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SECTION I

INTRODUCTION

Strapped down inertial reference systems are receiving considerable

attention for aircraft, missile, and space applications. Included among

the most recent publications in this area are those by Burns (Reference 1),

Harrington, et al. (Reference 2), Kubatt (Reference 3), Elson (Reference 4),

Johnson, et al. (Reference 5), Lipscomb, et al. (Reference 6), and

Reynolds (Reference 7). Of particular interest are those systems

incorporating strapped down inertial sensors in a redundant configuration.

These systems are being developed to provide the combined kinematic data

requirements of flight control, navigation, weapon delivery, and other

on-board avionic functions. Development of this concept is directed

toward providing a high probability of mission success and possible

reduction in avionic system life cycle costs.

A high probability of mission success can be achieved through

implementation of a fault tolerant system employing effective Failure

Detection and Isolation (FDI) techniques, and Redundancy Management (RM)

algorithms. Reduction in life cycle costs should be obtained through

reduction of the number of inertial sensors required, and through com-

monality of these sfnsors and associated software resulting from

utilization of redundant inertial reference sensors.

If this concept is to be successfully employed, the requirements of

all avionic functions utilizing the inertial reference data must be

satisfied. Present state-of-the-art strapped down inertial reference

systems do not meet all requirements in the dynamic environment of a

highly maneuvering, high-performance type aircraft. Specifically, the

velocity and position performance for navigation and weapon delivery,H in a highly maneuvering dynamic environment, is typically in excess of

'A specified requirements.

In addition, establishing and maintaining realistic FDI threshold

levels presents problems of some concern. To accomplish this, some type

of filtering of the inertial sensor outputs is needed and variable FDI

I
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threshold level algorithms are required. FDI algorithms have received,

and are continuing to receive, considerable attention. Daly et al.

(Reference 8), investigated FDI algorithms with constant level thresholds.

Motyka and Bell (Reference 9), extended this investigation to include

variable FDI thresholds for the high performance aircraft environment.

This technical report addresses the investigation of algorithms for

filtering the inertial sensor outputs, estimating the time rate of change

of the sensor outputs, and statistical averaging of data from a set of

strapped down, redundant, inertial sensors in skewed configurations.

Filtering and estimation of the inertial sensor output is accomplished by

a two-state Kalman filter algorithm. One state variable provides an

estimate of the sensor output in the presence of noise. This estimate can

be utilized directly in an FDI algorithm for establishing and maintaining

medium and soft failure threshold levels, and in the navigation, flight

control, and weapon delivery functions. The second state variable

provides an estimate of the inertial sensor output time rate of change

for utilization in the flight control and weapon delivery functions.

Statistical averaging of the redundant inertial sensor data is

accomplished by a weighted least-squares algorithm to improve position

and velocity performance for navigation and weapon delivery.

The estimation algorithms are discussed in Section II. Statistical

averaging of the redundant inertial sensor data is discussed in Section III.

The simulation program used during the conduct of this investigation is

discussed in Section IV. A discussion of results and conclusions are

presented in Section V.

'4

ok 2

. .. . . , , -, ,. .. ... . . . . . . , m



AFWAL-TR-80-1088

SECTION II

ESTIMATION ALGORITHMS

1. GENERAL DISCUSSION

The need to improve upon strapped down inertial reference system

performance in certain applications has become apparent. Specifically,

improvement is needed to meet navigation and weapon delivery require-

ments for applications in highly maneuvering aircraft. This need has

been verified by recent studies which were discussed in Section I.

A need also exists in some flight control system applications for improved

methods of estimating the time rate of change of vehicle angular rates

and body accelerations.

Velocity errors derive from specific force measurement error due

to accelerometer bias, scale factor error, input axis misalignment, some

higher order errors, and to imperfect attitude matrix computation.

Attitude and attitude rate errors derive from gyro errors including drift,

scale factor error, and inpit axis mislaignment. Drift errors are

dependent upon the type of gyro being used. Laser gyro drift, termed

g-insensitive drift, is not influenced by gravity (g). On the other hand,

rotating mass gyro drift includes g-insensitive, g-sensitive, and
2
g -sensitive components. Of the gyro and accelerometer errors, all are

random with the exception of input axis misalignment. The input axis

misalignment error is random only in the sense of inability to achieve

initially accurate sensor alignment and repeatable alignment due to

maintenance procedures.

To satisfy the inertial reference needs of navigation and weapon

delivery, the strapped down inertial reference system must perform the

functions depicted in Figure 1. These functions are to determine a body

attitude matrix which contains the relative angular information between

the body coordinate frame and the navigation coordinate frame, and to

resolve the compensated velocity changes through this transformation
J

k: matrix. The navigation algorithm then calculates velocity and position

in the navigation frame.

3-I
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The attitude matrix is derived and updated through measurements of

the gyro outputs. Several algorithms have been developed over the years

to accomplish the attitude matrix functions. Two of these are implemented

in th,, simulation program used for this investigation. They are the

classical direction cosine mechanization and a quaternion mechanization.

The quaternion mechanization is used in most state-of-the-art strapped

down inertial navigation systems because of its reported capabilities

of smaller computational errors, and reduced processing time and storage

requirements. The rate of updating the transformation matrix is of

prime importance when considering system performance. However, for this

investigation it is not one of the factors considered. An in-depth

analysis of inertial navigation systems is presented by Britting

(Reference 10).

The transformation matrix mechanization utilizes the gyro outputs

to establish and update the )ody attitude matrix. However, the gyro

outputs are angular changes and not angular rates as required for this

computation. Thus, the angular rates must be estimated from the gyro

incremental angular output. The typical method of estimating the angular

rates wi front the incremental angular changes At'i is by piecewise

constant outputs as follows.

AO (t )  O (t )-O(t ) (1)
W -(t) .I. . i n i n -

At t -tn n-!

where

t x, y, z, gyro axes

t - time and t < t < t
n-I -n

tn  ti me of n update

At = t - tI is the sampling interval

Wj x, y, z gyro axes estimated rates

5
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Possible areas of improving the strapped down inertial reference

system to meet the accuracy and stability requirements (placed on

attitude, attitude rate, and body accelerations by state-of-the-art flight

control and navigation requirements) are: by improving the inertial

sensors; by improving the estimation of sensor outputs; by improving the

system mechanization; or by a combination of all three. Improvement

through improved estimates of the time rate of change of noisy, sampled

data using measurements from redundant sensors of a specified ensemble is

the prime concern of this investigation. The intent is not to estimate

the inertial sensor errors, but rather to obtain an improved estimate of

sensor output and output-rate for utilization in the functions of flight

control, navigation, and weapon delivery. Hereafter in this text,

references to sensor output estimation will imply estimation of both

the sensor output and output-rate.

Previous investigations have sought to improve reference system

performance through integration of independent position and velocity

sensors with an inertial system using some type of optimal filtering

method. These efforts have generally been computer limited and error

modeling has been relegated to system errors considered most important,

such as position, velocity, and attitude. Some of these investigations

have considered modeling of inertial sensor randon errors to estimate

the errors magnitude for system update and error correction. Typically,

these errors are given only a cursory glance, with gyro random bias

estimation being the only error seriously investigated.

Failure to implement the random error sources in these hybrid

systems has not been due to lack of interest nor desire to do so.

Instead, the primary reason is the computational load involved, and

typically utilization of a single general-purpose computer. Addition

of the gyro and accelerometer random error sources causes the number of

state variables to grow extensively, approximately by a power of

three when considering full modeling of all sensors.

St
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Due to significant advances in digital computer technology and

computational techniques over the last few years, the computation problem

should no longer be a limiting factor in modeling of the inertial sensor

random errors. Avionics designers are also moving more toward distributed

processing throughout the on-board avionics. Thus, one or more micro-

processors can be utilized for dedicated inertial sensor and/or reference

system computation. Their computational speed, small size, and relatively

low cost make extensive modeling of inertial sensor random errors to

accomplish optimal estimation of the sensor's output and output-rate a

viable concept.

As discussed in Section I, integration of inertial sensors for flight

control, navigation, and weapon delivery into a single inertial reference

assembly results in a set of redundant inertial sensors. This is due to

the fact that most aircraft employ redundant inertial sensors for flight

control to meet flight safety requirements. Thus, data from the

redundant gyros and accelerometers is available for utilization in the

navigation and weapon delivery functions as well. Optimal estimation

techniques are utilized to investigate the possibility of improving upon

the estimate of the time rate of change of noisy vehicle angular rates

and body accelerations. The estimated outputs of these redundant inertial

sensors are then combined and transformed into the orthogonal-triad body

reference frame through a weighted-least-squares estimator as shown by

Figure 2.

