
HfA9 3 AVLRSAC LAD WQASHINATON DC F/g 30/9

COMPARISON OF TWO-STEP TIME INTEGRATION SCHEMES FOR THE FINIT--ETC(U)
JAN 81 R A SKOP. 6 A KERANIDAS

UNCLASSIFIED NRL-M"448 R

MEin



4 ~mprlson of po-Step Time
Iutgra "Snchemes for Wbeife Element

-1 ~~Advecion Equto. E E Z
ICHARD A.AJCOP AM Gnoo A KOAS

ppldechanics Branch

4 Marine Technoog Division

ELECT~f
Januar 19, 1981FE05I91

~~.05 042



SECURITY CLASSIFICATION OF THIS PAGE (When Dati EnIted)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Memorandum Report 4438 "

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A COMPARISON OF TWO-STEP TIME INTEGRATION Interim report on a continuing

SCHEMES FOR THE FINITE ELEMENT ADVECTION problem

EQUATION C PERFORMING ORG. REPORT NUMBER

7 AUTHOR(s) a. CONTRACT OR GRANT NUMBER(.)

Michael L. Morrell,* Richard A. Skop, and
George A. Keramidas

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA II WORK UNIT NUMBERS

Naval Research Laboratory 61153N, RR0230141
Washington, DC 20375 0273-0-1

I'. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research January 19, 1981
1S. NUMBER OF PAGES

Washington, DC 22217 92
14. MONITORING AGENCY NAME & AODRESS(If dilfeent from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified
IS.. DECL ASSI FICATION/DOWN GfADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

*Clemson University

19 KEY WORDS (Continue on reverse sid. If necessary and Identify by block number)

Advection Finite Elements
Advection Equation Transport Processes
Fluid Mechanics

20 ABSTRACT (Continue on reverse side If necessary and Identify by block number)

Numerical studies of two explicit, two-step time integration techniques for the one dimensional,
constant velocity finite element advection equation have been conducted for both square hill and
cosine hill density distributions. One of these integration techniques, the Godunov scheme, is
first order accurate in time while the other, the Lax-Wendroff scheme, is second order accurate in
time. The results show that, overall, the "best" numerical solutions are obtained by combining a

(Continued)

DD I JAN73 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (W*en DST. Efntered)
I.

$k .- I I I I • I1 I 1 I I I I I . . . .r,. '.. . . i . . . . . . . . . . . . . . l l i . . .



',ECUP.IT. CLASSIFICATION OF THIS PACE (", D~a* En-.'dJ

r20. ABSTRACT (Continued)

central weighted first-step Lax-Wendroff time integration with parabolic spatial discret izat iof either
in its full or condensed [M matrix form. Both the standard and central weighted first-step
Godunov time integrations are found to be numerically diffusive. This diffusivity tends to
override whatever spatial discretization is used. However, the positivity property possessed by the
Godunov schemes can be valuable for many applications.

SErURt!Y Ct $SIFICATION OF T,.JS PAG %0,. ,,re.~



CONTENTS

1. INTRODUCTION ............................

2. PROBLEM DEFINITION .................................................................... 3

3. FINITE ELEMENT FORMULATION...................................................... 4

3.1 L inear E lem ents .......................................... ......... 6

3.2 Parabolic Elements .......................... I.............................................. 7

3.3 Condensed [M] Matrix Formulation ..................................................... 7

4. TIME INTEGRATION SCHEMES.......................................................... 8

4.1 Standard Two-Step ........................................................................ 8

4.2 Smoothed Two-Step....................................................................... 9

4.3 Modified Two-Step........................................................................ 10

5. NUMERICAL RESULTS .................................................................... 10

5.1 Linear Elemecnts...... ..... ........................................................... I]I

5.2 Parabolic Elements. .... ........................................................... 13

5.3 Comparison of I~incar and~ Parabolic Elements ................................... ..... 15

5.4 T im e Step Sie Studh.............................. ........... 16

5.5 T im e D~uration Stuld\ ............................................ 17

6. CO N C L.U SIO NS .... ................................. ....... 18

7. A C K N O W 1 . D OM 1:N TS ............................................... 18

8. R I Il[ [-R I:N C I.S ...................................................... . 19

APPEND)IX A L 1inear E'lement Matrices .................................... 20

APPI;NI)lX B- Parabolic Element Matrices.................................................. 22



