the noninsisting implementation)

WHILE TRUE DO

BEGIN

choose b from {O,l} with prob 1/2

if b= 0 then

BEGIN ("ans;._" chase) randomly sample v of the pollers your director wants

to communicate with. "Answer" each of these pollers that "asked"

END

else

BEGIN ("ask" nhase) choose at random a poller j your director wants to

communicate with. "Ask" j for a constant number of steps

END

END

* OD

Informal Description of Algorithm 2 (the insisting implementation)

WHILE TRUE DO

BEGIN

choose w at random form [0,cv] (c is a constant)

wait for [w] steps

choose bE {0,1} with prob 1/2
I

.4

-9-

if b= 0 then

BEGIN

("answer" phase) sample (at random) v of the pollers your director wants

to communicate with. "Answer" them that "asked"

END

else

BEGIN

("ask" phase) "Ask" E. (1) for a constant number of steps (when your1

director insists on communicating with E. (1))

END

END

OD

3B. Details of the Poller's Algorithms

Numerous important details are hidden from the above informal description of the

poller's algorithms.

For each i,j EI such that i j, there are three flaas (boolean variables) Q

Ai, Bij which are written only by i and read only by (the poller of) j.

(1) Flag Qi.: Just before each phase, Qi. = 0. Then i asks j by setting Q.

to 1 in the ask phase. Qi is reset to 0 before the end of the ask phase.

(2) Flag A..: Just before each phase, A.. =0. If i is in the answer phase and1J 1J

detects 2ji = 1 (indicating j "asks" i) then i :st rs j by setting Aij = i.

Before the end of the answer phase, i resets A.. to 0.
1]

(3) Flag B..: This variable is set to 0 by i only during the "watching window"13
which is the interval when i is in the asking phase and is watching for an answer

(A.. =1) from j. At all other times, B.. is set to 1 to indicate i is blind to
31 13

answers by j. Also, at every time t !0, Ei(1),...,Ei(Di) is the list cf targets of edzes

of Gt departing from iE 7, and Di v. These variables must be locked by the poller of

i during the "ask" or "answer" phase so that they will be unmodified by the director of

i during that phase. (Note that since for each iE T the director of i is synchronized

with the poller of i, the director of i need not busy wait during these phases.)

The Algorithms 1 and 2 require the number of steps in each phase to be a constant v.c

(where c is a constant).

A certain number of no-ops is executed to achieve this.

.7

-10-

3C. The Algorithms 1 and 2

We now give Algorithms 1, 2 in full detail.

Algorithm I (noninsisting implementation)

Program for poller i El

INITIALIZE. ();

WHILE TRUE DO

BEGIN

Li: LOCK Ei, D i

L2: CHOOSE bE {0,1} with prob 1/2

IF b = 0 THEN

BEGIN (answer phase)

L3: FOR x = 1 to v DO

BEGIN

choose a random mE{i,...,D i}

RESPOND i (Ei (m));
END

END

ELSE

BEGIN (ask phase)

L4: choose at random mE {l,...,D i}

ASK i (Ei (m))

END

UNLOCK Ei,D.

END

OD

Algorithm 2 (the insisting implementation)

Program for poller i ET

!.4 INITIALIZEi (

WHILE TRUE DO

BEGIN

C LI: LOCK Ei, D.

choose w at random from [O,cv]

DO w no-ops

L2: choose bE {0,1} with prob 1/2

I-

IF b= 0 THEN

BEGIN (answer phase)

L3: FOR x= 1 to v DO

BEGIN

choose random mE {l,...,D.}

RESPONDi (E (m))
END

END

ELSE

BEGIN (ask phase)

L4: ASKi(Ei(1))

END

UNLOCK E., D.1 1

END

OD

The variables of the poller i are initialized as follows:

INTIALIZE.();1

BEGIN

for all j E1 such that i 4j do

BEGIN

Qi iA.. ' 0

B..
1)

PORT.. set to closed
13

END

END

In the following two procedures, we assume a register CURSTEP which gives the current

number of the steps executed by the poller of i. (CURSTEP is assumed here only as a

convenience; it is clear that we could substitute instead a new variable that is incre-

mented on every step of the original Algorithm.)

