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Chapter I. INTRODUCTION

Axicon-type optical systems have received increased attention in
recent years because of the peculiar problems associated with handling
high-power laser beams. In high-power laser systems, any backscatter,
or retroflection of the beam into the laser system can be disastrous.
Also, many high-power lasers have annular output beams, which need to
be transformed into cylindrical beams, with no hole in the center, for
good propagation characteristics in the atmosphere.

The sharply pointed mirrors, characteristic of reflaxicon and
waxicon systems, are ideally suited for handling these problems. These
systems are illustrated in Figure 1.

Pointed mirrors are almost impossible to produce by classical
grinding and polishing techniques, but can be made very easily on a
single-point diamond lathe.

Because these systems have only recently become practical, very
little theoretical work has been done on them. It is the purpose of
this paper to develop generalized surface-equations which will permit
arbitrary transformation of the radial intensity distribution of the
laser beam, and to determine the relative sensitivities of such systems
to various types of misalignment. Guidelines will be established for
optimizing the performance of the systems.

Nonlinear reflecting systems have traditionally been based on the
focusing properties of conic sections of revolution. As is well known,
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Figure 1. Typical reflaxicon (a) and waxicon (b) systems.




conic sections of revolution have two foci and, have the property that
all rays originating at either focus, and intercepting the surface,
will be reflected to the conjugate focus. The optical path-length
(OPL) traversed by a ray as it goes from one focus to the surface, then
to the conjugate focus, is invariant, i.e., spherical aberration is
absent. Figure 2 illustrates the basic surfaces and their foci. In
the case of a sphere, the conjugate foci are degenerate; in the case of

a paraboloid, one focus is at infinity.
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Figure 2. Focusing properties of conic sections.

The conic surfaces may be used in any combination to form compound
systems free of spherical aberration, so long as the corresponding foci
for consecutive surfaces are coincident. Surfaces with such coincident
foci are said to be confocal.

For the purpose of this study, only the systems which transform a

bundle of rays, parallel to the axis, into another bundle parallel to

e S
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thr Lxis will be considered. Here, the conjugate foci of the system .
are at + infinity. Such systems are said to be afocal. Further, this
study will be restricted to two-mirror systems.

The classical two-mirror, afocal system consists of two confocal
paraboloids. The input and output beams may propagate in the same
direction, or in opposite directions, as shown in Figure 3. For that
matter, the axes of the two paraboloids may be oriented in ¢ 1y
conceivable direction, relative to one another, but for the purposes
of this study, they are colinear.

Both systems shown in Figure 3 have a common fault that restricts
their application in laser systems. The paraxial rays of the input
beam are reflected back toward the laser and will re-enter the laser
and upset the mode control or may damage the front of the laser
hardware. Such systems may, however, prove useful when used with an
eccentric aperture, or when used with a laser baving an annular output
beam. Such systems are shown in Figure 4.

The systems investigated in this paper will be those capable of
transforming a cylindrical input beam into an annular output beam, or
vice-versa, without obscuring or misdirecting any of the input rays.
Further, we shall seek a solution which allows arbitrary control of
the intensity distribution within the annular output beam. These
systems are of importance in optimizing the beam propagation through
the atmosphere, and in increasing the efficiency of the beam in
cutting and welding operations. They would commonly be used in con-

junction with other, more traditional, optical systems in a beam

control system.
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Figure 3. Two-mirror afocal systems using confocal paraboloids.
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Figure 4. Eccentric-pupil systems using confocal paraboloids.

These systems may also be applied as cavity mirrors in lasers,
and in transforming annular laser beams into vylindrical beams in some

; master oscillator-amplifier systems.
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Chapter II. REFLAXICON SYSTEMS
A. Reflaxicon Surface Equations

The surface equations for an afocal reflaxicon will now be developed
allowing an arbitrary ray-height transformation. Two conditions shall

be imposed:

a) Any entrance ray, parallel to the axis, must emerge parallel

to the axis, i.e., the system must be afocal.

b) The optical path-length between the entrance plane, z4s and
the exit plane, Zq, must be constant.
For convenience, the equations will be developed in cylindrical

coordinates.