A COMPARISON OF TWO-STEP TIME
INTEGRATION SCHEMES FOR THE FINITE ELEMENT

ADVECTION EQUATION

1. INTRODUCTION

Nonlinear hyperbolic equations of the form

+ div(P j;) = 7(0,') (1.1)at

where j; is a vector of conserved quantities, Vis the velocity field, and Fis a given functional, describe

flow behavior in subjects ranging from hydraulics to gas dynamics. Finite difference techniques that

had been applied to the solution of Equation (1.1) were examined in detail by Roache 11] in his classic

text Computational Fluid Dynamics published in 1972. More recent finite difference attacks on Equation

(1.1) have been reviewed by Sod 12] and by Book, et al. 13]. As is evident from these references, finite

difference solutions of Equation (1.1) have reached a high level of sophistication and accuracy. The

most significant criticism that can be leveled against these techniques is the difficulty encountered in

treating complex flow boundaries. This is especially true for the most accurate methods that rely on the

use of a "staggered" mesh.

A natural way of handling complex flow boundaries is through finite element discretization of the

spatial derivatives in Equation (1.1). In these finite element methods (for an excellent introduction see

the text by Baker (4]) the space of concern is divided into a large number of sub-spaces over each of

which the dependent flow variables are approximated by shape functions. Complex flow boundaries fall

naturally out of the discretization as constraints on the shape function coefficients of boundary ele-

ments.
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Before blindly applying finite element methods to the solution of Equation (1.1), however, it is

necessary to exaluate their ability to replicate some simple flow behaviors predicted by Equation (1.1).

To this end, we examine in this report numerical solutions of the simple, constant velocity, advection

equation

S+ V AL = 0 (1.2)

that becomes, upon finite element spatial discretization,

[M] (R + V [K] {R} = 0. (1.3)

Here, [M] and [K] are matrices that depend on the specific discretization, (RI is a column matrix

representing the node point values of the "density" p, and the dot denotes ordinary differentiation with

respect to time. For practical computational purposes, two requirements can be imposed on the time

integration technique used to advance Equation (1.3):

I. It should require knowledge of [R) only at the node points. This requirement is imposed to

preserve the strongest attributes of the finite element method, namely, ease of establishing

grids for complex geometric boundaries and ease of handling boundary conditions.

2. It should be explicit to ensure fast, efficient calculations. This requirement really stems from

Equation (1.1) where an implicit integration scheme would mandate the solution of large,

nonlinear sets of algebraic equations at each time step.

The problems of concern are a) what combination of spatial discretization and time integration

"best" models the true advection solution and b) whether "best" is good enough. Within bounds, the

latter concern is, of course, fairly subjective.

In the subsequent sections of this report, we undertake numerical experiments using both linear

and parabolic spatial discretizations of Equation (1.2) combined with two basic, two-step time integra-

tion schemes for Equation (I.3). One of these schemes is first order accurate (in a Taylor series sense)

while the other is second order accurate. Following the convention of Sod (2], we refer to the first

scheme as a Godunov type scheme and the second scheme as a Lax-Wendroff type scheme. We also

2
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consider the effects of [M matrix condensation [41 on the numerical solution. This popularly used

technique obviates the need for performing an in'version of the large [,V4 matrix. In addition, two first

step weightings of the basic time integration schemes are studied. Such weightings are used commonly

in finite difference methods [1] to average the influence of adjacent nodes. One weighting gives zero

weight to the node under consideration and is termed the "smoothed" weighting. The second weight-

ing, based on symmetry considerations, is termed the "modified" weighting.

All told, twenty four different combinations of spatial discretization and time integration are

applied to the advection of both a smooth cosine hill density distribution and a discontinuous square

hill density distribution. For the most part, those combinations that employ a parabolic spatial discreti-

zation yield more accurate solutions than those that employ a linear spatial discretization. This result is

similar to some recent findings of Leonard [51 that indicate even-ordered finite differencing to be more

accurate than odd-ordered finite differencing. Overall, the "best" representation of the true adection

solution is obtained from the combination of parabolic spa:ial discretization and modified Lax-Wendroff

time integration. This time integration combined with the condensed parabolic [MI matrix formulation

also gives quite acceptable numerical solutions. The modified Godunov time integration combined with

either the full or condensed parabolic spatial discretization, while highly diffusive, does possess some

positivity properties that can be useful in certain applications.

We conclude the report by examining time step (Courant number) stability questions for the

more promising combinations of spatial discretization and time integration.

2. PROBLEM DEFINITION

Let the density of a certain substance be denoted by p(x,t). This substance is being advected

donstream (x-direction) at a constant velocity IV. Requiring that the substance be conserved leads to

the advection equation:

+ V. 0. (2.1)

at

3I
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Normally this equation is applied to a finite (or infinite) length in the x-direction, thus permitting

mass to flow out at the boundaries. This would confuse the evaluation of the integration schemes, in

that the resulting errors could either be in the scheme itself or the system could be losing mass. In

order to avoid the possibility of gaining or losing mass, the x domain of Equation (2.1) is taken as a

continuous loop.

