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Section 1
PLASMA THEORY AND SIMULATION

A. Lower Hybrid Drift Instability Simulations Using ES1 Hybrid Code
Yu-Jiuan Chen (Prof. C. K. Birdsall, B. |. Cohen)

The saturated electric field energy spectrum s;k due to ion
trapping was obtained in theory ana compared with simulation. These and
all of the simulations will be given in an ERL report now in preparation,

to be submitted to the Physics of Fluids.

8. Beaming Instabilities; Magnetized Rings

Jin Soo Kim (Prof. C. K. Birdsall, B. I. Cohen)

Our multi-ring instability study (the distribution of plasma in
velocity space perpendicular to the magnetic field is a set of discrete
rings) was begun with one, two and four rings. The one ring model produces
the well known Dory-Guest-Harris instabili:ty.1 The muiti-ring model corres-~
ponds to multi-velocity neutral injection, as well as to initial conditions
common to simulation models. The model has only ion rings because the elec~
tron Larmor radius (in terms of k;ae) is negligible compared with that of
ions (in terms of kla;«al). {n our current work, the rings in velocity
space have equal weight (same mg) and are spaced at equal intervals, as
shown in Fig. 1; the plasma is uniform in x space, as is the magnetic field.

The distribution function for N rings is the sum of §-functions;

N
1 1
folvymm) = x sgl 21v Slv, =v,g) () . (1)

The dispersion relation of a single ring for perpendicular propagation (k|-0)

is




FIG.

1

Distribution of ions in v, space. The ring speeds are:
for 2 rings, Vi = |-qa, vl2-1+u; for 4 rings, Vi = 1~3a,

vxz-l-c, vL3-1+a, vm-1+3a. The a values used so far

are 0.00 to 0.06.
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where ul-klvllmc and Jn is the Bessel function of the first kind of order n;

] \ this is Eq. (19) of Tataronis and Crawfordz. Hence, for the multi-ring model

of equal density rings the dispersion relation is (ignoring electrons)

W N e W ) e
Pluk) = 1- +2 3 ¥ L._nus c . (3
1 N 2 H
w. S=] np=-» "1s dyu w = nw
C S [ 4

The roots of D(w, k ) =0 are obtained numerically, using the code, ROOTS3 "

Figures 2 and 3 shows the maximum growth rate for two rings;
Figs. 4 and 5, for four rings. When mslm: is larger than the threshold
values, some of the Bernstein modes couple to each other and the waves grow

(v = Imag (w) #0) as is well known. Yoax |S the maximum value of vy of all

Bernstein modes. The growth rates become smaller as number of rings goes
i from 1 to 2 and to 4 by spreading the distribution over v, “space, corres-
ponding to warming up the cold ring, a result found earllerl. As is shown

in Fig. 3 and Fig. 5 the instability threshold values of mslw: become larger

e — -

as the number of rings increases from 1 to 2 to 4.
These studies will be extended to larger values of the para-

meters and then to non-uniform envelopes of the rings, such as Maxwellian.

REFERENCES

1. R. A. Dory, G. E. Guest, and E. G. Harris, '"Unstable Electrostatic Plasma
Waves Propagating Perpendicular to a Magnetic Field" Phys. Rev. Lett. 5,
. 131 (1965).

2. J. A. Tataronis and F. W. Crawford, ''Cyclotron Harmonic Wave Propagation
and instabilities; 1. Perpendicular Propagation”, J. Plasma Phys. i.
231 (1970).
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Same as Fig. 3, for 4 rings. The marginal stability values of
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3. M. J. Gerver, ''ROOTS, A Dispersion Equation Solver'', University of Cali-
fornia, Berkeley, ERL Memorandum No. M77/27 (1976).

M. J. Gerver, C. K. Birdsaltl, A. B. Langdon and D. Fuss, '"Normal Modes
of a Loss Cone Plasma Slab with Steep Density Gradient', Phy. F1. 20,
pp. 291-300, Feb. 1977.

C. Field-Reversed Plasma Simulations, Quasineutral, in 2d

Douglas Harned (A. Friedman, C. K. Birdsall)

A realistic simulation of field-reversed layer stability problems
requires a bounded system, normally bounded by conducting walls. Addition-
ally, for a fusion reactor, the region near the walls should be a vacuum or
cold gas. The replacement of the vacuum or cold gas region with a low density
plasma is inadequate in a quasineutral model. When such a replacement is
made, large electric field fluctuations occur, and a highly restrictive Courant

condition (At~<Ax/vA, where v, is the Alfven speed) is imposed in the low den-

A
sity regions. Our one dimensional simulations have shown that large amplitude
waves occuring in the low density regions can distort the physics in the dense

part of the plasma. It is not surprising to find such problems, since the

quasineutral ity assumption becomes invalid for low density. These difficul-
ties seem to be inherent in explicit schemes for advancing the field guantities.
A method which avoids such problems in low density regions has been developed
by Hewett.' Hewett's method implicitly advances the fields and treats the
vacuum, or near vacuum, by setting the resistivity to a large value.
Boundary conditions impose a further difficulty. This is because
a quasineutral code does not model the details of the sheath region at the
wall. This defect prevents the specifica}ion of reflecting wall boundaries
in conjunction with conducting wall boundaries. At a conducting wall we know

that

- 10 -




AXE = 0. (1)

While this condition is insufficient to solve the field equations, the boundary

condi tion
Ai+B =0 (2)

implies that the longitudinal (curl-free) and transverse (divergence-free)
parts of the tangential electric field (Ez and Et) must each vanish at the
conductor. In terms of the potentials A and ¢, in the Coulomb gauge, we

have at the walls

(3a)

»
X

1>
]

o

¢ = constant (3b)

where A and ¢ are such that B=vV xA and E£ =-Y¢. With the gauge condition,
v+A =0, the boundary conditions are sufficient to determine the advance of
the field equations. It should be noted that in one-dimensional codes (such
as our QUAD1) the boundary problem is trivial as the longitudinal and trans-
verse parts of the electric field are geometrically decoupled.

The need for a bounded system and proper treatment of low density
regions have motivated us to change the field solver in our two-dimensional,
doubly periodic code. The following is a description of a method which may
handle both problems.

The quasineutral field equations are

1

E = ; (ng)xg -

o |
E " Tone <8 + b 98 (%)

%
L]

E -chg

QL
(o
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where n is the resistivity, J the ion current density, and the electrons

have been assumed to be cold. In terms of the vector potential A, we have

-1 2 1 _¢en 2
E = fong VAX(TXA+B ) = —— Jx[(vxA)xB ] - - VA  (6)
2A
FCT" (7)

where §==ng+§°. §° represents a constant background magnetic field. Equa-

tions (b and 7) can be combined to give

JA
—_— <
at brnc

2 J czn 2
VAX(TxA+8 ) + ~=x [(VxA) +B ] + G VA . (8)
The right hand side of Eq. (8) requires a decomposition into longitudinal
and transverse parts. In special cases (e.g., one-dimensional cases or
Hewett's axisymmetric model) this can be done geometrically. However, in

general, and for the non-axisymmetric long layer problems that we wish to

examine, geometric decomposition is not possible.

Equation (8) can be written as

2
oA c J cn 2
t cv = bwne v /_\x(Vx5+§°) e [(Vx/_\)+§o] + [ va (9)

where ¢ represents a potential such that gla-vqa. This equation now has a
form somewhat similar to that of the Navier-Stokes equation for incompres-

sible flow:

%% + VP = -y-Yu + szg . (10)

- 12 -
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A critical difference between the two equations lies in the boundary condi-
tions. In Eq. (9), the potential ¢ and one component of the vector potential,
A, are known at the boundaries. |In the Navier-Stokes equation, the pressure
at the boundary is generally unknown, while both components of the flow velo-
city, v, are specified. Therefore, some methods used in solving the two-
dimensional Navier-Stokes equationz’3 may be applied to Eq. (10), but not
without significant modifications to handle the different boundary condi-
tions. The fact that the scalar potential is specified on the boundary in
the quasineutral equation makes it a straightforward process to obtain ¢
from a Poisson equation (as opposed to the fluid case where the boundary con-

dition must be predicted to solve a Poisson equation for P). Writing the

right-hand side of Eq. (9) as QJKA), we have, in two dimensions,

Y

T - G i
3A .
oo - G w
v =-v.Fn) . (11¢)

Equations (11a,b,c) form a non-linear system of three equations in three un-
knowns, which must be solved simultaneously. Equations (11a and 11b) are non-
linear in that they have products of ﬁx and Ay, but neither contains a term
like Ai or Ai. These equations may each be advanced in a Crank-Nicolson
scheme. This forms a predictor-corrector method for the advance of all three

quantities. For the m-th of M iterations we have

- 13 -
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n+1,m_An

E X a £ ™M e y") + 2 I AT (120)

An+1,m_An

Lot = H(ee™ Mg ") 4 1 g;*""‘(e)q‘;(e)) (12b)

L¢’n-n,m - - d{;h+l’m(5) . (12¢)

L, D, and G are the finite difference approximations for the Laplacian, diver-

gence, and curl, respectively. The operator L should be such that
L6 = DGo . (13)

With interlaced grids, using four-point operators to represent the deriva-

tives in the gradient operators, i.e.,

3 Cirt, gt T er, -1 T Ha e T 4,500 VL m
ax i+4, j+4 2Ax
Eq. (13) implies that L be defined by
o = Siet it Y iy T e e T ey T M (15)
= 2 .
2(ax)

Because all three of Eqs. (12) involve the solution of a large matrix equation,
the method is totally impractical for large M. It is assumed that M<2 wil be
sufficient. While the time requirements for this type of solution might be
prohibitive in a fluid code, the largest fraction of time used by a hybrid
code is expected to be in the particle mover. Hopefully, this will aliow the

flexibility to solve a system of equations such as (12). I(f a technique such

- 14 -

. o S - .

