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Geophysical Signal Recognition

C.H. chen

1. Introduction

In recent years, computers have played an increasingly important role

in geophysics especially in seismic studies such as the petroleum explora-

tion, mineral extraction, nuclear detection, earthquake research, marine

seismic profiling, and intrusion detection, etc. Computers are needed to

process large volumes of seismic data fron which useful information mast

be extracted accurately, In addition to the seismic data, geomagnetic

signals are also processed by computer in large quantities. A primary

function of computers has been in filtering and storage of the geophysical

data while the recognition and interpretatir tf the filtered results is

performed mainly by geophysicists or human operators. However efforts have

been made by many researchers to use pattern recognition techniques in

geophysical signal processing and recognition with some promising results.

In this paper we shall examine the progress in geophysical signal recognition

and the future directions of such research. An extensive list of references

provided as bibliography at the end of the paper clearly indicates the

amount of research activities in this area in the past ten years.

Pattern recognition techniques considered in this paper include pre-

processing, feature or primitive selection, syntactive analysis, decision

making and learning processes. Tmong all g~ophysical problems, seismic

discrimination clearly can be formulated as a pattern recognition problem

and has been fairly extensively studied in this context. For the explora-

tion seismic data from which detection is made of petroleum, mineral or

natural gas, pattern recognition can be used as computer-aided interpretation.

Similarly for earthquake study and seismic intrusion detection, pattern

recognition provides an additional dimension to problem solving. In
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other geophysical signals, the need for pattern recognition is less

evident. As different geophysical signals require different processing

and recognition approaches, the recognition problems of various geo-

physical signals will be considered individually.

2. Recognition of Teleseismic Signals

Teleseismic signals are the seismic waveforms resulting from nuclear

explosions and earthquakes which may originate from unknown locations.

Shallow earthquakes are easily confused with nuclear explosions. Seismic

networks throughout the world coupled with a prior knowledge about explosion

and earthquake events have made it possible now to detect the nuclear

explosion with good accuracy. Automatic pattern recognition is useful to

aid or verify the human interpretation at the present stage of development.

Currently available recognition results have not been close to error-free

to make the automatic recognition reliable.

Mathematical feature extraction by using dynamic spectral ratio, Accessi

complexity, multivariate autoregressive parameters in conjunction with the DTIC TB

Karhunen-loeve expansions have been considered for seismic discrimination Unannounc~Justiflca'

(e.g. 16][9][19][20)[31]). Features with real geophysical meaning appear

to be quite important for seismic discrimination. Examples are [19], Distribut
Avni labil

1. Earthquakes produce approximately equal amounts of P and S waves, . Aval

while explosions produce more P waves.

2. Earthquakes have relatively deep foci, while explosions have only

shallow foci.

3. Earthquakes give anaseismic and kataseismic first onsets while explosions

give anaseismic first onset everywhere.

4. The duration of wave trains is shorter for explosions than for earth-

quakes.

Unfortunately the direct application of these discriminating features
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is not possible. Although explosions provide more P waves than S waves,

not all earthquakes follow the average pattern. Further it is very

difficult to identify particular phases for lower magnitude earthquakes.

Focal depths hold a great deal of promise in discrimination. However

there is still too much error associated with measurement to warrant its

exclusive use. The difficulty in determining the direction of onset, due

to noise, obscures the anaseismic-kataseismic discrimination feature.

Again, the signal-to-noise ratio is too small, for small-amplitude events,

to discriminate using the duration of the wave trains. Pn interesting

discussion of geophysical features for nuclear detection is given by

Bolt [3]. For automatic classification, the features must be corputable

to a good accuracy. This requires both digital signal processing and

statistical techniques.

Figure 1 shows some typical seismic records which we have studied

along with their Fourier amplitude spectra. The sampling rate is 10

samples/sec. with 1200 samples per record. Based on our extensive compara-

tive study of various feature selection criteria the spectral features

when accurately computed can perform the best with simple classifier. For

example the high-resolution maximum entropy spectral analysis can provide

more effective features than those available fra the conventional modified

periodogram method using fast Fourier transform. Figure 2 shows the maxi-

mum entropy spectra of two explosion and two earthquake events for a duration

of 200 samples from sample number 701 to 900. For the explosion the spectral

ratio defined as the ratio of signal energy above 0.5H2 to that below 0.5H2

tends to be greater than 1 while for the earthquake such ratio tends to be

less than 1. The nearest neighbor decision rule is used for classification.

