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Notation

Mpq pg-th raw moment of order (p+q)

qu pg-th central moment of order (p+q)

(o) Binomial coefficient () = priatpyT

la-Db | Absolute value of a-b

(apo "’;aop)(u,v)p A homogeneous polynomial of
variables u and v with coefficients
850, " " ,%op.
Is the same as
a0 Py (g) ap_l'lup—lv°”
pl—)l)al'p_l uvP~1 +aopvp

A | Determinant of a matrix

G A group, either abstract or transformation

X Vector .

X Matrix

D(G) Operator group representation of group G

D(R) Operator corresponding to element R in group G

D(G) Matrix representation of fhe group G

éij Kronecker Delta Function

Dij(R) ij-th element of the matrix representation

corresponding to element R in group G
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Abstract

This thesis investigates the application of two-
dimensional moment invariants to image pattern recognition.
The general problem studied is how to identify an aircraft
target and its orientation in real time. The method of
moment invariants provides a clever feature extraction
technique to reduce the information in an image to a
finite number of quantities which are translation, size,
and rotation independent. Most of the previous work on
i image pattern recognition has been based on the results

obtained by M. K. Hu, who relied on the theory of algebraic
d invariants. In this thesis, a set of moment invariants is
derived from the group-theoretical properties of the two-

dimensional rotation group \applied to the moments of an

: image intensity function. It is shown that Hu's invariants
can be obtained from .,this set and is, in fact, an equivalent
4 -

. complete description of the image. The application of group

methods tc moments presents a general procedurce for cal-

4

culating moment invariants under any linear {ransfocrmation.

-

\1 The image signal effect of thresholding the background

clutter is also discussed.
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I. Introduction

Artificial intelligence has long been an area of much
study, and the ability to recognize visual images represents
a major effort. However, research on pattern recognition has
been hampered by the lack of a general theory of feature
extraction. That is, what properties make one image unique

from another, and how are those properties ranked according

to their importance in the identification of the image?
Generally, studies in pattern cecognition have relied on
heuristic criteria for feature selection. The method of
moment invariants developed by M.K. Hu (Ref 1: 179-187)
provides a clever feature vector with which an image may be
described. This thesis further investigates the application
of two-dimensional moment invariants to image signal
processing to identify a three-dimensicnal object and its
orientation.

The general problem formulation is how to efficiently
utilize in real time visual information signals from an
optical system for the identification and analysis of the
visual pattern. Examples of the optical systems in question
may include television monitors, infrared sensors, or even
laser radar returns. Usually, the information content of
even a;single image is orders of magnitude greater than what
may be actually needed to recognize the object. The
method of moments provides a systematic procedure for

1




extracting numerical features from an image. By compiling
a "library" of moment invariants for an object set, it may
be possible to divide the feature vector space into

scparable regions by some type of classifier.

-
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II. Previous Development

The original concep£ of using moment invariants for the
purpose of visual pattern recognition was first published by
M.K. Hu in 1962 (Ref 1:179 - 187). A framework was estab-
lished for deriving a complete set of two-dimensional moment
invariant functions under translation, rotation, and
similitude. His approach was related to the study of
algebraic invariants based on the work of the nineteenth
century mathematicians Boole, Cayley, and Sylvester. In-
terest declined in the study of invariant forms following the
initial nineteenth century work, but the application to
visual pattern recognition has generated much recent interest.

S.B. Dudani extended the moment invariant concept to
the identification of three-dimensional objects in his
masters thesis (Ref 2) and in his doctoral dissertation
(Ref 3) on an experimental study of aircraft identification
using moment methods. Dudani's work formed the starting

point of the U.S. Navy's algorithms in their Automatic

~

Aimpoint Selection and Maintenance (AUASAM) program and also

-

the U.S. Air Force's Image Processing Automatic Acquisition

-

? Control System (IPAAACS) conceptual design study (Ref 4:45).
i* Dudani oriented his study toward video imagery and only used
the information contained in the second and third order
moments calculated over the image silhouette and boundary.
After constructing classifiers (Bayes, K-nearest neighbor,

sequential) over an object set, it was shown that the

i 3
) . , e . . I




classifier's performance was superior to human test subjects.

More recently, M.R. Teague established a framework for
describing an image in éerms of a finite number of moments
(Ref 4). The inverse problem of how to reconstruct an image
given a finite number of moments was addressed and served to
ijllustrate the information content of successively higher
order moments. For example, the second order moment
approximation to an image intensity function is equivalent
to an ellipse of constant intensity magnitude. A set of
moments and moment invariants was also derived based on the
orthogonal Zernike polynomials. In another paper, Teague
described an optical processing scheme to obtain image
irradiance moments of arbitrary order (Ref 5). The optical
wave limitations on accuracy was also discussed.

Recently, Texas Instruments used moment invariants as
part of the feature vector for a guidance algorithm in a

demonstrati:on at Eglin A.F.B. The algorithm was slated for

use in a mini-computer for real-time performance (Ref 6).




I1I. Definition and Theory of Moment Invariants

Historically, M.K. Hu first conceived the idea of using
moment invariants for pattern recognition of visual imagery
(Ref 1: 179-187). His approach will be followed in this
section. The moment invariant functions are related to the
algebraic invariants, and a complete set of invariants is

derived under translation, rotation, and similitude.

Raw_and Central Moments
The concept of moments is not new, being used extensive-
ly in classical mechanics and statistical studies. The

two-dimensional (p+g)th order moment of a density distribu-

tion function p(x,y) in Cartesian coordinates is defined as

“r°.p
w = [ _ .
pd f_m X Y plx,y) dxdy p.q =0,1,2.... (1)

For image processing purposes, p(X,y) is the image intensity
distribution across the optical plane. Under practical
conditions all orders of moments exist, and the sequence of

moments is unique to p(x,y). and conversely. These

Mo |
pa
conditions are usually met, or at least approximated, over an

optical system image plane.
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The central moment Ppg is defined as

[+ o] @©

¥pa .[_mf_m (x - )Py - NTp(x,y) dix - ¥aly - ¥)
(2)

where

2
=

x = _10 y = (3) .
Myo 00 . ]

By a simple change of variables, it is obvious that under ;

the transformation of translation,

X' = x 4+ @ |
(4)
y +8

e
i

where ¢ and 8 are constants, the central moments are in-
variant.

From the definition of central moments, Eq (2), it is
easy to express the central moments in terms of the raw

moments. For example,

koo = Moo Fag = Myo - X7 My,
Ko1 = Mgy ~ X Mgg = O K1 = Myp - XY Mg, (5)
_ - _ _2
1o = Mg - Y Myg = 0 oo = Moo ~ ¥ Mgy |
6

] . . e s . ] ;]




A general formula for calculating the central moments in

terms of the raw moments is
+ i +. . P aq .
= )2: -1)Pva-J <—> -i+')>': p-J
Pog . (-1) p-jj\a-i+]
i=0 j=s

= g=-i+j
. M, . .
Y J.1-]

s =% |(p+i)—lp—il| T =% |(i"q) +li'q|l

(6)

where x and y are defined in Eq (3) and the notation (g)

denotes the usual binomial coefficient. A listing of

the central moments up tc the fifth order is contained in

Appendix A. Perhaps a more convenient form is the recursive

formula
p+tg-1 T <P>< q > p-]
= - -o _.+- bt
Pog™ Mpg 2: p-Jj i+j/ %
i=0 j=s
= g-i+]
Y IJJ-, i'j

which calculates ppq in terms of the raw moment M

(7)

and

the lower order central moments. Appendix B lists the

recursive central moments for several orders.

All moments

referred to hereafter will be the central moments unless

otherwise stated.

> : .-
.
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The Algebra of Invariants

The homogeneous polynomial in two variables,

(8)

is _a binary guantic of order p. Using the notation common

in the study of algebraic invariance, Eq (8) can be written

P-
po; p-1, 1 ;°***; al,p-—l; aOp) (u, v) (9)

If the general linear transformation,
u a Y u'
= (10) :
v B & v! ’

where the determinant A is not zero, is applied to £, a new

function f' is obtained

I = ! ¢ o @ ' 1) [} 1 p

with the same form as £, but with new coefficients. Then,

if a homogeneous polynomial I(a) of the coefficients of £

exists, such that




LA

S

%—"-7 .

then I(a) is an algebraic invariant of weight w. For w#0,

the invariant is called a relative invariant and depends on

the transformation. If w=0, then I(a) is an absolute in-

variant. By eliminating A between two relative invariants,

a nonintegral absolute invariant can always be obtained.

