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Sec.ton I
PLASMA THEORY AND SIMULATION

A. Lower Hybrid Drift Instability Simulations Using ES1 Hybrid Code

Yu-Jiuan Chen (Prof. C. K. Birdsall, B. I. Cohen)

The saturated electric field energy spectrum Pk due to ion

trapping was obtained in theory ana compared with simulation. These and

all of the simulations will be given in an ERL report now in preparation,

to be submitted to the Physics of Fluids.

B. Beaming Instabilities; Magnetized Rings

Jin Soo Kim (Prof. C. K. Birdsall, B. I. Cohen)

Our multi-ring instability study (the distribution of plasma in

velocity space perpendicular to the magnetic field is a set of discrete

rings) was begun with one, two and four rings. The one ring model produces

the well known Dory-Guest-Harris instability. The multi-ring model corres-

ponds to multi-velocity neutral injection, as well as to initial conditions

common to simulation models. The model has only Ion rings because the elec-

tron Larmor radius (in terms of k a e ) is negligible compared with that of

ions (in terms of ka i  1). In our current work, the rings in velocity

spacehave equal weight (same w2) and are spaced at equal intervals, as

shown in Fig. 1; the plasma is uniform in x space, as is the magnetic field.

The distribution function for N rings is the sum of 6-functions;

f(VV) I ~ 6(v -v ) . (1)
s-I Is

The dispersion relation of a single ring for perpendicular propagation (k-0) is

-3-

_ - - - ***4 -.pip



4 Vy

FIG. I Distribution of ions in v1 space. The ring speeds are:

for 2 rings, v±1m1" -a, v A 'In+a; for 4 rings, v J. -1-3m,

'.2 'I-a, v-L 'n+a' vL -1+3a. The a values used so far

are 0.00 to 0.06.
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t dJ2 (P.) nwmn .n (2)I=,2 w- n- ,n.wc n--". du. c

where p. -k v /w. and Jn is the Bessel function of the first kind of order n;

this is Eq. (19) of Tataronis and Crawford 2. Hence, for the multi-ring model

of equal density rings the dispersion relation is (ignoring electrons)

2 2

D(wk I) - 1 N 1 dJ n (.s) C • (3)
S-l n - 111S dw s  w-n nw

The roots of D(w,k1 ) -0 are obtained numerically, using the code, ROOTS
3'4

Figures 2 and 3 shows the maximum growth rate for two rings;

Figs. 4 and 5, for four rings. When w 2 2/W is larger than the threshold

values, some of the Bernstein modes couple to each other and the waves grow

(y- Imag(w) #0) as is well known. Ymax is the maximum value of y of all

Bernstein modes. The growth rates become smaller as number of rings goes

from 1 to 2 and to 4 by spreading the distribution over v -space, corres-

ponding to warming up the cold ring, a result found earlier1. As is shown

in Fig. 3 and Fig. 5 the instability threshold values of w2/W2 become larger

as the number of rings increases from I to 2 to 4.

These studies will be extended to larger values of the para-

meters and then to non-uniform envelopes of the rings, such as Maxwellian.

REFERENCES

1. R. A. Dory, G. E. Guest, and E. G. Harris, "Unstable Electrostatic Plasm.
Waves Propagating Perpendicular to a Magnetic Field", Phys. Rev. Lett. _,
131 (1965)."

2. J. A. Tataronis and F. W. Crawford, "Cyclotron Harmonic Wave Propagation
and instabilities; 1. Perpendicular Propagation", J. Plasm& Phys. 4,
231 (1970).
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FIG. 2 Maximum growth rate vs. a (interval of rings) for 2 rings.
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FIG. 5 Same as Fig. 3, for 4 rings. The marginal stability values of
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3. M. J. Gerver, "ROOTS, A Dispersion Equation Solver", University of Cali-
fornia, Berkeley, ERL Memorandum No. M77/27 (1976).

4. M. J. Gerver, C. K. Birdsatl, A. B. Langdon and D. Fuss, "Normal Modes
of a Loss Cone Plasma Slab with Steep Density Gradient", Phy. Fl. 20,
pp. 291-300, Feb. 1977.

C. Field-Reversed Plasma Simulations, Quasineutral, in 2d

Douglas Harned (A. Friedman, C. K. Birdsall)

A realistic simulation of field-reversed layer stability problems

requires a bounded system, normally bounded by conducting walls. Addition-

ally, for a fusion reactor, the region near the walls should be a vacuum or

cold gas. The replacement of the vacuum or cold gas region with a low density

plasma is inadequate in a quasineutral model. When such a replacement is

made, large electric field fluctuations occur, and a highly restrictive Courant

condition (At<Ax/vA, where vA is the Alfven speed) is imposed in the low den-

sity regions. Our one dimensional simulations have shown that large amplitude

waves occuring in the low density regions can distort the physics in the dense

part of the plasma. It is not surprising to find such problems, since the

quasineutrality assumption becomes invalid for low density. These difficul-

ties seem to be inherent in explicit schemes for advancing the field quantities.

A method which avoids such problems in low density regions has been developed

by Hewett.I Hewett's method implicitly advances the fields and treats the

vacuum, or near vacuum, by setting the resistivity to a large value.

Boundary conditions impose a further difficulty. This is because

a quasineutral code does not model the details of the sheath region at the

wall. This defect prevents the specification of reflecting wall boundaries

in conjunction with conducting wall boundaries. At a conducting wall we know
SOk

that

-10 -



A xE = 0 (1)

While this condition is insufficient to solve the field equations, the boundary

condition

B = 0 (2)

implies that the longitudinal (curl-free) and transverse (divergence-free)

parts of the tangential electric field (E and E t) must each vanish at the

conductor. In terms of the potentials A and 4, in the Coulomb gauge, we

have at the walls

A x A = 0 (3a)

= constant (3b)

where A and € are such that B=V-xA and E. =-VO. With the gauge condition,

V.A =0, the boundary conditions are sufficient to determine the advance of

the field equations. It should be noted that in one-dimensional codes (such

as our QUADI) the boundary problem is trivial as the longitudinal and trans-

verse parts of the electric field are geometrically decoupled.

The need for a bounded system and proper treatment of low density

regions have motivated us to change the field solver in our two-dimensional,

doubly periodic code. The following is a description of a method which may

handle both problems.

The quasineutral field equations are

(VxB)xB - JxB + VXB (4)E 4tne nec-- 4h1r

- -cVXE
- 1at1

p J--".-,-



where n is the resistivity, J the ion current density, and the electrons

have been assumed to be cold. In terms of the vector potential A, we have

-1 V2Ax(VxA+B) 1 Jx[(VxA)xBo] c 2fn-o nec - -0 - 7W V A

aA

at -cEt (7)

where B=VxA+B 0 B represents a constant background magnetic field. Equa-

tions (6 and 7) can be combined to give

aA 2 2 2(8
t - V2Ax(VxA+Bo) + -- X [(VxA) + §O] + -D- V2A (8)7t nc - o ne 47 -o

The right hand side of Eq. (8) requires a decomposition into longitudinal

and transverse parts. In special cases (e.g., one-dimensional cases or

Hewett's axisymmetric model) this can be done geometrically. However, in

general, and for the non-axisymmetric long layer problems that we wish to

examine, geometric decomposition is not possible.

Equation (8) can be written as

C cX 2 2- c 7 Ax(VxA +B) +--X [(VxA)+B ] + c n VA (9)
a -cV 4wne0 ne -0- 47t -at

where * represents apotential such that E z--V . This equation now has a

I form somewhat similar to that of the Navier-Stokes equation for incompres-

sible flow:

au v2u-.r- + VP - -u.Vu + Vu. (10)

at - - -

-12 -
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A critical difference between the two equations lies in the boundary condi-

tions. In Eq. (9), the potential *and one component of the vector potential,

A, are known at the boundaries. In the Navier-Stokes equation, the pressure

at the boundary is generally unknown, while both components of the flow velo-

city, v, are specified. Therefore, some methods used in solving the two-

dimensional Navier-Stokes equation2 ,3 may be applied to Eq. (10), but not

without significant modifications to handle the different boundary condi-

tions. The fact that the scalar potential is specified on the boundary in

the quasineutral equation makes it a straightforward process to obtain *
from a Poisson equation (as opposed to the fluid case where the boundary con-

dition must be predicted to solve a Poisson equation for P). Writing the

right-hand side of Eq. (9) as q,(A), we have, in two dimensions,

DA
- cV = (ha)

3t x ()Oa

aA

3t = y(A) (11b)

&! Equations (lla,b,c) form a non-linear system of three equations in three un-

knowns, which must be solved simultaneously. Equations (11a and l1b) are non-

linear in that they have products of A x and A y, but neither contains a term

like A2 or A These equations may each be advanced in a Crank-Nicolson
x y

scheme. This forms a predictor-corrector method for the advance of all three

quantities. For the m-th of M iterations we have

.3
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An+l ,m.An
x x c ( n+l M+ n) + 1  + 1 A)

