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CHAPTER 1

INTRODUCTION

The nonlinear interaction of waves in plasma has been

studied extensively [1-9]. Recently, it has been shown that

certain nonlinear wave-wave interacting systems with a small

number of degrees of freedom exhibit chaotic behaviors [10-

15]. Studies of this phenomenon may lead to new theories

for turbulence in fluids and plasmas.

In the classical Landau-Lifshitz theory of turbulence

[16], the physical variables describing a turbulent motion

are quasi-periodic functions of timie:

x(t) = f(W 1t ,  W2 t,..., W Nt),(i )

where f is composed of periodic motions with frequencies

Wl1''' wN which are irrationally related. As the number N

of modes becomes large, x(t) generally exhibits a very com-

plicated behavior. The motion described by (1.1) can be

produced by a sequence of successive bifurcations of peri-

odic motions. As certain parameters vary, a stable equilib-

rium point becomes unstable and a stable periodic orbit

appears. Then, the periodic orbit becomes unstable and a

stable periodic orbit with two frequencies appears. This

bifurcation process continues on.

It is known that a quasi-periodic function of time

" does not have the mixing property (i.e., the autocovariance

P1



R(t) of x does not decay to zero as t - x). This implies

intuitively that the temporal variation of x is nct sensi-

tive to initial conditions, thus contradic: ig an important

physical feature of turbulent states. Furthermore, a quasi-

periodic function is unstable in the sense that a small per-

turbation of the parameter could lead to a periodic motion

[17]. Hence, the quasi-periodic motion does not provide a

satisfactory description of the turbulent states. It is also

known that some physical systems exhibit abrupt transition

from a nonturbulent state into a turbulent state without the

appearance of periodic motions. Such phenomenon cannot be

explained by the above mentioned mechanism.

Recently, Ruelle and Takens [18] proposed the following

definition for a turbulent state: In this state, the trajec-

tories of the system model are attracted to a nonempty set

called the "strange attracter" which is a positive limit set

of trajectories consisting of neither periodic orbits nor

equilibrium point. On this attractor, the system trajec-

tories behave in a chaotic manner resembling a turbulent

state.

According to the above notion of a turbulent state, it

is possible that simple models described by finite dimen-

sional systems of ordinary differential equations could have

chaotic behavior. A well known example is the Lorenz model

[19] describing the convection in a fluid layer forced by a

linear temperature gradient:

2



a x1 + ox 2

x 2 = rx - x 2 - xlx 3 , (1.2)

x 3 = _ bx 3 + Xl1X2 ,

where a, r and b are constant real parameters. The Lorenz

system exhibits abrupt transition into a very complicated

behavior when the parameters pass through certain threshold

values. Many r merical experiments have been performed on

this system and their results suggest the existence of

strange attractors and the mixing property, but they have

not been verified mathematically. In this work, the term

"chaotic solutions" refers to those solutions which lie on a

strange attractor. If a solution exhibits complicated behav-

ior but without a mathematical proof as being a "chaotic

solution", it will be referred to as a "pseudo-chaotic solu-

tion". Hence, "pseudo-chaotic solutions" may be periodic

solutions with long periods, or may correspond to trajec-

tories converging to a stable closed orbit or an equilibrium

point in a complicated manner. Many simple mathematical

models having chaotic or pseudo-chaotic solutions have been

found in such areas as geophysics [20], biology [21,22],

chemistry [23] and laser physics [24].

1.1 Turbulence in Plasmas

In the conventional theory of turbulence in plasmas,

turbulence is described as the state in which a large number

3
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of collective degrees of freedom are strongly excited [25].

This means that the energy of the collective modes is much

larger than the thermal fluctuation level, and that the

number of modes is so large that the plasma has a complicated

behavior. The energy of the unstable modes is distributed

to other modes by nonlinear processes and then dissipated

through some form of damping mechanisms. When the energy

transfer between the modes is balanced, a stationary broad

spectrum corresponding to stationary turbulence appears.

When the energy of each mode is small and the nonlinear

coupling between various modes is weak, and when the linear

growth and damping terms can be neglected, the random-phase

approximation can be used to obtain the turbulent state.

In this approximation, it is assumed that the phase of each

mode varies randomly. On the other hand, if the linear

growth or damping terms are not negligible, the phase of each

mode is no longer independent even when the nonlinear coup-

ling of modes is weak. In spite of this limitation, the

random-phase approximation is often used for expedience.

As mentioned earlier, the existence of a large number

of modes does not necessarily mean that the system is in a

turbulent state. Furthermore, the assumption of independent

V, phases between the modes is usually made without justifica-

tion. At the initial stage of turbulent states, it is

reasonable to assume independent phases since the randomness

* of thermal fluctuation at the initial time is retained. On

4
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the other hand, once the energy of turbulence is far from

the equilibrium, there must be some mechanisms which maintain

the random phases. Flynn and Manheimer [10] showed that

even when the modes have no linear growth cr damping over an

interval of wave numbers, the phases are completely coupled

when the linearly growing and damping modes are introduced

outside thc interval. This means that the random-phase

approximation is not suitable even in the interval over which

both the linear growth and damping are negligible.

At present, there are a few known models in plasma

physics having a small number of modes which exhibit chaotic

behaviors [11-15]. Flynn and Manheimer's model [10] consist-

ing of ten modes, two of which are linearly growing and

damped, has chaotic behavior. Rabinovich and his coworkers

introduced following two simple models of wave-wave interac-

tion having chaotic motions [11-13].

A 1 - YIAI - i{A + A1 (vlIA1I2 + W1 IA2 1
2 )},

(1.3)

A2 + Y2A2  - i{AIA* + A2 (v2IA 1I
2 + w2IA2I

2)},

and

A1 + YIA, : - i(A 2 3 + vAoA*),

A2 + y 2 A2  - i(AIA* + vAoA*), (1.4)
2 1 23 01

A3 + Y3A3  1- iAA

where A. is a normalized complex wave amplitude; all

A5
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parameters are real numbers and yi > 0. System (1.3)

describes the interaction of two plasma waves belonging to

different branches. Chaotic motion appears only when a

small frequency mismatching is introduced. System (1.4)

describes a three-wave interaction such that an external

wave with a constant amplitude decays into two waves which

have another resonant wave. Numerical experiments for these

systems suggest that they have strange attractors and mixing

properties. Hence, they could represent turbulent states.

We should note that in these systems, the linear instability

may lead directly to a turbulent state, and that the chaotic

behavior is intrinsic to the equations and no additional

assumption of randomness is necessary.

1.2 Outline of Dissertation

In this dissertation, three-wave interacting systems

having chaotic behaviors are studied in detail. Asymptotic

phase locking of the waves as t - are also studied, which

is a special property of wave-wave interaction with linear

damping terms. Once the phase are locked, the system

reduces to a three-dimensional one.

In Chapter 2, the systems to be studied in this work

are presented. All these systems are obtained from the

equations for a set of interacting oscillators. The reduced

three-dimensional equation is obtained for each system. We

also give sufficient conditions for the reduced equations to

6
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describe the asymptotic behavior of the original system.

In Chapter 3, the reduced equations are studied mainly

by a root locus analysis of the characteristic equations of

the linearized vector field at the equilibrium points. From

the results, we choose those systems whose reduced equations

may have periodic or pseudo-chaotic solutions for almost all

initial conditions. Based on physical considerations, two

systems are selected for detailed study.

In Chapter 4, the results of numerical experiments for

two chosen systems are presented. The transition between

periodic and pseudo-chaotic motions are shown in detail.

Simple two-dimensional models are introduced which are used

to explain the transition of behaviors.

In Chapter 5, we obtain the first return mappings of

the trajectories for the chosen systems, some of which

resemble one-dimensional mappings.- We discuss certain

statistical properties of general one-dimensional mappings

and the first return mappings of our systems.

7-9'



CHAPTER 2

WAVE-WAVE INTERACTIONS

In this chapter, we introduce the systems of wave-wave

interactions to be studied in subsequent chapters. All

these systems are derived from the equations describing a

set of nonlinearly interacting oscillators. A wave-wave

interaction which does not belong to this framework is not

considered here.

2.1 Wave-Wave Interacting Systems Y NFY)

We begin with the equations for a set of nonlinearly

interacting oscillators described by

xi + 2-yixi +W '2x X V V]k XjX k
1 1 j,keZkN

+ l V.klX.XkXl, i Ez {1,.. .,N}, (2.1)j,k,le ZN  Jk
N

where xi is the displacement, wi is the natural frequency,

and yi is the growth or damping coefficient for the i-th

oscillator ; Vik and Vjkl are the nonlinear coupling

coefficients of the oscillators. All the variables and
Vo

parameters are real numbers. We assume that the linear

damping and growth rates are small (i.e., Yi << i) and the

nonlinear terms are also small (i.e., Iv jkxj , IvjklXjxkI

<< ) Then, we can express xi(t) in the form:

!8
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x.(t) = ai(t)exp(iw t) + a*(t)exp(-iw .t),

i E ZN, (2.2)

where a. is a slowly time-varying component. We also assume

frequency matching:

W" = E .. j, .j c {-II1, i ZN, (2.3)

where w. > 0 and w. 9 w. if ig j. Then, the frequency matching1 1 3

conditions for N= 2,3,4 are shown in Table 2.1, where it is

assumed that the vii s in (2.1) are zero for N= 3,4. For

N =3, the first frequency matching condition has two degrees

of freedom and the remaining ones have only one degree of

freedom. For N = 4, we assume that one of the waves is an

external wave with fixed amplitude. Then, there is one

degree of freedom in the first three cases and none. in the

rest. The energy of the waves is obtained by an integration

over the frequency domains. Here, for N= 3, the energy

contribution of the last two cases is negligible as compared

to that of the first case. In what follows, we consider

only the first case. Similarly, for N= 4, only the first

three cases will be studied.

For N= 2, substituting (2.2) into (2.1) and normalizing

v, the variables, we have

2 + ( 2 2~
Ai + YiAi = -i{vA i2+ i (ViiijAi 12+ vijj j 12)},

(2.4)
,A + YjAj =-i{AiAt + A 3(V 31AiI2 + Aj2)}

9ii iV]l9

1 i ]

!9
p
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Table 2.1. Frequency Matching

N =2 (Wiw (2w.,w.)

N =3 Cwijw Wk)

(w.i+Wk wiw k' (2w.,wj,3w.), (4w,,2 wklwk)

N= 4 (wi~wjw k' w 1

(ow k +vw ,wi /2 , Wk wl)1

(2wi. aw k +v Cav1 ClJ),ll,(Jl

(w +w wk+~wl w k' w)1 CE

(8w1,4wl,2wl,AJ1 ), (4w k'2w k'wk93w k)

(4wk,2wk w ), (4wk,2w.,wkw

(2w. ,w. ,3wi.,C3/2)w. (2wj.,wj.6w.,3w. )

Pt 10



where

Ai=(vij/2wi)ai, A =v(vvij1/2wjW.) a., v=sgn(v.vi.),

Vii i {(2w /v 2 /2w v.Viii, V. (4w W i . /viivjj 1)/2wviii,

V ...{(2w./v..) 2/2w .}V., V.. {(4w W/Iv vj.I)/2w }vV~ii {(J 1] J vJii'J 1 iJ vii JJ J jj

For N = 3, we have

A . + YiAi = - iviAAk,

A. + yjA = - ivA*Ai, (2.5)

Ak + YkAk - iv A A#,

where

Ai=(Ivijvkil/4wjwk ) a i , A.=(IVijvjkl/4wi k ) a j '

Ak=(IVkiVjk1/4 i j) a Vj sgn(v ijvki)

For N = 4, we have three cases as follows:

Case i):

A. + YiAi - i(v'vA Ak),
1 1ijk

A. + yjA. : - i(vt vAi A* + v AkA 1

(2.6)

Ak + YkAk =- iCv'vAiA* + VkAA

A1 + YIAI = i(Vl A A),1jk'

* where

-' ii



1 l'ijik' 4 i Wk ) Ii/V (I vjkvjl1/4w k W 1 aj,

A k=Ivklvjk I/14w iW1) a k,3 A,= ( Ivjkvjll /4wj wk) Ial,

v=CIv 1 /V 1 Iw/W) v!=sgn(v~ i) v!=sgn(vjVk)

ji i1 1 J IJii jj

1 1 1 ik

1 kik

A.v. +V1/14w=)- i ~A(+IvVI/4A,),

ij~ ~ kl 1 K

1 j

pwh12

A i (Ivl'ik /4wk W ); ij Aj (I vj j1/w w )a3/V



Case (iii):

i.vA.),A i  + Yi Ai i(v r  vA

A. + y.A. - i(vA.A] + v A AI )J~~ 1Jjl
(2.8)

Ak + YkAk = i(y A A*) ,

AI + YIA, = i(I A A*) ,

where

Ai=(v ij/2w.)aj/v, A =(IV jkvjl /4 kW) aj,

Ak=(IVjkvkll/4wWl) ak, Al:(Ivjlvkll/4wjWk) al,

v=(1vijvjj 1/4w ij (4wkl/IV jkVjl ) , Vi=sgn(vijvjj

SV=sgn(v 3k=sgn(vjkVkl), v1 =sgn(vjlVkl),

and w i = 2wi, I = Wk + "

As mentioned earlier, we fix the amplitude of one of

the waves as an external wave for N = 4. We choose the

external wave so that the equation is nonlinear, since linear

equations do not have chaotic solutions. Then, from (2.6),

(2.7) and (2.8), we obtain five distinct three-wave interac-

ting systems. Thus, we have seven systems which may have

chaotic solutions and they are listed in Table 2.2. Here,

without loss of generality, A0 is taken to be real. Also,

the substitutions A 0 /v, Am -A /v, m= i,j,l and v- 1/v

have been used to derive (5') and (7').

In Table 2.2, some systems with certain values of

13



Table 2.2 Wave-wave Interacting Systems Y = NY)

N=2(Wiw i) Ai y iA i= _j~v i2 +Ai(iiIA 2+i j ~2)}
N2 (w,w) A.+y.A. -i{vA.A#+A.(V..iiA.i 1+V... IA.I 1)1,

2 2

N=3 (w .,iwk ) A+y.A.i -iv A A k9 v m -l

=(W +A.+y.A.z -iv A A*k' ji k'

wi ,wk A+YkAk =iv A.A# (2')

N=4 (w.l,,w , A+y.A. = i(V.AkA +v'vA A*), A= Ail
j k' j j k 1 Ok 0 

W (W= (w+Wk A A -i(V AA*+vfvA A), vef-911 K kk k k 0 j m

(Wiw.l A+y.A.= -i(V A A +v'vA 2 ) ik 1 1 iki1 1. 0~ A0 A

W) (Wk +W AkyAk=i(vkA A*), Vm C{-1,l},

A Yiiz-i~v!A.2+V vA ) A =A,

1 3.j 1 0k'

A +yjAjz-i(~AA) (5'){1,}

A+Y.1A.1 -i(y 1 A 0A , A-A )

2. jil k j Yj j= jiv k Al+vA0 A#), i

W 2i+- i(v A A*) V E {-1,l},
j k Yk k k i 1

W+WWW A+Ai -i(vA A*) (6')kWl' k'Wl1 A1+yA k

A+yiA. =-i~v!A 2)A,=
1 1 A Ak'

A+y.A. =-iCA.Al+vjvA A ), v -,}
1 1j 3jj0 m

A+Y 1A,= -i(V 1vA 0A ) (7')

14



parameters obviously have no chaotic solutions. For example,

consider system (3') with ykyl'> 0, k< 0' vm =1I, m =j,k,l

and vm'= 1, m= j,k. By direct computation, we havem

(d/dt)(IA 12-A k2+21Al12)/2

- -yIA.I 2 -Yk IAI 2 -2ylIAl 1
2 . (2.9)

Hence, the quantity 'AA(t) 2- Ak(t)2 +21AI(t)] 2 decreasesdecrasesas

t increases and therefore, the trajectory of (3') diverges

to infinity as t -- for almost all initial conditions. In a

similar manner, we can discard certain systems in Table 2.2,

and only those cases in Table 2.3 may possess chaotic

solutions.

In what follows, we use subscript 1,2,3,... in place

of i,j,k,.... For example, subscripts j,k and 1 of (3')

are replaced by 1,2 and 3, respectively. Moreover, we

denote systems (2')- (7') by

= (Y), (2.10)

where Y (yl,zly 2 ,z2 ,y3,z3 )
T ,and y,= Re(A-) and z, =Im(A-),

j= 1,2,3. We also denote the solution of (2.10) at time t
corresponding to initial condition Y0 at t = 0 by /(t,Y0

and the positive semi-orbit by Y+(Y 0) {Y :Y = V(t,Y 0 ), t a 0}.