~




as orbit averaging is used for the particle mover, then the time constraints

o ———

on the field solver will be reduced further.

The most attractive way to solve Eqs. (12) appears to be the

ICCG (incomplete Cholesky conjugate gradient) method, because of the large
variation in the magnitude of the diagonal elements from the plasma to the
vacuum regions. The first predictor steps should require a relatively
small number of iterations, as it would be unnecessary to demand a small
residual in the predictor solution.

Once A and ¢ have been advanced, the new values for E and B

can be obtained from

z §n+l - Vxen'ﬂ +§°

1 +
q §n+1 - E’g(é)n 1 .

These fields can then be used to advance the particles with the standard

techniques.

REFERENCES

, 1. D. W. Hewett, "A Global Method of Solving the Electron-Field Equations
‘g in a Zero-lInertia-Electron~Hybrid Plasma Simulation Code'', submitted
b to J. Comp. Phys.

{
;; 2. A. J. Chorin, '"Numerical Solutions of the Navier-Stokes Equations'', Math.
| of Comp. 22, pp. 745-762 (1968).
' 3. A. |. Shestakov, '"A Hybrid Vortex-AD| Solution for Flows of Low Viscos-
r ity', J. Comp. Phys. 31, pp. 313-334 (1979).

4, D. S. Kershaw, '"The Incomplete Cholesky-Conjugate Gradient Method for
the Iterative Solution of Systems of Linear Equations'', J. Comp. Phys.
26, pp. 43-65 (1978).
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0. Effects of Intrinsic Orbital Stochasticity on Resonant
Microinstability (Bruce Cohen and Alex Friedman)

Complex inhomogeneous equilibria can exhibit intrinsic stochasticity;
i.e. certain classes of particles have stochastic orbits. An illustrative
and familiar example arises in simple mirror systems. For axisymmetric
mirror machines particle energy & and canonical angular momentum Py are
conserved in the absence of turbulence or other perturbations that break
azimuthal symmetry and introduce explicit time dependence. When the Larmor
radius is small compared to the magnetic scale lengths, the magnetic
moment u and the longitudinal action J are approximate (or adiabatic)
invariants. The magnetic moment can experience changes when somewhere along
the particle trajectory the cyclotron frequency or its harmonic equals a
harmonic of the axial bounce frequency. For changes in u from one bounce to
another that are unrelated, the particle motion remains orderly and
deterministic, but the changes in u as the particle passes through resonance
on successive axial transits can be viewed as a stochastic process.
Neighboring stochastic orbits in the phase space of y, J, and their
conjugate angles appear to diverge exponentially in time when averaged over
many bounce periods.

What effects does intrinsic orbital stochasticity have on micro-
instability? Intrinsic stochasticity is not collective in nature; the orbit
separation of various sets of neighboring particles in phase space is
uncorrelated when viewed over many bounce periods. Furthermore,
stochasticity does not influence the moments of the distribution function
and, in particular, does not alter any free energy possibly available nor
the macroscopic charge densities and currents. Therefore, we conjecture
that the effects of stochasticity on microinstability may be weak provided
that the equilibrium orbits are not too much distorted. The following
discussion fills in the details of this argument and supports its conclusion.

For simplicity we assume that the linear growth rate of an unstable
mode and the stochasticity rate (orbital separation rate) are both much
smaller than the mode frequency, cyclotron and bounce frequencies. Upon
integrating the Vlasov equation along its characteristics, i.e. performing
the integral

t
5f -xf dt' exp [iky(t') - fuwt'] (1)

- 16 -
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in slab coordinates, denominators appear with resonance condition

Aw

w - Eﬁ'ci(J,u,x) + Zpub(u) + ka(u) =0 , (2)

where K%i is the average cyclotron frequency, w is the bounce frequency,
Vd is the drift velocity, and X is the guiding center position (see Smith,
Byers, and LoDestro UCRL-82674).

We now presume that the adiabatic invariants u and J begin to slowly
diverge due to intrinsic stochasticity. Hence, &w = Aw(t) and a particle

will cease to be resonant when

TS
L Cate aken) = o(m)

which defines Te and relates it to the stochasticity rate. QOver the time
period T the particle can do work on the wave and vice versa. Meanwhile,
however, accompanying the loss of resonance for one particle, there is an
equal probability that a neighboring particle in phase space is coming into
resonance. Resonance again persists over a time period of order Ts' The
linear perturbations of the resonant particles will add, and the linear
dielectric response will be largely unaffected by stochasticity. The crux
of the argument is that with stochastic orbits we expect an equal flux of
particles into and out of resonance at any point on the separatrix between
resonant and nonresonant particles but the wave-particle interaction while
in resonance is unaffected. Nonlinear aspects of the wave-particle inter-
action are decidedly affected when intrinsic stochasticity limits the
duration of resonance, essentially because nonlinear effects associated with
particles coming in and out of resonance are not simply additive.

| Cartoon of separatrix for particles
/// resonant with an fon cyclotron flute
mode (see Smith et. al., UCRL-82674)

1 2 showing fluxes of stochastic
il equal fluxes
in and out particles.
1.2
] -17 -
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When TS becomes so short that 1;1 is comparable to the smallest
characteristic frequency helping to determine the resonance condition,
Eq. (2), then the resonance is destroyed. In this case the particle will
interact simultaneously with many of the bounce harmonics, and there is no
resonance with any one particular bounce harmonic. Thus, stochasticity will
profoundly influence the linear aspects of resonant microinstability when
the stochasticity rates becomes comparable to the characteristic frequencies.
Random collisions have a very different effect on microinstability.
t Use of the simplest Krook model yields the following modification to the
resonant denominators appearing in &f,

e —

M:m-%ci+2p%+kvd+ivc . (3) ]

‘

In the absence of collisions, Im &w = Imw = vy, the linear growth rate. With
collisions, Im &w = v + Ve- Thus, collisions will have a significant
effect when Ve ® ®y). Physically, collisions produce a real diffusion of
particles in phase space and destroy & and Pe conservation, as well as alter
u and J. Wave growth is necessarily accompanied by momentum and energy
exchange with resonant particles. Therefore, at the point when the collision
rate becomes large enough to influence the energy and momentum exchange of
the resonant particles interacting with the wave, microinstability would be
significantly altered.

To illustrate collisional effects, consider the force on a resonant
particle due to a wave in the presence of randomizing collisions,

RﬁV’ﬁe + c.C. -V 5V »

-iwt .
d F
) (4) H

where Sv is the perturbed velocity in the frame of the unperturbed particle
motion, F is the amplitude of the force, and Aw might be given by Aw = w~kv,
Eq. (2), or one's favorite resonance condition. The solution of Eq. (4) is

-1 -idwt -1 -fawt + 18
sv = L] e + C.C. = 7=Fm e +c.c. , (5)
- 18 -
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where cos § = (\)(:"'\()/V‘A2 + (vc+y)2, A = Re Aw, and any initial

transient has been allowed to damp away. It is obvious from this simple
expression that the energetics of the wave-particle interaction are
significantly affected when vcbecomes comparable to v.

It appears that there can be considerable stochasticity without there
being much effect on the linear aspects of resonant microinstability. In
simulations such as Friedman's three-dimensional linearized simulations of
field-reversing rings and mirrors, intrinsic stochasticity of particle
orbits is often observed. Based on the arguments presented here, if
particle statistics in the simulation are very good, but not economically
unmanageable, so that there is the necessary cancellation of the stochastic
particle flux into and out of resonance with the wave, then one expects that
Friedman's code could investigate resonantly driven instabilities even in
the low growth rate regime. Obviously, the higher the growth rates of the
modes under investigation the less perfect the cancellation of stochastic
particle flux need be and the fewer simulation particles necessary.
Remaining to be done is the quantitative assessment of the particle
statistics requirements for simulation of modes in the regime where the
stochasticity rate exceeds the instability growth rate.

