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, ABSTRACT

e

- "")Progness of pattermn recognition as applied to various

is reviewed. They include the teleseismic signals for nuclear detection and
monitoring, exploration seismic signals for oil prospecting, marine seismic
signals for study of subsurface structure of ocean floor, seismic signals for
earthquake prediction, seismic signals for intrusion—-detection, and gecmagnetic
signals for study of irregularities of the earth's magnetic fields. With the
exceptio of teleseismic signal, research in georhysical signal recognition is
still in its infancy. We expect to see considerable research progress in the

next decade.
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Geophysical Signal Recognition
C.H. Chen

Introduction

In recent years, computers have played an increasingly important role
in geophysics especially in seismic studies such as the petroleum explora-
tion, mineral extraction, nuclear detection, earthquake research, marine
seismic profiling, and intrusion detection, etc. Computers are needed to
process large volumes of seismic data from which useful information must
be extracted accurately, In addition to the seismic data, geomagnetic
signals are also processed by computer in large quantities. A primary
function of computers has been in filtering and storage of the geophysical
data while the recognition and interpretation . ¢ the filtered results is
performed mainly by geophysicists or human operators. However efforts have
been made by many researchers to use pattern recognition techniques in
geophysical signal processing and recognition with some promising results.
In this paper we shall examine the progress in geophysical signal recognition
and the future directions of such research. An extensive list of references
provided as bibliography at the end of the paper clearly indicates the

amount of research activities in this area in the past ten years.

Pattern recognition techniques considered in this paper include pre-
processing, feature or primitive selection, syntactive analysis, decision
making and learning processes. 2mong all gzophysical problems, seismic
discrimination clearly can be formulated as a pattern recognition problem
and has been fairly extensively studied in this context. For the explora-
tion seismic data from which detection is made of petroleum, mineral or
natural gas, pattern recognition can be used as computer-aided interpretation.
Similarly for earthquake study and seismic intrusion detection, pattern

recognition provides an additional dimension to problem solving. 1In
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other geophysical signals, the need for pattern recognition is less
evident. BAs different geophysical signals require different processing
and recognition approaches, the recognition problems of various geo-

physical signals will be considered individually.

Recognition of Teleseismic Signals

Teleseismic signals are the seismic waveforms resulting from nuclear
explosions and earthquakes which may originate from unknown locations.

Shallow earthquakes are easily confused with nuclear explosions. Seismic

networks throughout the world coupled with a prior knowledge about explosion

and earthquake events have made it possible now to detect the nuclear

explosion with good accuracy. Automatic pattern recognition is useful to

aid or verify the human interpretation at the present stage of development.

Currently available recognition results have not been close to error-free

to make the automatic recognition reliable.

Mathematical feature extraction by using dynamic spectral ratio,

complexity, multivariate autoregressive parameters in conjunction with the

Karhunen-Ipeve expansions have been considered for seismic discrimination

(e.g. [6]{9]1[19]{20][31]). Features with real geophysical meaning appear

to be quite important for seismic discrimination. Examples are [19],

1. Earthquakes produce approximately equal amounts of P and S waves,
while explosions produce more P waves.

2. Earthquakes have relatively deep foci, while explosions have only
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shallow foci.

3. Earthquakes give anaseismic and kataseismic first onsets while explosions

give anaseismic first onset everywhere.

4, The duration of wave trains is shorter for explosions than for earth-

quakes.

Unfortunately the direct application of these discriminating features

fl




is not possible. Although explosions provide more P waves than S waves,

not all earthquakes follow the average pattern. Further it is very
difficult to identify particular phases for lower magnitude earthquakes,
Focal depths hold a great deal of promise in discrimination. However i
there is still too much error associated with measurement to warrant its
exclusive use. The difficulty in determining the direction of onset, due
to noise, obscures the anaseismic-kataseismic discrimination feature. .
Again, the signal-to-noise ratio is too small, for small-amplitude events,
to discriminate using the duration of the wave trains. 2n interesting
discussion of geophysical features for nuclear detection is given by

Bolt [3]. For automatic classification, the features must be computable
to a good accuracy. This requires both digital signal processing and

statistical techniques.

Figure 1 shows some typical seismic records which we have studied
along with their Fourier amplitude spectra. The sanpling rate is 10
samples/sec. with 1200 samples per record. Based on our extensive compara-
tive study of various feature selection criteria the spectral features
when accurately computed can perform the best with simple classifier, For
exanmple the high-resolution maximum entropy spectral analysis can provide
more effective features than those available from the conventional modified
periodogram method using fast Fourier transform. Figure 2 shows the maxi-
mum entropy spectra of two explosion and two earthguake events for a duration
of 200 samples from sample number 701 to 900, For the explosion the spectral
ratio defined as the ratio of signal energy above O.SH2 to that below O.SH2
tends to be greater than 1 while for the earthquake such ratio tends to be

less than 1. The nearest neighbor decision rule is used for classification.