Moment Invariants

From the Fundamental Theorem of Moment Invariants
derived by Hu (Ref 1:181), the algebraic invariants are
related to the moments of the same order. That is, if an
algebraic form of order p has an invariant of the form of
Eq (12), then the moments of order p have the same invariant

' .« * s, ' = w .« * -

I(W o P = 1l AT Tlu P Mgy) (13)

but with the additional factor |J|, where J is the Jacobian

of the transformation.

By direct substitution of the similitude (change of size)

transformation
x' a 0 b4
= 14
v 0 o v (14)

into the definition of moments, every moment is seen to be an

invariant,

u = o u (15)




From the zeroth order relation,
2 1l )
a _ #00 (16)
00

and substituting into Egq (15) for « yields the absclute

invariants

. ¥tpg Hpq
I = . (pta+2)/2 = (p+q+2)/2 . (17)
Pq Koo “o0

Under the following rotation transformation,

x' cosé sing X
= (18)

y' -sing cosé y
where 6 is the angle of rotation, the absolute value of the
Jaccbian is seen to be |J| = 1, Therefore, according to the
Fundamental Theorem of Moment Invariants, the moment in-
variants are the same as the algebraic invariants. If the

moments are used as the coefficients of an algebraic quantic,

£ = (upo i7" "5 Ho) (u, VP, (19)

10
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then there is a clever technique to derive the necessary

invariants. From the transformations,

u cosf® -sing u'
v sinég cos o v' (20)
U 1l L u U 1 L u'!
=+ =L .
v 2 11 -t v V'] 2 1 -t vl . (21)

' -8y - yet? (22)

Substitution into Eq (19) yields the relative invariants

N LPo
Tpo ¢ Ipo (23)
' _ _tlp-2)e
Ip—l,l =€ Ip‘l:l
' _ _—tlp-2)e
Il,p—l = e Il,p-l
v -Lp8
Iop = e IOp

where I and I' denote the corresponding coefficients after

the substitutions.

11
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By eliminating the factor e'Y, a complete system of

absolute invariants is obtained.

order moments, the invariants are

I 92120
I30%03 Ir51112
Tyl I02125
+ (T31}3 - To3Ip))

The last relation changes sign under improper rotation and is

For the second and third

(24)

3 3
I30112 + o3Iz (25)
(26)
(27)

called a skew invariant. Eq (27) is useful for distinguish-

ing "mirror images". Egs (24) -

terms of the central moments,

H +U

20 02

2 » 2
(Uyp=Ho2) ™ * “¥13

2

2
(3g -3H;)7 + (Bkyy —Hy3)

2 2

(Myg +H1) "+ (Mg +Hg3)

12

(27) can be expressed in

(28)

(29)

(30)

(31)




2 2
(B30-3H1 ) (Byy +“12)|("3o )T =3y tHg3) |

(32)
3By ~ko2) (Hyy +H ) [ 3hgg +r )2 (g 4 ) 2]
217703 21 03 30 12 217703
(g —0,..) 1 (1 +u )2 - (K +p )2
20 02 30 12 21 03
+4“11(”3o +u12)(u21 +“o3) (33)

2

2
(3ryy —Hy3) (B3, +"12" (30 TH1) 7 =3 (Hyy +H53) l

2 2
- (Byg =3H5) (Byy +Hoa) [ 3(kyg +iy )% =Gy 4y EYS
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IV. A New Set of Moment Invariants

Based on the Methods of Group Theory

A new set of moment invariants is derived from the
mathematical methods of the theory of groups. Group theory
has been applied to problems in physics where the concepts
of symmetry and invariance are important. Such physical
notions as parity, gpinor, anc¢ angular momentum are aspects
of group properties. Most of the previous work on moment
invariants has been based on the results obtained by Hu
(Ref 1: 179-187), which relies on the theory of algebraic
invariants. The application of group methods to the same
problem represents a new and different viewpoint.

This chapter develops the basic mathematical concepts
and definitions leading up to the derivation of a set of
invariants. The approach taken is drawn from Hamermesh
(Ref 7: 6-30, 77-113). The concepts are then applied to the
particular case of invariance with respect to rotation in a

plane.

Basic Concepts and Definitions

An abstract group G is defined as a set of elements for

which a law of "multiplication" or combination is given such
that the "product” ab of any two elements, a and b in G, 1is
defined and also satisfies:

l. If a and b are elements of G, ab is also.

14




2. Multiplication is associative, a(bc) = (ab)c.

3. A set identity element e exists such that ae = ea
= a for any element a of the set.
4. TFor any element a of G, an inverse element b = a—l

is also contained in the set such that ab = ba = e.
In this context, "multiplication" does not mean an algebraic
product, but refers to a rule under which two set elements
are combined. If in addition to the above conditions, all
elements commute among themselves, the set is abelian. From

the concept of abstract groups, a transformation grouc may be

visualized by associating transfcrmations of a set of points
as the group elements. This gives a pictorial viewpoint of
the group notion.

The number of elements in a group is called the order of
the group. The notation al implies the product of n elements
each equal to a. Negative powers of element a are also

-m (a-l)m

defined, a ™ = my-1,

= (a

Two groups, G and G', are isomorphic if their elements
can be put into one-to-one correspondence which is preserved
under combination. If two groups are isomorphic, they have
the same structure. Their symbols may differ, but their

respective abstract groups are the same. Similarly, a

homomorphic mapping of G on G' preserves products, but now

several elements of G may have the same image in G'.

Group Representations

In a vector space L, a set of operators forms a group

15
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if it satisfies the definition given above. The product
of two operators A and B on the vector X means the
single operator CX = A(BX) for all X in L. The identity
operator leaves the operand unchanged, and all operators
have an inverse. If the Qector space L is mapped onto a
second space L', via an operator S, an isomorphic group of
operators is obtained in L' which are transforms of the
vectors in L, A' = sas™t.

If a group G is mapped homomorphically onto a group

of operators D(G) in the vector space L, the operator group

D(G) is a representation 7 G in the representation space L.

If L has dimension n, the representation has degree n or is

an n-dimensional representation. If the homomorphism

reduces to an isomorphic mapping, the representation D(G)
is faithful, and the order of D(G) is equal to the order
g of G. The operator corresponding to an element R in

group G will be denoted by D(R). If R and S are elements

of G, then

D(RS) = D(R)D(S) (35)
p(r™H= |p(r)] 2 (36)
D(E) = 1. (37)

where E represents the identity transformation.

le
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A linear representation is a group representation in
terms of linear operators. All representations hereafter
are assumed to be linear, unless specifically noted other-
wise.

Given a basis in L, the linear operators of the
representation can be represented by their matrix represent-
atives. Group G is then mappec homomorphically onto a

group of matrices D(G), giving a matrix representation of

the group. The matrices are nonsingular and

DiJ. (E) = 6iJ.
DiJ.(RS)= = Dik(R) ij(s) EDik(R) ij(s). (38)

If the basis in the n-dimensional space L is changed,

the matrices D(R) will be transformed by some matrix C,

D'(R) = C D(R) C ™. (39)

The transformed matrix also gives a representation of the
group and is equivalent to D(R). Equivalent representations
have the same structure, even though the matrices appear

dissimilar.

An intrinsic property of a representation D(R), in-

dependent of basis, is the trace X(R), or the sum of the

17




diagonal elements of the matrix representation.

X(R) =zi:Dii(R) (40)
The trace is called the éharacter of R in the representation
D. Equivalent representations have the same set of
characters.

Given a transformation T belonging to a transformation
group G (or to the group associated with the matrix repres-
entation D(G)), new representations can be constructed.
Transformation T acts on X to produce X' o: i' = TX. A
linear operator O,, associated with T acts on some function

T
W(X) such that

¥ (X)) =0 ¥X) = ¥(X), (41)

if X = TX. In other words, the transformed function ¥'
takes the same value at the image point X as the original
function ¥ at the object point X. Another way of putting

it is that the effect of the operator 0., is as the point P

T
is transformed to image point P’', it carries with it the
value of ¥ at P.

Therefore

¥ (X) (42)

]

OTﬂ(TX)

or 1
¥(T X)) . (43)

il

oT\P(x)

18
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The general procedure for constructing representations
should now be clear. Apply all the operators OR correspond-
ing to the transformation group to each of any set of
linearly independent functions. A set of functions is
obtained which can be expressed linearly in terms of n of
them, Wl’ W2,..., Wn. Applying any operator OR to these

functions results in a linear combination of the same n

functions,

n
_ L (44)
Op¥; = > ¥; D (R) j=l,....n.
i=1

The correspondent of the element R in the representation is

then the matrix D(R).