We thank John Finn and Jim Albritton for illuminating discussions of
these issues, and Brendan McNamara for posing the problem.
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E. Effects of Numerical Dissipation on Simulation of Fast and Slow
Space-Charge Waves

Bruce |. Cohen

The introduction of backward time-differencing in the numerical
solution of either ordinary or partial differential equations with time
dependence can lead to frequency-dependent numerical dissipation. This
can be exploited and provide a means of performing digital filtering in
numerical simulations of time-dependent phenomena [1-3]. In Ref. 1
digital time filtering is combined with an implicit differencing scheme to
achieve damping of high frequency waves in an unconditionally stable
algorithm that allows use of large time steps. This approach is suitable
for solution of fluid equations and linearized kinetic equations, e.g.,
the drift-kinetic equation [1]. Unfortunately, implicit solution of
nonlinear kinetic equations frequently leads to inversion of large
non-sparse matrices{4]. This is particularly true of particle codes, and
thus the implicit methods described in Ref. 1 have not been applied to
particle simulations. Nevertheless, digital filtering has been frequently
used in particle codes to damp unwanted high frequency modes and recently
has been combined with a new technique called orbit-averaging to allow the

use of a large time-step in the solution of the self-consistent fields [2].

- 20 -
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An interesting and important question has been raised regarding the

use of numerical algorithms with artificial dissipation added. Because
negative energy modes in plasmas or in other dielectric media can be
destabilized by dissipation, it is wondered whether numerical dissipation
can artificially destabilize negative energy modes. The following
discussion demonstrates that numerical dissipation can in fact destabilize
negative energy modes, but that with some ingenuity dissipative algorithms
can be devised that damp both positive and negative energy modes
increasingly as the mode frequency increases.

The simplest model admitting positive and negative energy modes is
that of a cold, unmagnetized, drifting plasma. The infinite homogeneous ‘

plasma dispersion relation for plasma waves becomes

(0 - kug)? = , (1a)

with solutions

w = ku0 * wp . (1b)

where ug is electron drift speed relative to an immobile neutralizing

jon background, k is the wavenumber, and wp is the electron plasma
frequency. The +(-) sign in Eq. (1b) corresponds to the fast (slow) beam
mode, which has positive (negative) wave energy. As we shall illustrate,
the slow wave can be driven unstable by dissipation.

Consider the one-dimensional particle simulation algorithm given by

yt1/2 L yn=1/2 eyt /m (2a)

XML o xn . yn*t1/2y, (2b)

(1-€) " +ed ™1 = . ane(n” - n,) | 2
<) % T3 - - Ny (2¢)
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where X and V are electron positions and velocities, E is the electric
field, no is the unperturbed homogeneous background number density, the
superscript n denotes the time level, and ¢ is a centering parameter (e = 0
is perfectly time-centered). To analyze the system of equations given in

Eq. (2), we linearize, use the relation

n(l) =z - noax(l)/ax . (3)
employ the Fourier representation

E=F¢ exp(- iwt + ikx) + c.c.
for all perturbed quantities, and define

A = exp(- wAt/2 + ikuoﬁt/Z)

to obtain
(» - x'l)V = - eatE/m (4a)
(x - 21X = Tat (4b)
(1 -¢+ eeth)E = 41renoi . (4c)

The dispersion relation for this system of equations is easily determined:

(1- e+ ™™ oA N2+ Bat? =0 . (5)
For |wat| << 1, elU8t » 1 + jwat and Eq. (5) has solution

2
Xzzltia-%—:agw‘—%—t*’... , (6)
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22 2)1/2

a = wpAt/(1 + €°uat << 1 .

From Eq. (6) and the definition of X, we deduce

Re w = kug ¥ wp/(l + e“w At (7a)

and
2
Sl At
|>»2|z'|+ ;i .
- 2 2 1/2
2(1 + ¢ u?At )

One concludes from Eqs. (7a) and (7b) that the fast mode is damped
and the slow wave destabilized for € >0 and ku0 £ ) > 0. Furthermore,
[Im w| = (1/2)emPAt|Re w], i.e., the damping and growth rates are frequency

dependent. The same sorts of results are obtained with use of

n
E - (1+e) dme(n - ng) -e ™! (8)

in place of Eq. (2c).
A useful interpretation of the effects of finite € in Egs. (2¢c) and (8)
can be given by observing that these equations can be cast in a form

equivalent to

(=%
m

%; (3 + 47d + 4n0E) = 0 s (9)

[+%]

t

where J is the plasma current and o is an electrical conductivity

representing the interaction of the plasma with a resistive background.




For |o/w| << 1, the dispersion relation given in Eq. (1) becomes

“p in2o
w:kuoi- . ]/ZQ-W> . (10)
1+ 4mo
(kuo hat wp)

For o > 0 and ku0 > wp, the slow wave is unstable and the fast wave is
damped. This is the underlying physical mechanism for the resistive wall
amplifier[?].The structure of Eq. (10) is very similar to Egs. (7a) and

(7b) and permits an identification of a frequency-dependent numerical

conductivity.

An alternative algorithm to that given in Eq. (2) is

I‘: (1 - e)(vn+'|/2 - Vn-'l/2) + % E(Vn+1/2 _ Vn-3/2) =.'A-EEnAt/m (]-Ia)

XM x=T o yn-1/2 (1)
n
S% = - 4re(n" - ng) . (11c)

With € > 0, the time derivative of the velocity is backwards-differenced
! with respect to the electric field in Eq. (11a). Employing the definitions

and Fourier representation introduced earlier, we linearize and obtain the

f, bi-cubic dispersion relation
»
i
5 CIPUIE TLI (2 - 1% v wZath® = 0 . (12)
For wpat, << 1 Eq. (12) has one branch with solution given by A2 = - /(2 - ¢),

i which is damped for ¢ < 1. For wpit, le| << 1 the remaining solutions are

2.,,2
wp At

y AR I wht (1% jeuytt/8) - —5— (1+ ieprtM)z e,
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or equivalently

W R kuO tup - 1'ewP2At/4 (13a)

13%] =1 - ewplatl/a < 1 (13b)

for ¢ > 0. Thus, both fast and slow beam modes are damped. The damping
rate is ew%At/4 and vanishes in the limit that ¢ - 0. This algorithm

has an effective numerical conductivity which is positive for the fast mode
and negative for the slow mode.

For wpdt > > 1, Eq. (12) becomes

(1 - e/2n? = - wplath?

for one branch of solutions; and thus {A[ = wpat/(T - e/Z)”2 > 1

for € < 2, i.e., the algorithm is numerically unstable for large time

steps. The remaining solutions of Eq. (12) are given by

2 . _1

+_'l_< 1 2e >1/2
- 2,,2 2 4.4~ 2,2
2mP At wp At Wy At

A

for WEAtZ >> g, 1 and are heavily damped (lkzl<< 1).
For € = 0 and general value of wyAt, Eq. (12) simplifies to the

dispersion relation for the conventional leap-frog algorithm,
(2% - 1%+ w2ath? = 0

with solution

. 2 ... 2,2
sin (ku0 -~ w)t = ws"At /4 R
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which is stable for wpAt < 2. For small but finite € and a = wpAt very
nearly equal to 2, the dispersion relation in Eq. (12) can be expanded for

small perturbations §e and Sa, with respect to € = 0 and @ = 2,

(A8

2 3
pe, MO0 = Tie =0 @) +ge Y sk =0, ()
£=0 =2
where D(Xz; €, a) is given by Eq. (12) and D = 0 at A= fore =0
and @ = 2. Equation (14) then yields

s = - 6e(30,20

QE/W = . 8¢ . (15)

€e=0,0 =2 Az = -
This demonstrates that the introduction of a small amount of biasing,

0 < 8e << 1, shifts the stability boundary of the algorithm to slightly
smaller values of wplt.

A. B. Langdon has contributed the valuable observation that the
backwards biasing in Eq. (11a) occurs in a Lagrangian equation and is
invariant under a Galilean transformation. Thus, dissipation is introduced
in a way that is independent of reference frame; and artificial
destabilizationof a beam mode should not be expected when a drift is added.
In contrast, the backwards biasing in the first algorithm, Eq. (2), is
performed in the field equation, which is Eulerian in nature. The resulting
effects are not invariant under a‘Galilean transformation, and the mischief
caused in the slow beam mode is not so surprising.