It is possible to combine the sensor output estimation and weighted-

least-squares estimation into one process. However, a relatively high

computational rate is required for sensor output estimation while the

weighted-least-squares transformation can be accomplished at a much lower

rate. These two estimation processes lead to a local global processing

scheme shown in Figure 3. The local processor is operated at a high data

rate while the global processor is operated at some lower data rate.

This technique also allows separate microprocessors for local and global

processing if so desired.

.4.,'
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2. SENSOR ESTIMATION ALGORITHMS

To apply optimal estimation to the inertial sensors, a model

describing the inertial sensor dynamics must be developed. In view of

the similarity of the gyro and accelerometer error models, one would

expect to see a similarity in the dynamic models describing the sensors.

As it turns out, the sensors can be represented by quite similar models.

The method chosen to model the inertial sensor random errors is through

combinations of the random process models presented in the Appendix.

3. GYRO MODEL

The dynamics of a gyro can be modeled by a combination of a random

constant, a random ramp, and exponentially correlated random errors

(Markov Processes). Block diagrams of these common random processes are

shown in Figure 4. Two Markov processes deserve consideration. One has a

short correlation time measuring in seconds while the second has a long

correlation time measuring in minutes or hours.

The state vector differential equations of the models are as follows:

Random Constant

k = 0 (2)

Random Ramp

12

(3)
x2  =

Markov Processes

Short Correlation Time Constant

1 + U (4)

Long Correlation Time Constant

" where w2 = White Noise

T11 T2 Short and long correlation time constant, respectivelyII
2 2

10
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There are a number of ways these models can be combined. One way is

simply to sum all of them together to form the gyro dynamic model shown

in Figure 5. However, this would result in a state vector containing

five state variables for each gyro.

xl = 0

k2  = 3

Xk 03

x4 = - x4 + u4

(6)
5= -x 5  + u5

where
_ 1

T
1

T 2

The model as it stands, would result in considerable computation

when redundant sensors are considered. Thus, an attempt to reduce the

number of state variables in the gyro model seems in order. This results

in a suboptimal estimator but the computational load and storage require-

ment saved when considering redundant sensors could be considerable.

Simplification can be obtained by observing the first three state

variables in Equation 6, along with their appropriate block diagrams

given in Figure 4, and recognizing that these three state variables can

be combined into a form requiring only two state variables. Thus, a

random bias and random ramp can be represented by two state variables

as shown in Figure 6. The state vector differential equations for this

combination are

= x2

0 (7 )

12

€ .°. . _2. .. . 2 ..... .-... . .. --
1. 
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x3((0)

fEZV3 xk

x 4(O )  +( +

,b i  5 f

Figure 5. Five-State-Variable Model Block Diagram
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X2(0) (O

f f

Figure 6. Random Constant and Random Ramp Block Diagram

The gyro model has now been reduced from a state vector with five state

variables to one with four state variables without any loss in estimation

accuracy. A block diagram of this model is shown in Figure 7. The

state vector differential equations are

Xl = 2

k2 0

x3 = - x3 + U3

k4 = -6x + (8)

Now the exponentially correlated random error with long correlation

time is examined. The state differential equation for this error is

given by:

XL - XL + UL (9)

where

U L = White Noise

T2

T 2 Long correlation time constant

7 /1 4

o " 
II li l i I -- 
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x2 (0) uI  x 1(0)

X3 (0) + +$Wk

++

~x

Y4O)

U4

+

Figure 7. Four-State-Variable Model Block Diagram
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As the correlation time constant is made large, Equation 9 assumes a

similarity with the random walk model. The random walk differential

equation is given by

kRW U RW (10)

Thus, if T2 is very large then Equation 9 can be represented by

: L L (11)

In reality, the correlation time constant of the gyro exponentially

correlated random error is not infinite but is relatively large. Since

the time constant is large then this exponentially correlated random

error can be modeled by a random walk.

Now some equality must be established between the Power Spectral

Density (PSD) of the exponentially correlated random error white noise uL

and the random walk white noise uRW. Wauer and Bucy (Reference 11)

states that through error analysis it has been empirically found that the

best performance is obtained when the PSD amplitude of the random walk

white noise is
2

aL (12)

VRW 2

If the exponentially correlated random error with long correlation

time constant is modeled by a random walk, then the gyro model is sub-

optimal. Even though the model is not exact, it does result in error

statistics which tend to account for unmodeled errors.

The random walk model can be combined with the random bias and

random ramp with the three random errors modeled by only two state

variables. The suboptimal gyro model block diagram is shown in

Figure 8 and the state variable differential equations are

= + uc

x2  0

3aX 3  + U3  (13)

16
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where

u is white noise representing uI and O (14)

The exponentially correlated random error with short correlation

time has a variance of os and white noise u3 with PSD

Q 2 2T (15)
s Si

The PSD of an exponentially correlated random error is given by

202
S

S() = T1  (16)

The PSD functions for a Markov process and for white noise are given

in Figure 9. Examination of these two functions indicate they are

similar for frequencies between the cutoff frequencies. If zero frequency

is considered, Equation 16 becomes

S(O) = 2oT (17)
S

This is exactly the PSD of the white noise process for this error source.

Thus, if the correlation time is short compared to the system natural

frequency, then the exponentially correlated random error can be modeled

by white noise. In particular, for an inertial system the natural

(Schuler) frequency is

27rT- (18)
Ss T

where

Ss = Schuler frequency
S

T Schuler period (84.2 minutes)

2ir I

= 84.2x60 = 804.02 seconds
S

18
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Rounding off, this gives

1 800 seconds (20)

Ss

Then for

< (21)
s

or equivalently

< 800 seconds (22)
s

a white noise model can be used.

An error source modeled by white noise does not require the

addition of a state variable to the state vector. The white noise

amplitude can simply be added to the system noise. The suboptimal

estimator now only requires two state variables to model the gyro. A

block diagram of the reduced order model is shown in Figure 10. The

state vector differential equations are

1 - X2 + UT

S2 = 0 (23)

where2
uT is white noise representing u and a 2-

x1() + aL

x2 (O) = Random bias error drift rate

f x  I

Figure 10. Two-State-Variable Model Block Diagram

20
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Equations 8, 13, and 23 are now put into state space equation form.

k Fx + Cu (24)

where

x = System state vector

F = System distribution or description matrix

G = System driving function matrix

u I = System driving function (white noise) vector

For Equation 8, these vectors and matrices are

xl

X 2  
(25)

x3

x4

o 4 0

0 1 0 0

0 0 0 0

F = (26)
0 0 -0 0

0 0 0 -8

0 0 0

0 0 0 
(7

G (27)
0 1 01

0 0 1i

J

ii 21
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0

0
U (28)

U3

U
4

From Figure 7, the measurement equation is given by

(29)
z = li +

where

H = Measurement distribution matrix

Yk = Measurement noise (white noise)

z = Measurement vector

H = [1 0 1 1]

Since these equations are linear, a linear estimation scheme is

sought to optimally estimate the gyro output angle and angle rate. The

best unbiased linear minimum-error-variance estimation algorithm is the

Kalman filter. The discrete Kalman equations of concern are listed

below. A full development of these equations has been accomplished by

Kalman and Bucy (Reference 12), Jazwinski (Reference 13), Sage and

Melsa (Reference 14), Meditch (Reference 15), Papoulis (Reference 16),

and Gelb (Reference 17).

22
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System Model

x(k + 1) (k + Lk)x(k) + r(k)u(k) (31)

where

x.(k) = System state vector at the kth interval

1(k + 1,k) = System state transition matrix

:(k) = System noise distribution matrix

u_(k) = System noise vector

Measurement Vector

z(k) = H(k)x(k) + v(k) (32)

where

z(k) = Measurement vector

H(k) Measurement distribution matrix

v(k) z Measurement noise vector

The system noise vector and measurement noise vector are zero

mean, white noise processes with respective covariances

Coy [k(k)u 3] = (k)6k(k-j) 
(33)

Go v E (k ) ,V (j - = R (k ) .k(k -1) 
(34 )

Filter State Estimate Update

k(k) = ic(k-]) + K(k)[;(k) - 11(k)X'(k-1I (35)

Kalman Gain

K(k) = P(k)HT (k) H(k)Pxtk)HT(k) + R(k)] (36)

Covariance Update

P-(k) - K(k)H(k) P- kk-l) (37)

23
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State Estimate Propagation

k(k+l,k) = 0(k+1,k)R(k) (38)

Error Covariance Propagation

P-(k + 1, k) = *(k + 1, k)Px(k),T(k + 1), k)
X X

+ r(k)Q(k) r T(k) (39)

where

I = Identity matrix

T = Transpose of a matrix or vector

= Estimate quantity

= Error quantity

F = Inverse of a matrix

To apply the discrete Kalman equations, the continuous state

equations must be expressed in discrete form. The procedure for discretizing

these equations are described in the literature and are not presented

here. The resulting discrete form of the equations are:

Transition Matrix

1 At 0 0

0 1 0 0

0 0 o t 0 (40)

0 0 0

2
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Covariance Propagation

P1 1 (k+l) = P 1 (k) + [P 12 (k)+P 2 1 (k)At] + P2 2 (k)(At)
2

P 2(k+l) = P12 (k) + P2 2 (k)At

P 13 (k+1) = EP13(k) + P23(k)A e - a t

P14 (k+
l ) = [P 1 4 (k) + P2 4 (k)Ajt

P22 (k+l) P2 2 (k)

P23(k+1) P 23(k)e

23i
L ( AtP24 (k+l) = 24 (k)e- 2

2

P (k+1) P 4 4(k) 0[ a] 2B~t(41)

44 P4 4 (k) - B-

The reduced order state equation models result in subsets of the

fourth order model, are developed by Bell (Reference 18), but are not

presented here.

