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CHAPTER 1

INTRODUCTION

The nonlinear interaction of waves in plasma has been
studied extensively [1-9]. Recently, it has been shown that
certain nonlinear wave-wave interacting systems with a small
number of degrees of freedom exhibit chaotic behaviors [10-
15]. Studies of this phenomenon may lead to new theories
for turbulence in fluids and plasmas.

In the classical Landau-Lifshitz theory of turbulence
[16], the physical variables describing a turbulent motion

are quasi-periodic functions of tiue:

x(t) = f(wlt, Watyeon, th), (1.1)

2

where f is composed of periodic motions with frequencies
Wyseoes Wy which are irrationally related. As the number N
of modes becomes large, x(t) generally exhibits a very com-
plicated behavior. The motion described by (1.1) can be
produced by a sequence of successive bifurcations of peri-
odic motions. As certain parameters vary, a stable equilib-
rium point becomes unstable and a stable periodic orbit
appears. Then, the periodic orbit becomes unstable and a
stable periodic orbit with two frequencies appears. This
bifurcation process continues on.

It is known that a quasi-periodic function of time

does not have the mixing property (i.e., the autocovariance




R(t) of x does not decay to zero as t = «»). This implies

intuitively that the temporal variation of x is nct sensi-
tive to initial conditions, thus contradic-:®ig an important
physical feature of turbulent states. Furthermore, a quasi-
periodic function is unstable in the sense that a small per-
turbation of the parameter could lead to a periodic motion
[17]. Hence, the quasi-periodic motion doces not provide a
satisfactory description of the turbulent states. It is also
known that some physical systems exhibit abrupt transition
from a nonturbulent state into a turbulent state without the
appearance of periodic motions. Such phenomenon cannot be
explained by the above mentioned mechanism.

Recently, Ruelle and Takens [18] proposed the following
definition for a turbulent state: In this state, the trajec-
tories of the system model are attracted to a nonempty set
called the "strange attracter" which is a positive limit set
of trajectories consisting of neither periodic orbits nor
equilibrium point. On this attractor, the system trajec-
tories behave in a chaotic manner resembling a turbulent
state.

According to the above notion of a turbulent state, it
is possible that simple models described by finite dimen-
sional systems of ordinary differential equations could have
chaotic behavior. A well known example is the Lorenz model
[19] describing the convection in a fluid layer forced by a

linear temperature gradient:




X, =T - Ox, *+ OX

1 1 2°
*2 = rX; - X, - XyXg, > (1.2)
x3 =z - bx3 + xlx2’ J

where o0, r and b are constant real parameters. The Lorenz
system exhibits abrupt transition into a very complicated
behavior when the parameters pass through certain threshold
values. Many r :merical experiments have been performed on
this system and their results suggest the existence of
strange attractors and the mixing property, but they have
not been verified mathematically. In this work, the term
"chaotic solutions" refers to those solutions which lie on a
strange attractor. If a solution exhibits complicated behav-
ior but without a mathematical proof as being a "chaotic
solution”, it will be referred to as a "pseudo-chaotic solu-
tion". Hence, "pseudo-chaotic solutions" may be periodic
solutions with long periods, or may correspond to trajec-
tories converging to a stable closed orbit or an equilibrium
point in a complicated manner. Many simple mathematical
models having chaotic or pseudo-chaotic solutions have been
found in such areas as geophysics [20], biology [21,22],

chemistry [23] and laser physics [24].
1.1 Turbulence in Plasmas

In the conventional theory of turbulence in plasmas,

turbulence is described as the state in which a large number




of collective degrees of freedom are strongly excited [25].
This means that the energy of the collective modes is much
larger than the thermal fluctuation level, and that the
number of modes is so large that the plasma has a complicated
behavior. The energy of the unstable modes is distributed
to other modes by nonlinear processes and then dissipated
through some form of damping mechanisms. When the energy
transfer between the modes is balanced, a stationary broad
spectrum corresponding to stationary turbulence appears.
When the energy of each mode is small and the nonlinear
coupling between various modes is weak, and when the linear
growth and damping terms can be neglected, the random-phase
approximation can be used to obtain the turbulent state.
In this approximation, it is assumed that the phase of each
mode varies randomly. On the other hand, if the linear
growth or damping terms are not negligible, the phase of each
mode is no longer independent even when the nonlinear coup-
ling of modes is weak. 1In spite of this limitation, the
random-phase approximation is often used for expedience.

As mentioned earlier, the existence of a large number
of modes does not necessarily mean that the system is in a
turbulent state. Furthermore, the assumption of independent
phases between the modes is usually made without justifica-
tion. At the initial stage of turbulent states, it is
reasonable to assume independent phases since the randomness

of thermal fluctuation at the initial time is retained. On

I




the other hand, once the energy of turbulence is far from

the equilibrium, there must be some mechanisms which maintain
the random phases. Flynn and Manheimer [10] showed that

even when the modes have no linear growth c¢r damping over an
interval of wave numbers, the phases are completely coupled
when the linearly growing and damping modes are introduced
outside thc interval. This means that the random-phase
approximation is not suitable even in the interval over which
both the linear growth and damping are negligible.

At present, there are a few known models in plasma
physics having a small number of modes which exhibit chaotic
behaviors [11-15]. Flynn and Manheimer's model [10] consist-
ing of ten modes, two of which are linearly growing and
damped, has chaotie behavior. Rabinovich and his coworkers
introduced following two simple models of wave-wave interac-

tion having chaotic motions [11-13].

. - c a2 2 2
Ap - viAp = - A A (v AT Hw (A, [T,
(1.3)
. . 2 2
= - #*
Ay * YA, i{A A% + A2(v2|A1| + w2|A2| )},
and
. . . .
A1 + YlAl 1(A2A3 + VAOAZ)’
A\ - _ 3 % *
A2 + Y2A2 = 1(A1A3 + vAOAl), ; (1.4)
. L .
Ay * Y3h, 1A1A7» )
where Ai is a normalized complex wave amplitude; all
5
‘ R _ e




e

parameters are real numbers and Y; >0. System (1.3)
describes the interaction of two plasma waves belonging to
different branches. Chaotic motion appears only when a
small frequency mismatching is introduced. System (1l.4)
describes a three-wave interaction such that an external
wave with a constant amplitude decays into two waves which
have another resonant wave. Numerical experiments for these
systems suggest that they have strange attractors and mixing
properties. Hence, they could represent turbulent states.
We should note that in these systems, the linear instability
may lead directly to a turbulent state, and that the chaotic
behavior is intrinsic to the equations and no additional

assumption of randomness is necessary.
1.2 Outline of Dissertation

In this dissertation, three-wave interacting systems
having chaotic behaviors are studied in detail. Asymptotic
phase locking of the waves as t -+« are also studied, which
is a special property of wave-wave interaction with linear
damping terms. Once the phase are locked, the system
reduces to a three-dimensional one.

In Chapter 2, the systems to be studied in this work
are presented. All these systems are obtained from the
equations for a set of interacting oscillators. The reduced
three-dimensional equation is obtained for each system. We

also give sufficient conditions for the reduced equations to




describe the asymptotic behavior of the original system.

In Chapter 3, the reduced equations are studied mainly
by a root locus analysis of the characteristic equations of
the linearized vector field at the equilibrium points. From
the results, we choose those systems whose reduced equations
may have periodic or pseudo-chaotic solutions for almost all
initial conditions. Based on physical considerations, two
systems are selected for detailed study.

In Chapter 4, the results of numerical experiments for
two chosen systems are pre;ented. The transition between
periodic and pseudo-chaotic motions are shown in detail.
Simple two-dimensional models are introduced which are used
to explain the transition of behaviors.

In Chapter 5, we obtain the first return mappings of
tHe trajectories for the chosen systems, some of which
resemble one-dimensional mappings. We discuss certain
statistical properties of general one-dimensional mappings

and the first return mappings of our systems.




CHAPTER 2

WAVE-WAVE INTERACTIONS

In this chapter, we introduce the systems of wave-wave
interactions to be studied in subsequent chapters. All
these systems are derived from the equations describing a
set of nonlinearly interacting oscillators. A wave-wave
interaction which does not belong to this framework is not

considered here.
2.1 Wave-Wave Interacting Systems Y = F(Y)

We begin with the equations for a set of nonlinearly

interacting oscillators described by

. . 2
X. + 2y.x. tw. %X, = L Vi, X.X
i i1 i j,keZN jkT37k
. A
+ I ijlxjxkxl’ ie ZN= {1,...,N}, (2.1)

j,k,leZN

where X5 is the displacement, ws is the natural frequency,
and Ys is the growth or damping coefficient for the i-th
oscillator ; vjk and vjkl are the nonlinear coupling
coefficients of the oscillators. All the variables and
parameters are real numbers. We assume that the linear
damping and growth rates are small (i.e., Yi.<<wi) and the
nonlinear terms are also small (i.e., lvjkle, Ivjklxjxkl
<< wiz). Then, we can express xi(t) in the form:




xi(t) = ai(t)exp(iwit) + ai(t)exp(-iwit),

ie ZN, (2.2)

where a; is a slowly time-varying component. We also assume

frequency matching:

w, = I V.., M3 e {-1,1}, ieZ (2.3)

1 jeZN 33 N*

where . > 0 and wg #mj if 1i#3j. Then, the frequency matching
conditions for N=2,3,4 are shown in Table 2.1, where it is
assumed that the vijk's in (2.1) are zero for N= 3,4, TFor
N =3, the first frequency matching condition has two degrees
of freedom and the remaining ones have only one degree of
freedom. For N=4, we assume that one of the waves is an
external wave with fixed amplitude. Then, there is one
degree of freedom in the first three cases and none. in the
rest. The energy of the waves is obtained by an integration
over the frequency domains. Here, for N= 3, the energy
contribution of the last two cases is negligible as compared
to that of the first case. In what follows, we consider
only the first case. Similarly, for N=u4, only the first
three cases will be studied.

For N= 2, substituting (2.2) into (2.1) and normalizing

the variables, we have

2 2 2
+V...|A,
| 133145170

Aptvghy = -1{vA "+ A (Vy44 Ay
(2.4)

~
A

A. +y.A. = <i{A.A%* +A.(V...|A.
31 Yyhy 7 mHAAT 4 Ay

2
jii' +V...|Aj| )},

1' 131




Table 2.1 Frequency Matching

(wi,wj)= (ij,wj)

(wi,wj,wk)

(wj+wk,wj,wk), (2wj,m. mk,wk)

J,Swj), (wak,?.

(wi,wj,wk,wl)

(omk+vw1,wi/2,mk,wl),

(2wj,cwk+vwl,wk,m1), (o,v)e {(1,1),(1,-1),(-1,1)},
k,mk+0ml,wk,wl), oe {-1,1},
(8w1,uwl,2wl,wl), (uwk,2wk,wk,3wk),

(w.+w
J

(uwk,2wk,mk,6wk), (umk,ka,wk,ka),

(ij,wj,3wj,(3/2)wj). (ij,mj,swj,3wj)

10




where

A.=(v /Zw das, A, -v(]v |/2w w; )%a g0 VF sgn(v. .
1 3 33 l]

-{(2w /v ) /2w }v ...={(L+wiwj/|vij

V.
jii

For N= 3, we have

>
+
<
"

>
+

<

>
1

SV (VN

where

Ag=(vy |/uw

ij Vii

Ak=(|vkivjk|/4m

For N= 4, we have

Case (i):

jod
"

>
"

where

= - iv

2 { Q. /v 22w e ;= (Chugus/ v
37V43 373

- iv

- iv

k1

Wy )%

%
iwj) a;

three

- i(v!
i

- i(v

- i(v

- i(v

iAjAk’

%

1313

117 V453

A.Ag.', J

- %
j-(lvijvjkl/uwiwk) aj

sgn(vl] kl).

cases as follows:

]
vAjAk),

' %
ijiAk + vjAkAl),

' #* *
kVAiAj + vajAl),

*

11

|)/2w }v
i] ]3

)

v]jl)/Zwi}vijj,

ii3’

(2.5%)

(2.8)




% - £
_(|v k|/4m wy ) a; /v, Aj-(lv v.ll/uwkwl) ajs

k3
=(|v / )2a, , A =( )2
Ay | klvjkl 4ij1 3, A= Ivjkvjl|/uijk as
v=(|v [m N );5 vi=sgn(v, ), vi=sgn(v, )y
jl i3Vik 3 i3V5k
LY =
vk-sgn(vikvjk) ] sgn(vJk 31) vy sgn(vklvjk),
vl=sgn(vjlvkl).
Here, without loss of generality, we set ws =wj'+wk, wj=
wk-le, since if ¢ = -1, the substitutions Ai->-Ai, Aj->-Aj,
Al"'Af and Vi T TV lead to the same equation as (2.6).
Case (ii):
. 2
Ai + YiAi = - 1(\)ivAj + viAkAl), )
. . .
Ay + YA, i(va;af),
* (2.7)
Ak + YkAk = - 1(valAl)
. o .
: A1 + YlAl 1(v1AiAk), )
X where
. A.=(|v.,v ]/Uw wy Y%a., A, =(|v, |/4w ws )%a /v
i i1l ik i’ 3 ij ]] ?
}
- ka - b
Ak-(lvikvkl[/uwiwl) k, Al-(lvilvkl]/uwiwl) ay»
v
‘ v=(v /2w ) (@ /|v v, ﬂ) viEsgnlvy, ve ),
? | s:gn(vl:| J]), vk=sgn(vikvkl), 1 sgﬁ(vll kl)
’ and wi=2wj=wk+wl.
12




P”‘

- e
Case (iii):
A + y.A, = - i(v.vAz) )
i 181 iVhy?s
A.+.A.=-(vAA*+vAA)
7Y% * j 37K
. (2.8)
= - 1 %
Ak + YkAk 1(vajAl),
. . .
A+ vA) 1(lejAk),

where

Ai=(vij/2mj)aj/v, A.=(]|

%
3 vjkvjll/kawl) a],

- % - %
Ak-(lvjkvkll/ijwl) a s Al-(lvj ll/uw wy )

- b b
v-(|vij 33 VETH Wy ) *(hwy w /|v:’k ]ll) V. -sgn(vlj ]])
vj=sgn(vjkvj1), vk=sgn(vjkvkl), vl=sgn(vjlvkl),
and w; = ij, wj =wk<+ml.

As mentioned earlier, we fix the amplitude of one of
the waves as an external wave for N=U4., We choose the
external wave so that the equation is nonlinear, since linear
equations do not have chaotic solutions. Then, from (2.6),
(2.7) and (2.8), we obtain five distinct three-wave interac-
ting systems. Thus, we have seven systems which may have
chaotic solutions and they are listed in Table 2.2. Here,
without loss of generality, A0 is taken to be real. Also,

0
have been used to derive (5') and (7').

the substitutions A ->A0/v, Am-*Am/v, m=1i,j,1 and v+ 1/v

In Table 2.2, some systems with certain values of
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Table 2.2 Wave-wave Interacting Systems Y = B(y)

_ 2
N=2 (wi,mj) A, $HYAy ——1{\)A Al(vlnl l| 133|A | )},
2
=(2w. ) A.+y.A. ==~ A.A’? +A. (V... ]|A. A7)
(Zugsu; 3HY4hy = TLIAARIAL (Vg [A 174555 Jl b
ve {~1,1} ")
N=3 | (g 50550) A.+Y.A. = -iviAA, e {-1,1)
=(wj+wk, A] YJA] = 1v A. A]é,
. - . '
wj,wk) Ak+YkAk J.\)kAlA:j (2")
N=u (m SW. ,wk, Aj+YjAj = -i(v, AkA1+v 'vA A ), 0 Ai’
= A = - & % -
wl) (mj+wk, ALty AL 1(vajAl+vkvA0Aj), vme{ 1,1},
. - . ,
wk+ml,wk,wl) A1+Y1Al 1(\)1AjAk) (3")
(uui,uoj sy s Ai+YiAi = -i(v, AkA1+v vA ), A0 = A] s
wl) = (wk+wl, Aty A= -1(vaiA'1) R v_e{-1,1},
. - . .
mi/Z,wk,ml) A1+Y1Al l(\)lAiAk) 4')
. - s \ 2 R
A.+y.A. = l(viAj +vivA0Al), A0 Ak’
= =1 % -
A]+YJAJ 1(AiAj), \)me{ 1,1},
- s ]
A1 YlAl = -1(vlvA0Ai) (s")
(mi,wj,wk A. +YJA] = -1(v, AkAl+vA A ), A0 = Ai’
wl) = (2w, , Ak YkAk = =-i(v AjA"), v_e {-1,1},
A - '
wk+w1,wk,wl) A1+Y1A1- 1(\)1A]Ak) (6')
L3 . 2
A.+y.A.=-1(vJ!_Aj ), A0=Ak,
s =] % -
A yJA] 1(AiAj+\)ij0Al), \)me{ 1,1},
- > ]
A1+Yl 17 —1(\)1vAOAj) (7")
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parameters cobviously have no chaotic solutions. For example,

consider system (3') with Yj,Y >0, Yy < 0, v 3 1, m=3j,k,1

1
and v&= 1, m=3j,k. By direct computation, we have

(d/dt)(IAjlz-lA 28,1572

2
il
2

= -v.|A.
Y]| ]!

v A 22y, A 12 (2.9)
Hence, the quantity ]Aj(t)]z-]Ak(t)]2+2lAl(t)]2 decreases as
t increases and therefore, the trajectory of (3') diverges
to infinity as t -+« for almost all initial conditions. In a
similar manner, we can discard certain systems in Table 2.2,
and only those cases in Table 2.3 may possess chaotic
solutions.