Birdsall has commented that biasing the field equation in Eq. (2¢) is
equivalent to changing the dielectric medium in such a way that u% becomes

complex. This results in the destabilization described in Eq. (10).5
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However, with the biasing indicated in Eq. (11a), the equation of motion is

changed in a purely dissipative way, effectively

dv  dv ’ d2v

da T dat " ¢ dtz = - eE/m

where ¢” = €At/2 > 0; and upon Fourier analyzing, (w - kuo) + [w - kug +
jie (w - kuo)z]. This scheme should damp all waves for small values of wpAt.

One concludes that digital time filtering need not lead to artificial
destabilization of negative energy waves. Algorithms can be devised which
damp both positive and negative energy waves as an increasing function of
mode frequency and time step. However, in an explicit differencing scheme,
the backwards biasing of the difference equations necessary to achieve time
filtering is likely to make the time-step constraint for numeriéa] stability
slightly more stringent.

I am pleased to acknowledge many helpful discussions with Bill Fawley,
Bruce Langdon, and C. K. Birdsall, and am indebted to Brendan Godfrey for
posing the problem. This work was performed under the auspices of the U.S.
Department of Energy at Lawrence Livermore Laboratory under contract number

W-7405-ENG-48.
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F. Orbit Averaging: A Technique for Filtering out High Frequency Waves
and Fluctuations.

Vincent Thomas (Prof. C. K. Birdsall and B. |. Cohen)

A technique first used by Cohen et al. (Ref. 1), referred to as
orbit averaging, has been written for use in ESl,-our 1-D electrostatic code
in an attempt to filter out high frequency electron waves and leave the low
frequency motion of both particle electrons and ions and the associated self-
consistent electric field. In this method, the electrons and ions are ad-
vanced on their respective time scales, but the fields are solved for only
on the ion time scale. The field solver uses a time filtered source term,
the charge density, in order to filter out the high frequency phenomena.

For all cases considered here, the time filtering consists of an equally
weighted average. The flow chart is shown in Fig. 1. Also shown is the
scheme for moving from one macro time step to the next macro time step. The
velocities of the electrons are known at the short hash marks, and the velo-
cities of the ifons are known at the long hash marks. The fields are solved
for at the dots. After the fields are solved for, the electrons and ions

are moved from NAT-iAti to (N+l)AT-{rAti and from NAT-&Ate to (N+1)AT-§Ate,
respectively. The electrons must be moved in a series of short steps to
satisfy mpeAte <2. The electron time step and the ion time step will be re-
ferred to as the micro step and the macro time step, respectively.

in attempting to introduce some flexibility one may introduce
various biasing parameters. The first of these is in the field solver where

one uses Eq. (1)

%M L (1-e)vN . bme(n (x) - A_(x)) (1)
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When w.o Was larger than mpe' simulations of a cold plasma
produced clear cut oscillations, with frequencies at the lower hybrid
frequency. Runs were made for wce-s and 2.5 with mpe-1,2,3, and 4.

For W.a less than mpe, the oscillations were not as clear, and energy
conservation was poor.

Figure 2 shows an w vs k diagram for a particular set of para-

meters. The formula used to calculate the theory curve means using the

usual finite kAx correction appropriate to linear weighting,

(kAx)
wlkax) = (kAx%/ . (2)
ce

The difference between theory and simulation is only significant for modes

14 and 15. No k-space smoothing was used in any of these simulations and
so some of the simulations were of poor quality. The frequencies were
clearly visible in the electrostatic energy history plots in all cases, as
the simulations were done by exciting only one mode at a time. The modes
were excited with a sinusoidal perturbation in ion and electron positions.
For cold lower hybrid waves, it was necessary to use ¢ larger
than 1 to achieve satisfactory energy conservation. Using € greater than
1 amounts to an interpolation of the potential at a time later than the
(N+1)th macro timestep. For 0.6<e <2.5 the period of the hybrid oscilla-
tions observed was within a few percent of the expected period, assuming
the usual kax correction due to linear weighting. Figure 3 shows the vari-
ation of total energy vs. ¢, with large loss for small ¢. The field energy

and the kinetic energies damp at approximately the same rate; this means
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Here N+1 designates the (N+I)th macro time step which,

to solve for ¢
in general, could be different from the ion time step; for all work done
here the macro time step is equal to the ion time step. ni(x) is the ion
charge density at macrotime steps; ﬁe(x) is the electron charge density
averaged over all of the micro time steps from NAT--&Ate to (N+1)AT-iAte
(see Fig. 1).

Another biasing parameter can be introduced in the electron
mover. For the predictor step, the electrons are moved by E--V¢N, which
is taken to be constant in time. For the corrector iteration, one could
use an E(t) which is linearly interpolated from the (N)th to the (N+1)th

macro time step, as

N+1 N)

E(t) = - (1-bias2)veN + (t-NAT) (1+bias2) (;L-V e

where AT is the macro time step. In the simulations presented in this
report bias2=0. The effects of the parameter bias2 will be commented on
at a later time.

The primary advantage of orbit averaging is the reduction in the
number of particles needed for a simulation [1]., This is possible because
the high frequency part of the thermal spectrum is removed by this simula-
tion scheme.

Simulations have been made for cold and warm magnetized plasmas
and for warm unmagnetized plasmas using real mass ratios (e.g., mi/me-1836).
Preliminary results have been encouraging. Results of the three different
case§ will be discussed separately, with the results of the warm unmagnetized

simulations being deferred until a later date.
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Frequencies of oscillations for a cold magnetized plasma. The
parameters were: mpe-z.o, mce-S.O, mi/me-l760, the electron
time step was Ate- .03, the ion time step Ati =3,0, there are
512 electrons and 512 ifons, NG =32, and the amplitude of the
sinusoidal perturbation is '\oIO-6 of a particle separation.

The bias parameter € is equal to 1. The curve represents theory,

the points simulation data. Linear weighting was used.
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TE(T)

TE(O)

FIG. 3

20 30

Dependence of energy conservation on bias parameter €.

For these simulations Ate-3.0, Ati =3.0, mi/me-1836, mpe-Z.O,
wce-S.O, NG =32, L=32, and there are 512 cold electrons and
ions. The amplitude of the initial sinusoidal perturbation

was ~ 1076 of a particle separation. T.E.(T) and T.E.(0) are

the total energies at T(-upet-BOO) and at t=0, respectively.
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that the low frequency energy (e.g., field energy at mR:mLH) damps at the

same rate as the higher frequency energy (e.g., electron kinetic energy).
Representative plots of one run are shown in Figs. (4 and 5). The exchange
of electrostatic energy and ion kinetic energy is very clear, as is repre-
sentative of ion plasma oscillations. When the plasma is made warm, lower
hybrid oscillations are again observed. In addition, far better energy
conservation was obtained (less than 1% error up to mpet=-300) for all ¢
tried from .6 to 1. At present we have not included spectra! analysis on
this code and therefore large (and strongly nonlinear) initial excitation
was required to produce measurable oscillations.

The next step is twofold: first, to do extensive parameter
studies and to understand the effects produced L, those parameters, both
physical and nonphysical; secondly, to add suitable diagnostics so that
linear waves in warm plasmas may be studied. More physical simulation

models could also be used, such as k*B#0.
REFERENCES

1. 8. |. Cohen, T. A, Brengle, D. B. Conley, and R. P. Freis, "An Orbit-
Averaged Particle Code'', Lawrence Livermore Laboratory Report, UCRL-

82832 (June 1979). Accepted for publication in J. Comp. Phys.
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Same parameters as in Fig. 3 except e=2.0. (a) electron

phase space at t = 299.985 (b) ion phase space at t =298.5

(c) mode 5 field energy from t=0 to t=300 (d) total field

energy from t =0 to t=300.
- 36 -

[ R




‘I8)

O —
=< o0 7
= 5 O 12 -
> ! >< H: )
S L 0=
S 4 > 10 : :
5 S o= !
e & A

£ W - o
)
S , o SHEEEEEEE
= 2-'1 L] . D 4 { 1

, s < S
% 7 ) I
= | 2 1
(&) T = \1 A\
@ ! Q ] ] A
— T T b—d v
lJ—l -

20

Totol Energy (xi0')
3

FIG. 5

200 400  wpef

Same parameters as in Fig. 4. (a) electron kinetic energy vs.
time from t=0 to t=300 (b) ion kinetic energy from t=0 to

t=300 (c) total energy from t=0 to t=300.
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Section 11
CODE OEVELOPMENT and MAINTENANCE

A. ES1 Code

See Orbit Averaging in Sec. 1, Part E.

8. EM1 Code

No special progress to report.

C. EZOHAR Code

No special progress to report.