At 2 + x 2'"U x ' -  x(A)) (12a)

An+l ,mA n
y y n+l + 1 +1

t S + Gy +- 'm(A) (A)) (12b)

L ,m - Dn+l"m(A) (12c)

L, D, and G are the finite difference approximations for the Laplacian, diver-

gence, and curl, respectively. The operator L should be such that

L - DG. (13)

With interlaced grids, using four-point operators to represent the deriva-

tives in the gradient operators, i.e.,

Ii+lj+l +i+l- " i-l,j+1 - i-1,J-I) (14)
ax 1i+-ij+1 2Ax

Eq. (13) implies that L be defined by

L E oi+ ,j+l + 1i+ j-l +  i- ,j+l + *i-I ,]-1 " j . ()
?i2(Ax) 2

Because all three of Eqs. (12) involve the solution of a large matrix equation,

the method is totally impractical for large M. It is assumed that M<2 wll be

sufficient. While the time requirements for this type of solution might be

prohibitive in a fluid code, the l-argest fraction of time used by a hybrid

code is expected to be in the particle mover. Hopefully, this will allow the

flexibility to solve a system of equations such as (12). If a technique such

14



as orbit averaging is used for the particle mover, then the time constraints

on the field solver will be reduced further.

The most attractive way to solve Eqs. (12) appears to be the

ICCG (incomplete Cholesky conjugate gradient) method, because of the large

vari'ation in the magnitude of the diagonal elements from the plasma to the
4

vacuum regions. The first predictor steps should require a relatively

small number of iterations, as it would be unnecessary to demand a small

residual in the predictor solution.

Once A and * have been advanced, the new values for E and B

can be obtained from

Bn+l . VxAn+ l + B

En+l . 1 -(A)n+1

These fields can then be used to advance the particles with the standard

techniques.

REFERENCES

1. 0. W. Hewett, "A Global Method of Solving the Electron-Field Equations
in a Zero-inertia-Electron-Hybrid Plasma Simulation Code", submitted
to J. Comp. Phys.

2. A. J. Chorin, "Numerical Solutions of the Navier-Stokes Equations", Math.
of Comp. 22, pp. 745-762 (1968).

3. A. I. Shestakov, "A Hybrid Vortex-AOI Solution for Flows of Low Viscos-
ity", J. Comp. Phys. 31, pp. 313-334 (1979).

4. 0. S. Kershaw, "The Incomplete Cholesky-Conjugate Gradient Method for
the Iterative Solution of Systems of Linear Equations", J. Comp. Phys.
26, pp. 43-65 (1978).
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D. Effects of Intrinsic Orbital Stochasticity on Resonant
Microinstability (Bruce Cohen and Alex Friedman)

Complex inhomogeneous equilibria can exhibit intrinsic stochasticity;

i.e. certain classes of particles have stochastic orbits. An illustrative

and familiar example arises in simple mirror systems. For axisyumetric

mirror machines particle energy S and canonical angular momentum P8 are

conserved in the absence of turbulence or other perturbations that break

azimuthal symmetry and introduce explicit time dependence. When the Larmor

radius is small compared to the magnetic scale lengths, the magnetic

moment W and the longitudinal action J are approximate (or adiabatic)

invariants. The magnetic moment can experience changes when somewhere along

the particle trajectory the cyclotron frequency or its harmonic equals a

harmonic of the axial bounce frequency. For changes in u from one bounce to

another that are unrelated, the particle motion remains orderly and

deterministic, but the changes in u as the particle passes through resonance

on successive axial transits can be viewed as a stochastic process.

Neighboring stochastic orbits in the phase space of p, J, and their

conjugate angles appear to diverge exponentially in time when averaged over

many bounce periods.

What effects does intrinsic orbital stochasticity have on micro-

instability? Intrinsic stochasticity is not collective in nature; the orbit

separation of various sets of neighboring particles in phase space is

uncorrelated when viewed over many bounce periods. Furthermore,

stochasticity does not influence the moments of the distribution function

and, in particular, does not alter any free energy possibly available nor

the macroscopic charge densities and currents. Therefore, we conjecture

that the effects of stochasticity on microinstability may be weak provided

that the equilibrium orbits are not too much distorted. The following

discussion fills in the details of this argument and supports its conclusion.

For simplicity we assume that the linear growth rate of an unstable

mode and the stochasticity rate (orbital separation rate) are both much

smaller than the mode frequency, cyclotron and bounce frequencies. Upon

integrating the Vlasov equation along its characteristics, i.e. performing

the integral

t
Sf -f dt' exp [iky(t') - iwt'] ()

-16-
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in slab coordinates, denominators appear with resonance condition

S - ci ,(JIi,X) + 2p%(W) + kVd(P) - 0 , (2)

where wci is the average cyclotron frequency, (% is the bounce frequency,

Vd is the drift velocity, and X is the guiding center position (see Smith,

Byers, and LoDestro UCRL-82674).

We now presume that the adiabatic invariants u and J begin to slowly

diverge due to intrinsic stochasticity. Hence, Aw - Aw(t) and a particle

will cease to be resonant when

o S dt ' Aw(t') z e~r),

which defines Ts and relates it to the stochasticity rate. Over the time

period Ts the particle can do work on the wave and vice versa. Meanwhile,

however, accompanying the loss of resonance for one particle, there is an

equal probability that a neighboring particle in phase space is coming into

resonance. Resonance again persists over a time period of order Ts . The

linear perturbations of the resonant particles will add, and the linear

dielectric response will be largely unaffected by stochasticity. The crux

of the argument is that with stochastic orbits we expect an equal flux of

particles into and out of resonance at any point on the separatrix between

resonant and nonresonant particles but the wave-particle interaction while

in resonance is unaffected. Nonlinear aspects of the wave-particle inter-

action are decidedly affected when intrinsic stochasticity limits the

duration of resonance, essentially because nonlinear effects associated with

particles coming in and out of resonance are not simply additive.

Cartoon of separatrix for particles

resonant with an ion cyclotron flute

mode (see Smith et. al., UCRL-82674)

1 2 a showing fluxes of stochastic
vequal fluxes

in and out particles.
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When T becomes so short that T1 is comparable to the smallest

characteristic frequency helping to determine the resonance condition,

Eq. (2), then the resonance is destroyed. In this case the particle will

interact simultaneously with many of the bounce harmonics, and there is no

resonance with any one particular bounce harmonic. Thus, stochasticity will

profoundly influence the linear aspects of resonant microinstability when

the stochasticity rates becomes comparable to the characteristic frequencies.

Random collisions have a very different effect on microinstability.

Use of the simplest Krook model yields the following modification to the

resonant denominators appearing in 6f,

Ai =,W . ci + 2p6 + kVd + lvc  (3)

In the absence of collisions, Im &A Imw = y, the linear growth rate. With

collisions, Im Aw a y + vc. Thus, collisions will have a significant

effect when vc 2 Sky). Physically, collisions produce a real diffusion of

particles in phase space and destroy 9 and Pe conservation, as well as alter

p and J. Wave growth is necessarily accompanied by momentum and energy

exchange with resonant particles. Therefore, at the point when the collision

rate becomes large enough to influence the energy and momentum exchange of

the resonant particles interacting with the wave, microinstability would be

significantly altered.

To illustrate collisional effects, consider the force on a resonant

particle due to a wave in the presence of randomizing collisions,

,,!d 6 F i~ t
d v e + c.c. -v c 6v , (4)
t mc

where 6v is the perturbed velocity in the frame of the unperturbed particle

motion, F is the amplitude of the force, and Aw might be given by w -w-kv,

Eq. (2), or one's favorite resonance condition. The solution of Eq. (4) is

dv* F 1  -i~t Fm-I -li~~t + It5

6v Fm'l e + c.c. -! e + c.c. , (5)
a2+(\c+y)2

-18-



where cos 6/A + (v+ ,) A = Re Aw, and any initial

transient has been allowed to damp away. It is obvious from this simple

expression that the energetics of the wave-particle interaction are

significantly affected when vc becomes comparable to y.

It appears that there can be considerable stochasticity without there

being much effect on the linear aspects of resonant microinstability. In

simulations such as Friedman's three-dimensional linearized simulations of
field-reversing rings and mirrors, intrinsic stochasticity of particle

orbits is often observed. Based on the arguments presented here, if

particle statistics in the simulation are very good, but not economically

unmanageable, so that there is the necessary cancellation of the stochastic

particle flux into and out of resonance with the wave, then one expects that

Friedman's code could investigate resonantly driven instabilities even in

the low growth rate regime. Obviously, the higher the growth rates of the

modes under investigation the less perfect the cancellation of stochastic

particle flux need be and the fewer simulation particles necessary.