In what follows, we use subscript 1,2,3,... in place
of i,j,k,... . TFor example, subscripts j,k and 1 of (3')

are replaced by 1,2 and 3, respectively. Moreover, we

denote systems (2') - (7') by
Y = F(Y), (2.10)

A T - -
where Y :(yl,zl,y2,22,y3,z3) , and yj —Re(Aj) and zj-Im(Aj),
j=1,2,3. We also denote the solution of (2.10) at time t
corresponding to initial condition YO at t=0 by V(t,YO),

and the positive semi-orbit by V+(Y0)é {(vy:v-= V(t,YO), t20}.
2.2 Reduced Systems X = F(X)

System (1') in Table 2.3 is identical to (1.3). That

is, model (1.3) [11] is the only two-wave interacting system

15
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Table 2.3 Parameters for Chaotic Solutions

(1)} v=1 (sgn(yi),sgn(yj))= (-1,1)

(2") (vi,vj,vk) (sgn(yi),sgn(yj),sgn(yk))
(1,1, (-1,1,1)

(3") (vé,vﬁ), (vj,vk,vl) (sgn(yj),sgn(yk),sgn(yl))
(1,1, (1,1,{) (#1,%1,%1),(1,%1,-1),(-1,%1,1)

(1,-1,-1) | (1,1,+1)

(-1,1,-1) (1,1,%1)

(-1,-1,1) (+1,+1,+£1),(#1,1,-1),(+1,-1,1)
(1,-1), (1,1,1) (1,-1,%£1),(-1,1,%1)

(1,-1,-1) | (#1,+1,#%1),(1,=-1,+1),(-1,1,%1)

(-1,1,-1) (1,+#1,-1),(-1,21,%1),(*1,-1,1)

(-1,-1,1) | (1,-1,+1),(-1,1,%1)

(5') (v{,vi,vl) (sgn(yi),sgn(yj),sgn(yl))
(1,1,1) (1,+#1,-1),(-1,1,21),(+1,-1,1)
(1,1,-1) (+1,+1,%1),(1,-1,21),(-1,1,+1)
(-1,1,1) (-1,-1,-1>,(1,21,-1),(-1,%1,1)
(-1,1,-1) (£1,21,#1),(21,1,-1),(+1,-1,1)

(7") (vi,vi,vl) (sgn(yi),sgn(yj),sgn(yl))
(1,1,1) (1,-1,#1),(+1,1,-1),(-1,%1,1)
(1,1,-1) (#1,+1,+¢1),(1,-1,+1),(~-1,1,£1)
(-1,1,1) (-1,-1,-1),(1,#1,-1),(-1,%1,1)
(-1,1,-1) (£1,+1,+#1),(+1,1,-1),(£1,-1,1)
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which may have chaotic solutions. Equation (1') is

rewritten as a three-dimensional equation:

c o _ _ 2 \
X = =Y{%] 6mx2+2xlx2 X2{(Vlll )(x X, )
H(V199=25000%5)
X, = =YX, +0w %4 -2x% +x {w )(x 2+x 2) ‘ (2.1
2" YRy 1 11172 2 y
+(V122-2V222)x3},
3=-272x -2x 2¥3> x320, J
- - : -, 2 - -
where x, =r,cos¢, X, = r,;sin¢, Xg21,", rl-IAll, r2-|A2|,
¢ =2Arg(A2)-Arg(Al) and 8w is a frequency mismatching w1—2w2.

Equation (2.11) has pseudo-chaotic solutions with or without
the third order terms, and its behavior has been studied
[11,13,14].

Now, we shall show that systems (27)-(7') also reduce
to three-dimensional equations on certain subsets of the
original six-dimensional space. We choose equation (3') as
an example. Let Aj='rjexp(i9j), rjz 0, j=1,2,3. Then,

equation (3') can be written as

* - ° =-- _- - - 1
) rl+1r161+ylrl 1[vlr2r3exp{ 1(61 8, 63)
?; +vivA0r2exp{-i(61+92)}J,
r,+ir, 8 2*YT, F -1[\)2 1r3exp{1(61-62-63) > (2.12)
+ulvA rlexp{-i(el+62)}],

270
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ratir 0 4y r,= —1v3r1r2exp{1(61—92—93)}. )

Let us define the sets:

Lo = {y :cos(61-62-63) =cos(8,+6,) =0, 6,=9,
rj# 0, §=1,2,3},

Zr= ;Ze

£n= {Y : r.=0, i=1,2 and/or 3},

ZO = {Y ry=r,= 0},

$ ={Y:p.=p.=0, i=1,2 or 3} -1,

Obviously, I, is not closed, and En and Zn U, are closed.

8 6
Furthermore, I_nZ,=¢. Hence, fe-Ze is nonempty and

Ze-Ze CZn. An example of fe is shown in Figure 2.1. The

set Zn is located at the origins.

We assume that V(O,YO)= Yoe Zeo. From (2.12),

. . +
Bj(t)= 0, 3=1,2,3, if V(t,YO)e Zeo. Hence, Y (to) el or

Bo

there exists a t, >0 such that V(t,YO)e Zeo for te [O,tl)

and V(tl,YO)e T T En. Since Xn: ZO UZO UZO and ZO is

for t>0),

00 " Y00 -
an invariant set (i.e., if Yoe ZO’ 0
V(tl,YO) eZO UZO. Suppose that V(tl,YO)e 20. Then, V(tl,Y)

is located at one of the three origins in Figure 2.1. Since

V(t,YO)e z

%(Y) is transverse to EO at Y= V(tl,YO) and f(Y) of (3') is

differentiable, V(t1+e,Y0)e z for arbitrarily small € > 0.

6o
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Figure 2.1 Phase-Locked Trajectory

Suppose that V(tl,YO)e fo. Then, V(tl,YO) is located at two
of the three origins in Figure 2.1. For F(Y) of (3'), there

is no 1> 0 such that V(t,YO)e I for te [tl,t +T1). Moreover,

0 1
F(Y) of (3') is continuously differentiable. Hence,

V(tl+e,YO)e T for arbitrary small € >0. Thus, the set z

eo eo

is an invariant set, and the set Ze is invariant in the
0

sense that if Yoe Zeo

when v.(t) =0, i=1,2 and/or 3. Thus, Y (Y.), Y.€L, ,
i 0 0 € o,

s V(t,YO)e Zeofor almost all t except

is

contained in Zeo.

If V(O,YO) e(§0 ufo) nfr, by the above used arguments,

V(e,YO)e T for arbitrarily small € >0. Here,

8o

8. = 1lim 6,(t).
0 £+0 3

Such a limit 60 exists, since F(Y) of (3') is continuous.

+ = . ~ a = . .
Hence, Y (YO) czeo if Yoe (ZO UZO)n Zr' Thus, if we define
a set er:

L = I, ul(Z, uZydn zr},

19




+ } _
y (YO)C Zeofor all Yge ZrO’ where if Yoe Zr, 60- 61(0) and

if Yoe (EO UZO)fWZr, 60 = 1lim 63(t).
t+0
Now, we introduce a reduced equation of (3'). 1If
V(O,Yo)e Zeo,
ei(t) = ei(O) + nni(t), i=1,2,3, (2.13)

where 63(O)= 6., and n, is an integer-valued step function

0
having discontinuities only when ri(t)= 0. Let us define a

A T,
vector X‘=(x1’x2’x3) :

xl(t) = vorl(t)exp{inl(t)}, )
xz(t) = vrz(t)exp{inz(t)}, : (2.148)
xg(t) = vor3(t)exp{in3(t)}, )

where v = sin(el(O)—ez(O)-es(O)) and o0 = sin(91(0)+62(0)).
Then, Xs is real, and at the time t when V(t,YO)E Zeo,

equation (2.12) reduces to

y - - - - ' A

. X, Y1¥% le2x3 vlvonz,

.
- -

\ X, O + VX X, vszoxl, . (2.15)
Xy T = Y3Xg + VaXyX,. J

This equation actually holds at the time t when V(t,YO)e

Zeo- Eeo, since 1ts trajectory stays in Zeo— Zeo momentarily.
i If YoeI n (20 uEO>, the solution of (2.15) is
identical to that of (2.12). For, the trajectory of (2.15)

20




momentarily stays in the set in the X-space corresponding to
frrw(zo UZO). Furthermore, equation (2.15) has a solution
X(t) ESX, the zero-vector in the X-space, or X(t) = (0,0,

x3(0)exp(-73t))T on the set in the X-space corresponding to

ZO, and they are identical to those of (2.12) on 20. Thus,

equation (2.12) reduces to (2.15) for all Yg€ ErO uLy. If
= + - ) +

YOe ZrO"ZO’ y (YO) czro-zo and if Yoe ZO’ y (Yo)c ZO.

Similarly, each of the remaining systems in Table 2.2
reduces to a three-dimensional equation on a certain
invariant set. These equations are given in Table 2.4 along
with the definitions of variables and Zr. Systems (2)-(7)

and their solution will be denoted by
X = F(X), (2.16)

and X(t,XO), respectively, where XO is an initial value.

Moreover, we denote the positive semi-orbit by X+(XO)
4 {X: X=X(t,Xy), t20}.

For some reduced equations, [|X(t)]| += or 0 as t+« for
initial points in certain open subsets of the X-space. Let
us consider (3) with (vi,v2)= (1,1, (“1’V2’v3)= (1,1,1) and
(sgn(yl),sgn(yz),sgn(ya))= (1,1,-1) as an example (see Table
2.3). It is not determined whether the original system (3')

with such parameters has a diverging trajectory. On the

other hand, from (3),

2 pi 2
(d/dt){(x3-(3/2)vA0) -Xq —2x2 }
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gvﬁocﬂm =0 J
“ccor¥e-(0r%e-(0)Torurs = o i
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((0)te-(0)Toyurs

=D
“((0)%0z-(0) oruts = a
Nxo<>m>|mxm>l m« .Afuvm:ﬂvaxwﬁuvm&z/ = TSmx
mxo<>m>+wxax+ xCA- m« uﬁmmnamvwoo ,Apauvm:MvmwavaL> uﬁuvmx
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Exlxslxlh- = x = (Tgz)s00 cgezer =l
.mxmxﬁ?.axﬁ <>o+H>v| Hv.n = Amoumolﬁovmoo .Aivv.mcﬁvaxwavvmp? = Auvmx (9)
((0)e-(0) Torurs = o
“((0)%0z-(0)Te)uts = o
Tx0 <> N4 Ex€x- mm .A=3Vm:3axm3vmho> = Afmx
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) 2 2 2 2
= Y X TH2Y,%, +y3(x3-(3/2)vA0) -(9/u)Y3|vAO! .

Hence, if (O,XO) is inside the elliptic cone C :x12+2x22

= (x3-(3/2)vA0)2 and outside the ellipsoid E :le12+2Y2x22
+Y3(x3-(3/2)vA0)2 = (9/l+)Y3|vA0|2, [X(t)| > as t+= where
X(t) = (t,XO) (Fig. 2.2). Similarly, for some cases of (3)
and (4) in Table 2.3, there exist open sets R0 such that if
X €Ryo [X(t)| »= as t >« where X(t) = X(t,X,). These
systems will be discarded in Chapter 3, since they do not
have periodic or chaotic solutions for almost all initial

conditions. The remaining cases are shown in Table 2.5.

{ (3/2)vAe

) Figure 2.2 Diverging Trajectory of (3)

2.3 Phase Locking

In the previous section, we have shown that if the

i phases are locked at the initial time (i.e., V(O,Yo)e Zr ),

0
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Table 2.5 Parameters for Chaotic Solutions

of Systems (3) and (4)

(3) (vi,vé) (vl,vz,v3) (sgn(yl),sgn(yz),sgn(y3))

(1,1) (1,1,1) (1,1,1),(=-1,1,1)
(1,-1,-1) (1,1,1)
(-1,1,-1) (1,1,1),(1,1,-1)
(-1,-1,1) (1,-1,1)

(1,-1) (1,1,1) (-1,1,1)
(-1,1,-1) (1,1,-1)
(-1,-1,1) (1,-1,1)

u) (vl,vz,v3) (sgn(Yl),sgn(y2),sgn(Y3))
(1,1,1) (1,1,1),(1,1,-1)
(-1,-1,1) (1,-1,1)

(-1,1,-1) (1,1,-1)
; (1,-1,-1) (1,1,1)
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they remain locked for almost all t (i.e., V(t,YO)e ZrO for
almost all t 2 0 except when V(t,YO)e Ero"zro)' Furthermore,
on Ero UZO, the original equation reduces to a three-dimen-
sional one. It is meaningful to study the reduced equation,
if it describes the asymptotic behavior of the original
equation in the limit t-+«. Otherwise, the solutions of the
reduced equation may not resemble those of the original one.
In order to find whether the reduced equation represents the
original one in the above sense, we shall obtain sufficient

conditions for a subset A of fro vI. to be an attractor in

0
the Y-space. Here, we call A an attractor in the Y-space,
if there is a neighborhood 0 of A in the Y-space such that
if Yoe 0, then V+(Y0)<:O and Y(t) = V(t,YO) converges to A as
t +o, that is,

lim inf |Y(t)-Y] = o. (2.17)

t+o YeA
If 0 is the whole Y-space, the phases become locked asympto-
tically as t+« for any initial conditions. Even when O is
a small subset of the Y-space, it is theoretically easy to
choose the initial conditions for phase locking, since the
volume of 0 is nonzero. Hence, if a neighborhood 0 exists,
it is meanningfull to study the behavior of the reduced
equation.

We again choose system (3') as an example. According
to Pikovskii et al. [12], the set Er is always an attractor

if all of the Yi's, vi's and vi's are positive. It can be

26




readily shown that their analysis is inaccurate (see Appen-
dix). Here, we shall give a more detailed analysis for the
general cases of (3'). Similar arguments hold for other

systems also.

2.3.1 Differential Equations of Phase Differences g = 0§
Equation (2.12) suggests studying the time variation

of the quantities A1A§A§ and A A,, since they include the

phase differences 91-62—63 and el+92

here. Taking the time derivative of A

which are of important

2
*A%
lAZA s A1A2, A2A3 and

AiAg, we have

'517 ’—(Yl+y2+y3) 0 ~VivAg -ViVA, ) '511
g2 10 ~(rytrp) V1 vy &2
£ =2V'VA -(2v,la [2+\) A fz) -(2y,+y,) O 3
3 2% 21831 TV318, 2°Y3 3
G ~2v'vA -(2v, 1A, %=v. 1A 1D o ~2y. vl E
T I G s A 11830 V31 17 Y37 5, )
or (2.18)
o) = o fa, (0|2, a0 [ P)gc), (2.19)

2
= fTAR = =
where El Re(AlA§A3), 52 Re(AlAz), Es Im(A2A3) and Eu
= Im(A§A3). The system of equations (2.18) is not closed,
but it can be regarded as a closed time-varying linear

differential equation:
E(t) = $(1)E(T). (2.20)

Let us consider the set
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5 & (Y:g=0,.). (2.21)

where eg is the zero vector in the £-space. From (2.18), L
is an invariant set. As shown later, if g(t)-*OE as t+w»,
the corresponding Y(t) converges to £ as t+®. Since

- (fr UZO) is not an invariant set, Y(t) does not converge
to Z-—(fr UZO) as t+®, Hence, Y(t) converges to fr and/or
to ZO as t+«., As mentioned in Section 2.2, system (3')
reduces to (3) on ErO uZO and therefore, on Er UZO. Hence,
if §(t)-->6E as t+«=, then system (3) describes the asymptotic
behavior of (3').

Similarly, an equation in the form (2.19) is obtained
for each system of (2'), (4')-(7'). Moreover, if g(t)-*GE
as t+«, each of reduced systems (2), (4) - (7) describes the
asymptotic behavior of its original system. The definitions

for vector £ and matrix ¢ for each system are given in Table

2.6. Here, ¢ of (2) is a constant real number, and for other

systems, ¢ is a time-varying matrix.

i 2.3.2 Sufficient Conditions for Convergence of £(t) to 95
For equation (2'), we see that £(t) =0 as t-+o if and

only if Y{*Y,*Y5 > 0, and |E(t)| »» as t+» if and only if

Y1+Y2+Y3< 0. TFor the remaining cases, the following result

in [26] is applicable:

- (S.2.1) Consider a time-varying linear system

expressed by (2.20) and define
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(Erslazy- Oyaba- N_N<_L Am<mm<vsH - €y
Oyala (Crzelny- 0 .ANW<H<Vom -2
Ta- 0 (Eaelay- | “(gvlwyeu = T3 | (o)
Tx- Ta 0 (Tvyou = &5
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lell, = max [&;], wu [8]=max{o;;+1 |9,
1 1 J 1

where & = (aij)' Then,
lgCo)] exp [ g-u [-8C0)Idt} < g
< g0 jexp{[fu [8CT)Iat}, t32o0.

The above statement implies that if um[$(t)]< 0 for
all t >0, then ﬂé(t)"m-*o as t+». We derive a modified

system

Erce) = 81 (g (1) (2.22)

from (2.20), where £'= (pl€,,plE,,DLE,,PLE,) P!> 0,
j=1,2,3,4. By applying (S.2.1) to (2.22) and since

lg" ()], >0 implies JE(t)|_~»0, [EC()|_+0 as t+w if
uw[a'(t)]<0 for all t2>0. We consider system (3') as an

example. TFor this case, umfa']< 0 if and only if
2 2
2v2|A3| +v3|A2| <(Y1+Y2){p3(2Y2+Y3)-2|VA0|}/(p3+p,+), W

2 2
|2, 1851 %=v A, | |<(Ylwz){pu(ZYlws)-ZlvAd}/(p3+pu), + (2.23)

where (1,(yl+Y2)/(p3+pu),1/p3,l/pu) = (p'l,pé,pé,pi). Here,
v, we can choose pi's to obtain the most convenient forms of
. the right hand sides of (2.23) for the later uses. Similar

conditions for other systems are given in Table 2.7.