D. RINGHYBRID Code

This code is now being run with initialization provided by the
RIGIDROTOR code as described in the section following, in the Sherwood

abstract later in this QPR, and in an ERL report in preparation.
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E. RIGIDROTCR Code (Field Reversed Equil ibrium Solver)

Alex Frisdman

The following is a copy of the LIBRIS abstroct describing the
RIGIDROTOR code: o brief description of the applications of this
code appears 2lsewhere in this QPR.
e Alex Friedman RIGIDRGTCOR
DATE~ march, 1980 040888 98:44:01

rigid rotor equilibrium solver and particle code initial ization program

J. ©. berkelay
electronics research laboratory, cory hall
university of california. berkKeley =a 54518

415-642-3477

cde 7509 foriran iBE7 lires in use

ABSTRACT-

"rigidrotor" is a package which calculates field reversed equilibria
using the time-independsnt viasov equation, and outputs the fields and
a set of particle initial conditions so that these equilibria
may be used in particle simulations. the package was designed for use
with tha "rirghybrid” linearized 3d stability code, but is suitable
for other axisymmetric particle or hybrid codes with minor modification.

in the present implementation, exponential rigid
rotor viasov equilibria, with distribution functions of the form
f scexpl - ( h - omega X ptheta } ~ t 1, are computed on an r-z grid

using an iteration scheme similar to that of sparks and finn.
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the equation solved is :

( psi - thdot bnot rsquared 7/ 2 )
I a = r dens thdot bneot exp ( ——=—-=-—sosecoemmom e )
( pzimax ciemp 3

uwhere a = vector potential atheta. psi = r a, psimax = psi(o-point),
1 i3 the curlsquared operator. and the dimensionless
varicbles are those used in the "ringhybrid" code, see
cornell univ. 1ps rept. no. 268 (friedman, sudan. denavit).
note that it is possible to arrange for the output to appear
in any chosen units by setiing bnot appropriastely. the relation
is athetalouter wall) = bnot % nr / 2. thus, one need only
figure ocut what atheta(outer wall) is in one’'s wunits, and
then compute the correct bnot.

in these equilibria the current is carried entirely by hot ions with
gyroradii which moy range from infinitesimal (as in the hill vortex
equilibria) to of order the system size (as in ion ring equilibria).
a representation of the distribution function is obtained by assigning
locaticons and velocitias to particles in a manner which yields the
correct density and mean azimuthal wvelocity in each grid cell, within
smcll errors associated with finite particle size and the !imited number
of particles employed.

code usage and input variables are described on comment lines in the

:

source ijiself.

REFERENCES-the first two references describe the program and the normal ization,

respectively, though the latter is not difficult to figure out from
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the source, and the code is largely self-documented with comment 1ines.
the latiar references provide useful background infcormation on field

reversed equilibria.

d.friedman, proc.1580 sherwood meeting on iheoreiical aspects of
controlled thermonuclear researcn (tucson. arizona).

a.friedman, r.n.sudan, and j.denavit, "a linearized 3d hybrid
code for stability studies of field reversed ion rings,’
zornell university laboratory of plasma studies report no.268 (1979,
submitied to j.comp.phys.)

l.sparks, j.m.finn, and r.n.sudon, bull.om.phys.soc.24, 955 (1975).

b.marder and h.weiizner, plasma phys.12, 435 (1970).

d.v.onderson, j.kKilleen, ond m.e.rensink, phys.fluids 15, 351 (1972).

r.v.lovelace, d.qa.larrabes, and h.h.fleischmonn. phys.fluids 22, 781
(1973).

AVAILABILITY-

users can obtain a copy of the source from filem directory .tokeme

of user number 1234:

filem rds 1234 .takeme alwith. rr(esclend / t v

the file thus obtained will be named rrmmddyy, where mm is the month,

dd is the doy, and yy is the year that the source was created.

the source can be compiled using chatr: instructions cppear on

comment cards within the source. to list the source, type:

allout hsp <szource> ccsp. seq. box <{boxnumber)> rigidrotur / t v




ar

banner

whera <{usc?
{source’> is

{boxnumber >

DISTRIBUTION- unlimited

e i o b '"T!"'E!!!!'—"'!!!!lll.*

{usc> {source> ccsp. seq. box <boxnumber> rigidrotor / t v

i3 the appropriate user service center designator,
the name of the source file retrieved from filem, and

i3 the oppropriate box number.
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F. Radial Code Notes (R,R8,RZ,R62Z)
C. K. Birdsall

Method C

Radial weighting may also be done to advantage with particles
having charge density which is not uniform within the particle. Niels
Otani has pointed out several advantages of using pcloud*vl/r, such as:
having the center of charge and mass at the arithmetic center; producing
the familiar symmetric triangular particle shape when used with linear
weighting independent of r; having a simple weighting algorithm (less

operations than in Methods A and B). Let us see these in detail.

nominal particle shapes

p(r)

particle 1

particle 2
{ { 1 1 i L i
t T 1 I N i |
Fj-1 Sy F+1 Tj+2 Tp2 %3

As the charge per unit radius is p(r)2nrdrdz and o(r) ~ 1/r, this quantity
is constant. Because charge/dr is flat (as it would be in an x-y grid),
weighting charge to the grid rj's can be done as in x-y grids. That is,

the charge to be assigned to rj of particles 1, by linear weighting, is
r. - f
q J) %

-1.3-
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where f is the fraction of the nominal particle in the cell about rj,

r

. r
f o= f’“" 0 (r)dv /p“‘ o, (v

a nominal -
p-3 p-%

and dV = rdrd¢dz. So, with prml/r

f = (rj+i-rp-i»«rj+i-rj-i) = a/Ar = (rj+1-rp)/Ar .

Similarly,

q(rj+1) = qp(b/Ar) = qp(rp'rj)/Ar .

Note that there is no division by r-j of rJ.+| or rp as was true in Method

A and B, simplifying the weighting. Note also that the particle shape as
seen by the grid, that is, q(at r-i as rp is varied) is simply the same as
with linear weighting to rectangular grids. Thus, what is known about 5(5)
particle shapes fits S(r). Also, the symmetric digital filtering used in
rectangular grids, like (1,2,1) and compensation, like (-1,6~1), may be used

directly.

The 8 weighting is simply linear interpolation, to be used as

already given in Method B.

Hence, in 2d, full r,8 grid, Table 1 (of QPR 1V, 1979) is sim-

plified; the weights are

{ weighted area } . [sror(ar-sr)la
total weighted area ArAg

as in rectangular weighting. The charge weighting holds down to and at the
origin, with no specia%*éonsequencés-aswrp*O or rp-ﬂ. The nominal.particle
density blows up as 1/r, but the total charge of the rod or ring does not.
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B. |. Cohen notes that the charge density weighting of Method A,

as used in SUPERLAYER etc., is proper for use with Poisson's equation, where
charge density is wanted at the grid points, pj and not qj. (Finding charge
at the grid points is more for use with Gauss' Law where charge inside some
volume is accumulated.) Method A then uses linear weighting directly,
weighting particle density to the grid. (The exercise given in the write-up
of Method A on calculating the charge on the grid serves to check on charge
conservation.)

QPR HI 1979, p. 92 has pp-qp/(volume of charge) then gives
op-qp/anPSrdz. This volume appears to be valid only in the limit &§r—+0.

The exact volume is

r 2

\ outer ro—ri2
volume = / /ﬁdrdcbdz = | —— | 278z

. 2
Tinner

l“o"'ri
= (—-——-2 ) (ro-ri)dez .

If the particle center is rp- (r°+ri)/2 and particle thickness is ro- * =46r,

then the volumes are the same, with no need to consider §r+0.




G. POLARES: A Two-Dimensional Electrostatic R-8 Code
Niels F. Otani (Prof. C. K. Birdsall)

While it is often convenient and acceptable to approximate cylin-
drical systems with rectangular models, there are many cylindrical éystems
which exhibit effects not found in their rectangular counterparts. For ex-
ample, the diocotron instability boundaries for a non-neutral holiow cylinder'
of charge depend explicitly on the inner and outer radius,1 Clearly the non-
linear evolution of such a system would also be of some interest, and is
easily studied using computer simulation.

With this in mind, we are in the process of developing a two-
dimensional code which is based completely on the r-8 coordinate system

(polar-electrostatic = POLARES), for use on the CRAY. An appropriate weight-
ing scheme has been used to accumulate the charge density and fields on a
radial grid, and, partly as an experiment, a grid of Fourier amplitudes has
been used in the azimuthal direction. Both guiding-center and full-dynamics
time-centered leapfrog movers have been incorporated in the program in such
a way as to make them interchangeable for either species. A number of
graphics packages have also been written. All are easily inserted into or

removed from the main code or post-processor. Some allow interactive

graphics viewing via DISSPLA. Further '"'modular' diagnostics packages are

contemplated.

