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STABILITY PROPERTIES OF AZIMUTHALLY SYMMETRIC
PERTURBATIONS IN AN INTENSE ELECTRON BEAM

I. INTRODUCTION
In recent years there have been numerous theoretical investigations
cqsie 1,2 ias,.. 3-8 . .
of the equilibrium and stability properties of intense charged
particle beams, motivated by a variety of applications, including confine-
9- . X .
ment and transport i of a nonneutral electron beam, inertial confinement

., 12,13
fusion

tion14'ls through a background plasma. Aalthough these research activities

driven by charged particle beams, and electron beam propaga-

have different goals and objectives, they have in common the need to under-
stand the stability properties of intense charged beams characterized by
strong self electric and magnetic fields. However, previous theoretical
studies of the resistive instabilities (except for hose) have been based
on highly simplified models, such as the cold fluid treatment of Ref. 8.
The primary purpose of the present paper is to develop a Vliasov-Maxwell
description of azimuthally symmetric perturbations about an electron beam,
including the higher radial mode numbers (e.g. hollowing modes), which
have been given scant attention in the literature, although they appear to
be troublesome in the presence of a return current. We also include a
treatment of the hose instability based on the same model. With straight-
forward modifications, the results of this paper can also be applied to

12,16,17 of an intense ion beam, which are

the transverse instabilities
particularly important in heavy-ion fusion applications.

The equilibrium and stability analysis is carried out for an
infinitely long electron beam propagating parallel to a uniform applied
magnetic field BO?y through a background plasma with conductivity o(r),

which in general can be a function of the oscillation frequencies of

fluctuating fields and the collision frequencies of each species in the

Manuscript submitted December 1, 1980.
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plasma. Our solutions are carried out for step-function profiles and
real values of o(r), but the valué of o can be arbitrarily large or small.
The radial profiles of plasma charge and current are assumed to be
similar to the beam profile, but the degree of charge and current
neutralization is arbitrary. It is assumed that'v/Yb << 1, where v and
mec2 are Budker's parameter and the characteristic energy, respectively,
m is the electron rest mass and c is the speed of light in vacuo.
Equilibrium and stability properties are calculated for an electron beam
described by a "loss-cone” distribution function EEq. (2) ], which leads
to a flat-topped beam radial profile. Equilibrium properties and basic
assumptions are briefly discussed in Sec. II.

The formal stability analysis for azimuthally symmetric perturbations
is carried out in Sec. III, within the framework of the linearized Vlasov-
Maxwell equations. In the analysis, the response of the background plasma
is incorporated in terms of the plasma conductivity. An integro-differential
eigenvalue equation (Egs. (22)] is obtained for azimuthally symmetric
perturbations, given any value of plasma conductivity, assuming long wave-
length (ka << 1), low frequency (wa << ¢) perturbations, where k is the
axial wavenumber, &w is the oscillation frequency, and Rb is the beam radius.
Equations (22) constitute a principal result of this paper and can be used
to investigate stability properties for a broad range cf system parameters.

In Sec. IV, dispersion relations for the radial mode numbers n = 0,

1 and 2 are obtained analytically from the integro-differential eigenvalue

equation (22) by an approximation method based on the assumption w4 <1,

o - ere oo vapy e




where T4 is a magnetic decay time defined by T4 = nclR§/2c2 (Eq. (26) .
For example, the dispersion relation for the n = 1 (sausage) mode can be

expressed as [Eq. (65) J,

8 2
tB, + i/y
2 -4 ob b

=0,
© - i) [1 - iR /e)%/6]

where 2 = (w - kac)/wpb is the normalized Doppler-shifted eigenfrequency,
- 2 2 "2 - " .

n = 2[Bb(l fm) (1 fe)] + wcb/wpb and ¢ = 4ﬂcl/w are the focussing

force and conductivity parameters, respectively, Bg = (Yi - 1)/Y;'

/2

~ 2" 1
W, = eBo/mec and & _, = (47e nb/me)

b ob are the beam electron cyclotron

and plasma frequencies, respectively, fe and fm are the fractional charge
and current neutralization, respectively. The limiting case of a non-
neutral electron beam in a non-conducting environment (= Q) is discussed
in Sec. IV. For example, in the limit of £ = 0, the dispersion relation
for n= 1 [in Eq. (65) ] reduces to

2 2
Z=n+1/'Yb,

which is identical to the previous result obtained by Uhm and Davidson.3
Analytic investigations of the dispersion relations for n = O,

1 and 2 are carried out in Sec. V.A for collision-dominated plasmas with

a high conductivity satisfying £ >> 1. We find that both the n =1

(sausage) and n = 2 (hollowing) modes are driven unstable by either a

strong fractional plasma return current (fm) or by a magnetic phase lag

(wt, > 0). As an example a simplified version of the n = 1 dispersion

4
relation [Eq. (67) 1,

2 _ 2 - _ig 2
V4 eb[(l 2 ) - &* (WR /c) 1,

3
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which is cbtained from Eg. (65) in the limit of n = 282(1 - fm) and

wT g << 1, shows clearly that the system is unstable whenever the
fractional current neutralization fm > 0.5, even for a very small magnetic
decay time. It is also remarkable to observe that for fm = 0, Eq. (67)

is similar to the result obtained by Weinberg8 within the framework of the
coaxial circular orbit beam model.

Several points are noteworthy in the numerical analysis of the
dispersion relations presented in Sec. V.B. for a self-pinched electron
beam (mcb = 0). First, the n = 1 perturbation is the most unstable
azimuthally symmetric mode. Even if fm = 0, the maximum growth rate of
instability for the n = 1 perturbation is z, = ImZ = 0.205, which is
comparable to that of the resistive hose instability.7 Second, the n = 2
perturbation has two unstable modes. Third, except the n = 0 perturbation,
we find for fm = 0 that the growth rate of instability goes through two
maxima as f is varied. The first maximum occurs at f == 1, where electro-
static effects are strong, and the second one at wT 4 > 1 where the
instability is driven by the magnetic phase lag. For a highly relativistic
beam, the growth rate is equal at the two maxima.

In Sec. VI, similar models and analytic techniques are applied to
the theory of the hose instability in a medium of arbitrary conductivity,
and with arbitrary values of the fractional charge and current neutraliza-~
tion. The instability properties are similar in many respects to those of
the m = 0 modes: the hose instability also has maximum growth rates at

; #1 and wTd ~ 1, it too is driven strongly unstable by return current,

and the hose growth rates are comparable to those of the sausage.




