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ABSTPACT

An examination of software system safety analysis has

been made and generalized techniques examined. These tech-

niques parallel the techniques used for hardware analysis

and are, in fact, predicted on the fact that the only safety

perturbation in software is one that directs or misdirects a

hardware component. Discussion is presented for a top to

bottom and a bottom up hierarchical analysis, as well as an

integrated technique.
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I. BACKGROUND

Although the safety of the product has always received

some consideration, albeit possibly tacit, the formal,

systematic safety programs as we know them today did not come

into being until the early 1960's. The one exception to this

was the very strict safety controls established by the Atomic

Energy Commission on the use and exposure to nuclear materials.

The first system safety documentation requirement was the

United States Air Force Ballistic Systems Division Exhibit

62-41, "System Safety Engineering for the Development of Air

Force Ballistic Missiles", published in April 1962. This

document established System Safety requirements for the Asso-

ciate Contractors on the Minuteman missile program.

In September 1963, the United States Air Force Specifica-

tion, MIL-S-38130 (USAF), "General Requirements for Safety

Engineering of Systems and Associated Subsystems and Equipment"

was promulgated as the first military requirement for the

engineering safety of general systems. This specification was

closely followed in October 1963 by the Navy's similar (and

nearly duplicate) requirement, MIL-S-38130(WEPS). These two

documents were later merged into a joint specification,

MIL-S-38130(ASG), and in June 1966, this specification became

a Department of Defense (DoD) requirement, MIL-S-38130A.

In July 1969, the System Safety Specification was revised

into a Military Standard, MIL-STD-882 and in July 1977,
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MIL-STD-882A expanded and defined in more specific terms the

System Safety Program requirements.

In December 1978, DoD Instruction 5000.36, "System

Safety Engineering and Management" stated that: "The Heads

of DoD components shall establish system safety programs and

apply Military Standard 882A .... for each major system acqui-

sition of other systems and facilities, as appropriate, based

on the severity of associated hazards and the potential for

loss or damage...".

The purpose of the System Safety Program, as stated in

MIL-STD 882A is "To provide uniform requirements for

developing and implementing a system safety program of

sufficient comprehensiveness to identify the hazards of a

system and to ensure that adequate measures are taken to

eliminate or control the hazard".

The general requirements of the System Safety program

are that safety, consistent with mission requirements, is

built into the system in a timely, cost effective manner;

that hazards associated with each system are identified,

evaluated, and eliminated or controlled to an acceptable

level throughout the entire life cycle of the system; and

that retrofit actions required to improve safety are mini-V

mized through the timely inclusion of safety features during

the development and acquisition of a system.

Each of the above listed requirements deserves special

attention and comnent. For example, it is to be noted that

2A
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the Military Standard calls for safety consistent with

mission requirement, not "safety at any cost". The util-

ity of the system in the expected use environment is still

the prime factor for consideration, and the design safety

is intended, not to inhibit the mission, but rather to en-

hance the accomplishment of the mission.

It is also stated that hazards are to be identified,

evaluated and eliminated or controlled to an acceptable

level. This is the essence of what might be called the

System Safety Process. The use of historical data, simu-

lation, synthesis and test and evaluation are required to

identify hazards of the system while the system is still

in the design process.

The goal of this action is to minimize the risk, based

on hazard severity, hazard probability, criticality, cost,

time, resources and mission, throughout the lift cycle

including disposition and disposal.

By inserting the safety process as early as possible

in the design (and even concept) process, costly retrofit

actions are reduced at a great savings of money, operational

usage and limited resources. This takes safety from its

prior "Band-Aid" approach of "try it and then fix it" into

a new regime of designing the safety into the original

product.

3



II. RISK ASSESSMENT

The general requirements of MIL-STD 882A include the

risk assessment procedures of conducting hazard analyses

starting in the Conceptual Phase and proceeding through the

production phase. These analyses include:

1. Preliminary Hazard Analysis - a "broad brush"

look at the potential hazards of systems and subsystems.

The Preliminary Hazard Analysis (PHA) is begun long before

detailed designs begin to take shape, and, although quite

qualitative in nature, the PHA provides a base for other

types of analyses.

2. Subsystem Hazard Analysis - Once detailed designs

are underway, more in-depth analyses can be conducted on

the subsystems. The subsystem may be a single component or

part, or it may be a complex mini-system. Frequently the

Subsystem Hazard Analysis (SSRA) is conducted on a fairly

large block, and only if the analysis indicates a high

degree of criticality is the analysis extended to lower

level components. This is necessary due to the time and4

cost involved in the analysis procedure.