Furthermore, we define the constants appearing in the procedures below: Let
~r

max
Co = - irmin

CR = 20 + 6-c0

cA = v(l+c)
A R

C1 = c A(8+7c 0)

A

-12-

PROCEDURE ASK (target)

BEGIN

Al: x0 *-CURSTEP

A2 : Q i, target 1 ;

a +- 0;

Bi,target4 -0;

A3: WHILE CURSTEP- x0 <C 1 AND a =0 DO

BEGIN a 4-A END
target,i -

IF CURSTEP-x = c AND a = 0 THEN Bi,target I ;

IF a =1 THEN

BEGIN

Qi,target -0;

A4: WHILE Atarget,i = I DO no-op

A5: OPEN-COMi (target)

END

Qi, target* 0
Bi,target 4- 1

WHILE CURSTEP - x 0 < c A DO no-op

END

PROCEDURE RESPOND. (asker)
1

BEGIN

x +-CURSTEP
0

Li: IF Q =1e~i THEN
'-Q~asker, = TE

BEGIN

Ai,asker 1;

L2: WHILE Q asker,i= 1 DO no-op

IF Basker i1 THEN4
BEGIN

Ai,asker

END

ELSE

BEGIN

L3: A k 0

L4: OPEN-COM. (asker)

END
END

RG: WHILE CURSTEP < c R + x0 DO no-op

END

-13-

PROCEDURE OPEN-COM (j)

BEGIN

Set PORTij to open

Do c no-ops

Set PORTij to closed

END

(Note. During the c0 no-ops, the director of i communicates with the director of j.)

4. Correctness Properties of the Poller's Algorithms

Which Hold with Certainty

Our algorithms are probabilistic and therefore some of their properties (such as

response time) only hold with a certain probabiZity, and not with certainty. A probabi-

listic analysis of these properties is given in the next sections. However, in this

section we prove properties of the algorithms which hold with certainty, irregardless of

probabilistic choice. We show restrictions Rl-R4 are satisfied by our implementations,

and thus they are proper. (Of course, we assume either all the pollers in H execute

Algorithm i, or they all execute Algorithm 2.)

4A. Definitions and Terminology

In the following, for brevity, we allow a poller of a process iEI to be identified

with the process i. A poler is in the asking mode when it executes procedure ASK(j),

and it is in the answering mode when it executes the procedure RESPOND.

If i is executing ASK(j) and B.. =0 then i is in a watchinq window for po>2'

j else i is blind with respect to j. We say i is answered by j if i is in its

watching window for j and i exits loop A2 with a= 1.

A phase of the poller algorithm consists of the steps between random choices of the

variable bE{0,1}. If b=0 the poler is in an answering phase and else it is in an

asking phase.

4B. Correctness Proofs

Using the above terminology, it is easy to prove three lemmas stating that restricticns

RI, R2 and R3 are satisfied for both Algorithms.

The following is a key lemma whose proof is given in detail. It holds for both

Algorithms.

-14-

LEMMA 4.1: If iEl is in its watching window for j and is answered by j, then

i,j establish corunication within : cE steps of i, and : cErmax time units, where

c =8. Furthermore, restriction R3 is satisfied.E

Proof. If i exits the A3 loop at time to, then (since no process but j can

wrtie in A j,i) at the same time j must be executing RESPOND(j) at the L2 loop. Since
i will arrive at A4 within 4 of its steps, then by at most time t + 4-r , i sets

wilariea 0 max'