In the preceding development, the system is the model of a cyru

which senses vehicle motion in a noisy dynamic environment. The vehicle

motion sensed is angular velocity, with the output being the angular

change which occurs between sampling intervals. Thus, a natural choice

for system noise would be the vehicle angular acceleration. For small

sampling periods the angular acceleration can be considered constant.

Now assuming that the acceleration is uncorrelated between sampling

periods, the system noise statistics can be represented by

k  constant for t < T < T

k k- k+1

L ka fork=j (42)

0 for k j

25
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Thus, ak is considered to be a zero mean random variable with covariance
2 k
a. Since the noise parameters represented by Equation 28 all stem from

the same source, they can be considered identical. Assuming this to be

true, then

U 3  U 4  U

and

0

0
U-

U
(43)

U

The measurement noise of the gyro is due to the random pickoff

error of the output incremental angle PO. The measurement noise is

assumed to be uncorrelated between measurement intervals with zero mean

and covariance o 2

0*.

The set of equations for the two-state variable gyro model are

similar to those suggested by Friedland (Reference 19), wherein somewhat

different system dynamics were assumed and a fixed gain filter was

formulated. The filter equations are summarized as follows:

System Dynamics

(At)2
, (k+l) = xl(k) + x2 (k) At + a
1 n 2 (44)

S2(k+l) = x2 (k) + a At

: x1

! 2 
(45)

' I At

A] =(46)

j 26
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(At) 4  (At)3

rQFrt (x a (47)

AQ) 
2 a

1-2 (At )

2 Measurement noise variance (48)

Q = 02 System random acceleration noise variance
a

State Estimate Propagation Equations

I(k+l) = kl(k) + i2(k) At

2(k+l ) = 2(k) (49)

State Estimate Update Equations

l(k+l) = Xl(k) + KI(k+l) [-Xl(k)]

2 (k+l) i 2 (k) + K2 (k+l) - l(k] (50)

This filter algorithm was developed as a constant gain filter rather

than a time-varying Kalman filter which implies a statistical steady state

process, or stationary Kalman filter. This formulation is equivalent to

the Wiener filter and is valid only if: the system and measurement

models are linear and time invarient (F, G, and H are constant matrices);

are at least wide-sense stationary (Q and R are constant matrices); and a

steady state can be reached. This last requirement is satisfied if

complete observability can be shown.
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If these requirements are all met then the Kalman gain is constant,

the state vector estimate is stationary, and the error covariance matrix

(p) is constant. The continuous equations for the error covariance,

Kalman Gain, and filter estimate are

0 =  FP(O) + P(o)FT  - P(o)HT R HP(o) + rQrT

K(o) = P(o)HTR
- 1

R~)=F~x(t) + K(o) [. (t)'Hi(t) (51)

where

P(t) = P(o) = Constant Covariance

Direct solution of the first equation in 108 is very difficult and

tedious for all but low-order filters. Even the second order filter

being described requires considerable matrix manipulation and algebraic

calculations. Thus, only the final equations that are programmed in

the simulation are presented here.

2
P(, d(+l)2

r

P(1,2) = aaAt 2 (52)2r '(d+t)2

2r 2
02 (At)

2

P(2,2) 2 a (d+1)2

Filter Constant Gains

r

2 2t,, ~~K2  : .= (_)

2, r At

28
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where

4a

a (At)2a

d = 1 +2r

I (k+l) = (1I- 1 K 2 t) I (k) + At 2 (k)

+ (Kl+K 2At)z(k)

2(k+l) = K2 [z(k)-z(k-1)] + (2-K1-K2At)

x2 (k-1) - (1-K1)X2 (k-2) (54)

For simplification and ease in further discussion the four-state-

variable model will be termed Algorithm A, the three-state-variable

model will be termed Algorithm B, the two-state-variable model will be

termed Algorithm C, the Kalman filter model represented by Equations 44

through 51 will be termed Algorithm D, and the fixed gain model of

Algorithm D will be termed Algorithm E.

4. ACCELEROMETER MODEL

The accelerometer can be satisfactorily modeled by a combination

of a random bias, a random ramp, and two Markov processes as was done

for the gyro. The short correlation-time error can be modeled by white

noise and the long correlation-time error can be modeled as a random walk.

bThus, the estimation models developed for the gyros can also be

used for the accelerometers. The only changes required are in the

initial conditions, system and measurement driving noise statistics, and

correlation time constants. These are all obtained from gyro and

accelerometer test data and known behavior of different types of inertial

sensors.

o2
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Accelerometer bias is significant for two reasons in strapped down

inertial systems. When the inertial system is aligned prior to flight,

system errors are correlated. However, during flight the inertial

system deviates from its original orientation and some errors are no

longer correlated. Specifically, if the aircraft executes a ninety-

degree turn, a step of acceleration equal to the bias magnitude is

introduced into the system. The second reason the accelerometer bias is

significant, and the one of interest for this investigation, is that

the bias is a random error and not a constant. Bias is typically the

most dominant of the random accelerometer errors. Particularly, for

short duration flights of less than two tours, the bias rms value is

one to two orders of magnitude larger than that of other random errors.

'30
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SECTION III

REDUNDANT SENSOR DATA AVERAGING

Redundant inertial sensors in skewed configurations were discussed

previously. While many different configurations are possible, only a few

provide increased benefits and are practical for application as aircraft

inertial reference systems. A study by Burns (Reference 1) resulted in

three of the most promising configurations. These three candidates are

designated as a single aligned quint, a dual skewed triad, and a dual

reversed double triad. The transformation matrices of four configurations,

including the three mentioned above, are given below. These configurations

were all used in this study and are designated Configuration 1 through

Configuration 4. The geometry for Configuration 1, the dual skewed triad,

is depicted in Figure 11. A sixth gyro has been added to the quint,

Configuration 2, for comparison with the other for configurations

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

2/3 2/3 -1/3 1 1 1

-1/3 2/3 2/3

\57 _ V2' V'
-2/3 1/3 2/3 \ v

VT-' V3

0 o 2V3 2f3

Configuration I Configuration 2
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V' -2 0.97204 0 -0.23482

-Y-6-1--2 -0.60075 -0.77653 -0.18997

V'3 0 -2 Y2 -2 0 0.47992 0.87731

6
0 -0.47992 0.87731

-0.60075 0.77653 -0.18997
r6 4 -2

0 2 V2' -2 0 0 0

Configuration 3 Configuration 4

V 5  I N

V
4

x,r,v

Figure 11. Dual Skewed-Triad Sensor Input Axes Diagram
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If properly mixed, or averaged, the redundant inertial sensor

information can result in improved system performance. The method

chosen to perform this averaging is by weighted least squares estimation.

This method was chosen for its simplicity and estimating capability. No

stochastic assumptions are required and the estimation can be treated as a

deterministic optimization problem. As a result, the estimate will be a

statistical average of the redundant inertial sensor data, for each axis

of an orthogonal triad, in body coordinates.

The least-squares estimator is based upon an estimate ofx

which will minimize the quadratic measure

T Hk ) (56)

where

LS

LS Least-squares estimate of k

Z M X 1 vector of measurements

= M X N measurement of matrix

= N X 1 vector of parameters to be established

Rj VI M X N positive definite and symmetric weighting

matrix

b T Transpose of vector or matrix

A-  Inverse of matrix A

33
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Linear measurements corrupted by zero-mean noise with constant

variance of the form

k Hk + vk  (57)

are made where k is an M X 1 vector of measurement noise.