Consider now that the x-direction is a continuous loop, hereafter called a racetrack. The domain

of x is 0 < x < L. By this we mean that the point x = L is the same as the point x = 0 as shown in

Figure 2.1. For our subsequent numerical studies, we take L = 48 (arbitrary units of distance).

Two initial conditions are considered: (a) a cosine hill between x, and x 2,

fI x x, and x >, x 2

p(x,0) = F) 3 - Icos 27r (x - x1) (2.2)
2 2 X2 X

and (b) a square hill also between x, and x 2,

jI x <x, and x >1X
p(x,O) = F(x) = 12x < x < ." (2.3)

These initial conditions are shown in Figure 2.2 for x, = 8 and x 2 = 18.

The exact solution to Equation (2.1) is expressed as

p(xt) = F(x - Vt) (2.4)

where F is the initial density distribution given by Equation (2.2) or (2.3). Note that the values of x in

Equation (2.4) must reflect the racetrack domain and the racetrack boundary condition

p (O,0 - p (L.t. (2.5)

Although the exact solution is near to being trival, the numerical solution is extremely challeng-

ing as witnessed by the literature (sce References).

3. FINITE ELEMENT FORMULATION

The Finite Ilement Method is a technique which divides the space domain into subdomains,

called elements (ver each element the density is approximated by

4
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K
fie (x,t) = RI(t) Ni(x) (3.1)

i- I

where fie(Xt) is the approximation of p(x,t) over the element e, R,e(t) are a set of discrete values at

nodes (or grid points) on the boundaries or within the element, and N,(x) (which are taken to be the

same form for each element) are a set of interpolation polynomials, also called sbape functions, of

order K - I where K is the number of nodes per element. The following subsections will define these

symbols for each shape function assumed; i.e., linear and parabolic.

In general the approximate solution will be in error and will not satisfy Equation (2.1). Thus we

can write,

"ft + V - = E"(x,t). (3.2)
at ax

For any assumed fi" we seek a solution for R,' which will minimize E"(x,t). There are several tech-

niques to do this; however. Galerkin's method is used here. The method requires that the error

E"(xt) be orthogonal with N,(x) for each element; therefore,

' (xjt) Nx) dx = 0 = 1. K (3.3)

where L" is the element length. Substitution of Equation (3.1) into (3 3) gives the classic Finite Ele-

ment discretization equation

[.1"] (R') + I KI RI = (0) (74)

where

[A] , = 37 N,(x) N'W dX i.j = l .. (35

[K'1 k,, N,' (x) N, (. ) d.x ,. = I K (3.6)

(R"I = (R R R.

( = I, R . R r

The prime denotes spatial differentiation and the dot denotes ordinary time differentiation.

5
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When equation (3.4) is written for each element and connectivity between elements is considered

then the global system of equations to be solved is

[M] I1?} + V [K] {R = (0 (3.7a)

where

(R} = RR .... RI (3.7b)

Here [MI and [K] are the assembled mass and advection matrices and N is the total number of nodal

values (degrees of freedom) in the system.

3.1 Linear Elements

Linear finite elements are developed by using a linear shape function with the coefficients

expressed in terms of nodal values. Thus for the linear element we have from Equation (3.1) with

K = 2:

(\, t) = R' N,1 + R, N,

where

• I - (x/L') (3.8)

,V,= (x/L")

and where R, is the density at x = 0 and R, is the density at v = L'. (Again, L' is the element

length). Integrating IEquation (3.5) with the shape function of Equation (3.8) defines the mass matrix

for i,/ I to 2

Alf L 2~ 1. (3 9)

Likewise, integrating Equation (3.6) after differentiating Equations (3.8) defines the adxecion -natrix

for ij = I to 2

1KV ~1* (3.1 (
Now Equation (3.4) can he written for i linear element.

[+ - 14......... (3.11)

6 1 2 2 1 R',6
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The assembled mass and advection matrices appearing in Equation (3.7) are given, for the linear ele-

ment discretization, in Appendix A.