3. System Hazard Analysis - Once an SSHA has been

completed, one has some degree of confidence that the

critical hazards have been identified and eliminated or

controlled to an acceptable level in each of the applicable

subsystems. At this point a Systems Hazard Analysis (SHA)

is conducted to investigate the safety of subsystem

4
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interfaces. It is not at all unlikely that the interrela-

tionships between two "safe" subsystems may result in some

unsafe action of the combined system.

4. Operating and Support Analysis - Although it is

easy to forget during the design/production process that

the ultimate purpose is not the development of a system,

but is rather the operational utilization of the system,

one must keep in mind throughout the design/production

phases that this system must be operated and supported to

meet its mission utility. This is the purpose of Operating

and Support Hazard Analysis (O&SHA) where, for the first

time, the human element is injected into the equation. The

O&SHA considers operation, support, maintenance, transporta-

tion and other operational uses of the system.

The purpose of all these analyses is to (a) identify

any potential hazards, (b) evaluate the hazards, (c) assess

the risk of the hazard, and (d) provide the necessary infor-

mation required for the elimination or control of the hazard

if the hazard is determined to be critical.

5
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III. HAZARD ANALYSIS TECHNIQUES

Although the techniques to be used in conducting hazard

analyses are generally at the option of the contractor,

several analysis techniques that may be used are spelled out

in MIL-STD 882A. These are:

1. Fault Tree Analysis - The Fault Tree is based on

the Logic Tree procedure as developed by the Bell Laboratories.

It was originally modified by the Boeing Company to trace

fault developments in the Minuteman missile system. The

Tree uses logic "gates" to build downward from a Head or

Undesired Event. Inasmuch as a form of the Fault Tree

Analysis may be used in Software analysis, some detail of

this technique is in order. Consider a system whose wiring
1.

diagram is shown below:

Sw I lyRH
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Figure 1. Wiring diagram for Fault Tree

l"Advanced Concepts in Fault Tree Analysis" by David Haasl.
Paper presented at System Safety Symposium, Seattle, WA (1965).

6

• ii I I I II II " + - + I .. . .... ." --- + - -: -++ -:- -+ ' " ' + : , : I



When the Switch is closed, the Timer Coil is energized

closing the Timer Contacts which puts power on the Relay

Coil. With the Relay Coil energized, the relay contacts

close, permitting current flow to the motor. It has been

determined that overheating of the wire from point A to

point B is critical to the system operation, and a Fault

Tree is constructed with the Head Event "Overheated Wire".

Examination of the system shows that two events may

produce an overheated wire, "Excessive current in the motor

system wiring" and "Power applied to the system for an ex-

tended time". It is also seen that both of these occurrences

must happen in concert. In other words, the "Overheated

Wire" is a result of "Excessive Current" AND "Power Applied

for an Extended Time". The logic event is, therefore, an

AND gate.

To determine why the power may be applied for an ex-

tended time, we examine the circuit and note that this may

occur if the power is not removed from the relay coil for

some reason, or if the relay contacts fail in the closed

position. We now have the next branch of our Tree with an

OR gate connecting "Power not removed from relay coil" and

"Relay contacts fail closed".

Similar development takes place proceeding downward

from the Head Event until one reaches primary or secondary

failures. Primary failures are those that occur while the

part or component is operating within the parameters for

7
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which it was designed, and a Secondary ailure is .hen the

component is subjected to abnormal, out-of-design stresses.

A complete Fault Tree diagram for the system under

consideration is shown in Figure 2.

Analysis of a Fault Tree may be either qualitative or

quantitative. If the failure probabilities for each of the

"end faults" of Figure 2 are known, the failure probabili-

ties of each of the intermediate branches as well as the

failure probability of the Head Event may be computed using

Boolean Algebra.

But even a qualitative examination of many Fault Trees

will provide useful information. With an AND gate leadinT

directly to the Head Event, it is seen that inasmuch as

both of the next lower level events must occur for the un-

desired Head Event to occur, eliminating either of the next

level events will eliminate the failure of the Head Event.

Since the gate leading to the "Power applied for an ex-

tended time" is an OR gate, failure of either of the next

lower level events will still produce this undesired sub-

event. This means that both of the next lower events must

be eliminated to prevent this sub-failure.

On the other hand, the gate leading to "Excessive

current in the system wiring" is also an AND gate, and this

sub-failure will only occur if both of its sub-level events

occur. One of these events, "Motor failed shorted" will

occur only with a primary motor failure, leading us to the
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conclusion that a high quality, high reliability motor will

prevent (or at least reduce the probability of the occurrence

of) the Head Event.