For each pattern class, 40 seismic records are available for learning. A

total of 243 seismic records which do not include learning records is for

-- ----- -- - -- 1 c . . .
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classification. Spectral ratio for 200 samples from sample number 550

to 749 and spectral ratio for 200 samples from sample number 750 to 949

are employed as two features in classification. The final classification

results is 14 errors out of 243 for 94.24% correct recognition. This is

the best available result with two features.

Another invortant feature extraction technique is the short-term.

spectral features. A 64-point window slides through the 1024-point seismic

record generating 64 tine segments with 48-point overlap between the adjacent

segments. For each 64-point segment, compute the Fourier transform. The

first 32 points of the Fburier transform correspond to the 5-Hz frequency

interval of the seismic wave. Define P1 = signal power covering the first

to fifth spectral points (0 - 0.78 Hz band), P2 
= signal power covering

the sixth to 14th spectral points (0.78 - 2.18 Hz band), and P3 = signal

power covering the 15th - 32nd spectral points (2.18 - 5.0 Hz band). Each

Pip i = 1,2,3 can be plotted as a function of time, i.e. the segment number.

For each curve the ratio of the signal energies between the first 32 segments

and the second 32 segments is called a short-time spectral feature. For

each seismic record, there will thus be three feature values which form a

vector. A set of 50 learning (training) records is taken from each class.

Using the well-known Euclidean distance nearest-neighbor decision rule the

best performance is around 80% correct recognition on test set. Fbr each

class, a covariance matrix Vi , i = 1,2 can be determined from the training

set. A modified procedure is to compute the square distance

(x - p(W) 'V l (x - ( d , i = 1,2 (1)

2 Wiand choose the class which provides the minimum di . Here P is a nearest

neighbor belonging to the ith class and x is the three-dimensional feature

vector representing a seismic record. By using such weighted Euclidean

distance nearest neighbor decision rule, a 94.17% correct recognition
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(13 errors out of 223) is obtained. If the Bayes decision rule is used

under the assumption of multivariate Gaussian density for each class,

the performance is 87.92% correct recognition (27 errors out of 223).

This experimental result indicates that the stationary probability assumption

of the seismic record is not good. Other work on autoregressive feature

extraction also based on the assumption of stationary random process for

the seismic record has provided less recognition performance. The short-

term spectral features described above have taken the nonstationarity into

consideration.

Among other computer studies, the features based on the complex

cepstial point followed by Fisher's linear discriminant gave a 94.4%

correct recognition results for 36 seismic records. The autocovariance

function also can provide around 89% correct recognition. The results

are somewhat depending on the pre-filtering operations used. For a single

discriminant, the ratio of surface wave magnitude M s to the bodywaves

magnitude mb is most effective for events with %>4 as the shallow earth-

quakes typically produce more surface waves than do explosions of equivalent

energy. The combined use of statistical and structural features [7] in

conjunction with an optimized decision till is a very promising approach.

Syntactic method of teleseismic signal recognition has also been examined.

As a highly reliable and fully automatic seismic recognition sy-ten is not

likely to be available in the near future, interactive pattern recognition

is more practically feasible and some important effort has been made in

this direction [21].

3. Exploration and Marine Seismic Signals

In the exploration seismic study detection is made of petroleum or

natural gas. In the marine seismic study, an accurate ,sapping is made of

the subsurface geological structure of the ocean floor. Although the

-- /tNO M M



purposes are quite different, the two seismic signal studies are similar.

As the new petroleum deposits are much more difficult to discover on land

now, exploration of petroleum deposit in the ocean floor is increasingly

important and the demand for marine seismic study for oil exploration is

very high. For both seismic signals, the major efforts made in the past

have been in digital filtering and estimation of subsurface parameters.

Pattern recognition problems can be formulated for analysis and detection

of the seismic signals. In marine seismic profiling, for example, the

physical parameters which describe the structure of the deep sea floors

correspond to feature sets in pattern recognition. Examples of pattern

classes are various rocks, sediments, mantles and oceanic layers of low,

medium and high porosity. In the exploration seismic study feature

extraction and decision theoretic approaches have been examined [15] [16].

An important recent development is the syntactic approach [26] to segment

the one-dimensional logging data, i.e. measurements of various physical

rock parameters from transducers inside the borehole. The transition

patterns between signal blocks are described by a set of grammatical rules.

As compared with the teleseismic signals, the exploration and marine

seismic signals are much more stationary and thus both statistical and

syntactic pattern analysis can be quite effective for properly formulated

recognition problems.