2.2 Reduced Systems X =F(X)

System (1') in Table 2.3 is identical to (1.3). That

is, model (1.3) [11] is the only two-wave interacting system

0 15
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Table 2.3 Parameters for Chaotic Solutions

(2') (vi.)v3jvk) Csgn(y.),sgn(yJ),sgn( Y))

(1,1,1) (-1,1,1)

(3)(1!,-i), (1,1,1 ) (1-1 y),sg(lY,±)g(l

(5) (v!,vj~v1 ) (sgn(y.),sgn(yj),sgn(-yl)

(-1,1,) (-1,-l -),g(1,±,),(-l,1)

16
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which may have chaotic solutions. Equation (l') is

rewritten as a three-dimensional equation:

Xl= Yl X &-6x2+2xx 2 -x2 { Vlll-2V211) (X1 2+x22

+(V 122-2V 222)x3}

x2 = - 1x2+6wxl+x3-2x1 2+x1{(Vll-2V2 11)x 1 2+x2 2) (2.11)

+(V 122-2V 222)x3}

3= -2Y2x3-2x2x3' x3 ? 0,

where xI1 r1cos¢, x2 = r1 sino, x3 r2
2, rI  1A11, r2  A2 1'

0= 2Arg(A 2)-Arg(A1) and Sw is a frequency mismatching wI-2w2.

Equation (2.11) has pseudo-chaotic solutions with or without

the third order terms, and its behavior has been studied

[11,13,14].

Now, we shall show that systems (2')-(7') also reduce

to three-dimensional equations on certain subsets of the

original six-dimensional space. We choose equation (3') as

an example. Let A. r exp(iO.), r. 0, j= 1,2,3. Then,

equation (3') can be written as

1+ir 1 1 +ylr -i[VIr 2 r 3exp{-i(e 1 -e 2 -e 3)

+VIvA0 r2 exp{-i( 1 +e2 )}],

" r2+ir22+y2r 2 -i[v2rlr3exp{i(e1-62-3) (2.12)

+v'vA r exp{-i(el+e2)}],
2 01 1 2

17
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r3 +ir 303 +y3r3  iv3 rlrexpfi(8-- 3}e
3 3333 31 2 p( 1-02-03)

Let us define the sets:

E 6 {Y cos(el -0 2-e3) = cos(e 1+02) = , e3 =e,

r. 0 , j = 1,2,3},
]

E 00Zr uT.

n= {Y r. = , i = 1,2 and/or 3},nl 1

E0 = {Y: r = r 2 = 0},

E.0 = {Y ri =  " = 0, i 1,2 or 3} -E09

0 = En {E 0 u0

Obviously, E8 is not closed, and En and En uEZe are closed.

Furthermore, E = Hence - 8 is nonempty and

S- E CE . An example of E8 is shown in Figure 2.1. The

set Z is located at the origins.
n

We assume that Y(O,Y 0 ) = C E . From (2.12),

e.(t) 0, j 1,2,3, if Y(t,Y o ) E E. Hence, Y (t CE or

there exists a t1 > 0 such that Y(t,Y 0 ) E eo for t E [0,t I)

and V(tI,Y 0 ) CE e0 - E0 C En " Since Zn = E 0 uZ 0 UZ 0 and E 0 is

an invariant set (i.e., if Y 0 
E E0 V(tY 0) E E 0 for t _0),

Y(tlY 0 ) E u " Suppose that Y(tl,Y 0 ) E 0 Then, Y(tI,Y)
0 0oa' a nteo 0  n F 2 1

is located at one of the three origins in Figure 2.1. Since
F(Y) is transverse to E0 at Y= Y(tlY 0 ) and F(Y) of (3') is

differentiable, Y(t1 +EY 0 ) E e 0 for arbitrarily small E > 0.

18
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Z 2 Z 3_e-
(e 2 (o) e=e3(0)

.' (O) _ _3

Y1i Y2 /Y3

Figure 2.1 Phase-Locked Trajectory

Suppose that Y(tl,Y 0 ) E 0 ' Then, V(tl,Y 0 ) is located at two

of the three origins in Figure 2.1. For F(Y) of (3'), there

is no T >0 such that Y(t,Y 0 )E £0 for tE [t1 ,t+T). Moreover,

F(Y) of (3') is continuously differentiable. Hence,

Y(t1 +E,Y 0 ) Ze for arbitrary small E > 0. Thus, the set f6

is an invariant set, and the set Z is invariant in the

sense that if Y 0 Ee 0 Y(t'Y 0) E 0 for almost all t except0 0 6

when ri(t) 0, i= 1,2 and/or 3. Thus, Y +(Y 0 ), Y0 E Ee0' is
contained in E0 0

If Y(0,Y0 ) C (0 u 0 ) n r3 by the above useda

V(E,Y 0 ) E E e for arbitrarily small E > 0. Here,

80 = lim 3 (t).
t-0

Such a limit e0 exists, since F(Y) of (3') is continuous.

Hence, Y+(Y 0 ) CE if ) nE Thus, if we define
0 80 0 0 u 0) r'

a set Er0:

rr E r0  E ru{(E 0 u 0) n 1r'

19
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V+ (Y) C 80 for all Y0 E Er0 , where if Y0 E r) 60= 1(0) and

if Y ( 0 u 0)n Er) 80 = lime 3(t).
0~ 0) 0 0

Now, we introduce a reduced equation of (3'). If

V(O'Y 0) E zoo)

e.(t) = .(0) + n.(t), i= 1,2,3, (2.13)

where 3(0) = e0 and ni is an integer-valued step function

having discontinuities only when r.(t)= 0. Let us define a1

vector X AxlX2,X3 T:

x1 (t) = var 1 (t)exp{in1 (t)},

x2 (t) = vr2 (t)exp{in2 (t)}, (2.14)

x3(t) = var 3 (t)exp{in3 (t)},J

where v= sin(1 (0)-2 (o)-e 3(0)) and a= sin(1 (0)+8 2(0)).

Then, xi is real, and at the time t when V(t,Y 0 ) E E001 0

equation (2.12) reduces to

I -YlXl - vlx 2X3 - vA 0 x2 '

2 Y2'2 2 1 2 2vA 0Xl' (2.15)

x3 - 3 x 3 
+ V3X1X2'

This equation actually holds at the time t when V(t,Y 0 ) 0

E - E8, since its trajectory stays in Z - E6 momentarily.

i f0 Er n (0 0) the solution of (2.15) is

, identical to that of (2.12). For, the trajectory of (2.15)

20



momentarily stays in the set in the X-space corresponding to

r n (z^0 uZ 0) Furthermore, equation (2.15) has a solution

X(t) = _X, the zero-vector in the X-space, or X(t) = (0,0,

x3(0)exp(-y 3t))
T on the set in the X-space corresponding to

E09 and they are identical to those of (2.12) on E 0. Thus,

equation (2.12) reduces to (2.15) for all Y0 E r0 uZ0. If

Y 0 - Zr0 - Z0' Y+(Y ) c Er0 - Z0 and if YE E Z0, Y+(Y 0 ) c Z0.

Similarly, each of the remaining systems in Table 2.2

reduces to a three-dimensional equation on a certain

invariant set. These equations are given in Table 2.4 along

with the definitions of variables and Er' Systems (2)-(7)

and their solution will be denoted by

= F(X), (2.16)

and X(t,X 0 ), respectively, where X0 is an initial value.

Moreover, we denote the positive semi-orbit by X + (X )

A {X : X=X(t,X0 ), t 0}.

For some reduced equations, IX(t)Ii - or 0 as t -- for

initial points in certain open subsets of the X-space. Let

us consider (3) with (vv 2) = (1,I), (Vi,1 2,v3 )= (1,1,1) and

(sgn(yl),sgn(Y2 ),sgn(y3 ))= (1,1,-l) as an example (see Table

2.3). It is not determined whether the original system (3')

V- with such parameters has a diverging trajectory. On the

other hand, from (3),

(d/dt){(x 3-(3/2)vA 0) 
2 xI 

2 2 }
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=Ylx x2+2y 2x2 2+y 3 (x 3- (3/2)vA0)2 (9/4)y 3 vA0 12.

Hence, if (0,X 0 ) is inside the elliptic cone C :x 1 2+2x 2 2

- 2+Cx3 -3/2)vA0)2 and outside the ellipsoid E :~x +ll2y2x2

+Y3 (x3-(3/2)vA 0 
) = (9/4)Y3 vA 012, IIX(t)I - as t -- where

X(t) = (t,X 0 ) (Fig. 2.2). Similarly, for some cases of (3)

and (4) in Table 2.3, there exist open sets R0 such that if

X0 e R0 , X(t)JJ -- as t-- where X(t) = X(t,X0 ). These

systems will be discarded in Chapter 3, since they do not

have periodic or chaotic solutions for almost all initial

conditions. The remaining cases are shown in Table 2.5.

X 3

C

x2
(3/ 2)vAo

xl

Figure 2.2 Diverging Trajectory of (3)

2.3 Phase Locking

In the previous section, we have shown that if the

phases are locked at the initial time (i.e., V(0,Y 0 )E Zr0 )
,

24
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Table 2.5 Parameters for Chaotic Solutions

of Systems (3) and (4)

(3) (v 1"2) (v 1,v2,v3) (sgn(yl),sgn (Y2)sgn (Y3 ))

(4) (v 1,v2,v3) Csgn(y I) ,sgn(y 2 ),sgn(y 3)

25



they remain locked for almost all t (i.e., Y(t,Y 0 ) Z Zr for

almost all t 0 except when Y(t,Y 0) E r0- Er ). Furthermore,

on Er0 uX 0 , the original equation reduces to a three-dimen-

sional one. It is meaningful to study the reduced equation,

if it describes the asymptotic behavior of the original

equation in the limit t --. Otherwise, the solutions of the

reduced equation may not resemble those of the original one.

In order to find whether the reduced equation represents the

original one in the above sense, we shall obtain sufficient

conditions for a subset A of Zr0 u Z0 to be an attractor in

the Y-space. Here, we call A an attractor in the Y-space,

if there is a neighborhood 0 of A in the Y-space such that

if Y0 E 0, then Y +(Y 0) 0 and Y(t)= Y(t,Y 0 ) converges to A as

t--., that is,

lim inf 1iY(t)-Y1 = 0. (2.17)

t- YEA

If 0 is the whole Y-space, the phases become locked asympto-

tically as t -- for any initial conditions. Even when 0 is

a small subset of the Y-space, it is theoretically easy to

choose the initial conditions for phase locking, since the

volume of 0 is nonzero. Hence, if a neighborhood 0 exists,

it is meanningfull to study the behavior of the reduced

equation.

We again choose system (3') as an example. According

to Pikovskii et al. [121, the set 1r is always an attractor

if all of the yi'S, v.'s and v!'s are positive. It can be
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readily shown that their analysis is inaccurate (see Appen-

dix). Here, we shall give a more detailed analysis for the

general cases of (3 '). Similar arguments hold for other

systems also.

2.3.1 Differential Equations of Phase Differences t =4,

Equation (2.12) suggests studying the time variation

of the quantities A A*A* and AIA since they include the
1 2 3 A1A2 5 ic hy nld h

phase differences 8 1- 2-83 and 81 +2 which are of important

here. Taking the time derivative of AIA*A, AIA2, A2A* and
12 3' A1A2  A 2A3 an

2
AIA*, we have

1 03
El (yl1+Y2 +Y3) 0 -,jlVA0 -"2vA0 Ei'

42 0 -(yl'Y 2) l E

-2v'vA -(2\ 2)A 31
2+ 3 (A2f

2) -(2 0
32 0 2-(2)32 Y2+Y3) - 3

[4j ,-2v'vA0 -(2vIA 12-V 3A 12) 0 -(2y 1+Y3) J

or (2.18)

2 2
(t) = €(IA 2 (t)l JA3 (t)2 ) (t), (2.19)

where , 1Re(A A*A*), eAA) 2
1 2 3= ' 2 = Re(A 1A 2) 3 = Im(A2A 3 ) and E4

ZIm(A2 A). The system of equations (2.18) is not closed,
1 3

but it can be regarded as a closed time-varying linear
V

differential equation:

D(t) = $(t)C(t). (2.20)

Let us consider the set
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E {Y : e (2.21)

where 6 is the zero vector in the E-space. From (2.18), E

is an invariant set. As shown later, if E(t) -68E as t- ,

the corresponding Y(t) converges to E as t-' . Since

E - (Ir u 0 ) is not an invariant set, Y(t) does not converge

to E - (Zr uE 0) as t- . Hence, Y(t) converges to E r and/or

to E0 as t -. As mentioned in Section 2.2, system (3')

reduces to (3) on Er0 UZ 0 and therefore, on Er UE 0" Hence,

if E(t) -8 as t -- , then system (3) describes the asymptotic

behavior of (3').

Similarly, an equation in the form (2.19) is obtained

for each system of (2'), (41')- (7'). Moreover, if E(t)- 6

as t -- , each of reduced systems (2), (4) - (7) describes the

asymptotic behavior of its original system. The definitions

for vector E and matrix D for each system are given in Table

2.6. Here, P of (2) is a constant real number, and for other

systems, 0 is a time-varying matrix.

2.3.2 Sufficient Conditions for Convergence of (t) to 8

For equation (2'), we see that E(t)4 0 as t -- if and

only if y 1 +Y2 +Y3 >0, and IE(t)l -- as t-- if and only if

yl+Y2+Y3 < 0. For the remaining cases, the following result

in [26) is applicable:

(S.2.1) Consider a time-varying linear system

expressed by (2.20) and define
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IJJI. =max i k P.$ = ' max{ii + E I ^ i l I
i . i

where (ij). Then,

Jj (~ j elltI.[ $ T 1 T < E(t)ll.

II Jj (o)IIexP{fou.[8(T)]dT}, t> 0.

The above statement implies that if ui[$(t)] < 0 for

all t >0, then E(t)II.- 0 as t-. We derive a modified

system

4.(t) = $'(t)w'(t) (2.22)

from (2.20), where E'= (pElP2''E2p 3p )T, p >

j 1,2,3,4. By applying (S.2.1) to (2.22) and since

IIE' (t) - 0 implies JE(t)II 0, IIE(t)II 0 as t -- if

P[$'(t)]<O for all t ?0. We consider system (3t) as an

example. For this case, u.[$'] < 0 if and only if

2v2 JA3 12+v3 A2 12 < (yl+Y2){P3(2Y2+Y3)-21vA0 I}/(p 3+P4),

12vIA 312-v3IA1I2I <(yl+y2){P4 (2y l+Y3)-21vA0I}/(p 3+p4), (2.23)

• vA01 <(Y l+y2+Y3)/(p3+p4),

where (l,(y 1 +Y2 )/(p3+p4 ),I/p 3,1/p4) (pp2,p3,p). Here,

we can choose pi's to obtain the most convenient forms of

the right hand sides of (2.23) for the later uses. Similar

conditions for other systems are given in Table 2.7.

2.3.3 Sufficient Conditions for Convergence of Y(t) to E
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Table 2.7 Sufficient Conditions for Convergence
of (t) to e

(2) Yiy+3>0

(3) I2v2IA 312 +v3 JA2I12 1 <c Cyl+y2){1(2y 2+y3)P3..21vA 0 1}/(p 3+p4),

f2v1IA 3 12 -v3 A1I2 , < (l-2 (yly)4-1Aj'(3p)

JvA0I< <yly+3)(3p

(pl~p2"3"pCl (yl+y 2)/(p3+P4) ,l/p3 l/P4~)

(4) Iv 2IA 312+v 3 A 2 12 1< <y 1 (y 2+Y3)

IvA01' <P 2 (Yl1 'y2+y3),

(pl~2"P')=(l"P 2 jAO,p 3y11A01)

(5) JA 212, P3Cyl+y3){(2y2+y3)/P3-1v'0I }/2,

JvAI< <p3Cy+2y29,

(pl"2"P')=(P 3Cyl~y2)9l'p 3)

(6) Iv2IJA 312 +V3 A2I12, < mn{P4Cy2+y3)Cyl+y2+y3),

y1 {(Y 1+y2+y3)(l-P4)-CP 4/P2)1 vA0I}},

tvA0I< <ndn{Cp4/p2)(yl+y2+y3) ,Cp2/P4)(l-p 4)(yl+y2+y3)}

(PP2P3'4) (p4y1(yl+y2+y3),P2Cy1+y2+y3),l'P4 y1+y2+y3)

(7) I IA 1I2_vl, A2I12 1 < (Y2+Y3){(yl+y2+y3)-(plp3P4/(Pl+P4)) IvAOI},

Iv3 JA 212_v2 ]A 3 1
2 +(p2/p4)IA2 12 < lvA 0 (y2 +Y 3)/2,

vA 0 1< <min[(P3/2p,)(Y1+2y2),(P3/(P4(P2+p3)))(Yl+Y3),

(Plp/(P3pl+P)) (yl+-y2+y3)
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In this section, we shall show that if (t) -.8 as

t-~ then the corresponding Y(t) converges to E as t-.

It is sufficient to prove the following statement:

(S.2.2) For any small E > 0, there is a 6> 0 such that

< 6 :> inf 11 Y-Y'II < E for all Y E {Y : jRA1 < 61
VIE E

or

dCE,%) 6 sup inf B1Y-YII 0 as 6 -0,

YE E6Y, -E

where Z 6 = IIII6}

The above statement implies that if & is close to O, the

corresponding set E 6 is also close to E in the Y-space.

Here, we give a proof of (S.2.2) only for (2?). The

proof for other cases can be established in a similar way.

