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INTRODUCTION

The problem of tracing rays along a propagation path with range-dependent
sound-speed profiles (SSPs) has confronted workers in the field of underwater
acoustics for many years. Not only are conventional ray-tracing techniques
expensive in terms of computer time, but also such ray tracing is redundant
for many applications because ray trajectories are cyclic within a given SSP
zone. In addition, when the ray reaches a boundary between two adjacent SSP
zones, one must decide how to trace the ray across the boundary. This is a
difficulty because Snell's law does not apply in range-dependent environments.
These problems are minimized in the Adiabatic Invariant Approximation (AIA)
method, which assumes that the phase integral, J, is constant alcng the entire
track.1 One only has to compute J for several arrays in each adjoining zone
to determine which sound speed is appropriate there, because a discrete sound

speed is associated with each value of J.2

Thus, only the value of J for the
appropriate ray angle and the associated horizontal sound speeds over the
length of the SSP zones are required in order to calculate the effective
horizontal sound speed (EHSS). As a test of this method, travel times for

sound signals from depth charges fired from the R/V VEMA and HMAS DIAMANTINA

1 DE Weston, "Guided Propagation in a Slowly Varying Medium," Proc. Phys. Soc.

London, 73, 365-384 (1959).
RC Shockley, "Paraxial and Nonparaxial Ray Speeds in Strongly Range-
Dependent SOFAR Channels" J. Acoust. Soc. Am., 64, 1171-1177 (1978).
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off Perth, Australia, and received at Bermuda and Fernando de Noronha were

obtained3’4 and sound speeds computed for comparison with those predicted by

the AIA.

[ METHOD

The great circle paths between the shot positions and hydrophones were
calculated on a computer. The computed paths were then overlaid on a bathy-
metric chart of the world (Fig 1). Bottom depths and typical SSPs were
selected at various intervals along these paths and used for input to the
RAYWAVE proqram5 for obtaining the arrival anqgle of rays at the hydrophone.
The SSPs were also used for computing the value of adiabatic invariant, J, for
the AIA sound-speed determinations. A weighted average of these sound speeds,
one for each SSP reqime, was calculated for the EHSS over the great circle

paths. The sound speeds and ranges are shown in Table 1.
F SOUND-SPEED PROFILES

Archived SSPs were culled from the NODC (National Ocean Data Center) files
for the South Indian, Southeast Atlantic, and North Atlantic oceans. Nine of

these, which were in the proximity of the propagation path for the season when

\ 3 "Notes and Personalia,” Trans. Am. Geophys. Union, 41, 670 (1960), submitted
by C Hartdegen.
E 4 Personal Communication, C Hartdegen, Palisades SOFAR Station, FPO NY 09560,
f 5

Naval Undersea Center, "Raywave Il: A Propagation Loss Model for the
Analysis of Complex Ocean Environments," NUC Technical Note 1516, by WH
Watson and R McGirr, 1975
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the field work was done, were selected as representative of the SSP provinces
along the path. The locations of the selected profiles, A through I, are
shown in Fig 1 and the profiles themselves in Fig 2. The latitude, longitude,
and date of the profiles are listed in Table 2.

Profile A, which is typical of those in southern waters off Australia, has
a surface sound speed of 1507.0 m/s, a shallow surface duct, and a deep (1200
m) sound-speed minimum. The next two profiles (B and C of Fig 1 and 2) lie
south of the Antarctic Convergence, have very low surface sound speeds (near
1460 m/s), a very shallow surface duct, and a sharp sound-speed minimum at a
depth of 250 m. Profile D, south of the Cape of Good Hope, is north of the
Antarctic Convergence, has a broad sound channel with the axis near 900 m, and
a shallow surface duct. Profile E, near the Walvis Ridge, has a much higher
surface sound speed (1525 m/s), a very shallow surface duct, and sharp nega-
tive gradient that persists down to the sound-speed minimum at 700 m. Profile
F is on the Mid-Atlantic Ridge near Ascension Island. It has a high surface
sound speed near 1535 m/s, a shallow surface duct, and a sharp negative gra-
dient down to the SOFAR axis at 900 m. Profile G, on the Mid-Atlantic Ridge
just north of the Equator, has a surface sound speed of 1541 m/s, a sharp neg-
ative gradient, and a broad minimum near 900 m., Profile H, near Rermuda, has
a relatively deep surface layer (375 m), and a deep (1100 m) sound-speed mini-
mum of 1491 m/s. Profile I, at Fernando de Noronha, has a surface sound speed
of 1543 m/s, a 30-m surface duct, and an axial sound speed of 1481.2 m/s.
These profiles clearly exhibit distinct characteristics pertaining to their
separate hydrologic regimes. Some support continuously refracted (RRR) trans-
mission, and others (profiles B and C) support refracted/surface reflected
(RSR) ray paths. Because the deep sound channel is present at both the Aus-

tralian and Rermudian ends of the propagation paths, but not in the middle,
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ray paths change from RRR to RSR at the Antarctic Convergence and then back to

RRR again. The deep sound channel thus narrows and shoals, then becomes broad

and deep. Clearly, ray tracing through such complicated and diverse SSP re-
gimes is a challenge to any program and presents a good test for the ATA

method.

