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Notation

M pq-th raw moment of order (p+q)Pq

pq pq-th central moment of order (p+q)

Binomial coefficient (a) 
a!

la-bi Absolute value of a-b

(ao; ;ao) (u,v)P A homogeneous polynomial of
po op

variables u and v with coefficients

a ... a
po, , op.

Is the same as

a up + (p) a P-1uv

p- p1alp_ uv
p -  +a vp

Determinant of a matrix

G A group, either abstract or transformation

X Vector

X Matrix

D(G) Operator group representation of group G

D(R) Operator corresponding to element R in group G

D(G) Matrix representation of the group G

6i_ Kronecker Delta Function

D. (R) ij-th element of the matrix representation

corresponding to element R in group G
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Abstract

This thesis investigates the application of two-

dimensional moment invariants to image pattern recognition.

The general problem studied is how to identify an aircraft

target and its orientation in real time. The method of

moment invariants provides a clever feature extraction

technique to reduce the information in an image to a

finite number of quantities which are translation, size,

and rotation independent. Most of the previous work on

image pattern recognition has been based on the results

obtained by M. K. Hu, who relied on the theory of algebraic

invariants. In this thesis, a set of moment invariants is

derived from the group-theoretical properties of the two-

dimensional rotation group applied to the moments of an

image intensity function. It is shown that Hu's invariants

can be obtained from.this set and is, in fact, an equivalent

complete description of the image. The application of group

methods to moments presents a general procedure for cal-

culating moment invariants under any linear transformation.

b The image signal effect of thresholding the background

clutter is also discussed.
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I. Introduction

Artificial intelligence has long been an area of much

study, and the ability to recognize visual images represents

a major effort. However, research on pattern recognition has

been hampered by the lack of a general theory of feature

extraction. That is, what properties make one image unique

from another, and how are those properties ranked according

to their importance in the identification of the image?

Generally, studies in pattern recognition have relied on

heuristic criteria for feature selection. The method of

moment invariants developed by M.K. Hu (Ref 1: 179-187)

provides a clever feature vector with which an image may be

described. This thesis further investigates the application

of two-dimensional moment invariants to image signal

processing to identify a three-dimensional object and its

orientation.

The general problem formulation is how to efficiently

utilize in real time visual information signals from an

optical system for the identification and analysis of the

visual pattern. Examples of the optical systems in question

may include television monitors, infrared sensors, or even

laser radar returns. Usually, the information content of

even a single image is orders of magnitude greater than what

may be actually needed to recognize the object. The

method of moments provides a systematic procedure for
/
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extracting numerical features from an image. By compiling

a "library" of moment invariants for an object set, it may

be possible to dividc the feature vector space into

separable regions by some type of classifier.

>4
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II. Previous Development

The original concept of using moment invariants for the

purpose of visual pattern recognition was first published by

M.K. Hu in 1962 (Ref 1:179 - 187). A framework was estab-

lished for deriving a complete set of two-dimensional moment

invariant functions under translation, rotation, and

similitude. His approach was related to the study of

algebraic invariants based on the work of the nineteenth

century mathematicians Boole, Cayley, and Sylvester. In-

terest declined in the study of invariant forms following the

initial nineteenth century work, but the application to

visual pattern recognition has generated much recent interest.

S.B. Dudani extended the moment invariant concept to

the identification of three-dimensional objects in his

masters thesis (Ref 2) and in his doctoral dissertation

(Ref 3) on an experimental study of aircraft identification

using moment methods. Dudani's work formed the starting

point of the U.S. Navy's algorithms in their Automatic

Aimpoint Selection and Maintenance (AUASAM) program and also

the U.S. Air Force's Image Processing Automatic Acquisition

Control System (IPAAACS) conceptual design study (Ref 4:45).

Dudani oriented his study toward video imagery and only used

the information contained in the second and third order

moments calculated over the image silhouette and boundary.

After constructing classifiers (Bayes, K-nearest neighbor,

sequential) over an object set, it was shown that the

3



classifier's performance was superior to human test subjects.

More recently, M.R. Teague established a framework for

describing an image in terms of a finite number of moments

(Ref 4). The inverse problem of how to reconstruct an image

given a finite number of moments was addressed and served to

illustrate the information content of successively higher

order moments. For example, the second order moment

approximation to an image intensity function is equivalent

to an ellipse of constant intensity magnitude. A set of

moments and moment invariants was also derived based on the

orthogonal Zernike polynomials. In another paper, Teague

described an optical processing scheme to obtain image

irradiance moments of arbitrary order (Ref 5). The optical

wave limitations on accuracy was also discussed.

Recently, Texas Instruments used moment invariants as

part of the feature vector for a guidance algorithm in a

demonstration at Eglin A.F.B. The algorithm was slated for

use in a mini-computer for rcal-time performance (Ref 6).

4



III. Definition and Theory of Moment Invariants

Historically, M.K. Hu first conceived the idea of using

moment invariants for pattern recognition of visual imagery

(Ref 1: 179-187). His approach will be followed in this

section. The moment invariant functions are related to the

algebraic invariants, and a complete set of invariants is

derived under translation, rotation, and similitude.

Raw and Central Moments

The concept of moments is not new, being used extensive-

ly in classical mechanics and statistical studies. The

two-dimensional (p+q)th order moment of a density distribu-

tion function p(x,y) in Cartesian coordinates is defined as

M _ p f xP yq p(x,y) dxdy p,q = 0,1,2.... (1)

For image processing purposes, p(x,y) is the image intensity

distribution across the optical plane. Under practical

conditions all orders of moments exist, and the sequence of

moments fMpqj is unique to p(x,y), and conversely. These

conditions are usually met, or at least approximated, over an

4 optical system image plane.

5



The central moment Ppq is defined as

)Apq LC (x - )p(y - )qp(x, y) d (x ) )d (y- )

(2)

where

M O M O .io 01
X y (3)

By a simple change of variables, it is obvious that under

the transformation of translation,

X= X + a
(4)

y= y +

where a and 0 are constants, the central moments are in-

variant.

From the definition of central moments, Eq (2), it is

easy to express the central moments in terms of the raw

moments. For example,

-2- i 00 0OOp 12 = M0- £2 MOO  (5

J 1 0 = M1 0 - Y M = 0 p0 2 = 02 - M00

6
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A general formula for calculating the central moments in

terms of the raw moments is

i=0 j=S

-q-i+JM. (6)

S = L 1 (p+i)- Ip-ill T I j(i-q) + jiqI

where x and j are defined in Eq (3) and the notation ()
denotes the usual binomial coefficient. A listing of

the central moments up to the fifth order is contained in

Appendix A. Perhaps a more convenient form is the recursive

formula

~ ~-p+q-l T (pp )q-+j)~ p-Ppq= Mpq _ (q - -i+ x

i=O j=s

q-i+j
YJ, 1-i (7)

which calculates p in terms of the raw moment M and
Pq pq

the lower order central moments. Appendix B lists the

recursive central moments for several orders. All moments

referred to hereafter will be the central moments unless

otherwise stated.

7
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The Algebra of Invariants

The homogeneous polynomial in two variables,

UP + (P) IuP-2 v + + ( 1) al'p-lUvP-i

f = apoapl p 1

(8)
+p

op

is a binary quantic of order P. Using the notation common

in the study of algebraic invariance, Eq (8) can be written

f -(apo; ap-l, 1 ; "; al,p-1 ; aop)(u, v) p "  (9)

If the general linear transformation,[IVU 71 IVU I:
where the determinant A is not zero, is applied to f, a new

function f' is obtained

f' = (a 1 *..;al 1 p l;a )(u', v')P (11)f'= ( ;pl ; ; op, -l

with the same form as f, but with new coefficients. Then,

if a homogeneous polynomial I(a) of the coefficients of f

exists, such that

I(apo ;...; a') = AW I(apo;" ; a0 p) (12)

4 8



then I(a) is an algebraic invariant of weiQht w. For w0,

the invariant is called a relative invariant and depends on

the transformation. If w=O, then I(a) is an absolute in-

variant. By eliminating A between two relative invariants,

a nonintegral absolute invariant can always be obtained.

Moment Invariants

From the Fundamental Theorem of Moment Invariants

derived by Hu (Ref 1:181), the algebraic invariants are

related to the moments of the same order. That is, if an

algebraic form of order p has an invariant of the form of

Eq (12), then the moments of order p have the same invariant

I p(o' -; • ) = IJ Aw I(ip ; iAsP) (13)

but with the additional factor Jii, where J is the Jacobian

of the transformation.

By direct substitution of the similitude (change of size)

transformation

[x] [a o] [
X' 0

[] o[(14)

into the definition of moments, every moment is seen to be an

invariant,

p+q+2
L a (15)

pq pq.