Reducible and Irreducible Represencations

Given a representation D, it is possible to describe it
in terms of "simpler" representations. Roughly,"simpler"
means that the representations have the lowest dimensions
possible. 1In general, if a basis exists in which all
matrices D(R) of an n-dimensional representation can be

brought to the form

o) = oM@ 0 am

(45)

where Q(l)(R) has m x m dimensions, 2(2)(R) is (n-m) x (n-m),

19




and A(R) is m x (n-m), then the representation is reducible.
An intrinsic indicator of reducibility is that there exist
some subspace of dimension less than the representation
which is invariant under the transformations of the group.
If it is possible to find a basis such that the representa-

tion matrices have the form of Eq (45) with A(R) being the

zero matrix, the representation is fully reducible. A
representation for which there is no invariant proper sub-

space is irreducible.

Among the irreducible representations there may be
several which are equivalent. These, of course, must have
the same dimensionality. Equivalent irreducible represent-
ations are not distinct, and the same symbol can be used for

them. Also, a representation of a group may contain a

particular irreducible represcntation several times.

Invariance of Functions

Recalling Eq (43), ORW(i) = W(R_li), it is clear that

1

Og operating on Y replaces X by R""X. It is possible that

o, Y is identical with V¥ ,

R
ORW (X) = ¥(X) (46)
so that
¥(X) = ¥(r™IR)
¥Y(RX) = ¥(X) . (47)
20
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In this case, the function Y takes on the same value at the
image point as the object point, and is invariant under the

operator O or more briefly, under the transformation R.

RI
To test for invariance of a function, the arguments are
replaced by their images to see if the same expression is
obtained.

In the theory of representations, a complex number

(i, ?), called the scalar product, is associated with each

pair of vectors X and Y in vector space L such that:

1. (X, V) = (Y, X)* (48)
2. (X, aY) = olX, Y) (49)
3. (xl + X, Y) = (xl, Y) + (xz, Y) (50)
4. (X, X) 2 o (51)
and (X, X) = 0 only if X is the zero vector. A space in which

a scalar product is defined is called a unitary space. In

defining the scalar product, a basis was not mentioned, which
means that (i, ?) is an intrinsic property of the vectors
X and Y, and is independent of basis.

Any function satisfying Egs (48) - (51) can be used to
define a scalar product in the space L. One definition of
(i, 7) is to write it as a function of the vector coordinates
x4 and Yy in a particular basis. If the basis vectors are

ﬁi’ a metric matrix M is defined by

= (u,, u,) . (52)

21




From Eq (48), it is clear that

miy =My (53)
M =MmT (54)
(m*)ij = my; (55)

Where M+ is the conjugate of matrix M transposed and is the
adjoint of M. A matrix which is identical to its adjoint is

e called self-adjoint or Hermitian. Therefore, from the

above, M must be Hermitian. If vectors X and Y are expanded

. in the basis ﬁi,

X = Xqjup +o-cc 4 x U= xouL (56)
lf Y = ylul + -0 4 Ynun = yjuj (57)
> then it is clear that
{
b
v (X,Y) = (x;u; Yy J)
! (58)

| (x,v) = x'n ¥

-~
e e i oma

where X and ¥ are column matrices and X is the adjoint of X.

2 SRR
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Two vectors in a unitary space are orthogonal if their
scalar product is zero, (X, ¥) = 0. Given a basis Vi in the
unitary space L, a new set of basis vectors ﬁi that are

mutually orthogonal can always be constructed and forms an

orthonormal basis if (ui , uj) = éij’

In a unitary space L, the distance |X - ¥| between two

vectors is defined from

= (X-Y, X-9). (59)

A sequence of vectors in (nh =1, ...,®) in L is said to
lim
—

converge to X in L if n an - X| = 0. The sequence of

vectors Rn is said to be a fundamental sequence, if
lim gz - %

N—wm - n( = 0. If every fundamental sequence converges

to a vector in the vector space L, the space is complete.

A complete unitary space is called a Hilbert space. The

unitary spaces of finite dimension are complete. Infinite
dimensional representations will be restricted to represent-
ations by linear operators in a Hilbert space under the
condition that the operators are continuous.

To tie the preceding paragraphs together with in-
variants, assume that an irreducible representation D(R) is
unitary. Then the scalar product of vectors in the Hilbert

space of the representation is invariant.

23




The inverse transpose of each of the matrices of an
irreducible representation is also a representation of

the group and is called the adjoint representation D (R),
- oo~ 1
D(R) = D (R) . (60)

Likewise, the complex conjugate of D(R) is the complex

*
conjugate representation D (R). If the adjoint represent-

ation and the complex conjugate representation are

equivalent

-1 ~ *
(R)y ~ D (R) , (61)

(el

there exists a matrix F such that

'R = F ! YRE
(62)
pT(r) = rpt(r)E!
or
Dt(R)FD(R) = F. (63)

Then (Y,F X) is invariant under all transformations of the
group G. In fact, for an irreducible representation, there

can be no more than one invariant of this form.
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Expansion of Function in Terms_of an Irreducible Representa-
tion Basis

As noted previously; a representation of group G can be
constructed by applying the transformations of G to any

function ¥. Then ¥ will be a base function or a linear

combination of the basis. This can be extended further by
decomposing the representation into its irreducible
constituents. 1In other words, any function ¥ can be
expressed as a sum of the base functions in the irreducible

representations,

| K My

=3 Z v V) (64)
- f

The base functions for the Vth irreducible unitary i

representation satisfies

v v v
ot = 3 v Ml (m). (65)
' J
} N The desired aimpoint is to find the W.(v) given the
' 1

\ function Y. 1In other words, how can the given function
v be resolved into a sum of functions, each belonging to a
particular row of an irreducible representation?

If Eq (65) is multiplied by D{a)*(R) and summed over

¢ the entire group

o T T T R T R e T T T R
R

25




(u) * S (v)y (p)* (v)
2 Dy (R} Op ¥y ‘EWJZ Dim (R} D7 (R)
R i "R

=2y 5

n, 1 mi “uv (66)

due to the orthogonality relations of Appendix D. For the

case m =k =1 and ¥ =V

n
SUNIE IO ISR
R

That this is a necessary and sufficient condition on the

v
Wi ) such that Eq (65) is satisfied is proven in Appendix E.

A projection operator is defined from Eg (66) as

' AT (u) *
pM) - z p*) " (r) o (68)
R
such that
(v) (V) _ )
Pi Wj = Wi 6uvéij' (69)

(1)

Appendix E shows that if the P is applied to Eq (64),

the result

1

n
y () -;- z Di‘g)*(m Og (70)
R
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is obtained or,

g = pMy (71)
which is the desired end. Briefly, to find the projection
of a function onto a basis function of an irreducible
representation, multiply by the basis function and sum over
the entire group. Another way of viewing it is that the
projection operator finds the component of ¥ in the

"direction" of the basis function.

Application of Group Theory to Moment Invariants

The basic tools are now available to derive a set of
moment invariants under the rotation transformation. The

rotation transformation of Eg (18)

x'l =] cose  SIN® X
(18)

y' ~-SINO  COS8 Y

forms an infinite continuous, abelian transformation group
over the region 6 ¢ |0,2ﬂ|. For simplicity of notation,
cosmé = Cm and SINm6 = Sm. The approach taken is simple:
(1) Form a reducible matrix representation of the rotation
group, (2) use the projec%ion operator to form vectors

in terms of the irreducible basis functions, and (3) form

’

invariants of the scalar product form. As before, all

reference to moments is taken to mean central moments.

27




Using the notation of the expected valuve operator,

the pgth moment can be written

ppq = Elxpyql. (72)

Under the rotation operation, the new moments become

“rl>q = E {(xC+ys) F (-xs+yc) 9} . (73)

The zeroth order moment remains the same,

Yoo T Yoo, (74)

and the first order moments in terms of the unrotated

moments become

Ho1 Ho1

S C Hi0 . (75)

W10

Thus, the reducible representation is obtained. Appendix F
lists the rotated moments up to the sixth order. In order
to obtain the same likeness as in Appendix F, the trig-
onometric identities of Appendix G will be useful.

The projection operator, previously defined in Eg (68)

can now be used to expand the transformed moments above in

terms of the basis of the associated irreducible represent-

28
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ation.
tions above,

components are

{(m = 0,

rotation.

has frequency m.

(0)
%00

(0)
. Y00

and for the first order,

: (1)
4 X1

P (1)
R Y01

n
X(m) Sm
jolef 2T
g Mmo[2T
jole] 27 70

27 ,
/”O Cm upq

since the group is continuous.