2.3.3 Sufficient Conditions for Convergence of Y(t) to L
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Table 2.7 Sufficient Conditions for Convergence

of &(t) to Gg

(2) Y1+Y2+Y3 >0

(3 l2v2|A312+v3]A2|21 < ) L2y ryIpg-2 VA [ 1 (pytp,),
|29y [ag1%-v5 18 12| < Crptvp (v #y dp =2 vag |V oyhm,),
[vAgl < Gy v *y)/ (pgtp),

(P15P5>P3sP,) = (1,(v;*+v,)/(patp,),1/p,,1/p))

2 2
) | v, |Ag] +valay | 7] < vy (ry*ry),
[vag | <,y ¥y, y),

(Pi’pé’pé) = (lapzlel ,p3Yl|A0|)

2
(5) |A2] < p3(Yl+Y3){(2Y2+Y3)/p3-|vA0|}/2,
[vAg| < pylry*2y,),

(p15PsP3) = (P3(y;+Y,)51,p,)

2 2 .
(6) |v2|A3| +v3|A2| | <nun{pu(Y2+y3)(Yl+Y2+Y3),
Yl{(Y1+72+Y3)(l—pu)-(pu/pz)]vAOI}},

IvAOI<xnin{(pu/pz)(yl+y2+y3),(pzlpu)(l-pu)(yl+y2+y3)},

\ ] L 1 4 -
(p15PysP3sP,) = (Pqu(Yl*Y2+Y3)aPQ(Y1+Y2+Y3)alspu(Yl‘*Yz*YS))

(M| IAllz-vilAzlzl < Yy hy*Y4)=(pipap, /(b R, ) VA |1,

|v3|A2|2-\)2]A3|2|+(p2/pu)lA2]2 < JvAg (1,4v,)/2,

|vAg | <min{(pa/2p; ) (Y1#2Y,),(pa/ (B, (Py*py) ) (Y #Y,),
(plpu/(p3(p1+pu)))(Y1+Y2+Y3) s

2
(P1sP)5P3sPsPg) = (py [VAG|5D, VA, %505 IvA, 1D, |vAy |, 1)
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In this section, we shall show that if 5(t)-+e as

g

t +®, then the corresponding Y(t) converges to I as t -+,

It is sufficient to prove the follcwing statement:
(S.2.2) For any small € >0, there is a § > 0 such that

lell <6 = ipf [Y-Y'| <e for all Y e{Y: [g| < &}
€L

or

-~

d(z,z ) %sup inf |Y-Y'| +0 as §+0,

§ YsZaY'EZ

where I = {Y el = s},

The above statement implies that if § is close to eg, the

corresponding set 26 is also close to I in the Y-space.
Here, we give a proof of (S.2.2) only for (2'). The
proof for other cases can be established in a similar way.

For (2'),
L= Y E=yy,ys+z12,y5%2,Y, 234y 2,24 = 8.
i Consider a line parallel to (1,0,0,0,0,0)T and through a
point (0,21,§2,22,§3,23)T. This line intersects 26 and I if
§2§3+2223¢ 0, since the equations:

A

'/\ A A ~ A ~ ~ A '/\
Y1Y¥3*212,Y3%21Y,23%Y 12,23

8,
(2.24)
Y1Yo¥3%212,Y3%21Y,23%Y12,25 7 0,

has a unique solution (yl,yi) if §2§3+2223# 0. From (2.2u4),

'_ ”~ A A ~ :
(yl yl)(y2y3+zzza) S.
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Hence,

d(zns n Sl)< 6%, s, 84(y: |y2y3+2223|> 6%},

1,26 12
Likewise, by using a line parallel to (0,1,0,0,0,0)T and

through a point (§1,0,§2,22,§3,23)T, we have
~ . ]
d(Za8,,Lsn8,)< 6%, Szé {y: |22y3+y322| > 8%},

Hence,

~ ]
d(Zn (S1 vus.), Zdn (Sl uSz)) < 87,

2

Consider the sets:

3
'

8 {y DY, Ya¥2aZa = 05 2Yaty,2g F 0},

ne>

r

5 {y: (y2y3+z223|= 6%, |22y3+yzz3|= 6%}.

A line parallel to (0,0,1,0,0,0)T and through a point

-~ A A A A T . . o .
(yl’zl’O’ZQ’ ya,za) intersects FO and F2 if y3# 0, since the
equation:

Y, 95t 2,5, 7 0,5 vyt 22§3=¢55, (2.25)

has a unique solution for (yz,yé). From (2.25),

(y,-93)5, = 67
Hence,
drgnr,,IynT) <8%, T, 8 |yl 5%} .
Since FO c I, we have
5(Zﬂl‘u,zénFu)<max{6;§,6;“}. (2.26)
3y

-




By repeating the above procedure for different lines, we
obtain results similar to (2.26) for Pui_é{Y':]yil >6k} and
Auié{Y: EN >8%}, i=1,2,3. To sum up,

3 Y %
d(zn (z (T UAui)),an( ;(Fui UAui)))<:max{6 »8 7},

Since GYE L, where BY is the zero-vector in the Y-space,

5 % Xk
d(z=( : (rui “Aui))’zs'( ; (Fui “Aui))) < 6%,

Hence,

dcz,zy) < max{676",8%}.

If we choose a § such that max{s%ék,G%}< €, then we have the
desired result. Thus, (S.2.2) is proved for (2').

As mentioned earlier for (2'), £(t)+0 as t+«= for any
initial conditions, if Y1+Y2+Y3> 0. Hence, by (S5.2.2), if
Y1+Y2+y3> 0, Y(t) converges to L as t+=, For other systems,
Y(t) converges to I if the wave intensities satisfy the
conditions in Table 2.7. We do not know whether the original
systems (3') - (7') satisfy these conditions, that is, whether
the systems have attractors satisfying these conditions. On
the other hand, it is easy to find natural boundaries for

some of the reduced equations. If (vl,vz,v3)= (1,1,1),

(vi,vé)= (1,1) and Y; > 0, i=1,2,3 in (3), then

12, (2.27)

I < -dr + QY3|vAO

where I = 2x% 2

2 2 . .
1 *x%, +(x3+3vA0) , d= m1n{2yl,2Y2,Y3}, and if
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(vl,vz,v3) =(-1,1,-1),

I ¢-a1 + v lvayl?, (2.28)
where I = x 2+x 2+2(x +VvA )2 d=min{y,,Y,52Y,} If
1 2 3 o° 12727 73°*
(vl,v2,v3)= (1,1,1) and Ys >0, i=1,2,3, in (4), then
. 2,2
I < -4I + ]vAO | /Y¥q> (2.29)

where I =2(xl-(vi/yl)vAoz)2+x22+x32, d==min{2Y1,Y2,Y3}.
Hence, the ellipsoid on which I1=-0 is a natural boundary.
There are no such boundaries for other cases. But, as shown
later in the numerical experiments, some pseudo-chaotic
solutions of the reduced systems are bounded in certain
regions. Therefore, we assume that the reduced systems have
attractors in which the trajectories are finally trapped.
Then, a sufficient condition for Y(t) to converge to I as

t+» is as follows:

(S.2.3) Assume that a subset A of I is an attractor
of equation (2.10) with the initial condition Yoe z.
Also assume that A has a smooth boundary 34 relative
to I and that at any point Ybe 34, f(Yb) is transverse
to 9A. Let T be a set in the Y-space such that if

Y(t) €T for all t 20, then £(t)~+6_ as t+. Then, if

£
AcT, there is a neighborhood 0 of A in the Y-space
such that if Y €0, ¥'(Y,) <0 and Y(t) = y(t,¥y)

converges to L as t + »,

The sets defined in (S.2.3) are sketched in Figure 2.3.
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Figure 2.3 Sketches of Sets in (S.2.3)

The validity of statement (S.2.3) can be established as
follows. Let I and A be n-dimensional surfaces. Then, 3A
is a (n-1l)-dimensional smooth surface by assumption. Let us
consider a set Gbe {Yb} where Ybe 34, and GYb is an
orthogonal complement of a subspace which is a translated
tangent plane of I at Yb to the origin. Then, GYb><{Yb} is
(6-n)~dimensional. Since 34 is smooth, there is a neighbor-

hood N(3A) of 3A such that the set

~

A
Nl(aA) = N(3A) n U Gbe {Yb}
YbﬁaA

is smooth (5-dimensional) and
fll(aA) c T,

Since f is C”, there is a neighborhood N2(3A) of 3A relative
to ﬂl(aA) such that F(Y) is transverse to ﬁz(BA) at all
Y e NZ(BA). Let us take a neighborhood NE(Z) of I with radius

e (i.e., a(aNE(Z),Z) = g£) such that
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(N_(Z) 0 N (38)) < N, (3a).
By (S.2.1), there is a Gi such that
d({Y : £, (¥) = 0},{Y: £,(Y) =8}) < e.
Hence, for 6'<m%n{6i},
1
Ng(2) 2y s gD, <8} e N (D).
Here, ﬁS(Z) is a neighborhood of I and

(Ng(Z)n Nl(aA)) S NZ(BA).

Hence, V(t,YO) remains in ' as long as V(t,YO)e 56(2). On
the other hand, V(t,YO) remains in ﬁé(Z) as long as V(t,YO)
e T, since [g(t)||  decreases if Y(t) €T. Consider an open
set 0 containing A such that 30 consists of ﬁs(Z)r1ﬁl(3A)

and a part of 8&6(2). Then, 0<T and if Yoe 0, then V+(Y0)

€ 0, which is the desired result.
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CHAPTER 3

REDUCED EQUATIONS

In this chapter, we shall choose systems from Table
2.4 which may have periodic or chaotic solutions for almost
all initial conditions in the X-space. At the present time,
sufficient conditions for ensuring the existence of chaotic
solution are not known for general three-dimensional ordinary
differential equations. Many numerical experiments showed
that the existence of more than one unstable equilibrium
points could lead to pseudo-chaotic solutions. Here, we
shall restrict our attention to those systems whose reduced
equations may have periodic or chaotic solutions globally
(i.e., for almost all initial conditions) in the X-space.
Hence, if we can show that a system has a stable equilibrium
[ X(t)] += as

peint or an open set R, such that if Xoe R

0 0’
t +», where X(t) =X(t,X0), then the system is discarded.

In Table 2.4, vy and vi can be *1., The presence of
both positive and negative 5 (or vi) corresponds to the
interaction of positive and negative-energy waves. It is
known that such a system is explosively unstable, that is,
one or more of the wave amplitudes tend to infinity in finite
time. The addition of linear damping terms does not suppress
such a fast growth. Therefore, we only retain those cases

in which all the v{s (and vi's) have the same sign. Without

loss of generality, we assume that all the vi's (and vi's)
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P

are positive, since the sign of each Vi (and vi) can be
altered by changing the signs of the variables.

The procedure for eliminating some of the remaining
cases 1s as follows : (i) We assume that all the yi's are
positive ; (ii) If there are more than one equilibrium points
and all of them are unstable for certain value of parameters,
then the case is retained ; (iii) If there is only one equi-
librium point, or if at least one of the equilibrium points
is stable for any values of parameters, we introduce a small
linear growth term to the system by changing one of the signs

of Yj's so that
-Y1+-Y2+-Y3> 0; (3.1)

(iv) If the condition in (ii) holds for the system having
one linear growth term, the system is retained, and if the
condition in (iii) holds, the system is discarded. We do
not introduce more than one negative Yj's, since it is equiv-
l alent to an equation with less than two negative Yj's by
the substitution t+ -t and by certain variable changes ; (v)
‘ If there exists an open set R, such that [X(£)| »» as t+=
) for all Xoe RO’ where X(t) = X(t,XO), then the case is
discarded.
> The reduced systems discarded by the foregoing pro-

cedure may have local chaotic solutions. The original

systems corresponding to the discarded reduced systems may

- also have chaotic solutions. Moreover, the remaining systems




may not have chaotic solutions. For the class of three-
dimensional ordinary differential equations such that the
existence of only one equilibrium point implies the nonexist-
ence of chaotic solutions, we can conclude that if a three-
wave interaction system has global periodic or chaotic
solutions in the X-space, then it belongs to one of the

remaining cases.
3.1 Analysis of Reduced Equations

3.1.1 System (3)

System (3) with positive yi's has been studied by
Pikovskii et al. [12]. Here, we present their results along
with more detailed analysis. Without loss of generality,
we can assume that vA0< 0, since the substitution vAD-»—vA

0

is equivalent to Xe > =X i=1,3. Then, the equilibrium

points are Py = {GX} and P = {Xv}’ v=tl:
2 2
X, = (VLCr /v ) vy vy, 2 vy |=Clvag | 2y v 1%,

WDy 5 € [9Ag | 2=y r,) ¥/ { vy [~ C [ vAg 2y 1) BT, (a2 v DT (3.2)

if they exist. At PO and Pv’ the characteristic equations

of dF/dX for (3) are
Po(A) & Oy D INZaty +y Iy v, [vag ) = 0, (3.3a)
2
pv(k)é X3+(Y1+72+y3)A2+A[72Y3+Y3Yl|vAO|/{IVAOI-(|vA0| -lez)%}

2 2
-(Y3/Y1)(|VAO| -Ylyz)%{lvAol-(|vA0| -ylyz)%}]
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sy, (vAg | 2~y v,) = 0, (3.3b)

respectively. When [vAOI2 <Y1Y, é[vgol » Py is asymptoti-

cally stable and R does not exist. At | vA 22 lv50|2, P,

emerges from the origin and (3.3b) has three real roots, one

of which is zero and the others are negative. When AO2
= AO2+€, where € is positive and sufficiently small, equation

(3.3b) has three negative real roots.

We consider the case where A02:>A02.

(3.3a) has two negative and one positive real roots, We

Here, equation

assume that (3.3b) has one real root -c and a pair of complex

roots atib. Then,
Yld’Y2+Y3 = c-2a, }
oy, VA /1A |=ClvA_ 2y y )%
YoY37Y1Y31 0 ol ~Y1Y2

r (3.4)
2 2 2..2
-[(Ya/yl)(|vA0| -YlYZ)%{IVAO|-(|vA0| 'YlYZ)%}]:za +b“=2ac,

by, (VA -v,1,) = eta?4p?). J

Hence, ¢>0. We assume that at A.O2 =A02, the root locus
crosses the imaginary axis. Substituting a=0 into (3.4)
leads to

2 ) 2 2
(IwAOI 'Y1Y2) {2(Y2+73-Y1)lvA0| iy,

Y2}
2
=|vA0|{Yl(yl+12)(Yl+Y2+Y3)+2(Y2+Ys—Yl)(|vA0| -Ylyz)}. (3.5)

Hence,

2 . 2
|vA0| <mm{2yl Yz/(yl-yz-ya),yl(yl+72)(Yl+yz+y3)/{2(Y1-Y2-Y3)}+Ylyz}
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4 IVA6|2, (3.6a)
or

2 2
|vA0| >nax{2¥l Y2/(vl-y2~ys),Yl(yl+Y2)(Y1+Y2+Y3)/{2(Y1-Y2-Y3)}+Y1Y2}

A |VA8|2' (3.6b)
Now, we consider two subcases :
Case (1) Yq < Y2+Y3= From (3.5), we obtain an equation for
2
AZ
2. A 2.2 2.2 2 2
s(IvAOI )=u{(Yl-Y2)-Y3}(|vAO| D S R P2 CRa PR )
48y, Y, { (Yo =y, ) 24y, (v 4y, )} VA | 2-16y, 3y 3 = 0 (3.7)
Y12 M7 T3ty 0 1 Y2 7% y

Equation (3.7) has a positive real root if and only if the
first term is positive (i.e., Y1>'72+y3 or v, >Y1+Y3)-

f : Since Y1 <Y,*Y, by assumption, equation (3.7) has a positive

~ 42
v, |

t real root if and only if Yo > Y +Y3s and 302 is defined by
- 2 3 e
F = [cl+{cl *64(y,Y,) 02} ]/2c2, (3.8)
i
]

where

) 2 2
Cq = (rp=y ) Ty by ) 48y Y MY Y, v 3 (v 4y,

|
F s
| ) c, = u{(yl-y2)2-732}
, . ~
?, Since s(y;v,) <0, vy, < |vAOI .
Case (ii) Yp>¥,%v,: Since s(|vAl|?) <0 and s(|vay|?) >0,

the real rnot of (3.6) does not satisfy (3.5). Thus, if
! Y, <Y1+Y3, the root locus does not cross the imaginary axis.

For sufficiently large |vA0|, equation (3.3b) has one
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positive root and a pair of complex roots since the coef-
ficient of A in (3.3b) is positive and increases monotoni-

cally as IvAOIincreases. From (3.4), we obtain an equation

for 2a:
q(2a) & (2a)3+2(yl+Y2+Y3)(2a)2+(Yl+Yz+y3)(2a)+{2a+(yl+Y2+Y3)}
[ +y Y4 (VAL |/ {| VA, |- (] vA |2— 2= (v /¥ Y| vA |2- %
YoY3¥Y3Y1 VA 0 ol “Y1Y2 Y3/ VR =YY,
{IVA |- C[vA | 2=y, v,) 2} 1T~y (VA | °~y.v,) = 0 (3.9)
Vg ol ~Y1Y2 YallVRgl =YY/ = 5 .

which has only a positive (resp., negative) real root for
sufficiently large lvAol if v,>Y,*y, (resp., Y, <Y tY3).
From the above results, we obtain the root locus of

(3.3b) as shown in Tigure 3.1. The origin is asymptotically

Y2>Y1+Ys

Figure 3.1 Sketches of Root Locus of (3)

stable if AO2 <A02, and is a stable node in a biunstable

plane. If vy, <y *+ys, P

2
value of A0 . If Y, >Y1+Y3, P

N is asymptotically stable for any

v is asymptotically stable




~ 2 2 A~ 02 2 ~ 42 .
when |vA0| <|vAO| <lvA0| , and when |vA0| >|vA0| » P, is
an unstable focus in a bistable plane. Thus, system (3)

with positive Yj's may have periodic or chaotic solutions

2 >A 2

globally if Y, >yl+y3 and A0 0 -

3.1.2 System (4)

Without loss of generality, we assume that v >0, since
1 1 and Ry > =X,
Then, the equilibrium points are P, = {BX} and Pvu= {Xvu}’

the substitution v+ -v is equivalent to x, - -x

Vyau = t1:
2
Xvu:=(vu<Y2/73)%{Y2(vqu /(YZ/Y3)%-71Y3)}%, v(vquz/(Yz/y3)%-yly3)%,
MOY, /1) XA (1) By 1) v T, (3.10)

if they exist. At P0 and Pvu’ the characteristic equations

of dF/dX for (4) are
A 2 2, .2,
pO(A)= (A+Yl){k +(y2+73)A+72y3-(wA0 /Yl) }=0, (3.11a)
3 2 2
B, 8yt tr A Gy /7, 2,y # 1) [v A
sy (ulv|A 2/ (v /y ) By yg) = O (3.11b)
Yo tHIVIAg FRYp Y37 =Y Y30 = e .