Remaining to be done is the quantitative assessment of the particle

statistics requirements for simulation of modes in the regime where the

stochasticity rate exceeds the instability growth rate.

We thank John Finn and Jim Albritton for illuminating discussions of

these issues, and Brendan McNamara for posing the problem.

t

I,
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E. Effects of Numerical Dissipation on Simulation of Fast and Slow
Space-Charge Waves

Bruce I. Cohen

The introduction of backward time-differencing in the numerical

solution of either ordinary or partial differential equations with time

dependence can lead to frequency-dependent numerical dissipation. This

can be exploited and provide a means of performing digital filtering in

numerical simulations of time-dependent phenomena [1-3]. In Ref. 1

digital time filtering is combined with an implicit differencing scheme to

achieve damping of high frequency waves in an unconditionally stable

algorithm that allows use of large time steps. This approach is suitable

for solution of fluid equations and linearized kinetic equations, e.g.,

the drift-kinetic equation [1]. Unfortunately, implicit solution of

nonlinear kinetic equations frequently leads to inversion of large

non-sparse matricesKf.This is particularly true of particle codes, and

thus the implicit methods described in Ref. 1 have not been applied to

particle simulations. Nevertheless, digital filtering has been frequently

used in particle codes to damp unwanted high frequency modes and recently

has been combined with a new technique called orbit-averaging to allow the

use of a large time-step in the solution of the self-consistent fields [2].

20
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An interesting and important question has been raised regarding the

use of numerical algorithms with artificial dissipation added. Because

negative energy modes in plasmas or in other dielectric media can be

destabilized by dissipation, it is wondered whether numerical dissipation

can artificially destabilize negative energy modes. The following

discussion demonstrates that numerical dissipation can in fact destabilize

negative energy modes, but that with some ingenuity dissipative algorithms

can be devised that damp both positive and negative energy modes

increasingly as the mode frequency increases.

The simplest model admitting positive and negative energy modes is

that of a cold, unmagnetized, drifting plasma. The infinite homogeneous

plasma dispersion relation for plasma waves becomes

(w - kuo)2 W= (la)

with solutions

w ku0 ± Wp (lb)

where u0 is electron drift speed relative to an immobile neutralizing

ion background, k is the wavenumber, and wp is the electron plasma

frequency. The +(-) sign in Eq. (lb) corresponds to the fast (slow) beam

mode, which has positive (negative) wave energy. As we shall illustrate,

the slow wave can be driven unstable by dissipation.

Consider the one-dimensional particle simulation algorithm given by

Vn+l/- Vn' /2 - eEat/m (2a)

4 Xn+ l • Xn + vn+ 1/2At (2b)

(1-c) n -E . 4e (nn . no) (2c)

- 21 -



where X and V are electron positions and velocities, E is the electric

field, no is the unperturbed homogeneous background number density, the

superscript n denotes the time level, and E is a centering parameter (e = 0

is perfectly time-centered). To analyze the system of equations given in

Eq. (2), we linearize, use the relation

n(1) - noaX(1)/ax (3)

employ the Fourier representation

E = E exp(- iwt + ikx) + c.c.

for all perturbed quantities, and define

X exp(- iwAt/2 + iku0 t/2)

to obtain

- )V = - eAtE/m (4a)

(, - ')X" = Vat (4b)

( E - + ce )E = 41TenoX . (4c)

The dispersion relation for this system of equations is easily determined:

(1 - £+ £e1it,, - x1)2  2 wt 2 =0 (5)

For I=tI << 1, ei At 1 + iwAt and Eq. (5) has solution

X2  2 w-t

T-±-_ +... , (6)

- 22 -



where

CpAt/(l + e2w2At2 ) 1/2<< 1

From Eq. (6) and the definition of X, we deduce

Re w ku0  Wp/(l + 22 At2) 1/2 (7a)

and
2 £Wmp~t 2

IX 1 1 + "/2

2(1 + F2wAt
2 )

One concludes from Eqs. (7a) and (7b) that the fast mode is damped

and the slow wave destabilized for e > 0 and ku0 ± mp > 0. Furthermore,

JIm Wi = (l/2)ewpAtIRe wl, i.e., the damping and growth rates are frequency

dependent. The same sorts of results are obtained with use of

E n (1 + e) 47e(n - n.) -e a Enl (8)ax -n " o T @x(8

in place of Eq. (2c).

A useful interpretation of the effects of finite E in Eqs. (2c) and (8)

can be given by observing that these equations can be cast in a form

A equivalent to

-(L + 4J + 4raE) = 0 (9)

where J is the plasma current and a is an electrical conductivity

representing the interaction of the plasma with a resistive background.
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For la/wi << 1, the dispersion relation given in Eq. (1) becomes

w +u0 4 2 1/2 ( u0 - 7Ta) (10)

2(ku0  W)J

For a > 0 and ku0  > Wp, the slow wave is unstable and the fast wave is

damped. This is the underlying-physical mechanism for the resistive wall

aplifier[SI.The structure of Eq. (10) is very similar to Eqs. (7a) and

(7b) and permits an identification of a frequency-dependent numerical

conductivity.

An alternative algorithm to that given in Eq. (2) is

(1 - ¢)(Vn+Il/2 - Vn-1/ 2) + 1 €(Vn+1/ 2 - Vn- 3/2) =-eEnAt/m (lla)

Xn - xn-l = Vn'I/ 2At (1lb)

3En _ 47e(n n _ no) (llc)

With e > 0, the time derivative of the velocity is backwards-differenced

with respect to the electric field in Eq. (lla). Employing the definitions

and Fourier representation introduced earlier, we linearize and obtain the

bi-cubic dispersion relation

-2(2 1)2 _ E (2 i3 + W 2At2X4 = 0 (12)

For wpAt, << 1 Eq. (12) has one branch with solution given by 2= E /(2 - e),

which is damped for e < 1. For wp~t, Jej << 3 the remaining solutions are

WP 2t 22
X2 1 $at (1 1 i£ e t/4) - 2 ( iw Apt/4) +p = 2 "'

24

-il-1-



or equivalently

w ku0 +Wp - ie 2At/4 (13a)

Ix2 I= - cwp2 t2 /4 < 1 (13b)

for c > 0. Thus, both fast and slow beam modes are damped. The damping

rate is ew2At/4 and vanishes in the limit that e -. 0. This algorithm

has an effective numerical conductivity which is positive for the fast mode

and negative for the slow mode.

For wpAt > > 1, Eq. (12) becomes

(1 - e/2)x4 ;- Wp2 At2 2

for one branch of solutions; and thus IXI : wpAt/(l - e/2) 1/2 > 7

for e < 2, i.e., the algorithm is numerically unstable for large time

steps. The remaining solutions of Eq. (12) are given by

2 1 2
\c 1t 12

2wP2At2 1(1P4A 4-w

for w2At 2 >> E, 1 and are heavily damped (X 2 I<< 1).

For e 0 and general value of wpAt, Eq. (12) simplifies to the

dispersion relation for the conventional leap-frog algorithm,

(A2  1 1)2 +p 2At2 2 = 0

with solution

2sin2(ku0 - W)t =W p2At2/4

-25-



which is stable for wpAt < 2. For small but finite e and a WpAt very

nearly equal to 2, the dispersion relation in Eq. (12) can be expanded for

small perturbations de and da, with respect to e = 0 and a = 2,

D(X2; E, a) ; D(X2  - ; E = 0, a = 2) + e -j =0 + 6a 0 (14)

where D(X2 ; e, a) is given by Eq. (12) and D =0 at X2 = - 1 fore = 0

and a = 2. Equation (14) then yields

6a = - e . (15)= £Eia = 0, a = X, 2=_

This demonstrates that the introduction of a small amount of biasing,

0 < 6E << 1, shifts the stability boundary of the algorithm to slightly

smaller values of wpAt.

A. B. Langdon has contributed the valuable observation that the

backwards biasing in Eq. (lla) occurs in a Lagrangian equation and is

invariant under a Galilean transformation. Thus, dissipation is introduced

in a way that is independent of reference frame; and artificial

destabilizationof a beam mode should not be expected when a drift is added.

In contrast, the backwards biasing in the first algorithm, Eq. (2), is

performed in the field equation, which is Eulerian in nature. The resulting

effects are not invariant under a, Gailean transformation, and the mischief

caused in the slow beam mode is not so surprising.

Birdsall has commented that biasing the field equation in Eq. (2c) is

2equivalent to changing the dielectric medium in such a way that Wp becomes

complex. This results in the destabilization described in Eq. (l0). 5
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However, with the biasing indicated in Eq. (11a), the equation of motion is

changed in a purely dissipative way, effectively

2dv dv d v =d t " _d d eE/2

where E' = eAt/2 > 0; and upon Fourier analyzing, (w - kuo) - Ew - ku0 +

iE'(w - kuo)2 ]. This scheme should damp all waves for small values of wpAt.