3.2 Parabolic Elements

Parabolic finite elements are developed by using parabolic shape functions with coefficients

expressed in terms of nodal values. For this element a node at the mid-point is established in addition

to the nodes at the ends. Equation (3.1) is written for K = 3:
R' N, + R N2 + R" N3

where

N, = 1 - 3(x/L") + 2(x/L")2

N 2 = 4(x/L") - 4(x/L")2  (3.12)

N 3 = - (x/L") + 2(x/L") 2

and where R ,R" and R" are the densities at x = 0, x = L"12, and x = L", respectively. Integrating

Equation (3.5) with the above shape functions defines the mass matrix for ij = 1, 2. 3:

L' f 4 2 -[M"] = -- 16 2 (3.13)
2

Likewise, integrating Equation (3.6) after differentiating Equations (3.12) defines the advection matrix

for id = 1,2,3:

K]= -4 0 4 (3.14)
6 1 -4 3

Now Equation (3.4) can be written for the parabolic element:

3 2 16 2  R, + -[4 0 4 = ' 3.15)30 1 2 4 1R' I-46 3 1R

The issembled mass and advcction matrices appearing in Equation (3.7) are gi en. for the parabolic

element discreti/ation, in Appendix B.

3.3 ('ondened ( f Matrix Formulation

I.qU ltton (. '7 c,i he rcwtilcn lrmalx. as

IR [ [, l ' / l R 3 l
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where [M] denotes the inverse of (MI. Generally, [MI is a large, sparse matrix and the calculation

of [MP' (which is a full matrix) can be very time consuming. The process of condensing the mass

matrix, or lumping the mass at the diagonal terms, is a popular procedure [41 for avoiding this time

consuming inversion.

Hence, the condensed mass matrix [MI is defined by
V

m,, = M, i = 1,. .. N
[M,] I =

0.17

Mij1. N (3.17)

where the m,, are the entries in [MI and N is the rank of [MI. The matrix [M] now replaces [M] in

Equation (3.7) and Equation (3.16) is replaced by

[RI =- VI tII[K]I RI. (3.18)

We note that this condensation is mass preserving.

4. TIME INTEGRATION SCHEMES

There are many methods available for advancing Equation (3.16) [or (3.18)] in time. For reasons

explained in the Introduction, the focus of this report deals with the two-step methods of Lax-Wendroff

and Godunov (see Reference [2]).

4.1 Standard Two-Step

Consider that the value of the nodal densities at time step n are known {R"}. The solution at the

n + I time step is sought. The time increment is At. Then the standard two-step method can be writ-

ten as:

lst step {R'") = [R"I + a At{("} (4. 1a)

and

2nd step [R"'1} = IR") + At(R"'. (4.1b)

where (i is a fraction of the time step. The time derivative (R1 is determined from Equation (3.16)

[or (3.18)] using JR"[ and subsequently (R"") is determined from Equation (3.16) [or (3.18)] using

(R-1 from Equation (4.1a).
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The two well-known methods embodied in equations (4.1) are the Lax-Wendroff method when

a = 1/. and the Godunov method when a = 1. The Lax-Wendroff method first estimates the time

derivative at the mid-point of the time step then uses the value to step ahead to n + 1. The Godunov

method first estimates the time derivative at a full step and uses this estimate to step ahead to n + 1.

Equations (4.1) are referred to in this report as the standard two-step methods. Because the stan-

dard two-step methods update a nodal value only as a function of its previous value, it seems plausible

that introducing a weighting matrix to average the influence of adjacent nodes might improve numerical

accuracy. Such averaging is used frequently inite difference methods [1]. This weighting matrix

should have a general form so as to be problem independent. Two such weighting matrices are

employed herein.

4.2 Smoothed Two-Step

The first weighting matrix is termed the "smoothed" weighting matrix. The terms in the

smoothed weighting matrix, [ W], are determined from the entries mi, in the global mass matrix [MI:

w w i= 1 .. N

iw,,,=- j i, j =1. .. N

N
Cr,,. (4.2)

The quantity C, is the sum of all terms in row 'i' of [MI except the diagonal term. Note that the sum

across row 'i' of [ W,] is unity so that [ W,] is mass conserving.

The weighting matrix is used only in the first step. Thus the smoothed two-step method is written

as:

Ist step JR""')= [WJIR") + a AtR")

and

2nd step (R " ' l} = {R"} + At{/n"}. (4.3)

9
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The smoothed Lax-Wendroff method is obtained by letting a = 1/2 in Equation (4.3). and the

smoothed Godunov method is obtained by letting a = I in Equation (4.3).

4.3 Modified Two Step

The second weighting matrix is termed the "modified" weighting matrix. The terms in the

modified weighting matrix I W,,], are determined from [MI: the global mass matrix:

t,f

C,

C, = m,. (4.4)

Now C includes the diagonal term m,, and the sum across row 'i' of [ W,] is again unity.