9



From the zeroth order relation,

2

- (16)g00

and substituting into Eq (15) for a yields the absolute

invariants

P q Apq

I = (p+q+2)/2 = (p+q+2)/2 (17)Pq p00 0

Under the following rotation transformation,

IxI] [coso sin1 [x](1

y' -sino coso (

where 0 is the angle of rotation, the absolute value of the

Jacobian is seen to be IJI = 1. Therefore, according to the

Fundamental Theorem of Moment Invariants, the moment in-

variants are the same as the algebraic invariants. If the

moments are used as the coefficients of an algebraic quantic,

f = (Ip0 " Ap) (u, v) , (19)

10



then there is a clever technique to derive the necessary

invariants. From the transformations,

[u] [coso -sin ][u0)

v sinG cose ' (20)

*[U] [11 [u ] [UV"]- 1: A [1u] (21)

the orthogonal transformation becomes the simple relations

U Ue- 0  V = Ve10  . (22)

Substitution into Eq (19) yields the relative invariants

PO PO(23)p0  p0  (3

I , = e(P-2) Ip(l,0

p.-1. 1  eI-'

e (p-2)o
Iip_- Ilp-l

I ' e-LPO IOpIop10

where I and I denote the corresponding coefficients after

the substitutions.

, .... . .,



By eliminating the factor e , a complete system of

absolute invariants is obtained. For the second and third

order moments, the invariants are

Ill I02120 (24)

3 3130103 I21112 130112 + 103121 (25)

2 2 (26)

120112 02121

S(301 - I0321) (27)3012 032L

The last relation changes sign under improper rotation and is

called a skew invariant. Eq (27) is useful fordistinguish-

ing "mirror images". Eqs (24) - (27) can be expressed in

terms of the central moments,

120 +P02 (28)

2 + ' 2 (29)v~2 ~2 11

2&q(g30 -3U12 )2 + (3 '21 - 0) 2  (30)

t(I30 +1i12)2 + ( 2 1 +I0 3) (31)

12



(JA3-3p2 (p3 +p1 1 (JA0 + p2 2 -3 (pn + 031 21
30 12 30 2 30 12 ~ 21  03 2(32)

(3p 2 1-'0 3 1 (p21 +I. 0 31f3 ( 3 0 +"121 2 _.1 32

(32 0 - P021 I 30 -"12 2  +P

+4 1 (P3 0 +P12 ( 2 1 +03 )  (33)

(3p2 1 -%031 (130 (2iA 30 +2 -3 1)21 +_02122

-(A 3 0 -3P 1 2 1 (P 2 1 +J)03 I 30 +;12)2 -(21 +P 0 3) 21 (34)

13
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IV. A New Set of Moment Invariants

Based on the Methods of Group Theory

A new set of moment invariants is derived from the

mathematical methods of the theory of groups. Group theory

has been applied to problems in physics where the concepts

of symmetry and invariance are important. Such physical

notions as parity, spinor, and angular momentum are aspects

of group properties. Most of the previous work on moment

invariants has been based on the results obtained by Hu

(Ref 1: 179-187), which relies on the theory of algebraic

invariants. The application of group methods to the same

problem represents a new and different viewpoint.

This chapter develops the basic mathematical concepts

and definitions leading up to the derivation of a set of

invariants. The approach taken is drawn from Hamermesh

(Ref 7: 6-30, 77-113). The concepts are then applied to the

particular case of invariance with respect to rotation in a

plane.

Basic Concepts and Definitions

An abstract group C is defined as a set of elements for

which a law of "multiplication" or combination is given such

that the "product' ab of any two elements, a and b in G, is

defined and also satisfies:

1. If a and b are elements of G, ab is also.

1
41
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2. Multiplication is associative, a(bc) = (ab)c.

3. A set identity element e exists such that ae = ea

= a for any element a of the set.
-i

4. For any element a of G, an inverse element b = a

is also contained in the set such that ab = ba = e.

In this context, "multiplication" does not mean an algebraic

product, but refers to a rule under which two set elements

are combined. If in addition to the above conditions, all

elements commute among themselves, the set is abelian. From

the concept of abstract groups, a transformation qrou, may be

visualized by associating transformations of a set of points

as the group elements. This gives a pictorial viewpoint of

the group notion.

The number of elements in a group is called the order of
n.

the group. The notation a implies the product of n elements

each equal to a. Negative powers of element a are also

defined, a
- m = (a-l)

m = (am

Two groups, G and G', are isomorphic if their elements

can be put into one-to-one correspondence which is preserved

under combination. If two groups are isomorphic, they have

the same structure. Their symbols may differ, but their

respective abstract groups are the same. Similarly, a

"A homomorphic mapping of G on G' preserves products, but now

several elements of G may have the same image in G'.

Group Representations

In a vector space L, a set of operators forms a group

15



if it satisfies the definition given above. The product

of two operators A and B on the vector X means the

single operator CX = A(BX) for all X in L. The identity

operator leaves the operand unchanged, and all operators

have an inverse. If the vector space L is mapped onto a

second space L', via an operator S, an isomorphic group of

operators is obtained in L' which are transforms of the

vectors in L, A' = SAS

If a group G is mapped homomorphically onto a group

of operators D(G) in the vector space L, the operator group

D(G) is a representation G in the representation space L.

If L has dimension n, the representation has degree n or is

an n-dimensional representation. If the homomorphism

reduces to an isomorphic mapping, the representation D(G)

is faithful, and the order of D(G) is equal to the order

g of G. The operator corresponding to an element R in

group G will be denoted by D(R). If R and S are elements

of G, then

D(RS) = D(R)D(S) (35)

D(R-1 ID(R) -1 (36)

" D(E) = 1. (37)

where E represents the identity transformation.

16
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A linear representation is a group representation in

terms of linear operators. All representations hereafter

are assumed to be linear, unless specifically noted other-

wise.

Given a basis in L, the linear operators of the

representation can be represented by their matrix represent-

atives. Group G is then mapped homomorphically onto a

group of matrices D(G), giving a matrix representation of

the group. The matrices are nonsingular and

Dij (E) = 6.

D(RS) Dik(R) DkJ (S) =Dik(R) Dkj (S). (38)

If the basis in the n-dimensional space L is changed,

the matrices D(R) will be transformed by some matrix C,

D'(R) = C D(R) c. (39)

The transformed matrix also gives a representation of the

* group and is equivalent to D(R). Equivalent representations

* fl have the same structure, even though the matrices appear

dissimilar.

An intrinsic property of a representation D(R), in-

dependent of basis, is the trace X(R), or the sum of the

17
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diagonal elements of the matrix representation.

X(R) D (R) (40)

The trace is called the character of R in the representation

D. Equivalent representations have the same set of

characters.

Given a transformation T belonging to a transformation

group G (or to the group associated with the matrix repres-

entation D(G)), new representations can be constructed.

Transformation T acts on X to produce X' :X = TX. A

linear operator 0T associated with T acts on some function

I(X) such that

', (X) OTI'(X) = (X), (41)

if X = TX. In other words, the transformed function '

takes the same value at the image point X as the original

function * at the object point X. Another way of putting

it is that the effect of the operator 0T is as the point P

is transformed to image point P', it carries with it the

value of T at P.

Therefore

SOT'(TX) = *(X) (42)

or
OT(X) ' (T- x) (43)4 18



The general procedure for constructing representations

should now be clear. Apply all the operators 0R correspond-

ing to the transformation group to each of any set of

linearly independent functions. A set of functions is

obtained which can be expressed linearly in terms of n of

them, T' 2 "'' . Applying any operator 0 to these1' 2'"' n R
functions results in a linear combination of the same n

functions,

n

0ORT =i Dij (R) j=l,...,n. (44)

i=l

The correspondent of the element R in the representation is

then the matrix D(R).

Reducible and Irreducible Represencations

Given a representation D, it is possible to describe it

in terms of "simpler" representations. Roughly,"simpler"

means that the representations have the lowest dimensions

possible. In general, if a basis exists in which all

matrices D(R) of an n-dimensional representation can be

brought to the form

D(R) (R) A (R)

Lo D ](45)
0 (2) (R)l

where D(1)(R) has m x m dimensions, D (2) (R) is (n-m) x (n-m),

19

--... ... .. .-4 "-"



and A(R) is m x (n-m), then the representation is reducible.

An intrinsic indicator of reducibility is that there exist

some subspace of dimension less than the representation

which is invariant under the transformations of the group.

If it is possible to find a basis such that the representa-

tion matrices have the form of Eq (45) with A(R) being the

zero matrix, the representation is fully reducible. A

representation for which there is no invariant proper sub-

space is irreducible.

Among the irreducible representations there may be

several which are equivalent. These, of course, must have

the same dimensionality. Equivalent irreducible represent-

ations are not distinct, and the same symbol can be used for

them. Also, a representation of a group may contain a

particular irreducible represcntation several times.

Invariance of Functions

Recalling Eq (43), OR T(X) = T(R-x), it is clear that

0R operating on T replaces X by R-x. It is possible that

0 R T is identical with T'

OR T (X) T (X) (46)

so that

(x)= T(R-I)

T(RX) = T(X) (47)

20



In this case, the function T takes on the same value at the

image point as the object point, and is invariant under the

operator 0R' or more briefly, under the transformation R.