THE CODE

The program POLARES may be thought of as divided into five sub-
units: a main source (MAIN-S), a cliche file (INPCOMP), a binary module
library (POLARLIB), the executable file (POLARES), and an input file

(INPOLAR) .
- 46 -
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MAIN-S is a generally simple Fortran source usually consisting of
common blocks and calls to various packages in POLARLIB. This format allows
the user to insert various movers, charge weighting schemes, background charge
distributions, diagnostics, graphics packages, etc., with ease, thus contri-
buting to the flexibility of the code. One might suppose that this format
results in a slow code; indeed, we find that the running speed is around

500,000 particle-time-steps per minute of computer time using a full-dyn-

amics mover with 24 radial grid-points and 24 azimuthal Fourier modes. This

is not particularly fast, but we have not made full use of the vectorization
feature of the CRAY at the present time. Vectorization of the mover and
charge accumulator should yield significant savings in time.

Common blocks and grid dimensions are loaded into MAIN-S and
modules of the binary library POLARLIB during a precompiling sweep from
information supplied by the cliche file INPCOMP., Thus the number of parti-
cles, grid points, and Fourier modes are easy to change.

POLARLIB contains all the main building blocks of the simulation.
These include graphics packages compatible with POLARES, diagnostics, grid
charge accumulators, movers, initializing routines, a particle loader, and
a field solver. Further development, refinement, and testing of most of
these routines is envisioned; additional diagnositcs and graphics packages
are also expected to be created.

Some of the more important routines are outlined here.

RHOEWT and RHOIWT accumulate charge density on the grid from
particle electrons and ions respectively. One may envision the charge
weighting scheme as follows. We first lay on the polar plane a series of con-
centric circles each Ar outslde the one before it, out to a maximum radius a.

These represent the grid points, probably more properly called grid circles.

- 47 -
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Each charged particle with coordinates (ri'ei) is separated into two charged
particles of charge (rj+l-ri/Ar)q and (ri-rj/Ar)q located at (rj,ei) and
(rj+1’6i)’ respectively. Here rj and rj+‘ are the radii of the two r.:arest
grid circles, and q is the charge (per unit length). (By charge particles
in this code we of course refer to line charges extending infintely in both
directions parallel to the cylindrical axis of symmetry.) Each fractional
line charge is now considered as a sum of sinusoidal waves existing only on
its own grid circle according to the formula

M
]
o(8) = .£L_r (l + 2 2: {cos mg. cos md + sin me sin me»

2nr
me=|
where q' is the fractional charge of the sub-particle located on the grid
circle of radius r'. The weighting factor 1/r' arises from the formula

for a delta function in polar coordinates:

2 1 -
§°(xx;) = g Slrer) (142 2 cos m(8-8.)) .
i mes{
The 8 shape function will be made more general, essentially just changing

the coefficients in the sum, e.g., to drop off as 1/m2, implying a broader
particle, say, A8 wide, where A8 is something like 2n/M. Thus Fourier
amplitudes of the charge density are accumulated for each of the mode num-
bers up to M for each of the a/Ar grid circles. Notice that we cannot have
a grid circle of radius zero in the scheme. Therefore, in order to deal
with particles inside the first grid circle, we have devised a somewhat

ad hoc scheme. The idea is to replace each eligible particle with an equi-

valent charge distribution on the first grid circle. By 'equivalent' we
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mean that the new charge distribution produces the same potential outside
the first gri- circle as did the charge it replaces. Thus for particles

with r. <Ar we use the Fourier amplitudes implied by the charge distribu-
tion

m
M r,
o(g) = —3— (1 +2 ) (-;P) (cos me, cos me + sinmo. sin me))
m= |

2mAr

This scheme Has the advantages that (a), the long range force is correct
and (b), a particle crossing the first grid circle is represented by con-
tinuously varying charge density quantities. Figure (la) illustrates the
charge density resulting from a single point charge.

Once a charge density has been established on the grid, the
next step is to solve for the potential and electric fields. This is accom-
plished by the subroutine GRFIELDS. The task of GRFIELDS is fairly straightj
forward; a tridiagonal solver is used to find the Fourier components of the

potential Qjm from the finite difference version of the Poisson equation

12 On
r ar r

NN

°m = - prm

-

namely,

®em 2 im ™ (- 1)m . A Ggem G- ﬁq, . -lbmp
(Ar)2 I'j 2Ar r% Jm Jm

J

The potential is then used fo find the electric fields:

®G-1)m ?(j+1)m
2Ar

(€)=
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(Ee)jm = - f'—j-ojm .

In the last formula, the c¢c/s notation is meant to indicate that the cos m@
coefficients of (Ee)jm are derived from sin mé coefficients of ¢jm’ and
similarly the sin md coefficients are derived from the cos m8 coefficients,
with a change of sign. The multiplication by m (for V¢ angular component)
may be replaced by something like mdif(mA8) to imply a more local gradient;
also, both components might be weighted to reduce angle errors in E; these
techniques are common to xy codes.

At present the boundary conditions imposed are (a) ¢jn1=o at

Om 1

This corresponds to a system surrounded by a conducting cylindrical wall of

r=a for all m and (2) @J.m:O at r=0 for all m#0 and ¢, =90 m for m=0.

radius a.
The electric fields and potential are illustrated in Figure 1.

Notice the ripple in Er and Ee at the radius of the point charge. This

is due to the ripple in the charge density. |t is anticipated that smoothing
in the Fourier space of 8, or using a line charge broadened into a finite
size rod will eliminate this undesirable effect.

The particles are advanced to their new positions by one of the

movers available from POLARLIB. Thus far electron and ion guiding-center

movers MOVEGC and MOVIGC and ion full-dynamics mover MOVIES have been written.

All movers find the electric fields at each particle by reversing the steps
RHO IWT and RHOEWT used to compute the charge density. That is, for a parti-
cle located at (ri’ei)’ the electric fields are first found at (rj’ei) and

( ,ei) by (for § function weighting in 8)

Fj+‘
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S () (s)
E(r.,9,) = 5= (E .+2 3 (2% cos mo + E'>) sin me)
m=1 mJ

3t 2r 'Toj mj

and then are interpolated to the particle by linear weighting

r -r r.=r
- i+l i i
(o) = elrpe) (L) wete, 0 ()

The guiding-center mover uses this value of E to compute a

guiding-center velocity from the equation

where <, and c, are appropriate constants.

The full-dynamics mover obtains the new velocities from the
old velocities using a method analogous to the one employed in A. B. Lang-

don's one-dimensional electrostatic code ES1:

S (), &

ey = et By

3 (g At
+ 2 (g,)

(vg)y = (vy) 8't 2

t-3At

(Vr)2 = (vr)]coswcAt + (ve)15|nwcAt

(ve)2 - - (Vr)l sinw At + (ve)lcoswcAt
V) pagar = g * % (€D, %;
Vodergae = (olo * HUYR éit_
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where w_ = qB /mc.
c o

Both movers then move particles to their new positions according

to

2 2 2
= +
rt+At /Qrt (Vr)newAt) * (Ve)newAt
. (v )2 Atz
Nor (v.)  at + 4 B new
t r’new 2 rt
{v.,) At
9 new
= +
et+At et arctan F—;qv—j———xz
t r'new
(v,) t (v.)
N 0 :ew 1+ r’new
t Tt

where v v
ew -

t+At/2 for the full-dynamics mover.

The approximations given are valid for vAt/r «1. At present we

use the approximate formulas for particles with rt >Ar and r Ar. If

>
t+At

the approximate formula yields r <ar or if Fe < Ar, the exact formulas

t+At
are used.

Finally the new velocities of both guiding-center and full-dyn-

amics movers must be expressed in the new local coordinate system:

V. *+ v_¢0S A8 + v, sin A8
r r 0

v, =+ -v_sin A8 + v_ cos A®
8 r 8

where Ae=-et+At-et. Again, away from the origin we use
2
cos A8 ¥ 1 - {20)" sin 48 X A6

2 14
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The offset of the velocities from the positions in the full-dyn-
amics mover is necessary for the mover to be time-centered. The offset is
accomplished at the beginning of the run by the routine SETIV for ions (and

SETEV for electrons, to be written). by

= -9 At
(vr)l Vro m ErO 2
= -9 At
(vg), Voo " m S00 2
w At w At
_ c _ . c
(vr)-At/Z = (vr)] cos = (Ve)l sin ——
w At w At

. C C
“o)_aer2 (vedy sin == + (vg)y cos —

Initial particle positions and velocities are read into the code

from an input file (INPOLAR) by the POLARLIB module LOADR.
PREL IMINARY RESULTS

The code has been tried on a few systems, the time evolutions
of which are known.