II. EQUILIBRIUM THEORY AND BASIC ASSUMPTIONS

The equilibrium configuration consists of an intense electron beam
e

that is propagating parallel to a uniform applied magnetic field B0 2

through a background plasma with a conductivity o(r), and is located

inside a grounded cylindrical conducting wall with radius Rc. Cylindrical
polar coordinates (r,6,z) are used, with the z-axis along the axis of
symmetry. In equilibrium (3/3t = C), the beam is assumed to be azimuthally
symmetric (3/396 = 0), infinitely long, and axially uniform (3/3z = 0). The

number of electrons per unit axial length (Nb) is defined by

o o O 20
Nb = 27 Jo dr r nb(r) = annb(r =0) ,

where ng(r) is the equilibrium density profile, and Rb is the characteristic

beam radius. In the present analysis, we assume that

—— << 1, 1)

where v is Budker's parameter, ¢ is the speed of light in vacuo, mec2 is

the characteristic electron energy, -e and m are the electron charge and

rest mass, respectively. Equation (1) guarantees that the beam is paraxial,

i.e., transverse electron velocities are much smaller than axial velocities.
In this paper, we investigate the equilibrium and stability

properties for a steady-state (3/9t = 0) beam distribution of the form

A

Ty

0 A2
fb(H,Pe,Pz) = S(H - w,P, =-ymc )d (Pz - Y, Sbc), (2)

ZWme b8
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where the total energy, H = (m2c4 + czg2)5 - e¢o(r), the canonical

2 . .
angular momentum, Pe = rpy - eBor /2c, and the axial canonical momentum,

P_=p

z 2 (e/c)Ao(r), are the three single-particle constants of the

motion in the equilibrium fields. Here, R = (pr,pe,pz) is the mechanical

~ A

momentum, nb, mb, and y are constants, Yb is related to
2 -k

8, by Yy = 1 -~8) ", A

b (r) is the axial component of vector potential

0
for the equilibrium azimuthal self-magnetic field, and ¢O(r) is the
equilibrium electrostatic potential. As a consequence of Egs. (1) and
(2), all electrons have axial velocities Vz very close to the constant
value Bbc.

In order to make the theoretical analysis tractable, we assume

that in equilibrium the plasma space charge provides a fractional

neutralization of the beam charge that is uniform through r and z, i.e.,
0 o] o]
ni(r) - ne(r) = fenb(r) ' (3)

where fe is constant with 0< fe < 1. It is further assumed that the
equilibrium plasma return current Jg(r)has the same radial profile as the
0

beam current Jb(r), i.e.,

0 0
Jp(r) = ~ fmJb(r) '

where fm is a positive constant with 0 < fnns 1. An eigenvalue treatment of
the instability is possible only if fe and fm are taken to be z - independent
(which is not strictly consistent in a resistive medium). Radial profiles

of plasma charge and current which differ from the beam profile are of
interest, but are not studied in the present paper.

Since the beam is paraxial, it is straightforward to show that the

term H - mbPe in Eq. (2) can be approximated bys




2 9;2
H-WwP.= mec + —— $0(r) ’ (4)

b9 Zme

2
where p, = pi + (pa —meu)br)2 is the transverse momentum-squared in a ro-
tating frame with the angular velocitytnb, and the effective potential

$o(r) is defined by

‘ _ 1 o+ ) T Y

¢O(r)—2ybm(\ub W (e —wr, (5)
In Eq. (5),

A
+ _Yoep ‘"Zb “’Ezb 2 Y
= 2 =2 r - - - ,

Wy 5% 2t S5 u-f)-a £,)] (6)
where wcb = eBo/mec is the beam electron cyclotron frequency and
A2
wpb = 4TTe2nb/me is the beam electron plasma frequency-squared. For

radial confinement in the equilibrium state, it is recuired from Eg. (6)

that

A2 .2 2 A2
, - . 2 , - s 7
wpbab(l fm) + W cb/ > wpb(l fe) (7)

which assures that the repulsive space-charge force on the beam electron is

weaker than the magnetic focussing force.
Making use of Egs. (2} and (4), we find the beam density profile

A

n , 0s r < R
ng(r) = b Rb (8)

o, Pb<r<Rc'

where the beam radius Rb is defined by

-1. The equilibrium solution exists

2 2 >0 -1 + -1 .
Rb = 2¢” (y Yy -1) (mb - mb) (mb W, )

icikdiciaie




for rotational frequency satisfying wb < wb < w;. additional equilibrium

properties associated with the distribution function in Eq. (2) are discussed

in Refs. 3 and 5.
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III. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we use the linearized Vlasov-Maxwell equations to ob-
tain an integro-differential eigenvalue equation for the azimuthally
symmetric (3/08 = 0) modes of an electron beam. We adopt a normal mode
approach in which all perturbed quantities are assumed to vary with z and t
as

A
$(x,t) =d(rlexgli(kz —~wt)] ,

with Imw > 0. Here w is the oscillation frequency and k is the axial wave-
number. For paraxial beams with all electron axial velocities approximately
constant at v, = Bbc [which follows from (1) and (2)], it is more convenient
to use T and z, rather than t and z, as independent variables’, where

T =t - z/vz. In this representation, a Fourier decomposition of perturbed

quantities is expressed as

A
¢ (x,t) = d(r)expl -i(wT + Qz/vz)J , (9)

~

where 2 Zw - kv, =w - kcBb is the shifted eigenfrequency "seen” by a
beam particle (but no relativistic charge of frame is implied).
The subsequent stability analysis is restricted to a long wavelength

and low frequency perturbation characterized by

<< 1 . (10)

2
“Rp

c

ke [* << 1,

If we forego the possibility of recovering the non-neutral limit,

¢ =+ 0 , the analysis can be carried through with the weaker assumptions

ke Rb/cl << 1 (11)

5 PG ot e v
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and

lka/Yil << 1. (12)

Equation (ll) is a weak form of "frozen field" assumption, based on the
fact that Q@ is characterized by the natural oscillation frequencies of
particle dynamics, cubt and mpbBb, which always satisfy (11) in a paraxial
beam. Assumption (12) is satisfied either for long wavelengths or in a
highly relativistic beam.