If it exists, the least-squares estimate is obtained by setting

the partial differential of the quadratic measure equal to zero. Thus,

-I-1
3_____ H k R k (4-Hkk 0 (58)

xkLS

which results in the desired solution

= (T -1 -1HT -

=LS (HkRk) H kRk -  (59)

If the weighting matrix R, in the least-squares estimator is made equal

to the variance matrix for the measurement noise, the least-squares

estimator is identical to the linear minimum variance estimator. If the

measurement errors are uncorrelated the measurement matrix R is diagonal.

Further, if all errors have equal variance, then Equation 59 reduces to

the least-squares estimator.

k bL (HT1H )-I T
LkS kk k (60)

at A full development of the least-squares estimator is given by Sage and

Melsa (Reference 14). A sequential form of the least-squares estimator

is possible. However, in this investigation, batch measurements are

processed and the sequential form is not required.
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By comparing Equation 60 with the defining equation of the pseudo-

inverse, it can be seen that (HTH) IHT is the pseudoinverse of the

matrix H which has more rows than columns. This is the overdetermined

case in the solution of linear equations with more equations than unknowns.

The solution of Equation 60 is the best solution in a least-squares sense.

Thus, the 6 X 3 sensor input matrix given in Equation 55 can be assumed

as the measurement matrix H for the least-squares estimator. The six

inertial sensor outputs are transformed through a statistical weighted

average to the body frame reference triad.

For this investigation, six angle-degree-of-freedom gyros and six

single-axis accelerometers are modeled. When two-degree-of-freedom

gyros are used, then six axes of information are utilized. A vector x

is used for each set of six sensors. One for the gyros and one for the

accelerometers. The elements making up each vector consist of the

individual sensor outputs as estimated by the selected sensor estimation

algorithm. Thus, for the gyros 2G is the 6 X 1 vector.

A6l

A62

Ae3

A65

A66 (61)

i
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and for the accelerometers

A V "

A V2

A V3
AV 3

-A

AV5

AV 6  (62)

The H and R matrices for this application are time invariant.

Thus, the weighted least-squares estimator can be represented by

L T Z (63)

where TkL S is a time invariant least-squares transformation matrix of

dimension 3 X 6 and kLs is a 3 X I vector representing the orthogonal

set of estimated sensor outputs in body coordinates.

Assuming that the measurement errors are uncorrelated, the measure-

ment matrix is diagonal. Further, assuming that all measurements do iut

have equal variance, then the measurement matrix for the set of six gyro,

or six accelerometers is given by

201

02

2Q

2
R= 03 (64)

(Y4O 2

2
06
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2

where the oi represent the relative measurement error weighting values
for each individual sensor.

For the sensors with input axis aligned along a body axis, no

geometry change is made. Thus, no dynamically induced error effects, not

present in a typical three axis strapped down inertial system, are in-

curred by these sensors. However, sensors with input axis skewed with

respect to the body axes will generally exhibit deteriorated performance

due to the dynamically induced errors. This is especially true of gyros

with rotating mass, whereas most accelerometers are affected to a lesser

degree, and ring laser gyros are affected very little. Ring laser gyros

and quartz-flexure accelerometers are the inertial sensors considered in

this investigation. Since the statistical effects (in a dynamic flight

environment) of skewing these sensors is not available, the error

m~gnitudes are inferred from laboratory test data. As of this time (to

the author's knowledge) no reliable flight testing of skewed configuration

strapped down inertial sensors in a high dynamic aircraft environment

has been accomplished.

The diagonal elements of the weighting matrix are assigned a range

of weights, with different values selected, and evaluated by simulation.

Further discussion on selected of weights is contained in Section V.

I

I
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SECTION IV

SIMULATION PROGRAM DESCRIPIlON

The simulation used in the conduct of this investigation penits

the evaludtion of strapped down inertial reference systems over drbitrdry

tlight profiles. The total simulation consists of two units which will

be referred to as the Data Base and Sensor Reference Simulator, and the

Estimation Algorithm Simulator. The two units can be run independently

if desired, but for this investigation the Estimation Algorithm Simulator

was structured as a subprogram to the Data Base and Sonsor Reference

Simulator. The total simulation is controlled by the Data Base and

Sensor Reference Simulator, while the Estimation Algorithm Simulator

has control of its own individual subroutines.

The total simulation is configured for both open loop operation and

for closed loop feedback control operation. In the open loop mode, the

Data Base and Sensor Reference Simulator provides the necessary sensor

and dynamic information to the Estimation Algorithms. The Estimation

Algorithm Simulator computes a "best estimate" of the inertial sensor

information which is then compared with a set of truth data provided by

the Data Base and Sensor Reference Simulator. The estimation errors are

computed by differencing the estimated values from the truth values.

These estimation errors are output via printouts and plots for analysis

and evaluation. In the closed loop mode the inertial sensor "best

estimates," as computed by the Estimation Algorithm Simulator are fed

back to the Data Base and Sensor Reference Simulator and used in the

navigation computation in place of the normal inertial sensor outputs.

The navigation system outputs are differenced from a set of truth data

to provide the navigation system errors. These error parameters are

then output via printouts and plots for analysis and evaluation.

Both simulators are completely digital and are coded in FORTRAN IV

computer language. The computation for this investigation was accomplished

on a CYBER-175/CYBER-74 series digital computer facility.

I3 '1 38
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1. DATA BASE AND SENSOR REFERENCE SIMULATOR

The Data Base and Sensor Reference Simulator is used primarily for

program control, for generating flight profile and vehicle dynamics,

flight control, navigation, and for providing the sensor and dynamic

information to the Estimation Algorithm Simulator. For each simulation

run, the Data Base and Sensor Reference Simulator is executed over a

specified flight profile. Time histories of all inertial sensor infor-

mation, navigation parameters, and a set of truth parameter information

are recorded on tape. All required data is also passed to the

Estimation Algorithm Simulator.

The Data Base and Sensor Reference Simulator is a significartly

remodeled version of a simulation developed by the Charles Stark Draper

Laboratory. It contains the model of a high performance aircraft

represented by nonlinear six-degree-of-freedom equations of motion and

nonlinear aerodynamics. Turbulence and winds are modeled to provide a

more realistic environment. Models of three lateral, and three

longitudinal-directional structural modes, and a flight control system

representative of this type of aircraft are included. The inertial

sensors, which provide kinematic data for utilization in navijation,

flight control, and other avionic systems are also modeled.

The inertial sensors modeled in this simulation represent state-of-

the-art technology. Both two-degree-of-freedom tuned rotor gyros and

ring laser gyros are modeled. Either type of gyro can be selected for

any simulation run along with a set of accelerometers. The accelerometers

modeled are of the single-axis pendulous force-rebalance type. The

program is structured such that random selection of the gyro and

accelerometer bias and scale factor errors is accomplished at the

beginning of each simulation run. The option of utilizing a known input

value for the bias and scale factor errors is also available. This
provides the capability of making either deterministic simulation runs
or a Monte Carlo simulation over an ensemble of runs.
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The strapped down configuration of inertial sensors considered in

this investigation must be capable of providing the kinematic data re-

quired to perform the functions of flight control and navigation, as

well as other avionic functions onboard an aircraft. For safety-of-

flight considerations most aircraft in both civilian and military

environments require redundancy in the flight control system. Thus, in

this simulation six gyros and six accelerometers have been modeled to

provide a strapped down inertial reference with redundant capabilities.

However, no attempt has been made toward incorporating any Failure

Detection and Isolation (FDI) or Redundancy Management (RM) capabilities

in the simulation.

The sensors can be placed at any desired location within the aircraft,

either singly or co-located, thus allowing evaluation of sensor con-

figuration and location effects. The location effects of interest

consist of thcse resulting from lever arms and aircraft structural modes.

The simulation contains a local-vertical wander-azimuth whole-value

model and an error mode) of a strapped down inertial ndvigation system.

The whole-value model includes the effects of model and computation

errors, thus reflecting the expected performance of an actual strapped down

inertial navigation system in a realistic environment l tilizing both

models allows assessment of the magnitude of these erro s.

feedback of the estimated inertial sensor information from the

Estimation Algorithm Simulator into the navigation system mechanization

allows evaluation of the estimation algorithms and their effeCt upon

total navigation system performance. The estimated inertial sensor

information can also be fed back to the flight control system to

* eval,:ite effects of the estimation algorithms upon the aircraft flight

-ontrol.

'4 A block diagram of the system is presented in Figure 12. Switches

Sll and S1? represent the capability of adding or deleting the Estimation

Alkgorithm Simulator to the Data Base and Sensor Reference Simulator.