If the ray-intercepts of the inner and outer mirrors are desig-

nated by (rl,zl) and r ,zz), respectively, Figure 5 shows that the OPL

2

of a ray between z, and zZy is given by

0

OPL = z. -

2 2
1 z, + J(;z - zl) + (r2 - rl) + zy -z, = L . (1)

Then,

2 2
/(22 - zl) + (r2 - rl) =1 - z, + zg - 24 + z, = k - z, + z,, (2)

where k = L + z) - z is a constant, and represents the OPL added by
the system as the ray passes from z, to Zq. Squaring Equation (2),

the following is obtained:

11
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Figure 5. Diagram of reflaxicon system.

2 2 2
(zz-zl) +(r2—rl) =k +2k(22—zl)+(22—z

or,

2 2
(r2 - tl) = k" - Zk(z2 -z

Noting in Figure 5 that

r, = r
tan 29-—;——_—;1" R
2 1

and dividing Equation (4) by r, - LT

2
k 2k
r, -1, = +
2 1 r, -1 tan 26
Thus,
2k(r, - r.)
tan 29 = 2 1 3

2
(rz - rl) -k

12
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2

3

(4)

(5)

(6)
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This provides a system equation for the condition of constant
path-length.

Applying the half-angle formula for the tangent function,

-1 ¥ /1 + tan” 26 .

tan 0 =

tan 26
we see that:
2k(r, - r.)
-1t f1+ 2 1
2 2
tan 0 =
2k<(r2 -~ rl)

2 2
(r2 - rl) -k

which, after some algebra, yields

(e, - epPH i 2 [(x, - P+
tan 6 =
2k(r2 - rl)

Taking the positive value of the dual sign,

tan 6 = ;f—%?;_ .
2 1
It is obvious from simple geometrical considerations, that for an
afocal system,

dr dr
tan 6 = i} = __Z

dz1 dz2

By integrating this expression, we have for the inmer mirror,

k [_dz1 = f(r2 - rl) drl

or

1l 2
] -[rz dr1 - E-rl +C
Zl k ]

where C is an arbitrary constant of integration.

13
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12)
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Applying the afocal condition to the outer mirror,
k /S dz2 = f(r2 - rl) dr2 . (15)

or

N+

2 _ v 1 2 '
r, ) r, dr2 +C 2 r, - nr, + / r, dr1 +C

. (l16)

VA =

2 k k

Now the constants of integration, C and C', must be related by requiring
that Equations (14) and (16) satisfy the constant path-length condition,

thereby eliminating spherical aberration. The simultaneous solution of

Equations (4), (14), and (16) yields

2 2 2 1 .2
r, - 2r1r2 + r, = k* + 2(2 T, - rlrz
‘i +/Sr,dr. 4 C' - [ r, dr, + l-r2 -C 17)
2 1 2 1 271
or,
! 2
kK" +2(C'-C) =0 (18)

2
k

7

c'=-% 3¢

Substituting this into Equation (16),

2
1 - _k_
2 r, - nr, + / T, drl 5 +C

) Kk

(20)

Equations (14) and (20) are the surface equations for the imner

and outer mirrors, respectively, as functions of the radial distance

between a ray and the axis.

B. Constant Ray-Height Transformation

ba -

Since (rl,zl) and (rz,zz) are the corresponding ray intercepts

-
[———

at the inner and outer mirrors, respectively, Equations (14) and (20)

14
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may be rewritten eliminating Tos by introducing a ray-height transforma-

tion function defined by
r

M(r,) = == . (21)
1 r
1
M(rl) is simply the magnification of the input ray-height produced by
the optical system. Substituting this transformation into

Equations (14) and (20), the following is obtained:

1 2
) J r, M(rl) dr1 -5 + C

2 - : (22)
L e Mr)1? - 2u(r,) + £ roM(x)d IS
2 Ty T M(ry ryilry)dry = 73
z, = m (23)
and,
r, = rlM(rl) . (24)

These forms of the surface equations are very convenient when
performing numerical calculations.
Here, it should be noted that if the ray—heighf transformation,

M(rl), is constant for all T, i.e., M(rl) = M, the surface equations

become
M 2 1 2
20720 %C y_o1 2 ¢
%1 K T a1ty (25)
and
2 2 2
2 r r 2
1.2 M2 T2 g 12,5 T2 g
L2220 "W -7 rC Tt m W - T e
2 X K