For (2'),

E 6={Y &=yly 2y3+zlz 2y3 +Z y2 z3+ylz2 z3 =61

Consider a line parallel to (1 100,01010 0 )T and through a

-~Tpoint (0,z1,y2 z , 3 z). This line intersects E6 and E if

y2y3 + 2 z3 9 0, since the equations:

yly 2y3+^1z2y3 +21y22 3+yi2 2 3 ='

V :: I(2.24)
yly 2y3 z1 2Y3+zy 2z3 ylZ2 3 =

has a unique solution (y~y~ if y 3 z2 z3 9 0. From (2.24),

* ~(Y!-Yl)( 2 3 +Y2 3) 6

33



Hence,

d(En SIz 6 n SI) < S , S1 {Y y2y3+z2Z31 >

T

Likewise, by using a line parallel to (0,1,0,0,0,0) and

through a point (y 1 903Y 2,z 2 ,y 3  ) T we have

d(E n S 2 ,E 6 n S2) < 6 , S2 :{Y z 2y3+y3z2 >

Hence,

d(E n (S I uS 2 ), Z6n (S 1 uS 2 )) < 6

Consider the sets:

r0 {y + z 0, : 0},
S: y2Y 3+Z2  , z2y3 +y2z 3 0

r'2  {Y : ly2y3 +z2z 3 l= 6 , lz2y3+y2z 3 - 6}

A line parallel to (0,0,1,0,0,0)
T and through a point

(y~flZ,0,2 ),z intersects r0 and rif 3  0, since the
(yl'zl'2' %3'3 0 2 f3g'

equation:

+ = 0, y z+ z +6 (2.25)

has a unique solution for (y2,y'). From (2.25),

(y2-Y2)Y 3 :

Hence,

d( 0 n r'E n r4 ) < 6, r {Y: 1y31 >1
0 42 4- Y3

Since r0 c Z, we have

d(E n r4, n r4) < max{6 6} (2.26)

34

!1



By repeating the above procedure for different lines, we

obtain results similar to (2.26) for r4i = {Y: >6 and

A4i 0Y Izij > 6} , i = 1,2,3. To sum up,

d(n (u (r 4i uA4i)),E 6 n(u(r4i u A4 i))) <max{6 ,6}"

Since 0 Y E, where e y is the zero-vector in the Y-space,

d(E-( U ( 4i u A4i)),E 6-( u (P4 i uA 4i))) 
< 6 "

i 4

Hence,

d(Z,E) < max{6 6,6 }.

If we choose a 6 such that max{6 ,6 } < e, then we have the

desired-result. Thus, (S.2.2) is proved for (2').

As mentioned earlier for (2'), (t) -0 as t- - for any

initial conditions, if y1+Y2+Y3 > 0. Hence, by (S.2.2), if

yl +Y2+Y3 >0, Y(t) converges to E as t -. For other systems,

Y(t) converges to Z if the wave intensities satisfy the

conditions in Table 2.7. We do not know whether the original

systems (3')- (7') satisfy these conditions, that is, whether

the systems have attractors satisfying these conditions. On

the other hand, it is easy to find natural boundaries for

some of the reduced equations. If (vlV 2,v3) = (1,1,1),

(v 1v) = (1,1) and yi > 0, i= 1,2,3 in (3), then

I s - dI + 9y 3 IvA 0 1
2, (2.27)

2 2 2where I = 2xI  2+(x3+3vA 0) , d= min{2yI,2Y 2,Y 3 }, and if
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(v 1 ,v 2 ,v 3 ) =(-1,1,-I),

-dI + y3tvA 0 12, (2.28)

where I =x1
2 +x2

2 +2(x3 +vA0 )2 d= min{yi,y 2,2Y 3}. if

(ViV 2,V3) = (1,1,1) and yi >0, i =1,2,3, in (4), then

-dI + IvAo2 j2 /y1 , (2.29)

where I = 2(x -(v/yl)vA0 ) +x2 +x 3 , d min{2y,

Hence, the ellipsoid on which I =0 is a natural boundary.

There are no such boundaries for other cases. But, as shown

later in the numerical experiments, some pseudo-chaotic

solutions of the reduced systems are bounded in certain

regions. Therefore, we assume that the reduced systems have

attractors in which the trajectories are finally trapped.

Then, a sufficient condition for Y(t) to converge to E as

t+ is as follows:

(S.2.3) Assume that a subset A of E is an attractor

of equation (2.10) with the initial condition Y6 4 .

Also assume that A has a smooth boundary A relative

to E and that at any point Y OA, NCY ) is transverseb b
to 3A. Let r be a set in the Y-space such that if

Y(t),E r for all t2:0, then &(t) -eE as t- . Then, if

A ci', there is a neighborhood 0 of A in the Y-space

such that if Y0 C 0, Y+ (Y0 ) c 0 and Y(t) =(tY 0)

converges to E as t- .

* 'The sets defined in (S.2.3) are sketched in Figure 2.3.
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Figure 2.3 Sketches of Sets in (S.2.3)

The validity of statement (S.2.3) can be established as

follows. Let E and A be n-dimensional surfaces. Then, 3A

is a (n-l)-dimensional smooth surface by assumption. Let us

consider a set Gyb x {Yb } where Yb q aA, and Gyb is an

orthogonal complement of a subspace which is a translated

tangent plane of E at Yb to the origin. Then, Gyb x {Yb } is

(6-n)-dimensiorial. Since DA is smooth, there is a neighbor-

hood N(OA) of DA such that the set

N I(A) = N(OA) n u Gyb x {Yb }

Y b CA

is smooth (5-dimensional) and

N (A) c r.

Since F is Co, there is a neighborhood N2 (A) of 3A relative

to OI(aA) such that (Y) is transverse to N2 OA) at all

Y N (A). Let us take a neighborhood N (E) of Z with radius

E (i.e., d(3N (E),Z) = E) such that
£
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(NE CZ) n Ni (36)) c N2 (A).

By (S.2.1), there is a 6i such that

d({Y : (Y) = 0},{Y : i(Y) = 6}) < E.

Hence, for 6< min{6.},1

N6 (C) _M {Y II (Y)I < 6} c N E(Z).

Here, N(Z) is a neighborhood of Z and

(N 6 (E) n N 1 0A)) cN 2 C06).

Hence, V(t,Y 0 ) remains in r as long as Y(t,Y 0 )e N6(Z). On

the other hand, Y(t,Y 0 ) remains in N 6 () as long as y(t,Y )

r, since UCt)IIL decreases if Y(t) 4E. Consider an open

set 0 containing A such that aO consists of N6 (Z) n MI(DA)

and a part of 9N(6C). Then, O cr and if Y0 O 0, then V+(Y 0 )

c 0, which is the desired result.

v3
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CHAPTER 3

REDUCED EQUATIONS

In this chapter, we shall choose systems from Table

2.4 which may have periodic or chaotic solutions for almost

all initial conditions in the X-space. At the present time,

sufficient conditions for ensuring the existence of chaotic

solution are not known for general three-dimensional ordinary

differential equations. Many numerical experiments showed

that the existence of more than one unstable equilibrium

points could lead to pseudo-chaotic solutions. Here, we

shall restrict our attention to those systems whose reduced

equations may have periodic or chaotic solutions globally

(i.e., for almost all initial conditions) in the X-space.

Hence, if we can show that a system has a stable equilibrium

point or an open set R0 such that if X R0 , 1X(t)1I -- as

t-*W, where X(t) =X(t,X0 ), then the system is discarded.

In Table 2.4, vi and v! can be ±1. The presence of
1 I

both positive and negative v. (or v!) corresponds to the
1 I

interaction of positive and negative-energy waves. It is

known that such a system is explosively unstable, that is,

C" one or more of the wave amplitudes tend to infinity in finite

time. The addition of linear damping terms does not suppress

such a fast growth. Therefore, we only retain those cases

in which all the vi's (and v!'s) have the same sign. Without

loss of generality, we assume that all the v.s (and Ws)
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are positive, since the sign of each v. (and v!) can be

altered by changing the signs of the variables.

The procedure for eliminating some of the remaining

cases is as follows: i) We assume that all the yi's are

positive ; (ii) If there are more than one equilibrium points

and all of them are unstable for certain value of parameters,

then the case is retained ; (iii) If there is only one equi-

librium point, or if at least one of the equilibrium points

is stable for any values of parameters, we introduce a small

linear growth term to the system by changing one of the signs

of yj's so that

Y1 + Y 2 + Y3 > 0; (3.1)

Civ) If the condition in (ii) holds for the system having

one linear growth term, the system is retained, and if the

condition in (iii) holds, the system is discarded. We do

not introduce more than one negative yj's, since it is equiv-

alent to an equation with less than two negative yj's by

the substitution t- -t and by certain variable changes ; (v)

If there exists an open set R0 such that IX(t)I -- as t-

for all X0 e R0, where X(t)= X(t,X 0 ), then the case is

discarded.

The reduced systems discarded by the foregoing pro-

cedure may have local chaotic solutions. The original

systems corresponding to the discarded reduced systems may

also have chaotic solutions. Moreover, the remaining systems
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may not have chaotic solutions. For the class of three-

dimensional ordinary differential equations such that the

existence of only one equilibrium point implies the nonexist-

ence of chaotic solutions, we can conclude that if a three-

wave interaction system has global periodic or chaotic

solutions in the X-space, then it belongs to one of the

remaining cases.

3.1 Analysis of Reduced Equations

3.1.1 System (3)

System (3) with positive yi's has been studied by

Pikovskii et al. [12]. Here, we present their results along

with more detailed analysis. Without loss of generality,

we can assume that vA0 < 0, since the substitution vA0 -- vA0

is equivalent to x. -xi, i= 1,3. Then, the equilibrium

points are P0 = {  and P {X }' V ±1:

X = (v[(y 3/yI)(IvA012_yy 2) {IvAOI-(IvA01
2-Yly2 }] ,

v[YiY3(IvA0 12_ylY 2) /{jvA0 j-(IvA0
2 -ylY2) }] , (IvA0I -Yy 2) )T (3.2)

if they exist. At P0 and P , the characteristic equations

of dF/dX for (3) are

p0(X) A (X+y ){X
2+(y +Y 2 0, (3.3a)

3 1 I 2)X+YIY2-IvA0 ,2

S)+(y+y 2+y3 A 2+X[Y 2Y3+Y3YljvA0Ij/{jvA 0j_(jvA 0j2_yiY2) }

-(y3/Y1 )C(IvA0 2-yiY2 ) {jvA0 j-(jvA 0 j
2-YiY2) }]

4



+4Y 3 ( IvA0 1 2 -y1Y2) 0, (3.3b)

respectively. When IvA0 1 < Y1Y2  vA012, P 0 is asymptoti-

cally stable and P does not exist. At IvA0 1 2
= IvA 012, PV

emerges from the origin and (3.3b) has three real roots, one

of which is zero and the others are negative. When A0
2

= 0 +e, where E is positive and sufficiently small, equation

(3.3b) has three negative real roots.

2 -2We consider the case where A0 >A 0 Here, equation

(3.3a) has two negative and one positive real roots. We

assume that (3.3b) has one real root -c and a pair of complex

roots a±ib. Then,

yl+Y2+Y3= c-2a,

Y2 Y3 +YIY 3 vA0 1/{ vA 0 )-( vA 12yY2) )}

(3.4)
-[(y 3/Y 1)(IvA01 2-yiY2) i{IvA 01-(IvA012 -y1Y2)} a a2 +b 2-2ac,

4y3 (IvA01
2-yi 2 ) : c(a

2+b2 ).

2 ^ 2Hence, c >0. We assume that at 0 A0 , the root locus

crosses the imaginary axis. Substituting a= 0 into (3.4)

leads to

(vA0 1
2 -IYr2 ) {2(Y2+Y3-Yl)1VA0 1

2+4Y12Y 2
}

=-v )1 Iv (3.5)= volfyl(Yl+"2)(yl+'Y2+y3)+(y2+'y3-YI)(Iv01 -Yiy2)}.(3S

Hence,

IvA0 12 < min{2Y Y2 /(YI-Y 2-Y3 ) 'YI(YI+Y2 )(yI+y2+Y3 )/{2(yI-Y2-Y3 )}+y1 Y2}
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IVA6 12 , (3.6a)

or

IvA0
12 >max{2y 1 2y2/(Y1 -Y2-Y3 ),Y1 (Y1 +Y2)y 1 +Y2+Y3)/{2(y1 -Y2-Y3 )}+YlY2 }

IvAn] 2. 3.6b)

Now, we consider two subcases

Case (i) y1 < Y2+Y3  From (3.5), we obtain an equation for

IvA0 1 2.

s( vA0 12) 4 4{ (y-Y 2 )1Y }( IvA0 12 ) 2 -[ (y-y 2 )2 (yl+Y2 +Y3 ) 2

+8iY2 {(Yi-Y2 )2+f3(Yl+4f2)}] vAl 2-16y 13 3= 0. (3.7)

Equation (3.7) has a positive real root if and only if the

first term is positive (i.e., y1 
> y 2+Y3 or Y2 

>yI+y3).

Since Y1
< Y2+Y3 by assumption, equation (3.7) has a positive

^ 2isdfndb
real root if and only if y2 > yl+Y3, and A0  is defined by

:vAol = [c1 +[c 1 +64(y1 Y 2 ) c} ]/2c 2 , (3.8)

where

2 2cl= (YI-Y2 ) {(yI+Y 2 +Y3 ) +8yIy 2}+8yIy2y 3 (YI+Y2),

c 2 4{(yi-Y2) 2 -y 3
2 }.

V. Since s(yiy 2 ) < 0, YiY 2 < IvA0 12.

Case (ii) yl>y2+Y3  Since s(IvAI ) < 0 and s(\vA11 
) > 0,

the real root of (3.6) does not satisfy (3.5). Thus, if

.2 <2< 1+Y 3' the root locus does not cross the imaginary axis.

For sufficiently large lvA 0I, equation (3.3b) has one
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positive root and a pair of complex roots since the coef-

ficient of X in (3.3b) is positive and increases monotoni-

cally as ivA01 increases. From (3.4), we obtain an equation

for 2a:

q(2a) A (2a) 3+2(yl+y2+Y3)( )(22 a)+{2a+(yl+ 2+3

[y2Y3+'Y3Y 1 IvA0 1/{ vA0 I-( IvA0 1 yY 2) }-[ (Y3/Y1 )(I vA0 2-yIY2

frA0 2_y1Y2) } ]]-43 1vA 012_Y2 0, (3.9)

which has only a positive (resp., negative) real root for

sufficiently large IvA01 if Y2> 71+73 (resp., y2 < Y1 +Y3 ).

From the above results, we obtain the root locus of

(3.3b) as shown in Figure 3.1. The origin is asymptotically

ImX ImX

Y2>Y1+Y3

Y1 + Y 3

YAXReX AO0Re A

A'O 0 A 0
,,//

P 0  p

Figure 3.1 Sketches of Root Locus of (3)
VI

2 2
stable if A < 0 , and is a stable node in a biunstable

plane. If y < YI+y3, P is asymptotically stable for any

value of A2 If .> is asymptotically stable

0 ~ 2 1 3'
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when Ivo12< IvA0 12 <IvA0 12, and when IvA0 12> IvA0 12, P is

an unstable focus in a bistable plane. Thus, system (3)

with positive y.'s may have periodic or chaotic solutions

2 ^ 2globally if y2 > 1I+Y3 and A0  .

3.1.2 System (4)

Without loss of generality, we assume that v> 0, since

the substitution v- -v is equivalent to xl -+ -x1 and x-2 -x 2.

Then, the equilibrium points are P = {e } and PV, {X 1,

X U (v=1(y2/Y3) {y2 (vjA 0
2/(y2/Y3)1-Y1 Y3)} , v(vA02/(y2/Y3)-Y1Y) ,

;I(Vw2 )/J)T,(3.10)
11(y 2/Y 3)(vA 02/(y2/Y3) -y1Y3)1 T ,

310

if they exist. At P0 and P, the characteristic equations

of dF/dX for (4) are

P 0 w (A+yl)A 2+(y 2+Y3 )A+Y2 Y3 -(vA0 2/yl)()(=,2 (3.11a)

p(X) 4 X3+(y +Y+Y )X2+1(y3/Y2) (y2/y3+l) vIA0
2

2 C3.lb+4y 2(.±vIA0 /(y 2/Y3) -YiY 3) = 0. (3.11b)

We shall show that if all the yi's are positive, then

P0 or P is stable. From (3.11a), if Jv!A 0
2 <yl(y2Y3 )3,

P 0 is stable. If JvIA 0
2 > 1 (Y2Y3)Y , there exist two nontriv-

ial equilibrium points P11 and P-I (i.e., U = ). We shall
A2 ) (i)

show that they a:e stable. Since JvJA2 >yIy 2Y -) p > 0,

i= 0,1,2. Hence, if (3.llb) has three real roots, they are
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negative. Assume that (3.11b) has a real root -c and a pair

of complex roots a±ib. Then,

YI+y2+73 = c-2a, 1
U(Y2+1Y3)IvIA 0 2/(Y2Y3 a 2 b22ac, (3.12)

(Y2Y3) IvJA0 2 y1y2y3= c(a2 +b2)/4.

Since IvJA 0
2 > 1 (Y 2Y3 ) and w = 1, c is positive. Furthermore,

Y1Y2Y3 = {Y2Y3/(Y23)-c/4}(a2+b 2)-2acy 2y3 (y2 +Y3),

4y1Y2/(YI+Y 2) >c.