For each pattern class, 40 seismic records are available for learning. A

total of 243 seismic records which do not include learning records is for
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classification. Spectral ratio for 200 samples from sample number 550

to 749 and spectral ratio for 200 samples from sample number 750 to 949

are employed as two features in classification. The final classification

results is 14 errors out of 243 for 94.24% correct recognition. This is

the best available result with two features.

Another important feature extraction technique is the short-temm-

spectral features. A 64-point window slides through the 1024-point seismic

record generating 64 time segments with 48-point overlap between the adjacent

e e e e

segments. For each 64-point segment, compute the Fourier transform. The
first 32 points of the Fourier transform correspond to the 5-Hz frequency
interval of the seismic wave. Define P, = signal power covering the first
to fifth spectral points (0 - 0.78 Hz band), P, = signal power covering
. the sixth to 14th spectral points (0.78 - 2.18 Hz band), and P, = signal

power ~overing the 15th - 32nd spectral points (2.18 ~ 5.0 Hz band). Fach

P, i =1,2,3 can be plotted as a function of time, i.e. the segment mumber.
For each curve the ratio of the signal energies between the first 32 segments
and the second 32 segments is called a short-time spectral feature. For
each seismic record, there will thus be three feature values which form a
vector. A set of 50 learning (training) records is taken from each class.
Using the well-known Euclidean distance nearest-neighbor decision rule the
best performance is around 80% correct recognition on test set. For each
class, a covariance matrix Vi, i = 1,2 can be determined from the training
set. A modified procedure is to compute the square distance

(x - P(i))'vi'1 (x - Py = di2 , 1=1,2 (1)

(1)

and choose the class which provides the minimum diz. Here P is a nearest
neighbor belonging to the ith class and x is the three-dimensional feature
vector representing a seismic record. By using such weighted Fuclidean

distance nearest neighbor decision rule, a 94.17% correct recognition
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(13 errors out of 223) is obtained. If the Bayes decision rule is used
under the assumption of multivariate Gaussian density for each class,

the performance is 87.92% correct recognition (27 errors out of 223).

This experimental result indicates that the stationary probability assumption
of the seismic record is not good. Other work on autoregressive feature
extraction also based on the assunmption of stationary random process for

the seismic record has provided less recognition performance. The short-
term spectral features described above have taken the nonstationarity into

consideration.

Among other computer studies, the features based on the complex
cepstial point followed by Fisher's linear discriminant gave a 94.4%
correct recognition results for 36 seismic records. The autocovariance i
function also can provide around 89% correct recognition. The results j
are somewhat depending on the pre-filtering operations used. For a single
discriminant, the ratio of surface wave magnitude M, to the bodywave
magni tude o, is most effective for events with mb>4 as the shallow earth-
quakes typically produce more surface waves than do explosions of equivalent
energy. The combined use of statistical and structural features [7] in
conjunction with an optimized decision till is a very promising approach.
Syntactic method of teleseismic signal recognition has also been examined.
As a highly reliable and fully automatic seismic recognition system is not
likely to be available in the near future, interactive pattern recognition
is more practically feasible and some important effort has been made in

this direction [21].

Exploration and Marine Seismic Signals

In the exploration seismic study detection is made of petroleum or i

natural gas. In the marine seismic study, an accurate mapping is made of

the subsurface geological structure of the ocean floor. Although the




T S o

[

purposes are quite different, the two seismic signal studies are similar.
As the new petroleum deposits are much more difficult to discover on land
now, exploration of petroleum deposit in the ocean floor is increasingly
important and the demand for marine seismic study for oil exploration is
very high. For both seismic signals, the major efforts made in the past
have been in digital filtering and estimation of subsurface parameters.
Pattern recognition problems can be formulated for analysis and detection
of the seismic signals. In marine seismic profiling, for example, the
physical parameters which describe the structure of the deep sea floors
correspond to feature sets in p{ittern recognition. Examples of pattern
classes are various rocks, sediments, mantles and oceanic layers of low,
medium and high porosity. In the exploration seismic study feature
extraction and decision theoretic approaches have been examined [15][16].
An important recent development is the syntactic approach [26] to segment
the one-dimensional logging data, i.e. measurements of various physical
rock parameters from transducers inside the borehole. The transition

patterns between signal blocks are described by a set of grammatical rules.

As compared with the teleseismic signals, the exploration and marine
seismic signals are much more stationary and thus both statistical and
syntactic pattern analysis can be quite effective for properly formulated

recognition problems.