The perturbed electric and menetic fields, é(;_c') and é'(;s) , can be

expressed in terms of perturbed magnetic and electric potentials A(x) and

é(%):

é‘(gs_) = ;gxg:a,(;g ' (13a)
E(x) =12 A(x) - Vo (x)
¥ =12 RX (0 - (13b)

Introducing the Lorentz gauge,

LA ~iYs =0, (14)

~

into the Maxwell equations, and using (11), the perturbed potentials in

Eq. (13) satisfy
27 Tt 7
V_LA(;() = - I(x) . (15)
72 6x) = - 4Tp(x)
n ¢(§) = TI'O ?f, ’ (16)

10
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where p(x) and J(x) are the perturbed charge and current densities,
which must be determined self-consistently, and the subscript . denotes
transverse components. The perturbed current density contributed by the

background plasma is given by

. . e - .
L, = c(ER = °<1 s AR - ,Y,¢<.>s)), (17)

where 0(r) is the conductivity of the background plasma. Defining an

effective potential

P(x) = Az(r) - ¢(r)/Bb ' (18)
and using (11), the axial components of Egs. (15) yield
2, - 4mowi .8 Yo _4m

Vily + ¢/8,) + 2 b+ o8, b o Jpz ¢ (19)

where Jbz(z) is the axial component of the beam current density.
After some algebraic manipulation of the axial component of Eq. (13a),

=V
2Sp = L, XA, + wecan show that

- a . - ' ke - -
c2¢ X Bz2z = - 1kczup +ifq - —_ zu? + <1,1r,1,‘L , (20)
8 s

where gu is the transverse component of the perturbed current density,
R, is a unit vector in the z-direction, and use has been made of
Egs. (15 - 18). Making use of Egs. (17) and (20), it is also straight-

forward to show that for axisymmetric modes (where Bz = const),

11

N s r




ikc(a/ar)$ - 4w3

A ] 3 " 1 3 br
- Jjr— ¢}=-= — r
¥ dr ( 3 ) r o 410-1(Q - ke/B.v2)
b'b
(21)
i3 (41rom/c)Ar
*ror x 2
470-1(Q - kc/Bbe)

~ ~

where Jbr and Ar are the radial components of the perturbed beam current
density and magnetic potential, respectively.

From the continuvity equation -ims + 9. i'= 0 , and the perturbed
Poisson equation, it is evident that the perturbed electric potential
é(r) is at most of order 4nR§1 . éb/(4ﬂ0 - iw). Substituting Eq. (21) into

Eg. (19) and using (10) we therefore obtain the eigenvalue equation for

axisymmetric modes,

X n dTowi .
13 4 -
T 5% {r -{m = > %; Wr)} +—3 ¥ (r)
4mo-i(Q - kc/Bbyb ) p
3 (r) [ r& (xr) 1
= ~47 bz + B1r %; br . , (22a)
b I:lm-i(&'z - kc/Bbe)_I

~ - -~ -~ -

where the perturbed beam current density Eb = Jbzsz + Jbrgr is to be

-~

calculated from the Vlasov equation. We find in all cases that Jbz is the

driving term in the regime 4ng>c, but that Ebr must be retained in going

to the small o limit.
We begin our analysis of the Vlasov equation by using the method of
characteristics and neglecting initial perturbations, to write the

perturbed beam electron distribution in the form

- e ) ~ ~ ~ 1 ! - 3 Q
£, 00 = Bed. dz exp(-i0z/8,c){E(x") + T [y x B&x" ]} % £,

12
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where z = z' - z, and the particle trajectories x'(z') and v'(z')

satisfy the "initial" condition x' (; =0) =x, and ¥’ (; =0) = yv.

~

Within the context of Eq. (10), the perturbed beam electron distribution

in Eq. (l1) can be further simplified as7

. ev,m8_ 3£
ST e 2 Zip(r')exp(~iyz,
£ (x,p) = b, 9p, [wm + I dziy(r‘)exp( 1"’2/"z)]
3£ .
+28 B g iyt exp(-iv/v )
v, © apz - z' '

where P, is the transverse mcmentum in a frame of reference rotating at

2
P+ (pe Yy r) The perturbed beam

frequency w,_, i.e., by Pi = P,

Y

current density can then be expressed as a velocity moment of fb(r,Ep,

. o 2£0
Lz = f J pdp J dr,R p ap* v ()
0 0
If of 0
110 b w b] n ~. 0 , hew
+ == + J dziy(r')exp(-iyz/v )} ’ (22b)
v, [p_L apL Ymec apz o z

~

where we have again used (10) and the property that Ar(r) is order of

;(r) or less. The integro-differential eigenvalue equation for azimuthally
symmetric perturbations, Eqs. (22a,b), constitutes a principal result of
this article, and can be used to investigate stability properties quite
rigorously for a broad range of system parameters. The source term in

Eq. (22b) contains an integral of the unknown eigenfunction ;(r) over the

equilibrium particle orbits, which makes the equation rather intractable,

in general. However, it is possible to obtain analytic solutions to

Eq. (22) for some ranges of physical parameters. In the remainder of this




paper, we investigate the stability properties of the analytic solutions
to Eq. (22).

In order to carry out the orbit integration in Eg. (22b), it is
useful to introduce Cartesian coordinates (x,y) which are related to the
polar coordinates (r,8) by x=r cos 8, vy = r sin 8, and to note that
the polar momentum variables (p*,¢) in the rotating frame are related to

Py and py by P, + Ypow, ¥y = plyos¢, and p, - Yy X = p*§1n¢, where

b4
Pi =P, + (pe - membr)z. For the case under consideration, where the
unperturbed net current is uniform out to r = Rb' the perpendicular

. 5
electron trajectories can then be expressed as

~ p -
x'(2) L 3Y;ﬁ {sin(¢ + m;EVVZ) - sin(¢ + mbz/vz)}

- o~ + -
+ r(n, - mb)cos(e + mbz/vz) - r{w, = mb)cos(e + mbz/vz)g , {23a)

b b
y'(;3 = 1 P1 {cos(¢p + w-gyv ) - cos(d + w+27v )}
+ - Y, M b z b Z
Wy =W, 0P
- . + +. ., -
+ r(wb - mb)51n(e + mbz/vz) r(mb wb)51n(6 + wa/vz)g' (23b)

+ .
where the frequencies w, are defined in Eq. (6). In the next section, we
shall develop an approximation scheme for solving the coupled equations
(22), based on exact solutions to Egs. (22) and (23) that can be obtained

in the limit |4moR%w/c’|<< 1.

14




IV. DISPERSION RELATIONS FOR THE AXISYMMETRIC MODES

We shall proceed with the stability analysis of the azimuthally
symmetric modes for the particular configuration illustrated in Fig. 1,
wherein the plasma conductivity profile is specified to be a step

function,

~

g., O<r< ’
o(z) =].% b (24)

<r<
P Rb *<R, »

with 02 so0 small that

2 2
o Rc<<o PB (25)

This type of conductivity profile is reasonable for a beam propagating
in and ionizing a neutral or weakly pre-ionized gas. The dependence of
stability properties on the form of the conductivity profile is of con-
siderable interest, but will not be considered in full generality in the
present paper.