To test for invariance of a function, the arguments are

replaced by their images to see if the same expression is

obtained.

In the theory of representations, a complex number

(X, Y), called the scalar product, is associated with each

pair of vectors X and Y in vector space L such that:

I. (X, Y) = (Y, X)* (48)

2. MX ay) = a(X, Y) (49)

3. (X 1 + x2' Y) = (Xl' Y) + (X2 Y) (50)

4. (X, X) 0 (51)

and (X, X) = 0 only if X is the zero vector. A space in which

a scalar product is defined is called a unitary space. In

defining the scalar product, a basis was not mentioned, which

means that (X, Y) is an intrinsic property of the vectors

X and Y, and is independent of basis.

Any function satisfying Eqs (48) - (51) can be used to

define a scalar product in the space L. One definition of

(X, Y) is to write it as a function of the vector coordinates

xi and yi in a particular basis. If the basis vectors are

ui, a metric matrix M is defined by

mi = (ui, u) (52)
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From Eq (48), it is clear that

M.. =m*
3 J] (53)

M = (54)

(M)i = mt. (55)

ii 3i

Where Mt is the conjugate of matrix M transposed and is the

adioint of M. A matrix which is identical to its adjoint is

called self-adioint or Hermitian. Therefore, from the

above, M must be Hermitian. If vectors R and Y are expanded

in the basis ui,

x 1 n+ + XnUn 1 xiu i  (56)

= YlUl + + YnUn -yu, (57)

then it is clear that

4 (58)
MY~) = M

where X and Y are column matrices and X is the adjoint of 3.
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Two vectors in a unitary space are orthogonal if their

scalar product is zero, (X, Y) = 0. Given a basis v. in the

unitary space L, a new set of basis vectors u. that are1

mutually orthogonal can always be constructed and forms an

orthonormal basis if (ui , uj) = 6ij

In a unitary space L, the distance IX - Yj between two

vectors is defined from

IX -= _ -A (59)

A sequence of vectors Xn (n = 1 .... ) in L is said to

converge to R in L if lim IX - Xi = 0. The sequence of
n-w n

vectors Xn is said to be a fundamental sequence, if

lim I m - R 0 If every fundamental sequence converges
n-CO m ni=0
to a vector in the vector space L, the space is complete.

A complete unitary space is called a Hilbert space. The

unitary spaces of finite dimension are complete. Infinite

dimensional representations will be restricted to represent-

ations by linear operators in a Hilbert space under the

condition that the operators are continuous.

4 To tie the preceding paragraphs together with in-

variants, assume that an irreducible representation D(R) is

unitary. Then the scalar product of vectors in the Hilbert

space of the representation is invariant.
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The inverse transpose of each of the matrices of an

irreducible representation is also a representation of

the group and is called the adjoint representation 5 (R),

5(R) _ D (R). (60)

Likewise, the complex conjugate of D(R) is the complex

coniuqate representation D (R). If the adjoint represent-

ation and the complex conjugate representation are

equivalent

D (R) Z D*(R , (61)

there exists a matrix F such that

D (R) =F D(R)F

(62)

D (R) F_- (R)F -

or

Dt(R)FD(R) = F. (63)

Then ( ,F R) is invariant under all transformations of the

group G. In fact, for an irreducible representation, there

can be no more than one invariant of this form.
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Expansion of Function in Terms of an Irreducible Representa-

tion Basis

As noted previously, a representation of group G can be

constructed by applying the transformations of G to any

function T. Then Y will be a base function or a linear

combination of the basis. This can be extended further by

decomposing the representation into its irreducible

constituents. In other words, any function Y can be

expressed as a sum of the base functions in the irreducible

representations,

T (64)
Vi=l

The base functions for the Vth irreducible unitary

representation satisfies

0  i ) T (\J)D(v ) (R) (65)
Ri ji "

The desired aimpoint is to find the T. (v) given the1

function T. In other words, how can the given function

be resolved into a sum of functions, each belonging to a

particular row of an irreducible representation?

If Eq (65) is multiplied by D(P(R) and summed over
1 in

the entire group
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ip

iJ
D( )(R) OR Tv T D D()(R)D (R)

R j R

9 1 mi Pv (66)

due to the orthogonality relations of Appendix D. For the

case m = k = i and p = v

1 - g (R) o (67)

R

That this is a necessary and sufficient condition on the

(v) such that Eq (65) is satisfied is proven in Appendix E.l

A projection operator is defined from Eq (66) as

( ) R ( )

P g D ii (R) 0R  (68)

R

such that

(i)) =() =  (  6)  6 .6i . (69)

1 J) s ailediv q (4)

Appendix E shows that if the P. is applied to Eq (64),

the result

1P 1(P*R (70)

i g ii(R) OR (70)
R

/
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is obtained or,

T = T (71)

which is the desired end. Briefly, to find the projection

of a function onto a basis function of an irreducible

representation, multiply by the basis function and sum over

the entire group. Another way of viewing it is that the

projection operator finds the component of T in the

"direction" of the basis function.

Application of Group Theory to Moment Invariants

The basic tools are now available to derive a set of

moment invariants under the rotation transformation. The

rotation transformation of Eq (18)

SINe COs1 [x]

forms an infinite continuous, abelian transformation group

over the region e 6 I 0,2f. For simplicity of notation,

COSmO E C and SINme = S The approach taken is simple:

(1) Form a reducible matrix representation of the rotation

group, (2) use the projection operator to form vectors

in terms of the irreducible basis functions, and (3) form

invariants of the scalar product form. As before, all

reference to moments is taken to mean central moments.
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Using the notation of the expected valve operator,

the pqth moment can be written

=pq EfxPy q. (72)

Under the rotation operation, the new moments become

Ipq = E (xC+YS)P(-xS+YC) 1. (73)

The zeroth order moment remains the same,

1o00 = 1OO, (74)

and the first order moments in terms of the unrotated

moments become

[0~i 1J [[01]
PloJ S CJ lj (75)

Thus, the reducible representation is obtained. Appendix F

lists the rotated moments up to the sixth order. In order

to obtain the same likeness as in Appendix F, the trig-

onometric identities of Appendix G will be useful.

The projection operator, previously defined in Eq (68)

can now be used to expand the transformed moments above in

terms of the basis of the associated irreducible represent-
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ation. By applying Eq (70) to the reducible representa-

tions above, a vector in a Hilbert space is obtained whose

components are

X(m) - nm 1T 2 m. dopq 27JT 0 m pq

y(m) - m 02' . ,
pq - 2r S dO (76)

where an integration instead of a summa .ion is performed

since the group is continuous. The irreducible representa-

tion basis is composed of terms of the form C and Sm m

(m = 0, 1,...) where m can be thought of as a "frequency" of

rotation. The effect of the projection operator is to

"peel out" that component of the pqth representation which

has frequency m. Thus for the zeroth order,

(0) 2i 00

(0) -(77).00 = o,

and for the first order,

Xll40 =101

.(l) - (78)
" 01 10

29



It is apparent that if a particular representation does not

contain any terms with a specified frequency m, then the

projection operator gives the zero vector. This might be

expected, since the term does not have any components

associated with the specified basis vector. The projected

moment vectors up to the sixth order are listed in Appendix

H. It may be observed that a distinct vector is not formed

for every moment within an order. For instance, the second

order vectors from Appendix H

X(0) + . (0) = 0 (H-3)02 20 02 02

X (2) = 1 p L y (2) P(H-4)02 2 -(20-02 )  02 = 11i

do not contain vectors corresponding to p11 and P20"

However, if the projection operator is applied to these

cases, the result

X (2) 1 by (2)
11l 2 02 -W20 )  i = 1 (79)

= () + 2  y(0) 0 (80)A20 = 02 20 20

_(2) 1 _ 2 ) (2)
-20 = 2 20 = Pi (81)

is obtained. Comparing Eqs (79) - (81) to Eqs (H-3) - (H-4),

it is seen that Eqs (79) and (81) are the negative of Eq
/
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and Eq (80) is the same as Eq (H-3). This is expected since

as was previously noted, among the irreducible representa-

tions there may be several which are equivalent and are not

distinguishable.

In a previous section, it was stated that the only form

of invariants is a scalar product (Y, F R) between vectors

within an irrecducible representation. Since the rotation

group forms a unitary representation, the matrix F must be

a multiple of the identity matrix by Schur's Lemma

(Appendix D). Therefore, the invariants are of the form

(Y, X), a direct scalar product. For the vectors derived

above for the rotation group, the invariants are formed only

between vectors of the same frequency, or more fundamentally,

between vectors from the same representation. It is evident

that invariants can be formed between vectors of differing

moment orders, but with the same frequency, since they come

from equivalent representations. For example, an invariant

is formed within the second order moments,

i(0) = (0) (0) () y(2)
02 02 02 02 02 0

b2

(20 +022 , (82)

by forming the scalar product of the zero frequency vector

corresponding to P02 with itself. Another invariant is

31
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formed between second and fourth order moments,

~3
1(0) 1 h' (p 0 j) (11 21+P(302 04 4 20"'02 40+ 22 + 04)  (83)

Appendix I lists the invariants formed from the vectors

of Appendix H.