Qi,j to 0 and enters the A4 loop. At this time, j exits the L2 loop. Also at this

time, the assumption that i exits the loop A3 with a = 1 implies that B.. = 0. So j

will arrive at R4 and set A. . to 0 at most time t +7.r . At the same time, i
3,1 0 max

exits the A4 loop. Then, within a time interval of length : rma, i opens PORT.. and

j opens PORT. Each of i,j keep their respective ports open for r max/r min of their

steps (which are not synchronized), on time intervals 1 and A2, respectively. Thus

i -- AA-- j and j --A-- i and r 5 1Ai Irm/r for i =1,2. Hence, there is
A, ma2 min1 max min

some time t to +8rmax such that tE A nA2 and at time t i,j establish communica-

tion (i k-AA---* j). QED
t

Thus we have

THEOREM 4.1: The Algorithms 1 and 2 each satisfy restrictions Rl-R4 and thus are

proper.

The following Lemma is useful in the probabilistic analysis of the next section.

LEMMA 4.2: If iE executes procedure ASK, then it requires precisely cA steps

of i. Also execut: bER ' ry i requires precisely cR steps of i. Also, each

phase of Alinritr 1 AI .-rxr 2) requires exactly cIv (c2v) steps, for fixed constants

cif c2 >0.

Proof. 4', . : ,-', *an over be blocked in the busy-wait loops of A3 or

L2. Lemma 4.2 thon 1I tv; : (,iuntinq steps. QED

5. Probablisti. Analysis of the Response Time of the Poller's Algorithm

The analysis done here holds for both Algorithms 1 and 2 (except that they differ in

theparmetrs max min
tae pramts defined below). We assume here the terminology of Section 4A.
ijI -~ij

Fix some time t'20. Let r be the global system history up to t, derived from
t

oracle r/ and luck "up to time t" as defined in Section 2C.

Note that (,Wl t) essentially specifies everything of the system's immediate future

except the pollers' "luck" Lt, for times t' >t. For all i,jE 1 let aij(.,r t) be

-15-

the probability that the poller of i is answered by j some time within A given i

is in a watching window for j during time interval A starting at time t.
min Max

In the following analysis, we assume constants a.. , . such that

(*) 0<a.. < . (d t) < a<l for all t>O, all oracles d, and global system

history rt , consistent with d.

In Appendix II we show

THEOREM II.A: For Algorithm 1, a..i (/v), a.. = O(1) satisfying (*)ij- 13

THEOREM II.B: For Algorithm 2, aij,(l) a = 0(l), satisfying (*
Xj 3

For all i,jE It let P. (k/(.dr)) be the probability it takes exactZy k phases for
1) t

poller i to be answered by j, given that i j for a time interval A starting at

t.

LEMMA 5. 1:

- 1a 1 max k-l <k-l

2 ij 2 3.) 1) t 2 32 ij/

Proof. It suffices to observe that the process of i be answered by j is a geo-
min max

metric process, with success probability bounded by [1/2 a.. , 1/2 e"]. QED

min
Since by Theorems II.A and II.B, the o.. and of interest here are independent

of i,j, in the following we drop subscript ij.

By using Lemma 5.1 and calculating moments, we get

LEMMA 5.2:

20 rain max

max) mean(k) 2 min 2

and

ymin (4-0max) 2 max (4-amin)
2

(ax) 3 - anmin) 3

By Lemma 5.2 and expressions for the tail of the geometric

, LEMMA 5.3: VC 0-<C < 1, Prob{k > k (0)}5E, where
max

.JI kmaxk (C) -f loga (iC) - logOma

a 1 omin)
log(l - a

-16-

Let vc be the number of steps required for each phase (of the poller algoritni

considered), as given in Lemma 4.2. Then the maximum time required for each phase is

v c r
max
Lemma 5.1 and 5.2 imply

THEOREM 5.1: If T is the response of the system, mean(T) :Svc r .2 max/(Omin)2

and if T(C) is the E-error response, T(C) Svcr maxk max(E).

Finally, this theorem and Theorems II.A, and II.B imply the corollaries claimed in

Section 2E.