The method used to derive approximate dispersion relations is as

follows. We define a characteristic magnetic decay time
-~ 2 2
Tg = 0, Rb/2c . (26)

[ﬁach mode has a different characteristic magnetic decay time which
differs from (26) by a numerical factor. It is convenient to use (26),

which defines the dipole decay time for the hose mode, as a reference

15
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decay time throughout the paper.] In the limit w1m<<1, solutions of

Egs. (22) can be found, with the form

- n .
b= ¥ aj(r/Rb)zj , OSI=R_, (27)

j=o

and the quadrature of Eq. (22b) can be performed analytically to yield

expressions for ib in terms of @. On the assumption that these expressions
for &(r) are reasonably accurate in the whole range 0<wtm§ 1, we proceed to
use these expressions for ib in terms of & in the full Eg. (22a), including
the wrm term, thus reducing Egs. (22) to an ordinary differential equation
for &. This equation could be solved exactly for a dispersion relation

R(w) (in terms of Bessel functions), but in the spirit of the preceding
analysis we choose rather to produce a variational approximation to the
dispersion relation, using @n as the trial eigenfunction. One or more modes

are found for each radial mode number n, with n = 1 corresponding to the

usual sausage mode and n = 2 to beam hollowing modes.

16




A. n = 1 Sausage Mode

As a first example, we consider the n = 1 eigenfunction. 1In the

limit of small magnetic decay time,

4
3 wT << 1, (34a)
the eigenfunction

2,2
- a (l-r/R) ,0=<rs
{ °© K » (35)

P(xr) =
(0} ’ RbS r s Rc

is a self-consistent solution to Eq. (22), as shown in the previous
literature.3 Since we perturb about this solution, the stability analysis

in this section is restricted to the regime

3 7d~"" (34b)

The perturbed beam current density can be calculated in closed form by

substituting Eq. (35) into Eg. (22b) and using Eq. (23). The result for

Jbz' the axial component of the perturbed current density, is

2

82 w2 (x)
3 =2 13 _pb -
Ipe'®) =T T ar {r 2 + -2 3r w(r)} ! (36)
Q" - (mb - wb) .

where the plasma frequency function wpb(r) is defined by

A2
V) y QS r <
b ’
m;b(r) = { w <. :; Gn
Y -

17
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and the fast and slow rotational frequencies Wy for beam electrons are

defined in Eq. (6). Similarly, the radial component of perturbed current

density is found to be

2
. w_. (r)8 Q -
1 21 __pb b 3
I (B = 27 e o _)2 3r V() - (38)
“ %

Equations (36)-(38) show that this mode consists of a self-similar expansion
and contraction of the beam slices, without altering the flat-topped beam
profile or mixing beam electrons at different axial coordinates t within
the beam. This is the usual sausage mode.

Substituting Eg. (36) and (38) into Egs, (22) and carrying out a simple

algebraic manipulation, we obtain the eigenvalue eguation,

% %; r (3Y/3x) [4nc-im
4Aro-1i(Q -kc/Sbyb)
w2 (r)
“pb 2 | iw 4rowi .
" 92 - (W, + - m')z (4n08b * Yz)] * c2 y(r) = 0, (39
b b b

for the n = 1 perturbation. Equation (35) is clearly a self consistent

solution to Eq. (39) in the limit wtd" 0 (i.e. the last term can be

neglected), provided that ((w) satisfies the dispersion relation

2
- w - .
4To_-iw + pb 4n6 82 + 2\ o ,
1 + -2 1" 2
Q- (mb - mb) Y

In order to find an approximate dispersion relation which includes the
influence of the magnetic decay time without going through a Bessel

function analysis of Eg. (39), we multiply Eq. (39) by rY(r) and integrate

18




over r fromr = 0 to r = Rc. It was shown in Ref. 7 that if a trial '

function wt is substituted in the integrals, this procedure gives a ; ]
dispersion relation Q(w) that is accurate to second order in the error
in wt‘ Thus the procedure can be described as a variational approxi-

mation, although it does not give a lower bound, because the differential

operator is non~Hermitian. The result is a dispersion relation

*2
W
i : _ 4. pb A A
(ro) = iw) (1 - Tiwty) + Tl <4nolsb + i —2)- 0 (40)
b~ “p b

where use has been made of Eg. (10). In the limit of a nonneutral
electron beam where 4wol/w - 0, the dispersion relation in Eqg. (40) can

be simplified to

2 + -2 A

2 2
b X +wpb /Yb {41)

which is identical tc the result obtained by Uhm and Davidson.3 The
equilibrium constraint, Eg. (7), indicates that the right-hand side of
Eq. (41) is always positive. Thus the n = 1 perturbations about a non-

neutral electron beam are stable. Analysis of Eq. (40) will be deferred

to Sec. V.




B. n = 2 Hollowing Mode

As a second example, we consider the n = 2 eigenfunction,

2 2 4 4
~ ao(l-41'/Rk + 3r /Rb)’ 0=srs Rb ’ (42)
w(r) = ‘

0 , Rb =r < RC R

which is found to be a self-consistent solution to (22) in the limit

Substituting Eq. (42) into Eq.

algebraic manipulations that make use of Eq.

radial and axial components of the perturbed n = 2

(43)

(22b) and carrying out some tedious

(10), we can show that the

current density are

2
A . w ()R Q A
i PP 2
Jbr(r) 4T Q2 - (m+ _ w-)z {Br (r)
b b
W - w) (@ = w) 2
- % T Y Wy T Y o r , (44)
- feay 3 T -3 =21 23 =
Q" - 4(wb - wb) Rb Rb
and
2
cB 2
- {r) -
b 13 “ob 3
Jbz(r) = 4 r or o Q2 - + _ w-)z ar vz
“b %
cB2 72a (w+ -‘m Y (w, = w) §(r - )
b 0 b b b b ~2 Rb
- 2 Wl —— D2
™ pb R,

wzb
4 _2-5—- 1 -

%

(r) 2
3 L

Ry

+

where wb is
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-2 + -2 2 £ -.2-
(o® - (w, - o) ] [e° - 4w, - w)"]

the rotational frequency of the electron beam.