We see also that if we can prevent the fuse from failing

to open, we can also prevent excessive wiring. This may be

accomplished by both preventing the insertion of an over-

sized fuse (design of the fuse holder) and prevention of a

primary fuse failure in which the fuse fails to open with

excessive current. With most fuse designs, this type of

fuse failure should be extremely remote.

2. Fault Hazard Analysis - A second technique cited

in MIL-STD 882A is the Fault Hazard Analysis (FHA), which

is based on the techniques long in use by Reliability called

Failure Mode and Effect Analysis (FMEA) or Failure Mode,

Effect, and Criticality Analysis (FMECA). The Fault Hazard

Analysis, unlike the Fault Tree Analysis starts at the

bottom and works up, rather than at the top working down.

Whereas, in the Fault Tree Analysis we conducted our

analysis to determine what failures would cause an undesired

event, in the Fault Hazard Analysis, one starts with the

part or component failure and determines the ultimate effect

of that failure.

The Fault Hazard Analysis may be used in detailed

examination, such as in an SHA where one is considering

failure modes and effects of detailed designs, or it may be

used in a less structured format in an overall analysis of

design concepts, as in the Preliminary Hazard Analysis.

10
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As with the Fault Tree Analysis, the Fault Hazard

Analysis may be either qualitative or quantitative. A

qualitative analysis usually precedes any quantification.

3. Sneak Circuit Analysis - A third technique

referenced in MIL-STD 882A is that of the Sneak Circuit

Analysis. This is a technique, originally developed by the

Boeing Aerospace Company, to locate hazards that might

occur without a failure in the system. A classic example

of a Sneak Circuit was in a 1960's imported car in which

the radio and the brake lights both received their power

from a common terminal on the switch. The brake lights were

also capable of being powered through the emergency flasher

module, and this portion of the wiring was such that when

the brake pedal was depressed, even with the ignition switch

off, the brake lights were illuninated - and the radio came

on!

In addition to these three techniques cited in MIL-STD

882A, there are many others, lesser known analysis techniques.

These include Energy Transfer techniques wherein all sub-

systems and systems are considered on the basis of energy in -

energy out, and Resource Utilization techniques that consider

desired (and undesired) outputs codified on the basis of in-

put resources.

~11
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IV. SOFTWARF ANALYSIS - GENERAL

Software reliability predictions are available that

provide numerical predictions of how many errors will remain

in the software when it is delivered, but these predictions

do not tell the effects of a software error, where it will

occur, or in what mission phase.

Several analysis techniques have been used to give

partial answers to the software system safety questions,

but these have been, in general, limited to individual

disciplines and/or to specific categories of failure.

There is, however, one factor that acts as a catalyst

for the solution of the software system safety problem,

and that is the fact that any software difficulty is tran-

slatable into a general system safety problem only if there

is a hardware involvement. That is to say, the only soft-

ware 'mishap" that has safety implication is one that

commands a hardware function at the wrong time, in the wrong

sequence, in the wrong manner or when the hardware component

should not be commanded at all.

This fact, in itself, gives rise to possible software

system safety techniques in which the software 'mishap' is

directly related to hardware 'mishaps' for which there are

well known and experienced analysis techniques, as discussed

in Part III. It would appear, therefore, that an examina-

tion of each known hardware mishap for possible software
.1

command functions would suffice as a software system safety

) 12
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analysis. And indeed it would, except that this wholesale

approach would be extremely tine consuming and, as a result,

extremely costly. One would also have to exercise great

caution to ensure that software interfaces are considered in

addition to the already considered hardware interfaces.

Although there are many proponents of various single

technique methods for software system safety analysis, even

these techniques are generally modified so as to take

advantage of other techniques in some degree to reduce the

cost and time that would be otherwise involved.

In general, software analysis techniques for system

safety follow the hardware analysis methods. One method

is the .'bottom up' method similar to the Failure Mode and

Effect Analysis and another is the 'top down' procedure

related to the Fault Tree Analysis. Some detailed examina-

tion of these two methods, as well as a combined method will

be discussed in subsequent parts of this summary.

1
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V. TOP DOWN SOFTWARE ANALYSIS

The Top Down analysis technique is based on the deter-

mination of hazardous termination points for the software

program. This is analogous to the Undesired Event which is

the Head Event of the hardware Fault Tree Analysis.

The first step in the Top Down techniques is to define

Acceptable Terminations as well as Hazardous Terminations.