Acknowledgments. The authors wish to thank Ed Clarke, who introduced us to the

synchronization problems considered in this paper, and to Michael Rabin, whose previous

work in probabilistic synchronization inspired this work.

'I

0I
*1'

Ri

References

Angluin, D., "Local and Global Properties in Networks of Processors," 12th Annual Sr.si-

on Theory of Computing, Los Angeles, California, April 1980, pp. 82-93.

Bernstein, A.J., "Output Guards and Nondeterminism in Communicating Sequential Processes,"

ACM Trans. on Prog. Lang. and Systems, Vol. 2, No. 2, April 1980, pp. 234-238.

Dijkstra, E.W., "Hierarchical Ordering of Sequential Processes," Acta Informatica, Vol. 1,

1971, pp. 115-138.

Francez, N. and Rodeh, "A Distributed Data Type Implemented by a Probabilistic Communicaticn

Scheme," 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York,

Oct. 1980, pp. 373-379.

Hoare , C.A.R., "Communicating Sequential Processes," Con. of ACM, Vol. 21, No. 8, Aug. 197£,

pp. 666-677.

Lehmann, D. and M. Rabin, "On the Advantages of Free Choice: A Symmetric and Fully

Distributed Solution to the Dining Philosophers' Problem," to appear in 8th .4fX

Symposium on Principes of Program Languages, Jan. 1981.

Lipton, R. and F.G. Sayward, "Response Time of Parallel ?rograms," Research Report ,

Dept. Computer Science, Yale Univ., June 1977.

Lynch, N.A., "Fast Allocation of Nearby Resources in a Distributed System," 12th

Symposium on Theory of Computing, Los Angeles, California, April 1980, pp. 70-31.

Rabin, M., N-Process Synchronization by a 4 log 2N-valued Shared Variable," 21st Annl'z

Sympos ": : , : :; &.. of t.r - Syracuse, New York, Oct. 19S C,

410.

Rabin, M., "The Choice Coordination Problem," Mem. No. UCB/ERL M80/38, Electronics Research.

Lab., Univ. of California, Berkeley, Aug. 1980.

Schwartz, J., "Distributed Synchronization of Communicating Sequential Processes," DAI

Research Report No. 56, Univ. of Edinburg, 1980.

Tonag, S., "Deadlock and Livelock-Free Packet Switching Networks," 12th AnnuaZ S:irsi:c

on Theory of Computing, Los Angeles, California, April 1980, pp. 82-93.

Valiant, L.G., "A Scheme for Fast Parallel Communication," Technical Report, Computt

Science Dept., Edinburg Univ., Edinburg, Scotland, July 1980.

1.1

APPENDIX I

An Application: A Real Time Resource Granting System

To demonstrate the robustness of a DCS, with real time implementation, we show that

we can use it to solve an interesting class of resource synchronization problems in real

time. These are similar to the resource synchronization problems of [Lynch, 1979] and

Dijkstra's "dining philosophers" problem) except that the resource synchronization

problems we consider have the property that processes are granting resources onZy for

bounded intervals of time.

The resource granting system (RGS) defined below will be assumed to be embedded within

a distributed communication system (DCS) as defined in Section 2. (We will also assume

the DCS has an implementation with real time measure, as provided by Sections 3 and 4.)

The (possibly infinite) set of asynchronous processes H is assumed to be partitioned

into a set Hr of requesting pro- esses and a set Ng of grantirg processes.

(Note: It is easy to superimpose each granting process into a requesting process so the

total number of processes is 1.rj, if we wish.)

We assume a (possibly infinite) set of resources p. Let each granting process j

in Rg have a distinct fixed resource p(j) Ep which it controls. Also, each requesting

process iE 1r has a set resources(i)cp, fixed for all times t O.

We assume assumptions Al-A3 of Section 2 and also:

Al' We assume a fixed integer constant v O such that

Vj in Hg , Iresource - (j)I :v

* As in DCS, each process iET! consists of two synchronized subprocesses

(1) the director of i

(2) the poller of i.