A Complete Set of Moment Invariants

A "complete" set of invariants in the sense to be

considered means that the moments from which the invariants

were formed can be found, and in turn, the image itself can

be reconstructed. However, this is not completely true.

For a particular image, a unique and complete set of

two-dimensional moments of all orders exists. A specific

and unique relationship exists between each and every

moment. To obtain independence with respect to translation,

the central moments were introduced. However, invoking the

central moments discards the location of the image centroid.

Independence with respect to rotation is obtained at the

expense of the angle of rotation of the image. But a unique

relationship still exists between the remaining moments, and

in fact, the invariants are a description of that relation-

ship. Thus, to obtain invariance with respect to a trans-

formation, some information about the image is discarded.

From Appendix H, the vectors from the second and third

order moments are

3~32
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0 0

X02 = 120 +0 2  Y0 = 0 (H-3)

2 -1 Y2(H4
X02 = 2 (20 -02 )  Y02 11 iH 4

3 1 _3X03 4 (21 +P0 3 ) Y0 3  4 -4 ( 3 0 +VI1 2 ) (H-5)

3 1 3 _1

X03 -4 (31J 2 1 -P 0 3) Y0 - 4 (130-3112) (H-6)

X 1 1 Y1 112 -4 30 + 2  12 - (P21+03) (H-7)

where the superscripts indicate the frequency of rotation

with respect to the image rotation. Since there is not a

common frequency between the two orders, it appears that no

invariant of the inner product form can be constructed.

However, if the reducible matrix representation associated

with the second order moments is cubed and the representa-

tion for the third order is squared, common frequencies are

obtained after the projection operators is applied. In

particular, for the second order

(1.102) 3 1 1 3 15 5 3
02C 2 C4 + C 6  C 2 4 2 +2 202S2 -3 0C + C 2

( S6+6S4 +6S2 )  P02 i P 4  -4 C 2  52)V02 P20

,- ( -2 S 6  + 6 S 2  P i i3  + ( -3 C 6  6 C 4  + 3 C 2  + 6 ) P 0 2 1 i 2

' 23 11 36  4  2  11
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+(3S 6 -9S 2 )P 0 2p 20"11

3 3 3 +3 2
+ (-c -- C -C +- p p

4 6 2 4 4 2 2 20 02

-(-3C +6C +5C -6) 2
6 4 2 6 ) 11

3 15 2
-(- S -65 S ) p

2 6 4 2 2 20 11

S 3 15 5 3]-(4 C6 - 2 C4  -- 4 C2 - 2) P20J (84)

and after applying the projection operator "q (76)

x 6 1 3 2 2 3 2
2 4 02 4 02 20 -3 0211 + 4 20 02

2 1 3
- 4 20

y26 3P 2 3 3 2
2 - 2 02 11 + 21 ll + O2 p20 Pll - 2 2 0 p 1 1  (85)

For the third order

2 [3) 16 1.(C6 +C 4 +15C2 +10) 02 -3 (S 6 +4S 4 +5S2  12 113

-3(C6 +2C4 -C2 -2)P + 2(-C6 -C 4 +C2 +2)112

4 34
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+(S 6 - 30 i03 +9(S 6 -3S2) 21 12

-3(-C 6 +2C 4 +C 2-2) P3012

+2(C 6  2C 4 -C 2 +2) 2 +3(S -4S 4 +5S 2 301I21

+,I(-C6 +6C 4 -15C 2 +10) 3 ] (86)

and

X6= 2 6 2 2 +6 23 03 P21"03 "21 -912 +3012 30

Y36 = 2 (-3 "12i"0 3 -P30"03 +9"'21ll2 +3130"121) (87)

22 + 22 2 -51132
3 503 + 2 1 '0 3  21 12 +3012 30

Y32 = 2(-5p 12"03 -"30"03 -9 21 P12 +5]1 30P21). (88)

Scalar products between the vectors of the same frequency

can now be formed

( 252 2 12+3v 2 _5-3 2

312 (i 0 2 -P 2 0 ) (5103 +2103 -321 12 230112 3

11 +4pii(5P12 03 + P30 03 + 9 21 12 5]30 21 )  (89)
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1(6) 2 -6 p P +9P 2 91 2 +6p11 2312 = 03 21 03 21 12 30 12- 30)

. 3 2 P 2 2 2 3(02 310220 2P02 ii +2P20I +31 201102- 20)

+41J11 (3P1121103 +30103 -921 112 -330 P21)

(1 2 _ 2 6 P +3P(

02 11 02 20 120) (90)

Similarly, all orders of moments can be linked to form

invariants. A complete set of moment invariants with

respect to rotation and translation through the fourth

order is listed in Appendix J.

Comparing Appendix J with the moment invariants derived

from the algebra of invariants by Hu, Eqs (28) - (34), a

striking similarity can be observed. Eqs (28) - (31) are

virtually identical with Eqs (J-l) - (J-4), and Eq (32)

is very similar to Eq (J-5) except for coefficients. It is

also observed that there are (p+l) invariants derived by

group theory methods, where p is the moment order. This is

exactly the same as in Chapter III. It can be concluded

that the two sets of moment invariants, each derived by

different methods, group theory and algebra of invariants,

are equivalent.
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V. Image Signal Effects

It is obvious that the image signal over which the

moment invariants are to be calculated depends on many

parameters of the optical system, the object, and the

transmission channel. The effects of the variation of the

parameters must be taken into account in designing a

recognition system. The discussion to follow is oriented

toward visual data of aircraft in an atmospheric environ-

ment.

Invariance With Respect to Optical Path Length

As an object is moved along the optical axis, it is

evident that the image signal of an optical system will

vary. A first order effect is obviously a change in size.

A second order effect will be the appearance or disappearance

of small details of the object. This second order effect

diminishes as the optical path length from sensor to object

increases. For aircraft type problems, this may be

negligible.

The change of size problem is mainly a matter of

normalization of the image moments. A radius of gyration

is defined to be

r = 0 2O 2 (91)
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and is directly proportional to the image size or inversely

proportional to the distance of the object along the

optical path length. The product of the radius of gyration

of the image and the range of the object is a constant.

Therefore, the general moment may be normalized to be

Ppq = pq / (20 + (p+q+2)/4 (92)

A second choice of normalization follows the rule

derived earlier, Eq (17), under the similitude trans-

formation.

(p+q+2)/2,
I = ;pq/Poo p+q = 2,3,''" (17)

This corresponds to having the average scene brightness

P00 always equal to unity. Therefore, by dividing the

central moments by oc

p = IApq /A 0 0  p+q = 0,1,2 (93)Pp q = p I 0

the size change effect is eliminated. Of course, such

normalization is not unique. An advantage of this method

is that invariance with respect to scaling is obtained.

That is, the scaled moment becomes

Jpx y Ja p(x, y) dxdy

= aPq (94)

l 38



and after normalization

pq = apq / '00

= Ppq / P00 (95)

which is the desired result.

Changes in illumination

Another problem that occurs is that under different

conditions of illumination, the image moments will vary.

For example, a video camera takes a frame of an aircraft

at sunrise and at sunset at the same range and orientation.

The shadows on the aircraft will be different, causing a

different weight to be placed on a particular area. Dudani

eliminated this problem by using only the boundary and

silhouette of the target (Ref 4: 33-34). However, it is

obvious that some information is not being used in this case.

If instead of a video detector, an IR (infrared) sensor

system is used, the problem of scene illumination is

eliminated, or at least reduced. IR signatures are

presently being studied for identification purposes.

Variation in illumination may also be incorporated into a

statistical classifier.

Aircraft/Missile Engine Plume

For the particular class of targets which include

flying aircraft/missiles, there is the unwanted feature of

the engine plume. 39
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It will be assumed that the entire aircraft is included in

the field of view; otherwise, it cannot easily be identified.

Depending on the range from the optical system to the

target and upon the location of the aircraft withi the

sensor field of view, the engine plume may be totally,

partially, or not at all, within the image. Also, the

plume might tend to dominate the imagery data. Therefore,

the identification problem becomes much more difficult and

it is desirable to "gate off" the engine plume.

In general, a distinctive feature of the plume is

required to indicate the dividing point of the aircraft and

the plume. One such feature may be that the plume is

hottest at the exit of the engine. By scanning along the

axis of the plume, it may be possible to pick out this point

and incorporate its coordinates to gate off the unwanted

portion of the image. Frequency discrimination may also be

employed as a distinguishing feature.