(45)

We note that




~

J, _(r) is of the forma + A
bz [¢]

constants. Thus this mode involves non-self-similar axisymmetric

2
r within the beam, where AO and A, are

1 1

distortions (hollowing or peaking on axis) of the beam profile.
As in the previous section, an approximate eigenvalue equation !

for wrd$0 can be determined by substituting Egs. (44) and (45) into

Eg. (22). This gives ;

13 4n0-iw + T (o) r 9 vir) s+ 4mowi v (r) f
r dr . 2 b 3r 2 '
4n0 - i(Q - kc/B,v.) c i
b'b ;,
(w+ -w ) (W - W 2 2 %
= 72a, —2—2 b 12 fr i (2-3% . (46) b
0 Q2 Y + -)2 Y 3r b 2 2 {‘
v~ % % 3 i
where the function Fb(r) is defined by
2
w_, (r) 4n082 + iw/y2
pb b b
r(n) = = — 5 (47)
Q- - (wb - wb) 4ro-1i(Q - kc/Bbe)

As in the previous section, we multiply Eg. (46) by ry{r) and integrate
over r from r = 0 to r = Rc, to obtain a variational expression for the j:

dispersion relation in terms of the unknown exact Y(r), and then use

Eq. (42) as the trial function. This procedure gives

. 4 .
(41rol - iw) (} - 15 lde))

“2 2 , 2 + -
fpb(4"clsb + 1w/ybh le(mb - wb)(wb wb) -
+ 1 + = 0, (48)
92 - ( r - -)2 92 - 4(m+ - m-)2
“y T Y% b~ “

where use has been made of Eq. (10). The dispersion relation in Eg. (48)

can be used to investigate stability properties of the n = 2 perturbations
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for a broad range of physical parameters, and detailed investigations

of Eq. (48) will be presented in Sec. V.
As a particular case, we consider Eg. (48) in the limit of a

nonneutral electron beam characterized by 4nol/w = 0. In this case,

the dispersion relation in Eqg. (48) can be expressed as

2 + -2 .2 + -2
(2% - (wy - w) 1007 - 4wy - 0] (49)
;2
- _pb 2 _ + _ - 2 + -
Yz {{a 4(wb wb) ]+ lB(wb wb)(wb wb)} '
b

which is identical to the results obtained by Uhm and Davidson.3
. : . . . 2
Equation (49) is a simple quadratic equation for Q°, and the necessary

and sufficient condition for instability can be expressed as

(O - w) (W - o) Yow 2
b~ " "% 2 b cb A (50)
(m+ _ w-)z 9 mpb
b b

Note that when Eg. (50) is satisfied, the perturbations are purely

growing, i.e., Qr = Ref! = 0, and that the rotational fregquency Wy can

have a large influence on stability behavior. Equation (49) is also
similar in form to the result obtained by Gluckstern16 for transverse
instabilities of proton beams in the gquadrupole magnetic fields, which

X . . . . ) 12,1
are particularly important in the heavy ion fusion experiment. "' 3
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C. n = 0 Axial Bunching Mode

The n = 0 mode, which is of particular interest for

unneutralized beams, is quite different in nature from the n = 1 modes.

We find that

1, 0sr«< Rb ,

AT R M S AP ST

P(r) = a
zn(r/Rc)/ln(Rb/Rc), Rb < ¢ £ Rc (28)

is a solution to Eq. (22) in the limit

4wTd << 1. (29a)

and
(29b)

Rb < RC :

Substituting Eq. (28) in Egq. (22b) and using (29b) and the identity

p_ = p*;os(¢-6), we obtain the axial component of the perturbed beam

r

current density,

~

2
- - e2n a.w /(Y3nm§22) , 0 sr < Rb '
b0 b
Jbz(r) = (30)
<
0, Rb < r Rc ,
and the radial component,

(31)

Jbr(r) =0,

Clearly, the n = 0 mode involves purely axial flow, leading to bunching.

Because a beam becomes axially rigid in the highly relativistic limit,

~

Jbz is seen to fall off rapidly as Yb increases. The dispersion relation
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that determines the eigenfrequency w or § is obtained as in the

previous sections, by substituting Egs. (28), (30), and (31) into
Eq. (22), multiplying Eq. (22) by r¢(r) and integrating over r from

r=0tor-= Rc. This gives the dispersion relation

A

+ 471
w 102

[(kc/Bb) -w - 4wi02]ln(Rc/Rb)

N

+ 4iwt_ = (32)

d

< I
o wlc
bwls

where v is Budker's parameter defined in Eq. (1), a result which is valid

only if

dotg S 1, (29¢)
and (29b) is also satisfied.

The dispersion relation in Eg. (32) can be used to investigate
stability properties of the azimuthally symmetric surface perturbations
about an electron beam in a background plasma with arbitrary values of
density and plasma conductivity. In particular, for a nonneutral electron

beam in an environment where 4mo/w = 0, Eq. (32) simplifies to
22 2
(k"c” - w )zn(Rc/Rb) ’ .(33)

which is identical to the result obtained by Briggs8 for the space-charge
wave mode where w ='-kcBb. Note from Eg. (33) that the space-charge wave
is a stable mode because kzc2 > m2 in this mode. We also note the

Y;3 dependence of 92, which occurs because this mode (unlike the n =2 1

modes) involves purely axial flow. A detailed investigation of Eg. (32)

will be carried out in Sec. V.

st tamcalues
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v. STABILITY PROPERTIES OF AZIMUTHALLY SYMMETRIC PERTURBATIONS

We now investigate stability properties predicted by Egs. (32),
(40}, and (48) for o # 0. Depending upon the way in which a stability
problem is phrased, either w or Q may be regarded as the independent
variable, and taken to be real; a complete understanding requires an
analysis in the complex plane for both w and {i. We shall concentrate
here on the solution of the dispersion relations in Egs. (32), (40),
and (48), for given real values of the oscillation frequency w; then Qi

determines the growth of the wave on a particular beam segment as the

beam propagates downstream.




S maat D Ot A

A. Stability Analysis in the High Conductivity Regime

To make the theorxetical analysis tractable, we assume that
the plasma is collisional to the extent that it is characterized by a
real, scalar conductivity. Moreover, we consider in this section the
case in which the perturbed beam space charge field is completely

neutralized by the plasma, which requires a high conductivity plasma,
470 << W . (51)

Within the context of Eg. (51), the dispersion relations in Egs. (32),
(40) , and (48) can be simplified considerably.
(a) When (51) is satisfied, the dispersion relation in Eqg. (32)

for n = 0 reduces to

2V w2 1
=2 = dier, - ——— (52)
Y; Qz d JZ'n(Rc/Rb)

which clearly indicates instability. If in addition the magnetic Qdecay
time is small, |4wt dln(RC/Rb)l << 1, Eq. (52) simplifies further to
2 2v 2
Q S - ‘_3‘ w ln(Rc/%) ’ (53)
LY
which yields a purely growing mode. Note from Eq. (53) that the growth
rate Qi is inversely proportional to y3/2

b

unstable mode is important only for a mildly relativistic electron beam

, which indicates that this

satisfying Yy % 5; the rapid fall-off of Qi with Yp is due to the purely

axial flow that occurs in this mode. It is instructive to compare
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Eg. (53) with Eq. (33), in which the terms proportional to k2c2 and
w2 are due to the perturbed beam space charge and magnetic
fields, respectively. In a nonneutral electron beam, the stabilizing
influence of the perturbed space charge field always prevails over the
destabilizing influence of the perturbed magnetic field; thus the beam
supports only stable space charge waves. However, in a high conductivity
plasma characterized by Eq. (51), the stabilizing influence of the
perturbed space charge field vanishes; the mode is then unstable, as
shown ir Eq. (53).