BATHYMETRY

The source area is over the deep Continental Rise off Perth, Australia.
Propagation was initially across the basin west of Perth, then across the
southeast Indian Ridge, the Kerguelen-Gaussberg Ridge, the East Crozet Rasin,
and the shoals around Crozet and the Prince Edward Islands before entering the

South Atlantic's Agulhas Rasin. From there the path crossed the Cape Rise,

the Walvis Ridge, the Mid-Atlantic Ridge (twice), and the North American Rasin
before reaéhing the SOFAR hydrophones on the Bermuda Pedestal at 1322 m depth.
The path to Fernando de Noronha is similar but crosses the Mid-Atlantic Ridge
only once before reaching the hydrophones at £24 m depth.

In order to simplify the task of reading bottom depths along such a com-
plicated path, 50 contour crossings were picked from the chart (Fig 1) and
their ranges from the hydrophones tabulated. This information was used for
input to the RAYWAV[5 program for computing nropagation lToss and arrival-anqgle

information.




COMPUTING THE ADIABATIC INVARIANT

The adiabatic invariant, J, was computed for each of the SSP regions thus:

J =6 c!sing dz (1)

where c is the local depth-dependent sound speed, @ is the ray angle with the
horizontal, and z is the depth coordinate. The integration is over one ray
cycle and, in the RAY 2 program used,6 four cycles were computed for redun-
dancy. The program smooths each SSP by means of a cubic spline fit before
integration.

Values of J were computed in this manner for angles of from 0.5 to 20 deg
in 0.5 -deg intervals for each of the SSPs. These values, shown in Fig 3,
indicate the range of J for the range of angles selected for the SSPs. Any
sharp discontinuity in these curves indicates that either there was an error
in the SSP data, or that the ray path type has changed (eg, from surface duct

to refracted-surface-reflected).

COMPUTING AVERAGE RAY SPEED

The average ray speed, c, was calculated for each of the eight SSPs for

various values of J by the computer program RAY 2.6 As shown in Fig 4, some

of these curves have a peak at relatively low values of J. This initial peak

6 Naval Ocean Systems Center, "Phase Integral Algorithms for Signal Speeds in

Range-Dependent Sound Velocity Profiles," NOSC Technical Report 412, by RC
Shockley, 1978.
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0(Z 1000m)deg)

Figure 3. Plot of J values versus ray angle (0) with the horizontal
for the SSPs for a source depth of 1000 m. Identification
of curves is keyed alphabetically with those of Fig 2.
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separates the regions where continuously refracted propaaation takes place (to
the left of the peak) from the RSR region. for example, the points for pro-
file C, south of the Antarctic Convergence, are all to the right of the pea¥,
indicating that propagation is entirely in the PSR mode, as could be surmised
by inspection of the SSPs (Fig 2). Curve H exhibits no peak for the values of
J plotted, indicating that RRR propagation prevails. Since this is the pro-
file for Bermuda and has a sharp thermocline and pronounced SOFAR channel
(curve H of Fig 3), this is a correct interpretation. The ather curves of Fiq
4 are intermediate between these two types and indicate hydroloqic reqgimes

that support both RSR and RRR propagation for different J values.

COMPUTING EHSS

EHSS, the speed of signal propagation between widely separated sources and
receivers, is calculated as the weighted average of ray speeds in each SSP

zone according to the following re]ationship:6

T = EHSS = R/Y <R1/61> (2)

1

where R denotes the total range, Ri the distance traveled in region i, and C;
the average horizontal ray speed for the pertinent eigenray in the region. In

this report, the fraction of the time spent in each reqion is assumed to be

) half the zone width. For example, the time spent in SSP region C was taken as
the sum of half of the range between B and C and half that between C and D.
For the terminal segments of the paths (A-R, G-H), the ratios were 2/3 and

1/3, the 2/3 being at the end. The rays carrying the principal amount of

. SR - m -
IS ISR e




enerqy were the 5.5 -deg ray at Bermuda (Fig 5) and the 6.5 -deg ray at

Fernando de Noronha (Fig 6). For the weighted average, the ray speeds corre-

sponding to J values for these angles were read from the curves of Fig 4.

RESULTS

By means of the Adiabatic Invariant Method, the calculated EHSS between a
shot point at 1000 m near Perth, Australia, and SOFAR hydrophones near Bermuda
was 1482.3 m/s. This compares favorably with the measured values, which
ranged from 1481.0 m/s to 14R8.,4 m/s for the six 200-Tb shots fired from VEMA
and 1480.2 m/s to 1482.0 m/s for the three 300-1b shots from DIAMANTINA, For
the later shots, an independent calculation using RAYWAVE7 gave a sound speed
of 1478.0 + 0,8 m/s.

For the path to Fernando de Noronha, the AIA method gave an EHSS of 1480.4
m/s, which compares favorably with the field measurement of 1480.1 + 0.9 m/s.
An independent calculation using RAYWAVE7 gave a sound speed of 1473.4 + 1.2

m/s,

7 Naval Ocean Systems Center, "Underwater Sound Propagation between Perth,
Australia, and Bermuda: Theory and Experiment," NOSC Technical Report 585,
by J Northrop and C Hartdegen, 1980.
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Figure 6.
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Plot of the percent intensity of sound at
Fernando de Noronha versus ray angle for the
propagation path to Australia.
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CONCLUSIONS AND RECOMMENDATIONS

The AIA method of computing EHSS in a range-dependent environment is prac-
tical, accurate and, in terms of computer costs, an order of magnitude cheaper
than RAYWAVE. For a travel path almost halfway around the world (Australia to
Bermuda), the AIA methcd predicts an FHSS that is very close (within a few
meters per second) to the measured value and at a fraction of the cost of
conventianal ray-tracing techniques. It is recommended that additional AIA

predictions be made for ather propaqgation naths where shot data are availahle.
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