The weighted matrix is again used only in the first step. Thus the modified two-step method is

written asi

Ist step R W.. = I ',,I]R"} +a ,tIR"

and

2nd step (R" = IR" + At{ R. (4.5)

The modified Lax-Wendroff method is obtained by letting a = 1/2 in Equation (4.5). and the

modified Godunov method is obtained by letting a = I in Equation (4.5).

5. NUMERICAL RESULT

Numerical computations were performed to evaluate the ability of the various solution schemes to

replicate the true advection solution. There are several measures by which to ascertain the adequacy of

a particular scheme: one being the eyeball. A second measure used herein is the average absolute

error: hereafter called simply the Error given by

Error= "- (5.11

where p is the exact solution, /3 is the approximate solution, and N is the number of nodes. This quan-

titative measure is used to compare the schemes. The scheme with the smallest Error is the "best"

10
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numerical model. At which value this error becomes intolerable is still subjective. IIoweer hy ohser%-

ing the density distributions at a given time and the associated Trot, an acceptable range can be esta-

blished.

As mentioned previously, the length of the racetrack was set at L = 48 (arbitrary units of dis-

tance) and the initial location of the cosine hill and square hill density distributions [Equations (2.2)

and (2.3)] was between x, 8 and x, = 18. The advection velocity was set at I= I unit of

distance/s. Hence, the density dislTibution is advec.ed once aTound the track every 48 s.

In Section 5.1, the results obtained using the linear finite element spatial discretization are

presented. Section 5.2 contains the results obtained using the parabolic finite element spatial discretiza-

tion. These results are based on a time period of 96 s (two cycles around the track) and are compared

in Section 5.3. The effect of time step size on the better solution schemes is studied in Section 5.4.

Finally, Section 5.5 presents results for long time periods. The density distribution is allowed to travel

around the track for 480 s (ten cycles).

5.1 Linear Elements

The development of the linear finite element (linear FEM) spatial discretization is given in Sec-

tion 3.1 and Appendix A. We take the length of each element as L, = I unit of distance. Thus, there

are 48 elements on the track. Node I corresponds to x = 0 while node N + I = 49 corresponds to

x = L. Since the track is closed, the number of degrees of freedom N = 48.

Based on some trial calculations, a time step At = 0.2 s was selected to study the time integration

schemes. The Courant number, equal to Vt/L, is 0.2 for the linear element,

Figures 5.1.1 to 5.1.6 present results of the advected cosine hill density distribution for the three

Lax-Wendroff methods (standard, smoothed, and modified) and the three Godunov methods using the

linear FEM. Figures 5.1.7 to 5.1.12 contain similar results using the condensed linear mass matrix for-

mulation (linear CFM). It is worthwhile to point out that the linear CFM spatial discretization is

I1
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equivalent to standard central differencing. The time periods in each figure are 24 s, 48 s, 72 s, and 96

s or 1/2, 1, 1-1/2, and 2 cycles around the track. The exact solution is superimposed on the graphs of

the advected hill. IJsing a time step of 0.2 s means at 96 s the solution has gone through 480 time

steps.

The first item to notice from Figure 5.1.1 is that the standard Lax-Wendroff method does an

excellent job of advecting the cosine hill. From Figure 5.1.13 (a) the Error at 96 s is 1.4%. Looking at

the other linear FEM figures, the remaining time integrators tend to diffuse the hill. This is numerical

diffusion due to the nature of the two-step method. The standard Godunov scheme is the only one

which shows no oscillations. Both the standard Lax-Wendroff scheme and standard Godunov scheme

"track" the hill (do not lead or lag), but the latter has a 50% reduction of the peak value at 96 s. Fig-

ures 5.1.13 (a) and (b) show that the smoothed integrator is the poorest, the standard is the best, and

the modified is in between. Using the Error and the density graphs, value judgements can be made on

goodness.

The graphs of the six time integration schemes combined with the linear CFM method indicate all

of these techniques to be diffusive and to lag behind the true position of the hill. Figure 5.1.13 (c) and

(d) contain the associated Errors for the linear CFM. First note that the order, best to poorest, is the

same as in Figures 5.1.13 (a) and (b), i.e, standard, modified, and smoothed. From the Error graph

the standard Godunov is the best of the linear CFM methods with a 10% Error at 96 s. If the Error

graphs for linear FEM were over-laid on those for linear CFM, all of the respective FEM techniques

would have less error than the associated CFM technique. However, the difference is small except for

the standard Lax-Wendroff. Careful observations will reveal that the standard finite difference tech-

niques (linear CFM) do reasonably well compared to the respective linear FEM techniques.

Whereas the cosine hill density distribution represents a "smooth" function, that is Equation (2.2)

and its first derivative are continuous functions, the square hill density distribution presents a more

severe test for the solution procedures.