(b) The dispersion relation in Eg. (40) for n = 1 simplifies

to

= = iwr, , (54)

when 4mg >> w. The instability mechanism can be easily identified in a
self-pinched electron beam where the applied magnetic field vanishes and
the fractional charge neutralization becomes unity (mcb =0, fe =1).

In this particular case, Eq. (54) can be expressed as

2 ~2
Q =-w B (1 -2f)
5 pbA§ 3 o = g-iwtd . (55)
Q" - ZwaBb(l - fm)

Equation (55) clearly indicates that the instability of the n =1
sausage perturbation is driven by the plasma return current (fm) and the
magnetic phase lag (mtd). Even for a very small magnetic decay time

satisfying wt_ << 1, the system supports a purely growing mode whenever

d

the partial current neutralization fm satisfies
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(56)
!
the growth rate of this mode is i
Q, = w_ 8 (2£ -1)"
i pbb m
We note further that Eg. (55) reduces to
2 _ 2 . C 2
z° =1 sb[1+l6(mab/c)], (57)

for the case wT_, << 1. In the limit of 1| = 282

a b’ Eg. (57) is remarkably

similar to the result obtained by Weinberg8 within the framework of the
coaxial circular electron beam model.
The influence of the magnetic decay time on the stability behavior

will be investigated numerically in Sec. VB.

(c) The dispersion relation in Eqg. (48) for n = 2 simplifies to
A2L,2 + - A2

18w pbab (wb - wb) (wb - wb) . wpbsb
2 + - 240 A2 + =2 2 + )

Q%= - O%a o - - -

(Q (w, -w) % (W, wb) ] Q W, wb)

(58)

4
—‘1+T5—1UJTdI

for high conductivity plasmas. We note from Eg. (58) that for n =2 as
well the magnetic phase lag (wTd ) and plasma return current (fm) cause
the instability. 1In order to illustrate the influence of the plasma
return current on the stability behavior, we consider Eq. (58) for a

self-pinched beam (wc =0, fe = 1) and for a small magnetic decay time

b
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(aﬂ'd << 1). 1In this particular case, the dispersion relation in Eq.

(58) can be further simplified as
24—[10(l-f)-l]zz+[16(l-f)+l] 1-£f)=0, (59)
m m m

A
where the normalized eigenfrequency 2 is defined by Z = Qﬁnpb?b, and we
have also setwb = 0, i.e. we consider the case of a non-rotating pinched
beam. Equation (59) is a simple guadratic eguation for ZZ, and the

necessary and sufficient condition for instability can be expressed as

£ > (2 - 31/2/2)/3 = 0.38 . (60)
m

In contrast to the case Qf n = 1, we note from Eq. (59) that the n = 2
perturbations are not always purely growing when Eq. (60) is satisfied,
i.e., Zr F0. Unstable n = 2 perturbations can reduce the beam density
at axis, leading to a hollow beam profile. Detailed numerical investi-

gations of Eq. (58) are carried out in the next section.
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B. Numerical Analysis for Stability Properties

In this section, we summarize the results of numerical studies
of the dispersion relations in Egs. (32), (40), and (48) for a broad
range of the beam electron energy Yb' the normalized oscillation frequency

mRb/c, the plasma conductivity parameter

A
¢ =ama/w (61)

and the focussing parameter

2,02

m ¥ - .
n = (wb - wb) /W . (62a)

pb

The analysis in this section is restricted to a self-pinched electron beam
with mcb = 0. [The stabilizing influence of the applied magnetic field
(W cb) on a related instability (resistive hose) is discussed in Ref. 7.3

Making use of Eq. (6), we can simplify the parameter N in Eqg. (6l1) to ;
2
n=2A3 (1-£)~@=-£)], (62b) i

for self-pinched beams. We note that the value of the parameter 7 is

2
limited to the range 0 s 1} s 2sb.

Defining the normalized eigenfrequency
Q A
zZ =l/w ob (63)

the dispersion relations in Egs. (32), (40), and (48) can be expressed

as
in(R_/ WR \ ©./60.32 + in?
2, RESR) (Rb> 27983y * iy -0
2,2 A P 2 '
2v 3, e {woo¢ - 41 - %,(wab/c) An(R/R)]
(64)
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for the n = 0 perturbation,

2 L. 2
2 3, + iy
25 -n + 5 =0 (65)
€ - 1 - i WR /c)7/6]
for the n = 1 perturbation, and
,q2 L2
2 1l CB. + i/
(z% - (z -+ 2t S b b =0,

€ - D1 - L wR /e)?/30]

for the n = 2 perturbation. In obtaining Eg. (64), use has been made of
Eg. (10). Moreover, we have assumedi»b = 0 in Eq. (66), which is con-
sistent for self-pinched beams. Equations (64), (65), and (66) clearly
show that only the n = 0 mode is influenced by the location of the con-
ducting wall.

Typical numerical results of Egs. (64) - (66) are summarized in

Fig. 2 for Yb = 1.5, (wa/c)2 = 0.0l1 and the parameter m = 1.11. Note

from Eq. (62) that 1 = 1.11 is the largest possible value of 7 for

Yb = 1.5, corresponding tc a space charge neutralized electron beam
(fe = 1) with no plasma return current (fm = 0). We note the following
features of Fig. 2: (i) The n = 0 and n = 1 unstable modes have Zr < 0,

i.e. propagate backward in the beam, while one of the two n = 2 unstable
modes [ denoted n = 2(+)] has Z_ > 0 and the other (n=2(-)] nas z_<o.
The n = 2(-) mode is always the faster growing of the two. (ii) Each
mode, except n = 0, has two maxima of the growth rate Qi, the first
occurring for all modes at { & 1, the transition point from electrostati-

cally to magnetically dominated forces, and the second occurring at

- 2
- N 6(cAan) , i.e. wTd = 3/4, (n=1), (67a)
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=~ 30(c/w%)2, i.e. u)'\’d =~ 15/4 (n = 2). (67b)

Note that when fm << 1, the second instability peak is driven by the phase
lag Td between the beam oscillations and the magnetic restoring force, and

it is appropriate to scalew to T (1ii) The n = 1 perturbation is the

a
most unstable azimuthally symmetric mode. (iv) For a space-charge neutralized

beam (fe = 1) with fm << 1, the absolute value of Doppler-~shifted real fre-

/2 1/2

quency can be approximated by IZrI:’ nl and

1/2

for n =1, and |Zr| =10
[zrl‘“ n for n = 2 over the entire unstable range of the conductivity
parameter { [ Fig. 2(b)]. Since this dependence is so simple, Zr will not be
shown in the subsequent figures.