If i j€r, the director of i is a requesting director and if iAE the directcr

of i is a granting director.

We assume the programs of the pollers of 7 are given by the implementation of the

DCS. The programs of the granting directors are given by an implementation of the RGS

(which we describe below). At each time tZ!O actions of the requesting directors are

specified by an oracle d, our "worst enemy." d also gives at time t = 0 the schedule

of the speeds of the processes of R for all times.

Intuitively, the directors of R request, at various time intervals, resources of

p from the appropriate granting directors of Hg. We require that at no time the director

of any i 1g grants the resource p(i) to more than one requesting director. All

*1"

1.2

communication will be by the DCS system (see Definition in Section 2) as specified

below.

We define the connection graph of the DCS to be a (possibly infinite) undirected

bipartite graph H as follows:

Vi Er, j E 119

i 0 j iff p(j) E resource(i)

Note that by Al', the vertices of 1g have valence 5v in H; but we do not assume that

the valence of vertices of 1 r be bounded by a fixed constant.

For each time t 0, the willingness (to communicate) digraph Gt is defined:

Viar E 11 El

tt
(i) let i - j only if i j (i.e., the requesting director of i has

resource(i) containing p(j)) and the director of i requests (or has been granted)

resource p(j) at time t.

(2) Let j -V i be specified by the programs of the granting director of j (this

is provided by an implementation of the RGS).

To satisfy assumption Al of Section 2 for a DCS, we must assume Vt O, Vi 7 r, the

director of i simultaneously requests :5v resources at time t. (Nevertheless, these

requested resources may vary with time.)

In addition, we may assume by Section 3 we have an implementation of the above DCS

system (satisfying restrictions Rl-R4) with real time response T for establishment of

communication between directors.

An implementation of an RGS specifies the programs of the granting directors of 71g
.

These programs may be probabilistic as in [Rabin, 1980].

We assume, in addition to Rl-R4 that:

R1' In communication between the granting director of any i 11g and the requesting

director of any jEflr that once communication between i,j is established the

granting director of i ignores the particular message values transmitted by j and

the granting director of i either transmits "yes" (to indicate the resource p(i)

is granted to j) or "no" (to indicate the resource p(i) is not granted to j, or

P(i) has been revoked from j).

R2' Vt O, the granting director of any iE g cannot grant resource p(i) simultaneously

r* to more than one process jEl r, and furthermore we must have i**j.

1.3

Fix a RGS implementation (which may be probabilistic). For each k, 0:5k sv, and

oracle i let the k-grant response be the random variable giving the length of the tire

interval A required for any director of iE lr to have k resource requests simul-

taneously granted, given the director of i requested these resources during the entire

interval A.

Let the mean k-grant response be

Y = max{mean[y]/all oracles .}
k kj/

For each E in (0,1] let the s-error k-grant response be the minimum function yk(E)

such that V oracle d

Prob{yk,",< yk(E)} > i-s

The RGS implementation is real time if for all kE{i,...,v} and all CE (0,1],

Yk (E)> 0 and independent of any parameters of the connection graph H (except v, which

is assumed constant by Al). Note that if the RGS implementation is real time, the Yk is

a constant, independent of H.

THEOREM I: There is an RGS implementation with real time k-grant response for any

k5v.

It has mean k-grant response

- k+2
fk = o(v

and E-error k-grant response

, , k(C) = 0 lo ci

Proof. We only sketch the RGS implementation. We assume a DCS implementation with

real time response T as in Section 3.

We assign each grantinq director of each iET1 to be "willing" at all time to-l

connect to all jE resource [i]. (By Al', i is then "willing" to communicate with no

more than v processes.) The grant director of i will repeat (forever) a crant r'zc.

Each grant phase will be of length precisely 2T (as defined in Section 2C). There

4 is a variable g such that at the start of each phase the grant director of i will

have either given resource p(i) to process gEIT or to no process (in which case g=).