0,

By applying Eq (70) to the reducible representa-

a vector in a Hilbert space is obtained whose

de

(76)

where an integration instead of a summa-ion is performed

The irreducible representa-
tion basis is composed of terms of the form Cm and Sm

l,...) where m can be thought of as a "frequency" of
The effect of the projection operator is to

"peel out" that component of the pgth representation which

Thus for the zeroth order,

(77)

(78)




It is apparent that if a particular representation does not
contain any terms with a specified frequency m, then the
projection operator gives the zero vector. This might be
expected, since the term does not have any components
associated with the specified basis vector. The projected
moment vectors up to the sixth order are listed in Appendix
H. It may be observed that a distinct vector is not formed
for every moment within an order. For instance, the second

order vectors from Appendix H

I  (H-3)

(0)y _ (0)

X02° = Y20 o2 Y02 ]
(2y _ 1 (2) _

Xg2' = 5 {Hy0-Hg5) Yoo T M1 (H-4)

do not contain vectors corresponding to pil and “50'
However, if the projection operator is applied to these

cases, the result

(2y _ 1 (2) _
X117 = 2Wgy —ugg) Yi1 = Mpg (79)
xég) = Mo *Hoo Yég) = 0 (80)
(2) _ 1 (2) _
X500 = 20gs ¥o0) Yoo T Hn; (81)

is obtained. Comparing Eqs (79) - (8l1) to Egs (H-3) - (H-4),

it is seen that Egs (79) and (8l) are the negative of Eq

(H-4), 30
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and Eq (80) is the same as Eq (H-3). This is expected since
as was previously noted,'among the irreducible representa-
tions there may be several which are equivalent and are not
distinguishable.

In a previous section, it was stated that the only form
of invariants is a scalar product (Y, F X) between vectors
within an irrelducible representation. Since the rotation
group forms a unitary representation, the matrix F must be
a multiple of the identity matrix by Schur's Lemma
(Appendix D). Therefore, the invariants are of the form
(Y, X), a direct scalar product. For the vectors derived
above for the rotation group, the invariants are formed only
between vectors of the same frequency, or more fundamentally,
between vectors from the same representation. It is evident
that invariants can be formed between vectors of differing
moment orders, but with the same frequency, since they come
from equivalent representations. For example, an invariant

is formed within the second order moments,

(0) _ (0) (0) (0) (2)
02%02" = Xo2 %02 t Yo Yo
= (M. +H.0)2 (82)
20 T™o2) "

by forming the scalar product of the zero frequency vector

corresponding to M with itself. Another invariant is

02
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formed between second and fourth order moments,

(0)

_ 3
02l04 T 3

Cuyotupa) (hgor 2Up *Hg,) - (83)

Appendix I lists the invariants formed from the vectors

of Appendix H.

A Complete Set of Moment Invariants

A "complete" set of invariants in the sense to be
considered means that the moments from which the invariants
were formed can be found, and in turn, the image itself can
be reconstructed. However, this is not completely true.
For a particular image, a unique and complete set of
two-dimensional moments of all orders exists. A specific
and unique relationship exists between each and every
moment. To obtain independence with respect to translation,
the central moments were introduced. However, invoking the
central moments discards the location of the image centroid.
Independence with respect to rotation is obtained at the
expense of the angle of rotation of the image. But a unique
relationship still exists between the remaining moments, and
in fact, the invariants are a description of that relation-
ship. Thus, to obtain invariance with respect to a trans-
formation, some information about the image is discarded.

From Appendix H, the vectors from the second and third

order moments are

32




‘ X02 = ¥Ha0%Ho2 Yoo =0 (H-3)
Xgs = -3 (g =Hpp) Yo = =Wy (H-4)
Xo3 = 3 Gipp *agy) Yoy = -jUetHy) (H-5)
Xg3 = -7 ¥ty Yoi = § (Myp-3vp)) (H-6) ;
X13 = ¢ G *up) N33 =g Gigytugy) (H-7)

where the superscripts indicate the frequency of rotation
with respect to the image rotation. Since there is not a
common freguency between the two orders, it appears that no
invariant of the inner product form can be constructed.
However, if the reducible matrix representation associated
f with the second order moments is cubed and the representa-
tion for the third order is sguared, common frequencies are
obtained after the projection operators is applied. 1In

particular, for the second order

e

)

‘ '3 1|1 3 15 5, , 3

t: (Uoz) =8 [( 4 C6 + > C4 + 7 C2 + 2) U02

? (;s+6s +65.) W 2u -(—3-c +2¢c B 5.0y |
' ~12 PeTO%y 2! Mo2t11 Y4 Y6 T 2 4 74 2 —22)Hoe2M20

\ :
\ , l
. -(-25¢ +65,) M3 +(-3C¢ -6C, +3C, +6) W, U7

b ]

b

¥ 33
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+(355 =95, ug ki ok

2

3 3 3
+ =2 C4 -7 Syt 3) My Ho2

o
(o))
N jw

2
—(—3c6 +6c4 +5c2 -6) Mookl
3 15 2
—(3 8¢ -85, + 5 Sy)Hag ¥y
1 3 15 5 3
4G -2 7% 2’“20] : (84)

and after applying the projection operator tq (76)

X,° =3 Mos = 3 Moz Y20 ~3Hozh1s * 3 baob02
31,003 - § 0
Y26.= 5 Moz My * 23 3M92%20M11 - 5 Y20 P11 . (85)
For the third order
(M. )2 = l-[l-(c +6C, +15C, +10) W _2 _3(S, +4S, +5S.)H U
03 16 | 2(C *6C4 2 03 6 T454 3530 ¥1oMs

9 2
+ 2(-c6 -C, +C., +2) M

—3(C6 +2C, -C, =-2)H 4 5 12

4 2 21%03

34
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TS -38,) Mgtz *9(Sg =35,) Ky ¥y,
- - - Y] v
3(-C, +2C, +C,-2) Wy Mo
+2(c. —2¢. —C. +2) u.2 +3(S, -45. +55.)u_ .1
2(Cq —2C, -Cy 21 6 ~4S4 35 M3aky
+i(_c. +6C, -15C. +10) .2 (86)
5(-Cg +6Cy 2 30
and
6 2 2 2 2
X37 = Hg3 “Giypbgy Ty ~OM 5 U3 1o~y
v.% = 2(-3yy 41 -Uaa U +9u, 1 +3u, . u (87)
3 12403 ~H30M03 TPUn Mo t3¥30¥01)
2 2 2 2 2
X3 T Oy Y2Uy gy “3Hyy F3Mp5 —2H541 5 =SHyg
2 _
Y37 = 2051y ,Hy3 —HygHgy 9y By Sy, ) - (88)

Scalar products between the vectors of the same frequency

can now be formed

1(2)=( - )(5u2+2u u 3u2+3u2 24, M 5u2)
372 o220 03 21703 "~ 21 12 "“"3012 7730

g (Shy kg3 THygH3 Ity Vo —S¥3g¥yy) (89)
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~

1= (o3 =6 Myykoy +9m,7 905 +61301) 5-H30)
“ligy ~3Mgayg ~l2gaiy T 42ipou ELPYSIORIING
taHyy (BHpoMo3 *H3g¥o3 “FMart1a —3M30¥ay)
(3u 2 —an 2 eu Ly +300) . (90)

Similarly, all orders of moments can be linked to form
invariants. A complete set of moment invariants with
respect to rotation and translation through the fourth
order is listed in Appendix J.

Comparing Appendix J with the moment invariants derived
from the algebra of invariants by Hu, Egs (28) - (34), a
striking similarity can be observed. Egqs (28) - (31) are
virtually identical with Egs (J-1) - (J-4), and Eq (32)
is very similar to Eq (J-5) except for coefficients. It is
also observed that there are (p+l) invariants derived by
group theory methods, where p is the moment order. This is
exactly the same as in Chapter III. It can be concluded
that the two sets of moment invariants, each derived by
different methods, group theory and algebra of invariants,

are equivalent.




V. Image Signal Effects

It is obvioﬁs that the image signhal over which the
moment invariants are to be calculated depends on many
parameters of the optical system, the object, and the
transmission channel. The effects of the variation of the
parameters must be taken into account in designing a
recognition system. The discussion to follow is oriented
toward visual data of aircraft in an atmospheric environ- |

ment.

Invariance With Respect to Optical Path Length

As an object is moved along the optical axis, it is
evident that the image signal of an optical system will
vary. A first order effect is obviously a change in size.
A second order effect will be the appearance or disappearance
of small details of the object. This second order effect
; diminishes as the optical path length from sensor to object

increases. For aircraft type problems, this may be

ey

negligible.

-

The change of size problem is mainly a matter of

normalization of the image moments. A radius of gyration

is defined to be

¢ =
e F=/V20 *Ho2 (91)

o




and is directly proportional to the image size or inversely
proportional to the distance of the object along the
optical path length. The product of the radius of gyration
of the image and the range of the object is a constant.
Therefore, the general moment may be normalized to be
S (p+a+2) /4
Fog = Foq / (Fs tho o) (92)

A second choice of normalization follows the rule
derived earlier, Eq (17), under the similitude trans-
formation.