Figure 3 is similar to Fig. 2a, except that a higher frequency
(szbZ/c2 = 0.1) is considered. We note that Egs. (67) for the location

of the magnetic-dominated instability peak are well satisfied; the location

of the peak thus moves to the left on a { scale. The first instability peak

remains at { & 1. The growth rate of the n = 0 mode is seen to increase
significantly with «DRb/c), but the n = 1 and n = 2 modes depend weakly on
this parameter.

In Fig. 4 we consider a highly relativistic (Yb = 10) case, again with
fe =1, fm = 0 (which gives 1 = 1.98 in this case). The n = 0 mode is not
shown since its growth rate is very small for large Yb' The most striking
change from Figs. 2 and 3 is that the two peak growth rates of each mode
have become equal, and in fact the Z({) curves are symmetric (on a

; logarithmic scale) about a point { ~ «uRb/c)z. This feature is easily seen

to be a consequence of Egs. (64) - (66). When Yb >> 1, each of these equa-

tions takes the form
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const

F(2) = ' (68)
(1 -2,/ -a/k)

where F(Z) is a function of 2 that is different for each of the two modes,
and A1 and A, are constants which take different values for each of the
two modes. It follows that Z({) takes the same value at two points Ql and
Q2 = (Al/Azgl), i.e. the Z({) curve is symmetric (on a log plot) about
¢ = (Al/Az)l/Z.

The dependence of stability properties on the parameter 7 is illus-
trated in Fig. 5(a) for Yb =1.5, n=1, in Fig. 5(b) for Yb = 1.5,
n =2, and in Fig. 5(c¢) for Yy = 10, n = 1, where the normalized growth
rate Zi is plotted versus { for (wa/c)2 = 0.1 and several values of the
parameter T\. It is evident that as the parameter 7 L defined in Eq. (62)]
decreases to zero (e.g. weakly pinched beam~-nearly complete curreut and
space charge neutralization), the growth rate increases rapidly, and the
strong growth occurs over a broad range of W, rather than being confined
to two sharp peaks. As discussed in Sec. V.A for the high conductivity
regime, this remarkable behavior is due to repulsion of the beam current
by the plasma return current (fm > 0) flowing in the highly conducting
plasma channel. We also note from Fig. 5(b) that the n = 2 (+) perturbation
is stable for m = 0: the dispersion relation, Eg. (66), reduces to

2 2 53; * i/lea

A Z + > =0 ,
¢ - 11 - i WR, /<) “/30]

which gives only one unstable mode, n = 2 (-).
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VI. HOSE INSTABILITY

Although this paper has been concerned primarily with the axisymmetric
(m = 0) instabilities, essentially the same analysis can be used to treat
higher m modes over the full range of values of the background conductivity
0. provided that O (r,T) is r-independent over the range 0 < r < Rc. In
particular, it is of interest to compare the growth characteristics of the
m = 1 hose instability to those of the axisymmetric modes we have studied.
Our analysis of the hose instability will be based on the same equilibrium
(Sec. II) except that we now take 0 to be a constant, which can have any
value, over the full range of r and z. We need not make the long wavelength
assumption (10); the weaker assumptions (1ll) and (12) suffice.

For the hose mode, all perturbed quantities are taken to vary as

A
é(ﬁ,t) = ¢(r) exp i(kz +3 ~ wt)
(69)

A
= ¢(r) exp L-i(wT + Q.z/vz -8)] ,

so that
2123 .2 1 _313
1 r dr = dr 2 Jdr r dr

The analysis of Maxwell's equations follows that of Sec. II through Eq. (19),
at which point the constancy of Jis used in (18) and (19) to show that

d _*» 4nowi 41 . ke A
FTTV*r* T2 V- GRo-ime {4"0 1(0 Z)Jbz
c CI N

g
dr

L Lo

(70a)

+ — E_(rgbr)+i3be} .

r3 dr

o




The analysis of the Vlasov equation is similar to that of Sec. 1I, leading
in this case to the expression

21 3£°
A _ 2, ¢ dé o b A
dp(¥) = -2me Bbt am J PR dp, { ¥(r)

(70b)

flo Lo d A
+ € -'wb) J  dz iy (r”) exp [i@*-8 - ﬁ;)]}

-0

Equations (70) define the m = 1 eigenvalue problem as Egs. (22) did for
m= 0.

In the case of the hose mode, in the limit

TI'O'(.URDZ -
| wr 2| —— | <1 (71)
d 2
2c
Egs. (70) support a solution
s
aor ' Osr Rb '

A
Y(r) = (72)

2,2 2-1, 2 -1
a Rb(Rc Rbl (Rcr -r), Rb S rs R
essentially a distortion free snake like displacement of the beam and the
associated electromagnetic fields (within the constraints imposed by the
conducting boundary conditions at r = Rc). Using the orbit equations (23),

Eq. (70b) can then be solved for the perturbed current, with the results

£ 23 2
A c pb b § (x)
J_ (r) = - = - 8 (x-R), (73a)
. B,0w) wpbz(r)
Jbr(r) = an > ’ (73b)

- *
(Q-wb )(Q-wb )
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A war
Jba(r) = i Jbr(r) + é-b—c- Jbz(r). (73¢)

For finite values of wTd, we follow the same approximation scheme
used in Sec. IV to derive the dispersion relation. Equation (73} is used

in Eq. (70a) to derive the dispersion relation,

2
W (r) A
%%{%[4na-iw+i(ﬂ—wb) &_ +] dd—r(rw)}
Q-w. ) Q-w_ )
b b
: A
+ ﬂ%’—’—l— (4770 - iw) ¥ (74)
C
A2 2
) £, 3. B(r-r ) 4
- famo-ifa- Xe . b)) Zep ;'b u(rr) .
Bbe Bb (Q-ivb )(u-wb )

We note that in the high conductivity limit 4710 >> !w , Eg. (74) reduces

. . . . 7
to the eigenvalue equation previously obtained by the authors,

u: 23 2 "
A i M \
5. 411’0;)1 i = Pb- b - 4;5 (r-Rb) . (7%)

4134,
dr r dr

A
As in Sec. IV, we proceed by multiplying both sides of Eq. (74) by r § and
integrating over r from r = 0 to r = Rc, thereby obtaining a variational

expression for the dispersion relation Q),

R . 2 2
c 1w o _ (r) A
- ci-_r 4Tg ~ iw + b+P—b— = [Ed; (r‘¢)]
) 2w, )(Q-mb )
4 R A
+11i§-“l<4m-iw) I Carry? (76)
c o

2

A 2 r_I\ 1

" v 32 5wr)]
< famo-ifa- 2o Tm)| Te’e

Sbe '3b (wa )(Q-wb )

-
]
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A
We then use Eq. (72) as the trial function § (r) in (72), finally arriving

at an approximate dispersion relation

3 2S 2 j)‘ 2Y -2
470 ng + pb+ b — + iw -2gf + Pb+ b —
(Q-wb )(Q-wb ) (Q-wb )(Q-wb )
(7
_4Ticw Ry 2 - _ 1
= ——CZ (4mo iw) g.R [gfun (R/R) 5
where

t 1 o m 2,2 -1
gf-(l RD/RC) .