During the grant phase j the grant director will, with high likelihood, communicate at

least once with all processes in resource-1 (i]. Suppose i communicates with

jl,.. .,j in this order, during the grant phase.

1.4

Thus, for each s-l,.... :

(1) If g- 0 then the grant director of i sets g to js and says "yes" to js

(to indicate j has been granted resource p(i)).

(2) Else if g #0 then the grant director of i says "no" to j (to indicate5

the grant is denied).

In the case where g= Js the grant director also sets g- -1. At the end of the

granting phase, the grant director of i sets g- 0.

A probabilistic analysis (deleted here) of this implementation shows the k-grant

response as above. QED

For example, we consider an interesting RGS system, which we call "hasty dining

philosophers."

Let the requesting processes r be distinct distinguished integers P0'....Pn

(these are the Godel numbers of the distinguished philosophers) and the granting -rocesses

ng be 0,...,n so that 1 g, 1 r are disjoint.

The resources p are forks [p(O),...,p(n)]. Let pn+l=PO and p(n+l)= p(O).

Each philosopher pj E r has resources(p.) consisting of the forks

{p(p.), P(P(j+l)mod n)}. Thus the graph H is a cycle of length 2n.

COROLLARY I. The "hasty dining philosophers" (as described above) have a real time

RGS implementation with mean

2-grant response = (i)

and s-error 2-grant response

Y2 (0 = O (log

Intuitively, the RGS implementation requires each philosopher p. to be at any time

granted both forks of resource(pj) in expected constant time, but p. must be "hasty"

and relinquish these resources within constant time interval.

Note that for each iE {0,...,n} the granting process i can be placed within

process Pi. thus resulting in essentially only n+l processes.

+

11.1

APPENDIX II

IIA. Probabilistic Analysis of the Noninsisting Algorithm 1

Algorithm 1 is noninsisting: if iE 11 is in its asking mode, it chooses to ask a

random j from the set of pollers to which i is willing to communicate. Also, if both

(directors of) i,j are willing to communicate, both of the pollers of i,j will attemzt

to establish communication.

Because of this "symmetry" in the way pollers ask, we can show that the worst case

a.(. A,I) is when the oracle d sets the rates of i,j equal (but not necessarily
1) t

constant) (recall that by our model of Section 2C, d determines the rates {Rt j
tt>0}

at time 0) and A cannot influence the probabilistic choice of pollers).

Let cv be the fixed number of steps between phases, as given in Lemma 3E. Let x

be the number of steps by which i executes each phase before j, where 0 <x <cv.

Let S(S') be the event: j answers i given that j is in its answering node and

i is in its asking mode after (before) j (and, of course, we assume i,j both willing

to communicate).

Then we can show Prob(S) f(x) as v>> 0 where

f(x) = 1 1

Then

ii (l, = Prob(S) + 1 - Prob(S) • Prob(S'

- MIN f(v-x)

Ox~cv 4v +(l f (x)

*1
- 1(f~v I f f2(v))

= oW) for v >> 0

since

f(1 1e/ 2cfo v
f -vi- for v >> 0.

min
Thus we have (j.. = O(1/v), proving Theorem II.A stated in Section 5.

13

"i

III I I I II I III I, I II I I~ ~ I II-.i [T. .

11.2

IIB. Probabilistic Analysis of the "Insisting" Algorithm 2

Algorithm 2 is insisting: poller i always asks that j which is the target of

the first edge of Gt departing from i.

The worst case G.. is where the oracle j4(sets the speeds of the process of
13

asking poller to be 1/rmax and the speed of the answering poller to be I/rmin *

Let f(x) be as defined in IA.

We can show:

(rmax min
>i= f(x)

\ri ij Vx=

v+l

1- (1-e - c) = e - c

min
Thus U.. = 0(i).

3)

Thus Theorem II.B of Section 5 follows.

i'