2 .
M-1§+2c K oMm-1 2 20 -kt (26)

2k 2k 1 2k




Thus, both mirrors are simple paraboloids,with the inner and outer
mirrors having their vertices at z, = C/k and z,, " (2¢c -~ kz)/Zk,
respectively.
Recalling the parabolic equation
1 2
z =05 + a 27)

which represents a paraboloid (in cylindrical coordinates) with a

focal length, F, and the vertex at z = a, it can be seen from Equations

\ (25) and (26), that -
M-1 1
7k 4F (28)
1
and
: M-1 1
i 2 T 4F, (29)
where F1 and FZ are the focal lengths of the inner and outer mirrors,

! respectively. Thus,

k
FL=sm-1 ° (30)
kM
; L=se-1» (31)
: and
' F
. 2 _
¥ M. (32)

v The ray height magnification is given by the ratio of the focal lengths

‘? of the two paraboloids. The locations of the foci on the z-axis are "
v C k

r zpl-a+F1-E+'z—(M_—1)- (33) .
t

’ and

]

) - S A S

Q zF2 a+ Fz X + T =D . (34)

i

i

1
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Thus, Zp " Zp and the mirrors are confocal.

1 2

The system with constant M has the disadvantage of retroreflection

of the paraxial rays, but may be used with annular input-beams, or with

cylindrical beams in an eccentric-pupil arrangement.

It is, in fact,

the only afocal system which preserves the beam shape, when used with

an eccentric beam.

Since M is constant, it also gives a constant intensity trans-

formation. The intensity of the output beam is 1/M2 times the

intensity of the input beam.

The problem of the retroreflection of the paraxial rays can be

alleviated by displacing the axis of revolution of the parabolas

from the geometrical axis. This is illustrated in Figure 6.

o em e e

1<

o ———
-
Pl

Figure 6. Parabolic reflaxicon.
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C. Parabolic Reflaxicons

In this system, the geometrical axis of the parabolas is changed
from a line into a cylinder, and the focal points become focal circles.
The mirror surfaces are now toroidal. With a sufficient displacement
of the geometrical axis from the axis of symmetry, or optical axis,
all rays impinging on the inner mirror will be reflected to the outer
mirror and will continue out of the system without obscuration by the

inner mirror.

Referring again to Figure 6, it can be seen that the two-
dimensional meridional sections of the mirrors are exactly the same
as those of the mirrors in the simple parabolic case, except that the
curves are translated in the r-direction. Since the two-dimensional
equations in cartesian coordinates are the same as the three-
dimensional equations in cylindrical coordinates, the surface equations

of the mirrors may easily be written as

_M-1 2.,.¢
z, = 5 (r1 + h)" + X (37)
and
2
M-1 2 2C - k
2% T Tt T 28)

where h is the distance the geometrical axis is displaced from the

optical axis and 1s taken as a positive quantity. M is the constant .
4
ratio |
F r, +h
2 2
M=s=— . (39)
F1 r; + h
18 :
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This system offers two serious disadvantages. One will notice
that an arbitrarily small annulus of rays about the optical axis will
be expanded into an annulus at the inside edge of the outer mirror.
This effects an arbitrarily large radial, and consequently, large area
magnification, thereby reducing the intensity in the output beam to near
zero. For good, long-range atmospheric propagation, it is desirable
to have the maximum intensity at the inside of the beam. Also, if one
uses the system in reverse with a large annular input beam, and a small
cylindrical output beam, the relatively intense inside edge of the
annular beam is reduced to an arbitrarily small diameter, and the
intensity becomes arbitrarily large. Here, of course, diffraction
effects are neglected. The use of the system in this mode with a
high-energy laser would result in the destruction of the axial region
of the mirror.