Equation (77) can be used to investigate hose stability properties over a
broad range of system parameters, including conductivity &G, fractional
charge and current neutralization fe and fm’ applied magnetic field strength
(“Ucb) , electron energy (Yb) , and proximity to the conducting guide (Rb/Rc) .
In the limit of 4WJ << le of low background conductivity, Eg. (77) reduces

to the result obtained by Uhm and Davidson,s
A2
W
g, = ——E —, (78)
2Yb (Q-wb )(Q-wb )

which leads only to stable oscillations. On the other hand, in the high

- . . 7
conductivity regime 470 >> |w| , Egq. (77) reduces to our previous result,

A2
Yob Bbz 4Tow i 2 . Re 1
29¢ * = ol 7 IRy L9rg - 3l (72)
(Q-wb )(Q-mb ) c P\o
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For comparison with the results of Sec. V for the axisymmetric in-
stabilities, we present a number of numerical solutions of Eg. (77) for
Re {(w) and ImQ(w), specifying I 0 and Rb/Rc = 0.5, but sur-
veying a broad range of beam electron energy Yb' normalized frequency
mRb/c, normalized conductivity {, and focussing parameter 1. These re-
sults have been plotted as the dashed curves in Figs. 2-4, along with
the results for the various axisymmetric modes (solid curves). The hose
dispersion relation is seen to be remarkably similar to those of the
axisymmetric modes. 1In Figs. 2-4 (cases with no return current), the

\ hose growth rate ﬂi is seen to have two sharp peaks, the first at { = 1

and the second at

~~ 2 : . ~
5 =~ 3(c/w Rb) » l.e.wT, *0.4 . (80)

Both the location of the peak growth rate given by Eq. (80) and the value
of the peak growth rate depend to some extent on the value of Rb/Rc; the
corresponding results for the axisymmetric modes are independent of Rc.

The peak hose growth rates plotted in Figs. 2-4 for Rb/Rc =% lie between
those of the n = 0 and n = 1 axisymmetric modes; for Rb/Rc - 0, however,
the hose growth rates would be slightly greater than those of the axisym-
metric modes. In the limit of large Yy Eq. (77) can be put in the form
{68) , so that the two-peaked structure of 2Z({) becomes symmetric on a log

¢ plot, as seen in Fig. 4 for all modes. As the return current increases,
i.e. 1 decreases to zero, the growth spectrum of the hose mode broadens and

becomes singly peaked, and the maximum growth rate increases significantly.

Like the sausage and hollowing modes, the hose is driven strongly unstable
by the mutual repulsion between the beam current and return current, when

the latter has the same equilibrium radial profile as the former.
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VII. CONCLUSIONS

In this paper, we have investigated the stability properties of both
azimuthally symmetric (3/38 = 0, or m = 0) and hose (m = 1)) perturbations

in an intense particle beam propagating parallel to a uniform applied

- S P

A
magnetic field Bosz

out within the framework of the Vlasov-Maxwell equations, assuming long

through a background plasma. The analysis was carried

wavelength, low frequency perturbations. The analysis was simplified by ; 3
considering only step-function, time-independent conductivity profiles, i
by requiring that the plasma charge and current density have the same
radial profile as the beam, and by considering a beam with a "loss cone"
distribution function, in which all of the beam electrons have the same
value of axial canonical momentum and the same value of energy in a frame
of reference rotating with angular velocity W, . This distribution leads
to a flat-~topped beam radial profile; the unperturbed beam electron orbits
are then simply harmonic at a single fregquency.

Equilibrium properties were calculated in Sec. II. The formal sta-
bility analysis <or azimuthally symmetric perturbations was carried out in
Sec. III and an integro-differential eigenvalue equation was obtained,
which included beam electron thermal effects and applied generally to any
radial mode number. In Sec. IV, dispersion relations for the axisymmetric
modes with radial mode numbers n = 0, 1, and 2 were obtained analytically
from the integro-differential eigenvalue equation (22), for a moderate value f
of the magnetic decay time such that WTd S 1. Also discussed in Sec. IV were
the stability properties of a nonneutral electron beam characterized by %
47731AD = 0., A parallel treatment of the hose mocde was carried through in

Sec. VI.
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Analytic and numerical investigations of the n = 0, 1, and 2 axi-
symmetric dispersion relations were carried out in Sec. V, and the hose
dispersion relation in Sec. VI, for a collision-dominated background
plasma. It was shown that the n = 1 and n = 2 axisymmetric modes and
the hose mode are all driven unstable by both the plasma return current
(fm) and the magnetic decay time (wTd). Even for a very small magnetic
decay time, the system can be unstable whenever the fractional current
neutralization satisfies fm > 0.5 for n = 1 and fm > 0.38 for n = 2.

We found that the n = 1 perturbation is the most unstable axisymmetric
mode, with maximum growth rate Zi = 0.205, for a relativistic beam with
fm = 0, slightly less than that of the resistive hose instability when
Rb/Rc = 0, but greater than the hose growth rate when Rb/Rc ? 3. Finally,
it has been found in the case of Zero plasma return current (fm = 0) that
the growth rate of instability has two local maxima corresponding to the

A
electrostatic regime (43, = W) and to the regime where the instability

1

is driven by the magnetic decay time (wT, ~ 1).

d

The resistive hose instability, in the high conductivity regime, has
been studied6’7 for rounded beam profiles which introduce dispersive
anharmonic effects. It is of considerable interest to extend the analysis
of the axisymmetric modes in this way, as well as to study the effects of
more general conductivity and plasma current geometries. It is believed
that the hose and axisymmetric modes respond differently to these

generalizations of the equilibrium. Such effects will be considered in

future work.
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Fig. 2 - Plots of normalized (a) growth rate and (b) Doppler-shiifted
real frequency versus ; [Eqs. (64) - (66)] for v, = 1.5, (mRb/c) = 0.01,
n = 1.11 and several values of radial mode number.
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Fig. 4 - Plots of normalized growth rate Z, versus ¢ [Eqs. (65) and (66)]
for vy = 10, (a) (uRy/c)? = 0.01, (b) (wR /c)? = 0.1, and parameters other.
wise identical to Fig. 2.
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