We shall show that if all the Y;'s are positive, then
. . 2 b
PO or pvu is stable. From (3.1la), if IVIAO <Y1(Y2Y3) s
P, is stable. If |v|A02 >Y1(Y2Y3)%, there exist two nontriv-
ial equilibrium points Pll and p-ll (i.e., u=1). We shall

show that they are stable. Since |v|A02 >Y1(Y2Y3)%, pil) >0,

i=0,1,2. Hence, if (3.11b) has three real roots, they are




negative. Assume that (3.11b) has a real root -c¢c and a pair

of complex roots a:ib. Then,

- an \
Y{*Y,tyg=c 2a,

~

2 2,.2
u(Y2+Y3)|v|A0 /(Y2y3)%=.a +b“-2ac, (3.12)

2 2,.2

u(Yzys)%lleo =Y1Y,Y4 = c@™+bo)/u.

Since |v|AO2 >Y1(72y3)1i and =1, ¢ is positive. Furthermore,
_ 2.2

Y1Y2Y3-{Y2Y3/(72+73)-c/u}(a +b )-2acy2y3/(Y2+y3),

uylyz/(yl+72) >c.
Hence,

c= Yl**Yz"‘Y3+23 < uylyz/(yl*'yz) .

This implies that a< 0. Thus, (3.11b) has no unstable com-

Plex roots. Therefore, P\)1 is asymptotically stable if all

the Yj's are positive.

If Y, < 0 or Y3 < 0, P\)u does not exist. This case is

also eliminated in Table 2.5.

Now, we assume that Y1< 0. Equation (3.1la) has one
2 % 24 %

o <Ap By )ty vl
and has two positive and one negative roots if A02 2

0 -
Moreover, if AO2 <502, there exist four nontrivial equilib-

positive and two negative roots if A

> A

rium points Pvu’ v,u = £1, and two equilibrium points P11 and
. 2 72
-11 if A0 >AO .

We first consider Pll and P_11 (i.e., u=1)., 1If

P
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equation (3.11b) has three real roots, then all of them are

i) . 2 2
il >0, 1=0,1,2. When A % =0 or A,

sufficiently large, equation (3.11b) has one negative real

negative since p is

root and a pair of complex roots. Moreover, the root locus

does not cross the origin, since pl(O)# 0 for any values of
2
Q-
u=1 and Yl< 0. We consider two subcases to determine when

A Suppose that (3.12) holds. Then, c¢ is positive, since

the root locus of (3.11b) crosses the imaginary axis:

Cases (i) (YZ-Y3)2—[Y1[(Y2+73) >0: Let a=0 in (3.12), then
2 2 AR 2
Aq =“(Y2Y3);§|Y1/Vl{(Y2-Y3) -|Y]_|(\(2*|"\(3)}=A0 . (3.13)
From (3.12), at A.O2 =302,
da/dd 2= (V] ]va | (Yotr )= (v =y 2/ {20y, ) 2B%+e%) } < 0 (3.14)
0 Y1Ht¥™3 = ™Y, Y2Y3 ’ y
where

~2 2
D = by, ¥4 |vq [ (rpty )/ {lyp=v ) =1y [ (ry*tyd s

c= Y2+Y3-|Yl| .

Hence, Hopf bifurcation occurs at A02==302.
Case (ii) (Y2'Y3)2'|Y1|(Y2+Y3) <0: Here, (3.13) does not
hold, that is, the root locus of (3.11b) does not cross the

imaginary axis. From (3.12), we obtain an equation for 2a:
A 3 2 2
q(2a) £ (2a) +2(Y2+Y3-|Y1|)(Qa) +{(Y2+Y3-|Y1|)
YL /Y, 20y, Jy 41 VA 2y, /v ) R A 2=y ) 2= Y, |y y ) VY
3'Y2) '3 0 3’72 0 Y273l mIVIRYRTYE Y,

_u,[yllyzya:(], (3.15)

4
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where u=1. Equation (3.15) does not have negative real
roots at AO2 = 0 and for sufficiently large Aoz. This means
that if (3.11b) has a pair of complex roots, their real parts

2. 0 and sufficiently large AOZ. Thus,

are positive at A0
equation (3.11b) always has one negative real root and a pair

of complex roots whose real parts are positive.

We now consider Pl-l and P—l-l (i.e., u=1), which
exist only if A02-<802. Equation (3.12) with pu=-1 implies

that a cannot be zero. Hence, the root locus of (3.11b) does

not cross the imaginary axis. Equation (3.12) also implies

that the real parts of the complex roots of (3.11b) at A02 =0
are positive. Moreover, at A02==502, equation (3.11b) has
three real roots which are positive, negative and zero.
Hence, b2= 0 in (3.12) for a certain value 602'<R02. From
(3.12), 502 is uniquely determined:

2_ 2 3

/[[VIE{SQ-(Y2+Y3-|Y1|)}(Y2+Y3)+36Y2Y3]], (3.16)
where a is the positive root of

20y, )@ H (Yo +y.) (Yo o= |y | +12y, v, ba2

Y23 2773 Y™ Y3miN 273

+8Y2Y3(Y2+Y3"IY1! )a'ulYlleYa(Y2+Y3) =0. (3.17)
Thus, equation (3.11b) has one negative root and a pair of
complex roots whose real parts are positive if A02'<402, and

has one negative and two positive real roots if 602< A0z=§02.
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From the above results, we have the root loci shown in

Figure 3.2. The origin PO is a stable node in a biunstable

2 ~
o A3=A3

L

T R . Re)
A§=0 "-\
”‘r’ (y2-v3)%<
PO P [y1](yatys)
ImA

x
&

(y2=v3)?>
RZRISZ3a 22

1:’\)1

Figure 3.2 Sketches of Root Locus of (4)

plane if AO2 <A02, and an unstable node in a bistable plane

. 2 2
if A0 >A0 .
bistable plane if A0

2 .92 2 ..
0 >A0 . In case (ii), Pv1
2 2

bistable plane. If A0 <QO s Pv-l is an unstable focus in a

In case (i), P\)1 is an unstable focus in a

2 2

<§0 and is asymptotically stable if

A is always an unstable foci in a
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bistable plane and if éoz <A02 <§02, P\)_1 is an unstable node
in a bistable plane. Thus, if AO2 <§02, or if (Y2-Y3)2<
lYll(Y2+Y3) and |Y1|<Y2+Y3 ((3.1)), all the equilibrium
points are unstable and therefore, system (4) may have peri-
odic or chaotic solutions globally.

We shall show that system (4) has an attractor contain-
ing pvu' Since equation (4) is invariant to the interchange
of subscripts 2 and 3, we can assume that 732‘6 without loss
of generality. We assume that Y3>Y2, since if Y33 Yy (u)

becomes a two-dimensional equation, which has no chaotic

solutions. Let a(t)2 x3(t)/x2(t), then

G = (Ya-Yz)a-(xl-vAOQ/Yl)(l—az). (3.18)

At x, = VX;s V= 1, a= v(y3-Y2). Since Y32 Yy then the sets

2
V, and V_ defined by
Ve=X:x, > |x3|}, V_={X:x,< -lxg11, (3.19)

are positive invariant sets (i.e., if X(T,XO)E vV, (or V_)
for some T, X(t,XO) €V, (or V_) for all t21). Let

V=V _uV_. Then, it is enough to show that if X(t,X0)€ -V
for all tel0,»), X(t)= X(t,XO) converges to V as t+®, Let

BCt) 4 x, () %-x,(0)%, then

e
]

= 2(Y3x32-Y2x22)= 2(73-Y2)x32—726. (3.20)

If X'(Xy) e -V, then |x,(t)| < |x,(t)| (or B(t) <0) and

1%, ()| > (¥,/v,)%|x, ()| (or B(£)>0) for t20. Hence,
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B(t) +0 as t+=, that is, X(t) = X(t,XO) converges to V as
t+o. Thus, V is an attractor. Moreover, Pv-le v, and

Pvle V_.

3.1.3 System (5)
The equilibrium points are Pj = {GX} and P = {Xv},

v=*l:
X% Yoy V=(ra/Y) (rayatIva | D0VE, (v./v.ova )T, (3.21)
v Yo Yo/Y¥37tY Y3 0 s WYolYglVRgd s .

if they exist. At P0 and Pv’ the characteristic polynomials

of dF/dX for (5) are
Py (M) & Oy ) Ny hyhey v [vag |2 = 0, (3.22a)
A3 2 2
pv(k)z A +(Y1+Y3)A +(l-272/Y3)(Y1Y3+|vA0| )
2
-2Y2(Y1Y3+|VA0| )=0, (3.22b)

respectively. We shall show that (5) can be discarded.
Equation (3.22a) implies that P0 is asymptotically
stable if all the Yi’s are positive.
We assume that Y, < 0. If (3.22b) has three real roots,
they are negative since pv(i)(0)> 0, i=0,1,2. Assuming
that (3.22b) has one real root -c and a pair of complex

roots azib,

Y1W3=C-2a, W
(1-2Y.,/7) (r Y4+ |vA_|2) = a%+bP~2ac (3.23)
2" 13711371 > :
2. _ 2.2
-2yz(ylya+|vA0| ) =c(a®™). )
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Hence, ¢ is positive, and we have an equation for 2a:
2a) & 223420y, v 2a) 241 (v +v ) 2+ (=27, /7.) (Y v o+ |vA_| 2) H(2a)
qtca’ = 1773 1773 2/Y37 1 Y3" IV
2, _
+(Y1-2y172/y3+'y3)(ylys+|VAO| )=0, (3.24)

which does not have a positive real root. Therefore, the
real parts of the roots of (3.22b) are negative. Thus, P
is asymptotically stable if Yq < 0.

Now, we assume that Y, <O0. Equilibrium point Pv exists

only if |vA0|2 <]yllya. Equation (5) is rewritten as

% - -vVA X -X 2
1 Y1 0 1 2
= + (3.25&)
X4 vA0 “Y3 X3 0 N
X, = - (Y2 - xl)xz. (3.25Db)

The eigenvalues of the square matrix in (3.25a) are positive
and negative real numbers if lvAol2 <|Yl]Y3. Hence, there
is an open set R, where x, <0 and |x2| is so small that if
Xy € Ry and X(t) = X(t,X,), le(t)|,|x3(t)|-*m and |x2(t)|-*0
as t—+o=o,
Finally, we assume that y,<0. If |vA0|2 <Y1|y3|,
. P, does not exist. If |vA0|2 >Yl|y3| and |Y3| <Yy, then
P, is asymptotically stable. If |vA0|2 >Ylly3| and |Y3| > Yo
v the eigenvalues of the square matrix of (3.25a) are positive
real numbers. Hence, there is an open set similar to RO.
Thus, system (5) has no periodic or chaotic solutions

globally.
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3.1.4 System (7)
The equilibrium points are P, = {OX} and P = {Xv}’
v=tl:

- 2 2043
X, = Oy # VA [ D)7y, vI=(v /v (gt VA [ T3,
(3.26)
~V(VA /Y I {=Cy /v ) (Y Y .+ | VA |2)};5)T
0 '3 173 2'3 0 ?
if they exist. At P0 and Pv, the characteristic equations

of dF(X)/dX of (7) are
pu(M) & Oty DI Zaty, v ey v, vag |11 = 0, (3.27a)
By 8007 L(y hyty )=y vt VA | 2 /v by (r, 4y )
-3(Y1/Y3)(Y2Y3+|VAO|2)}-2Y1(Y2Y3+|VA0|2)= 0, (3.27b)

respectively.

Equation (3.27a) implies that P0 is asymptotically
stable if all yi's are positive.

We assume that Yy < 0. Equilibrium point Pv exists
only if |vA0|2< |y2|73. If equation (3.27b) has three real
roots, they are negative since pv(i)> 0, i=0,1,2. Assuming
that (3.27b) has one real root -c and a pair of complex

roots a+ib,

2 -
Y1W2W3-(Y2Y3+IVAOI )/Y3 = c-2a, W
Y, v,y =3y, (Y, v, + | VA |2)/Y’ =a?+b2-2ac q (3.28)
17273 17273 0 3 ’ )
2 2,.2
-2yl(Y2Y3+|vA0f ) =c(a®+b). ]
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Hence, c¢ is positive, and we have an equation for 2a:
A 3 2 2
q(2a) £ (2a) +2{Y1+y2+y3-(y273+lvA0l )/Y4}(2a)
2 2 2
+[{ylw2w3-(y273+|vA0| )/y5} +Y1(Y2+Y3)-3Y1(Y2Y3+IVAOI )/v51(2a)
+{Y1+Y2+73-(Y2Y3+IVA0 | 2)/y3}{yl(yzwa)-syl(yzi:; lvA0 | 2)/Y3}

2y, (v gt lva 1D = 0. (3.29)

If [vA0|2 <Y3(Y3-2Y2)/3, q(i)> 0, i=0,1,2. Hence, the real
roots of (3.29) are negative, and the real parts of the
complex roots of (3.27b) are negative. If |vA0|2>
Y3(Y3-2Y2)/3, a cannot be zero in (3.28). Moreover, pv(O)

# 0 since ]vAOI2 <lv,lvy. Hence, the root locus of (3.27b)

does not cross the imaginary axis. Furthermore, when |vA0]2

= 73(y3-272)/3, equation (3.27b) has one negative real root

and a pair of complex roots, and from (3.29), the real parts

of the complex roots are negative. Hence, (3.27b) has three
stable roots for IVA0|2 >v4(y43-2y,)/3. Thus, P, is asympto-
tically stable if Yoy <0.

Then, we assume that Y, < 0. Rewriting the right hand

side of (7), i

) Xy = -Y1Xp - x22, (3.30a)
: ‘; X, -y2+xl vA0 X
. ‘ =z . (3.30b)
’ X3 --vA0 =Y3| | *3

£ %,(0) <0 and [x,(0)] is sufficiently large and |x2(0)l
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and |x3(0)| are sufficiently small, xl(t)-+-°° and xz(t),
x“t)+0ast*M.

Now, we assume that y,;<0. If |vA0|2 <Y2|Y3|’ P does
not exist. If |vAO|2 >Y2|Y3| and |y3| <Y,, P, is stable.
If |vA0|2 >Y2|Y3| and |Y3|>Y2, P, is an unstable node in a
bistable plane. Equation (3.27b) has at least one positive
real root. Hence, system (7) may have a chaotic solution,
|2

if Y, <0, |Y3| > v, and IvA0 >y2|Y3|.

3.1.5 System (2) and (6)

Since system (2) can be obtained from (6) by the

substitution Yl+ch0-»yl, we consider only system (6).

Comparing (2') and (6') in Table 2.3, system (6) may have a

chaotic solution only if Y1+0vAO< 0 and YpsYg > 0. Then,
s . _ Voo,V

the equilibrium points are Py = {BX} and PKu-{XKu}, (k,u,V)

e x4 {(,1,1),¢1,-1,-1),(-1,-1,1),(=1,1,~1)}:
X:u= (K(Yzya)li, u{-(yl+ch0)Y3};5, v{-(yl+ch0)Y2};5)T. (3.31)

' The characteristic eqations of dF/dX for (6) are

. A -

. po(x)= (A+yl+ovA0)(A+yz)(A+Ya)- 0, (3.32a)
) A+3,.2 )

| p(AY 2 AT+ (Y2+y3+yl+ovAo)-M(Y1+ovA0)y2y3 =0, (3.32b)
Y. at P0 and P:u, respectively. Since Yl+ch0< 0, equation

‘ - (3.32b) has one negetive real root and a pair of complex
roots with positive real parts. Hence, PO is a stable node

. in a biunstable plane and P:u is an unstable focus in a
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bistable plane.

As in the case of system (4), we obtain an attractor
V=V, uV_, where P:_lev_ and P\K)lé V,. In the computer
experiments, we did not observe trajectories such that
X+(Xo)e -V and X(t) = X(t,XO) converges to 3V as t+», We do
not prove the nonexistence of such trajectories, but we can
show that such trajectories are highly special cases which
can be neglected for all practical purposes. Since (6) is
invariant to changing the signs of any two of the variables,
it is enough to consider the set {X: X4 > 0}. Let us define
the set WKu:

WKu={X: ||<x1[ =KX lux2l = X,y x3>0}-w, c,n€ {-1,0,1}},

where

_ )
W= ( 9] {P'<

(K’u’v)e ¢ U}) U{xl’XZ’xa-aXiS}'

. +
The set W is an invariant set and if X0 £W, X (xo)rww= $.
In the following, the trajectory remaining in W will be

neglected. Consider the following sets:
s8{x:a=0}n W -V,
Woy BXia>0 (Gco)) n Wy -V,
where a(t) = xz(t)/x3(t) and
6= (v -vda+x(1-a%). (3.33)

The sketches of S and W, are shown in Figure 2.3. 1In WKu,
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Figure 3.3 Sketches of S and W, in (6)

(K,u) = (l,‘l)’(’l,l)’

Iil]= KXy |x2]= KX, §3< 0. (3.34)

Hence, the trajectory is transverse to S and enters W, n wl-l'

1-1° 1 >0 and x> 0. Hence, from

(3.33), o increases. Thus, the trajectory enters w+rmwll.