The second disadvantage is that the system is usually unsuitable
for use with an eccentric entrance pupil, to allow A solid (non- 4
annular) beam to be transformed into another solid beam. This is
also caused by the variable radial magnification in the system. It
has already been shown that the beam shape can be preserved only in

the case of constant ray-height magnification.
D. Beam Shape Distortion

Figure 7 presents the effect of beam-shape distortion in the
parabolic reflaxicon system. Here, the viewer is looking down the

optical axis at the profiles of the input and output beams. Within

19

e g _ | I




e m—— v ————

S S

-~

- e —————

r
i

T

4

Figure 7. Transformation of beam shape in a parabolic
reflaxicon with an eccentric pupil.
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the boundary of the inner mirror, a bulls-eye pattern can be seen
representing the boundaries of several eccentric, cylindrical input
beams. They are all centered about an input ray-height of 0.5 units,
The inner mirror is 2.0 units in diameter, the displacement of the
parabolic axis, h, is 1 unit, M* = 3, and the outer mirror is 10 units
in diameter. The large, distorted ovals are the boundaries of the
output-beams, corresponding to the cylindrical input-beams. It can be
seen that a very small input beam, well-removed from the optical axis,
may produce a usable, elliptical output-beam. The suitability of
such a beam would depend entirely on the application.

Since the reflaxicon would usually be used in critical applications
requiring precise control of the intensity distribution within the
beam, attention will now be directed to the beam intensity transforma-

tion function.
E. Intensity Transformation

If the area of a beam,or element of a beam, is magnified by some
factor, the intensity will change as the inverse of the area magnifica-
tion. One's first inclination may be to say that if the linear
magnification is M, the area magnification M2, and the intensity will
be changed by M_z. However, this is true only for a constant magnifica-
tion. It has been seen that in an afocal reflaxicon, the magnification
of the ray-heights is constant only if the mirrors are simple

paraboloids, with their geometrical axes colinear with the axis of

symmetry, or optical axis of the system. If the geometrical axes of the




surfaces are displaced from the axis of symmetry of the system, the i

ray-height magnification is variable. The area magnification and
the intensity transformation will now be examined when the linear
magnification 1s variable.

As before, the ray-height transformation is defined by

r
M(r,) =;g
1

It is now assumed that an input annulus has an inside radius, rys

and a width, dr This annulus will be transformed into an output

1’
annulus having an inside radius of Tys and a width of drz. The area

of the input annulus is given by

A1 = 21rr1drl (40)

and that of the output annulus is

A2 = 21rr2dr2 (41)
Since
r, = rlM(rl) ,
dr dM(rl)
—— = M(r,) + r, ——— (42)
, dr1 1 1 dr1
Equation (41) now becomes
. aM(r,)
¥ = _—
‘ A2 = 2nrlM(rl) M(rl) + rl drl dr1 (43)
)}
\ and the area magnification is
!
' ) 2 dM(ry)
,J KI'= M(r)]" + rM(x)) *—5;1—- (44)




Now, the intensity transformation function a(rl) is defined by

the relationship

I (rz)
9(r,) = == , (45)
1 Ii(rl)

where Ii(rl) and Io(rz) are the intensities of the input and output
beams, respectively. Since the intensity of the output beam is

inversely proportional to the area magnification,

A
N 1
9(ry) = A, " ; ME) (46)
[M(rl)] + rlM(rl) drl

For a given intensity transformation, o(rl), the required ray-

height magnification, M(rl), can be found from the differential

equation
dM(r.)
1 2 1
——5;1—— rlM(rl) + [M(rl)] —'Sz;zy =0 . (47)

Rearranging terms,

dM(rl) M(rl)

+ = L

(48)

drl r, o(rl)rlM(rl)

This is in the form of Bernoulli's equation,

L+ Py = Q" (49)
where

dM(r,)

.41 = 1 Q(x) = —-—1——

dx drl 0(1‘1)1'1

X =71 -y = M(rl)

P(x) = ;%— n= -1 .

1
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Letting
l1-n 2
v=y =Yy ’
and
dv _ , dy

dx Y dx ?