(ptq+2) /2, )
I = “pq/“oo ptq = 2,3, (17)

This corresponds to having the average scene brightness
"oo always equal to unity. Therefore, by dividing the

central moments by Hoo

_ +q = 0,1,2 *°°
Fog Fog /“oo p+q 2 (93)

the size change effect is eliminated. Of course, such
normalization is not unique. An advantage of this method
is that invariance with respect to scaling is obtained.

That is, the scaled moment becomes

=
n

- .[/x Py qlap(x,y)l dxdy

®Vpq (94)




and after normalization

= o
pq Hoq /00

Hpq / Hoo (95)

which is the desired result.

Changes in illumination

Another problem that occurs is that under different
conditions of illumination, the image moments will vary.
For example, a video camera takes a frame of an aircraft
at sunrise and at sunset at the same range and orientation.
The shadows on the aircraft will be different, causing a
different weight to be placed on a particular area. Dudani
eliminated this problem by using only the boundary and
silhouette of the target (Ref 4: 33-34). However, it is
obvious that some information is not being used in this case.

If instead of a video detector, an IR (infrared) sensor
system is used, the problem of scene illumination is
eliminated, or at least reduced. IR signatures are
presently being studied for identification purposes.
Variation in illumination may also be incorporated into a

statistical classifier.

Aircraft/Missile Engine Plume

For the particular class of targets which include
flying aircraft/missiles, there is the unwanted feature of

the engine plume. 39
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It will be assumed that the entire aircraft is included in

|
|
|

the field of view:; otherwise, it cannot easily be identified.
Depending on the range from the optical system to the

target and upon the location of the aircraft with:.: the

sensor field of view, the engine plume may be totally,
partially, or not at all, within the image. Also, the
plume might tend to dominate the imagery data. Therefore,
the identification problem becomes much more difficult and
it is desirable to "gate off" the engine plume.

In general, a distinctive feature of the plume is
required to indicate the dividing point of the aircraft and
the plume. One such feature may be that the plume is
hottest at the exit of the engine. By scanning along the
axis of the plume, it may be possible to pick out this point
and incorporate its coordinates to gate off the unwanted

portion of the image. Frequency discrimination may also be

| employed as a distinguishing feature.

Target Background Clutter

As in the case of the engine plume, the target back-

’ ground represents extraneous and unwanted information. Also,
:g in order at least to approximate the finiteness condition of
ii the uniqueness property of moments, a background of zero
| , intensity is ideally desired. For the case of aircraft
}. data being considered, this unwanted information may take )
. the form of blue sky or clouds.
/
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Assuming an approximately constant intensity background, a
rough solution is to subtract from the image, point by
point, a constant intensity depending on some parameters
of the image. If the intensity at any point becomes i
negative, it is set to zero. Presumably, the background
clutter would be eliminated or reduced.

As a first guess, the threshold constant was taken to
be the difference between the minimum intensity and a
constant times the difference between the maximum and

minimum intensity image,
THRSHD = MIN+CONSTANT -« (MAX-MIN) . (33)

The above procedure was applied to imagery data of a Hawk
missile in flight and the moment invariants were calculated
for the resulting image. Figures (1) - (7) show the
variation of the seven moment invariants derived earlier,
Egqs (28-34) as a funétion of the threshold constant. The

increment between each.plotted point is (MAX-MIN) .

1
100°
A jump in the value of the moment invariants is observed at - !

the second point and a gradual variation over the succeeding

points. This indicates that for a threshold of

THRSHD = MIN + 1%0 (MAX-MIN) (34)
the background effect has been minimized and the image of

the Hawk missile is the dominant factor.
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The gradual variation over the latter points of the graphs

indicates that the missile image is being affected.
Appendix C shows the variation of the raw and central

moments versus threshold for the same case. The same

observations can be made as above.
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VI. Conclusions and Recommendations

In the preceding chapters, the general problem of how
to identify an aircraft and its orientation was investigated.
Specifically, the application of two-dimensional moment
invariants was studied as a possible solution to the image
pattern recognition problem. The concept of moment in-
variants, first introduced by Hu, was analyzed (pp.9-13)
and provided a clever method for extracting a feature vector
to describe an image by a number of quantities which are
independent with respect to translation, similitude, and
rotation.
Another set of moment invariants was derived
(pp.27-36) by a completely different method based on the
concepts of group theory applied to the two-dimensional
moments of an image intensity distribution. A complete set
of invariants under rotation was derived (pp.32-36) from
which the image can be reconstructed. It was shown that
Hu's invariants, obtained from the algebra of invariants,
' can be obtained from this set, and in fact, the two sets are
totally equivalent. Thus, a full circle was completed,
) whereby the same set of invaéiants was derived through two
o complete techniques, algebraic invariants and group theory.
However, the salient property of the group theoretical
approach is that it provides a generalized technique to find

invariants under other linear transformations. The

N
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derivation by Hu cannot be extended readily to other trans-
formations. A possible area of further investigation is to
apply the group theory concepts to find invariants under
the Seidel optical aberrations, coma and distortion.

The problem of background clutter in aircraft imagery
data was addressed (pp.40-49). A threshold level was set
depending on simple image parameters. Application to actual
imagery data of‘a Hawk missile indicated that this may be
an acceptable starting point for signal preprocessing.

Other image signal effects, including the aircraft
engine plume and illumination variation, were discussed
(pp.37-40). This area presents a wide field for further
investigation into the statistical problems and methods to
minimize the effects on pattern recognition.

This thesis provides a starting point for a follow-up
study. Computer codes were written to efficiently calculate
up to twentieth order raw moments and then to centralize them
recursively (Appendi£ K). It is recommended that a labora-
tory mockup of various aircraft and an optical sensor
system, video or others, be set up to provide imagery data
for all aspect angles. From this data, a library of moment
invariants can be constructed, and a statistical analysis
can be performed. It is recommended that a classifier be
implemented to identify target imagery data and the target
orientation in order to determine to what order of moment

invariants are required for reliable identification.
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Appendix A

Central Moments in Terms of Raw Moments
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Appendix B

Recursive Central Moments
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Appendix C

Additional Data of Threshold Analysis

This appendix contains additional data pertaining to

the target background thresholding problem in Chapter IV.

Table C-1 lists numerical values of the raw moments through
the third order as the threshold was varied. Figures C-1
through C-10 show the same data in graphical form. Table

C-2 and Figures C-11 through C-20 illustrate the same process,

but for the central moments.
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Appendix D

Orthogonality Relations of Group Representations

Schur's Lemmas
I. If D and D' are two irreducible representations of

a Group G, having different dimensions, then if the
matrix A satisfies D(R) A = A D'(R) for all R in G,
it follows that A is the zero matrix.

II. If the matrices D(R) arc an irreducible represent-
ation of a group G, and if A D(R) = D(R)A for all
R in G, then the matrix A is a multiple of the

identity matrix.
Given an irreducible representation of degree 71 for the

group G of order g, matrix A is constructed to satisfy the

conditions of Lemma II,

A =22(s) X p(s~h) (D-1)
S

where X is an arbitrary matrix and the summation is taken over

the entire group. Then

81




D(R) A =Z D(R) D(S) X D(s™ ") (D-2)
S
_ -1 -1
=3 D(R) D(S) X D(S™) D(R™Y) D(R)  (D-3)
S
=3 prs) x p(frs|™H-p(r) (D-4)
S
= A D(R). (D-5)

According to the lemma, A is a multiple of the unit matrix,
A = ax1. X is chosen to have all its elements zero except

X = 1. The constant is then denoted by A and
1m 1m

-1, _
;Dil(S) ij(s ) = )‘lm 61_]‘ . (D-6)
If D is unitary,
* A S
Zoil(s) Djm(S) = Madi
S
To evaluate A, , set i=j and sum over i,

1m

-1 B
2: 2: Dil(s) Dmi(S ) = THlm
S i

AT g e s eF i A




Ii
(o]
O

Therefore,

-y g5 6
2 Dy (s) Dy 8 7)) =% °1m %y
S

and for D unitary,

) D. (s) =26 &
2: Dil(s,' jm(s) TN 1m
s

(D-8)

(D-9)

(D-10)

Likewise, given any two nonequivalent representations,

(2)

Q(l) and D ., of a group G, matrix A is constructed to

satisfy Lemma I,

A= Z 9(2)(5) X p) (s-1y,
S

83

g

(D-11)

T = T




where X is an arbitrary matrix and the summation is cver G.