12
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The square hill solutions using the linear FEM are presented in Figures 5.1.14 to 5.1.19 and the

associated Error graphs in Figures 5.1.26 (a) and (b). After observing these, it is noted that none do as

well as they did for the cosine hill. The smallest Error is now around 14%. There are similarities

between the two propagated hills. The two standard time integration schemes still track the hill accu-

rately. The standard Lax-Wendroff scheme is the least diffusive (has the sharpest front) but has the

largest amplitude oscillations away from the hill. The standard Godunov scheme diffuses the hill but to

a large extent damps out the oscillations. From observing the propagated hill graphs and the Error

graphs, we see that modified Lax-Wendroff and Godunov methods give results comparable to the stan-

dard methods. The smoothed integrator is still the poorest by a sizeable margin.

Turning now to the linear CFM method, Figures 5.1.20 to 5.1.25 contain results of the advected

square hill and the associated Error graphs are in Figures 5.1.26(c) and (d). First note that the pro-

pagated hill does not look any worse than the associated linear FEM hill. Next note from the Error

graph that the relative positions of the time integration schemes are the same as previously observed.

The smoothed method is still the poorest and the standard and the modified methods give nearly the

same Error.

Comparing linear FEM and linear CFM using the standard and modified integrators shows that at

96 s the Errors are approximately 16% (FEM) and 22% (CFM) using Lax-Wendroff methods and 15/

(FEM and CFM) using Godunov methods. After reviewing the associated propagated hill, there is not

much difference between the respective FEM and CFM methods. For example, using the standard

Lax-Wendroff scheme, the propagated hills for FEM and CFM have the same quality of tracking the

hill and maintaining the sharpness of the front.

5.2 Parabolic Elements

The development of the parabolic finite element spatial discretization is given in Section 3.2 and

Appendix B. We take the length of each element as L'- 2 units of distance. Thus there are 24 ele-

ments on the 48 unit long track. Recalling that each parabolic element has a mid-point node, there are

13
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still therefore 48 nodal degrees of freedom. By using 24 parabolic elements a direct comparison can be

made with 48 linear elements on the basis of equal "computational effort."

The advection velocity remains at V = I unit of distance/s and the time step remains at .A/ = 0.2

S [he Courant number based on element length, VA/L', is 0 10 for iht parabolic element. There is

a qucstion as whether the element length or distance between node poiiWv is the appropriate length

scale for defining the Courant number. Based on the latter length scale, the (ourant number remains

0.20.

The graphs for the smoothed time integration schemes are not included for the parabolic element

:rom observations discussed in Section 5.1, it was shown to be the poorest method. In addition, the

smoothed Lax-Wendroff scheme in combination with the parabolic spatial discretization becomes

unstable in a short time period. Error values greater than 1001/ were found in less than 24 s.

Advection of the cosine hill is again studied first. Figures 5.2.1 to 5.2.4 contain the parabolic

FEM solutions. The Error graphs are in Figures 5.2.9(a) and (b). Both the standard and modified

Lax-Wendroff time integrations do an excellent job of tracking the hill and its amplitude, witii the

modified method having the smallest Error, 1.4/. Both Godunov methods track the hill but the ampli-

tude is reduced by numerical diffusion. The Error graphs show virtually no difference between the

standard and modified Godunov methods.

The parabolic CFM solutions for the advected hill are shown in Figures 5.2.5 to 5.2.8. The asso-

ciated Error graphs appear in Figures 5.2.9(c) and (d). For the two Lax-Wendroff methods, parabolic

CFM does remarkably well, giving an Error of 2/o for the standard and 4'o for the modified. Also,

both Godunov methods give results nearly identical to those obtained with parabolic FEM. Thus, the

condensing of the mass matrix to avoid the time consuming inversion process is extremely advan a-

geous for the problem of the cosine hill.

Turning now to the advection of the square hill, the parabolic FEM results appear in Figures

5.2.10 to S.2 13. The Error graphs are in Figures 5.2.18 (a) and (b). As with linear elements, the

14
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advected solution for the square hill is not as accurate as that for the cosine hill. All the parabolic FEM

schemes track the hill well. The standard Lax-Wendroff method, which gave good results with the

linear element and the parabolic element for a cosine hill now is tending to loose stability at 96 s. The

modified Lax-Wendroff scheme remains stable and tracks the position and amplitude of the hill reason-

ably well. The Godunov methods retain the characteristics of diffusivity and positivity that have been

previously observed.