In W NW -l1<a<0, >0, x

Let X(Tl,XO)E W 0" (xl,x3)-p1ane and x(rl+s,X0)e w+n wll’

1
where X(T,XO)E w,n wll for all te¢ [11,11+e]. In W, n wll’

0<a<l, a>0 and x, >0, Hence, from (3.33), 1if X(T,XO)

1

e W,nW, . for all Te [T1+€,t],

11

a(t) 2 (Y3=v,)alt) 2 (y *y,)alt +e) > 0. (3.35)

This implies that the trajectory enters W_n w-ll’ since it

is transverse to the (xz,xa)-plane. Let X(TZ’XO)E

P~




w01n (xz,x3)-plane and X(12+e,X0)e W, n w-ll’ where X(T,XO)

e W, nW for all 16[12,12+e). In W+r1W_ll, xl< 0, X < o,

-11

2 5 < 0, Xy > 0 and Xy < 0. Hence, if X(T,XO)E W+nw_ll

for all Te [T2+€,t],

x, >0, x

A

xl(t) -(Yl+ovA0)xl(12+e)< 0,

(3.36)

IA

ii(t) -yixi(t), i=2,3.

Consequently, if X(t,XO)e W+r1W_ll for all t2 0, then
xl(t)-+—w, xz(t)-+0 and x3(t)-+0 as t+o, OQOtherwise, the
trajectory enters Sn wlO’ Similarly, if X(TO,XO)E S nw_lo

at some T the trajectory converges to the xl-axis (where

O’
. +

xl(t)'*w) as t >« or enters SnW,,. Thus, if X (XO) cWOO--V

then as t+«, the trajectory converges to the xl-axis

monotonically after some or no oscillations about the Xq=

axis, or oscillates about the x3—axis for all t20.

Let us see roughly how a trajectory oscillating about

the xa-axis for all t >0 behaves. Rewriting (3.20) for (86),
B = 20y %, 2=y, %, 2) = 20y 0=Y . )%, 2=2Y B (3.37)
373 272 3 '2°73 27" :
Integrating (3.37),
0< ftx (T)2dr= (B(t)-g(0)+2y ftB(T)dT)/Q(Y -Y,)
073 2°0 3 '2

<—B(0)/2(Y3-Y2), (3.38)

for all t since B(t) <0 for all t. By studying F(X) of (6)

carefully, we know that xz(t) takes a larger value than
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{-(Y1+chO)Y3 at each time when the trajectory encircles

the x3—axis. Therefore, for any small € >0, the time

duration for which xz(t)2 > € converges to zero as t -+,
Thus, xz(t)2 behaves as a train of pulses whose heights are
larger than {-(Yl'rcrvAO)Ya};5 and whose widths converge to

zero as t+«. The above arguments also hold for X3.
or W_nW

A trajectory, which lies in W_nW_ for

11
for some T, and converges to the x

1-1

all t2>1 -axis monotoni-

1 1
cally, is unstable in the sense that a small perturbation of
o can shift X(t,XO) into V or cause X(t,XO) to oscillate
about the x,-axis. For, Q= nlyz-y,) on v (|ly| = uy) and the
trajectry is transverse to S, and 3V and S approach to each
other as lel-*m. A trajectory which oscillates about the
x3-axis for all t20 is also unstable in the sense that
A(t,XO) is shifted into V by small perturbation of a. For,
|xi(t)| is larger than {-(Yl+ovA0)Yi}%, i=2,3, at each turn
around the x3-axis, and X(t) = X(t,XO) converges to a3V as
t+», Hence, the trajectories which remain in -(WuV) for
all t2 0 can be neglected for all practical purposes. In
fact, such trajectories were not observed in computer

experiments.

We note that (6) is the only system which explicitly

\Y

KU exists and

includes o= sin(6,(0)+6,(0)). If |vA0|<|Y1|, P
is unstable when Yq < 0, and P0 is stable when \Ee 0. If

|vA0| >|Y1|, P’ exists and unstable when sgn(ovAg) = -1, and

v
KH
PO is stable when sgn(ovA0)= 1. We assume that vA0 >|Yl|
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and that the trajectories converge to £ as t+=., The
question is which of the reduced equations with =1 or -1
describes the asymptotic behavior of (6') in the limit t -+,
Obviously, the equation with =1 is not the one, since the
origin of the Y-space is unstable if VA, > |yll. It is
possible that either one of them does not describe the
asymptotic behavior of (6') in the limit t +>e«, but the
trajectory of the original system approaches in turn either
of the subsets of I corresponding to the X-spaces of the

systems with =1 and -1.
3.2 Physical Interpretation for Reduced Systems

In this section, we shall try to give some physical

interpretation for the results presented in the previous

section. The equations for frequency matching and their

corresponding decay diagrams are shown in Table 3.1.

3.2.1 System (2)

In the decay process of (2), wave 1 decays into waves

2 and 3. Let us define I = 2x12+x22

we call I the energy of (2), though it is not exactly the

2 .
+x3 . For convenience,

wave <nergy of (2). Taking the time derivative of I gives:

> _ 2 2 2
I = - 2(ylx1 Y X, Y aX, ). (3.39)

We assume that Yl< 0. The constant I and I= 0 surfaces are
sketched in Figure 3.4, where they correspond to the

ellipsoid E and the elliptic cone C, respectively. If X(t)
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Table 3.1 TFrequency Matching and Decay Diagrams

Frequency Matching

Decay Diagram
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X1

Figure 3.4 Dynamics of Energy of (2)

is inside (resp., outside) C, I increases (resp., decreases).
That is, when the amplitude of wave 1 is large, the linear
growth of wave 1 is dominant so that the energy of the whole
system increases. When the amplitude of wave 2 or 3 is
large, the linear damping of 2 or 3 is dominant so that the
energy of the whole system decreases. Thus, the energy of
the waves are not balanced in a static manner, but may
oscillate in a chaotic manner.

As mentioned in Section 2.1, if Y, < 0 (or Y32 a),

there is no chaotic solution. For, if Y, <0,

2 2 2 2
(d/dt)(IAll +|A3| ) -YlIAll -Y41A51%,

(3.40)

2 2 2 2
(@/dt) (|A 1 =A%) = -y (A1 %= ]y, 1 1A, 17,

and therefore, [A;(t)| and [A,(t)[+0 and [A,(t)|+=
as t+», This phenomenon does not depend on the magnitude

of Yi's, since they are normalized by the substitution




[Yilt->t, i=z1,2 or 3. From the physical view point, these
results seem to be peculiar. For, system (2) describes a
three-wave interaction including both decay and fusion
processes, and it could be expected that the energy of the
linearly growing and damped waves are balanced as in the
case where Y1 < 0. The above results show that when the
decaying wave 1 is linearly growing (Yl< 0), its energy is
transferred to the damped waves 2 and 3. On the other hand,
when wave 2 is linearly growing (Y2 <0), its energy is not
transferred to other waves. It is suggested that when the
linearly damping or growth terms are introduced, even if the
damping or growth rates are very small, system (2) describes
only the irreversible decay process. It should be noted
that the nonlinear coupling terms in (2) does not possess

any mechanisms for such an irreversible process.

3.2.2 System (3)

As mentioned earlier, in the decay process of (3), an
external wave with constant amplitude decays into waves 1
and 2 which have another resonant wave 3. When the external
wave is weak ([vA0|2 <Y;Y,), the linear damping of three
waves is dominant. Therefore, the energy supplied by the
external wave is dissipated through the linearly damped
waves. If the external wave is strong (|vA0|2 >Y1Y,)» the
input energy is supplied at a higher rate than the dissipa-
tion rate when the amplitudes of damped waves are small.

External energy and energy dissipation are finally balanced
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when the amplitudes of waves are large. When wave 2 is
highly damped linearly (Y2 >Yl+y3), the external energy
supply and energy dissipation are balanced in a static
manner regardless of the magnitude of the external energy.
That is, the energy of each wave reaches a constant value.
When wave 2 is damped slowly (Y2 <Y1+Y3) and the external

2 <§02), the wave energy is also

wave is not strong (A0
balanced in a static manner. When the external wave is
strong (A.O2 >A02), the energy of the waves may oscillate in

a chaotic manner.

3.2.3 System (u4)

In the decay process of (4), the external wave
generates a harmonic wave 1 which decays into waves 2 and 3.

If all the waves are linearly damped and the external wave

2

is weak (|le0 <Y1(Y2Y3)%), the energy is dissipated more

rapidly than supplied. When the external wave is strong
(|v|A02 >Y1(Y2Y3)%), the energy supply is at a higher
(resp., lower) rate than the dissipation if the wave ampli-
tudes are small (resp., large). Thus, the wave energy is
balanced in a static manner at certain values of amplitudes.
If wave 2 (or 3) is linearly growing, wave 2 (or 3) grows to
infinity as t -+« regardless of the magnitudes of the growth
or damping rates. This phenomenon is similar to that of (2) i
discussed in Section 3.2.1.

If wave 1 linearly growing and if there is no external

wave, the system is identical to (2). When wave 1 grows
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]

rapidly (IY1|(Y2*Y3) >(y2-y3)2) or the external wave is weak

2 2
(A,

If wave 1 grows slowly (|y,|(y,+v,) > (y,-v )2) and the
1 2 '3 2 '3

external wave 1s strong (A02:>A02), the energy supply is

<AO )}, the system behaves in a similar manner as (2).

dominated by the external wave and the wave energy is

balanced in a static manner.

3.2.4 System (5)

As shown in Table 3.1, we have two cases. In the
decay process of the first case, the external wave generates
wave 3 by interacting with 1 which is a harmonic wave of
wave 2. In the decay process of the second case. the
external wave generates wave 1 by interacting with wave 3,
and wave 1 generates a subharmonic wave 2. If all the waves
are linearly damped, the energy of the whole system is
dissipated regardless of the external wave. If wave 2 is
linearly growing, the wave energy is balanced in a static
manner regardless of the amplitude of the external wave.

If wave 3 is slowly growing linearly ([Y3| <Y2) and the
external wave is weak (IvAol2 <v1lY41), wave 1 and 3 grows
to infinity and wave 2 dies away. If the external wave is
strong (lvAOI2 >y1|Y3|), wave 3 is strongly coupled with
linearly damped waves 1 and 2 and consequently, all waves
die away. If wave 1 is growing rapidly (|Y3| <Yl), wave 1
and 3 grow to infinity and wave 2 dies away regardless of
the amplitude of the external wave. If wave 1 is growing

slowly (Iyll <Y3) and the external wave is strong
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(]vAOI2 >|Y1|Y3), all waves die away. If the external wave
is weak (IvAOI2 <|Yl|Y3), the wave energy is balanced in a
static manner, or wave 1 and 3 grows to infinity and wave 2
dies away. The mode of the actual behavior depends on the
initial conditions if wave 2 is highly damped (272 >Y3),
and if 272 <Yy it depends on the Yi's and vA0 in a more

complicated way.

3.2.5 System (6)

In the decay process of (6), the external wave
generates a subharmonic wave 1 which decays into waves 2
and 3. We can make the same argument as we used for (2) by
replacing Yy with Yl+ovA0. If Y2 0, and the external wave
is weak (|vA0| <vy,), all waves die away. If y;>0 and the
external wave is strong ([vAOI >Yl), there may be a chaotic
solution. If Yq < 0, there may be a chaotic solution regard-

less of the external wave.

3.2.6 System (7)

Here, we have two distinct cases. In the decay
process of the first case, the external wave generates wave
2 by interacting with wave 3 and wave 2 generates a harmonic
wave 1. In the decay process of the second case, the
external wave generates wave 3 by interacting with wave 2
which is a subharmonic wave of wave 1. If all the waves are
linearly damped, the energy of the system is dissipated

regardless of the external wave. If wave 2 is linearly
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growing and the external wave is weak (|vA0|2'<min{|Y2|Y3,

Y3(Y1+Y3)}), the wave energy is balanced in a static manner.
If the external wave is strong (IVAOI2 >|Y2|Y3), all waves
die away since wave 2 is coupled well with the linearly
damped wave 3 through the external wave. If wave 1 is
linearly growing, wave 1 tends to infinity and wave 2 and 3
die away regardless of the external wave amplitude. If wave
3 grows rapidly (ly3| >72) and the external wave is strong
(|vA0|2>Y2|Y3|), the wave energy may oscillate in a chaotic

manner.
3.3 Systems with Parametric Instability

Now, we have six reduced systems which have periodic
or chaotic solutions for almost all initial conditions.
These systems are listed in Table 3.2, where all the yi's
are positive except for (6). The parameters of each system

satisfy the following condition:

2. .48 2

(3) Y, >yl+y3, AO >A.0 (€(3.8)), (3.u41)
Wy A <A % (3130,
(3.42)
2
(YZ-Y3) <Y1(Y2+Y3)’ Y1<Y2+Y3)
(8) y,>0, ovAj<-y;, or (3.43a)
Yy <0, ovA;>0, (3.43b)

2
(1) VAl > v,v5, Y327, (3.44)




Table 3.2 Systems for Chaotiec Solutions

" Al—yl L= -1, % v (A P (8 1D,
Ayt g = =i {A AR (W (A | 240,018,103,
(1) Xy = YqX =63+ 2%, %=, { (V1 11-2V,, 1) (%) Zix 2)+(V )Xo}
X7 Y1% 1%2 2 111 222 3

Xy =YX POy PR=2%) +x {vy, 211)(x +x 2y (v 122~ V599)%33s

543 = -272x3 2x2x3 Xy 2 0
2" A1 = YlAl-iA2A3, (2) x:L =YX "XpXgs

Ay = -1yhp-ifAL, Xy = Y%K Xgs |

Ay= YAy -iAAg X3 = ~YgXg*R X,
(3") Al= -YlAl-i(A2A3+vA ’é‘), (3) 1= =Y1%"XoXs -VA 0%9°

Ay = <Y A -i(A Ak+vA AR), Ry = =Y Xt Xa=VA X,

A= -1hy-iflh, X3 = =Y g¥gt X ]
ut) Al = YlAl-i(A2A3+vA02) ’ ) x1 =Y X PR

AZ = -y, A -iA A%, x2 = -szz-—xlxs*'(vAoz/yl)xa,

AB = -y A;-iA A% %y = -y3x3—x1x2+(vA02/yl)x2 ]
(6") A YIAl-l(A2A3+VAUA§) (6) X, = (-yl-ovAO)xl-xzxs,

A, = -y A, -iApg, %) = =YXy *RiXgs

A = -73A3-1A A% Xy = -y3x3+x1x2
(7" | Ay =-y,A-iA 2, ) | g = -vpgex,7,

A2 = -y A mi(AARHAAL), o = =Y Xy HRy Xy VA X

A3 = Y3A3-iVAOA2 )°<3 = Y gX,-VAGX, '
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The systems given in Table 3.2 except for (7) have an
unstable focus in a bistable plane. All three-dimensional
ordinary differential equations having pseudo-chaotic
solutions so far have this type of equilibrium point.
Actually, we did not observe any pseudo-chaotic solutions
of (7).

Systems (1), (2), (4) and (7) have linear growth terms
which cause the equilibrium points to be unstable. Such
models are not widely accepted, since the linear growth
terms cannot be readily derived from the fundamental equa-
tions describing wave-wave interactions in plasmas. On the
other hand, introducing linear damping terms is natural
since any collective motion of plasmas is damped by particle
collisions. System (3) has only damping terms, and so does
system (6) if Yy >0 ((3.43a)). Hence, in what follows, we
consider only these two cases where the instability is due
to an external wave (parametric instability).

Now, we combine the sufficient conditions for the
convergence of the trajectories to I (Table 2.7 and (S.2.3))
with the conditions for the existence of global periodic or

chaotic solutions in the X-space ((3.u41), (3.u43a)).

3.3.1 Sufficient Conditions for Convergence of £(t) to GE

We now recall the sufficient conditions for g(t) to

converges to eg as t+». Rewriting the equation (3) in

Table 2.7,




2 2
A, [“+2]A,] < (Y {2y, 4y )pg=2| VA | 1/ (pgtp,), }
2
18, 122184 %] < (4, ) 0C2y, #v 0,2 VA |1/ (o) 5} (3.45)
PvAg | < (ryty *rrgd/(pgip)). J

For system (6), by choosing P, and p, satisfying
p,/p, = IVAOI/(Yl+Yz+YS),
the right hand side of (6) in Table 2.7 is maximized:
1, 124|852 < v (v ry ) (1= VAL | 27 (y oy +y ) 2 (3.46)
2 3 172 73 0 17'273 * ‘

We denote the set whose elements satisfy (3.45) (or (3.46))
by r. Equation (3.u45) and (3.46) implies that the volume of
F decreases as lvAol2 increases to its maximum value if all
the Yi's are fixed. We also know that as Yis i=1,2,3,

becomes large, the maximum value of ]vAOI2 and the volume of

[ increase. As Y;*>®, i=1,2 or 3, and max{yi}/lvA0|-+w,
i

lar 4

is extended to the whole Y-space.

3.3.2 Attractor in X-space

We obtain an attractor of (3) smaller than that
described by (2.27) in a manner similar to that given by
Treve [27] for the Lorenz system. Equation (2.27) was

obtained as follows:
2, 2 2, _ 2 2 2
(d/dt){2x1 %, +(x3+3vA0) }= -ulel -2Y,%, 'Y3(2x3 +6vA0x3)

2 2 2 2
< =2y, (2%, 9)-2v,%, =Y 4 (x5*+3vAy) +9Y3|vA0]
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2 2 2 2 A .
S-d{2x1 X, +(x3+3vAO) }+9y3]vA0} , cj=nun{2yl,2y2,73}. (3.47)

Hence, the set QO:

A . 2
Q :{X.le

2 2 2
0 *x, “+(x4+3VAg) <9(Y3/d)|vAOI } (3.48)

is an attractor. Suppose that Yy = d, and let Yq and Yo

increase while |vA is fixed. Then, from (3.45) and (3.48),

ol
QOC T is satisfied for sufficiently large Y, and Y, Hence,
by (S5.2.3), there exists a set 0. Likewise, for suffi-
ciently large Y, and fixed Y,»Y, and IVAOI, or for suffi-
ciently small |vA0| and fixed Y1s>Y, and y,, there exists a
set 0.