Target Background Clutter

As in the case of the engine plume, the target back-

ground represents extraneous and unwanted information. Also,
b

in order at least to approximate the finiteness condition of

4 the uniqueness property of moments, a background of zero

intensity is ideally desired. For the case of aircraft

data being considered, this unwanted information may take

the form of blue sky or clouds.
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Assuming an approximately constant intensity background, a

rough solution is to subtract from the image, point by

point, a constant intensity depending on some parameters

of the image. If the intensity at any point becomes

negative, it is set to zero. Presumably, the background

clutter would be eliminated or reduced.

As a first guess, the threshold constant was taken to

be the difference between the minimum intensity and a

constant times the difference between the maximum and

minimum intensity image,

THRSHD = MIN+CONSTANT (MAX-MIN) (33)

The above procedure was applied to imagery data of a Hawk

missile in flight and the moment invariants were calculated

for the resulting image. Figures (1) - (7) show the

variation of the seven moment invariants derived earlier,

Eqs (28-34) as a function of the threshold constant. The

increment between each.plotted point is 1 (MAX-MIN).
100'

A jump in the value of the moment invariants is observed at

the second point and a gradual variation over the succeeding
b

points. This indicates that for a threshold of

STHRSHD = MIN + (MAX-MIN) (34)100

the background effect has been minimized and the image of

the Hawk missile is the dominant factor.

41
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ia

The gradual variation over the latter points of the graphs

indicates that the missile image is being affected.

Appendix C shows the variation of the raw and central

moments versus threshold for the same case. The same

observations can be made as above.

4I

/
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VI. Conclusions and Recommendations

In the preceding chapters, the general problem of how

to identify an aircraft and its orientation was investigated.

Specifically, the application of two-dimensional moment

invariants was studied as a possible solution to the image

pattern recognition problem. The concept of moment in-

variants, first introduced by Hu, was analyzed (pp.9-13)

and provided a clever method for extracting a feature vector

to describe an image by a number of quantities which are

independent with respect to translation, similitude, and

rotation.

Another set of moment invariants was derived

(pp.27-36) by a completely different method based on the

concepts of group theory applied to the two-dimensional

moments of an image intensity distribution. A complete set

of invariants under rotation was derived (pp.32-36) from

which the image can be reconstructed. It was shown that

Hu's invariants, obtained from the algebra of invariants,

can be obtained from this set, and in fact, the two sets are

totally equivalent. Thus, a full circle was completed,

whereby the same set of invariants was derived through two

complete techniques, algebraic invariants and group theory.

However, the salient property of the group theoretical

approach is that it provides a generalized technique to find

invariants under other linear transformations. The
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derivation by Hu cannot be extended readily to other trans-

formations. A possible area of further investigation is to

apply the group theory concepts to find invariants under

the Seidel optical aberrations, coma and distortion.

The problem of background clutter in aircraft imagery

data was addressed (pp.40-49). A threshold level was set

depending on simple image parameters. Application to actual

imagery data of a Hawk missile indicated that this may be

an acceptable starting point for signal preprocessing.

Other image signal effects, including the aircraft

engine plume and illumination variation, were discussed

(pp.37-40). This area presents a wide field for further

investigation into the statistical problems and methods to

minimize the effects on pattern recognition.

This thesis provides a starting point for a follow-up

study. Computer codes were written to efficiently calculate

up to twentieth order raw moments and then to centralize them

recursively (Appendix K). It is recommended that a labora-

tory mockup of various aircraft and an optical sensor

system, video or others, be set up to provide imagery data

for all aspect angles. From this data, a library of moment

binvariants can be constructed, and a statistical analysis

can be performed. It is recommended that a classifier be

implemented to identify target imagery data and the target

orientation in order to determine to what order of moment

invariants are required for reliable identification.
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Appendix A

Central Moments in Terms of Raw Moments

p+q T

Ppq E j (-I)p+q-j (ppj)(q-i+j)

i=0 j=S

-p-J -q-i+j M (A-1)

where x=M 0 /M00 y M01/M00

(a) b! (a-b)! Binomial coefficients

s (i- i- T = (p+i) - p-i
2 2

P00 =M 0 0  (A-2)

1 0 1  - Moo +M0 1 =0 (A-3)

I0 1  = -X M0 0 +M 0 1  0

IP 02 y MOO-2y M +M02 (A-4)

P 11 X y M 0 0 - x M0 - y M 1 0 +MII

20 M0 0 -2 x M 1 0 +M20
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03 _3 MOO +3 y2 M0 1 -3yM0 2 +M03 (A-5)

312 -x00 +2 xy + -2

2 -2E~012 x M 00 + -M 01 + 0 xM 02

-.2 y M11 +M12

1' 2- -2
2 = x 0 + M0 1 + 2 xy M1 0 -2 x MI1

-Y M20 + M21

-3 21

-x30 _x +3 X2 M10 -3 x M 2 0 +m 3 0

-4 -3 -2
1104 = y M00 -4y M0 1 + 6y M02 -4 y M03 +M04 (A-6)

13 U 3 M00 -3 xy 2 M01 -Y 3 M1 0 +3Y
2  xM0

-3 y M 2 + M13

22 y 2 00 -2 x y 01 -2 x y +x 02

+-2+4 xy MII + y M20 -2 x m12 -2 y M21 + M22

-3 3y0 - 32- -2

-3 x -2 y M 3 0 + m 31
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- -4x +6x -4

40 = x 4MO M10 M20 M 4 3 M40

05 -Y 5m 0 0 + 5 4 M0 -0 3 M02 + lo 2 M03

-5 y M04 + M0 5  (A-7)

1I4 _x 4 M00 +4 x y
3 M01 + y4 - -6 02

- 3 -2

-4 + 4 xy M 0 3 + 6 y M1 2  M 0 4

-4 y M1 3 + MI4

- -2 - 3 -2 2 3 2 - M0
23 xyMOO-3 yM 0 1 + Y MI 0 -3 yM 2

-- 2 3 + 2 +6xyM
-6 x y M 1 1 - Y M20 m03 2

+3 2 M2 1 -2 M -3 y M + M

3- + 122 -3

- - M 0  y M0 1 + 3 x y M M02
P32 y 0 11

-6 x2 M -3 2 I- 2 6 x y M

"A
11 y2 12 21-

y M3 0 3 2 2  M3 1  32

li

*1 ~ . ... ( . ...



41 - x y 0+ x N0 1 + 4 x y 10 -4 x N1 1

-6i xy M 20+ 6 xM 2 1 + 4x M 2 0 4 xM 3 1

-Y M 4 0 + M 4

-5 - 4 -3 2
"5 xm00 +5xm1 -10xm20 + 0 m30

-5 xM 40xM 5

40 50



Appendix B

Recursive Central Moments

p+q-i I

pq Mpq E E ( p - j ) (q-i+j)

i=O j=S

-p-j -(q-i+j . P.

1 1, -3 (B-i)

where x = M1 0 /M 0 0  y = M0 1 /M 0 0

S = (i-c) + -q T = Jp+) -- JP-i2 2

(a) a!
b b!(a-b)! Binomial coefficients

P -00 = 00 (B-2)

,01 -Y '000 +M 0 1 =0

Plo = 100 +MI0 = 0 (B-3)

-2P02 = -y 1,00 -2y p01 +M 02

11 - - - x 0 - Y +M1 1

20 , -2 -2 x 1 +M (B-4)

20 -000 20
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-3 - 2
03 -y -00 3 y Pi 01 -3 i P 02 +M 03

~2 2- y20 -2 -2y i0 -~ 1'2  - i P0 -29 1ll +MI- -2

21 w-x y 000 - 02 X 11l1 -Y 20 +M 21

130 x p300 -3 1 10 -3 X 020 +M30 (B-5)

1104 = -1400 -4 593 9~2 0
0p3 -6 2p02 -4 y 03 +M04

1 x y3 3 --2 -3w p y2
1300 -3 y 01 -Y  1~0 3 x y 02 3 y

-x P03 -3 y j'12 +M1 3

12 -2-2 2 -- -2 X i 01
22 -x y p00 -2 01 -2 x y 10 -x -4 x y P

-2-Y "20 -2 x 112 -2 y 1j21 +M2 2

33- -3 -2- 2 -

1'31 :-x Y 100 -x 1101 -3 x yll0 - -311 x y 120

-3 x il21 - 30 +M31

-4 -3 -2'04 x 1'00 4 pI0 -6 X p20 -4 x 0 30 +M40 (B-6)

- -5 -4 3 -2j 05 -y 1100 5 y p01 -0 y 1102 -10 y 2 03 -5 5 104 +M05
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--4 - 34- 2 -3
p1 4  = -x y 00 l -6 X- y V0 2 -4y 11 1

2-
-4 x y' P 0 3 -6 p V1 2 -x P 0 4 - 4 Y- P 1 3 +M 1 4

= 2-3 0  3 -2-2 - - 3

p 23 -x y 00 301 -2 1 20 3 2 P02

-6 x y P1 1 -y3 20 -x2 P03 -6 x y P 12 3 y2P21

-2 x P1 3 -3 y P2 2 +M2 3

-3-2 - 3- -2-2 -3 -2
'3 2  =-x y 0 0 -2xy 0 1 -3xy P10 -3P 0 2 - 6 yV 1 1

- -2 2 -2-3 x y P2 0 -3 p 1 2 -6 X y 2 1 -Y 1p3 0 -3 V '2 2

-2 y pI3 1 +M3 2

-4- 4 3 -4 -362P4 1  =-x y P 0 0 -x p0 1 - 4 yP 1 0 - 4 xP 1 1 -6xyP 2 0

-6 x221 -4 x y 30 -4 x P3 1 -Y P4 0 +M 4 1

-5 -4 -3 -2
V5 0  0 0  1 0  2 0 -10 3 0  4 0  50

(B-7)
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Appendix C

Additional Data of Threshold Analysis

This appendix contains additional data pertaining to

the target background thresholding problem in Chapter IV.