Then

Z 1_)_(2)

S

- Z Q(Z)
S

_D_(2)(R) A

2: 2(2)
S

(s) x D(l)(s’l) (D-12)
(R) 2(2)(5) XD (1)(5—1)
Q(l)(R'l) Q(l)(R) (D-13)

(RS) 59_(1)(1RS'_1) pP(r)y  (D-14)

= A D(l)(R). (D-15)

According to Lemma I, A is the zero matrix. Thus,

2: D(Z)
S

If X is chosen as before,

Iy
S

(s) x pV sy = 0. (D-16)

(1) -1, _
(s) ij (s ) =0 (D-17)

for all i, j, 1, m. 1If both representations are unitary,

2 op

S

(s) Déi)*(s) = 0. (D-18)
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Taken together, Eqs (D-9) and (D-17) imply that for

all nonequivalent irreducible representations of G,

(p) (v) -1, _g
Y, o ® Doy (R =7 8, ©&; & (D-19)
R

For the unitary case,

(1) (v)* -1, _ g 5
2. D (R DT RTY) = R Ouv biy Ounr (D-20)
R
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Appendix E

Derivation of the Projection e or

Multiply Eq (65), Op W -2: (v) (v)(R).

by D(“) (R) and sum over the entire group,

Z i) (®) oM = T ¥ M TRy s (m). (g1

ji
J
Due to orthogonality,
‘ (u) v) _g (v)
¥ Z Din (R) Opt; =S 2¥8 5 sy 8y (E-2)
' J
{ (v)
=4 Wl G;i Gpv. (E-3)
i nv

Then for m=1 and py =v,

ot L ——— -

(v) V) o a ¢
Z Diyt (R) O ¥70 = = ¥ &y (E-4)

% v
o
$i and for 1 - i,
.
Z D(v) (R) o \y(v) = 2 \yi(V) . (E-5)
\V]

C . v
This is a necessary condition on Wi ), and in fact, it is

also a sufficient condition such that Eq (65) is satisfied.

This is proved by substituting Eq (E-3) into Eq (65):
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(V) (V) - (v)* (W] 5(v
> ¥ ol (s = 3 > [Z piP " (R) opyy ]nj\i’ (s) (E-6)
J j LR

n
T[S el o] ol -
R Lj

but Dji is Hermitian

n
T[St ] e e

D(AB) = D(A) D(B)
- .
= ,lg z [Di(\]:)*(s'la)] oR‘l‘é‘)) (E-9)
R

My af vy*, -1 )
=< %% z Og [Dik (s R)] o¥ g (E-10)
R

and by Eq (43)

Ny (v) * (v)
= o z o ) T (R) op¥y (E-11)
R

g

but this is Eq (E-3)
= (v)
= 05 ¥ . (E-12)

and the desired result is obtained.
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From Eq (E-3) for m - 1,

(v) §

(u) > (V) _ga é
E D)y’ (R) op¥s *ny ¥l 1i “uv (E-13)
R

i e —— s

Define a projection operator to be

.; ' n
| pM - —,g- )> p{*(r) o (E-14)
‘. R
such that

‘ p{) \va"’ = \vi‘“)aw 8- (E-15)
; If the projection operator is applied to Eq (46),

é n,

P;”)w =23 pJ‘“) \vi(") (E-16)

e v i=1

| n
‘,g = E i . \l/;l-‘)auv Gij' (E-17)
b v i=1

4

i and due to orthogonality

r

¥ n

i 5 2 D;;)*(R) Op =. “’J(u) (E-18)
r )

4 or

! (W) _ (W
} LSS Het I (E-19)
]
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Appendix F

Reducible Representation of the Rotation Group

Ccosnb

SINn#

E (xC + yS)P (-xs + yc) @

Yoo

N

o |-

C.+3C
S.+S
-(c4-C)

—(83-35)

-3(s3+s)
3C.,+C
3s.-S

-3(c,-C)

89

=S [ Mol
|

'(Cz‘l)- r-“oz
=S 11
C2+l luzo
o -
-3(C4-C) s3-3s-
-(38,-8) -(c3-c)
3c3+c. - (54+S)

3(s3+s) c3+3c

(F-1)

(F-2)

(F-3)

(F-4)

(F-5)




L . ——— — -

Ly

e W

Il
ool =

C +4C2+3
S4+ZS2
-(C,~1)

-(84-282)

-4(S4+282) —6(C4-1 4(54-252)

4(c4+c2) -684 -4(c4-c2)

4s 2(3S4+1) -45,

4
-4(C4-C2) 684 4(C4+C2)

-4(54-252) -6(C4—1) 4(s4+2sz)

n - -1
C,y=4C,+3 Ho4a
S4-285, Hy3
~(C,4-1) Moy
- (8,+28,) U3y
C4+4C2+3 LD4° (F-7)
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} ' — ] —
¥'os c5+5C3+10C -5(85+3S3+Zs -10(C5+C3-2c)

-2(555+353-28)

} ¥4 Sg+354+28 5C+9C+2C
TR -(C5+C3-2C) 555+3s3-2s 2(5c5+c3+2c)

i Mgy =1% - (Sg=53-28) - (5C¢-3C4-2C) 2(55,-54+25)

! M c5-3c3f;c -(535-9s3+25) -2(5c5-3c3-2c)

] c - - - - -
LI_J 50 Sg 583+1OS 5(C5 3C3+2C) 10(Sg~S4 28)

| e - - T r
| 10(55-5,-25)  5(Cg-3C;+2C) = (S5+555+105 “os—
. -2(5Cg~3C4~2C) 5S+95 3428 Cg-3C4+2C Myg
{
j -2(55-54+25) - (5C¢-3C4-2C) Sg-S3-25 Mog j
- 2(5C+C4+2C) - (554+38,-25) - (C+C3-2C) 32
{
:§ 2(Sss+3s3-zs) 5c5+9c3+2c -(s5+3s3+2s) Maq
b .
M ~10 (C+C5-2C) 5 (Sg+3854+25) Cg+5C4+10C ¥so
{ - . -
"’ 1]
(F~8)

et ol
) P e, - .

o

el S R e Y

921

. - Lo
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! W' | € +6C,+15C,+10 ~6 (545 ,+55,)
§ n'ys S¢+45,+5S, 2 (3C4+8C4+5C,)
j W'og - (Cg+2C,~Cy=2) 2(35,+48 ,-5,)
| N -6 (C(C,)
g w132 e -2c -2 ~2(35,-45,-S.)
| 42 6-2C47C2 645475
1 Moy 5»6-1s4+ss2 2(3C¢-8C4-5C,)
Mo - (Cg6C,+15C,-10)  6(Sz-45,+55,)
| -ié(c6+2c4~c2-2) 20(5¢-35,) 15(C¢-2C,=Cy+2)
-5(35g+45,-5,)  =20(C4-C)) 5(35¢-454-S,)
: 15C(+10C,+C,+6  —4(554+S,) - (15C¢-10C ,+C,-6)
3(554+S,) 4(5C4+3C,) ~3(554+S,)
.i - (15C-10C,+C,-6)  4(554+S) 15C,+10C +Cy+6
;% -5(35¢-45,-5,) ©  -20(C=C,) 5(354+45,-S,)
| ;; 15(c6-2c4fc2+2) ~20(5¢-35,) ~15(Cg+2C,~C,=2)
‘
: }é | -6(54-45,+55,) -(c6-6c4+5c2+10)7 T
? 2(3C4-8C,+5C,) - (Sgm45,+55,) T
‘!l 2(35,-45,-5;)  Cgm2C,-Cp+2 Maa
j' ~6(C4-C,) s¢-35, Va3
; ~2(35 +45,-5,) - (Cq+2C,mCy=2) Myo
)




2(3c6+8c4+5c2) —(S6+4s4+582)

Vegq

6(ss+4s4+582) C_+6C

6 4+15C2+10

H60
- (F-9)
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Appendix G

Useful Trigonometric Identities

cosné
SINn#® (G-1)
% (CA—B - CA+B)

% (CA+B + CA—B)

%’ (SA+B + SA-B) (G-2)
3 (-c; + 1)

% S2

—%— (Cz + 1) (G-3)
% (—s3 + 35) -

3 (o5 + c)

: (s *S)
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0|~

+ 3S. + 2S

+ 5C, + 10
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2

(‘Cs + 6c, - 15C,

656 - 45, + ssz)

(Cs -2¢, -c2+2)

(-s¢ + 352)

(-c6 =2¢c, + C, +2)

(56 + 45, + 532)

(Cs + 6C, + 15C, +

+

20
2

2)

2

20

2

)




(1)
%01

(0)
%02

(2)
X032

(1)
%03

(3)
X03

(1)
12

4(0)

(2)
X04

(4)
X04

(2)
Xy3

Appendix H

Projected Moment Vectors

Ha0% 02

= N = NH] PN o |- & jw

N

(H21%¥03)

(3u,,-¥u

21 03)

(U, +H

307H12)

(u20+2u22+u04)

(W, -H

40 o4

(Hy0-6Ho0%Hg,)

(M31+¥13)

{0)
Y50

(1)
Yo1

(0)
Y02

(2)
Y02

(1)
Y03

(3)
Y03

(1)
Y12

(0)
Y04

(2)
Yo4

(4)
Yo4

(2)
Y13

10

11

3
3 (H3p*Hyo)

s (M3p-3up))

1
s (Hap*Hg3)

N =

- 1
-2 (M40 V04!