Hence,

c y1+y2+y3+2a< 4y 1y2/(Y1 y+2).

This implies that a< 0. Thus, (3.11b) has no unstable com-

plex roots. Therefore, Pvl is asymptotically stable if all

the yj's are positive.

If Y2< 0 or Y < 0, P does not exist. This case is

also eliminated in Table 2.5.

Now, we assume that y1< 0. Equation (3.11a) has one

positive and two negative roots if A0 2< A0 2A (y2Y3) 1Yl/V1,
. 2 -2and has two positive and one negative roots if A0 > A0 .

A2 2Moreover if0 <A0 , there exist four nontrivial equilib-

rium points P V1' vi = ±1, and two equilibrium points P11 and

P- 11if A02 > A02

We first consider P and P_ (i.e., j = 1). If
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equation (3.11b) has three real roots, then all of them are

negative since p1 i) >0, i= 0,1,2. When A0
2 = 0 or A02 is

sufficiently large, equation (3.11b) has one negative real

root and a pair of complex roots. Moreover, the root locus

does not cross the origin, since pl(0) 9 0 for any values of

2A 0 Suppose that (3.12) holds. Then, c is positive, since

V= 1 and y < 0. We consider two subcases to determine when

the root locus of (3.11b) crosses the imaginary axis:

Cases (i) (y2-Y3 )
2-yII(Y 2+Y 3 ) > 0 : Let a= 0 in (3.12), then

A02 =4 (Y2Y3) y/v{(y2Y) 2 _y(y2+y3)} AA 2  (3.13)

2 ^ 2
From (3.12), at A0  A0

da/dA02 Iv{Iyl(Y2+(y23)(Y 2 Y3)
2}/{2(y 2Y3) (b

2+c2)}<0, (3.14)

where

2 = 4 2Y3IYzl(Y2+.Y3)/{(y2_Y3 )2_ lyll(y2.,h3)},

2 32

Hence, Hopf bifurcation occurs at 0 A0 .

Case (ii) (y2-Y3 )
2-1yiI(Y 2+Y3 ) <0: Here, (3.13) does not

hold, that is, the root locus of (3.11b) does not cross the

imaginary axis. From (3.12), we obtain an equation for 2a:

q(2a) (2a)3+2(y2+Y3-1yl )(2a)2+{ (y2+IY3-IYlI)2

+(Y 3/Y2 ) (Y2/Y3+1) IvlA 0
2 }+11(y3/Y2) 1vIA

2{(y2-Y3)
2 _1yII(y 2+-y3)}/y3

-4:Ylly2Y3 0, (3.15)
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where p= 1. Equation (3.15) does not have negative real
2 2

roots at A0 = 0 and for sufficiently large A0 . This means

that if (3.11b) has a pair of complex roots, their real parts

2 2are positive at A0 = 0 and sufficiently large A0 . Thus,

equation (3.11b) always has one negative real root and a pair

of complex roots whose real parts are positive.

We now consider PI- and P- (i.e., u = 1), which

exist only if A0
2 < 2. Equation (3.12) with p= -i implies

that a cannot be zero. Hence, the root locus of (3.11b) does

not cross the imaginary axis. Equation (3.12) also implies

that the real parts of the complex roots of (3.11b) at A02 0

are positive. Moreover, at A = , equation (3.11b) has

three real roots which are positive, negative and zero.
b2  02 A 2Hence, b= 0 in (3.12) for a certain value A < 0 From

(3.12), A0 2 is uniquely determined:

A0
2 = 2{l8 lyIY2Y3-a(y2+'Y3-IYlI)

2}(Y2Y3)

/[rvI[{6a-(y2+Y3-IYlI)}(y 2+'Y3)+36y2y3]], (3.16)

where a is the positive root of

2(Y2+Y3)a
3+{(y2+Y3)(Y2+Y3-JYll)+12y2Y3}a

2

+8y 2y 3 (y 2+y 3-yl )a-4y1jly 2y3(y2+-'Y3 ) = 0. (3.17)

Thus, equation (3.11b) has one negative root and a pair of

complex roots whose real parts are positive if A0 <A0 , and

has one negative and two positive real roots if A02< A02< A02
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From the above results, we have the root loci shown in

Figure 3.2. The origin P0 is a stable node in a biunstable

X R ReX

:0

P0  PvI !Y1I(Ya+Y3)

ImA Imx

22

AA -0 A2=O

Re X Re

0A2- 2=~2

2 ~

2A 2=

2e -R2

P l IYI(Y+Y) P -

~Figure 3.2 Sketches of Root Locus of (4)

plane if A02 < A 0 , and an unstable node in a bistable plane

A0  >A. In case (i), Pgl is an unstable focus in a
•"bistable plane if A 02 < A02 and is asymptotically stable if

2  2A0> 0 In case (ii), P vl is always an unstable foci in a

bistable plane. If A0 <A P V-1 is an unstable focus in a
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2 2 22
bistable plane and if A02 <A02 <A 0'P V-1 is an unstable node

in a bistable plane. Thus, if A < 0 , or if (y2-Y3)2 <

IylI(Y 2+Y3 ) and Iyll<y 2+Y3 ((3.1)), all the equilibrium

points are unstable and therefore, system (4) may have peri-

odic or chaotic solutions globally.

We shall show that system (4) has an attractor contain-

ing P\. Since equation (4) is invariant to the interchange

of subscripts 2 and 3, we can assume that y32 Y2 without loss

of generality. We assume that Y3 > Y2' since if Y3
= Y2' (4)

becomes a two-dimensional equation, which has no chaotic

solutions. Let a(t)4 x3 (t)/x 2 (t), then

a= (Y3-Y2 )a-(xl-vA0
2/y1)(l-a 2). (3.18)

At x2 = VX1 , v=±, a (=y3-y2 ). Since Y3
> Y2' then the sets

V+ and V_ defined by

V+ = {X : x 2 > Ix 3 1}, V- <= -x 3 }, (3.19)

are positive invariant sets (i.e., if X(T,X 0) E V + (or V)

for some T, X(t,X 0) 4EV+ (or V_) for all t T). Let

V = V+ uV. Then, it is enough to show that if X(t,X 0 )c -V

for all tE[0,-), X(t)= X(t,X 0 ) converges to V as t- . Let
8(t) x2 (t) 2_ x3(t)2-x3 t), then

S2 x2 2(320)V 8 2(y3x3 -y x2 ) = 2(y3 -y )x 2 8 (3.20)

If X +(X0) e -V, then Ix2 (t)I < Ix3(t)I (or $(t) < 0) and

Ix2(t)1 > (Y3/Y2 ) Ix3 (t)I (or 8(t) > 0) for t 0. Hence,
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0(t) -0 as t -, that is, X(t)= X(t,X0 ) converges to V as

t- . Thus, V is an attractor. Moreover, P _ie V+ and

P i1 V_.
vi -

3.1.3 System (5)

The equilibrium points are P0 = {X and PV= {X },
XV V

V = ±i:

XN: (Y 2' V{-(Y 2/Y3 )(yIy 3+IvA0 1 )}, (Y2 /Y3 )vA0 )T, (3.21)

if they exist. At P0 and P the characteristic polynomials

of dF/dX for (5) are

pOCW) 4 (X+2y2){x 2+(yl+Y3 )X+Y1 Y3 +IvA 0 12} = 0, (3.22a)

pC() X 3+(y+Y 3)A
2+(1-2y 2/Y3)(YY 3+JvA 0 1

2)

-2y 2(YiY3+ vAO1 2 ) : 0,(32b 2 o,(3. 22b)

respectively. We shall show that (5) can be discarded.

Equation (3.22a) implies that P0 is asymptotically

stable if all the yi's are positive.

We assume that y2< 0. If (3.22b) has three real roots,
(Ci)

they are negative since PV (0) > 0, i= 0,1,2. Assuming

that (3.22b) has one real root -c and a pair of complex

roots a±ib,

yl+y 3 :c-2a,

(l-2y2/Y 3)(YIY 3+IvA0 1 2a 2+b 2-2ac, (3.23)

-2Y2 (Y1Y3+jvA 01
2) c(a2+b2).
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Hence, c is positive, and we have an equation for 2a:

q(2a) 4 (2a)3+2(yl+Y3)(2a) 2+{(y lY 3)
2 +(-2y2/Y3)(YiY3+1vA01 2)}(2a)

+(Y1-2y1Y2/Y3+y3)(yiy3+IvA0 1 2) = 0, (3.24)

which does not have a positive real root. Therefore, the

real parts of the roots of (3.22b) are negative. Thus, P

is asymptotically stable if y1< 0.

Now, we assume that y1 < 0. Equilibrium point P exists

only if IvA0 12 < lylly 3. Equation (5) is rewritten as

l YI -vA0  Xl' -x2

= J (3.25a)
x3, vA 0 -Y3 x3, 0

x2 (Y2 - x)x2" (3.25b)

The eigenvalues of the square matrix in (3.25a) are positive

and negative real numbers if IvA0 1
2 < 1y11Y3. Hence, there

is an open set R0 where x1 < 0 and 1x2 l is so small that if

X0 cR 0 and X(t) = X(t,X 0 ), Ix1(t)I,1x 3 (t)I - and Ix2 (t)I 0

as t--.

Finally, we assume that y3 < 0. If IvA012 < y11y31,

P does not exist. If fvA 012 >yl 1 Y3I and I¥31 < Yl then

PV is asymptotically stable. If JvA012 > ylIY31 and Iy 3 1 > Y'

the eigenvalues of the square matrix of (3.25a) are positive

real numbers. Hence, there is an open set similar to R0 *

Thus, system (5) has no periodic or chaotic solutions

globally.
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3.1.4 System (7)

The equilibrium points are P0 = {e X} and P = {X V,

X = ((y2Y 3+IvA0 12)/y 3, v{-(y l/y3 )(Y2Y 3+JvA 0I
2 )} ,

(3.26)

-v(vA0/Y3) {-(y/Y 3 )(Y2Y 3+ IvA 12)} )T,

if they exist. At P0 and P , the characteristic equations

of dF(X)/dX of (7) are

p 0 w) 0 (X+yl){ 2 +(y2+Y3)+y2y3+jvA0 I 2 } = 0, (3.27a)

p(X) X3+X2 {(y 2 Y3)-(CYy3+jvA 0 1
2 )/y3 }+X{yl(Y2+Y 3)

-3(yl/y 3 )(y2y 3+IvA 0 1
2 )}-2yl(y 2y 3+IvA 0 1

2 ) = 0, (3.27b)

respectively.

Equation (3.27a) implies that P0 is asymptotically

stable if all yi's are positive.

We assume that y2 < 0. Equilibrium point P exists

only if JvA 0 12 < Iy2IY3. If equation (3.27b) has three real

roots, they are negative since p ViM > 0, i = 0,1,2. Assuming

that (3.27b) has one real root -c and a pair of complex

roots a±ib,

y l+y 2 +IY3 -(Y 2y 3+ jvA0l 2 )/y 3 = c-2a,1

YI(Y 2 +'Y3 )-3yI(1 2Y3+ IvA0 12 )/ Y 3 = a 2 +b 2 -2ac, (3.28)

-2yI(y 2Y 3+jvA 0 1
2 ) c(a

2+b2).
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Hence, c is positive, and we have an equation for 2a:

q(2a) 4 (2a) 3+2{yl+y2+y3-(Y2Y3+IvA0 1
2)/y3}(2a)

2

+[{Y 1 +y2 +y3-(y 2Y3+ vA0 12 )/y3 } 2 +yIC y 2+Y3 )-3yI (Y2Y3+ jvA0 J 2 )/y3 ] ( 2a)

+{y1 +y2 +Y3- (Y2 Y3+vA0 1 2 )/y3} {Yl(Y2+Y 3 )3Y l ( Y2 Y3 + IvA01 2 )/Y3 }

-2yI(Y2Y3 + ivA0 1
2 ) = 0. (3.29)

If IvA0 12 < y 3 (Y3-
2Y2 )/

3 , q(i) > 0, i= 0,1,2. Hence, the real

roots of (3.29) are negative, and the real parts of the

complex roots of (3.27b) are negative. If JvA012 >

y3 (Y3-2Y2)/3, a cannot be zero in (3.28). Moreover, p,(0)

A 0 since JvA 0 1 2< y 21Y3. Hence, the root locus of (3.27b)

does not cross the imaginary axis. Furthermore, when IvA0i
2

= y3 (Y3-2Y2 )/
3 , equation (3.27b) has one negative real root

and a pair of complex roots, and from (3.29), the real parts

of the complex roots are negative. Hence, (3.27b) has three

stable roots for IvA0 12 >y 3 (Y3-2Y2)/3. Thus, P is asympto-

tically stable if 0.

Then, we assume that y < 0. Rewriting the right hand

side of (7),

x YlX - x 2 (3.30a)

; 2: (3.30b)
x 3 l-vA 0 -Y3J x3,

If X (0) < 0 and jxl(0)j is sufficiently large and jx2 (0) I

'5
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and Ix3(0)I are sufficiently small, x (t)- and x2 (t),

x3(t) - 0 as t --.
Now, we assume that y3 < 0. If IvA012 < y21Y31 , P. does

not exist. If IvA012 > Y 2 1Y3 1 and Iy3 1 <Y 2 ' P0 is stable.

If IvA012 > y 2 1Y3 1 and Iy3 1>y 2, P0 is an unstable node in a

bistable plane. Equation (3.27b) has at least one positive

real root. Hence, system (7) may have a chaotic solution,

if Y3 < 0, Iy3 1 >y 2  and IvA0 12 > 21Y31.

3.1.5 System (2) and (6)

Since system (2) can be obtained from (6) by the

substitution y1 +aVA0 v -)yl, we consider only system (6).

Comparing (2') and (6') in Table 2.3, system (6) may have a

chaotic solution only if y1+avA 0 < 0 and y2,y3 >0. Then,

the equilibrium points are P0 = {8 I and P'N ix V, ({,U v)

V KV K1

X (, ={-(yl+VA 0 )y3 } , V-{-(yl+VA0)Y 2) (3.31)

The characteristic eqations of dF/dX for (6) are

p 0 (A) (X+y 1 +avA0 ) (X+y 2 )(X+y 3 ) 0, (3.32a)

p(X) 4 X3+X2 (y 2 +y 3 +Yl+avA0 )-4(y 1 +cvA0 )y 2Y3 = 0, (3.32b)

at P0 and PV , respectively. Since yl+VA0 < 0, equation

(3.32b) has one negetive real root and a pair of complex

roots with positive real parts. Hence, P0 is a stable node

in a biunstable plane and P is an unstable focus in a
K5
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bistable plane.

As in the case of system (4), we obtain an attractor

V =V uV, where PV1 EV- and P 1 EV+. In the computer

experiments, we did not observe trajectories such that

X+(X 0 )E-V and X(t)= X(t,X 0 ) converges to av as t-. We do

not prove the nonexistence of such trajectories, but we can

show that such trajectories are highly special cases which

can be neglected for all practical purposes. Since (6) is

invariant to changing the signs of any two of the variables,

it is enough to consider the set {X: x3 > 0}. Let us define

the set W :

K11w'l = {x: I'cx: 'x 1 , Ilix2l: l 2 , x3 >°}-w, cl {,O},

where

W= ( u {P}) u {xlX2,x-axs
(K,U,v) 4E K

The set W is an invariant set and if X0 iW, X+ (X 0) n W=.

In the following, the trajectory remaining in W will be

neglected. Consider the following sets:

S 4 {X : 0} n (W -V)

: 0

W + {X : a > 0 (& < 0)} n (W00-V),

where a(t)= x2 (t)/x 3(t) and

a (y3 - Y2)a + x 1 (1 a 2 ). (3.33)

• The sketches of S and W_+ are shown in Figure 2.3, In WK
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X 3

S 
/

W X2

V

x1

Figure 3.3 Sketches of S and W± in (6)

ll = Kx 1 , 1x2 1 = X2 ,  3 < 0. (3.34)

Hence, the trajectory is transverse to S and enters W+n WI_.

In W+ n WI_, -1 < a < 0, a > 0, xI > 0 and x1> 0. Hence, from

(3.33), a increases. Thus, the trajectory enters W+n WlI.

Let X(TI,X0 ) 6 W10 n (xlx 3 )-plane and X(TI+E,X0 ) e W+ n W

where X(T,X 0 ) E W+ n W for all T E [TI,TI+E]. In W+ n Wl

0 <a <1, &>0 and xl>0. Hence, from (3.33), if X(T,X 0)
E W+ n WII for all T-E [T +t] ,

a (t) (y3-Y 2)c(t) ? (y3+Y2)WT' 1+C) > 0. (3.35)

* This implies that the trajectory enters W+n WiI, since it

is transverse to the (x2 ,x3 )-plane. Let X(T2,X0) E

57



W01 n (x2,x3 )-plane and X(T2 +E,X0) W + n W-11, where X(T,X 0 )

W+ n W_I1 for all Te[t 2,T 2 +e). In W+ n W_iI, x1 < 0, kl 
< 0,

x2 > 0, k2 
< 0, x3 >0 and 3 < 0. Hence, if X(t,X 0 )E W+ n W_11

for all T E 2+Et],

(t) < -yl+uvA 0 )x1 (T2 + }) <(0,

fit) j -yixift), i = 2,3. 
(.6

Consequently, if X(t,X 0 )E W n W_ for all t 0, then

xl(t) -- , x2 (t) 0 and x 3(t)- 0 as t -. Otherwise, the

trajectory enters Sn W1 0. Similarly, if X(T 0,X0 ) E S nW_1 0

at some To , the trajectory converges to the xl-axis (where

x1 (t) -,) as t- - or enters S n W1 0. Thus, if X +(X0 ) cW 0 0 - V,

then as t -- , the trajectory converges to the xl-axis

monotonically after some or no oscillations about the x3-

axis, or oscillates about the x3-axis for all t 0.