4. Mineral Extraction and Earthquake Prediction

The use of seismics in mining exploration has been restricted so

far to only some trial measurements. If seismic methods are to become

popular in ore exploration, we can be sure that the signals of interest

will be hidden fjr more "deeply" than is the case for the signals in oil

prospecting. The highly developed reflection seismology that reveals sub-

surface structure information will be useful to mineral extraction. Pattern

recognition techniques useful for petroleum exploration should also be
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suitable for mineral extraction.

ocmputer-aided techniques have been quite helpful in earthquake

prediction. However pattern recognition techniques have not been

emrployed in earthquake study, to our knowledge; but the potential is

there. For example automatic processing algorithms for microearthquake

data have been examined [1], based on the syntactic structural aialysis

of waveforms [27] [281. There is always ambiguity associated with measuring

the first arrival time from seismograms whether it is done by a seismologist

or by a machine since the seismic signals are of unknown shape and are

contaminated by noise. Such ambiguity can be reduced by combining the

processes of picking arrivals and locating the events in an iterative

fashion. A seismogram can be described as "noise followed by seismic

signal", where both "noise" and "seismic signal" would have graratical

rules describing their structure. Current picking algorithms [2] use this

type of structural information but in a rather ad hoc manner.

In surmary, application of pattern recognition to earthquake pre-

diction is in its infancy. Cbviously various structural and geophysical

information must be combined to derive a feasible algorithm for automatic

prediction and interpretation.

5. Intrusion-Detection Using Seismic Sensors

One of the automatic intrusion-detection techniques is to use the

seismic sensors that detect the "footstep signal" in the presence of

usually strong correlated noises due to vehicle motions in the immediate

vicinity. In this case the real signal is impulse-like with unknown

arrival time and duration. It is necessary to employ noise cancelling

algorithms such as the adaptive digital filtering and the Kalman filtering

to suppress the background noise so that the footstep signal can be

enhanced [i10][11. Figures 3&4 show two typical sections of seismic data

containing footstep signals, along with the results of adaptive digital
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Fig. 3a Cne section of
seismic intrusion-detection
data with large signal-to
-noise ratio.

Fig. 3b Adaptive digital
filtered result of Fig. 3a

I

Fig. 3c Adaptive Kalmran
filtered result of Fig. 3a.

Li



Fig. 4a Onle section of
seismic intrusion-detection
data withi small signal-to
-noise ratio.

Fig. 4b Adaptive digital
filtered result of rig. 4a.

b4

I Fig. 4c Aclaptive KalmanI filterc-d result of Fig. 4a
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filtering and adaptive Kalman filtering. A major portion of background

noise has been removed after filtering even if the noise is very strong.

Each section as shown has 960 samples at a sampling rate of 200 samples/

sec. For this kind of seismic signal, spectral features are not suitable

for detection. The recognition or detection problem here is to determine

for each section of seismic data whether the footstep signal is present

or not. The correlation detection or matched filter detection is not

useful here. A simple peak detection with properly selected threshold

will, however, serve the purpose. There does not appear to have any

"structure" in this particular seismic signal.

6. Other Geophysical Signals

Geomagnetic signals provide some information on geophysical phenomena,

which is not available from the seismic data. The spectral analysis is the

main computer study that has been performed with the geomagnetic signals.

An example of geomagnetic signal is tie micropulsations which are often

associated with structural disturbance (or storms) in the magnetosphere.

Detecting a particular micropulsation event can provide a diagnosis of the

properties of the magnetosphere. As the agnetosphere changes because of

its varying interaction with the solar wind, the properties of the micro-

pull-ation signatures should respond . The recognition problem here is

somewhat similar to the detection of machine malfunction. As a large

volume of geomagnetic signals is received daily, automatic processing and

recognition will certainly be an area of future research study.

Other geophysical signals include sunspot numbers, etc. As several

different sensors are frequently employed in examining a particular geo-

physical phenomenon, how to effectively utilize information from all sources

is a challenging problem in recognition study.
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7. Conclusion

As compared with recognition of speech and biomedical signals, progress

in geophysical signal recognition is much slower. There are many promising

areas of research as described in this paper. Suggested future approaches

are the following:

(l) Understanding the geophysical phenomenon is essential as different

geophysical signals may require quite different recognition approaches.

(2) Signal processing is an integral part of signal recognition as a

number of distinct properties can only be derived after extensive

signal processing.

(3) Fully automatic recognition may not be a realistic goal. Some human

interaction may be necessary to complete the recognition task.

(4) Information from various geophysical sensors should be integrated

and utilized to arrive at the best recognition result.

1'
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