Figure (2) shows one particle moving in the field of another
fixed particle. There is also a uniform external magnetic field present.
The charge does not feel the effects of its own wall image. We expect the
ExB motion of the particle to be along an equipotential and to be fastest
where |§| is largest. The computed trajectories are consistent with these
expectations. Notice the effect of the ripple of the fixed charge, especi-

ally evident when the guiding-center mover is used.
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Figure (3) shows some snapshots of an instability in a ring of

____ e 4 es .- sCharge in a uniform magnetic field, simulated using the guidiag-center mover.
Theory for the diocotron instability predicts all modes below m=6 should be
unstable for our parameters.1 This seems to be consistent with our simula-
tion.

Figure (4) illustrates the charged-sheet instability which has
been observed in electron beams and is believed to occur in auroral displays.
The mover used here is the full-dynamics mover, but the guiding-center mover
produced qualitatively very similar results. This allows us to be somewhat
confident that both movers are working correctly.

Figure (5) illustrates our attempt to simulate the Rayleigh-
Taylor instability of a neutral plasma moving in a gravitational field di-
rected radially outward. g simulates either VB or R drifts, which are signed,

hence lead to flute instabilities. The ions are pushed with a full-dynamics

mover while a guiding-center mover is used for the electrons. We observe some
peculiar behavior in the vicinity of the origin. This is quite likely an
artifact of the code and will be investigated in the near future. As is
obvious in the figure, the growth of the instability is quite rapid. When
gravity of the same magnitude is directed inward, the plasma is found to be

, stable. We also find a mild growth rate even in the absence of gravity. This

is possibly due to expansion of the warm plasma (in uniform B) or the abnor-

1Y
?’ mally large field fluctuations likely to be associated with so few particles
;, (1024 ions, 1024 electrons). The large time step used in this preliminary
( run (wCAt =1) is also a possible cause.
: Finally, plasma oscillations have been observed in a
g cylindrical plasma. |In this run, the electrons were pushed using
7

the full-dynamics mover with no external magnetic field present, and

' the ions were fixed. The frequency of oscillation was not correct however;
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we found oscillations occurring at about wpe, instead of the theoretical
value of wpe//f, the dipole resonance frequency. (Actually, in the presence
of the wall, and with our parameters, the theoretical resonant frequency

is lowered slightly to pre/3.) No explanation for the discrepancy is

offered at this time.
FUTURE DEVELOPMENTS

The code POLARES has thus far produced encouraging results
though most are as yet qualitative in nature. It is hoped that further
work with the code will produce quantitative results and clear up problems
already encountered.

Definitely on the agenda are vectorization, which should result
in considerable savings in computer time, smoothing in 9-Fourier space,
and improvement in the diagnostics. Results of these developments w.ll

be reported in a future QPR.

REFERENCES
1. Janes, G. S. et al., '""New Type of Accelerator for Heavy lons'', Physical
Review 145, May, 1966, pp. 925-952.
2. Webster, Harold F., and Hallinan, Thomas J., "Instabilities in Charge

Sheets and Current Sheets and Their Possible Occurrence in the Aurora',
Radio Science 8, May, 1973, pp. 475-482.
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FIG. 1.

FiG. 2.

(a)

(b)

FIG. 3.

FIG. 4.

FIG. 5.

FIGURE CAPTIONS

Charge density, potential, and electric fields (in arbitrary units)
generated by a line charge located at r=16Ar, 6 =n/2. The radial
grid appearing in the plots is real, but the 8-grid is generated

by the plotting routine. a=24Ar, M=24,

Orbit of a positively-charged particle in the field of a fixed posi-
tively-charged particle lorsied at r=16Ar, 9 =7n/2. a=24Ar, M=24,
Full-dynamics mover: in cgs, ‘nrqutZ/m=2, qBoAt/mc=O.5, 1500 time-
steps. Initial conditions for the mobile particle: r=8Ar, 8=17/2,
vrAt=0, veAt=O.667.

Guiding-center mover: in cgs, lchAt/Bosz, 3000 timesteps. Initial

conditions: r=6.667Ar, 6 =7/2,

Instability in a charged ring using the guiding-center mover, 1024

particles uniformly distributed between r =9Ar and r = 11Ar, lchAt/Bo

=0.02, a=16Ar, M=16.

Charged-sheet instability using the ‘ull-dynamics mover with 1024
particles, prt=0.9, -.\)c.ﬁt=], a=24ar, M=24,

Simulation of a uniformly-magnetized plasma in a gravitational field
directed radially outward. A full dynamics ion mover and an E x8
guiding-center electron mover are used. Initially the plasma is
uniformly distributed at radius 8Ar. Parameters: wciAt=l,

2 2
wpiAtQO-ZZ, wpe/lwcel =0 ./w_ ., g=0.0625(r/Ar) grid points/(At)Z,

pi’Yei

1024 electrons, 1024 jons, a =24ar, M= 24,
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cecetrsemerates oo - - Dispersion Relation® Miver for ca‘tinearized - Fwo-Fluid Umiferm Plasma
Model

Niels F. Otani (Prof. C. K. Birdsall)

A simple solver is being developed for the dispersion relation
associated with a linearized, magnetized, electromagnetic, two-fluid, uni-
form plasma model. The model allows an isotropic temperature for each species.
The unperturbed quantities Ny Ts’ and Bo are uniform in space and constant
in time, and neither species is allowed to drift. The linearized equations

required to describe this system are then as follows:

3

. — + T . =
| ot 6"5 "o 6!5 0
v Yy T Sn q sv
s . . _S sV S . _S (§E + st)
at m n m - c -0
s o] s
brmn

o 1 3SE
= o —
VXGE c quéys c adt

368

VXSE =t T

of|—

where s refers to the species involved (here electrons and ions). This code
is intended as an educational aid only; the zoo of small-amplitude waves and
oscillations resulting from this set of equations has been well-understood
for some time.

Allowing the perturbed quantities to have the dependence
exp(i(ker~ut)), the dispersion relation for this set of equations is easily

found to be‘
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det[8 (w,k) +Zw§ 2(w,k)] =0

S

1

Q = .
s 2 2
1 a bs(l a_cos 8)
B 2, _ .2 b
1 - asin® -b a_sinBcosH ia b sinBcosd
s s s 5's
sinfcosb 1 - a cosze ib (1 - cosze)
a ° s s 3
. . . 2
-ia_b_sinfcos® -ib (1 - a_cos“s) 1-a
s s s s s _
kzczsinze - wz -kzczsinecose 0
gs = -kzczsinecose kzczcosze - wz 0
0 0 -wz
a = M KTS ﬁ b = Q—S
5 m 2 s W
s W
I
cosf =
18,1 1%
q 8
Q@ = =2
s m.c
S
2
) lmnoqS
wt =
s m
s

The dispersion relation may be expressed as a 30th-degree poly-
nomial in w, but generally most of the roots are zero. The code therefore

samples the value of the polynomial at w amd th where is much

test est test
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smaller than any frequency intrinsic to the free parameters of the system.

Then log, f(2uw V/f(w ) factors of w are divided out of the polyno-

test test

mial f, and the new function is used in Steven Au-Yeung and Alex Friedman's
root solver code SOLVER® to obtain the various branches of w(|k|) (8 fixed).
This procedure is necessary as SOLVER often has trouble with functions hav-
ing several equal roots. An exampie of the output is shown in Fig. 1.
Future development of the code will allow plotting of w(8)
(Ik] fixed) and also permit the user to obtain relative amplitudes and
phases of 6§, 8B, dn, dv, etc., which provide information about the nature
of the mode. Either the subroutines used with SOLVER or a complete code

will be made available to users.
REFERENCES

1. Allis, W. P., Buchsbaum, S. J., and Bers, A., Waves in Anisotropic
Plasmas. Ch. 1. M.1.T. Press, 1963.

2. Au-Yeung, H. Stephen, and Friedman, Alex. ''SOLVER: An Analytic
Function Root Solving and Plotting Package.'' Electronics Research
Laboratory: University of California, Berkeley, August, 1979. Memor-
andum No. UCB/ERL M79/55.

l. RJET Development

No special report.
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w(k)

12.0

8.0

8.0

2.0
|

v

eatttiememEEa~ ol

seem
A AR AR A AR AR AR Aoy irreore et

Program output generated for c=1, 9=0 (k1=0)’ Qe=-3.6, Qi=0.h, mp;é,
wprZ with labels and velocity-of-light lines added. Notice how the

electron- and ion-cyclotron modes merge into the Alfven mode at low k.