Switches 521 and S22 represent the capability of usinq either an ortho-

gonal triid ,et of sensors or switching in the "best estimate" of an

I
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orthogonal triad from the optimal combination of all the redundant

inertial sensors. Switch S31 represents the capability of using the

normal flight control system gyros or the estimated inertial navigation

sensor information in the flight control system.

2. ESTIMATION ALGORITHM SIMULATOR

The Estimation Algorithm Simulator consists of a number of

algorithms for estimating the outputs of a set of redundant gyros and

accelerometers in the noisy and dynamic environment of the strapped down

inertial reference system. These estimation algorithms are developed and

discussed in detail in Section II.

The Estimation Algorithm Simulator was developed for use in con-

junction with the Data Base and Sensor Reference Simulator, but can be

adapted for stand-alone simulation. When utilized in this fashion, the

simulator operates on inertial sensor information and dynamic data which

is input from a magnetic tape. However, since no navigation routine is

incorporated in this simulator, no feedback capability exists.

Numerous options are incorporated in the simulator. All, or any

combination, of the algorithms can be selected for estimating the gyro

and accelerometer outputs during any simulation run. Feedback of the

estimated outputs of either the gyros or the accelerometers, or both,

can be selected. The filter update rates are variable and all parameters

are easily changed by computer input cards. Any parameter can be

selected, up to a maximum of one hundred, for recording on magnetic tape

and/or printing and plotting.

The redundant sensors output data are statistically averaged and

transformed into an orthogonal triad set of inertial data by a weighted

b least-squares estimation algorithm. The simulator is mechanized to use'
up to eight axes of gyro and eight axes of accelerometer data with the

number of gyros and accelerometers selected for each simulation run.

The weighting parameter for each individual sensor is also selectable.

I,
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SECTION V

RESULTS AND CONCLUSIONS

A whole value simulation was chosen for this investigation since

the primary purpose was to evaluate and compare alternative estimation

algorithms in a realistic environment. Evaluation of absolute strapped

down inertial reference system errors was not the intent. However, a

comparison of the relative error performance between the various algo-

rithms was a primary concern. Thus, an error simulation was not utilized

in the actual evaluation, but was run in parallel with the whole value

simulation as an aid in analysis.

Both Deterministic and Monte Carlo simulations were utilized

throughout the investigation. However, due to the amount of computer

time required for the whole value simulation, insufficient runs were made

to establish a statistical base with the Monte Carlo simulation.

Simulation runs were made to determine system performance with the various

estimation algorithms from random error source inputs. Whole value,

deterministic simulation runs were used primarily for analysis and

evaluation of the relative performance of the various algorithms.

A covariance analysis simulation was not utilized since an evaluation

of effects of the various algorithms on the total strapped down inertial

reference system was desired rather than a sensitivity analysis.

However, a covariance analysis simulation would be desired for

establishing sensitivities of the various algorithms and inertial sensor

error parameters.

No attempt was made to optimize any of the algorithms by selectively

changing the statistical parameters. A range of values for each para-

meter, based upon known sensor characteristics and upon expected

aircraft dynamics, were used to establish performance capability.

Optimization of the estimation algorithms would require a complete

sensitivity analysis, since these parameters are dependent upon sensor

configuration, sensor location within the aircraft, and aircraft

dynami cs.
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1. SENSOR OUTPUT ESTIMATION
• •• .- . ooo o. .. .... ~.

The capabilities of five algorithms in estimating the inertial sensor

output were evaluated. These algorithms were discussed in Section i.

Of these algorithms, two were found to be superior, and will be the only

ones discussed further. The algorithms to be discussed are Algorithm D,

a Kalman Filter mechanization, and Algorithm E, a constant gain nech-

anization of Algorithm D. Algorithm C gave fair performance in some

areas, but did not perform as well as Algorithms D and E. For evaluation

purposes, the simulation was run using flight profiles ranging from

thirty seconds to thirty minutes. The profile used for most of the

simulation runs is represented by Figure 13. The time between maneuvers

for the shorter runs was simply reduced, and some maneuvers were

eliminated for these profiles. For each simulation run the aircraft is

initially trimmed to straight and level flight at an altitude of 5000

feet, a heading of zero degrees, and a velocity of Mach 0.5.

Table 1 lists the parameter values assumed for the accelerometers,

Table 2 lists the parameter values assumed for ring-laser gyros, and

Table 3 lists the parameter values assumed for two-degree-of-freedom

gyros during the evaluation.

For this part of the evaluation an orthogonal set of three ring-

laser gyros and three accelerometers were simulated. This configuratio!

is shown in Figure 14 with sensor input axes as indicated.

Algorithms D and E provide approximately the same performance.

However, Algorithm E gives a slightly better performance during high

dynamic aircraft maneuvers. The capability of these two algorithms in

estimating the gyro output can be seen by observing Figure 15 through

bFigure 17.

These figures are all error plots. The sensor outputs and the

estimates of sensor outputs are differenced from the true sensor inpul

generated by the simulation. Figure 15 is a plot of the pitch-axis lav,,

gyro output error. Figure 16 is a plot of the error in estimatino tn

pitch-gyro output by Algorithm D, and Figure 17 is a plot of the erroi

in estimating the pitch-gyro output by Algorithm L. The Imean-squared

44



AFWAL-TR-80-1088

1800--

1610 - - 145' Heading

Loiter
--2-1/2 Revolutions at a 300 Bank Angle

1000
960 m

Climb to H = 14,500 ft.

Decrease Speed to MACH = 0.5

700--

600 360' Roll

500 Evasive Maneuver - 4.5 g Rolling-Puliup, 45' Heading

450 3600 Roll

350 Weapon Delivery - 3.5 g Pull-Up

250 360' Roll - Maximum Normal Acceleration is 4.5 g

225
Descent at H = 500 ft., MACH = 0.75

100--
Cruise at H = 5000 ft., MACH z 0.5, North Heading

0_

)
Figure 13. Fliqht Profile

4

, 45

-- ,



AFWAL-TR-80- 1088

TABLE I

ACCELEROMETER PARAMETERS

Pa ramet er Value Units

Bi 50 Micro-g

Scale Factor 32(10 3) (Pulses/sec)/g

Scale Factor Error 100 PPM

Scale Factor Non-Linearity 40 Micro-g/g2

Misalignment Errrors 5(10 - 5) Radians

Cross-Coupling Errors 1.96 (10 - 5 ) Radian/g

TABLE 2

RING-LASER GYRO PARAMETERS

Parameter Value Units

Fixed Bias 0.01 Deg/Ilour

Wideband Random Noise 0.002-0.007 Deq/ /1fotr

Scale Factor 1.57 Arc-Sec/Pulse

Scale Factor Error 5 PPM

Misalignment Errors 5 (1 0 ") Radians

/
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TABLE 3

TWO-DEGREE-OF-FREEDOM GYRO PARAMETERS

Parameter X-Axis Y-Axis Units

Source

Bias 0.01 0.01 Deg/Hour

Scale Factor 1.57 1.57 Arc-Sec/
Pulse

Scale Factor Error 50 50 PPM

Misalignment Errors 10- 4  10- 4  Radians

g-Dependent 0.02 gx 0.04

Errors 0.04 gy 0.02 Deg/Hour/g

0.01 gz 0.01

g -Dependent 0.02 g 0.00

Errors 0.00 g 0.02 Deg/Hour/g 2

y
0.005 gz 0.005

gxg-Dependent 0.01 gx,gy 0.01

Errors 0.04 gy'gz 0.04 Deg/Hour/g4 0.04 gx ,gz 0.04

wxw-Dependent 0.0 w x y 0.0

Errors 80 w yW 20 De/Hour
(Rad/Sec)2

20 W , Wx 80

47
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Figure 14. Orthogonal-Triad Inertial Reference Coordinate Frame
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error in the estimates are shown in Figure 18 through Figure 20.

Comparing Figure 19 and Figure 20 witFirfgdr& 18. 6s'tha'i edct1on in

the mean-squared error obtained with either Algorithm D or Algorithm E is

nearly the same. However, Algorithm D is somewhat better. The acceleration

noise level, measurement error, and computation interval for these plots

are

a = 1.0 Deg/sec2  Acceleration Noise Levela

Ci = 3.0 Arc-Sec Measurement Error

At = 0.0025 Sec Computation Interval

For these parameter magnitudes, Algorithms D and E both exhibit

approximately an order of magnitude improvement in estimating the gyro

output. Similar results were obtained in estimating the output of the

roll and azimuth gyros.