Table C-1 lists numerical values of the raw moments through

the third order as the threshold was varied. Figures C-1

through C-10 show the same data in graphical form. Table

C-2 and Figures C-11 through C-20 illustrate the same process,

but for the central moments.
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Appendix D

Orthogonality Relations of Group Representations

Schur's Lemmas

I. If D and D' are two irreducible representations of

a Group G, having different dimensions, then if the

matrix A satisfies D(R) A =A D' (R) for all R in G,

it follows that A is the zero matrix.

II. If the matrices D(R) are an irreducible represent-

ation of a group G, and if A D(R) = D(R)A for all

R in G, then the matrix A is a multiple of the

identity matrix.

Given an irreducible representation of degree n for the

group G of order g, matrix A is constructed to satisfy the

conditions of Lemma II,

A = D(S) X D(S -1 ) (D-l)
S

where X is an arbitrary matrix and the summation is taken over

the entire group. Then

8
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S'

DER A (R) D (S) X (S 1) R R (D-3)

IS

EZ 12(RS) X D(JRSI)D (R) (D-4)
IS

A D(R). (D-5)

According to the lemma, A is a multiple of the unit matrix,

A = Xxi. X is chosen to have all its elements zero except

Xlim = 1. The constant is then denoted by AXlm and

D i(SD j Xim 6 i (D-6)

If D is unitary,

i (~S) D jm (S) Xilm 6 ij (D-7)

To evaluate X m set i=j and sum over i,

D~ D. (S) D m(S -1) -1 X lm
S i

I8



D D 1 (SS 1l

S

D. D(E)
S

=f 6m1
S

g ml

lm 77 lm (D- 8)

Therefore,

D D~(S) D (S-1  _q6 6(D9
i 77 lm ij(-9

S

and for D unitary,

D (S)~ D (S) =_q6 6(-0ii .jm 77 lm ii D-O
S

Likewise, given any two nonequivalent representations,

D~1  and D of a group G, matrix A is constructed to

satisfy Lemma I,

A L (2 (S)X D l(S ) (D-11)

Ci 83



where X is an arbitrary matrix and the summation is over G.

Then

D(2) (R) A = Z (2  ) X D (S- 1) (D-12)

S

E (2) (R)D ( ) X D (1)(s-

S

D(I ) (R- 1  _ (I ) (R) (D-13)

= D D (2) (RS) X D(1) ((RS1)) D (1 1 (R) (D-14)

S

A AD (I ) (R). (D-15)

According to Lemma I, A is the zero matrix. Thus,

Y -D (2) (S) X D(1 ) = O. (D-16)

S

If X is chosen as before,

iD(2) (S) (s 0 (D-17)
mj

S

for all i, j, 1, m. If both- representations are unitary,

D ( ) D. (S) = 0. (D-18)

S

oo

EL I---



Taken together, Eqs (D-9) and (D-17) imply that for

all nonequivalent irreducible representations of G,

D ( P) (R) D(v) (R- 1 = -q 6 6 61m" (D-19)

R

For the unitary case,

D (A) (R) -(vl*(R- = 6 6 6(D-20)

l jm P .v i3 lrr "

R
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Appendix E

Derivation of the Projection Operator

Multiply Eq (65), 0 T() = (V) (v)(R)
Dji(

by im (R) and sum over the entire group,

(R= T iV) )i(R) (R) (E-l)

R j

Due to orthogonality,

SD( ')(R) 0 T(v) _q E T (V) 6  6 6(E2
R m R- . ij mi pv

_ TI 6). (E-3)

Then for m=l and p=,

D D (R) 0 Ti) 2~~v
4 11 R n 1 i (E-4)
R V

and for 1 -i,

I.

D v) *(R) % IF(v) _q !V)
R i i i . (E-5)

R
This is a necessary condition on T !V) and in fact, it is

Ii i '

also a sufficient condition such that Eq (65) is satisfied.

This is proved by substituting Eq (E-3) into Eq (65):

86



3() (S) Djk (R) ORK ( v D!(Y) (S) (E-6)

buj. i Herkiti1
Jn

S R (S) D (R  (E-7)

\1 -jk D()OR( K

R

but D ~ Ilk isHrmta
D(A]3) =D(A) D(B)

* u R rn U

but thi is -I[ (S-IR) OR (E-10)

R

- S !v))R (E-11)Sbut this is Eq (E-3)

and the desired result is obtained.

I
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From Eq (E-3) for m - i,

(v)
D(P) * (R) ORV)) =n -q i1i 11V (E-13)

R

Define a projection overator to be

( ) nD! ()* (R) (E14
P iO 1E14

R

such that

P! Ji) 4, V) If (P) (E-15)
1 J i Uv ij.

If the projection operator is applied to Eq (46),

nu

Vi=l
'P116li 6i (17

and due to orthogonality

R

or

(P) P 1)i (E-19)
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Appendix F

Reducible Representation of the Rotation Group

C cosn
n

Sn SINT) (F-i)

1 = E (xC + yS) p  (-xS + yC) q  (F-2)

00 = Poo (F-3)

la 02 C2 + 1 -2S2  -(C2-1) 1"02

P'ii =1 S2  2C2  -S2 Ii

2

20 -12-) 22 C2+ [20 (F-5)

P 03 C3 +3C -3(S 3 +S) -3(C 3 -C) S3 -3S 03

i ' 1 s3+S 3C3+C -(3S3-s) -(c 3 -C) P12

' 12 -(C3-C) 3S3-S 3C3+C -(s 3 +S) P'21

30 -(S 3 -3S) -3(C 3 -C) 3(S 3 +S) C3+3C '30
89F-6)
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04 C4+4C2+3 -4(S4+2S2) -6(C4 -1 4(S4-2S2 )

'13 S4+2S2  4(C 4+C2 ) -6S 4  -4(C 4 -C 2)

22 1 -(C4 -1) 4S4  2(3S4 +1) -4S422l 4=44

31 -(S4-2S2) -4 (C4 -C 2 ) 6S4  4(C4+C2)

40 C4 -4C 2 +3 -4($ 4-2S 2 ) -6(C 4 -1) 4(S4+2S2)

C4 -4C 2+3 p0 4

S4 -2S 2  P1 3

- (C4-1) p 2 2

-(S 4 +2S 2 ) 131

C4 +4C2 +3 P40  (F-7)
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'5+5C3+10C -5(.S5+3S3+2S -10 (C5+C3-2C)
055 

535

14 S5 +3S3+2S 5C5 +9C 3 +2C -2(5S 5+3S3-2S)

, -(C 5+C3-2C) 5S 5 +3S 3 -2S 2(5C5 +C3 +2C)

~1
' ~1 ($ 5 -S 3 -2S) -(5C 5 -3C 3 -2C) 2(5S 5 -S 3 +2S)
321* (5 32S5-353

1041 C5 -3C 3 _2C -(5S 5 -9S 3 +2S) -2(5C 5-3C 3-2C)

50 $5-iS3+10S 5(C 5 -3C 3 +2C) -10(S 5 -S 3 -2S)
S50 , 5 5 3 +O

10 (s 5 -S 3 -2S) 5 (C5-3C 3 +2C) - ($ 5+5S 3+10S 1 05

-2(5C 5 -3C 3 -2C) 5S 5+9S 3 +2S C5 3C3 +2 C 114

-2(5S 5 - 3 +2S) - (5C 5 -3C 3 -2C) 35 -$ 3-2S "12 3

2(5C5 +C3 +2C) -(5S 5 +3S 3 -2S) -(C 5 +C3 -2C) P3 2

2(5S5 +3S3 - 2S) 5C5+9C 3 +2C -(S 5 +3S3 +2S) 141

-'0 (C5 +C3-2C) 5(S 5 +3S 3+2S) C5 +5C 3 +1OC 1150

(F-8)
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11 06 c 6+6C4+15C 2+10 -6(S 6+4S4+5s 2)