Mineral Extraction and Earthquake Prediction

The use of seismics in mining exploration has been restricted so
far to only some trial measurements. If seismic methods are to become
popular in ore exploration, we can be sure that the signals of interest
will be hidden far more "deeply" than is the case for the signals in oil

prospecting. The highly developed reflection seismology that reveals sub-

surface structure information will be useful to mineral extraction. Pattern

recognition techniques useful for petroleum exploration should also be




suitable for mineral extraction.

(omputer-aided techniques have been quite helpful in earthquake
prediction. However pattern recognition techniques have not been
employed in earthquake study, to our knowledge; but the potential is
there. For example automatic processing algorithms for microearthquake
data have been examined [1], based on the syntactic structural analysis
of waveforms {27][28]. There is always ambiguity associated with measu;ing
the first arrival time from seismograms whether it is done by a seismologist
or by a machine since the seismic signals are of unknown shape and are
contaminated by noise. Such ambiguity can be reduced by combining the
processes of picking arrivals and locating the events in an iterative
fashion. A seismogram can be described as "noise followed by seismic
signal", where both "noise" and "seismic signal” would have grammatical
rules describing their structure. Current picking algorithms [2] use this

type of structural information but in a rather ad hoc manner.

In sumary, application of pattern recognition to earthquake pre-
diction is in its infancy. C(bviously various structural and geophysical
information must be combined to derive a feasible algorithm for automatic

prediction and interpretation.

Intrusion-Detection Using Seismic Sensors

One of the automatic intrusion-detection techniques is to use the
seismic sensors that detect the "footstep signal” in the presence of
usually strong correlated noises due to vehicle motions in the immediate
vicinity. In this case the real signal is impulse-like with unknown
arrival time and duration. It is necessary to employ noise cancelling
algorithms such as the adaptive digital filtering and the Kalman filtering
to suppress the background noise so that the footstep signal can be |
enhanced [10][11]. Fiqures 3§4 show two typical sections of seismic data

containing footstep signals, along with the results of adaptive digital
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Fig. 3a One section of
seismic intrusion-detection
data with large signal-to
-noise ratio.
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Fig. 3b Adaptive digital
filtered result of Fig. 3a

Fig. 3c Adaptive Kalman
filtered result of Fig. 3a.
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Fig. 4a ne section of
seismic intrusion-detection
data with small signal-to
-noise ratio.
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Fig. 4b Adaptive digital
filtered result of Fig. 4a.

Fig. 4c Adaptive Kalman
filterced result of Fig. 4a
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filtering and adaptive Kalman filtering. A major portion of background

noise has been removed after filtering even if the noise is very strong.

s ———

Each section as shown has 960 samples at a sampling rate of 200 samples/
sec. For this kind of seismic signal, spectral features are not suitable
for detection. The recognition or detection problem here is to determine
for each section of seismic data whether the footstep signal is present
or not. The correlation detection or matched filter detection is not
useful here. A simple peak detection with properly selected threshold'
will, however, serve the purpose. There does not appear to have any

"structure" in this particular seismic signal.

6. Other Geophysical Signals

Geomagnetic signals provide some information on geophysical phenomena,
which is not available from the seismic data. The spectral analysis is the
main computer study that has been performed with the geomagnetic signals,
An example of geomagnetic signal is the micropulsations which are often
associated with structural disturbance (or storms) in the magnetosphere.
Detecting a particular micropulsation event can provide a diagnosis of the

} properties of the magnetosphere. 2As the magnetosphere changes because of
{ its varying interaction with the solar wind, the properties of the micro-
pulvation signatures should respond . The recognition problem here is
somewhat similar to the detection of machine malfunction. BAs a large
volume of geomagnetic signals is received daily, automatic processing and

recognition will certainly be an area of future research study.
Other geophysical signals include sunspot numbers, etc. 2As several
i different sensors are frequently employed in examining a particular geo-

b physical phenomenon, how to effectively utilize information from all sources

is a challenging problem in recognition study.
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7. Conclusion

As compared with recognition of speech and biomedical signals, progress
; in geophysical signal recognition is much slower. There are many promising
areas of research as described in this paper. Suggested future approaches
are the following:
(1) Understanding the geophysical phenomenon is essential as different
geophysical signals may require quite different recognition approa_ches.
( (2) Signal processing is an integral part of signal recognition as a
nurber of distinct properties can only be derived after extensive
signal processing.
(3) Fully automatic recognition may not be a realistic goal. Some human
j interaction may be necessary to complete the recognition task.
| (4) Information from various geophysical sensors should be integrated

‘ ' and utilized to arrive at the best recognition result.
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