Figures 5.2.14 to 5.2.17 contain results of the parabolic CFM solutions for the advected square

hill The Error graphs are displayed in Figures 5.2.18 (c) and (d). From the graphs of the advected

hills there does not seem to be much difference in the tracking abilities of either CFM or FEM com-

bined with the modified Lax-Wendroff scheme or either Godunov scheme. It is worthwhile to note

that, for the standard Lax-Wendroff scheme, the CFM is stable while the FEM is diverging by the end

of 96 s.

After examination of the four sets of Error graphs in Figure 5.2.18, it is seen that the modified

Lax-Wendroff scheme combined with parabolic FEM has the least Error, 8/o at 96 s. The associated

parabolic CFM has an Error of 12% at 96 s,not a significant difference. Upon reviewing the advected

square hills for these two combinations, no significant difference is found. Both combinations track the

position and amplitude of the hill reasonably well. Both produce peak amplitudes that are approxi-

mately 100/o greater than they should be and both give roughly the same degree of sharpness of the hill

front.

5.3 Comparison of Linear and Parabolic Elements

In Table 5.3.1, the errors generated by the various spatial discretization/time integration schemes

at 96 s (two cycles) are summarized. The "smoothed" methods are not included in the table since their

performances were markedly inferior to the other methods in advecting the density distribution.

From the table, we see that the numerically diffusive, standard Godunov time integration scheme

overrides whatever spatial discretization is used. The same is true of the modified Godunov scheme

15
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except in combination with linear CFM. For the linear discretizations, we also not that the Godunov

schemes tend to outperform the Lax-Wendroff schemes.

Turning our attention to the modified Lax-Wendroff time integration scheme, we not diminishing

errors as we proceed from linear CFM to linear FEM to parabolic CFM to parabolic FEM. This latter

combination produces the least overall error for both the cosine hill and square hill advection problems.

The results for the standard Lax-Wendroff scheme are mixed. Linear FEM and parabolic CFM

spatial discretization give equivalent errors that are substantially below those obtained with linear CFM.

However, this time integration in combination with parabolic FEM performs poorly for square hill

advection.

5.4 Time Step Size Study

To insure that the results of the previous sections were not biased by the sc!ection of At = 0.2 s

and also to examine the effects of time step size on the stability and accuracy of the advected solution,

a study of time step variation was undertaken for some of the better performing numerical models.

For the cosine hill density distribution, we considered the standard Lax-Wendroff, linear FEM

combination and the modified Lax-Wendroff, parabolic FEM combination. The Error graphs as a func-

tion of time step size are given in ligure 5.4.1.

For the standard Lax-Wendroff, linear FEM scheme, we see that the error decreases as At

decreases from 0.5 s to 0.1 s. However, there is no significant diffeicnce between the errors for

At = 0.2 s and At = 0.1 s; and, in fact, an asymptotic error of around 1% appears to have been

reached.

In contrast to the decreasing Error with decreasing At, the modified Lax-Wendroff, parabolic FEM

scheme appears to have a minimum error at around At = 0.25 s. The differences in error for time

steps ranging from At - 0.1 s to At = 0.33 s are not meaningful, however. For At = 0.5 s, this

scheme still yields an acceptable error as compared to the previous scheme that becomes unstable. The

16
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advection of the cosine hill with At = 0.5 s is shown in Figure 5.4.2. The computational effort here is

2/5th of that required for At = 0.2 s.

Turning now to the square hill, the effects of time step size on six of the eight combinations of

Lax-Wendroff time integration and spatial discretization were examined. The Errors for linear FEM are

shown in Figure 5.4.3, and for linear CFM in Figure 5.4.4. We see from these figures that At = 0.2 s

is representative of the general behavior of each scheme. We also not that, as with the cosine hill, the

standard Lax-Wendroff scheme gives decreasing error with decreasing At, while the modified Lax-

Wendroff scheme appears to have a minimum error at an intermediate At.

The Error results for parabolic FEM are given in Figure 5.4.5. The same comments as made

above are applicable except we note that using a time step At = 0.1 s in conjunction with standard

Lax-Wendroff, parabolic FEM provides a stable solution.

5.5 Time Duration Study

As a final check on the performance of the better methods, the density distributions were numeri-

cally advected ten times (480 s) around the racetrack. Hence, for At = 0.2 s, there were 2400 steps in

the time integration.

Examining the results for the cosine hill first, Figures 5.5.1 and 5.5.2 show, respectively, the

advected solutions for the standard Lax-Wendroff, linear FEM scheme and for the modified Lax-

Wendroff, parabolic FEM scheme. After ten cycles around the track, the performance of the latter

scheme is seen to be superior to the performance of the former scheme. The Error graph for this prob-

lem is shown in Figure 5.5.3. A 4% error after ten cycles around the track is exceptional performance

for an explicit numerical advector.