1115 S6+4S4+5S2  2(3C6 +8C4 +5C2 )

1'24 -(C 6 +2C 4 -C 2 -2) 2(3S6 +4S4 -S 2 )

33 1- (S6-3S2) -6(C 6 -C 2 )

S= 3 -C6 2C4 C2 +2 -2(3S 6 -4S 4 -S 2 )

42 6- 4( 2 6 -C 4 -5C2 )

1151 ,5 6 4S4+5S2  2(3C6-8C4-5C 2 )

1160 -(C6-6C4+15C 2-10) 6(S6-4S4+5S2 )

-15(C 6+2C4-C2-2) 20(S 6 -3S 2 ) 15(C 6-2C4-C2+2)

-5+(3S 6 4S 4 -S 2 ) -20(C 6 -C 2 ) 5(3S6 -4S 4 -S 2 )

15C6 +10C4 +C2 +6 -4 (5S6 +S2 ) - (15C 6 -IOC 4 +C2 -6)

3(5S6+S2 ) 4(5C 6+3C2 ) -3(5S 6 +S 2 )

- (15C 6 -1OC 4 +C2 -6) 4 (5S6 +S2 ) 15C6 +10C4 +C2 +6

-5(3S 6 -4S 4 -S 2) -20(C 7 -C 2 ) 5(3S6 +4S 4 -S 2 )

15(C 6-2C4-C2 +
2 ) -20 ($ 6 -3S 2 ) -15 (C6+2C4-C2-2)

-6(s-4S4 +5S 2 ) - (c 6 -6C 4 +5C 2 +10) 06

2(3C 6-8C4+5C2) -(s6'4S4+5S2) "16

2(3S6 -4S 4 -S 2) C6-2C4-C2+2 124

-6(C 6 -C 2 ) s 6 -3S 2

-2 6 +4S 4-S 2 ) - (C 6 +2C 4 -C 2 -2) 042
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203C +8C +5c) -(S +4S +5S2 )

6(S 6+4S 4+5S 2) C6+6C44 +15C 2 +10] l60j
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Appendix G

Useful Trigonometric Identities

cn - On

Sn SINnO (G-1)

SAS B 12 (CA-B -CA+B)

4 CAC B 2 ~ (CA+B + CA-B)

sA cB 2 \A+B + A-B/ (G-2)

12~ (-C 2  1)

1
=s - 2

c2 I K (c +) (G-3)

s 3 (-S 3 + 3S)

cs2  4 (-c 3 + C)

c 2s = (s+)
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c 13c + 3C) (G-4)

18 (C4 -C 2 + 6

cs3  1(s + 2s2

8~2  (-S 4  2)

22 1

c 3 s =~(~+ 2S)

c 4(1 + 4C2 + 6)(G-5)

s 5

11 (S55 5S 3 + loS)

cs 4  = 1 3 + 2C)

c 2 s3 =1 - 5 + 2S)

1162 l(c- +2 )

3 23)

4,4
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=3 (6 6 6C-1c 2 )

32 0)6=s+s 2

31 (-C6 - C4  15C+2)2

CS 32 (=s 6 +3s42 )

c 2  %(== 1 2C4  C2 +2)

CS 32 (S6~ S4 +~2)

c s2 (Ic+ 2C4 +5c 2 +(-7

3* -

c s +4S +5
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Appendix H

Projected Moment Vectors

x(O) = (o) = 0 (H-i)00 = 00 *00

X(,) = P (l) = (H-2)01 = 01 *01 10

(O P2o+o2 -Y
(° ) = 0 (H-3)

X (2) -1 WY(
2 ) = _1 (H-4)

02 2 (120-I02) 02 = l

X(1) 3 _ 3 ( (H-5)
03 4 21 0303 4 (1121+ 03) 03 4 (p3 o+),1 2)

((3)21103) +P - I (p 3 0 -3' 1 2 ) (H-6)

1 (130+ - 4 (P21+P03) (H-7)
12 4

S(0)( +211 +11 ) (0) = 0 (H-8)
04 4 20 22 04 04

X (2) 1 V (2) (H-9)
04 -2 (140 04 04 = 31"13)

X(4) 40 22+11 . (4) 1

04 8 (40 -622 04 04 2 (131-113) (H-1)

' X(2) +P (y (y2) (H11
"13 2 31+13) 3 - (140-04) (H-i)
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x (1) (P+P +
05 8 ( 41 + 23 05)

y (1) 5 + H-2
05 8 (P 50 +2 " 3 2 +" 1 4 )

X(3) 505 -1 ( 41+2 O23-]o0)

-(3) 5 50_2+514) (H-13)05 =16 5 ( 5 0 2p 3 2
- 3 '1 4 )

x(5) - 1 (p o +505 16 (41- 23 05

y (5) p 5" )( -4
05 -16 (I' 5 0 -10J 3 2 +5 J 1 4 )

X (1) i 1 21+14 = 8 (50+232+ 14

14 8 41+ 23+ 05 )  I5

X (3) = -1 ( _2]3 3
14 16 50- 21 2 P14 )

S(3) _ (3 P41+2 23- 15) (H-16)

-1 202=

x:A6 (0) = 20 (P]60+3 1142 +3 P ]24 +."06)

y(0) 0 : (H-17)
06
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(2) 15
06 32 ( 60+ 42- 24-106 )

S) .0(p P (H-18)
06 -32 51+2 33+15)

X (4) 36 (P 60 5+ 6

06 32 60-42 24 0

6 2 ( (H-19)06 -32 51-P15 )

X(6 31 (60_15I4215 24_ 06)

S(6) _32 O 151-I033+315) (H-20)
06 -32 33-15

X (2) 10 (I+P+
15 3 (51+2 33+15)

y (2)+P 1 1( - )

15 -32 60 42- 24- 06

(4) 6

15 -32: 51-5 5)

15 32 (160-5142-5124+106) (H-22)
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Appendix I

Moment Invariants From Proiected Moment Vectors

l(o) 412

) (,20+02) (1-2)
00 02 - 2O0 (-2

.,.(o) 3(1 3
00-04 2oo (P 4 0 +2V' 2 2 +1 0 4 ) (1-3)

1(0) ( 02 (-)0202 = (120+102)

l(0) (15
02 04 4 (-20+P02) ( 40+2P 2 2+P0 4 ) (I-5)

1(0) P+1+1 2(16

04104 = 4022 04-6)

(2) 12 +1i2 (I-7)
(1)1 0 (1-7)

01 03 4 01(21+03 )  4 1i0( 30+ 12)

1 (1) =1(1-9)
01 12 4 01 (130+112) - 410(21+ 03)

M+)11 5
01 05 8 01( 41+2 23+ 05) +8 110( 50+2 32+ 14) (I-1O)

( ,i) 1, 1 (4+ 3 5

01 14 8 01( 50+2 32+.14) -8 1I0 (I-l)
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i() ~2+1 )2 + ~ 1 1 2 (1-12)
03 03 16 21+03 16 30 12

(1) - 5 (1

03 05 32 21+ 03) (114+2 23+ 05)

15 ( p3 + P1 ) ( P5 +2 P (1-13)

(() 3 5,03"14 =32 (P21 + 03) ( +2 3 2+ "l4)

32 ( "30 + "l12) ( 141+ 2 "23+ '05) (1-14)-32

(1) 25 )2 + 2-5 22
05 05 6-4 (141+2 "3+05 64 ("50+2 32+'14) (1-15)

1-(2) _ 1 )2 +11 2 (1-16)02 02 4 U20-02 2

S(2)02 04 -4 ("20-1102) (p40-p04) +PIi (j31+p13) (-7

02) 1 4 ((220_02) (1131+13) + .1 P (40-1104) (1-18)02 13 42 31'3 41 40 4

(2) 1 22
04"04 4 (0431+13) (-19)

1€3) (3 2 + 3P 2 (1-20)03"03 16 P2+J3 16 (a30-3 l12)(-0

(0305 64 (321- 03) (3 "41+2P23-'05)

+ +64 (130-3 "12) (150-2'32 -3 )14) (1-21)
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13i(3) 3 1,

03 14 64 (21- 03) (50-2V 32-3P 14)

3

-6 ("30-3 1 2 ) (341+2 2 3 -4 0 5 ) (1-22)

1 (3) -25 (314,12 "2305)2

05 05 =256 323-

+ 25-65 (50-2 '323 '4) 2 (1-23)

(4 I (' 61+ )2 4+ 31 )2 (-404 104 64 (P40-6 22+04 + (3113 (-24)

Q1(5) 1 (5 "41-10 "23+ '5 )205 05 - 5

+256 ( 50-10 32+5 14) (1-25)
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Appendix J

A ComDlete Set of Moment Invariants

Through Fourth Order Moments

2(0)

1 (0) 2
2 2 0 (20 t"0 2) (J-1)

212 ( 2 0 -P 0 2 )2 +4P112 (J-2)

O(1) + + (P + o2
313 21 3 2 30 + 12 (J-3)