Such a definition list, as related to a missile system, is

as follows:
1

Acceptable Defined Terminations

1. Missile successfully launched.

2. Missile aborted with booster and warhead safe.

3. Missile aborted with booster or warhead not

saved and with operator alerts.

4. System cycled to Hold with operator alerts.

5. System cycled to Test Mode with operator alerts.

6. System recycled to known states with operator

alerts.

7. System automatically cycled to power down with

appropriate operator alerts.

Hazardous Terminations

1. Unauthorized launch of a missile.

2. Unintentional launch of a missile, including the

launch of a wrong missile.

iSoftware Safety and Security Analysis Techniques and
Methods, Vitro Laboratories, Silver Spring, MD, 1980.

'I1
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3. Missile abort without operator alerts. The

alerts to include the safety evaluation of the

aborted missile.

4. A premature issuance of a unique pre-arm signal.

5. An abort without adequate declassification.

6. An unauthorized disclosure of classified data.

7. Any unauthorized or unintentional modification

of safety and/or security sensitive programs or

data.

8. Any termination which is not a member of the set

of acceptably defined terminations.

It is to be observed that several of the Hazardous

Termination categories go well beyond the safety of the

hardware. For example, Item number 3, "Missile abort with-

out operator alerts" might appear to have "Fail Safe"

connotations in that the missile aborted, presumably due to

proper software/hardware interaction. However, a new and

unique safety problem may arise if the operator is unaware

of the abort or of the reason for the abort and attempts to

operate the missile again.

With the hierarchial Top Down development process, the

software design cycles is as shown in Figure 3. As in theV.

hardware system safety, the best payoff occurs if the soft-

ware system safety is inserted early in the design process.

Although it is true that many systems have an initial hard-

ware design followed by the design of the control software,

415



even these systems should undergo a software analysis for

subsystems and for system interfaces as early in the design

process as practicable.

For those subsystems and systems in which the software

is "King", that is to say, for systems in which the software

is the principal, and possibly the first, design item and

then the hardware is designed to accomplish the desired out-

puts of the system, early analysis of the software is

essential.

The flow of control, as shown in Figure 3, starts at

the top level, goes down one or more levels, comes back as

required, and then goes down to another level.

The actual assessment depends on the construction of a

series of binary trees that have the following attributes:

1. There is a one-to-one correspondence between

decision points of the software and nodal branch points of

the tree.

2. Each branch can be categorized by a series of

state transitions that can be described by Boolean alogorithms.

3. The origin of each binary tree is always an operation

action, a machine-generated priority interrupt, a periodic

status monitoring, or a return to a higher level process.

Figure 4 is a generalized Binary State Transition Tree

which illustrates all constructs. Such a tree will be examined

for possible occurrences of system errors caused by program

errors (incomplete definition of state vectors or predicate

16
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transforms) or by single or multiple hardware failures.

System errors are treated as virtual branch points in which

the occurrence and subsequent processing is also treated as

a binary tree.

Such a tree is called a Binary Fault Termination Tree

and is also shown in Figure 4. This tree has end points

that may describe hazardous terminations, and, as such, is

of prime interest in software system safety analysis.

As has been previously stated, the only software

'mishap' that is of concern in the system safety analysis

is one that produces an undesired hardware event. For this

reason, software errors that occur but are trapped and

contained and do not produce hazardous terminations are of

but secondary interest in the safety analysis. The Binary

Fault Termination Trees are used to evaluate whether

checkpoints are established to trap and contain the software

errors.

When errors have been identified and the processing

shows that a hazardous termination is being approached,

the process may be translated into a probability function

to determine the probability of the hazardous termination.

This translation implies that the following probabilities

can be computed:

1. The probability that the system moves into the

implied mode.

2. The probability that the system moving from the

implied mode misses the illegal procedure trap.

18
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VI. BOTTOM UP SOFTWARE ANALYSIS

Another technique that is used for software analysis

is the Bottom Up Analysis. This technique is based on the

predication that any hazard that is created or allowed to

propogate must exist in hardware. Because of this, the

software safety analysis should analyze, within the software

boundaries, concerns identified within the hardware facets.

This stipulates that the software analysis is an extension of

the Preliminary Hazard Analysis (PHA).

Inasmuch as the Subsystem Hazard Analysis (SSHA) and

the System Hazard Analysis (SHA) follow the Preliminary

Hazard Analysis, the command and control software development

and analysis should follow the basic development of the hard-

ware that is to be controlled.

This offers the use of the techniques similar to the

Fault Hazard Analyses of hardware system safety. This

technique, which is akin to the long-used Reliability tech-

niques of Failure Mode and Effect Analysis (FMEA) or the

Failure Mode, Effect and Criticality Analysis (FMECA),

considers the undesired outcomes of the failure of a sub-

system or component.