One concludes that digital time filtering need not lead to artificial

destabilization of negative energy waves. Algorithms can be devised which

damp both positive and negative energy waves as an increasing function of

mode frequency and time step. However, in an explicit differencing scheme,

the backwards biasing of the difference equations necessary to achieve time

filtering is likely to make the time-step constraint for numerical stability

slightly more stringent.

I am pleased to acknowledge many helpful discussions with Bill Fawley,

Bruce Langdon, and C. K. Birdsall, and am indebted to Brendan Godfrey for

posing the problem. This work was performed under the auspices of the U.S.

Department of Energy at Lawrence Livermore Laboratory under contract number

W-7405-ENG-48.
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F. Orbit Averaging: A Technique for Filtering out High Frequency Waves
and Fluctuations.

Vincent Thomas (Prof. C. K. Birdsall and B. I. Cohen)

A technique first used by Cohen et al. (Ref. 1), referred to as

orbit averaging, has been written for use in ESI, our 1-D electrostatic code

in an attempt to filter out high frequency electron waves and leave the low

frequency motion of both particle electrons and ions and the associated self-

consistent electric field. In this method, the electrons and ions are ad-

vanced on their respective time scales, but the fields are solved for only

on the ion time scale. The field solver uses a time filtered source term,

the charge density, in order to filter out the high frequency phenomena.

For all cases considered here, the time filtering consists of an equally

weighted average. The flow chart is shown in Fig. 1. Also shown is the

scheme for moving from one macro time step to the next macro time step. The

velocities of the electrons are known at the short hash marks, and the velo-

cities of the ions are known at the long hash marks. The fields are solved

for at the dots. After the fields are solved for the electrons and ions

are moved from NAT-kAt i to (N+I)AT-JAti and from NAT-lAte to (N+l)AT-jAte ,

respectively. The electrons must be moved in a series of short steps to

satisfy w At <2. The electron time step and the ion time step will be re-
pe e

ferred to as the micro step and the macro time step, respectively.

In attempting to introduce some flexibility one may introduce

various biasing parameters. The first of these is in the field solver where

one uses Eq. (1)

v -2 N+l - ()v 2 N , 4re(n.(x) - (X)) (1)
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When wce was larger than w , simulations of a cold plasmaCee

produced clear cut oscillations, with frequencies at the lower hybrid

frequency. Runs were made for w =5 and 2.5 with w -1,2,3, and 4.ce pe

For w ce less than w pe, the oscillations were not as clear, and energy

conservation was poor.

Figure 2 shows an w vs k diagram for a particular set of para-

meters. The formula used to calculate the theory curve means using the

usual finite kAx correction appropriate to linear weighting,

kAx) - W i(k x) 1 + (2)

The difference between theory and simulation is only significant for modes

14 and 15. No k-space smoothing was used in any of these simulations and

so some of the simulations were of poor quality. The frequencies were

clearly visible in the electrostatic energy history plots in all cases, as

the simulations were done by exciting only one mode at a time. The modes

were excited with a sinusoidal perturbation in ion and electron positions.

For cold lower hybrid waves, it was necessary to use e larger

than 1 to achieve satisfactory energy conservation. Using e greater than

1 amounts to an interpolation of the potential at a time later than the

(N+l) macro timestep. For 0.6 <e <2.5 the period of the hybrid oscilla-

tions observed was within a few percent of the expected period, assuming

the usual k~x correction due to linear weighting. Figure 3 shows the vari6

,k ation of total energy vs. E, with large loss for small E. The field energy

and the kinetic energies damp at approximately the same rate; this means
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N+
to solve for *N+I Here N+I designates the (N+I) macro time step which,

in general, could be different from the ion time step; for all work done

here the macro time step is equal to the ion time step. nW(x) is the ion

charge density at macrotime steps; n (x) is the electron charge density
e

averaged over all of the micro time steps from NAT- At to (N+1)AT-jAte e

(see Fig. I).

Another biasing parameter can be introduced in the electron

mover. For the predictor step, the electrons are moved by Eu-VN, which

is taken to be constant in time. For the corrector iteration, one could

use an E(t) which is linearly interpolated from the (N)
th to the (N+I)

macro time step, as

• :vN+I- N

E(t) - (1bias2)V N + (t-NAT)(l+bias2) i NT )
AT /

where AT is the macro time step. In the simulations presented in this

report bias2=O. The effects of the parameter bias2 will be commented on

at a later time.

The primary advantage of orbit averaging is the reduction in the

number of particles needed for a simulation [1]. This is possible because

the high frequency part of the thermal spectrum is removed by this simula-

tion scheme.

Simulations have been made for cold and warm magnetized plasmas

and for warm unmagnetized plasmas using real mass ratios (e.g., m /m e-1836).

Preliminary results have been encouraging. Results of the three different

cases will be discussed separately, with the results of the warm unmagnetized

simulations being deferred until a later date.
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FIG. 2 Frequencies of oscillations for a cold magnetized plasma. The

parameters were: w pe-2.0, wce -5.0, mi /m e-1760, the electron

time step was At - .03, the ion time step Ati -3.0, there are

512 electrons and 512 ions, NG-32, and the amplitude of the

sinusoidal perturbation is %10"6 of a particle separation.

The bias parameter e is equal to 1. The curve represents theory,

the points simulation data. Linear weighting was used.
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FIG. 3 Dependence of energy conservation on bias parameter c.

For these simulations at, 3.0, Ati U3.0, m/m-1836, wpe-2.0,

ce5.0, NG-32, L-32, and there are 512 cold electrons and

.4 ions. The amplitude of the initial sinusoidal perturbation

was 0-6 of a particle separation. T.E.(T) and T.E.(O) are

the total energies at T( -w t-300) and at t -0, respectively.
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that the low frequency energy (e.g., field energy at w LH) damps at the

same rate as the higher frequency energy (e.g., electron kinetic energy).

Representative plots of one run are shown in Figs. (4 and 5). The exchange

of electrostatic energy and ion kinetic energy is very clear, as is repre-

sentative of ion plasma oscillations. When the plasma is made warm, lower

hybrid oscillations are again observed. In addition, far better energy

conservation was obtained (less than 1% error up to w t -300) for all epe

tried from .6 to 1. At present we have not included spectral analysis on

this code and therefore large (and strongly nonlinear) initial excitation

was required to produce measurable oscillations.

The next step is twofold: first, to do extensive parameter

studies and to understand the effects produced h,, those parameters, both

physical and nonphysical; secondly, to add suitable diagnostics so that

linear waves in warm plasmas may be studied. More physical simulation

models could also be used, such as k.B0O.
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Section II

CODE DEVELOPMENT and MAINTENANCE

A. ES1 Code

See Orbit Averaging in Sec. I, Part E.

B. EM1 Code

No special progress to report.

C. EZOHAR Code

No special progress to report.

D. RINGHYBRID Code

This code is now being run withi initialization provided by the

RIGIDROTOR code as described in the section following, in the Sherwood

abstract later in this QPR, and in an ERL report in preparation.

3
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E. RIGIDROTOR Code (Field Reversed Equilibrium Solver)

Alex Friedman

The following is a copy of the LIBRIS abstract describing the

RIGIDROTOR code: a brief description of the applications of this

code appears elsewhere in this OPR.

77 Alex Friedman RIGIDROTOR

DATE- march, 1980 04/88/80 88:44:01

rigid rotor equilibrium solver and particle code initialization program

j. c. berKeley

electronics research laboratory, cor:j hall

university of california, berKeley ca 94618

415-642-3477

cdc 7608 fortran 1080 lines in use

ABSTRACT-

"rigidrotor" is a pacKage which calculates field reversed equilibria

using the time-independent vlasov equation, and outputs the fields and

a set of particle initial conditions so that these equilibria

may be used in particle simulations, the pacKage wos designed for use

with tha "rirghybrid" linearized 3d stability code, but is suitable

for other axisymmetric particle or hybrid codes with minor modification.

k4 in the present implementation, exponential rigid

rotor vlasov equilibria, with distribution functions of the form

f , c exp I - ( h - omega * pthuta ) / t 3. are computed on an r-z grid

using on iteration scheme similar to that of sparKs and finn.