Taking the time derivative of Ilé x12+(x3+vA0)2 and

5z x22-(x3-vA0)2,

> 2 A .
Il's-d1I1+y3|vA0| > dy £min{2y;,v,}, (3.49a)

2 2 2 .
' ~2Y,%, +y2(x3~vA0) -Y3[vA0| > if 2y, > v,
I,>2 (3.49b)

2 .
'YsIz'Y3|VA0| b) if 2Y2$Y3°

Thus, the sets Ql and 92:
Q, 8 {X: x 2+ (x,+vA )2 < (y,/d,) |vaA,|%} (3.50a)
1= "1 3 770 3’71 ol 7’2 )
Ay, 2 2 2
2,2 {X: =%, #(x3-vA )" < lvAol }s (3.50b)

are attractors (it was assumed that 272 <Y3 for 92). Hence,
ZQS%)an is an attractor, and EQS%)nﬂl 092 is an attractor

if 2Y2 <Yj3- Figure 3.5 gives sketches of A and A. Here,
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Figure 3.5 Attractors A and A of (3)

if 2Y, £ Y35 the dint at the bottom appears when (Y3/dl)> g.

3.3.3 Phase Locking and Chaotic Solutions

Here, we combine equation (3.45) with Figure 3.5 to
see when A< T is satisfied. If Ac T, then by (S.2.3), there
exists a set 0. If A< is not satisfied, the sufficient
conaition A< T for the existence of 0 is too strong or there
exists no 0.
Suppose that all the Yi's are fixed. As mentioned in
the previous section, A<T is satisfied and there exists a
set 0 for sufficiently small IVAOI. In this case, phase
locking is of no importance, since the trajectory converges v

to BY as t -+,
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0 -

We consider under what conditions A T is nct

satisfied. TFrom (3.u45),

A, 1%+21A5 17 < vyt ) (v vy, (3.51a)
|18, 12-218,121 < 2y +v,) (vy47,), (3.51b)
IvA0!2 < (2min{y ,v, by ) (v +y,+yg). (3.51c)

Hence, a necessary condition for AcT is as shown in Figure

3.6. Here, the projection of A onto the (xz,x3)-plane and

A

A
Y % -
Xq / h° \'Xl
x}+2xt /%Xil
. =constant =constant
Figure 3.6 Necessary Conditions for 4 < f
A Y

the (xl,xs)-plane satisfy (3.5la) and (3.51b), respectively.
v, Then, from (3.48) and (3.51),

Vg |7 < (21,47 ,) Cry 1) /2 {80y, /dd+(y4/d))}/2-{1-8(y /) , (3.52a)

| vy 1% < (2 4y ) Cr #y, )/ {1y 4 /a2, (3.52b)
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Since d< d from (3.52),

1,
[vag 1% < 2y, 4y ) (v +v,) /16, (3.53)

As mentioned in Section 3.3.1, equation (3) has two

nontrivial equilibrium points Pv's if A025>A02. If

Yo >Y1*Ygs
2 _
|vA0| =YY, >(2Y2+Y3)(Y1+Y2)/15- (3.54)
Hence, if Y, >Yl+y3, (3.52) does not hold for A02:>502.
In other words, when system (3) has periodic or chaotic
2 ~ ~

solutions globally (A022>A ), the sufficient condition AcT

0
is too strong so that we cannot determine whether there
exists a set 0.

It is likely that there may exist an attractor smaller
than Z, since equation (3.52) is determined at points P and
Q in Figure 3.6. Equation (3.49) is derived by the method
similar to that in (3.47). The inequality corresponding to
the second inequality in (3.47) used to derive (3.49a) holds
with a large margin at P. TFurthermore, since Y, >Y1+Y3, the
inequality corresponding to the second inequality in (3.47)
used to derive (3.49b) also holds with a large margin.
Later, we shall evaluate the size of attractor by direct
integration of equation (3). On the other hand, the suffi-
cient condition (3.45) for the convergence of g(t) to 9E is
obviously too strong. The maximum value of |vA0| satisfying

(3.45) is
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2
|

| vA
max

0 = (2y1+y3)(2y2+y3)/u,

when p, = IVAOI/(2Y2+Y3) and p, = vaof/(ZYl+Y3). Since

2.1 2

s(|vA L) <0 (3.7, |VA0|max< |vAy|. Hence, if Ay© > A",

Olma
the set T is empty.

Equation (6) has a solution which goes to infinity as
t +® on the xl-axis. Hence, there is no natural boundary of
the trajectories of (6) as in the case of equation (3). On
the other hand, the numerical results in the next chapter
suggest that the pseudo~chaotic solutions of (6) are bounded
for certain values of parameters. If such trajectories are
contained in T ((3.46)), there exists a set 0. TFor other
values of parameters, the limit set of the pseudo-chaotic
solutions appears to be unbounded. If the limit set is
unbounded, it is not contained in T in the Y-space. Then,

the sufficient condition in (S.2.3) for the existence of 0

is too strong, or there does not exist a set O.

3.3.4 Local Properties of Original Systems

In the previous sections, we did not prove the
existence of 0 for system (3') or (6')., In this section, we
study the local properties of these systems about certain
sets and the stablity of fe, which will provide some insight
on the convergence of the trajectories to I.

1f e d IVA0|2-7172 >0 in (3'), then the equilibrium set

consists of P0Y= {GY} and

BQy = (Y i (pysrysrg) = ({(yy/y D& |VAI-EDYE {y v, 8% ([vag|-€D1%, &9,
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sin(61+92)= Sin(91-92-93)= 1}, (3.55)

where vA0< 0 is assumed. The characteristic equation of

dF/dy for (3') at any point P EQ3 is ﬁ(l)é;&ﬁk)ﬁ(k)= 0,

Y
where

POV = APy Hy, 4y by Cy g+, VA |
/(| vA l-él’*‘)-z(y /v,)|vA |é;5} (3.56)
0 3/ Y1 Vgle s .

. . . 2 4~ 2
and Pv is defined in (3.3b). If Y2 >Y1+Y3 and A0 :>A0 s

equation (3.56) has a zero root and two stable roots. As

mentioned earlier, equation (3.3b) has a pair of complex

roots with positive real parts if Y, >Y1+Y3 and A02>»302.

Hence, all the eigenvectors corresponding to the unstable

roots of (3.5b) lie on fe at PY where 63= 8. Thus, there is

no unstable manifold which is transverse to fe at its

corresponding PY.

For system (3'), the intersection of all the fe's is

the origin POY' The characteristic equation of af/dy at POY

is ﬁo(k)é‘po(k)2= 0, where Pg is defined in (3.3a). We know

that (3.3a) has one positive and two negative real roots if
2 . . .

|vA0| >Y1Y2' Hence, there is a two-dimensional space ESY+

spanned by the eigenvectors corresponding to the unstable

eigenvalues at POY' As mentioned in Section 3.1.1, the

eigenspace in I, corresponding to the unstable eigenvalues
e

of dF/dX at BX is one dimensional. Therefore, ESY+ is

transverse to all the fe's at POY'

We shall show that ESY+ lies in I at POY’ which
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implies that the trajectories tend to approach I about P

0Y*
The positive root of (3.3a) is
Ay = DL =y 0 Zeulvag | 25 (v 4y ) 172,
and
ESy, = {1 Y= (-vAg s =VAgNys Ag,Nps Agnys 05 0T 5no,n, RE.
On the other hand, in I,
Y1Yp~2125 = 0, (yly2+zlz2)y3+(zly2-ylzz)z3= 0. (3.57)

If Y'EESY+, Y satisfies (3.57) for any (nl,n2). Hence,

ESY+C L.

The matrix dF/dY at P., has a block diagonal

oY
representation. The submatrix corresronding to the (y3,z3)-

space is diagonal and has a repeated eigenvalue =Y3- This

implies that es(t) tends to a constant about P On the

oyY"*
other hand, Bl(t) and 92(t) tend to vary about POY’ since

ESY+ does not coincide with the (yl,zl) or (y2,zz)—space.

In the above sense, Ze is unstable about POY'
Finally, we examine the extent of the unstable

manifolds tangent to ES at the origin, along the (y3,23)-

Y+
direction. The characteristic equation of the linearized

vector field about I. (& {v: r,=r,= 0}) is

0 2

p(1) 4 {x2+(yl+yz)x+<ylyz-|vA0|2)+r32}2= 0. (3.58)

Suppose that |vA0[2 >Yq1Yqs then (3.58) has unstable roots

for r32< |vA0|2-71Y2, and has only stable roots for
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2 2
vy > ATy,
If |vAy| >y, in (6"), the equilibrium set consists of

POY and

EQg = {y :(rl,rz,r3)= ((y2Y3)%, {(lvAOI-yl)Y3}%, {(IvAol-yl)yz}%),
sin(281)= sin(61-62—63)= 1}, (3.59)

where vA0< 0 is assumed. The characteristic equation of
dF/dY for (6') at any point Py in EQ; is B(A) = p(A)p(A) = 0,

where
~ 2
OO E-RY0 Ay Py gt v D+20y, 4y ) [vA |} = 0, (3.60)

and p is defined in (3.32b). Equation (3.60) does not have
unstable roots. Hence, the eigenvectors corresponding to

the unstable roots of (3.32b) lie in fe at PY where 8 0.

3:
Thus, there is no unstable manifold which is transverse to

fe at its corresponding Py. At the origin, the characteris-
tic equation of df/dY has only one unstable root. The
eigenspace corresponding to this root coincides with the

one-dimensional space S, = {Y : r,=r,=0, cos(291)= 0,

3

sin(261)= 1}, which lies in I, for all 8.

8
For system (6'), the intersection of all the Ee's is
the surface SQ= {Y: r,=rg= 0}. The characteristic equation

of the linearized vector field about 32 is

B(A)é{x2+(y2+y3)x+y2y3-r12}2=0. (3.61)

The above equation has a repeated unstable root:
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- 2 2%
AY+' [{(Yz'Ya) tur, } -(72+73)]/2,

. 2 . 2 .

if ry >Y2Y3. Hence, if ry >Y2Y3, S2 is unstable,
Moreover, ez(t) and 63(t) tend to vary about Sz, since the
submatrix of the linearized vector field corresponding to
the (y2,22,y3,z3)-space is not diagonal except for the

origin. In this sense, Ee is unstable about SZ'

We have proved that for (3'), fe is unstable about the
origin and for (6'), Ee is unstable about 82. In (6'), the
trajectories always approach the origin before approaching
SZ' Hence, the trajectories of (3') and (6') may not
converge to one of fe's if the trajectories get arbitrarily
close to the origin without converging to the origin'as
t -+, that is,

lim sup JY(t)] > O,

Tre 1<t (3.62)

lim inf JY(®)] = o,
too 1<t

where Y(t) = V(t,YO). The question is whether the nonconver-
gence of the trajectories to one of fe's implies the noncon-
vergence of the trajectories to I. Intuitively, it is less

likely that there exists a trajectory which converges to the

union of more than one Ee's as t+», but it is difficult to

prove it.

3.3.5 Energy of Original Systems

Let I & {2|A1|2+|A2|2+|A3|2}/2 in system (3'). We call




]

|

! I an energy function of (3') for convenience. We shall see
|

§ the difference between the behaviors of I for the original

and reduced systems. Taking the time derivative of I,
. . 2
I=-[2yl{|A1|-(3v/uy1)|vAol[s1n(el+92)||A2|}
+{y.-(3v|vA_ | |sin(e.+8,) )2/ (8y, ) }|A, | P+y. A, | %] (3.63)
Y2 0 1*% V) Ay g lAsltds .

1+e2)}. Equation (3.63) is sketched in

Figure 3.7, where E is a constant I surface. Since |vA0|2

> Y1Yys the second term of the right hand side of (3.62) can

where v = sgn{vAosin(e
|As | |As]

|A2 |

|AL] |A; |

|sin(8,+02) | <1 |sin(8,+682) =1

Figure 3.7 Dynamics of Energy of (3')

be negative. Hence, we have an elliptic cone C: i=0, in

0 which the energy I increases, and outside which I decreases.
The line of foci and the radii of the cone vary as el+62

¢ varies. We assume that mA0< 0. Then, if




. 5 %
sin(8,+6,) < (8%/3) (v y,) /|vA0|,

cone C does not exist and the energy I decreases. TFor (3)
or on L, sin(61+92)= +*1 and the cone C is fixed.

Taking the time derivative of I for (6'),
I=-{2¢y,-v|va,||sin26. |)|A, |24y, |4, |%+y,|A, ]2} (3.6L)
1 0 1 1 21772 3'7°3 ? *

where V= -sgn(vA,sin28,). Since |vA0| >y, for chaotic
motion, the first term of the right hand side of (3.84) can
be negative. Hence, we also have an elliptic cone C as in
the case of (3'). The line of foci is fixed at the IAll-
axis, and the radii of cone vary as 61 varies. If sin29l
<yi/]vA0|, I always decreases. For (6') or on I, sin26, = £1

and the cone C fixed.




CHAPTER 4

NUMERICAL EXPERIMENTS

In this chapter, we present some numerical results for
equations (3'),(3),(6') and (6). An attempt will be made to
correlate some of the numerical results with the analytical
results given in the previous chapters. Equation (3) has
already been studied numerically by Pikovskii et al. [12].
In the calculations, we use the normalized time yt, where
y:=max{Yl,Y2,73} for (3') and (3), and Y:=max{Y2,Y3} for
(6') and (6). In what follows, we denote the normalized

time by t also. By the substitutions:

Ai/Y - Ai’ i=0,1,2,3,
4.1
X /Y > X5 ¥3/Y > vy, 121,2,3,
we obtain a system described by the same equation except for
Yy=1. Any equations derived in the previous chapters are

not changed by this substitution.
4.1 Behavior of Original Systems (3') and (6')

We fix the values of parameters as follows : y1='y3=
0.25, Y, = 1. These are the values used by Pikovskii et al.
[12] for the model (1l.4%4) describing the parametric interac-
tion of a whistler with ion sound and plasma oscillations

near the lower hybrid resonance combined with the three-wave

82

e 8. o gt RPN R 1 e A p e A i W) LS




interaction involving another plasma wave synchronous to the
parametrically excited pair. For these values, the condi-
tion Y, >Y1+Y3 is satisfied. Hence, the stability of the
equilibrium points is as follows : For |vA0|< |v§0|= 0.5,

P, is stable and P does not exist; for 0.5< [vAg| < IVAOI

= 1.259, P, is unstable and P, is stable; and for |va

ol

> 1.259, P, and Pv are unstable.

0
The condition (3.45) is viclated for |vAD| >1.,259.
On the other hand, numerical results show that the phases
are nearly locked for IVA0|< 3.0 at least for 150 time units.
The plots of cos(8,(t)-6,(t)-8,(t)) and (Re(Al(t))/IvAOI,
Im(Al(t))/lvA0|) are shown in Figures 4.1 and 4.2, respect-
ively. As lvAol increases from 3.0, the nearly phase-locked
state appears to be unstable. At |vA0|= 3.2, an abrupt
phase change occurs occasionally in an unpredictable manner
(Fig.4.1l(a),u4.2(a),(a"')). 1In Figure 4.2(a'), we do not
observe any abrupt phase change for 150 time units, while in
(a) (corresponding to Fig.4.1(a)), it is observed twice.
From this observation, it seems to be difficult to determine
numerically the critical value of |vA0| at which such a
phase change takes place. For, even if no abrupt phase
change is observed over a long time interval, we do not know
whether it will occur at the next moment. At |vA0|= 3.5,
the abrupt phase change occurs more often (Fig.u4.l(b),

4.2(b)). At |vA0|= 4.0, the phase varies in a complicated

manner most of the time (Fig.4.1(c),4.2(c)). At |vA0l= 8.0,
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the phase varies periodically with time (Fig.4.1(d),4.2(d)).
Thus, for |vA0| > 3.5, the reduced system (3) does not
represent the original system (3') most of the time. For
]vA0| <3.2, system (3) may represent (3') most of the time,
but not asymptotically.

It is observed that the abrupt phase changes occur
only about 20 near the origin. This is consistent with the
result in Section 3.3.4 where it was shown that there exists
an unstable manifold at 80 if r32< [vAOIZ-Ylyz. The extent
of this manifold is increased as |vA0| increases, which may
be one of the reasons why the abrupt phase changes occur

more often as |vA,| increases. According to the observation,

ol
the hypothesis (3.62) appears to be satisfied, that is, the
trajectories always return to an arbitrary neighborhood of
the origin. Furthermore, the numerical results show that

2 ((3.8)), the trajectories are

as AO2 decreases to AO
trapped in a smaller neighborhood of I, but they do not
converge to ¥ as t-+ =,

For system (6'), we fix the values of parameters as
follows : Y137, ° 0.4 and Y3 = 1. These values are reasonable
for the model such that plasma wave 1 generated by an
external wave decays into another plasma wave 2 and an ion
acoustic wave 3. The numerical results show that for a wide

range of parameter values, the phase becomes locked rapidly

and remain locked (within the accuracy of computation).

The phase is locked even when condition (3.47) is not

e e g —




3

satisfied.

As mentioned in Section 3.3.4, the trajectories
approach the origin before approaching 82. From the obser-
vation, equation (3.62) appears to be satisfied for certain
values of lvAol. Therefore, the trajectories may return to
an arbitrary neighborhood of 82 repeatedly. According to

the analysis in Section 3.3.4, fe is unstable about S,.