For the square hill, the modified Lax-Wendroff scheme was the only time integrator used. The

advected solutions for this time integrator in combination with linear FEM, linear CFM, parabolic

FEM, and parabolic CFM are shown in Figures 5.5.4 to 5.5.7, respectively. After ten cycles, it is seen

17



MORRI I . SKOP, AND KI RAMIIDAS

that the linear FEM and linear CFM combinations have washed out most of the information contained

in the original square hill. The parabolic FEM and parabolic CFM combinations, meanwhile, continue

to excellently track the location of the hill. In both cases, the hill has lost its sharp front but still has a

distinct front. The peak amplitude is 10% greater than it should be. Very fe% oscillations occur away

from the hill. For both cases, the Error after 480 s is about 10%.

Finally, in Figure 5.5.8, the advected square hill for the modified Lax-Wendroff, parabolic FEM

scheme with At = 0.33 s is shown. The solution is again quite satisfactory. The Error graph comparing

At = 0.2 s and At = 0.33 s is given in Figure 5.5.9.

6. CONCLUSIONS

Numerical studies of explicit time integration techniques for the finite element advection equation

have been conducted. The results have shown that, overall, the "best" numerical solutions are obtained

by combining the modified L ax-Wendroff time integration with parabolic spatial discretization either in

its full or condensed [M] matrix form. Both the standard and modified Godunov time integrations

have been shown to be numerically diffusive. This diffusivity tends to override whatever spatial discret-

ization is used. However, the positivity property possessed by the Godunov schemes can be valuable

for certain applications.

Many numerical questions remain for future studies to resolve. These include the abilities of the

better schemes to integrate coupled sets of nonlinear hyperbolic equations and to handle multidimen-

sional problems This latter issue can grow exponentially since we have shown the better schemes to

involve nonlinear shape functions. Many analytical questions regarding the stability and phase proper-

ties o[ the various schemes also need to be answered.
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Appendix A

LINEAR ELEMENT MATRICES

Let the x domain be subdivided into N linear finite elements each of length L'. The nodes are

numbered consecutively from 1 to N + I as x increases from 0 to L. The element mass [Me] and

advection [K"I matrices are given by Equations (3.9) and (3.10).

On recalling that nodes 1 and N + I represent the same point (racetrack boundary condition), the

assembled mass [M] and advection 1K] matrices for the Ndegree of freedom system are found as

I 2 3 N-2N-1 N

4 1 1 1

1 4 1 2

1 4 1 3

6

Q1 4 1 N-2

1 4 1 N-1

1 1 4 N

20
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1 2 3 N-2 N-1IN

o 1 -1

-1 0 1 2

-1 0 1 Q 3

[K] 1
2

Q -1 0 1 N-2

-1 0 1 N-1

1 -1 0 N
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Appendix B

PARABOLIC ELEMENT IATRICES

Let x domain be subdivided into N parabolic finite elements each of length L'. The nodes are

numbered consecutively from I to 2A' + I as x increase from 0 to L. The even numbered nodes

correspond to element mid-point nodes. The element mass [AP] and advection [K'] matrices are gien

by equations (3.13) and (3.14).

On recalling that nodes 1 and 2N + I represent the same point (racetrack boundary condition).

the assembled mass [M] and advection [K] matrices for the 2N degree of freedom system are found as

1 2 3 4 2N-3 2N-2 2N-1 2N

8 2 -I -1 2 1

2 16 2 0 2

-1 2 8 2 -1 3

[MI = -

30

O-1 2 8 2 -I 2N\- 3

0 2 16 2 0 2N%- 2

-- 1 2 9 2 2.\*- 1

2 0 2 16 2.'
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1 2 3 4 2 A 32,N- 2 2,%1 2.V

o 4 1I 1 -4 1

-4 0 4 0 2

1 -4 0 4 1I 3

0 -4 0 4 0 Q 4

[KI
6

1 -4 0 4 -1 2 A

0 -4 0 4 0 2N-2

-1 1 -4 0 4 2N-1

4 0 -4 0 2N
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TABLE 5.3.1

Percent errors at 96s (two cycles) with a time step At -0.2s.

linear linear

FEM CFM

SLW MLW SG MG SLW MLW SG MG

cosine hill 1 14 9 10 18 20 10 12

square hill 16 14 15 16 21 24 15 19

parabolic parabolic

FEM CFM

SLW MLW SG MG SLW MLW SG MG

cosine hill 3 1 9 9 2 4 9 9

square hill 33 8 15 15 15 12 15 15
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Fig. 5.5.9 - Average absolute errors for square hill advection
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