These improved sensor output estimates are very useful in the

application of failure detection and isolation. This is particularly

important in establishing and maintaining sensor failure threshold levels

in the highly dynamic environment of high-performance aircraft. The

estimated sensor output can be used directly in the FDI and RM algorithms.

The need for filtering the inertial sensor outputs was established and

discussed by Motyka and Bell (Reference 9).

The improvement obtained by these algorithms in estimating the

accelerometer output can be observed by comparing Figure 21 with Figure 22

for Algorithm D, and with Figure 22 for Algorithm E.

As was the case for the gyros, this performance improvement is

important in establishing and maintaining sensor failure threshold levels

for failure detection and isolation. However, the mean-squared error

in estimating the accelerometer output is important for a different

reason than for the gyros. The gyro output estimates are utilized to

establish an accurate transformation from a body coordinate frame, in

which the sensor measurements are taken, to a navigation coordinate frame

S in which the navigation computation is accomplished. The accelerometer

I
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output estimates are transformed by this transformation into the

navigation coordinate frame and processed to compute vehicle velocity.

The mean-squared error in estimating the output of the accelerometers are

determining factors in vehicle velocity accuracy. Decreased mean-squared

error in estimation for each algorithm can be observed by comparing

Figure 24 with Figure 25 for Algorithm D, and with Figure 26 for

Algorithm E.

2. SENSOR OUTPUT-RATE ESTIMATION

The output-rates of the gyros and the accelerometers are used in an

integrated inertial reference assembly for the functions of flight control

and weapon delivery. The flight control system uses the gyro output-rates

for angular-rate information and the accelerometer output-rates for linear-

acceleration information.

For sensor output-rate estimation both Algorithms D and E perform

nearly the same in most instances. As discussed by Friedland (Reference 19),

up to twenty-five percent improvement in estimating gyro output-rate can

be obtained with Algorithm E. This is also true of Algorithm D. The

improvement obtained is dependent upon sensor accuracy and aircraft

dynamics. No attempt was made to optimize the algorithms and evaluation

was accomplished with similar statistical parameters.

Sensor output-rate estimation improvement was obtained for all

sensors. Since no optimization was accomplished for sensor orientation or

location, the percentage of improvement for each sensor was different.

Figure 27 shows an example of the output-rate estimation obtained for an

accelerometer.

3. WEIGHTED-LEAST-SQUARES AVERAGING

The sensor configurations used for this part of the study are those

discussed in Section III. The majority of simulation runs were made with

Aj the inertial sensors arranged in a quint configuration plus an additional

gyro dnd accelerometer (Configuration 2). Six ring-laser gyros (RLG's)

and six accelerometers were mechanized, all located at the same position

within the aircraft. The majority of simulation runs were accomplished

with the sensors located at flight station FS313 within the aircraft,

59



AFWAL-TR-80-1088

RSDIRS PERFORMANCE IMPROVEMENT

I!

C:) E

2_

.0 3.0 6.0 9 0 12.0 15.0 18.0 21.01 24. 0 27.0 300

TIME (SEC])

CD

Co_

0 gr 2
O0

.w.

0

0

500



AFWAL-TR-80-1088

PSDIRS PERFORMANCE IMPROVEMENT

U)

Z

0

Figure 25. Algorithm D Z-Axis Accelerometer Output Estimation
Mean-Squared Error

61



AFWAL-TR-80-1088

RSDIRS PERFORMANCE IMPROVEMENT

o

2; 411
G-i

).0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0
TIME (SEC)

(n}

c['
Li

k44

Figure 26. Algorithm E Z-Axis Accelerometer Output Estimation
Mean-Squared Error

62, 6 2,!



AFWAL-TR-80-1088

-9I-

CD

Li0

(4]6

-I0 0

9 0!1 ,E 0~ :~1 00' 0- :~ 1- 01Z o-'r - 0 9- ,

Li ( ~3JS/J ~-63



AFWAL- TR-80- 1088

just dtt of the pilot's station. Others were made with the sensors located

at FS77, which is forward of the pilot's station. The parameters used for

the deterlministic simulation runs are given in Table I and Table 2 for
the accelerometers and ring-laser gyros respectively. The parameter

amplitudes were each set identical for each of the gyros and acceler-

ometers; however, the algebraic sign of the paramieters were not all the

Sdlie .

Silliulation runs over the flight profile shown in Figure 13 were

made with arid without weighted-least-squares averaging lechanized for

the inertial reference assembly. Simulation runs were made using:

least-squares averaging of the redundant gyro data only; least-squares

averaging of the redundant accelerometer data only; and least-squares

averaging of both, redundant gyro and accelerometer data. The results

discussed in this section are all from deterministic simulation runs

to facilitate detailed comparative analysis of total system errors.

The inertial navigation system (INS) position, velocity, and

altitude errors, for sensor Configuration 2 located at FS313, are shown

in Figure 28, Figure 29, and Figure 30 respectively. During this

siimmlation run the effects of accelerometer lever-arm are included, but

the aircraft structural mode effects are not included for any of the

sensors. The dashed curves represent the errors resulting from an

orthogonal-triad of inertial sensors aligned relative to the aircraft

cardinal axes as shown by Figure 11. The solid curves represent

navigation system errors resulting from least-squares averaging of the

redundant inertial sensor data from the same orthogonal-triad of sensors

plus an additional orthogonal-triad of sensors which is skewed with

respect to the first triad.II
For this case, the accelerometer data was obtained from an ortho-

gonal-triad of sensors aligned relative to the aircraft cardinal axes,

while the least-squares data averages of all six gyros were utilized.

As can be observed from Figure 28, a significant decrease in position

error can be obtained by utilizing the redundant gyro data. A corre-

sponding decrease in velocity error is also apparent in Figure 29.
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Some points of interest on the curves of Figure 29 can be noted.

After approximately 500 seconds an evasive maneuver consisting of a 4.5-g

rolling-pullup and a change from zero to forty-five degree heading was

accomplished. The abrupt change in Y-Velocity error with least-squares

averaging is due, almost entirely, to gyro misalignment errors and the

interaction of these errors with least-squares averaging of gyro data.

A loiter maneuver was initiated at approximately 1000 seconds.

No significant difference was noted between the error propagation with and

without least-squares averaging of gyro data. The sine-wave component of

error during this maneuver is due to a combination of sensor errors

including bias, scale factor, misalignment, and attitude computation.

The attitude computation is accomplished by a third-order quaternion

algori thin.

Following the loiter maneuver, aircraft heading was changed from

the previous 45 degrees to a new heading of 145 degrees. The abrupt

change in velocity error, with and without least-squares averaging of

gyro data, is due primarily to accelerometer bias errors, and secondarily

to gyro bias errors along with gyro and accelerometer scale factor and

misalignment errors.

Altitude and vertical velocity errors are presented in Figure 30.

Sowe improvement in vertical velocity accuracy with least-squares

averaging of gyro data can be noted during the evasive maneuver at 500

seconds and during the loiter maneuver. Improvement in altitude accuracy

appears to be minimal and noticeable only during the loiter maneuver.

A third-order damping loop is used to damp the inertial navigation system

vertical channel.

Figure 31 through Figure 33 show the navigation system errors, with

and without least-squares averaging of the redundant accelerometer data.

In this case the gyro data was obtained from an orthogonal-triad of sensors

aligned relative to the aircraft cardinal axes. All other paramieters

remain the same as for the previous case.
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Observation of Figure 31 indicates that a significant decrease in

position error can be realized by employing least-squares averaging of

accelerometer data. Figure 32 indicates a corresponding decrease in

velocity error. Except for the effect of gyro misalignment uo the

Y-Velocity error during the evasive maneuver, position and velocity error

propagation resulting from least-squares averaging of gyro data was

similar to that obtained from least-squares averaging of accelerometer

d a ta.

Comparison of Figure 33 with Figure 30 indicates that least-squares

averaging can result in smaller altitude and vertical velocity errors

when uvin redundant data from the accelerometers than fromn the gyros.

Figure 34 through Figure 36 show the reduction in navigation system

errors which can result when redundant data from both, gyros and

accelerometers, are averaged by the least-squares iethod. For this case,

a significant decrease in position and velocity errors resulted. However,

there is very little difference between the errors in altitude and

vertical velocity resulting from averaging the gyro and accelerometer

data, as compared with averaging the accelerometer data only. The

navitlation system performance resulting from least-sqUares averaging of

hoth, yi o and accelerometer redundant data, is essentially the su of

error diff ermIces resulting from least-squares averaging of redundant

gyro data only and redundant accelerometer data only.

I igore 37 through Figure 42 show the results obtained for sensor

totiiHira t ion I. During the silmulation runs all other parameters and

dynaiiiius L;la iied the same as those used for sensor Configuration 2.