2

Hence, the abrupt phase changes may occur about S But,

9*
actually, we did not observe any abrupt phase changes for
(3') for a wide range of parameter values. This result may
be explained as follows. Since the trajectories approach I
exponentially about the origin (Section 2.3), therefore as

a trajectory gets closer to 82, it is closer to I. From the
continuity of the vector field, the vector F(Y) tends to
parallel to fe as Y approaches I except in the neighborhood
of a certain set containing 82 and EQS’ The volume of such
a neighborhood is smaller, as a smaller neighborhood of I

is considered. Hence, it is less likely that the trajectory
moves transverse to fe as it gets closer to I. That is, it

is less likely that about 82, the trajectory moves across

fe's and the abrupt phase change occurs.
4.2 Behavior of Reduced Systems (3) and (6)

In what follows, we consider only the reduced system
(3) and (6). For (3), we assume that 1.259¢ lvAols 3.2 for

which the system may have a chaotic solution, and describes
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(3') approximately most of the time, but not asymptotically

as t+», TFor (6), we assume that lvA0|> 0.4 for which (6)
may have a chaotic solution and describes the asymptotic

behavior of (6').

4.2.1 System (3)

The projection of the trajectory onto the (xl,xa)- i
plane is shown in Figure 4.3. At each value of VA;, there i
i

appears a pseudo-chaotic attractor. According to Pikovskii

et al. [12], periodic solutions appear for IVAOIz 3.35.

But, as mentioned earlier, equation (3) does not describe
equation (3') approximately most of the time for such values
of IVAOI.

The attractors in the Figure 4.3 resemble two-dimen-
sional surfaces. But, their cross sections have a complica-
ted structure. Let us consider a connected set Q on a plane
PL which is transverse to the trajectories as shown in
Figure 4.4. In equation (3), the phase volume shrinks

uniformly, since

9%, 9%, 9%

1 2 .3 _ _
3x1 +3x2 +8x3 - (Y1+Y2+Y3) < 0. (4.1)

Hence, the area of Q shrinks exponentially to zero as t +=.
Simultaneously, as shown in Figure 4.3, Q is stretched in
one direction while moving around the nontrivial equilibrium
point Pv (Fig.4.3(a)). Hence, compression of Q must take

place along another direction. In Figure 4.,3(a), Q is split
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X1

Figure 4.4 First Return Mapping

into two parts at the origin and then folded. In (b), Q is k|

also bent along those portions of the trajectories which are
close to Pv' If we consider a first return mapping from PL
into PL, Q is finally mapped into a set exhibiting a Cantor-
set like structure after stretching, splitting and bending

; infinitely many times.

4.2.2 System (8)

) Here, a detailed numerical study for system (6) is
made. The projection of the trajectories onto the (xl,x3)—
» plane is shown in Figure 4.5. In equation (6), the phase

volume also shrinks uniformly if |vA0| <Y1*Y2+Y3= 1.8, since

%, 3%, 3%
1,2 .3 . - .
%, +3x2 +3x3 = |VA0| (yi*v,*+y3) < 0. (4.2)

92




00°€

002

(9) 3o sataozoalea] Jo suorioaloagd

G h dan3dtyg

00°€-'




"w""

[ o
Q [=3
o~ o
o
o
[=]
—_—0
o« .
—_—0
>
o
e
"-_
8 8
o o
'-2.00 -1.00 a.00 1.00 2.00 2.00 -1.00 0.00 00 2.00
(1} X (1)
(c) (d)
o =]
o o
o~ o
Q Q
2 2|
_8 =
o <4
P . ~— O
P >
Q o
o (=)
1 o
[=3 o
o o
(}‘ T T T (}" h— T T
-2.00 1.00 0.00 1.00 2.00 -2.00 -1.00 0.00 .00 2.00
X (1} X (1)
(e) (£)

Figure 4.5

Projections of Trajectories of (6)

9y

T




2.00
2.00

~8
O
b
o
(]
e
(=1 o
o o
(\: T T T t\; T T T
'-2.00 -1.00 0.00 1.00 2.00 '.2.00 -1.00 0.00 1.00 2.00
X{1) X (1)
(g) (h)
[=}
o o
~
[=3
o o
~8 o
= ™
-— O -—
> >
. o [=
o [=]
e T
K
8 8 '
‘ A,‘ T T T f:‘ T =T =T
-2.00 -1.00 0.00 1.00 2.00 -2.00 -1.00 0.00 1.00 2.00
X (1) X (1)
¥
‘ (1) (1)
) Figure 4.5 Projections of Trajectories of (6)
'
)
N
!
) 95




1

e o a5 s TRt Bt o e e e

Q o
o (=]
& o
o [=]
(=] o
-8 s
o . N«
-0 -0
>
o o
= o
it -
=4 o
o o
Vv T T T N . -
-2.00 -1.00 0.00 1.00 2.00 -2.00 -1.00 0.00 1.00 2.00
(1) X (1)
(k) (1)
3 3
~ o
: :
o [=)
—_ =)
O NSPES
. > >
8 S
= Tﬂ
R
i [=)
) 8 S
N T 1 & L) Ll
-2.00 -1.00 0.00 1.00 5,00 -2.00 -1.00 0.00 0o 2.00
X1 X (1)
v
.
(m) (n)
, Figure 4.5 Projections of Trajectories of (6)
.
hl
]
g 96
i-‘ ‘l - . ' - ‘.--. 4 ) ’



As Yié |vAO|—Yl= 0.2, the solution is pseudo-chaotic

(see Fig.4.5(a)). A set Q as defined in the previous
section is split at the origin and is bent along the closest
trajectory to P:u. The closure of the attractor seems to
contain the xl-axis, which means that the attractor is

unbounded. As |vA increases, the trajectory tends to

ol
leave P:u more rapidly in a spiral manner. Actually, the

ratioc r of the frequency and the growth rate of the spiral

. v . .
trajectory at P'< decreases as |vA increases, since from

ol

1
equation (3.33b),
a? - rP9) vy, gl vA DA L2Cvag [y Do) o n
= - < 0. 4.3
2 2 *
d|vA, | 4L+ (|vAg|-y,) YoYq

Thus, at Yiz 0.4, the pseudo-chaotic attractor is far from
the origin (Fig4.5(b)). Hence, the set Q is only bent along

the trajectory closest to P: At yiz 0.488v0,4896 (Fig.

1°
4,5(d)), two pseudo-chaotic attractors appear. They are
linked, but disconnected with each other. In the figure,

one of them is omitted. The omitted one is symmetric to the
given one with respect to a 180° rotation around the x2-axis.
At Yi = 0,4875, these two pseudo-chaotic attractors have a
small intersection so that the trajectory moves from one to
the other infrequently as shown in Figure u4.5(c). At Yi =
0.4896 v 0.4899, a three-loop pseudo-chaotic solution appears

(Fig.4.5(e)). At Yi= 0.49, we have a three-loop periodic

solution (Fig.4.5(f)), where the trajectory in a transient
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state should be neglected. At yi *0,491 0,495, a pseudo-

chaotic attractor of the type in Figure 4.5(d) appears again

[

(Fig.#.5(g)). At Yi 0.4955, an eight-loop solution appears

n

(Fig.4.5(h)). At Yi 0.496 v 0.497 and 0.498, we have a
four-loop pseudo-chaotic attractor (Fig.4.5(i)) and a stable
four-loop periodic solution (Fig.4.5(j)), respectively.
Eurthermore, at yi= 0.498~ 0.5 and 0.51, we have a two-loop
pseudo-chaotic attractor (Fig.4.5(k)) and a two-loop
periodic solution (Fig.4.5(1)), respectively. At Yi= 0.52

A~ 0.56, there is a single-loop periodic solution (Fig.u4.5
(m)). This solution is not accompanied by a single-loop
pseudo-chaotic solution. As Yi increases, this asymmetrical

single-loop periodic solution gradually shifts, and finally,

a symmetrical one appears at Yiz 0.6.

4.2.3 Sizes of Attractors
In Figure 3.6, P= (0, -87vA,,

values of vAO given in Figures 4.3(a),(b) and (c), P=

(0,2.53,3.56),(0,7.07,5.0) and (0,9.05,6.4), respectively.

-2VAO). Hence, for the

From the numerical experiments, the maximum values of |x2(t)|
and xa(t) with respect to t are approximately (2.0,2.0),
(4.0,4.0) and (4.5,5.0), respectively. Hence, the sizes of

v attractors are smaller than A as predicted in Section 3.3.3.

Rewriting equation (3.46) for Y, =0.4, vy=1,
2 2 2 2
|A2] +]A3I <1.uyl{1-|vAO| ASERITLORR (4.4)

Hence, for fixed v] =|vAO(-yl, the size of T depends on Yy
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Assume that Yi= 0.489, for instance. Then, from Figure 4.5

(d), the maximum value of |A2|2+|A3|2 is approximately 5.49.
The right hard side of (4.4) has a maximum value of 2.546

in the limit Y>> Hence, equation (4.4) is not satisfied.
This result implies that the sufficient condition (3.46) for

the convergence of £(t) to 6, is not applicable.

13
4.2.4 Periodic Solutions and Bifurcations

The asy” :2tric periodic solution in Figure 4.5(m)
successively bifurcates as yi decreases. The observed
transition for yié [0.489,0.5) resembles that of the well

known one-dimensional mapping [21,22]
x(k+1) = G(x(k)) & rx(k) (1-x(k)) (4.5)

which has properties shared by more general models [28].
Actually, we obtain a first return mapping of the trajectory
for Yi: 0.489 in Figure 5.1(d), which seems to satisfy the
conditions for the models in reference [28].

Figure 4.6 is a schematic diagram of bifurcation
phenomena of éystem (6). Here, the circles represent
actually observed periodic solutions, but the branching is
conjectured from that of (4.5)., The broken lines are
unstable closed orbits and the solid lines are stable closed
orbits. From Figure 4.6, the bifurcation phenomena of (6)
for yie [0.489,0.55) seem to be explainable by a one-dimen-

sional mapping of type (4.5), although it is a rough

approximation.
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Figure 4.6 Schematic Diagram of Bifurcation of (6)

According to [21,22,28], the "chaos" appears when the
bifurcation parameter exceeds an accumulation point of the
sequences of bifurcation values, which correspond to Figures
4.5(d) and (g). For otﬂer values of parameters, stable
periodic orbits appear. Hence, the three-loop pseudo-
chaotic solutions for Yi= 0.4896 v 0.4899 seem to be 3x2"
time-loop stable periodic orbits, and the two and four-loop
pseudo-~chaotic solutiéns in Figures 4.5(i) and (k) seem to

be converging to a stable periodic orbit.
4.3 Simple Models Describing Attractors

In this section, we consider the existence and the
transition of the attractors shown in Figures 4.3 and 4.5.
We consider only the attractors in which there occurs the

splitting and bending mentioned earlier, since such mechan-
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isms may lead to chaotic behavior. It is too difficult to
verify mathematically the existence and transition of the
attractors. Therefore, we introduce a simple two~dimen-
sional model whose behavior is similar to that of (3) and
(6). This model is only a schematic one , but is useful to
explain the behavior of the attractors and to understand the
relation between the trajectories in Figures 4.3 and 4.5
and the first return mappings shown in Chapter 5.

We consider half planes Kl and K, containing the
unstable foci Fy and F2, respectively (Fig.4.7 and 4.8).
The trajectories move away from Fy (resp., Fz) in a spiral
manner on Kl (resp., K2) and jump to the 1line L, (resp., Ll)
parallel to the xz-axis in Figure 4.7 and to the x_,-axis in

3
Figure 4.8. The basic assumptions are as follows:

(A.4.1) Foci Fl and F, move upward slowly as IVAOI

2
increases so that it crosses L1 and L2’ respectively;

(A.4.2) The ratio r of the frequency and the growth
rate of the spiral trajectory about the nontrivial

equilibrium points decreases rapidly as IvAOI

increases;

(A.4.3) Suppose that t1< t Xi= X(ti)e Li, i=1,2

2’
and X(t) £ L,,L, for all te (t;,t,). Then, szﬂ/ﬂxlﬂ
decreases monotonically as ﬂXl“ increases, and if
1X,171%,1 > 1 for sufficiently small [X,], Ix, 1/71%;0 =1

for a certain value of |X;|. Here, suffices 1 and 2

can be exchanged.
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Figure 4.7

(b)

Simple Models for (3)




(b)

(d)

(c)

Simple Models for (6)

Figure 4.8
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(e) (£)

Figure 4.8 Simple Models for (6)




Actually for (6), the X, and x, components of Pil increase
perpendicularly to the x,-axis as IVAOI increases. TFor (3),
Py behaves in a similar way for sufficiently large lvAO|.
Numerical results and equation (4.3) show that (A.4.2) is
reasonable for the models describing (3) and (6).
Assumption (A.4.3) implies that the trajectory does not
diverge as it bounces between Ly and L2 without passing
through Flo or FZO' We shall introduce other assumptions
for each of (3) and (6) later.

This model resembles a "universal circuit" used in
reference [29], but is not obtained by taking limits or
choosing specific values of parameters in (3) or (6). That
is, introducing such a model is not justified mathematically
or from the physical point of view. We use this model to
avoid the difficulties in studying equations (3) and (86)
directly.

For the model describing (3), we assume that the
trajectory converging to the origin as t + -= encircles Fl
(resp., F2) and hits L2 (resp., Ll) at 32 (resp., Bl) near
F2 (resp., Fl). Then, by decreasing r according to assump-
tion (A.4.2), we obtain the transition as shown in Figure
4.7. Here, the broken and dotted lines are trajectories,
and at G1 (resp., G2), they are tangent to L1 (resp., Lz).
The shadowed regions in Figure 4,7 are obviously local

attractors. In (a) and (b), they are also global attractors

by assumption (A.4.3)., Figures 4.,7(a)-(c) correspond to
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Figures u4.3(a)-(c), respectively. In Figure 4.7(a), the
line segment PlQ1 (corresponding to the set Q in Fig.u4.4) is
split at the origin. In (b), PlQl is also bent at G1 and GZ'

By assumption (A.4.1) and (A.4.2), as |vA0| increases,
points A; and Bi in (a) move upward more rapidly than Gi’
and Ci moves downward first, hits the origin and then moves
upward. We assume that Ci hits the origin after Bi and Gi
coincide at some value of |vA0|. When Bi coincides with Gi’
the attractor of type (a) disappears. When Bi is above Gi’
there appears as an attractor of type (b) or a multi-loop
attractor of type (c). After Ci hits the origin, the
situation is the same as that of the model describing (6).

The model describing (6) is shown in Figure 4.8. We
assume that the xl-axis is a trajectory and xl(t)=
xl(O)exp(Yit), Yi> 0. Hence, in (a), the attractor is
unbounded and there exist various types of trajectory behav-
ior as shown in the figure. The line segment PlQl is split
at the origin and bent at Gl and G2. This case corresponds
to Figure 4.5(a).

As IvAol increases, Fi moves upward and Ci moves
downward, hits the origin and then moves upward. Assume

that all the points are located as shown in (b). Such an

attractor corresponds to that in Figure 4.5(b). The
attractor is bounded, and the line segment PlQl is bent at
G..

i

As |vA0| increases further, A;, B; and C; approach G;.
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Assume that Ai and Ci approach Gi more rapidly than Bi'
Then, Ai and Bi exchange their positions at a certain value
of |vA0|, before A; and C; hit G;. Then, we have an
attractor of type (c), where another attractor obtained by
180° rotation about the x2-axis is omitted. Hence, the line
segment E1Hl contains BlCl (which is omitted in the figure),
i.e., the attractors are interlinked and disconnected. When
A is slightly above B;» we have an attractor of type (b)
corresponding to Figure 4.5(c).

When Ai is slightly above Gi’ we have a two-loop
attractor as shown in (d). Moreover, in the attractor of
type (¢), we may have multi-loop attractors. Assume that
the attractor is np-loop and encircles G2 n, times on K2.

Obviously, for the existence of an attractor in which there

occurs a bending, Aé is above Bé if np-ne is odd, and A} is

2
below if np-ne is even (Figure 4.9). Practically, it is

Figure 4.9 Multi-loop Attractors
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likely that there exists a stable periodic solution in such
a small-width multi-loop attractor. In the numerical
experiment, we did not find any evidence for the existence
of such a multi-loop attractor.

If C, is above G, for certain value of lvAOI as shown
in (e), the attractor of type (c¢) does not exist. Finally,
assume that C. is above Gi as shown in (f). From assumption
(A.4.3), there exists a point D; where ﬂxzﬂ/ﬂxlﬂ= 1. Then,
the mapping of C

D2 (resp., ClDl) into ClD (resp., C2D2) is

2 1
a contraction mapping and we have a single-loop symmetric

stable periodic solution corresponding to Figure 4.5(1).
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CHAPTER 5

FIRST RETURN MAPPINGS AND STATISTICAL PROPERTIES

Most of the analytical works on the chaotic solutions
of nonlinear systems have been devoted primarily to discrete-
time systems [21,22,28,30-32]. For continuous-time systems
with dimension greater than two, an analytical approach to
the problem of existence of chaotic solutions appears to be
quite formidable. Up to the present time, most of the works
on such systems resort to numerical experimentation. The
numerical results show that many three-dimensional
continuous-time systems have pseudo-chaotic solutions lying
in sets resembling two-dimensional surfaces in the system's
state space. For such cases, we obtain a quasi one-
dimensional mapping by taking a first return mapping (Fig.
4.4). In this chapter, we study such a quasi one-dimensional

mapping for simplicity.
5.1 TFirst Return Mappings of (3) and (6)

) First return mappings of the trajectories in Figures
4.3(a),(b) and u4.5(a),(b),(d) are given in Figures 5.1(a)-
(e), respectively. For the trajectories in Figures 4.3(a)

. . - . - +
and (b), we consider mappings from T, = {x: Xy = Xpas X3 3e}
+

- + +
or T_={X: Xy ® Ky X3 x3e} to T, or T_, where (xle’x2e’x3e)

are equilibrium points defined in (3.2) and xIe >0, Xig € 0,

> X

h i=1,2. Such a mapping is the first return mapping of the
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trajectories X = (|x1(t)l,|x2(t)|,x3(t)). The behaviors of
the modified trajectories are identical to those of the
original ones because of the system's symmetry around the

)

. . - . - Lt
xy-axis. For Figure 5.1(c), we choose T = {X: X, (xl X1

XX /(x+e-u), %) = (x.~%, )x

2’ %1 le < %1 2 1" *1e
- - + + . .
/(xle+u), —4~<x1'<x1e}, where (xle’x2e’x3e) are defined in

<4} and T_={X:x

+ .