.3
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the equation solved is

psi - thdot bnot rsquared / 2 )
1 a = r dens thdot bnot exp -------------------------------

psimax ctemp )

where a = vector potential atheta, psi = r a, psimax = psi(o-point),

1 is the curlsquared operator, and the dimensionles

variables are those used in the "ringhybrid" code, see

cornell univ. ips rept. no. 268 (friedman, sudan, denavit).

note that it is possible to arrange for the output to appear

in any chosen units by setting bnot appropriately. the relation

is atheta(outer wall) = bnot * nr / 2. thus, one need only

figure out what atheta(outer wall) is in one's units, and

then compute the correct bnot.

in these equilibria the current is carriod entirely by hot ions with

gyroradii which may range from infinitesimal (as in the hill vortex

equilibria) to of order the system size (as in ion ring equilibria).

a representation of the distribution function is obtained by assigning

locations and velocities to particles in a manner which yields the

correct density and mean azimuthal velocity in each grid cell, within

small errors associated with finite particle size and the limited number

of particles employed.

code usage and input variables are described on comment lines in the

source itself.

REFERENCES-the first two references describe the program and the normalization,

respectively, though the latter is not difficult to figure out from

/
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the source, and the code is largely self-documented with comment lines.

the latter references provide useful bacKground information on field

reversed equilibria.

a.friedman, proc.1980 sherwood meeting on theoretical aspects of

controlled thermonuclear research (tucson, arizona).

a.friedman, r.n.sudan, and j.denavit, "a linearized 3d hybrid

code for stability studies of field reversed ion rings,"

cornell university laboratory of plasma studies report no.268 (1979,

submitted to j.comp.phys.)

l.sparKs, j.m.finn, cnd r.n.sudan, bull.om.phys.soc.24, 955 (1979).

b.marder and h.weitzner, plasma phys.12, 435 (1976).

d.v.ondarson, j.Killeen, and m.e.rensinK, phys.fluids 15, 351 (1972).

r.v.lovelace, d.a.larrabee, and h.h.fleischmann, phys.fluids 22, 761

(1979).

AVAI ILAB IL ITY-

users can obtain a copy of the source rom filem directory .taKeme

of user number 1234:

filem rds 1234 .taKeme aluith. rr(esc)end / t v

I
the file thus obtained will be named rrmmddyy, where mm is the month.

dd is the day, and yy is the year that the source was created.

4 the source can be compiled using chatr; instructions appear on

comment cards within the source. to list the source, type:

I,
-allout hsp <source> ccsp. seq. box <boxnumer> rigirotor t v

/4
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or

banner <USC> (source> ccsp. seq. box (bcxnumber> rigidrotor /t v

uhere <usc> is the appropriate user service center designator.

<source> is the name of the source file retrieved from filem, and

(boxnumber> is the appropriate box number.

DISTRIBUTION- unlimited

1 -42-
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F. Radial Code Notes (R,Re,RZ,ReZ)

C. K. Birdsall

Method C

Radial weighting may also be done to advantage with particles

having charge density which is not uniform within the particle. Niels

Otani has pointed out several advantages of using pcloud. l/r, such as:

having the center of charge and mass at the arithmetic center; producing

the familiar symmetric triangular particle shape when used with linear

weighting independent of r; having a simple weighting algorithm (less

operations than in Methods A and B). Let us see these in detail.

nominal particle shapes

p (r)

particle I

A r particle 2
- I,

r r. r r r. r r.
j- 1  j p1 j+l j+2 p2 j+3

As the charge per unit radius is p(r)21rrdrdz and p(r) vl/r, this quantity

is constant. Because charge/dr is flat (as it would be in an x-y grid),

weighting charge to the grid r.'s can be done as in x-y grids. That is,
okJ

the charge to be assigned to r. of particles I, by linear weighting, is

q(r.) qpf

*1 -43-



where f is the fraction of the nominal particle in the cell about r,,

f f Pnominal (r)dV fr .,.j Pn (r)dV

r .... r P .i

and dV -rdrdodz. So, with p r n1/r

f - (r. ,-r P1)/(rj+-r j - a/ar = (rj -r )/Ar

Similarly,

q(r +) - q p(b/Ar) - qI (r p-r.i)/Ar

Note that there is no division by r.i of r +lor r pas was true in Method

A and B, simplifying the weighting. Note also that the particle shape as

seen by the grid, that is, q(at r.j as r pis varied) is simply the same as

J J

with linear weighting to rectangular grids. Thus, what is known about S(x)

particle shapes fits S(r). Also, the symmetric digital filtering used in

rectangular grids, like (1,2,1) and compensation, like (-1,6;-i), may be used

directly.

The e weighting is simply linear interpolation, to be used as

already given in Method B.

Hence, in 2d, full r,e grid, Table 1 (of QPR IV, 1979) is sim-

plified; the weights are

weighted area [do-r-6j
ttal weighted area ArAO

as in rectangular weighting. The charge weighting holds down to and at the

origin, with no special consequence.asr is orr is s he i a e
p p

density blows up as /r, but the total charge of the rod or ring does not.

rtn l gi2 14
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B. I. Cohen notes that the charge density weighting of Method A,

as used in SUPERLAYER etc., is proper for use with Poisson's equation, where

charge density is wanted at the grid points, p. and not q.. (Finding charge

at the grid points is more for use with Gauss' Law where charge inside some

volume is accumulated.) Method A then uses linear weighting directly,

weighting particle density to the grid. (The exercise given in the write-up

of Method A on calculating the charge on the grid serves to check on charge

conservation.)

QPR III 1979, P. 92 has p =q p/(volume of charge) then gives

pp =qp/2rr pSr6z. This volume appears to be valid only in the limit 6r -0.

The exact volume is

outer  (2 - r

volume f ffrdrddz - (r2r)
rinner

- . (ro - ri )2rdz

2

If the particle center is r, (r +r.)/2 and particle thickness is r - r. -6r,

then the volumes are the same, with no need to consider 6r-0.

- 4 5 -

. --. . . . .,,- i I I I



G. POLARES: A Two-Dimensional Electrostatic R-e Code

Niels F. Otani (Prof. C. K. Birdsall)

While it is often convenient and acceptable to approximate cylin-

drical systems with rectangular models, there are many cylindrical systems

which exhibit effects not found in their rectangular counterparts. For ex-

ample, the diocotron instability boundaries for a non-neutral hollow cylinder

of charge depend explicitly on the inner and outer radius, 1 Clearly the non-

linear evolution of such a system would also be of some interest, and is

easily studied using computer simulation.

With this in mind, we are in the process of developing a two-

dimensional code which is based completely on the r-e coordinate system

(polar-electrostaticuPOLARES), for use on the CRAY. An appropriate weight-

ing scheme has been used to accumulate the charge density and fields on a

radial grid, and, partly as an experiment, a grid of Fourier amplitudes has

been used in the azimuthal direction. Both guiding-center and full-dynamics

time-centered leapfrog movers have been incorporated in the program in such

a way as to make them interchangeable for either species. A number of

graphics packages have also been written. All are easily inserted into or

removed from the main code or post-processor. Some allow interactive

*graphics viewing via DISSPLA. Further "modular" diagnostics packages are

contemplated.

THE CODE

The program POLARES may be thought of as divided into five sub-

units: a main source (MAIN-S), a clichefile (INPCOMP), a binary module

library (POLARLIB), the executable file (POLARES), and an input file

(INPOLAR).I - 46 -



MAIN-S is a generally simple Fortran source usually consisting of

common blocks and calls to various packages in POLARLIB. This format allows

the user to insert various movers, charge weighting schemes, background charge

distributions, diagnostics, graphics packages, etc., with ease, thus contri-

buting to the flexibility of the code. One might suppose that this format

results in a slow code; indeed, we find that the running speed is around

500,000 particle-time-steps per minute of computer time using a full-dyn-

amics mover with 24 radial grid-points and 24 azimuthal Fourier modes. This

is not particularly fast, but we have not made full use of the vectorization

feature of the CRAY at the present time. Vectorization of the mover and

charge accumulator should yield significant savings in time.

Common blocks and grid dimensions are loaded into MAIN-S and

modules of the binary library POLARLIB during a precompiling sweep from

information supplied by the cliche file INPCOMP. Thus the number of parti-

cles, grid points, and Fourier modes are easy to change.

POLARLIB contains all the main building blocks of the simulation.

These include graphics packages compatible with POLARES, diagnostics, grid

charge accumulators, movers, initializing routines, a part'cle loader, and

a field solver. Further development, refinement, and testing of most of

these routines is envisioned; additional diagnositcs and graphics packages

are also expected to be created.

Some of the more important routines are outlined here.

RHOEWT and RHOIWT accumulate charge density on the grid from

particle electrons and ions respectively. One may envision the charge

weighting scheme as follows. We first lay on the polar plane a series of con-

centric circles each Ar outside the one before it, out to a maximum radius a.

P iThese represent the grid points, probably more properly called grid circles.