Compari ,Sn of Figure 28 with Figure 37, Figure '?9 with Figure 38, and

mue 3% with Fl'igure 39 shows similar results for the two sensor con-

fi( plat i on when least-squares averaging of redundant gyro data is used.

Howevt r , s. ome differences do OCCor and can be observed in the plots.

fime djaihed curves will be the same ti-o both configurations as they

represent the results obtained from on orthogonal-triad of sensors

ligrned relative to the aircraft cardinal axes.
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One easily observable difference between performance of the two

sensor configurations is the switch in channels (axes) of performance

improvements. More decreases in latitude and X-axis velocity error

resulted from Configuration I than from Configuration 2. The opposite

effect can be observed for longitude and Y-axis velocity error.

The effects of the evasive maneuver at about 500 seconds are more

evenly distributed between the X and Y velocity errors for Configuration 1

than they were for Configuration 2. As discussed previously, the change

in error trend at this point is due primarily to the interaction of gyro
misalignment errors with least-squares averaging.

Very little difference between the two configurations in altitude

performance can be observed. The performance in vertical velocity is

slightly better for Configuration 2 than for Configuration 1.

When least-square averaging of redundant accelerometer data is used,
and all other parameters and dynamics remain the same, a significant

difference in performance between Configuration 1 and Configuration 2

occurs. This difference is due primarily to the interaction of

accelerometer misalignment errors with least-squares averaging.

A comparison of Figure 40 with Figure 31 shows the latitude error

for Configuration 1 to be much smaller than for Configuration 2. However,

the longitude error for Configuration 1 is much greater than for

Configuration 2, and even worse, is significantly greater than without

least-squares averaging of the redundant accelerometer data.

Similar changes occur in velocity errors as can be seen by comparing

Figure 41 with Figure 32. In this case the evasive maneuver affected the

performance of Configuration 1 considerably, but caused only minimal

effects on Configuration 2. The loiter maneuver had similar effects on
n oth configurations, but were switched to opposite axes.

Comparison of Figure 42 with Figure 33 shows very little difference
in altitude and vertical velocity performance of the two configurations.

82

I : " Jl II I I i :,' ,, r - -- ,__ ,. . -.. . .=.. ." _ " " " : " - : -. , ' " . " L -



AFWAL-TR-80-1088

The previous discussion along with Figure 28 through Figure 42

were all concerned with no aircraft structural mode effects acting on

the inertial sensors. However, the accelerometers were subjected to

lever-arm effects. The navigation system performance, with an ortho-

gonal-triad of sensors, during these simulation runs, and many simulation

runs with different flight profiles and random selection of sensor

parameters, was typically less than one and one-half nautical mile per

hour error in position, less than five feet-per-second error in velocity,

less than three-tenths feet-per-second error in vertical velocity, and

less than twenty-five feet error in altitude.

The navigation system performance of the previously discussed cases

using least-squares averaging of the redundant sensor data, was typicdlly

significantly better than that of an orthogonal-triad. However, this is

not always true as was shown by one of the previously discussed cases.

Other cases, to be discussed later in this section, will also show that

least-squa,-es averaging does not always improve the navigatio, system

performance.

Figure 43 through Figure 50 show the navigation system errors when

the inertial sensors are subjected to aircraft/structural modes. The

simulated aircraft is an F-4 and the sensors are located at the same

location (FS313) as for the previous cases. The same sensor parameters

and dynamics are also used. The only difference is the addition of

structural modes.

Comparison of Figure 43 with Figure 28 and Figure 44 with Figure 29

shows the effects of structural modes on navigation system performance,

with and without least-squares averaging of the redundant gyro data for

Confiquration 2. Performance improvement is still realized with least-

squares averaging. However, due to the structural mode effects, navigation

system performance, with and without least squares averaging, has

deteriorated approximately three to four times. The structural mcde

effects also tend to alter some effects of aircraft dynamic maneuvers.

Comparison of Figure 45 with Figure 37 and Figure 46 with Figure 38

show the effects of structural modes on sensor Configuration 1. These

effects are comparable Io those for Configuration 2.
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A comparison of navigation system performance for Configuration 1

through Configuration 4, with and without least-squares averaging of the

redundant gyro data, is given by Figures 43, 45, 47, and 49 and by

Figures 44, 46, 48, and 50. Configurations I and 2 give similar per-

formance, with improved performance resulting from least-squares

averaging of the redundant gyro data. Configurations 3 and 4 perform

similar to each other but somewhat different than Configurations I and 2.

I* These differences stem from the fact that the sensors of Configurations 3

and 4 are all skewed with respect to the aircraft cardinal axes.

Configurations 1 and 2 have one orthogonal-triad set of axes aligned

with the aircraft and a second orthogonal-triad set of axes skewed with

respect to the first triad. Configuration 1 is skewed to different angles

than those of Configuration 2. Configuration 3 has one orthogonal-triad

skewed with respect to another orthogonal-triad and both triads are

skewed with respect to the aircraft cardinal axes. The sensor input-axes

of Configuration 4 form a symmetrical cone about the vertical axis.

As can be observed in Figure 47 through Figure 50, the navigation

system performance, for Configurations 3 and 4 using least-squares

averaging of the redundant gyro data, is not as good as that given by

an orthogonal-triad set of sensors skewed with respect to the aircraft

cardinal axes. However, the performance, with and without least-squares

averaging of the redundant gyro data, is better than that given by

Configurations 1 and 2 for this set of parameters and dynamics.

Figure 51 through Figure 64 are time histories of navigation

system errors showing the effects of individual error sources of nominal

magnitude, typical of state-of-the-art inertial sensors, and algebraic

sign used in previous simulation runs. Since these errors (with the

exception of misalignment errors as previously discussed) are all random,

this set of figures represent only one observation. However, they do

give an insight into relative effects of the various sensor error sources

on navigation system performance, with and without least-squares

averaging of the redundant sensor data. No structural modes are sensed

during these runs.
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The dotted curve in the figures represents the navigation system

error time histories when ideal gyros and accelerometers are used. Thus,

these error curves represent computational error resulting, primarily,

from attitude computation. They serve as a baseline reference for

comparison with the time history error curves obtained for individual

sensor errors.

Observation of Figure 51 through Figure 56 indicate that, of the

gyro errors, misalignment errors contribute the most to navigate system

errors. Figures 55 and 56 also show that least-squares averaging of the

redundant gyro data can result in larger navigation system errors in some

cases. In particular the X-velocity and latitude errors are larger with

least-squares averaging than without. However, the Y-velocity error and

position (CEP) error are significantly improved with least-squares

averaging of the redundant gyro data.

The deterioration in performance noted above occurs as a result of

least-squares averaging of data differing in algebraic sign. This is

also true of the other error sources as can be seen for gyro scale factor

error Figures 53 and 54 where longitude and Y-velocity errors are larger

with least-squares averaging of the redundant gyro data than without.

Similar trends can be observed from Figure 57 through Figure 64 in

which least-squares averaging of the redundant accelerometer data is

used. However, for the accelerometers, misalignment errors are no longer

dominant over the other accelerometer errors.

Fortunately, the cases when deterioration occurs with least-squares

& averaging of the redundant gyro and accelerometer data are in a minority.

Typically, in a real application, the random nature of the error sources

4 result in improved performance when least-squares averaging of the

redundant inertial sensor data is used. However, care must be exercised

to minimize the alignment error, particularly for the gyros, when the

sensors are mounted initially and during any maintenance procedure.

This is true because the misalignment errors are random only in the

inability to repeatedly align the sensors upon removal and replacement.

Once the sensors are mounted in the aircraft the misalignment errors remain

constant until a sensor is removed and replaced.
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In the case of gyro alignment, if the alignment errors happen to
occur in a configuration which dominates all other sensor errors, then

deterioration of navigation system performance with least-squares

averaging can occur for all combinations of the other sensor errors.

This situation is exemplified in Figure 65 through Figure 70.

Figures 65 and 66 serve as a reference for comparison with Figure 67

through Figure 70. Figure 65 and 66 represent simulation results using

the same parameters and sensor configuration as used to obtain the

results shown by Figures 43 and 44 respectively. The only difference is

that the results from Figures 65 and 66 were obtained with a constant

northerly heading flight profile. This flight profile was also used

for the runs shown by Figure 66 through Figure 70.

The results of Figures 67 and 68 were obtained by changing the

algebraic sign of one of the two misalignment errors of the number six

gyro. The misalignment error magnitudes are all equal and remain the

same as those used for Figures 65 and 66. No changes were made in any

of the other error parameters nor the dynamics. As can be observed in

Figures 67 and 68 there is little overall difference between the

navigation system performance, with and without least-squares averaging

of the redundant gyro data, when the above change in algebraic sign

occurs with this particular set of error parameters.