(3.31) and X;0 >0, %7 <0, iz 1,3. In (d), T, ={X: %50,
Xq > 0} and T_={X: X4 2 0, Xp < 0}. In (e), we choose a
mapping from T = {X: xy=0, x> 0} into itself. We should

note that Tt are transverse to the trajectories. The
intersection of the trajectories with T, corresponds to
those on PiQi’ 1=1,2 in Figures 4.7 and u4.8.

The mappings given in Figures 5.1(a), (¢) and (e)
resemble one-dimensional mappings. In (b) and (d), we
observe that the mappings are more complicated. For (b) and
(d), there exist no simple planes like T, on which we have
a first return mapping resembling an one-dimensional mapping.
This is due to the fact that the bent Q (Fig.4.4) is not
completely folded after Q encircles the origin from T, (or
T_ ) to T_ (or T.).

In Figures 5.1(a)~(c), the whole interval of L3
contains the points which describe the trajectories
converging to the origin as t+«. Near the origin, the
velocity can be arbitrarily small. Hence, for these cases,
the continuous-time systems (3) and (6) cannot be replaced

by discrete-time systems. In (d) and (e), there are no such




points so that there is a supremum for the time in which the
trajectories return to T:'

In Figures 5.1(a')-(e'), we show one-dimensional
mappings of simple models in Figures 4.7 and 4.8. The half
planes T  and T_ correspond to PlQl and P2Q2 in Figures 4.7
and 4.8, respectively. These mappings are useful in
conjecturing the behavior of the first return mappings of
(3) and (6) at those points which are not observed in the

experiment.
5.2 One-Dimensional Mappings

We regard the first return mappings in Figures 5.1(a),
(c) and (e) as one-dimensional discrete-time systems. As
mentioned in the previous section, this means that for (a)
and (cj, the temporal behaviors of the continuous-time
versions of systems (3) and (6) are not considered.

One-dimensional discrete-time systems having chaotic
solutions have been studied extensively in mathematics [28,
30-32] and other areas [21,22]. Here, we present some of
the known results and discuss their applicability to the

systems under consideration.

5.2.1 Period Three Implies Chaos

The following theorem is due to Li and Yorke [31]:

(S.5.1) Let J be an interval and let G: J=+J be

continuous. Assume that there is a point aeJ for




which the points b=G(a), ¢ =G2(a) and d = G3(a)

satisfy
d<a<b<c (ord2>a>b>ce).

Then,

Tl: for every k=1,2,..., there is a periodic point
in J having period k.

Furthermore,

T2 : there is an uncountable set S<J (contains no
periodic points), which satisfies the following
conditions:

(A) TFor every p,q€S with p#q,

(T2.1) 1lim sup |6™(p) -6"(q)] > 0
now

and

(T2.2) 1lim inf |6™(p)-6™(q)] = 0

N+

(B) Tor every pe S and periodic point qe J,

(T2.3) 1lim sup |&™(p)-6"(q)| = 0

n+o
If there is a periodic point with period 3, then the

hypothesis of the theorem are satisfied. Statement (A)
means two sequences {Gn(p)} and {Gn(q)}, pPsq € S can be made
arbitrarily close to each other for sufficiently large n,
but they do not converge to each other as n+«®, Statement
(B) implies that a sequence {Gn(p)}, pe S does not converge
to any periodic points. If S is an attractor, it is

obviously a strange attractor.

116




The mappings in Figures 5.1(al),(c),(e) and (a')=-(e')

satisfy the hypotheses of (S.5.1), and therefore, there
exists a S for each of them. Theorem (S.5.1) does not give
any information about the size of S. If there is a stable
periodic point Pg € J, then there is a neighborhood N(ps) of
Pg such that GN(p)e N(ps) implies Gn(p)e N(pS) for all n2>N.
At the present time, it is not known whether the following

statement 1is true or false:

(S.5.2) The existence of a stable periodic point
Pg ¢ V, where V is an attractor, implies that the
sequence {G™(p)} converges to Pg as n+« for almost

all peV.

If this statement is true, then even if the trajectories in
the transient state appears to be very complicated, there is
no strange attractor.

Many examples of one-dimensional mappings derived from
actual systems have points 58 at which dG(p)/dp =0 as that
in Figure 5.1(e). There may exist a stable periodic
solution Pg near BS' Experimental results show that there
exists a complicated solution which is not periodic (within
the accuracy of computation). This does not necessarily
mean the nonexistence of pg or that (S.5.2) is false. For,
even if there exists a Pg and (S.5.2) is true, a small
perturbation in the system may shift the trajectory out of

N(pS) if the size of N(ps) is very small. In other words,
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from the practical standpoint, the existence of pg may be
ignored for certain cases.

We consider the mappings in Figures 5.1(b),(d). In
these cases, the mapping cannot be approximated by an one-
dimensional mapping especially about 58' We do not know how
such a structure about 58 affect the existence or nonexist-
ence of stable periodic orbits in the three-dimensional
space. It should be noted that the mapping in (e) also has
such a structure about 58 which is not so explicit as those

of (b) and (d).

5.2.2 Statistical Properties of {Gn(p)}

We consider the following theorem given in [31]:

(S.5.3) Let G:J~+J satisfy the following conditions:

(A) G is continuous.

(B) Except at one point ﬁe J, F is twice continuouly
differentiable.

(C) inf |dG(q)/dq]| > 1.
qeJ,p#P

Then, there is a unique funection g: J-+[0,»), such
that for almost all peJ, g is the density of p.
Here, g is defined to be a density of p if
¢(P9[P1,P2]) = 1lim ¢(PsN,[Plsp2]) = fp2g(q)dq
N+ P
for all P1sP, € J, P1 <Py where ¢(p,N,[p1,p2]) is the
fraction of the iterates {p,...,GN-l(p)} of pe [pl,pz].

Moreover, the set J_ = {q: g(q) >0} is an interval, and
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J, 1s the positive limit set of almost all initial

point pe J.

The mapping in Figure 5.1(a') satisfies the hypotheses
of (S5.5.3). From (S.5.3), the behavior of {G"(p)} is
described schematically as follows. Choose an arbitrary
Pped. As n-+wo, Gn(p) wanders around in J and finally,
{Gn(p)} fills an interval J_. The density g(p) of points in
the limit n—+« is unique and independent of almost all
initial points pe€ J, and is mapped to the same g(q) by G.

We can predict the behavior of the system in the limit n-+o
only in some probabilistic sense although the system is
deterministic. For example, we know that the probability
for the point to be in [pl,pz] in the limit n-+o is
Ing(q)dq. Very little is known for other mappings which do
no% satisfy the hypotheses of (S5.5.3).

The mapping in Figure 5.1(c¢') is peculiar, since it

has a countably infinite number of discontinuities. If we

le’

X, = x2e}’ then we have a one~dimensional mapping in Figure

+
choose T = {X: Xy > Xq.s xz—x2e} and T_= {X: X, <x

5.1(f) and its corresponding mapping (f') for the simple
model. Here, the domain of mapping is an unbounded interval.
We assume that a density g(p) of p exists for this system,
then g(p)+0 as p+0. We know that the magnitude of any
physical parameter must be finite. Here, p can be infinite,

but with zero probability. Hence, there seems to be no

contradiction to the requirement as a physical model. Such




_«m”“_..——u-iiﬂllllll.!

an interpretation may provide new types of physical models.
For, the magnitude of variables have been conventionally

classified only two cases, that is, bounded or diverging to

-

infinity, and no concept of probability has been involved

for such a simple deterministic model.

5.3 Statistical Properties of (3) and (6)

Quasi one-dimensional mappings obtained experimen-
tally from (3) and (6) are useful to understand the behavior
of (3) and (6). But, as mentioned in the previous sections,
it is difficult to study their statistical properties
analytically. The only one-dimensional mapping whose statis-

tical property is well-known [22] is given by

2p, 0<sp<l/2,
G(p) = (5.1)
2¢(1-p), 1/2<ps< 1.

It is known that if pe [0,1] is described by a binary

sequence {bn}, the map G acts on {bn} like a shift map which
; shifts terms of the sequence to the left (Bernoulli shifts).
‘ A Bernoulli shift is a stochastic system (i.e., the system
behavior is completely unpredictable in a certain sense
[33]). For other maps, very little is known. Here, we try
to obtain the statistical properties of (3) and (6) numeri-

cally.

5.3.1 Mixing Property
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If there is an attractor A which is ergodic and u(X)
is a defined measure on A, then for any smooth function u,
G4 [ u(X")du(X") = lim (1/T)[gdtulX(t,X )
T+
for almost all initial conditions X,. The system has a

0
mixing property, if for any smooth functions u and v,

R(T) 4G9 - [,u(X(1,X"))v(X" )du(X")

G - Lim (1/T) [Jdtulk(T+t,X ) )Iv(X(t,X )

T+
for almost all X0 and R(t)+0 as t+«~. As mentioned in
Chapter 1, this property implies that the time evolution of
the trajectories is highly sensitive to the initial
condition, which is an important property of the turbulent
solutions. The system having a mixing property is a
stochastic system in a weaker sense than a Bernoulli shift.

We examined numerically R(t) with u(X) = v(X) = x The 1

1
results for Figures 5.1(a)-(e) are shown in Figures 5.2(a)-
(e), respectively. We can not try all smooth functions u
and v, but the results in Figure 5.2 suggest that the

systems have the mixing properties for certain values of

parameters.

5.3.2 Unbounded Solutions of System (6)

As mentioned earlier, system (6) with yi= 0.2 has an
unbounded solution. If its first return mapping as a

discrete-time system has a density g(p) of p, g(p) +0 as
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p+0. As a continuous-time system, system (6) must satisfy
the physical requirement that the time-averaged energy is

finite. We consider the ratio: '
PT(x)émeasure{t: xl(t)zx, 0<t<T}H/T. .

In Figure 5.3, we have plotted those values of x for which

PT is insensitive to the initial conditions. As T increases,
the interval of such values of X also increases in size.
Hence, it is likely that as T+, PT approaches P_ which is
independent of the initial conditions and goes to zero as
x|+

If P_ exists and decays more rapidly than l/xs, and if

A4 T 2 R
E, = %.1.2 (1/T) [gxq (£)7dt = [ox P (x)dx '
is satisfied, then from the physical point of view, we can Y

state as follows: the energy of wave 1 of system (6) can be
arbitrarily large over a finite time interval, but its time

; duration is so short that the time-averaged energy El is

‘ finite.

Equation (6) is obtained by neglecting higher order

terms with small coupling coefficients. Hence, if [X(t)] is

; sufficiently large, model (6) is not valid. From the above

argument, the time duration for which xl(t)>‘x becomes

smaller in the ratio PT(x) as x becomes large. Hence, if r

the range for the approximation is large, we can state that

model (6) is valid most of the time.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of Results

In this work, we have studied the chaotic behaviors of
wave-wave interacting systems involving at most four waves
(Table 2.2). These systems can be described by a real three-
dimensional equation on a certain set in the state space,
where the phases of the waves are locked for .2')}-(7') (Sec.
2.2). We have found that there remained only six systems of
positive-energy waves (Table 3.2), if we discard the cases
which have the following property : The corresponding reduced
equations have only one equilibrium point or a stable
equilibrium point, or they have an open set R0 in the state

space such that if Xoe RO, X(t) = X(t,XO)e R, for all t20

0
and diverges to infinity as t+«, It is very likely that
the reduced equations (1)~(4),(6) have chaotic solutions for
almost all initial conditions in the state space. System
(3') and (6') have only linear damping terms, and the
instability of their equilibrium points is due to the
external wave. The numerical experiment was done only for
these two cases.

We obtained the conditions (Table 2.7 and (S.2.3)) for

asymptotic phase locking of (2')-(7') as t» =, which depend

on the sizes of the attractors for the trajectories. But,
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the conditions are too strong for determining the occurrence
of asymptotic phase locking of (3') and (6') as t+« for the
values of parameters at which chaotic solutions may appear.
The numerical experiments show that system (6') has a strong
tendency of asymptotic phase locking as t+«, 1In (3'), for
certain values of parameters, the phases are nearly locked
most of the time, but not asymptotically locked as t -+ =,
Periodic and pseudo-chaotic solutions of system (3)
and especially (6) were studied numerically in detail. For
certain values of parameters, the first return mappings of
the trajectories have properties which are similar to those
of the well-known one-dimensional mappings having parabolic
graphs. The transitions of attractors are schematically
explained by using the simple models in Figures 4.7 and 4.8.
Finally, we considered the statistical properties of
the first return mappings of the trajectories of (3) and (6)
using the known theorems for simple one-dimensional discrete
models. Numerical results suggest that system (3) and (6)
have a mixing property for certain values of parameters,

which is an important property of the turbulent states.

6.2 Remarks on Further Research

We have shown that some wave-wave interacting systems
with a few modes have chaotic behaviors. As mentioned

earlier, no additional assumption for randomness was

necessary in these systems. In this new approach to plasma




turbulence, there are still many unresolved basic questions.

One of the questions is how to relate the statistical
properties of the simple systems with a few modes to the
turbulent state in plasmas. In actual plasmas, there are a
large number of coupled modes. If a plasma in a turbulent
state consists of systems which are weakly coupled with each
other and each of which is a few-mode interaction having a
chaotic motion, we can regard each system as a quasi-
particle, since the phase of the system varies randomly.
Then, the whole system may be described by a kinetic
equation of quasi-particles [11]. If many waves are
strongly coupled, we cannot use directly the results for a
few-mode system to analyze the whole system. It has been
shown that a multi-mode system has behavior similar to that
of a few-mode system [10]. But, very little is known about
general multi-mode systems.

There are also unresolved questions about the simple
systems studied in this work. First of all, we still do not
know exactly under what conditions the reduced equations
describe the asymptotic behaviors of the original systems.
Furthermore, the relationship between the reduced and
original systems is not known if the phases are not locked
asymptotically as t+«. None of the statistical properties
mentioned in Chapter 4 are proved mathematically. The power
spectrum of the variables is one of the important quantities

from the physical standpoint. But, at the present time, it

128




is too difficult to obtain the power spectrum of the chaotic
solutions of such systems analytically. Thus, further
studies must be done before the turbulent behavior of

plasmas can be analyzed via the new approach considered in

this work.
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APPENDIX

PIKOVSKII-RABINOVICH-TRARHTENGERTS' MODEL

Let us assume that all the yi's, vi's and vi's are n

positive. By using the substitution:

A,~>A

A1->1A1, A2->A2, 3 39 vAO-*—h, (A.1)

we obtain the following set of equations

Ap = = YjA) - AAy + hAY, )
A, = = YA, + AJA% + hA¥, | (A.2)
Ay = = Yahy * A)A3 J |
which is identical to the Pikovskii-Rabinovich-Trarhtengerts'
model [12]. Let ﬂ
€ = Im(hAiAg), n = Im(AlAgAg). (A.3)
; Then,
. (d/dt)X(g +n) = - (Yl'+72)5 - (Yl-+72‘+y3)n. (A.4)
) According to Ref.[12], the trajectories Z = (£(t),n(t)) enter

the sector Z between the straight lines Ly and L2:

4 L, = {C(Eyn) : E+n =0},
(A.5)

\ L2 = {(E,n) : (Y1+Y2)€"’(Y1+Y2“'Y3)n =0}.

It is true that the trajectories E = (E(t),n(t)) on Ll enter




Z, since

(d/dt)(&*n)|(£’n)€Ll=-Y3n, (A.6)

which is positive (resp., negative) when n is negative
(resp., positive). However, the trajectories Z=(E£(t),n(t))

on L2 do not always enter Z. For,
(@/at){Cr +y, DB+ (v Hy by dnd = (v +y,ty ) (y v, ) (B4m)
-73(271+272+Y3){(Y1+Y2)E+(Y1+Y2+Y3)n}
+hy,{Im(A, “A%)-Im(a %A )} = Q, @a.7)

and Q is easily shown to be positive (resp., negative) on L2
for £>0 (resp., £<0). Without loss of generality, we set

h>0 since the substitution h+ -h, Al-+-A1 and A3-*-A3 leads
to the same equation (A.2). On L2, we can choose any values

of ]Al! and lA2] independently of r, and ej's, since
Plrz{-h(Y1+Y2)Sln(91+92)+r3(Y1+Y2+Y3)Sln(31-92-93)}=(J (A.8)

on LZ' We can also choose the ej's such that sin(261-62)¢ 0
and sin(262+63)¢ 0, since (A.8) has two degrees of freedom
for the ej's. Now, we assume that £ >0, then n< 0 and

E+n >0 on L2. On Lz, we can choose only ej‘s such that
51n(261-83)< 0 and s1n(262+03)< 0, or
(A.9)

51n(291-63) >0 and s1n(262+63)> 0.

Hence,
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Q= (Y4, (yphy,ty iy, |hsin(61+62)+r3sin(61-62-63) |
+hy (e, r, [ sin(20,-0,) |41, ’r, [sin(28,+0.,) [ . (A.10)
Thus, for sufficiently large |r2|/|r1|, Q is positive on L,.
Similarly, Q is negative on L2 for £ <0 for sufficiently

large lrl[/lrzl. Hence, trajectory (£(t),n(t)) may leave

sector Z.