-47-
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Each charged particle with coordinates (ri.,.) is separated into two chargedI

particles of charge (r j+l-r i/r)q and (r -r./Ar)q located at (r. e ) andj ii j j' i

(r.+l i ), respectively. Here r. and rj+ 1 are the radii of the two r.;arest

grid circles, and q is the charge (per unit length). (By charge particles

in this code we of course refer to line charges extending infintely in both

directions parallel to the cylindrical axis of symmetry.) Each fractional

line charge is now considered as a sum of sinusoidal waves existing only on

its own grid circle according to the formula

M
p(e) - 2-r, (1 + 2 L (cos me. cos me + sin mei sin me

27r r x m-1 1

where q' is the fractional charge of the sub-particle located on the grid

circle of radius r'. The weighting factor 1/r' arises from the formula

for a delta function in polar coordinates:

2 /:
62 (x-) (r-ri)(1+2 cos m(6-e))

27tr. i

The a shape function will be made more general, essentially just changing

2
the coefficients in the sum, e.g., to drop off as 1/m , implying a broader

particle, say, A8 wide, where &e is something like 2i/M. Thus Fourier

amplitudes of the charge density are accumulated for each of the mode num-

bers up to M for each of the a/Ar grid circles. Notice that we cannot have

a grid circle of radius zero in the scheme. Therefore, in order to deal

with particles inside the first grid circle, we have devised a somewhat

ad hoc scheme. The idea is to replace each eligible particle with an equi-

valent charge distribution on the first grid circle. By "equivalent" we

-48-
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mean that the new charge distribution produces the same potential outside

the first gri, circle as did the charge it replaces. Thus for particles

with r. <Ar we use the Fourier amplitudes implied by the charge distribu-

t ion

m
M r .

pq) 1 + 2 E ( )(Cos me. cos me + s innme. s in me))27rAr riP

This scheme has the advantages that (a), the long range force is correct

and (b), a particle crossing the first grid circle is represented by con-

tinuously varying charge density quantities. Figure (la) illustrates the

charge density resulting from a single point charge.

Once a charge density has been established on the grid, the

next step is to solve for the potential and electric fields. This is accom-

plished by the subroutine GRFIELDS. The task of GRFIELDS is fairly straight-

forward; a tridiagonal solver is used to find the Fourier components of the

potential $. from the finite difference version of the Poisson equationjm

a¢ 2
a a m m 2

7 r ar r -2 m 4m"
r

I ,It namely,

(j+l)m-2 im +(j-1)m +1 (j+l)m' (j-1)m m 2 -(r2 r. -2jm ="Wjm

(Ar) j 2Ar r.
J

The potential is then used to find the electric fields:

ek

(Er)m (j-l)m- (j+l)m
2Ar
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(Ee . m .jm r. jmJ

In the last formula, the c/s notation is meant to indicate that the cos me

coefficients of (E ).m are derived from sin me coefficients of jm, and

similarly the sin me coefficients are derived from the cos me coefficients,

with a change of sign. The multiplication by m (for 70 angular component)

may be replaced by something like mdif(rmA) to imply a more local gradient;

also, both components might be weighted to reduce angle errors in E; these

techniques are common to xy codes.

At present the boundary conditions imposed are (a) P. =0 atjm

r-a for all m and (2) jm =0 at r-O for all m#O and =Om 
= DIm for m-0.

This corresponds to a system surrounded by a conducting cylindrical wall of

radius a.

The electric fields and potential are illustrated in Figure 1.

Notice the ripple in Er and E, at the radius of the point charge. This

is due to the ripple in the charge density. It is anticipated that smoothing

in the Fourier space of e, or using a line charge broadened into a finite

size rod will eliminate this undesirable effect.

The particles are advanced to their new positions by one of the

movers available from POLARLIB. Thus far electron and ion guiding-center

movers MOVEGC and MOVIGC and ion full-dynamics mover MOVIES have been written.

All movers find the electric fields at each particle by reversing the steps

RHOIWT and RHOEWT used to compute the charge density. That is, for a parti-

cle located at (r.,e i), the electric fields are first found at (r.,e.) and

(r.+l e ) by (for 5 function weighting in e)

I5
ii- 50 -
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1 M s
E(r.,9.) = - (Eoj +2 (E(c) cos me + E(S) sin me)

ji 2Tr 9oj + 1 2 mj -mj

and then are interpolated to the particle by linear weighting

g(ri.e) E(r., 9) (r~l) + E(r.~1 ,e e

The guiding-center mover uses this value of E to compute a

guiding-center velocity from the equation

Ynew c 1 E x§+ c 2 9xB

where c and c2 are appropriate constants.

The full-dynamics mover obtains the new velocities from the

old velocities using a method analogous to the one employed in A. B. Lang-

don's one-dimensional electrostatic code ESi:

(v)i (v rt-At + I (E At
tit m r t 2

(ve 1  (vo~.A + q (Eo t

e et-At m a t 2

(vr) 2  = (v rl coswc At + (vO)l sinwcAt

S- (vr) 1 sinwAt + (v0)l coswAt

(Ve):: r Crlt2

r. )t+1t r Vr2 m r Ert 2-

eAt

(v)t - (V 2 + 2(E t
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where w -Eq B /mc.

Both movers then move particles to their new positions according

r r4 = r+(v At) 2+ (v 2)At2

(v2At2
Sr~ +(v) At + (v nem ew 2 r

e + arctan(vnwA
t+At t r t+(v r) nwAt

(v d At ( + (yr newAt)

where v ne v t+At/2 for the full-dynamics mover.

The approximations given are valid for vAt/r 40. At present we

use the approximate formulas for particles with r t >Ar and r t+At > Ar. If

the approximate formula yields r t+At' <Ar or if r t <Ar, the exact formulas

are used.

Finally the new velocities of both guiding-center and full-dyn-

amics movers must be expressed in the new local coordinate system:

v 4. v Cos Ae +v sin A6

v _*v s in AOe+v cos A8e r

where AOe-e A-e .t Again, away from the origin we use

cos Ae ~ 1 - (Ae)2

CosAe2 'sin AO R; A6
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The offset of the velocities from the posiions in the full-dyn-

amics mover is necessary for the mover to be time-centered. The offset is

accomplished at the beginning of the run by the routine SETIV for ions (and

SETEV for electrons, to be written), by

rI ro m rO 2

A t w t

WAt W At

(v (vr) sin c2 + (v cos c

Initial particle positions and velocities are read into the code

from an input file (INPOLAR) by the POLARLIB module LOADR.

PRELIMINARY RESULTS

The code has been tried on a few systems, the time evolutions

of which are known.

IFigure (2) shows one particle moving in the field of another

fixed particle. There is also a uniform external magnetic field present.

The charge does not feel the effects of its own wall image. We expect the

ExB motion of the particle to be along an equipotential and to be fastest

where JEl is largest. The computed trajectories are consistent with these

expectations. Notice the effect of the ripple of the fixed charge, especi-

ally evident when the guiding-center mover is used.
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Figure (3) shows some snapshots of an instability in a ring of

... c.hajrge in a uniform magnetic field, simulatedt.uig the gui-didg-certer mover.

Theory for the diocotron instability predicts all modes below m=6 should be

unstable for our parameters. This seems to be consistent with our simula-

tion.

Figure (4) illustrates the charged-sheet instability which has

been observed in electron beams and is believed to occur in auroral displays.2

The mover used here is the full-dynamics mover, but the guiding-center mover

produced qualitatively very similar results. This allows us to be somewhat

confident that both movers are working correctly.

Figure (5) illustrates our attempt to simulate the Rayleigh-

Taylor instability of a neutral plasma moving in a gravitational field di-

rected radially outward. g simulates either 7B or R drifts, which are signed,

hence lead to flute instabilities. The ions are pushed with a full-dynamics

mover while a guiding-center mover is used for the electrons. We observe some

peculiar behavior in the vicinity of the origin. This is quite likely an

artifact of the code and will be investigated in the near future. As is

obvious in the figure, the growth of the instability is quite rapid. When

gravity of the same magnitude is directed inward, the plasma is found to be

stable. We also find a mild growth rate even in the absence of gravity. This

is possibly due to expansion of the warm plasma (in uniform B) or the abnor-b

mally large field fluctuations likely to be associated with so few particles

(1024 ions, 1024 electrons). The large time step used in this preliminary

run (wc At=) is also a possible cause.

Finally, plasma oscillations have been observed in a

cylindrical plasma. In this run, the electrons were pushed using

the full-dynamics mover with no external magnetic field present, and

the ions were fixed. The frequency of oscillation was not correct however;
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we found oscillations occurring at about w pe instead of the theoretical

peevalue of w pe/IV2, the dipole resonance frequency. (Actually, in the presence

of the wall, and with our parameters, the theoretical resonant frequency

is lowered slightly to 2w pe/3.) No explanation for the discrepancy is

offered at this time.

FUTURE DEVELOPMENTS

The code POLARES has thus far produced encouraging results

though most are as yet qualitative in nature. It is hoped that further

work with the code will produce quantitative results and clear up problems

already encountered.