(H-1)

(H-2)

(H-3)

(H-4)

(H-5)
(H-6)

(H-7)

(H-8)
(H-9)
(H-10)

(H-11)
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e 4 [
NP A A
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el

|

x55) =g (yy+2¥,, *Hos)

Yor! = 5 (uggt2ugythy,) (H-12)
X5a) = -1a (3uyy+2¥53-Vy5)

v53) 1o (Mgg=2h5-3H),) (H-13)
Xg2! 16 (5ugy-l0uystu)

Y52 = -1g (geml0y 5y ,) (H-14)
x{3’ g (Mgg+2hy iy ,)

vy § (Mg *2uy3+igg) (H-15)
Xla = -1d (Mgem2uyy-3u )

Yy = Gugrangeng) (H-16)
Xo, 5 (hgr3ug, 3¥, i)

Yég) 0 (H-17)
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(2)
X06

2)
06

(4)
X06

(4)
Yo6

(6)
X06

i (6)
: Yo

(2)
X5

(2)
Y15

(4)
Xi5

(4)
Y15

(Mot 427247 06!

(U51+2U33+U15)

(Mgg=5H -5

60 2406

(Msy-H1s)

(Mgo=15¥45+15H, 4-Y46)

(3Hg,-10H55+3¥, )

U
(Mgy+2H3q+H:5)

TR TR TR
(Peot 427" 24" 06’

TR
Fs17"15)

-5u

(Mgo=5H425H 4% H0e)
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‘ Appendix I
[}
Moment Invariants From Projected Moment Vectors
(0) 2
oofoo 4up9 (1-1)
(0) _
00fo2 =  2MgglHpgo*tugl) (1-2)
(0) _ 3
00f04 = Moo (mgot2uaatugy) (1-3)
(0) _ 2 )
g 02f02 = (upotugy) (1-4)
]
(0) _ 3
‘ 02f0a = 7 (uag*tugp)  (Mgo+2my*Hgy) (1-5)
(0) _ 9 2
04To4 = 16 (Mg0*2¥2%H04) (1-6)
: (2) _ 2 2
A 01fol’ =  ¥o1 *Wo (x-7)
|
b 1y _ 3 \ 3
| 0103 = 7 Yo1Ma1*¥o3) * 3 Hro(M3otHy) (1-8)
’-\'»
b, 1y _ L 1
': 01127 = 7 Yo1M30**12) - 7 Y10M21tH03) (1-9)
il = 3w, 2w 4w ) 42 U (Mg t2U g ) (1-10)
01¥0s 8 Yo1(Mg1t2¥ 3tHgs) +g Wig(Hgo*taHaothyy
(D L (Mo t2Uo L tH ) R u (M, 42U, HH ) (I-11)
01l14 8 Yo1(M50t2H3atY 1 4) -5 Mip(Mg1t2H,3tYs
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{
’
b}
b
f¢
ty
b
b

gt g, " &9

{1
03%o03

(l)
03los

(1)
03114

(l)
oslos

1 (2)
02%02

1(2)
0204

(2)
0213

1(2)
0aTo04

1(3)
03%o3

1 (3)
03tos

oo

|
(V80| ol
N

N [w

| |
o
N N N & jon

FN

) L&
(u +u )2+ 2 ou gn )2 (I-12)
21*%03 16 M30*M12
(Myy+Hgz) (Hyg+2Hya+Hys)
+ 13 (0 ) (Mg +2¥ ) (1-13)
32 (M30* ¥, 327 %14
(M +Hp3) (H5pt2Hy o+l )
3
=32 (Wyot W) (Hgy+2 ¥+ Hys) (1-14)
2 . 25 2
(Wyp+2¥p3+ios) ™ + Gy (Mgo*2¥3p*h ) (1-13)
2 .. 2
(M207%02? " *Hi1 (1-16)
(V0-Y2) (Mgo-Yoa) +H11 (Maat¥ps) (1-17)
! 1
(Bo=Voz) (Myp+¥3) + 7 ¥y (Mee-Yos) (1-18)
(M, =B )2 & (W +H )2 (I-19)
20~ Y04 51713
2 .1 2
(B3H1-Y3) " +15  (HF30-3H2) (1-20)
(31y1-Hg3) (3Uy +21,5-¥50)
3 u p
*ea (M30-3%2) (Ygo-2¥3,-3% ) (1-21)
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(3) _ 3
03114 T g3 (3¥a1-Mo3) (MHgg=2VH35-3¥;,)
3
“ea  (M3073V2) (374 %2¥55-Vog) (1-22)
(3) _ 25 2
05l0s =256 (3Vg1+2¥y3-Yy5)
£3 2 (1-23)
+256 (Hgo=2¥35-3H )
(4) _ 1 2 1 yoL2
04aToa = 61 (Yo 62t t 7 (M1-713) (1-24)
(5) _ 1 2
05105 T256 (5VY41-10% 3+ Hyg)
N ST IREIT. (1-25)
256 (V50710%32%5% 4 -
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g Appendix J
A Complete Set of Moment Invariants
Throu Fourth r Moments
,(0)
(0) _ 2
(2) _ 2 2
21277 = (Mg —Hgo) T +4uy, (3-2)
- (1) _ 2 2 )
A 31370 = My *+Hg3) ™ + (M3gt+ug)) (7-3)
(3) _ 2 2
' 3137 = (BHyy -Hg3) " + (Buyo-uyg) (7-4)
(2) _ 2 2 2
h 3I7 = (Mgp=Hag) (Sug3 + 2M5 g3 =3U,7 +31)5
)
; 2
; =2M3gH1p ~H3g) *4Hyy (SHpoHg3 tHaglgs
‘.*" +9u21u12 -5u30u21) (7-5)
M
v (6) = 2 2 2 2
" 312 (Mg3 =6Ug Mgy +9Uyy -9M 5 +6Uggk 5 ~Us3g)
, S 3 2 2 2 2 3
(Mga =3MgaHag —12MpaHy ) +2My0H ] *+3Uy0 Hpa —Hap)

*+4u11 uyaugs *tusghos ~IMaiHya —3uzgugz))
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(0)
414

(2)
4l

(4)
alsa

(2)
al2

(4)
al2

L}

L}

+3¥

L2 2
(31, -4¥1] -6¥g2V20 *3%20!

s2u, . +u )2

(v 22 tYo4)

40

Y. 2

10 ~Voa) T +4(¥3y tH3)

. 2 2
M, +H +4 (Mg =¥py)

Al 22 tYo4)

40
(Uyo=Ygp) (Hag ~You) + 4¥11 (31 *H13)

2 2 . 2
(M, +¥13) (M3 -2¥%2%0 -4%11 *H20)

#2141 (M, =Ya0) (Yoo —Yo2)
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Computer Programs
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Program Name: CENTER

Purpose: To calculate recursively and to normalize two-~
dimensional central moments from two-dimensional
raw moments.

Method: The pg-th central moment (upq) is calculated
recursively from the pg-th raw moment (Mpq) and

the lower order central moments using the formula.

p+g-1 T p a 5
_ M _ P-J _ q-i+]
Poq™ ﬁ§§ - EE :E (p—q><;-i+1> x ¥ b

i=0 j=s Jei-3
; where
s =1 [- + |i-q]]
!
T = % [(p+i - lp-i']

M; 0/ Moo

M1 Moo

- al
~ bll{a-b)! binomial coefficient

Calling Procedure: CALL (M,N)
Arguments: N-1 = highest order of moments to be computed.
M = N x N matrix containing the raw moments

to be centralized and normalized

M +1, gq+l) = M
(p q+l) bq
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For output, the raw moments are replaced by
the central moments

M (p+l, g+l) =
(p q+l) upq
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Program Name: MOMENT

Purpose:

Method:

To calculate up to twentieth order two-dimensional
raw moments over an image intensity distribution.
The first Newton-Cotes equation was used.

j'xz 1.3
Xl Y(x) dx = 'Sh (YI + YZ) -1-2- h y

The two-dimensional moment Mpq is defined in

Cartesian coordinates as

/_:f_: xP y9 £(x,y) axdy

Mg =
and
Mg = fxp [qu(x,y)dy] ax
= .fxp Vg (X) ay
where

Vq(X) = /&q £(x,y) dy

or
~ N 49 h g q
Vg (X3) = Z Y{ 455 -2 (pfyy + vy £yy)
j=1

109




e

e 4 -

'y

¢

.

v
lv
4

FT— 5

where f..l is the ji-th element ¢f an N x N
image intensity distribution array, yj is the
corresponding vertical coordinate, and h is the

width of each image element.