Let us see roughly how a trajectory oscillating about

the x 3-axis for all t 0 behaves. Rewriting (3.20) for (6),

2 2 2(337)
S2(y3X 3 -y 2 x 2  3 2x 3 -2

Integrating (3.37),

0< fx 3(T)
2dT= ((t)-a(o)+2 2f (T)dT)/2(y 3-Y2 )

< -8(O)/2(y 3 -y2) (3.38)

for all t since a(t) < 0 for all t. By studying FX) of (6)

carefully, we know that x 2(t) takes a larger value than
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{-(y 1 +avA 0)y 3} at each time when the trajectory encircles

the x 3-axis. Therefore, for any small e > 0, the time

duration for which x2 (t)2 > e converges to zero as t --.

Thus, x2 (t)2 behaves as a train of pulses whose heights are

larger than {-(y 1 +avA0 )Y3} and whose widths converge to

zero as t --. The above arguments also hold for x V

A trajectory, which lies in W+ n W_1 1 or W_ n WI_ 1 for

all t T 1 for some T 1 and converges to the x1 -axis monotoni-

cally, is unstable in the sense that a small perturbation of

a can shift X(t,X 0 ) into V or cause X(t,X 0 ) to oscillate

about the x 3-axis. For, &= p(y 3-Y 2 ) on 3V (yl = y) and the

trajectry is transverse to S, and 3V and S approach to each

other as Jxl1 --. A trajectory which oscillates about the

x3-axis for all t 0 is also unstable in the sense that

it,X 0 ) is shifted into V by small perturbation of a. For,

Ixi(t)I is larger than {-(yl+avA)yi1 , i= 2,3, at each turn

around the x 3-axis, and X(t) = X(t,X 0 ) converges to 3V as

t- . Hence, the trajectories which remain in -(W uV) for

all tZ 0 can be neglected for all practical purposes. In

fact, such trajectories were not observed in computer

experiments.

We note that (6) is the only system which explicitly

includes a sin(6 1(0)+6 2 (0)). If ivA0I<JylJ P' exists and

is unstable when y1 < 0, and P0 is stable when y1 > 0. If

IvA 0I > 1y11 P V exists and unstable when sgn(avA0 )= -1, and

P0 is stable when sgn(avA0) = 1. We assume that vA0 > 1y11
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and that the trajectories converge to Z as t- . The

question is which of the reduced equations with a = 1 or -1

describes the asymptotic behavior of (6?) in the limit t --.

Obviously, the equation with a = 1 is not the one, since the

origin of the Y-space is unstable if vA0 > Iyi1 . It is

possible that either one of them does not describe the

asymptotic behavior of (6') in the limit t -- , but the

trajectory of the original system approaches in turn either

of the subsets of Z corresponding to the X-spaces of the

systems with a= 1 and -1.

3.2 Physical Interpretation for Reduced Systems

In this section, we shall try to give some physical

interpretation for the results presented in the previous

section. The equations for frequency matching and their

corresponding decay diagrams are shown in Table 3.1.

3.2.1 System (2)

In the decay process of (2), wave 1 decays into waves

2 2 22 and 3. Let us define I= 2x1 +x2 +x3 . For convenience,

we call I the energy of (2), though it is not exactly the

wave cnergy of (2). Taking the time derivative of I gives:

V =2 -2 22 2

2(y 1x +Yx +Y 3x3 ).(3.39)

We assume that <0. The constant I and i = 0 surfaces are

sketched in Figure 3.4, where they correspond to the

ellipsoid E and the elliptic cone C, respectively. If X(t)
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Table 3.1 Frequency Matching and Decay Diagrams

Frequency Matching Decay Diagram

(I) Wi . 2w2  W2 -

(2) wl1 =2 W +3 o2

W 3

(3) WO =wi + 2O WA
W 1 

= w 2 + 3  W

o1 = o2 + o3/ / -2
(4i) 2w0 = W1, W1

wi w) + W3l

(5) W 3 - 0 W,-

W3

W,= 2w 2

0L) W+ 3  WI '--

W1= 2w 2

(6) Wo = 2wl,

wl : 2  3 3

(7) wo1 
= 2w 2 5

w3 W 3 + W3 3 ---W3 W

w 1 2w 2 )
O31-- 2 3w 3  W W 0 + W 2
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E

X2

xl

Figure 3.4 Dynamics of Energy of (2)

is inside (resp., outside) C, I increases (resp., decreases).

That is, when the amplitude of wave 1 is large, the linear

growth of wave 1 is dominant so that the energy of the whole

system increases. When the amplitude of wave 2 or 3 is

large, the linear damping of 2 or 3 is dominant so that the

energy of the whole system decreases. Thus, the energy of

the waves are not balanced in a static manner, but may

oscillate in a chaotic manner.

As mentioned in Section 2.1, if y2 < 0 (or > 0),

there is no chaotic solution. For, if y < 0,

(d/dt)(IAlI2+IA 312 =-y2lAl 2 -yIA3
2 , } (3.40)

(3.40)

V. (d/dt)(IAl 2-1A2 1
2) :-yIAl 2-1 2 1IA2f2

and therefore, JA1 (t)I and IA3 (t)I -0 and IA2 (t)I -

as t This phenomenon does not depend on the magnitude

of yi 's, since they are normalized by the substitution

6
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T

Iyilt- t, ii= 1,2 or 3. From the physical view point, these

results seem to be peculiar. For, system (2) describes a

three-wave interaction including both decay and fusion

processes, and it could be expected that the energy of the

linearly growing and damped waves are balanced as in the

case where y < 0. The above results show that when the

decaying wave 1 is linearly growing (y1 < 0), its energy is

transferred to the damped waves 2 and 3. On the other hand,

when wave 2 is linearly growing (y2 <0), its energy is not

transferred to other waves. It is suggested that when the

linearly damping or growth terms are introduced, even if the

damping or growth rates are very small, system (2) describes

only the irreversible decay process. It should be noted

that the nonlinear coupling terms in (2) does not possess

any mechanisms for such an irreversible process.

3.2.2 System (3)

As mentioned earlier, in the decay process of (3), an

external wave with constant amplitude decays into waves 1

and 2 which have another resonant wave 3. When the external

wave is weak (jvA012 < YiY2 ), the linear damping of three

waves is dominant. Therefore, the energy supplied by the

external wave is dissipated through the linearly damped

waves. If the external wave is strong (IvA0
12 > Y1 Y2 ), the

input energy is supplied at a higher rate than the dissipa-

tion rate when the amplitudes of damped waves are small.

External energy and energy dissipation are finally balanced
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when the amplitudes of waves are large. When wave 2 is

highly damped linearly (y2 > 1+Y 3 ), the external energy

supply and energy dissipation are balanced in a static

manner regardless of the magnitude of the external energy.

That is, the energy of each wave reaches a constant value.

When wave 2 is damped slowly (y2 <y 1 +Y3 ) and the external

2 < A2wave is not strong (A0 <A 0 ), the wave energy is also

balanced in a static manner. When the external wave is

strong (A20 A0 ), the energy of the waves may oscillate in

a chaotic manner.

3.2.3 System (4)

In the decay process of (4), the external wave

generates a harmonic wave 1 which decays into waves 2 and 3.

If all the waves are linearly damped and the external wave

is weak (IvIA0 2 < 1(YC2Y3 ) ), the energy is dissipated more

rapidly than supplied. When the external wave is strong

(IvIA 0 2 >-y1 (Y2Y 3 )1), the energy supply is at a higher

(resp., lower) rate than the dissipation if the wave ampli-

tudes are small (resp., large). Thus, the wave energy is

balanced in a static manner at certain values of amplitudes.

If wave 2 (or 3) is linearly growing, wave 2 (or 3) grows to

infinity as t-- regardless of the magnitudes of the growth
V

or damping rates. This phenomenon is similar to that of (2)

discussed in Section 3.2.1.

If wave 1 linearly growing and if there is no external

wave, the system is identical to (2). When wave 1 grows
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rapidly (ly l(y 2+y 3 ) > (y2-Y3)2) or the external wave is weak
CA 2<

(A02 <A 0 ), the system behaves in a similar manner as (2).

If wave 1 grows slowly (Iyl1 (Y2+Y 3 ) > (y2-Y3 ) 2) and the

A)2 ̂ 2
external wave is strong (A0  A 0 ), the energy supply is

dominated by the external wave and the wave energy is

balanced in a static manner.

3.2. 4 System (5)

As shown in Table 3.1, we have two cases. In the

decay process of the first case, the external wave generates

wave 3 by interacting with 1 which is a harmonic wave of

wave 2. In the decay process of the second case. the

external wave generates wave 1 by interacting with wave 3,

and wave 1 generates a subharmonic wave 2. If all the waves

are linearly damped, the energy of the whole system is

dissipated regardless of the external wave. If wave 2 is

linearly growing, the wave energy is balanced in a static

manner regardless of the amplitude of the external wave.

If wave 3 is slowly growing linearly COy 3 1 <y 2 ) and the

external wave is weak (IvA012 <ylly 3 l), wave 1 and 3 grows

to infinity and wave 2 dies away. If the external wave is

strong (IvA 0 1 > y1 1y3 1), wave 3 is strongly coupled with

V. linearly damped waves 1 and 2 and consequently, all waves

die away. If wave 1 is growing rapidly (Iy3 1 < yl), wave 1

and 3 grow to infinity and wave 2 dies away regardless of

the amplitude of the external wave. If wave 1 is growing

slowly (y ll < y 3 ) and the external wave is strong
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(lvA0 12> y1 1y3), all waves die away. If the external wave

is weak (IvA0 1
2 < 1yly 3 ), the wave energy is balanced in a

static manner, or wave 1 and 3 grows to infinity and wave 2

dies away. The mode of the actual behavior depends on the

initial conditions if wave 2 is highly damped (2y2 > y3),

and if 2y2 <Y3' it depends on the yi's and vA0 in a more

complicated way.

3.2.5 System (6)

In the decay process of (6), the external wave

generates a subharmonic wave 1 which decays into waves 2

and 3. We can make the same argument as we used for (2) by

replacing y1 with y1 +avA 0. If Y1 
> 0, and the external wave

is weak (IvA0I < yl) , all waves die away. If y1 > 0 and the

external wave is strong (vA 0I >yl), there may be a chaotic

solution. If y1< 0, there may be a chaotic solution regard-

less of the external wave.

3.2.6 System (7)

Here, we have two distinct cases. In the decay

process of the first case, the external wave generates wave

2 by interacting with wave 3 and wave 2 generates a harmonic

wave 1. In the decay process of the second case, the

external wave generates wave 3 by interacting with wave 2

which is a subharmonic wave of wave 1. If all the waves are

linearly damped, the energy of the system is dissipated

regardless of the external wave. If wave 2 is linearly
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growing and the external wave is weak (IvA012 <min{IY 2 1Y3,

y3 (yl+y 3 )}), the wave energy is balanced in a static manner.

If the external wave is strong (IvA012 > 1y2 1Y3 ), all waves

die away since wave 2 is coupled well with the linearly

damped wave 3 through the external wave. If wave 1 is

linearly growing, wave 1 tends to infinity and wave 2 and 3

die away regardless of the external wave amplitude. If wave

3 grows rapidly (1y3 1 >Y 2 ) and the external wave is strong

(IvA012>y 2 1Y31), the wave energy may oscillate in a chaotic

manner.

3.3 Systems with Parametric Instability

Now, we have six reduced systems which have periodic

or chaotic solutions for almost all initial conditions.

These systems are listed in Table 3.2, where all the yi's

are positive except for (6). The parameters of each system

satisfy the following condition:

(3) > yl+y 3 , >A2 ((3.8)), (3.41)

2 < 2
(4) A0  A0  ((3.13)),

(Y2-Y 3 ) < Y (y 2+y 3 ) , Y 
<  Y2 +Y3 , 

(3.42)

(6) y1 
> 0, avA 0 < -yI, or (3.43a)

y1 
< 0, avA 0 >0, (3.43b)

k2

(7) IvA 0I
2 >Y 2Y 3

' Y 3 >Y 2 " (3.44)
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Table 3.2 Systems for Chaotic Solutions

C) 1-y1Al -i{A 2 2+A1(Vlll1Al1 2 V1 2 12)1

2 =2A '-iA 1A*2+A 2(V211 IA112 +V222 A 21 2 )},

:Yll 2+2 1x -+2{(v -2V x 2+X2 )+(V 2V )x ,

1111xil 211 1 2 122 222 3

k -2y2x3 -2x2x3, x32!0

(2') A~jyA1-i 2A3 ,(2)

A2 = Y2A2-'AA3, :k2 y 2x 2 +x 1 x 3 '

A 3 = -y3A3 -AJ* 2  3=-y~,x

(3') A,=-yA-iA 2A3+vA0 A*), (3) : Yllxx-AO2

A2 =-Y 2A2-CAA*+vA0 A*1) x2 =- 2x2+x:Lc 3vAOxl,

A3 = -y3A3-1A1A2  x3 = -y3x3+xx2

(4?) A1 Y1 A-iA 2A3+vA0 
2  (4) ki=yx+x 2x3 '

2= -Y2AiAAl ~:=-yx-xlx3 +CvA 2 y~3

(61) =1 -y1A,-i(A2A+AA (6) X 1  -yl-ovA0 )xl-x2x3 '

A2 =-Y 2A2-iAlA*3 =-,x+l3

=-y33-iA*3 = -y3x3+xlx2

(7') A1 -y1 A-A 2
2  (7) c=-Yxl2

A2 =y2A2 (AA*+vAA 3), X2 =-Y 2 x2+xlx 2 +vA 0 x3 '

3 = Y3A3-ivA0A2  3= y 3x3 vA x2
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The systems given in Table 3.2 except for (7) have an

unstable focus in a bistable plane. All three-dimensional

ordinary differential equations having pseudo-chaotic

solutions so far have this type of equilibrium point.

Actually, we did not observe any pseudo-chaotic solutions

of (7).

Systems (1), (2), (4) and (7) have linear growth terms

which cause the equilibrium points to be unstable. Such

models are not widely accepted, since the linear growth

terms cannot be readily derived from the fundamental equa-

tions describing wave-wave interactions in plasmas. On the

other hand, introducing linear damping terms is natural

since any collective motion of plasmas is damped by particle

collisions. System (3) has only damping terms, and so does

system (6) if y1 > 0 ((3.43a)). Hence, in what follows, we

consider only these two cases where the instability is due

to an external wave (parametric instability).

Now, we combine the sufficient conditions for the

convergence of the trajectories to E (Table 2.7 and (S.2.3))

with the conditions for the existence of global periodic or

chaotic solutions in the X-space ((3.41), (3.43a)).

V, 3.3.1 Sufficient Conditions for Convergence of E(t) to 6

We now recall the sufficient conditions for E(t) to

converges to 6 as t-. Rewriting the equation (3) in

Table 2.7,
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IA2 12+21A 3 1
2 < (Yl+Y2 ){(2y 2+y3)p3-21vA 0 1}/(p3+p 4),

IIA1l
2-21A 3121 < (Y+Y2){(21 +y3)p4-21vA 0 1}/(p+p4), (3.45)

IRA 01 < (yl+y2+y3)/(p3+P4).

For system (6), by choosing P2 and P4 satisfying

P4 /P 2 = IvA0 1
/ (YI+y2+y3),

the right hand side of (6) in Table 2.7 is maximized:

A2 1
2+ 1A3 12 < y(y 2 y3 ) { -l-IvA 0 12 /(yl+y2 +y3 ) 2 }. (3.46)

We denote the set whose elements satisfy (3.45) (or (3.46))

by r. Equation (3.45) and (3.46) implies that the volume of

r decreases as IvA0 12 increases to its maximum value if all

the yi's are fixed. We also know that as yi, i= 1,2,3,

becomes large, the maximum value of IvA0 1
2 and the volume of

increase. As yi- ,  i= 1,2 or 3, and max{yi}/IvA0I

is extended to the whole Y-space.