Definitely on the agenda are vectorization, which should result

in considerable savings in computer time, smoothing in 9-Fourier space,

and improvement in the diagnostics. Results of these developments wll

be reported in a future QPR.

REFERENCES

1. Janes, G. S. et al., "New Type of Accelerator for Heavy Ions', Physical
Review 145, May, 1966, pp. 925-952.

2. Webster, Harold F., and Hallinan, Thomas J., "Instabilities in Charge
Sheets and Current Sheets and Their Possible Occurrence in the Aurora",
Radio Science 8, May, 1973, pp. 475-482.
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FIGURE CAPTIONS

FIG. 1. Charge density, potential, and electric fields (in arbitrary units)

generated by a line charge located at r= 16Ar, 0= /2. The radial

grid appearing in the plots is real, but the e-grid is generated

by the plotting routine. a=24Ar, M-24.

FIG. 2. Orbit of a positively-charged particle in the field of a fixed posi-

tively-charged particle locz.Led at r -16Ar, e=i/2. a=246r, M=24.

(a) Full-dynamics mover: in cgs, 4q 2At 2/m=2, qBoAt/mc=0.5, 1500 time-

steps. Initial conditions for the mobile particle: r=8r, e=ir/2,

VrAt=O, veAt=o. 66 7.

(b) Guiding-center mover: in cgs, 4nqcAt/B =2, 3000 timesteps. Initial

conditions: r=6.667Ar, e =?/2.

FIG. 3. Instability in a charged ring using the guiding-center mover, 1024

particles uniformly distributed between r =9Ar and r= liAr, 41TqcAt/B °

=0.02, a= 16Ar, M= 16.

FIG. 4. Charged-sheet instability using the Cull-dynamics mover with 1024

particles, w At=0.9, 0 t= 1, a=24Ar, M=24.
p c

FIG. 5. Simulation of a uniformly-magnetized plasma in a gravitational field

directed radially outward. A full dynamics ion mover and an ExB

guiding-center electron mover are used. Initially the plasma is

uniformly distributed at radius 8Ar. Parameters: w .At = 1,

wA0.22, w e/wce Iw/Wc, g-0.0625(r/Ar) grid points/(At) 2

pi pe

1024 electrons, 1024 ions, a -24Ar, M-24.

/
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l. . . Dispersion Relatio'9 o1ver for a-L-rearized-Two-Fluid Urriferm PI-asma
Mode l

Niels F. Otani (Prof. C. K. Birdsall)

A simple solver is being developed for the dispersion relation

associated with a linearized, magnetized, electromagnetic, two-fluid, uni-

form plasma model. The model allows an isotropic temperature for each species.

The unperturbed quantities no, Ts, and B are uniform in space and constant

in time, and neither species is allowed to drift. The linearized equations

required to describe this system are then as follows:

a 6n + n 7.6v = 0at s o -s

av y T Sn q 6v-s + +- (6E + -s
at m s n m - c -o

5 0 5

Vx6B = c qsVs c at

Vx 6E _ 1c at

where s refers to the species involved (here electrons and ions). This code

is intended as an educational aid only; the zoo of small-amplitude waves and

oscillations resulting from this set of equations has been well-understood4i for some time.

Allowing the perturbed quantities to have the dependence

exp(i(k.r-wt)), the dispersion relation for this set of equations is easily

found to be1

I 6
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det[(R(w ,k) + w(w, k
S

- 1

I -a -b ( 1 -a cos28)
S S s

asin e - b a ssinecose ia b sinecosO
assincosO I ascos20 ib1 asS28)

-iabsincose -ib (1 - a Cos 2) 1 - a s

-k 2-c 2sincs6 k 2 a c ose2 
-2 0

S=S

22 2 0 222

y KT k2
a m bs m 2s

S ' 2S

B *k

co8 - kcose 0

I, ,slfo

s m c

2

2 =s
s ms

y! The dispersion relation may be expressed as a 30th-degree poly-
9'

nomial in w, but generally most of the roots are zero. The code therefore

samples the value of the polynomial at w test amd 2w test where w test is much
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smaller than any frequency intrinsic to the free parameters of the system.

Then log 2 f(2w test)/f(W test) factors of w are divided out of the polyno-

mial f, and the new function is used in Steven Au-Yeung and Alex Friedman's

root solver code SOLVER 2 to obtain the various branches of w(IkI) (6 fixed).

This procedure is necessary as SOLVER often has trouble with functions hav-

ing several equal roots. An example of the output is shown in Fig. 1.

Future development of the code will allow plotting of w(6)

(Iki fixed) and also permit the user to obtain relative amplitudes and

phases of SE, 6B, 6n, 6v, etc., which provide information about the nature

of the mode. Either the subroutines used with SOLVER or a complete code

will be made available to users.

REFERENCES

1. Allis, W. P., Buchsbaum, S. J., and Bers, A., Waves in Anisotropic
Plasmas. Ch. 1. M.I.T. Press, 1963.

2. Au-Yeung, H. Stephen, and Friedman, Alex. "SOLVER: An Analytic
Function Root Solving and Plotting Package." Electronics Research
Laboratory: University of California, Berkeley, August, 1979. Memor-
andum No. UCB/ERL M79/55.

I. RJET Development

No special report.

)
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J. Software Developments

Niels F. Otani

A tut routine. DD301gMKE.. has been created for use Tn the A-rrcchine

foDr the purpose of facililcitinq the coriversia-n of frS3 files5 into ddCiSO

iiie. 7-.s code is especiallu useful Uhnw :evera1 Fr'30 Files hove been

asreatedon the R:-mcchine or sent frn~the T hay to be, vievad as ddSO f ilos

'J n EPLT h out mne may Te obtine 'roDj typing:

filem rds 12 10 .publIic ckOmw

DDSMIPKS i s a L'I9-cr at1.ed librr ccn toans It xctbe f ile as

itre : Ve e-nt+r y. A i o i ncludeld in, :-iI2c- re the surce and th uti9it u

routine DDE't The l a tt er i.'s a dclS@0 f e edit or iecib in a orevyioTJs

C:PR uhict- is often useful in conjunction with this orogram.

The execute line f or DDS@MKE is:

dd'0imaKe box bnn anyic! L end I

if he box and id are omitted. DD8OMAKE will prompt for tIhis information.

If "end" is omitted in the exeocute 1itC. wmae"ill attemZrpt to

conv,,ert -n:; files beiinrnny 'with "f0 intO. :!cSOies Thew eu

f;lesA will retain the two idientifyinj) circes fhi old fr-SC
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orc, thmn :!s I ted fro m t: sq IU :goeS

o 'or iop pr oxim .4 -2n '1 e.. '"'qa zcin e xcmines the

±i.ndexC for cny new f Lbs zcq iri- 'q Ai; md if so convents

Vce, int f-S ;Ilz Thii - ~-r

i5 twpm-d -irt--nL-,:

7f'n"is entered-.- tiz "Isto -nc \:-, e- 1;elne, t:-e 00

*n--rlinc- thoe u sr f i s s n; :no. ... Tr s .. ith f

a. u . -.IA~~ -. H - . - 5-1z0

i.-r i;r5 iln the susperdIed (troos,) c-:nrot Io r..oi oy

-.0:? minutes/hour atmnr+- Io~r~j. --r-0?rofor? £3:t';s oet

-D '::On Th mci t Cl 1-cuL p-iority in T.his mocds. It is ant bipoted

d i, fjcul ) '4i: I e corrected shor- .LI

4 ~~~Stephen. -:ncl Fr-emo. Pi .~'-'t~:f roors~s
F,-Lton, 2loisma Tcr-..nrld :r.;u.or. "J.-f clif orni a,
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Sec ion III
PLASMA SIMULATION TEXT

A contract has been signed with McGraw-Hill for the text to

be delivered to them Dec. 1, 1980, duly shortened and updated. No

further progress will be reported here.

Section IV
SUMMARY of REPORTS, TALKS, PUBLICATIONS

Abstracts of papers to be presented at the Sherwood Fusion

Theory Meeting April 23-25 at the University of Arizona, Tucson follow.

A listing of papers dealing with instabilities due to cur-

rents in diode regions is also given.

6
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FRM and ION RING EQUILIBRIA for the RINGHYBRID 
CODE

Alex Friedman
Electronics Research Laboratory

University of California
Berkeley, CA 94720

We have developed a new method of generating axisymmetric field
reversed equilibria for the RINGHYBRID code, a linearized 3d hybrid code
used for studies of the low-frequency stability of such configurations1 ,2.
Equilibria of known functional form are calculated numerically, and
appropriate particle initial condition and magnetic field data are used
to initialize the hybrid code.