Also present are the R- and L-electromagnetic modes as well as bands

marking the characteristic frequencies Qe’ 2., and up=¢m§e+wz.?¥6.32.

pi
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J. Software Developments

Niels F. Otani

A outility routine. DDBAMAKE, nos been crected for us2 2n the Q-mochine

for the purposs of focilitating the corvversich of fr33 files into <ddSe

fites. Tne code is 2specially useful whzn several 20 {ilas have been
czrarated on the R-maching or sent fraow the Zroy to Lo wiswad as dddD files

uzing TalPLOT.  The routine may e obisinsd rrom FILIN 3y typing:

filem rds 1213 .public 2d4€3mare

SR ofirsh oentry., ARiso inciuded in tre

reutine DDEM. The latter i3 a dd8@ f:ile editor described in a previous

' 1
. GPR which i5 often useful in conjunciion with this orogram,

ne exegcut2 line for DDIOMSKE :=

dd3Bmake box bnn anyid L oerd 1 S

I{ the box and id are omitied. DDP2BMAKE will premst for ihis information

1 "end" iz omitied in the executs Iin2. co?Imake will atiompd o

(
v, convert any files bejianing with "{1237 inlo ED Files. The new o0<D
.
v files will relain the two identifying characisrs oi ‘leir a2ld 80
7
)
¢
'
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Secetion 111
PLASMA SIMULAT!ON TEXT

A contract has been signed with McGraw-Hill for the text to
be delivered to them Dec. 1, 1980, duly shortened and updated. No

further progress will be reported here.

Section WV
SUMMARY of REPORTS, TALKS, PUBLICATIONS

Abstracts of papers to be presented at the Sherwood Fusion
Theory Meeting April 23-25 at the University of Arizona, Tucson follow.

A listing of papers dealing with instabilities due to cur-

rents in diode regions is also given.
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FRM and ION RING EQUILIBRIA for the RINGHYBR!D CODE

Alex Friedman
Electronics Research Laboratory
University of California
Berkeley, CA 94720

We have developed a new method of generating axisymmetric field
reversed equilibria for the RINGHYBRID code, a linearized 3d hybrid code
used for studies of the low-frequency stability of such configurations!»2,
Equilibria of known functional form are calculated numerically, and :
appropriate particle initial condition and magnetic field data are used : '
to initialize the hybrid code.

Exponential rigid rotor Vlasov equilibria, with distribution functions ;
of the form f(xexp[-(H-QPe)/T],are computed on an r-z grid using an
iteration scheme similar to that of Sparks and Finn3. In these equilibria
the current is carried entirely by hot ions with gyroradii which may range
from infinitesimal (as in the Hill vortex equilibria) to the order of the
system size (as in ion ring equilibria). A representation of the distribu-
tion function is obtained by assigning locations and velocities to particles
in amanner which yields the correct density and mean azimuthal velocity in
each grid cell, within small) errors associated with finite particle size and
the limited number of particles employed (several thousand). RINGHYBRID
advances these particles along their equilibrium orbits in the time-
independent, self-consistent zero order field. (For stability studies the
code simultaneously advances linearized displacements from these orbits, as
well as linearized quasineutral fluid equations for cold ion and electron com-
ponents, and self-consistent first order E and B fields, which are fully 3d.)

A variety of field reversed mirror and ion ring equilibria have been
obtained; when the equilibrium field and particle initial condition data are
used in RINGHYBRID, particle moments remain nearly constant in time. Orbits
are, in general, quite complicated, and preliminary indications are that
many are truly stochastic?. The complexity of moderate-gyroradius FRM
orbits arises from the fact that particles moving along closed field lines
may or may not reflect in the high field reqgions, and furthermore may pass
near the field null during their gyratory excursions. Also, the rate of a
particle's azimuthal drifting motion depends strongly upon where it lies on

' its orbit in the r-z plane.

Previously, equilibria were generated by injecting bursts of particles
into an external magnetic field and solving Ampere's law (with a resistive
source term -d,dAg/3t included to damp collective oscillations) repeatedly
until Ag became nearly stationary. While this produced equilibria which were
! useful for ion ring stability studies?, the new method affords greater control
over the resulting equilibria, and so parameters may more readily be varied.

\ The package which computes equilibrium fields and particle initial con-

[ ditions is called RIGIDROTOR, and is available for general use through LIBRIS
) on the NMFECC CDC-7600.
i "Research supported by the U.S. Department of Energy under Contract No. DE-ASO3-

76SF00034, Project Agreement No. DE-ATO03-76ET53064.

¢ 'A. Friedman, R. N. Sudan, and J. Denavit, Proc. Eighth Conf. on Numerical
, Simulation of Plasmas, Paper No. PC-13, Lawrence Livermore Lab. Conf. Proc.

. No. CONF-780614 (1978); Cornell Univ. Lab. of Plasma Studies Rept. No. 268
(1979, to appear in J. Comp. Phys.).
3 2A. Friedman, J. Denavit, and R. N. Sudan, Bull. Am. Phys. Soc. 24, 956 (1979).

3. Sparks, J. M. Finn, and R. N. Sudan, Bull. Am. Phys. Soc. gﬁ:_ESS (1979).
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SATURATION OF THE LOWER-HYBRID DRIFT INSTABILITY=

Yu-Jiuan Chen & C. K. Birdsal)l
Electronics Research Laboratory
University of California
Berkeley, CA 94720

Bruce |. Cohen
Lawrence Livermore Laboratory
University of California
Livermore, CA 94550

Saturation mechanisms of the lower-hybrid drift instability in the low
drift velocity regime (v €Vipermal i n) are studied both in a 1d particle-
hybrid simulation and a fonlinear per?urbation theory; v, is the relative
drift velocity between the electrons and ions. We find ghat ion traping sta- h
bilizes the instability when v, is kept constant, unless current relaxation
(v, +0) occurs via quasilinear diffusion. We also find a new saturation
mechanism: a nonlinear ion orbit perturbation induces a frequency shift
which is particularly effective in saturating long wavelength modes.

We use a one-dimensional slab configuration. |In zero order, the ion
pressure gradient cancels the equilibrium electric field force. in first
order, the ions are treated as unmagnetized, and the electrons are assumed
to respond to the wave linearly, because wcj « le«wpe,mce.

In simulation of small amplitude modes, there was good agreement of
the linear growth rate, real frequency, and influence of finite beta effects
associated with the nonresonant gradient B electron orbit modifications
with linear theory. For large amplitude modes, at zero plasma beta and zero
electron temperature, the simulations show that, when v4 is kept constant,
the lower-hybrid drift instability is stabilized by ion trapping. When vy
is allowed to vary in time (for example, as a self-consistent consequence
of momentum conservation), stabilization occurs as result of current relax-
ation with v4>0, at a much lower level, a little below Davidson's prediction
for vg/ve; <1, as given by!

2
égs - 1 Mo VE

nt, = V..
|

8(1+w? /w2 ) ™ \ Vi
pe ce

Analytic theory shows that a finite perturbation of the ion orbits leads
to a nonlinear frequency shift that can stabilize the lower-hybrid drift in-
stability. However, the resulting saturation level is small only for modes
with wavelengths much longer than that of the most unstable mode. This re-
sult is obtained from a self-consistent solution of the Vlasov-Poisson
equations using perturbation theory in which the nonlinear dielectric func-
tion and the nonlinear temporal evolution of a single unstable mode in the
low drift velocity regime are calculated analytically,

“This research was supported in part by the Office of Naval Research under
Contract NOOO14-77-c-0578, and in part by the Department of Energy under
Contract No. W-740S5-ENG-48,

IR. €. Davidson, Phys. Fluids 21, 1375 (1978).
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INSTABILITIES DUE TO CURRENTS IN DIODE REGIONS

(C. K. Birdsall)

Interest in these instabtlities has varied in time; some claim
that this interest reyives on about a seven year cycle, beginning with the
work on limiting current (or perveance) by B. Salzberg and A. V. Haeff in
the late 1930's and that of J. R. Pierce in the early 1940's. We may be
near another peak now. While later cycles have tended to progress beyond
earlier work, there is evidence that later workers have tended to miss

earlier work.

Starting in 1959, our plasma theory and simulation group contri-
buted some insights into these problems. One insight from simulation was
that the diode current instabilities could grow into large amplitude oscil-
latory steady states (w‘%mp). Another was that the time-average of the
oscillatory current was larger than that obtained from time independent

' analysis.

A list follows of representative (but not exhaustive) papers

> of our group and related work done elsewhere in the 1960's. The papers
\ :
) themselves provide more references. We commend them to those beginning to :
‘4 work on current instabilities: in diode regions as such, or in sheaths,
)i
?j divertors, guns, accelerators, propulsion devices, direct converters, etc.,
t
‘ etc.
(~
o
y
7
'
[ ‘7] -




Tnstabilities due 2o Currents in Diode Regions: Selected References in 1960's

1960
Lomax, R. J., Transient space-charge flow, J. Elec. and Cont. 3, pp. 127~
140, August.
1961 h
Birdsall, C. K. and Bridges, W. B., Space-charge instabilities in electron

diodes and plasma converters, J. Appl. Phys. 34, pp. 2611-2618, December.

Lomax, R. J., Unstable electron flow in a diode, Proc. |.E.E. Part C, 108,
pp. 119-121, March.
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