Then
P ) h p P
i=1
Define
Y =1Vg=0,x1 * Vq=0, xN
. . _ correction
: : terms
| 9=L,x1 **t Vg=L,xN
r h [ ]
~1,9... .0
=[¥1°° Yy B 1..5.x
. . . . - |Jcorrection
: c ol . : terms
L L
-YI"‘YN fN'1000 N,NJ i ]
=YY F - C.
Then
[M l =vyy -¢
jole| -
T ]
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Calling Procedure: CALL MOMENT (R, N, M, L)

number of image elements per row/column

]

Arguments: N

of an image intensity distribution array.

o
i

N x N square matrix containing the values
of the image intensity distribution.

L -~ 1 = highest order of moments to be computed

M = output matrix containing the computed
moments
M = M(p+1l, g+l
-~ (p q+l)

Subroutines Used: VPROD

Note: The image dimension is normalized to unity.
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Program Name: INVRNT

Purpose:

Method:

To calculate moment invariants involving the
second and third order central moments.
Direct algebraic computation based on the moment

invariants from Ref 1.

Calling Procedure: CALL INVRNT(MI,M,Q)

Arguments:

Q-1 = highest order of central moments to be
used.
M= Q x Q input matrix of moments to be used

to calculate the moment invariants where

M(p+l, g+l) =
(p q+l) Mpg

MI = one-dimensional output array containing

the computed moment invariants
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Program Name: MICALC

Purpose: Serves as a monitor program to call appropriate
subprograms to input data, compute raw moments,
calculate central moments and moment invariants,
and then to display them.

number of image data points per line of

_ Arguments: N
i . a square image
Q-1 = highest calculated moment order
S = number of moment invariants calculated
Image Data: The program inputs imagery data from a tape
! format. An unformatted READ inputs a vertical

image line, 256 pixels per line and 256 lines.
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Program Name: VPROD

Purpose: To compute the inner product of two vectors.
N
v = ‘; A.B. .
e b3
i=1

Method: Double precision multiplication and addition are
used; a single precision result is returned.
~Howe§ér, the double-precision result is available.
Calling Procedure:
CALL VPROD (A,NA,B,NB,N,V)
or
DOUBLE PRECISION Z, VPROD
Z = VPROD (A,NA,B,NB,N,Z)
A - Linear string of elements of the first vector
NA - Interval between elements of A used in the inner
product
B - Linear string of elements of the second vector
NB - Interval bétween elements of B used in the inner
product
N - Number of pairs of elements multiplied together
V - Storage location for single precision result
2 - Storage location for double precision result
Error Indicators: None

Subroutines Used: None
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Program Name: PPLOT

Purpose: To generate a polar graph on the Calcomp plotter

of moment invariants

Calling Procedure: Call (MI,R)

Arguments: R = the number of moment invariants to be
plotted
MI = array of R moment invariants

Output generated for on-line Calcomp plotter

Subroutines Used: basic and auxiliary Calcomp routines
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Program Name: BPLOT
Purpose: To generate a bar graph on the Calcomp plotter
of two-dimensional moments (up to 20th order)
Calling Procedure: CALL BPLOT(M,N)
Arguments: N-1 = highest order of moments to be plotted.
M= N x N matrix containing the moments
to be plotted.
M(p+1l,q+l) = Mpq’ pa-th moment

Output is generated for on-line Calcomp plotter.

Subroutines Used: basic and auxiliary Calcomp routines
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Program Name: INVRN1
Purpose: To calculate moment invariants
Method: The moment invariants are generated via the group
theory procedure developed in Chapter IV. The
computed invariants up to the fifth order are
listed in Appendix I.
Calling Procedure: CALL INVRN1 (MI,M,Q)
Argumenﬁs: Q-1 = highest order of central moments (upq)
to be used in computation. 1 < Q < 21.
M = Q x Q0 input matrix of moments to be used
to calculate the moment invariants
where
M(p+l, g+l) = Hog

L MI = one-dimensional cutput array containing

the computed moment invariants.

NS
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i Program Name: PARRAY
Purpose: To serve as a monitor program to generate plots
of moments as a function of threshold.
Calling Procedure: CALL PARRAY (M, THRSH,A,B,C,D,E,F)
Arguments: M = 20 x 4 x 4 input matrix containing
the moments to be plotted
THRSH = 1l x 22 array of threshold values

A,B,C,D = image parameters; roll, pitch, yaw,

range
E = maximum image intensity
F = minimum image intensity

Subroutines Used: LPLOT
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Program Name: MIARAY
Purpose: To serve as a monitor program to generate plots

of moment invariants as a function of threshold.
Calling Procedure: CALL MIARAY (MII,THRSH,A,B,C,D.E,F,)
Arguments: MII = 20 x 7 input matrix of the moment

invariants to be plotted.
THRSH = 1 x 22 array of threshold values
A,B,C,D,= image parameters, roll, pitch, yaw,

range i

E = maximum image intensity
i F = minimum image intensity

Subroutines used: LPLOT
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Program Name: IMAGE
Purpose: To generate a character printed image from
imagery data.

Method: The imagery data is read into an array, and the

4 minimum and maximum intensities are found. This

1 - range of image intensities is divided into 10

; levels. Each level is assigned a character:
1,2, 3,°°"9, from minimum to maximum,
respectively. The image is gated to narrow the

! . viewing area. The gated array is then character

.1 printed on the line printer.

Subroutines used: None




YL T 41
AT R
Teyt

A:-““\
jon'-'I\}ll,'
0T v T

DT ”~
AP

TAuNT g, Ty,

HOD"A“,/(_’ “AV"H"X"
Xyt HTTTAT M Ean e
hgmTo ,(L'i“_\(\")"/::’
TARTAT (M LTI i,
TALTHITT 4T A

[t
Y=

T o=, )T
"} 2 A—-‘./i':

TN Y e T

X N GURPEES RS M
q.-r.z|‘.-

T

.o

L A A A

LY TR NN,
(T,

L

N/ /"./-

UEar% GRS L R

Loy ot b

(o,

133

1) y¥=11,22)

jarrsy

4J)1 4}

-
~<
-

; ST I Xy H4CCLLy Yy
’.; ff‘i,')(,-o—{TY’i W,

Xt NGT

’




he'd

PR

-~
v e wE e

il VDR

an .20

J

'IJ.LJLJJ._)V

oy
SO
(CLaen
(S G
(= (e (3]
(1 t)
(7 () en
R G VR
Ly $vy =22
AR A

@ Two g
LN -~ “
N A

k)

‘._{)'

P
O
D)

e e ol o

134

M

L]
(4 \"-.Ir))';\l—" N

h i -‘:'V

i} \,: v
J"‘:“"

TS ERRP

LAt SRS AR AN b IV

LRSI 4 “::.J’;‘EL;, .'x,-'i"’,.-qlll
TP ENTL )

1Y

AV
(2. Ye g b 3Y)(42 =7
(= T2y 0=
(tyery IUI)YLML =)
('Y= a'A’f:))';":‘—:
(Y e T S) ) e E
URER S D I R R
(o= o TR0))OH . =N
I RV B I R
(Yoo d D))t =
b4

Yl Tl Tyt Y)

-y

Syl

T e

Xy

AT Y=y T




Program Name: LPLOT

Purpose: To generate a line plot of moments or moment
invariants as a function of threshold.

Calling Procedure: CALL LPLOT (YARRAY, XARRAY, LABEL,
R,P,Y,RG, MX, MN)

one-dimensional array of abcissa values

Arguments: YARRAY

XARRAY = one-dimensional array of threshold

valves
LABEL = label of abcissa
R = target roll
~£ P = target pitch
Y = target yaw
RG = target range
MX = maximum image intensity
MN = minimum image intensity
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Program Name:

Purpose: To determine a threshold level to suppress the
background from imagery data

Method: The second and third order raw and central
moments and the corresponding moment invariants

are computed as a function of threshold level

where

THRSHD = MIN ~ constant ° (MAX-MIN)

MAX

MIN

THRSHD

Subprograms Used:

maximum image intensity
minimum image intensity
CENTER
INVRNT
PARRAY

MIARAY
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