Exponential rigid rotor Vlasov equilibria, with distribution functions
of the form f- exp[-(H-S1P6)/T], are computed on an r-z grid using an
iteration scheme similar to that of Sparks and Finn 3. In these equilibria
the current is carried entirely by hot ions with gyroradii which may range
from infinitesimal (as in the Hill vortex equilibria) to the order of the
system size (as in ion ring equilibria). A representation of the distribu-
tion function is obtained by assigning locations and velocities to particles
in amanner which yields the correct density and mean azimuthal velocity in
each grid cell, within small errors associated with finite particle size and
the limited number of particles employed (several thousand). RINGHYBRID
advances these particles along their equilibrium orbits in the time-
independent, self-consistent zero order field. (For stability studies the
code simultaneously advances linearized displacements from these orbits, as
well as linearized quasineutral fluid equations for cold ion and electron com-
ponents, and self-consistent first order E and B fields, which are fully 3d.)

A variety of field reversed mirror and ion ring equilibria have been
obtained; when the equilibrium field and particle initial condition data are
used in RINGHYBRID, particle moments remain nearly constant in time. Orbits
are, in general, quite complicated, and preliminary indications are that
many are truly stochastic 2 . The complexity of moderate-gyroradius FRM
orbits arises from the fact that particles moving along closed field lines
may or may not reflect in the high field regions, and furthermore may pass
near the field null during their gyratory excursions. Also, the rate of a
particle's azimuthal drifting motion depends strongly upon where it lies on
its orbit in the r-z plane.

Previously, equilibria were generated by injecting bursts of particles
into an external magnetic field and solving Ampere's law (with a resistive
source term -aoAe/at included to damp collective oscillations) repeatedly
until Ae became nearly stationary. While this produced equilibria which were
useful for ion ring stability studies 2 , the new method affords greater control
over the resulting equilibria, and so parameters may more readily be varied.

The package which computes equilibrium fields and particle initial con-
ditions is called RIGIDROTOR, and is available for general use through LIBRIS
on the NMFECC CDC-7600.

Research supported by the U.S. Department of Energy under Contract No. DE-ASO3-

76SFOOO34, Project Agreement No. DE-ATO3-76ET53064.

'A. Friedman, R. N. Sudan, and J. Denavit, Proc. Eighth Conf. on Numerical
Simulation of Plasmas, Paper No. PC-13, Lawrence Livermore Lab. Conf. Proc.
No. C0NF-780614 (1978); Cornell Univ. Lab. of Plasma Studies Rept. No. 268
(1979, to appear in J. Comp. Phys.).

2 A. Friedman, J. Denavit, and R. N. Sudan, Bull. Am. Phys. Soc. 24, 956 (1979).
3L. Sparks, J. M. Finn, and R. N. Sudan, Bull. Am. Phys. Soc. 2149955 (1979).
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SATURATION OF THE LOWER-HYBRID DRIFT INSTABILITY*

Yu-Jiuan Chen & C. K. Birdsall
Electronics Research Laboratory

University of California

Berkeley, CA 94720

Bruce I. Cohen
Lawrence Livermore Laboratory

University of California
Livermore, CA 94550

Saturation mechanisms of the lower-hybrid drift instability in the low
drift velocity regime (v.d<<v .ma1 ) are studied both in a Id particle-
hybrid simulation and a nonlinear per urbation theory; v is the relative
drift velocity between the electrons and ions. We find hat ion traping sta-
bilizes the instability when vd is kept constant, unless current relaxation
(vd O) occurs via quasilinear diffusion. We also find a new saturation
mechanism: a nonlinear ion orbit perturbation induces a frequency shift
which is particularly effective in saturating long wavelength modes.

We use a one-dimensional slab configuration. In zero order, the ion
pressure gradient cancels the equilibrium electric field force. in first
order the ions are treated as unmagnetized, and the electrons are assumed
to respond to the wave linearly, because wci 4 Iw1'pe,0ce.

In simulation of small amplitude modes, there was good agreement of
the linear growth rate, real frequency, and influence of finite beta effects
associated with the nonresonant gradient B electron orbit modifications
with linear theory. For large amplitude modes, at zero plasma beta and zero
electron temperature, the simulations show that, when vd is kept constant,
the lower-hybrid drift instability is stabilized by ion trapping. When vd
is allowed to vary in time (for example, as a self-consistent consequence
of momentum conservation), stabilization occurs as result of current relax-
ation with vd -O, at a much lower level, a little below Davidson's prediction
for vE/vti s1, as given by

1

2PI 
m e v EnTi 8(1 +w 2 /w2 m ipe ce

Analytic theory shows that a finite perturbation of the ion orbits leads
to a nonlinear frequency shift that can stabilize the lower-hybrid drift in-
stability. However, the resulting saturation level is small only for modes
with wavelengths much longer than that of the most unstable mode. This re-
sult is obtained from a self-consistent solution of the Vlasov-Poisson

bequations using perturbation theory in which the nonlinear dielectric func-
tion and the nonlinear temporal evolution of a single unstable mode in the
low drift velocity regime are calculated analytically.

This research was supported in part by the Office of Naval Research under
Contract N00014-77-c-0578, and in part by the Department of Energy under
Contract No. W-74O5-ENG-48.

1R. C. Davidson, Phys. Fluids 21, 1375 (1978).

'7

7

~- 70 -

':!

I----I- '--'"V"



INSTABILITIES DUE TO CURRENTS IN DIODE REGIONS

(C. K. Birdsall)

Interest in these instabflities has varied in time; some claim

that this interest revives on about a seven year cycle, beginning with the

work on limiting current (or perveance) by B. Salzberg and A. V. Haeff in

the late 1930's and that of J. R. Pierce in the early 1940's. We may be

near another peak now. While later cycles have tended to progress beyond

earlier work, there is evidence that later workers have tended to miss

earlier work.

Starting in 1959, our plasma theory and simulation group contri-

buted some insights into these problems. One insight from simulation was

that the diode current instabilities could grow into large amplitude oscil-

latory steady states (Wr w ). Another was that the time-average of the
p

oscillatory current was larger than that obtained from time independent

analysis.

A list follows of representative (but not exhaustive) papers

of our group and related work done elsewhere in the 1960's. The papers

themselves provide more references. We commend them to those beginning to

bwork on current instabilities: in diode regions as such, or in sheaths,

divertors, guns, accelerators, propulsion devices, direct converters, etc.,

etc.

'7I



T!

1n6tabiiWtZ due to CwAent in Diode Region6: Setectd Re net . in 1960'.6

1960

Lomax, R. J., Transient space-charge flow, J. Elec. and Cont. 9, pp. 127-
140, August.

1961

Birdsall, C. K. and Bridges, W. B., Space-charge instabilities in electron
diodes and plasma converters, J. Appl. Phys. 34, pp. 2611-2618, December.

Lomax, R. J., Unstable electron flow in a diode, Proc. I.E.E. Part C, 108,
pp. 119-121, March.

1962

Bridges, W. B. and Birdsall, C. K., An electron stream instability,
185 pages, Tech. Rept. No. 60-443, E.R.L., Univ. of Calif., Berkeley, CA,
March. (Bridges' Thesis)

1963

Bridges, W. B. and Birdsall, C. K., Space-charge instabilities in electron
diodes, II, J. Appl. Phys. 34, pp. 2946-2955, October.

Buneman, 0. and Kooyers, G. P., Computer simulation of the electron mixing
mechanism in ion propulsion, A.I.A.A.J., 1, pp. 2525-2528.

1964

Burger, P., Nonexistence of dc states in low-pressure thermionic converters,
J. AppI. Phys. 35, PP. 3048-3049, October.

Cutler, W. H., High frequency oscillations in a thermal plasma, J. Appl.
Phys. 35, pp. 464-465, February.

1965

Bridges, W. B., Frey, J. I. and Birdsall, C. K., Limiting stable currents in
bounded electron and ion streams, IEEE Trans. Electron Devices 12, pp. 264-272,
May.

Burger, P., Theory of large amplitude oscillations in the one-dimensional
low pressure cesium thermionic converter, J. Appl. Phys. 36, pp. 1938-1943,
June.

Burger, P., Dunn, 0. A. and Halsted, A. S., Computer experiments on the ran-
damization of electrons in a collisionless plasma, Phys. Fluids 8, pp. 2263-
2272, December.

Frey, J. I. and Birdsall, C. K., Electron stream diode instabilities with
elastic collisions, J. Appl. Phys. 36, pp. 2962-2964, September. (See cor-
rection by Faulkner and Ware, 1969.)

Wadhwa, R. P., Buneman, 0. and 8rauch, D. F., Two-dimensional computer exper-
iments on ion-beam neutralization, A.I.A.A.J. , 1076-1081, June.
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1966

Birdsall, C. K. and Bridges, W. B., Electron Dynamics of Diode Regions,
Academic Press, N. Y. (See Chap. 3, Stability of flow; nonlinear solu-
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