3.3.2 Attractor in X-space

We obtain an attractor of (3) smaller than that

described by (2.27) in a manner similar to that given by

Treve [27] for the Lorenz system. Equation (2.27) was

obtained as follows:

(d/dt){2x 12+x 22+(x 3+3vA0)2}= -yl1 2 2y2x22y3(2x3 2+6vA0x3

5-2y (2x1
2 )-2y2x2

2-y3(x3+3vA0)
2+9y31vA0 1

2
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5-d{2x 1
2+x2

2 +(x 3 +3vA0 )2 }+9Y 3 vVAoI 2 , d min{2y1 ,2Y 2 ,Y3}. (3.47)

Hence, the set Q0

0 4 {X : 2x12+x2+(x3+3vA 0 )
2 < 9(y 3 /d)IvA0 I

2} (3.48)

is an attractor. Suppose that y3  d, and let y and y

increase while IvA 0j is fixed. Then, from (3.45) and (3.48),

Q0 C ' is satisfied for sufficiently large y1 and y 2. Hence,

by (S.2.3), there exists a set 0. Likewise, for suffi-

ciently large y 3 and fixed yl,y 2 and IvA0I, or for suffi-

ciently small IvA 0! and fixed Yiy 2 and y3, there exists a

set 0.

Taking the time derivative of I1 x 1 2 +(x 3+vA 02 and

i2 A x2 _(x3-vA0 ) 2

Il -d 111 +Y31vA0J
2, d 1 4min{2y1,Y 3 }, (3.49a)

2 2x2 2+y2 (x3-vA 0 ) 2-y 3 vA0 
2 ,  if 2 2 > 3 (

12 {i 3 2 3 vo122 2 y (3.49b)

-Y31 2-Y3 vA0 j  if 2 Y2< Y 3.

Thus, the sets QI and 2:

Q 1 {X : Xl 2+(x 3+vA0 )2 (y3/dl)IvA0 2 } ,  (3. 50a)

2 2 {X : -x 2 
2 +(x 3-vA0)2 jvA0

2}, (3.50b)

are attractors (it was assumed that 2Y2 <Y3 for Q2). Hence,

Q 4
0 n 01 is an attractor, and A4 02 n 1 nQ 2 is an attractor

if 2y2 <y 3 . Figure 3.5 gives sketches of A and A. Here,
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X 3

X2

xl

Figure 3.5 Attractors A and A of (3)

if 2y2 5 Y3 the dint at the bottom appears when (y3/dl) > 9.

3.3.3 Phase Locking and Chaotic Solutions

Here, we combine equation (3.45) with Figure 3.5 to

see when Ac E is satisfied. If A c ?, then by (S.2.3), there

exists a set 0. If A c F is not satisfied, the sufficient

conaition A r F for the existence of 0 is too strong or there

exists no 0.

Suppose that all the yi's are fixed. As mentioned in

the previous section, A c F is satisfied and there exists a

set 0 for sufficiently small IvA0f. In this case, phase

locking is of no importance, since the trajectory converges

to e as t- .
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We consider under what conditions ACris nct

satisfied. From (3.45),

JA 2 12+21A 3 1 2 <(2y 2 +y3 (y 1 +y2  (3.51a)

11A11 2_21A 31 2 1<(2y 1 +Y3 Cy 1 +Y 2 (3.51b)

1vA 0 1
2 < (2min{yl ,y2}+y3 )Cyl+y2+y3 ). ( 3.51c)

Hence, a necessary condition for A c r is as shown in Figure

3.6. Here, the projection of A onto the (x 2,x3 )-plane and

X3  X

=cmstant constant

Figure 3.6 Necessary Conditions for A cP

the (x1 ,x 3 )-plane satisfy (3.51a) and (3.51b), respectively.

V. Then, from (3.48) and (3.51),

IvA0 2 < (2y 2+Y3)(y1+Y2 )/2 {9(y 3/d) +(y 3/d 1)}/2-11-4(y 3/d)~1 ( 3.52a)

*IvA 0 12 < (2y 1+3 y ( 1 +Y2 I/l+(y 3/d 1 ) }2. (3.52b)
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Since d< dl, from (3.52),

IvA0 12 < (2y2 +Y3)(Y1 +Y2 )/16. (3.53)

As mentioned in Section 3.3.1, equation (3) has two

2 -2nontrivial equilibrium points P 's if A >A 0  if

Y2 >YI+Y
3
'

IvA01 2 = ly2 > (2Y2 +Y3 )(Yl+Y2)/16. (3.54)

2 2Hence, if y2 > Yl+Y3 ' (3.52) does not hold for A02 > A0

In other words, when system (3) has periodic or chaotic

2 "2solutions globally A > A0 ), the sufficient condition Ac r

is too strong so that we cannot determine whether there

exists a set 0.

It is likely that there may exist an attractor smaller

than A, since equation (3.52) is determined at points P and

Q in Figure 3.6. Equation (3.49) is derived by the method

similar to that in (3.47). The inequality corresponding to

the second inequality in (3.47) used to derive (3.49a) holds

with a large margin at P. Furthermore, since y2> YI+Y3 ' the

inequality corresponding to the second inequality in (3.47)

used to derive (3.49b) also holds with a large margin.

Later, we shall evaluate the size of attractor by direct

v integration of equation (3). On the other hand, the suffi-

cient condition (3.45) for the convergence of (t) to e is

obviously too strong. The maximum value of IvA0 1 satisfying

(3.45) is

74p

-' . 1



JvA0 1 2 (2y +y)My +y3 )/4,]v0max  1 (Y+3)(2 2

when P3 = IvA0 1/(2Y 2+Y3 ) and P4= lvA 0 1/(2YI+y 3 )
" Since

s(vA0 1max ) < 0 ((3.7)), IvA0Imax < vA0 I. Hence, if A0 >A 0 ,

the set 1 is empty.

Equation (6) has a solution which goes to infinity as

t -- on the x 1-axis. Hence, there is no natural boundary of

the trajectories of (6) as in the case of equation (3). On

the other hand, the numerical results in the next chapter

suggest that the pseudo-chaotic solutions of (6) are bounded

for certain values of parameters. If such trajectories are

contained in r ((3.46)), there exists a set 0. For other

values of parameters, the limit set of the pseudo-chaotic

solutions appears to be unbounded. If the limit set is

unbounded, it is not contained in F in the Y-space. Then,

the sufficient condition in (S.2.3) for the existence of 0

is too strong, or there does not exist a set 0.

3.3.4 Local Properties of Original Systems

In the previous sections, we did not prove the

existence of 0 for system (3') or (6'). In this section, we

study the local properties of these systems about certain

sets and the stablity of Z., which will provide some insight

on the convergence of the trajectories to E.

If e IvA0 12-Y 2 >0 in (3'), then the equilibrium set

consists of P0 Y {ey} and

EQ3 {Y: (r,r 2 ,r 3 ) ({(3/yI) ( lvA -$ )} {yIy3  IvA0 14 ) } , ),
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sin(81+ 2)=sin(B1-62- 3 )=l}, (3.55)

where vA0 < 0 is assumed. The characteristic equation of

dF/dY for (3') at any point P y EQ3 is O V (A)p(X)= 0,

where

p() { 2+(yl+y2y)+y3(Yl+y2) jvA01

/(IvA0I-e )-2 (y3/y1 )IvA0 Ie }, (3.56)

and P is defined in (3.3b). If Y2 > YI+Y3 and A2 A

equation (3.56) has a zero root and two stable roots. As

mentioned earlier, equation (3.3b) has a pair of complex
A2 > 2roots with positive real parts if y2 > YI+y3 and A 0 0

Hence, all the eigenvectors corresponding to the unstable

roots of (3.5b) lie on E at P y where 83 8. Thus, there is

no unstable manifold which is transverse to Z at its

corresponding Py.

For system (3'), the intersection of all the f 's is

the origin P OY" The characteristic equation of dF/dY at P0Y

is p0 () p0 (X) 0, where p0 is defined in (3.3a). We know

that (3.3a) has one positive and two negative real roots if

IvA0
12 > YiY2. Hence, there is a two-dimensional space ESy+

spanned by the eigenvectors corresponding to the unstable

eigenvalues at POY" As mentioned in Section 3.1.1, the

eigenspace in E8 corresponding to the unstable eigenvalues

of dF/dX at e is one dimensional. Therefore, ESy+ is

transverse to all the E P OY

'We shall show that ESy+ lies in E at POY, which
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implies that the trajectories tend to approach E about POY"

The positive root of (3.3a) is

X y+ =[{(yl-Y2 )
2+41vA 0 1

2 -(Yl+Y2 )]/2,

and

E + = {Y : Y= (-vA0nl, -vA0n2, Xy+n 2, Xy+i 0, 0)T ; nl,n 2 R}.

On the other hand, in E,

yly2-ZlZ2 = 0, (yly2+Z1Z2)y3+(zly 2-ylZ2)Z3 = 0. (3.57)

If Y cESy+, Y satisfies (3.57) for any (nl,2r). Hence,

ESy+ C E.
The matrix dF/dY at P0 Y has a block diagonal

representation. The submatrix corresponding to the (y3 ,z3 )-

space is diagonal and has a repeated eigenvalue -y3 " This

implies that e3 (t) tends to a constant about P OY On the

other hand, 61 (t) and (t) tend to vary about P0 Y, since

ESy+ does not coincide with the (y,,zl) or (y2 ,z2 )-space.

In the above sense, 8 is unstable about P

Finally, we examine the extent of the unstable

manifolds tangent to ESy+ at the origin, along the (y3,z3)-

direction. The characteristic equation of the linearized

vector field about E0 ( {Y: r1 = r2 = 0}) is

p(M) {X2+(y 1+Y2 )X+(yiY 2 - vA0 1
2 )+r3

212 = 0. (3.58)

Suppose that IvA0
2 > YiY 2, then (3.58) has unstable roots

for r < AvA0 1 -yiY2 , and has only stable roots for
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r 3
2 > IvA0 1 _yy 2

•

If IvA0 1 >Y 1 in (6'), the equilibrium set consists of

POY and

EQ6 = {Y:C(rlr 2,r3) ((Y 2Y 3)1 , {(IvA0 -YllY 31 , {(IvA0 1-Yl 2 } ),

sin(29 1) = sin( 1-62-03)= 11, (3.59)

where vA < 0 is assumed. The characteristic equation of

dF/dY for (6?) at any point Py in EQ6 is p(X)= p(X)p(X)= 0,

where

p(X) X{X 2+Xlyl+y2+I3+ IvAo )+2(y2+Y3) IvA0 I} = 0, (3.60)

and p is defined in (3.32b). Equation (3.60) does not have

unstable roots. Hence, the eigenvectors corresponding to
the unstable roots of (3.32b) lie in fe at Py where 63= B.

Thus, there is no unstable manifold which is transverse to

E at its corresponding P. At the origin, the characteris-

tic equation of dF/dY has only one unstable root. The

eigenspace corresponding to this root coincides with the

one-dimensional space S = {Y: r = r3 = 0, cos(21 )= 0,

sin(2e I ) = 11, which lies in £E for all 0.

For system (6'), the intersection of all the E 6s is

the surface S2 = {Y: r2 = r3 = 01. The characteristic equation

of the linearized vector field about S is

p(X) {X2+(y 2+Y 3)X+y 2Y 3-r1
21 2  0. (3.61)

The above equation has a repeated unstable root:
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y+ =[{(y2-Y3) 
2 +4r1 2} -(Y2+Y3)]/2,

if r1
2 >Y 2Y 3. Hence, if r1

2 >y 2Y 3, S2 is unstable.

Moreover, 62 (t) and 8 (t) tend to vary about S2, since the2 3 2
submatrix of the linearized vector field corresponding to

the (y2 ,z2 ,y3,z 3)-space is not diagonal except for the

origin. In this sense, E 8 is unstable about S

We have proved that for (3'), E is unstable about the

origin and for (6'), LE is unstable about S2* In (6'), the

trajectories always approach the origin before approaching

S2. Hence, the trajectories of (3') and (6') may not

converge to one of Es'S if the trajectories get arbitrarily

close to the origin without converging to the origin as

t- , that is,

lim sup JY(T) > 0,
t) T<t (3.62)

lim inf Y(T)I = 0,
t- T<t

where Y(t) = Y(t,Yo). The question is whether the nonconver-

gence of the trajectories to one of E's implies the noncon-

vergence of the trajectories to Z. Intuitively, it is less

likely that there exists a trajectory which converges to the

union of more than one Z6Is as t--, but it is difficult to

prove it.

3.3.5 Energy of Original Systems

F Let I4{21A1 12+IA 2 12+lA 3 12}/2 in system (3'). We call
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I an energy function of (3') for convenience. We shall see

the difference between the behaviors of I for the original

and reduced systems. Taking the time derivative of I,

I=-[2y{IAjl-(3v/4y1 )IvA0 Ilsin(el+e2)IIA2 1}
2

+{Y2-(3vIvA0 1 sin( 1+e2
) I)2/(8y 91) l1 2 +Y3 IA3 12], (3.63)

where V= sgn{vA 0 sin(1+62)1. Equation (3.63) is sketched in

Figure 3.7, where E is a constant I surface. Since IvA 0 12

> YiY2, the second term of the right hand side of (3.62) can

IA31 IA3 1

E E

I A2 I IA21

C /
/C,

1A11 Isin(e+e 2)1<1 1A1  Isin(e+e 2)1l=

Figure 3.7 Dynamics of Energy of (3')

be negative. Hence, we have an elliptic cone C :I 0, in

which the energy I increases, and outside which I decreases.

The line of foci and the radii of the cone vary as 81+82

varies. We assume that vA0 < 0. Then, if
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sin(1+e2 )< (8 /3)(yiy2) /IvA0I,

cone C does not exist and the energy I decreases. For (3)

or on E, sin( 1 +e2 )= ±1 and the cone C is fixed.

Taking the time derivative of I for (6'),

i=-{2(Y1 -vvAoIIsin261 I)IA1
2 +y 2 IA 2 12 +y3 IA 3 1 2}, (3.64)

where v= -sgn(vA 0sin28 1 ). Since IvA0I >Y, for chaotic

motion, the first term of the right hand side of (3.64) can

be negative. Hence, we also have an elliptic cone C as in

the case of (3'). The line of foci is fixed at the JA1 -

axis, and the radii of cone vary as 81 varies. If sin261

< y1 /IvA0j, I always decreases. For (6') or on E, sin28 =±i

and the cone C fixed.

',
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CHAPTER 4

NUMERICAL EXPERIMENTS

In this chapter, we present some numerical results for

equations (3'),(3),(6') and (6). An attempt will be made to

correlate some of the numerical results with the analytical

results given in the previous chapters. Equation (3) has

already been studied numerically by Pikovskii et al. [12J.

In the calculations, we use the normalized time yt, where

y= max{YiY 2,y 3} for (3') and (3), and Y = max{Y 2,Y 31 for

(6') and (6). In what follows, we denote the normalized

time by t also. By the substitutions:

Ai/y Ai , i= 0,1,2,3,

xi/Y xi, Yi/Y -" Yi' i = 1, 2,93,

we obtain a system described by the same equation except for

y 1. Any equations derived in the previous chapters are

not changed by this substitution.

4.1 Behavior of Original Systems (3') and (6')

We fix the values of parameters as follows :y1 = Y3 =

0.25, y2 = 1. These are the values used by Pikovskii et al.

[12] for the model (1.4) describing the parametric interac-

tion of a whistler with ion sound and plasma oscillations

near the lower hybrid resonance combined with the three-wave
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interaction involving another plasma wave synchronous to the

parametrically excited pair. For these values, the condi-

tion Y2 > yI+y3 is satisfied. Hence, the stability of the

equilibrium points is as follows: For IvA0 < IvA0I= 0.5,

P0 is stable and P does not exist ; for 0.5< JvA 0 1 < IvA0 1

= 1.259, P0 is unstable and P is stable ; and for IvA0 1

> 1.259, P0 and P are unstable.

The condition (3.45) is violated for IvA0 1 > 1.259.

On the other hand, numerical results show that the phases

are nearly locked for IvA0 1 < 3.0 at least for 150 time units.

The plots of cos( 1 (t)-e 2 (t)-B 3 (t)) and (Re(A1 (t))/IvA0 1,

Im(A1 (t))/IvA0I) are shown in Figures 4.1 and 4.2, respect-

ively. As IvA0 1 increases from 3.0, the nearly phase-locked

state appears to be unstable. At IvA0 1 = 3.2, an abrupt

phase change occurs occasionally in an unpredictable manner

(Fig.4.1(a),4.2(a),(a')). In Figure 4.2(a'), we do not

observe any abrupt phase change for 150 time units, while in

(a) (corresponding to Fig.4.1(a)), it is observed twice.

From this observation, it seems to be difficult to determine

numerically the critical value of IvA0 1 at which such a

phase change takes place. For, even if no abrupt phase

change is observed over a long time interval, we do not know

whether it will occur at the next moment. At IvA0 1= 3.5,

the abrupt phase change occurs more often (Fig.4.1(b),

4.2(b)). At IvA0 1= 4.0, the phase varies in a complicated

J manner most of the time (Fig.4.1(c),4.2(c)). At IvA0 1= 8.0,
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the phase varies periodically with time (Fig.4.1(d),4.2(d)).

Thus, for IvA0 1 3.5, the reduced system (3) does not

represent the original system (3') most of the time. For

IRA01S 3.2, system (3) may represent (3') most of the time,

but not asymptotically.