In view of the above results the algebraic sign of one of the mis-

alignment errors of a second gyro (gyro number five) was also reversed.

Figures 69 and 70 show results for this set of sensor error parameters.

In this case the longitude and Y-velocity errors are larger when least-

squares averaging of the redundant gyro data is used than without the

averaging.

i, These same characteristics hold true for least-squares averaging

of the redundant accelerometer data. Thus, in the application of least-

squares averaging of the redundant inertial sensor data, care must beI exercised to minimize the dominant sensor errors; and in particular, the

misalignment errors as discussed above.
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As previously discussed, least-squares averaging is ideally suited

for utilization with redundancy management of the redundant inertial

sensor data. A simple look-up table for each possible failed sensor

configuration can be precomputed and stored in the system computer.

Thus, when a failed sensor is detected by an FDI algorithm, a new set of
least-squares transformation parameters can be initiated in one computer
iteration. The least-squares average of data from the reconfigured

set of redundant sensors, without the failed sensor(s), is then used for
navigation and flight control.

The effects of failed gyros are shown in Figure 71 through Figure 76.

The same sensor errors and system dynamics are used for these simulation

runs as those used on Figure 28 through Figure 42, and no structural modes

are present. In Figures 71 and 72, gyro number 1 is failed and the least-

squares average of the remaining five gyros is used in the navigation system

computation. In this case navigation system performance is even better

than that obtained in Figures 28 and 29 when all six gyros were used.

Figures 73 and 74 show the navigation system performance obtained

when gyro number 5 is failed and least-squares averaging of data from the

remaining five gyros is used. Again, for this set of sensor error para-

meters, the navigation system performance, with least-squares averaging,

is better than that obtained using all six gyros.

Figures 75 and 76 show the navigation system performance obtained

*when both gyro number 1 and gyro number 5 are failed. In this case the

navigation system performance using least-squares averaging of the four

remaining is deteriorated from that using all six gyros. Further, the

4! performance is also deteriorated from that obtained with only an ortho-

gonal-triad of inertial sensors.

.4 The variation in navigation system performance, upon failure of one

or more sensors, is dependent upon relative effects of the sensor random

errors with least-squares averaging at the redundant data. Consequently,

these effects must be considered if application of least-squares

4averaging is contemplated. It is desirable to have all inertial sensor

errors as small as possible, but misalignment errors should be of

primary concern.
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4. CONCLUSIONS

Least-squares averaging of the redundant inertial sensor data can

significantly improve the performance of strapped down inertial reference

systems employing redundant gyros and accelerometers. However, it should

be recognized that sensor misalignment errors play a dominant roll in the

performance achieved, and can in some instances, cause a degradation in

performance rather than improvement. Thus, minimization of these errors

should be of prime concern when application of least-squares averaging

is considered.

A covariance analysis study effort should be accomplished to determine

the extent each individual sensor error affects navigation system per-

formance with least-squares averaging.

Weighted least-squares does not appear to add any benefits over

least-squares averaging, for the types of sensors used, since acceler-

ometer cross-coupling effects are minimal compared to the other errors.

Thus, since ring laser gyros are not subject to cross-coupling effects,

least-squares averaging without weighting is appropriate.

Estimation of the inertial sensor outputs and output rates can

provide some measure of improvement for flight control, weapon delivery,

and navigation. However, due to the additional computational requirements,

this estimation is most beneficial when used in conjunction with failure

detection/isolation (FDI) and redundancy management (RM) algorithms for

redundant inertial sensor reference systems. The estimated sensor outputs

can be used directly by the FDI algorithm for establishing and maintain-

ing the variable failure thresholds necessary to perform reliable failure
f ot detection in the highly maneuvering environment of a fighter type

aircraft.

When the inertial sensors were subjected to aircraft structural modes

and lever arm effects, navigation system performance deteriorated sig-

nificantly. The structural mode simulation was based upon theoretical

analysis and vibration data for an F-4 aircraft. This data, while not

being exact, was the best available for utilization in the simulation.
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Based upon these results, navigation system performance is sensitive

to location of the inertial sensors within the aircraft. The flight

control system is also sensitive to inertial sensor location. However,

utilization of compensation for the flight control system appears to be

feasible. For navigation, the sensor errors need be reduced to reduce the

effects of structural modes and lever arm. In particular, sensor

misalignment errors need be reduced followed by bias and scale factor.
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APPENDIX
*5

RANDOM PROCESSES

Properties of several commonly used random processes are presented

in this appendix. Only those processes used in this investigation are

included. Specifically, the models are: random constant; random ramp;

random walk; and exponentially correlated random variable.

1. RANDOM CONSTANT

A random constant, or random bias, can be represented by a state

differential equation of the form

0 O (A. 1)

with initial value

X(t) (A.2)

The mean square value for a random bias error source of magnitude o is

given by

E(to)xT(t) [ )x(to) = (A.3)

The Power Spectral Density (PSD) is given by

S(w) 2ra 2o26(w) (A.4)

A block diagram representation of this error source is given in Figure 77a.

The initial conditions on the integrator being the rms error magnitude 0,

which is the random quantity.

2. RANDOM RAMP

A random ramp is an error source which exhibits a linear growth rate
with time. The random quantity for this error source is the growth rate.

This error source can be described by two state differential equations

of the form

Xl = x2  (A.5)

k 2  = 0 (A.6)
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Thus, for this error source X2 serves the roll of providing the random

quantity. The randomness of the slope of the ramp, error state X1, is

established by the initial conditions of X2, as did X(t0) in the random

bias error case discussed above. Solving Equation A.5 gives

kI = x2t (A.7)

The mean-square value for a random ramp is given by

R(O) E IX I(t)xj(t) I EIX 2 (t 0)tx 2 (tO)t]I

(A.8)

R(O) E Ex'jt)] X2 (t.)] t2

As in the random bias case

1 2 (A.9)

J x(t 0 ) 2

'(t) = 22 (A.10)

A block diagram representation of the random ramp is shown in Figure 77b.

The initial conditions on the integrators are

x I (t 0 ) 0

x 2 (t 0) = 2  (A. 11)

3. RANDOM WALK

A random walk with error source can be represented by the state
differential equation

wea 1u (A.12)

where

o : Constant

u = White noise with unity PSD

127



AFWAL-TR-80-1088

and x has the initial value

x(t 0 ) = 02 (A. 13)

Solving Equation A.12 for x gives

k() dT
x(t) = ft

t

0

t

x(t 0 ) + OiJ u(r)dT (A.14)

t
0

The autocorrelation function of white noise is a delta function. Thus,

the autocorrelation function for a random walk error source is

R(t,t+T) E[x(t)x(t+T)]

Ejx2(O)] + EtX(O) f]t 7 uQr)dj

t
0

t+T

+ E [x(o) J Oju()dC]

t0

r t+1

L u (  f  Mau()dC (A.15)a: .a

01 '0

128

lob



AFWAL-TR-80-1088

In this case, u(t) is white noise with zero mean. Also, u(t) and x(O) are

uncorrelated. Thus, the two inner terms of Equation A.16 vanish and

the equation is

22 t t t+r

R(t,t-r) = 024a I  f J( -)ddE

t t
0 0

t

= ao40 2 1.d&

0

2 2+02 (A.16)

Typically, the initial value x(tO) is set equal to zero. This results

in the autocorrelation function

R(T) = t (A.17)

A block diagram of the random walk error source is shown in Figure 77c.

The initial conditions on the integrator are shown to be zero, which

relates to Equation A.17.

4. EXPONENTIALLY CORRELATED RANDOM VARIABLES

An exponentially correlated random variable, or first order Markov

process, can be represented by the differential equation

iie-8x w (A.18)

. where

w = White noise

.1 = l/t

jt = Correlation time
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The initial conditions are given by

x(t 0 ) = a (A.19)

The autocorrelation function is given by

R(t ) 2 e" J - (A.20)

and the PSD is given by

S(w) = a 2 e1-ricos(wT)dT (A.21)

This integral can be represented by the sum of two integrals

S(W) 2 + O2e 8 
coS(WT)dT

f~ 00

00

~22

Si

The resulting white noise spectral density necessary to generate the

exponentially correlated random noise process is given in terms of the

correlation time and variance. Thus, the exponentially correlated random

variable is given by the state differential equation

i = -Ox + -20 Ou (A.24)

where

u = White noise with unity PSD

A block diagram of the exponentially correlated random variable is shown

in Figure 77d.
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