The software analyses should address hazards resulting

from basic deficiencies in the requirements, the software

program design, the internal coding, the software testing,

F the user interfaces, the backup software functions and the

hardware/software interfaces.

20
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The general approach for this technique is as follows:

1. Divide the system into portions to gain insight into

sub-function operations.

2. Conduct the hardware system safety analysis.

3. Conduct the software system safety analysis.

a. Analyze for correct implementation of the

hardware functional requirements and interfaces.

(1) Review the functional requirements

of the subsystems being controlled.

(2) Analyze the requirements of the

software definition and implementation to ensure that

the software is kept in a safe configuration.

b. Analyze for internal software anomalies which

would affect the execution of the software.

(1) Analyze those functions that have been

designated safety critical.

(2) Analyze those functions that might affect

the execution of the safety critical functions.

(3) Review for implementation of errors or

anomalies in the detailed requirements, the detailed program

design and/or the coding.

(4) Review the timing of competing/overlapping

functions.

ISoftware Safety Analysis, A Presentation by John G.
Griggs, Martin Marietta Corp. at Tri-Service Safety Conference
Colorado Springs, CO, September 1980.

"9 21
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(5) Review the use of incorrect data and/or

changing data.

(6) Review the use of coding techniques to

minimize the effects of errors.

A, 22



VII. COMBINED TECHNIQUE

A combination of the Top Down and the Bottom Up

Techniques has been developed by the Boeing Aerospace Company
1

into a technique called Integrated Path Critical Analysis

(ICPA).

The seven step ICPA combines Fault Tree Analysis for the

identification of critical paths, Failure Mode and Effect

Analysis for component failure rates, Sneak Circuit Analysis

for actual detailed system configuratiorL Component Sensi-

tivity Analysis for the determination of areas of emphasis

and Critical Path Analysis to evaluate and quantify overall

system reliability and safety.

The steps outlined by Boeing Aerospace for this

technique are as follows:

1. Determine the Scope of the Analysis.

a. This is usually accomplished by reviewing the

top level hazards and/or critical functions and then deciding

which ones should be analyzed in detail and to what level.

This may be done by using existing Fault Trees and FMEA's

and marking them for particular emphasis.

2. Establishment of Accurate System Configuration in

the form of Integrated Functional Network Trees.

1 Software/Hardware Integrated Critical Path Analysis
(ICPA) by J. H. Campbell and F. H. Tuna in Proceedings of
Fourth International System Safety Conference=,uly 9-13, 1979.

A23



a. It is essential that the analysis be conducted

on an accurately represented system. The use of logic trees

assists in the determination of the accuracy of the system

configuration under examination.

3. Updating and Integrating Fault Trees.

a. Here one applies the material generated from

Step #2 and adds the software network threats which change

the impact of the hardware due to usage and/or interconnect

hardware, thereby changing the hardware interrelationships.

4. Reliability Prediction of Critical Paths.

a. Once the critical paths have been defined, the

reliability numbers can be affixed to present a reliability

prediction.

5. Procedure Analysis.

a. This step considers all procedures including

test, contingency and backup.

6. Failure Effect Analysis.

a. The previous steps have emphasized the possible

critical steps and paths, and these functions are now analyzed.

7. Analyses Reports.

a. These reports are generated to permit management

decisions in regard to changes and alterations to the suspect
V

subsystems and systems. These reports should contain the

revised Fault Trees, sensitivity statements, hardware/software

interaction problems and the failure effects of critical paths.

24



VIII. CONCLUSIONS

The subject of software system safety is relatively new.

Concern in the Electronic Industries Association (EIA) was

first expressed about a year and a half ago and the EIA

formed a task force to develop a generic approach to the

analysis of software system safety in August 1979.

This action is significant due to the activity of the

G-48 Committee of the EIA in developing codified System

Safety requirements and fostering the development of System

Safety analysis techniques.

There appear to be techniques available for the analysis

of System Safety software problems, and these techniques are,

in general, based on the proven techniques used in hardware

System Safety analysis.

Despite the particular technique to be used, it appears

that software analysis parallel with software development has

the greatest payoff at this time.

Although the analysis techniques in greatest use to date

have been, at the most, a modification of the hardware tech-

niques, there are people working on different techniques which

have, as yet, not demonstrated any spectacular results. This

is not to say, however, that such methods are not to be closely

monitored, because it is quite possible that these, rather

radical, methods may yet have a significant payoff.
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