It is observed that the abrupt phase changes occur

only about Z near the origin. This is consistent with the

result in Section 3.3.4 where it was shown that there exists

an unstable manifold at Z if r3
2 < !vA0 1

2-yy 2 . The extent
0 3 -l 2

of this manifold is increased as IvA0I increases, which may

be one of the reasons why the abrupt phase changes occur

more often as IvA0 1 increases. According to the observation,

the hypothesis (3.62) appears to be satisfied, that is, the

trajectories always return to an arbitrary neighborhood of

the origin. Furthermore, the numerical results show that

2^2as A decreases to A0  ((3.8)), the trajectories are

trapped in a smaller neighborhood of E, but they do not

converge to E as t-+.

For system (6'), we fix the values of parameters as

follows: Y1 = Y2= 0.4 and Y3= 1. These values are reasonable

for the model such that plasma wave 1 generated by an

external wave decays into another plasma wave 2 and an ion

acoustic wave 3. The numerical results show that for a wide

range of parameter values, the phase becomes locked rapidly

and remain locked (within the accuracy of computation).

The phase is locked even when condition (3.47) is not
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satisfied.

As mentioned in Section 3.3.4, the trajectories

approach the origin before approaching S2 . From the obser-

vation, equation (3.62) appears to be satisfied for certain

values of IvA0 1. Therefore, the trajectories may return to

an arbitrary neighborhood of S2 repeatedly. According to

the analysis in Section 3.3.4, E is unstable about S2.

Hence, the abrupt phase changes may occur about S2 . But,

actually, we did not observe any abrupt phase changes for

(3 1) for a wide range of parameter values. This result may

be explained as follows. Since the trajectories approach Z

exponentially about the origin (Section 2.3), therefore as

a trajectory gets closer to $2' it is closer to Z. From the

continuity of the vector field, the vector F(Y) tends to

parallel to i8 as Y approaches Z except in the neighborhood

of a certain set containing S2 and EQ6. The volume of such

a neighborhood is smaller, as a smaller neighborhood of Z

is considered. Hence, it is less likely that the trajectory

moves transverse to E8 as it gets closer to Z. That is, it

is less likely that about S2' the trajectory moves across

E 's and the abrupt phase change occurs.

4.2 Behavior of Reduced Systems (3) and (6)

In what follows, we consider only the reduced system

(3) and (6). For (3), we assume that 1.259 IvA0I 3.2 for

which the system may have a chaotic solution, and describes
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(3') approximately most of the time, but not asymptotically

as t- . For (6), we assume that IvA0I > 0.4 for which (6)

may have a chaotic solution and describes the asymptotic

behavior of (6').

4.2.1 System (3)

The projection of the trajectory onto the (xlx 3)-

plane is shown in Figure 4.3. At each value of vA0 , there

appears a pseudo-chaotic attractor. According to Pikovskii

et al. [12], periodic solutions appear for IvAolz 3.35.

But, as mentioned earlier, equation (3) does not describe

equation (3') approximately most of the time for such values

of IvAo1.

The attractors in the Figure 4.3 resemble two-dimen-

sional surfaces. But, their cross sections have a complica-

ted structure. Let us consider a connected set Q on a plane

PL which is transverse to the trajectories as shown in

Figure 4.4. In equation (3), the phase volume shrinks

uniformly, since

1 .....Z +1x] = _(Y +y +Y ) < 0. (4.1)ax 1  ax2 ax3

Hence, the area of Q shrinks exponentially to zero as t-.

Simultaneously, as shown in Figure 4.3, Q is stretched in

one direction while moving around the nontrivial equilibrium

point P, (Fig.4.3(a)). Hence, compression of Q must take

place along another direction. In Figure 4.3(a), Q is split
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Figure 4.4 First Return Mapping

into two parts at the origin and then folded. In (b), Q is

also bent along those portions of the trajectories which are

close to Pv. If we consider a first return mapping from PL

into PL, Q is finally mapped into a set exhibiting a Cantor-

set like structure after stretching, splitting and bending

infinitely many times.

4.2.2 System (6)

Here, a detailed numerical study for system (6) is

made. The projection of the trajectories onto the (XlX3

plane is shown in Figure 4.5. In equation (6), the phase

volume also shrinks uniformly if IvA0I < y+Y2 +Y3 1.8, since

1. +-- + : ivA0I-(yl+y2 +y3) < 0. (4.2)
ax 1  ax 2  axx3
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As y' IvA0 _l = 0.2, the solution is pseudo-chaotic

(see Fig.4.5(a)). A set Q as defined in the previous

section is split at the origin and is bent along the closest

trajectory to P . The closure of the attractor seems to

contain the x1 -axis, which means that the attractor is

unbounded. As IvA0 1 increases, the trajectory tends to

leave P V more rapidly in a spiral manner. Actually, the
KU

ratio r of the frequency and the growth rate of the spiral

trajectory at P decreases as IvA01 increases since from
K-I

equation (3.33b),

dr2  (r2-3)2 (r2+9)(y l+y2+y3-lvA 0I)
2 {2(IvA0I-y!)+y 2+Y3

}

dvAol 4(1+r
2 )(IvA01-y )

2y2Y3 <

Thus, at y3 =0.4, the pseudo-chaotic attractor is far from

the origin (Fig4.5(b)). Hence, the set Q is only bent along

the trajectory closest to P V"At y' = 0.48811-0.4896 (Fig.
Kl*

4.5(d)), two pseudo-chaotic attractors appear. They are

linked, but disconnected with each other. In the figure,

one of them is omitted. The omitted one is symmetric to the

given one with respect to a 1800 rotation around the x 2-axis.

At y' =0.4875, these two pseudo-chaotic attractors have a

yo small intersection so that the trajectory moves from one to

the other infrequently as shown in Figure 4.5(c). At y'

0.4896,%0.4899, a three-loop pseudo-chaotic solution appears

(Fig.4.5(e)). At y = 0.49, we have a three-loop periodic

solution (Fig.4.5(f)), where the trajectory in a transient
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state should be neglected. At y10.4910.495, a pseudo-

chaotic attractor of the type in Figure 4.5(d) appears again

(Fig.4.5(g)). At y 0.4955, an eight-loop solution appears

(Fig.4.5(h)). At y' =0.496,%0.497 and 0.498, we have a

four-loop pseudo-chaotic attractor (Fig.4.5(i)) and a stable

four-loop periodic solution (Fig.4.5(j)), respectively.

Furthermore, at y' =0.498B%0.5 and 0.51, we have a two-loop

pseudo-chaotic attractor (Fig.4.5(k)) and a two-loop

periodic solution (Fig.4.5(1)), respectively. At y{ =0.52

0.56, there is a single-loop periodic solution (Fig.4.5

(m)). This solution is not accompanied by a single-loop

pseudo-chaotic solution. As yincreases, this asymmetrical

single-loop periodic solution gradually shifts, and finally,

a symmetrical one appears at Y1 >0.6.

4.2.3 Sizes of Attractors

In Figure 3.6, P= (0, -8 vA0 , -2vA 0 ). Hence, for the

values of vA0 given in Figures 4.3(a),(b) and (c), P=

(0,2.53,3.56),(0,7.07,5.0) and (0,9.05,6.4), respectively.

From the numerical experiments, the maximum values of 1x2 (t)I

and x 3(t) with respect to t are approximately (2.0,2.0),

(4.0,4.0) and (4.5,5.0), respectively. Hence, the sizes of

attractors are smaller than A as predicted in Section 3.3.3.

Rewriting equation (3.46) for y2 
= 0.4, Y3 

= 1,

JA2 1
2+A 3 12 <1.4y1 {l-IvA0 12 /(Y1 +l.4)

2}. (4.4)

Hence, for fixed y{ = fvA 0 -yI, the size of P depends on yI.
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Assume that y? = 0.489, for instance. Then, from Figure 4.5

(d), the maximum value of JA2 1
2+1A3 1

2 is approximately 5.49.

The right hard side of (4.4) has a maximum value of 2.546

in the limit Y1 4.
" Hence, equation (4.4) is not satisfied.

This result implies that the sufficient condition (3.46) for

the convergence of E(t) to 6 is not applicable.

4.2.4 Periodic Solutions and Bifurcations

The asy 3tric periodic solution in Figure 4.5(m)
successively bifurcates as y' decreases. The observed

1

transition for yjE [0.489,0.5) resembles that of the well

known one-dimensional mapping [21,22]

x(k+l) = G(x(k))4- rx(k)(l-x(k)) (4.5)

which has properties shared by more general models [28].

Actually, we obtain a first return mapping of the trajectory

for y'= 0.489 in Figure 5.1(d), which seems to satisfy the

conditions for the models in reference [28].

Figure 4.6 is a schematic diagram of bifurcation

phenomena of system (6). Here, the circles represent

actually observed periodic solutions, but the branching is

conjectured from that of (4.5). The broken lines are

unstable closed orbits and the solid lines are stable closed

orbits. From Figure 4.6, the bifurcation phenomena of (6)

for y1 E [0.489,0.55) seem to be explainable by a one-dimen-

sional mapping of type (4.5), although it is a rough

approximation.
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Figure 4.6 Schematic Diagram of Bifurcation of (6)

According to [21,22,28], the "chaos" appears when the

bifurcation parameter exceeds an accumulation point of the

sequences of bifurcation values, which correspond to Figures

4.5(d) and (g). For other values of parameters, stable

periodic orbits appear. Hence, the three-loop pseudo-

chaotic solutions for Y' =0.4
8 9 6 ,O0.4 8 9 9 seem to be 3x2 n

time-loop stable periodic orbits, and the two and four-loop

pseudo-chaotic solutions in Figures 4.5(i) and (k) seem to

be converging to a stable periodic orbit.

4.3 Simple Models Describing Attractors
V

In this section, we consider the existence and the

transition of the attractors shown in Figures 4.3 and 4.5.

We consider only the attractors in which there occurs the

splitting and bending mentioned earlier, since such mechan-
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isms may lead to chaotic behavior. It is too difficult to

verify mathematically the existence and transition of the

attractors. Therefore, we introduce a simple two-dimen-

sional model whose behavior is similar to that of (3) and

(6). This model is only a schematic one , but is useful to

explain the behavior of the attractors and to understand the

relation between the trajectories in Figures 4.3 and 4.5

and the first return mappings shown in Chapter 5.

We consider half planes K1 and K2 containing the

unstable foci F1 and F2 , respectively (Fig.4.7 and 4.8).

The trajectories move away from F1 (resp., F2) in a spiral

manner on K1 (2ep., K2 ) and jump to the line L2 (resp., L )

parallel to the x2-axis in Figure 4.7 and to the x3-axis in

Figure 4.8. The basic assumptions are as follows:

(A.4.1) Foci F1 and F2 move upward slowly as IvA0 1

increases so that it crosses L1 and L2, respectively;

(A.4.2) The ratio r of the frequency and the growth

rate of the spiral trajectory about the nontrivial

equilibrium points decreases rapidly as JvA 0 1

increases;

(A.4.3) Suppose that t1 < t2, Xi = X(ti ) ELi, i = 1,2

and X(t) 0 L1 ,L 2 for all t E (tlt 2 ). Then, 1X2 11/1X 111

decreases monotonically as X1 increases, and if

1X2 11/1X 111 >1 for sufficiently small JX111, IX 2 1/IXln= 1

for a certain value of 11X111. Here, suffices 1 and 2

can be exchanged.
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Actually for (6), the x2 and x., components of P increase2 K1

perpendicularly to the x1 -axis as IvA 0 1 increases. For (3),

P1 behaves in a similar way for sufficiently large IvA 0 1.

Numerical results and equation (4.3) show that (A.4.2) is

reasonable for the models describing (3) and (6).

Assumption (A.4.3) implies that the trajectory does not

diverge as it bounces between L1 and L2 without passing

through F10 or F 20. We shall introduce other assumptions

for each of (3) and (6) later.

This model resembles a "universal circuit" used in

reference [29], but is not obtained by taking limits or

choosing specific values of parameters in (3) or (6). That

is, introducing such a model is not justified mathematically

or from the physical point of view. We use this model to

avoid the difficulties in studying equations (3) and (6)

directly.

For the model describing (3), we assume that the

trajectory converging to the origin as t --- encircles F1

(resp., F2 ) and hits L2 (resp., L1 ) at B2 (resp., B1 ) near

F2 (resp., F1 ). Then, by decreasing r according to assump-

tion (A.4.2), we obtain the transition as shown in Figure

4.7. Here, the broken and dotted lines are trajectories,

and at G1 (resp., G2 ), they are tangent to L1 (resp., L2).

The shadowed regions in Figure 4.7 are obviously local

attractors. In (a) and (b), they are also global attractors

by assumption (A.4.3). Figures 4.7(a)-(c) correspond to
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Figures 4.3(a)-(c), respectively. In Figure 4.7(a), the

line segment PIQI (corresponding to the set Q in Fig.4.4) is

split at the origin. In (b), PIQI is also bent at G1 and G2.

By assumption (A.4.1) and (A.4.2), as IvA0 1 increases,

points Ai and Bi in (a) move upward more rapidly than Gi,

and Ci moves downward first, hits the origin and then moves

upward. We assume that Ci hits the origin after Bi and Gi

coincide at some value of IvA0 1. When Bi coincides with Gi,

the attractor of type (a) disappears. When Bi is above Gi,

there appears as an attractor of type (b) or a multi-loop

attractor of type (c). After Ci hits the origin, the

situation is the same as that of the model describing (6).

The model describing (6) is shown in Figure 4.8. We

assume that the x -axis is a trajectory and x (t)=

xl(O)exp(ylt), y{ >0. Hence, in (a), the attractor is

unbounded and there exist various types of trajectory behav-

ior as shown in the figure. The line segment PIQ 1 is split

at the origin and bent at G1 and G2* This case corresponds

to Figure 4.5(a).

As IvA0 1 increases, Fi moves upward and Ci moves

downward, hits the origin and then moves upward. Assume

that all the points are located as shown in (b). Such an

attractor corresponds to that in Figure 4.5(b). The

attractor is bounded, and the line segment PIQ 1 is bent at

G..

As IvA0 1 increases further, Ai, B. and Ci approach G.
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Assume that Ai and C. approach Gi more rapidly than Bi.

Then, Ai and Bi exchange their positions at a certain value

of IvA0 1, before Ai and Ci hit Gi . Then, we have an

attractor of type (c), where another attractor obtained by

1800 rotation about the x2-axis is omitted. Hence, the line

segment E1H1 contains B1 C1 (which is omitted in the figure),

i.e., the attractors are interlinked and disconnected. When

Ai is slightly above Bi, we have an attractor of type (b)

corresponding to Figure 4.5(c).

When Ai is slightly above Gi, we have a two-loop

attractor as shown in (d). Moreover, in the attractor of

type (c), we may have multi-loop attractors. Assume that

the attractor is n p-loop and encircles G2 ne times on K2.

Obviously, for the existence of an attractor in which there

occurs a bending, A' is above B' if n -n is odd, and A isug 2  2 p e

below if np-n e is even (Figure 4.9). Practically, it is

L2  L2

B2  -B 2

A2-

F2  
A2

AlB'
2

-I F2
, i'
o4-

i 
G2 

CI

C2N C2

Figure 4.9 Multi-loop Attractors
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likely that there exists a stable periodic solution in such

a small-width multi-loop attractor. In the numerical

experiment, we did not find any evidence for the existence

of such a multi-loop attractor.

If C2 is above G2 for certain value of IvA0 1 as shown

in (e), the attractor of type (c) does not exist. Finally,

assume that C i is above Gi as shown in f). From assumption

(A.4.3), there exists a point Di where BX2 1/Xlll= 1. Then,

the mapping of C2 D2 (resp., C1D1 ) into C1D1 (resp., C2D2 ) is

a contraction mapping and we have a single-loop symmetric

stable periodic solution corresponding to Figure 4.5(1).

1
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CHAPTER 5

FIRST RETURN MAPPINGS AND STATISTICAL PROPERTIES

Most of the analytical works on the chaotic solutions

of nonlinear systems have been devoted primarily to discrete-

time systems [21,22,28,30-32]. For continuous-time systems

with dimension greater than two, an analytical approach to

the problem of existence of chaotic solutions appears to be

quite formidable. Up to the present time, most of the works

on such systems resort to numerical experimentation. The

numerical results show that many three-dimensional

continuous-time systems have pseudo-chaotic solutions lying

in sets resembling two-dimensional surfaces in the system's

state space. For such cases, we obtain a quasi one-

dimensional mapping by taking a first return mapping (Fig.

4.4). In this chapter, we study such a quasi one-dimensional

mapping for simplicity.

5.1 First Return Mappings of (3) and (6)

First return mappings of the trajectories in Figures

4.3(a),(b) and 4.5(a),(b),(d) are given in Figures 5.1(a)-

(e), respectively. For the trajectories in Figures 4.3(a)
"., +

and (b), we consider mappings from T+= {X : = 2  X2e x3 >x
-+ ±)

or T = {X: x2 = Xe x3 > x 3e to T+ or T, where (xe ,X2e x3e
, +

are equilibrium points defined in (3.2) and x. > 0, x < 0,ie > e

i= 1,2. Such a mapping is the first return mapping of the
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trajectories X= (mx1(t)kIx 2(t)I,x 3 (t)). The behaviors of

the modified trajectories are identical to those of the

original ones because of the system's symmetry around the

For Figure 5.1(c), we choose T+= {X: x =(X-X e)

++ _ X-i)
XX2e/(X e4), Xl < < 4} and T_ {X x2  C X-X)x2e -- e - e 2

/(Xle+4), -4< x < Xle}, where (X~eX eX 3 e) are defined in
+

(3.31) and x >0, X <0, i= 1,3. In (d), T+= {X: x = 0,

x1 >01 and T_= {X: x 3 = 0, x1 <0}. In (e), we choose a

mapping from T+ = {X: x 3 = 0, x 1 > 0} into itself. We should

note that T± are transverse to the trajectories. The

intersection of the trajectories with T+ corresponds to

those on PiQi, i= 1,2 in Figures 4.7 and 4.8.