31 (2) = (P2 + ( 22

3 (3 )  = 321 _P03 ) 2  + 312_PJ20)2 (J-4)

2 ((2)0 2 _=2 0 ) (51 0 2 + 2P 2 1  0 3  2 +3p 2

312

32p3012 -p32 1 (1203 30 03

"+9 21 12 - 5 3021) (J-5)

1(6) (I 2 _o 6Vo V +9P 2 o 9_2 6uP

*(IjO33_ 3v 2o 121jP 2 +2 P 2 +.3p 2 P

. +4pl1(3u 12P03 +P30003 -9P21P12 -3U30021 )
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2 2 2 (J-6)
.3P 0 2  4P 1 1 6_60 2 1'20 +3P 2 0 )

~(0) +2 P 2 (J-7)

414 ( 4 0 +2V 2 2 +104)

4(2) 2 +4(3+ 2 (J-8)

4 -- (V40 -4 0 4 ) +431 13

(4)4 ( 2 (J-9)

4 14 ( ( 40 -6P 22 +P04) +4 (P31 -13 )

1(2) (P + 4 11 1P31 +113)  (J-10)
4 2 (V20- 02) (40 04

' ~ 4 - ( ,,0 2 
2V 2I. .. V

42(4) 31 +p13 -2-202'20 -411 +P22

+2 Pll " 04 ' 40) ( PU20 - 02)  (J-11)

I10

104



\PPerkdix K

Computer Progirams

rl 
105



Program Name: CENTER

Purpose: To calculate recursively and to normalize two-

dimensional central moments from two-dimensional

raw moments.

Method: The pq-th central moment (pq ) is calculated

recursively from the pq-th raw moment (M pq) and

the lower order central moments using the formula.

p+q-l T (p)(~~) - -~

M i=0 J=S

where

S = (-q) + I-I

T = Ii - IP-jj

= M 0/M00

M01 /M00
!a

i?'a al

b b b(a-b)! binomial coefficient

Calling Procedure: CALL (M,N)

Arguments: N-1 = highest order of moments to be computed.

M = N x N matrix containing the raw moments

to be centralized and normalized

M (p+l, q+l) = pq

106



For output, the raw moments are replaced by

the central moments

M (p4-i, q+l) =gpA
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Program Name: MOMENT

Purpose: To calculate up to twentieth order two-dimensional

raw moments over an image intensity distribution.

Method: The first Newton-Cotes equation was used.

Ix2o
x2 y(x) dx = .5h (YI + Y2) - y

The two-dimensional moment Mpq is defined in

Cartesian coordinates as

M1 - f" f xp Yq f(x,y) dxdy

and

Mpq fxp yqf (x, Y) dy dX

S= V (x) dyfp q

where

Vq (x) = fyq f(xy) dy

or

V (x)Z - (Yqf +

j=1 ji li ~N Ni
JJ

109



where fji is the ji-th element cf an N x N

image intensity distribution array, y is the

corresponding vertical coordinate, and h is the

width of each image element.

Then

P h P p
Mp o x i VqX) -i (xvq Vx=l, + xN VqXN

i=l

Define

V =vq=0,xl v = xN cortin

.Y f v ~]' - correction
terms

= YY F - C.

!i Then

N= (YY F- C) ! C

110
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Calling Procedure: CALL MOMENT (R, N, M, L)

Arguments: N = number of image elements per row/column

of an image intensity distribution array.

R = N x N square matrix containing the values

of the image intensity distribution.

L - 1 = highest order of moments to be computed

M = output matrix containing the computed

moments

M = M(p+l, q+l)pq

Subroutines Used: VPROD

Note: The image dimension is normalized to unity.

I
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Program Name: INVRNT

Purpose: To calculate moment invariants involving the

second and third order central moments.

Method: Direct algebraic computation based on the moment

invariants from Ref 1.

Calling Procedure: CALL INVRNT(MIM,Q)

Arguments: Q-1,= highest order of central moments to be

used.

M Q x Q input matrix of moments to be used

to calculate the moment invariants where

M(p+l, q+l) pq

MI = one-dimensional output array containing

the computed moment invariants

1
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Program Name: MICALC

Purpose: Serves as a monitor program to call appropriate

subprograms to input data, compute raw moments,

calculate central moments and moment invariants,

and then to display them.

Arguments: N = number of image data points per line of

a square image

Q-1 = highest calculated moment order

S = number of moment invariants calculated

Image Data: The program inputs imagery data from a tape

format. An unformatted READ inputs a vertical

image line, 256 pixels per line and 256 lines.

1

1

4 1 15 _ . ... , - i~i e i i .. i . ..



Program Name: VPROD

Purpose: To compute the inner product of two vectors.

N
v= AiB .

Method: Double precision multiplication and addition are

used; a single precision result is returned.

However, the double-precision result is available.

Calling Procedure:

CALL VPROD (A,NA,B,NB,N,V)

or

DOUBLE PRECISION Z, VPROD

Z = VPROD (A,NA,B,NB,N,Z)

A - Linear string of elements of the first vector

NA - Interval between elements of A used in the inner

product

B - Linear string of elements of the second vector

NB - Interval between elements of B used in the inner

product

- N - Number of pairs of elements multiplied together

V - Storage location for single precision result

Z - Storage location for double precision result

Error Indicators: None

Subroutines Used: None

11
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Program Name: PPLOT

Purpose: To generate a polar graph on the Calcomp plotter

of moment invariants

Calling Procedure: Call (MI,R)

Arguments: R = the number of moment invariants to be

plotted

MI .= array of R moment invariants

Output generated for on-line Calcomp plotter

Subroutines Used: basic and auxiliary Calcomp routines

U
'1
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Program Name: BPLOT

Purpose: To generate a bar graph on the Calcomp plotter

of two-dimensional moments (up to 20th order)

Calling Procedure: CALL BPLOT(M,N)

Arguments: N-i = highest order of moments to be plotted.

M = N x N matrix containing the moments

to be plotted.

M(p+l,q+l) = M pq ; -th moment

Output is generated for on-line Calcomp plotter.

Subroutines Used: basic and auxiliary Calcomp routines
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Program Name: INVRN1

Purpose: To calculate moment invariants

Method: The moment invariants are generated via the group

theory procedure developed in Chapter IV. The

computed invariants up to the fifth order are

listed in Appendix I.

Calling Procedure: CALL INVRNl(MI,M,Q)

Arguments: Q-1 = highest order of central moments ( pq)

to be used in computation. I < Q < 21.

M = Q x Q input matrix of moments to be used

to calculate the moment invariants

where

M(p+l, q+l) = pq

MI = one-dimensional cutput array containing

the computed moment invariants.

I
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Program Name: PARRAY

Purpose: To serve as a monitor program to generate plots

of moments as a function of threshold.

Calling Procedure: CALL PARRAY (M, THRSH,A,B,C,D,E,F)

Arguments: M = 20 x 4 x 4 input matrix containing

the moments to be plotted

THRSH = 1 x 22 array of threshold values

A,B,C,D = image parameters; roll, pitch, yaw,

range

E = maximum image intensity

F = minimum image intensity

Subroutines Used: LPLOT
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Program Name: MIARAY

Purpose: To serve as a monitor program to generate plots

of moment invariants as a function of threshold.

Calling Procedure: CALL MIARAY (MII,THRSH,A,B,C,D,E,F,)

Arguments: MII = 20 x 7 input matrix of the moment

invariants to be plotted.

THSH = 1 x 22 array of threshold values

A,B,C,D,= image parameters, roll, pitch, yaw,

range

E = maximum image intensity

F = minimum image intensity

Subroutines used: LPLOT

1
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Program Name: IMAGE

Purpose: To generate a character printed image from

imagery data.

Method: The imagery data is read into an array, and the

minimum and maximum intensities are found. This

range of image intensities is divided into 10

levels. Each level is assigned a character:

1, 2, 3,'''9, from minimum to maximum,

respectively. The image is gated to narrow the

viewing area. The gated array is then character

printed on the line printer.

Subroutines used: None

13
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Program Name: LPLOT

Purpose: To generate a line plot of moments or moment

invariants as a function of threshold.

Calling Procedure: CALL LPLOT (YARRAY,XARRAY,LABEL,

R, P,Y, RG, MX, MN)

Arguments: YARRAY = one-dimensional array of abcissa values

XARRAY = one-dimensional array of threshold

valves

LABEL = label of abcissa

R = target roll

P = target pitch

Y = target yaw

RG = target range

MX = maximum image intensity

MN = minimum image intensity

1

I
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Program Name: THRSHD

Purpose: To determine a threshold level to suppress the

background from imagery data

Method: The second and third order raw and central

moments and the corresponding moment invariants

are computed as a function of threshold level

where

THRSHD = MIN - constant * (MAX-MIN)

MAX = maximum image intensity

MIN = minimum image intensity

Subprograms Used: CENTER

INVRNT

PARRAY

MIARAY
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