The mappings given in Figures 5.1(a), (c) and (e)

resemble one-dimensional mappings. In (b) and (d), we

observe that the mappings are more complicated. For (b) and

(d), there exist no simple planes like T± on which we have

a first return mapping resembling an one-dimensional mapping.

This is due to the fact that the bent Q (Fig.4.4) is not

completely folded after Q encircles the origin from T+ (or

T_) to T_ (or T+).

In Figures 5.1(a)-(c), the whole interval of x1

contains the points which describe the trajectories

V converging to the origin as t --. Near the origin, the

velocity can be arbitrarily small. Hence, for these cases,

the continuous-time systems (3) and (6) cannot be replaced

by discrete-time systems. In (d) and (e), there are no such
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points so that there is a supremum for the time in which the

trajectories return to T+.

In Figures 5.1(a')-(e'), we show one-dimensional

mappings of simple models in Figures 4.7 and 4.8. The half

planes T+ and T_ correspond to PIQ1 and P2Q2 in Figures 4.7

and 4.8, respectively. These mappings are useful in

conjecturing the behavior of the first return mappings of

(3) and (6) at those points which are not observed in the

experiment.

5.2 One-Dimensional Mappings

We regard the first return mappings in Figures 5.1(a),

(c) and (e) as one-dimensional discrete-time systems. As

mentioned in the previous section, this means that for (a)

and (c), the temporal behaviors of the continuous-time

versions of systems (3) and (6) are not considered.

One-dimensional discrete-time systems having chaotic

solutions have been studied extensively in mathematics [28,

30-32] and other areas [21,22]. Here, we present some of

the known results and discuss their applicability to the

systems under consideration.

5.2.1 Period Three Implies Chaos

The following theorem is due to Li and Yorke [31]:

(S.5.1) Let J be an interval and let G: J-J be

continuous. Assume that there is a point ae J for
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r

which the points b= G(a), c= G 2(a) and d= G 3(a)

satisfy

d!a< b < c (or d ? a> b > c).

Then,

TI: for every k= 1,2,..., there is a periodic point

in J having period k.

Furthermore,

T2: there is an uncountable set S c j (contains no

periodic points), which satisfies the following

conditions:

(A) For every p,q E S with p 4 q,

(T2.1) lim sup IGn(p) -Gn(q)l > 0
n-w

and

(T2.2) lim inf [Gn(p)- Gn(q)I = 0
n-w

(B) For every p E S and periodic point qe J,

(T2.3) lim sup IGn(p)- Gn(q)l = 0

If there is a periodic point with period 3, then the

hypothesis of the theorem are satisfied. Statement (A)

means two sequences G n(p)} and {G n(q)1, p,q4E S can be made

arbitrarily close to each other for sufficiently large n,

but they do not converge to each other as n-. Statement

(B) implies that a sequence {Gn(p)), poE S does not converge

to any periodic points. If S is an attractor, it is

obviously a strange attractor.
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The mappings in Figures 5.1(a),(c),(e) and (a')-(e')

satisfy the hypotheses of (S.5.1), and therefore, there

exists a S for each of them. Theorem (S.5.1) does not give

any information about the size of S. If there is a stable

periodic point PS E J, then there is a neighborhood N(ps) of

pS such that G N(p) E N(ps) implies G n(p) E A(ps) for all n ? N.

At the present time, it is not known whether the following

statement is true or false:

(S.5.2) The existence of a stable periodic point

PS EV, where V is an attractor, implies that the

sequence {Gn(p)} converges to pS as n -- for almost

all p E V.

If this statement is true, then even if the trajectories in

the transient state appears to be very complicated, there is

no strange attractor.

Many examples of one-dimensional mappings derived from

actual systems have points PS at which dG(p)/dp= 0 as that

in Figure 5.1(e). There may exist a stable periodic

solution pS near PS. Experimental results show that there

exists a complicated solution which is not periodic (within

the accuracy of computation). This does not necessarily

mean the nonexistence of pS or that (S.5.2) is false. For,

even if there exists a pS and (S.5.2) is true, a small

perturbation in the system may shift the trajectory out of

N(ps) if the size of N(ps) is very small. In other words,
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from the practical standpoint, the existence of p. may be

ignored for certain cases.

We consider the mappings in Figures 5.1(b),(d). In

these cases, the mapping cannot be approximated by an one-

dimensional mapping especially about pS. We do not know how

such a structure about PS affect the existence or nonexist-

ence of stable periodic orbits in the three-dimensional

space. It should be noted that the mapping in (e) also has

such a structure about PS which is not so explicit as those

of (b) and (d).

5.2.2 Statistical Properties of {Gn(P)}

We consider the following theorem given in [31]:

(S.5.3) Let G: J- J satisfy the following conditions:

(A) G is continuous.

(B) Except at one point p e J, F is twice continuouly

differentiable.

(C) inf IdG(q)/dql > 1.
qcJ,pp

Then, there is a unique function g : J-[0,-), such

that for almost all pe J, g is the density of p.

Here, g is defined to be a density of p if
V

0(p[plP 2J) = lim 0(p,N,[plP 2 ]) fP2g(q)dq

for all plP 2 E J, Pl
< P2' where 0(p,N,[plp2]) is the

fraction of the iterates {p,...,GNo [., (P)} 1Of P E [plP2] .

Moreover, the set J.= {q : g(q) >O} is an interval, and
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J. is the positive limit set of almost all initial

point pE J.

The mapping in Figure 5.1(a') satisfies the hypotheses

of (S.5.3). From (S.5.3), the behavior of {Gn(p)) is

described schematically as follows. Choose an arbitrary

pe J. As n--, G n(p) wanders around in J and finally,

{Gn(p)} fills an interval J.. The density g(p) of points in

the limit n -- is unique and independent of almost all

initial points pe J, and is mapped to the same g(q) by G.

We can predict the behavior of the system in the limit n-

only in some probabilistic sense although the system is

deterministic. For example, we know that the probability

for the point to be in [plp2] in the limit n-*o is

fP2g(q)dq. Very little is known for other mappings which do

not satisfy the hypotheses of (S.5.3).

The mapping in Figure 5.1(c') is peculiar, since it

has a countably infinite number of discontinuities. If we
~+

choose T+= {X: x 1 > Xle, x 2 = X2e} and T_= {X x < Xle ,

x = X e, then we have a one-dimensional mapping in Figure
2 2e

5.1(f) and its corresponding mapping (f') for the simple

model. Here, the domain of mapping is an unbounded interval.

va We assume that a density g(p) of p exists for this system,

then g(p) -0 as p-0. We know that the magnitude of any

physical parameter must be finite. Here, p can be infinite,

but with zero probability. Hence, there seems to be no

contradiction to the requirement as a physical model. Such
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an interpretation may provide new types of physical models.

For, the magnitude of variables have been conventionally

classified only two cases, that is, bounded or diverging to

infinity, and no concept of probability has been involved

for such a simple deterministic model.

5.3 Statistical Properties of (3) and (6)

Quasi one-dimensional mappings obtained experimen-

tally from (3) and (6) are useful to understand the behavior

of (3) and (6). But, as mentioned in the previous sections,

it is difficult to study their statistical properties

analytically. The only one-dimensional mapping whose statis-

tical property is well-known [22] is given by

2p, 0 s p s 1/2,

G~p) :(5.1)
2(1-p), 1/2 < p S 1.

It is known that if pe [0,1] is described by a binary

sequence {b n}, the map G acts on {b n } like a shift map which

shifts terms of the sequence to the left (Bernoulli shifts).

A Bernoulli shift is a stochastic system (i.e., the system

behavior is completely unpredictable in a certain sense

[33]). For other maps, very little is known. Here, we try

to obtain the statistical properties of (3) and (6) numeri-

cally.

5.3.1 Mixing Property

1
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If there is an attractor A which is ergodic and p(X)

is a defined measure on A, then for any smooth function u,

SfAU(X' )dp(X ') : lim (1/T) fTdtu(X(t,X0)

T 00

for almost all initial conditions X0. The system has a

mixing property, if for any smooth functions u and v,

R(T) - fAu(X(T,X'))v(X')d(X ')

= uv- lim (1/T)f[dtu(X(T+tXo))v(x(txo))

for almost all X0 and R(T) -0 as T As mentioned in

Chapter 1, this property implies that the time evolution of

the trajectories is highly sensitive to the initial

condition, which is an important property of the turbulent

solutions. The system having a mixing property is a

stochastic system in a weaker sense than a Bernoulli shift.

We examined numerically R(T) with u(X) = v(X) =x I. The

results for Figures 5.1(a)-(e) are shown in Figures 5.2(a)-

(e), respectively. We can not try all smooth functions u

and v, but the results in Figure 5.2 suggest that the

systems have the mixing properties for certain values of

parameters.

5.3.2 Unbounded Solutions of System (6)

As mentioned earlier, system (6) with yj': 0.2 has an

unbounded solution. If its first return mapping as a

discrete-time system has a density g(p) of p, g(p) - 0 as
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p -0. As a continuous-time system, system (6) must satisfy

the physical requirement that the time-averaged energy is

finite. We consider the ratio:

PT(x) 0 measure{t : x (t) ? X, 0 t s T}/T.

T 1

In Figure 5.3, we have plotted those values of X for which

P is insensitive to the initial conditions. As T increases,

the interval of such values of X also increases in size.

Hence, it is likely that as T -- , PT approaches P. which is

independent of the initial conditions and goes to zero as

lXI
If P. exists and decays more rapidly than 1/X 3 , and if

E 4 lim Ci/T)f xl(t) 2dt = fCO X2 P (X)dX

is satisfied, then from the physical point of view, we can

state as follows: the energy of wave 1 of system (6) can be

arbitrarily large over a finite time interval, but its time

duration is so short that the time-averaged energy E1 is

finite.

Equation (6) is obtained by neglecting higher order

terms with small coupling coefficients. Hence, if GX(t) is

sufficiently large, model (6) is not valid. From the above

argument, the time duration for which x (t) > X becomes

smaller in the ratio PT(X) as X becomes large. Hence, if

the range for the approximation is large, we can state that
.1

model (6) is valid most of the time.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of Results

In this work, we have studied the chaotic behaviors of

wave-wave interacting systems involving at most four waves

(Table 2.2). These systems can be described by a real three-

dimensional equation on a certain set in the state space,

where the phases of the waves are locked for .2')-(7') (Sec.

2.2). We have found that there remained only six systems of

positive-energy waves (Table 3.2), if we discard the cases

which have the following property : The corresponding reduced

equations have only one equilibrium point or a stable

equilibrium point, or they have an open set R0 in the state

space such that if X0 E R0 , X(t) = X(t,X 0 ) E R0 for all t ? 0

and diverges to infinity as t-. It is very likely that

the reduced equations (l)-(4),(6) have chaotic solutions for

almost all initial conditions in the state space. System

(3') and (6') have only linear damping terms, and the

instability of their equilibrium points is due to the

external wave. The numerical experiment was done only for

these two cases.

We obtained the conditions (Table 2.7 and (S.2.3)) for

asymptotic phase locking of (2')-(7') as t -, which depend

on the sizes of the attractors for the trajectories. But,
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the conditions are too strong for determining the occurrence

of asymptotic phase locking of (3') and (6') as t- - for the

values of parameters at which chaotic solutions may appear.

The numerical experiments show that system (6') has a strong

tendency of asymptotic phase locking as t--. In (3'), for

certain values of parameters, the phases are nearly locked

most of the time, but not asymptotically locked as t- .

Periodic and pseudo-chaotic solutions of system (3)

and especially (6) were studied numerically in detail. For

certain values of parameters, the first return mappings of

the trajectories have properties which are similar to those

of the well-known one-dimensional mappings having parabolic

graphs. The transitions of attractors are schematically

explained by using the simple models in Figures 4.7 and 4.8.

Finally, we considered the statistical properties of

the first return mappings of the trajectories of (3) and (6)

using the known theorems for simple one-dimensional discrete

models. Numerical results suggest that system (3) and (6)

have a mixing property for certain values of parameters,

which is an important property of the turbulent states.

6.2 Remarks on Further Research

We have shown that some wave-wave interacting systems

with a few modes have chaotic behaviors. As mentioned

earlier, no additional assumption for randomness was

necessary in these systems. In this new approach to plasma
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turbulence, there are still many unresolved basic questions.

One of the questions is how to relate the statistical

properties of the simple systems with a few modes to the

turbulent state in plasmas. In actual plasmas, there are a

large number of coupled modes. If a plasma in a turbulent

state consists of systems which are weakly coupled with each

other and each of which is a few-mode interaction having a

chaotic motion, we can regard each system as a quasi-

particle, since the phase of the system varies randomly.

Then, the whole system may be described by a kinetic

equation of quasi-particles [11]. If many waves are

strongly coupled, we cannot use directly the results for a

few-mode system to analyze the whole system. It has been

shown that a multi-mode system has behavior similar to that

of a few-mode system [10]. But, very little is known about

general multi-mode systems.

There are also unresolved questions about the simple

systems studied in this work. First of all, we still do not

know exactly under what conditions the reduced equations

describe the asymptotic behaviors of the original systems.

Furthermore, the relationship between the reduced and

original systems is not known if the phases are not locked

asymptotically as t- . None of the statistical properties

mentioned in Chapter 4 are proved mathematically. The power

spectrum of the variables is one of the important quantities

from the physical standpoint. But, at the present time, it
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is too difficult to obtain the power spectrum of the chaotic

solutions of such systems analytically. Thus, further

studies must be done before the turbulent behavior of

plasmas can be analyzed via the new approach considered in

this work.
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APPENDIX

PIKOVSKII-RABINOVICH-TRARHTENGERTS' MODEL

Let us assume that all the yi's, v-'s and v!'s are

positive. By using the substitution:

A 1iA , A2 -A 2, A3 -A 3 , vA0 - -h, (A.1)

we obtain the following set of equations

A1  A - A3 + hA ,

1 - 1 A1 -A 2 3 2'

A2  - y2A2 + A1 A* + hAt, (A.2)

A3  y 3A3 + AAj

which is identical to the Pikovskii-Rabinovich-Trarhtengerts'

model [12]. Let

Im(hA*A*), n = Im(AIA*A*). (A.3)

Then,

(d/dt)(C +n) -(Y + YE - (Y + Y2 + Y 3)
n. (A.4)

According to Ref.[12J, the trajectories E =(E(t),n(t)) enter

the sector Z between the straight lines L1 and L2

(A.5)

L2 = {("n,) C(y+y 2 )E+(yI+y 2 +y 3 )n: 01}

It is true that the trajectories (E(t),n(t)) on L1 enter
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Z, since

(d/dt)( +nl(,) L -Y r, (A. 6)

which is positive (resp., negative) when n is negative

(resp., positive). However, the trajectories E=(E(t),n(t))

on L2 do not always enter Z. For,

(d/dt){ ( + 2 )E+(yl+y2+y3)n}= (yl+y2+y3) l+Y2

-y3 (2y 1+2y2 +y3){ ( 1+y2)E+(yl+y 2+y3 )n}

+hy 3 {Im(AlA.)-Im(A22 A 3 )Q, (A.7)

and Q is easily shown to be positive (resp., negative) on L2

for E >0 (resp., E <0). Without loss of generality, we set

h >0 since the substitution h --h, A1 I-A and A-3 -A 3 leads

to the same equation (A.2). On L2, we can choose any values

of 1AIJ and JA21 independently of r3 and 8 .' s, since

1 rlr 2 {-h( y+Y 2 )sin(81 +e2 )+r 3 (yl+Y2+ 3 )sin(81 -8 2 -8 3 )} (0 A. 8)

on L We can also choose the 8.'s such that sin(28 1-82 )0 0

and sin(28 2+8 3 ) $ 0, since (A.8) has two degrees of freedom

for the O's. Now, we assume that &> 0, then n< 0 and

+n >0 on L2. On L2, we can choose only ej's such that

sin(2e 1-83) < 0 and sin(2e 2 +83 ) < 0, or ] (A.9)

sin(2 1 -e 3) > 0 and sin(282+ 3 ) > 0.

Hence,
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Q (Y1+Y2 ) (y+y 2+y3 )rr 2 Ihsin(el+e2 )+r 3sin( e-e-8 3 )I

12 123 2 6+2 3 6-26

+hy3 { r31 r3 sin(2el-e 3)I+r2 2r 3 sin(2O2+e3 )j}. (A. l)

Thus, for sufficiently large Ir21/ Irl, Q is positive on L2.

Similarly, Q is negative on L2 for E < 0 for sufficiently

large Irl/Ir 21. Hence, trajectory (&(t),n(t)) may leave

sector Z.
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