Equation (49) reduces to

%‘%—- P(x)v = Q(x) (50)
or
g_v + 2P(x)v = 2Q(x) . (51)

This linear equation may be solved by choosing the integrating factor
- eZIP(x)dx . (52)
The solution is then

2/P(x)dx

vel/P(x)dx ax + b . (53)

= 2/Q(x)e
Translating this back into the original variables, and noting that

2P(x)dx = 2/ L dr, = tn £, (54)
rl 1 1

2
(e, = 2]: G 2 ar, +b = 2] 0( eyt . (55)
Recalling the surface equation for the inner mirror,

1 2
. Il:‘zdr1 -3 r1 + C
1 k

2 1 .2
][[0( dr +b] dl-—2~r1+C

j=

(56)

Zl k
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Likewise, the surface equation for the outer mirror becomes

2
1 2 k
=2r2-r1r2+fr2drl-—f—+c
) kK
1
r . r 2
1 b 1
fﬂ(rl) drl + 70 [2[ 0(1_1) drl + b]
% = k
1
r 2 2
1 k
[[2[0(1_1) dr1+b] dr1 -3 + C
+ - . (57)

These surface equations appear rather formidable, but are entirely
practical when the desired 0(r1) has been defined.

Surface equations containing several constants have been
developed, and it is now worthwhile to observe the physical significance
of these constants.

The constant, C, is a constant of integration which simply moves
the mirror along the z-~axis. If the same value of C is used in both
surface equations, the mirrors will automatically be spaced correctly
to assure an afocal system providing constant optical path-length.

The origin of the coordinate system may be positioned at will by a
suitable choice of C. Sometimes in ray-tracing, it is desirable to
move the origin of the coordinate system in order to center it on each

mirror. 1In this case, each surface equation will use a different

value of C, but then the mirror spacing must be accounted for separately.

The constant, b, is best defined in Equation (55). It may or

may not correspond to a simple physical dimension. If, for instance,

25
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the intensity transformation function is a constant, I, Equation (55)

shows that
r2
2_11
r, =73 + b
Thus, when r, = o, r, = vb. In this case, vb 1s the inside radius of
the annular beam. This would also be true if o(rl) = rl, in which
case
2
r, = 2r1 + b .
If, however, a(rl) = ri, Equation (55) yields
2 _ 29 +b
r, = 2n r, .

In this case, when r, + 0, corresponding to the axial ray, r% + =,

1
This system clearly cannot be used with an input beam which contains
the axial ray. Indeed, r, is imaginary whenever £n ri < -b. With a
suitable choice of b, this transformation could be used if both the
input and output beams were annular.
Finally, if o(r;) = exp (-rilz),
2 ri/Z

r, = 2e + b .

Here, if r, = 0, rz = v2 + b, again, the inside radius of the

1
annular beam.

As has already been stated, k is the difference between the
straight-line distance between the entrance and exit planes, and the
OPL of a ray joining the planes ;hrough the optical system. This may

be thought of as the excess OPL added by the system. However, this

quantity becomes a system shape factor. Figure 8 presents the
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k=8
Figure 8. Grazing incidence (a) and normal-incidence
(b) reflaxicons (I = 0.1, b = 1.5).

meridional cross section of two systems. System (a) is a near-grazing-
incidence system; System (b) is a near-normal-incidence system. It
is clear from the drawing that the OPL between Planes A and B is very
little more than the straight-line distance between them. Hence,
k is small. In System (b), the OPL between A and B is much larger than
the straight-line distance. In this case, k is large.

Thus, by varying k, the system can be varied from normal-incidence
to grazing-incidence. The constant, k, permits varying the shape of

the system to make it conform to the required physical dimensions, and

27
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changing the angles of incidence on the mirror surfaces in order
to take advantage of the improved reflectivity provided by the near-
grazing-incidence systems. Also, a near-grazing-incidence design
spreads the light beam over larger surface areas on the mirrors,
thereby reducing the heat loading.

Now, having seen the types of design variation possible, we
shall direct our attention to systems providing a specific intensity

transformation.

1. Farabolic Reflaxicons
The surface equations have already been developed for a
parabolic reflaxicon in which the geometrical axes of the parabolas
are displaced from the optical axis of the system by a distance, a.

The surfaces were found to be given by

_M-1 2 C
2, = T3y (r1 + h)" + X
and
_M-1 (r. + h)2 + 2C - k2
%2 " T2 ‘M2 Zk
Now the intensity transformation which they provide will be
examined.

Equation (39) shows that the ray-heights in the input and output

beams are related by

r2 + h

———— = M = g constant .

r, +h

1
Thus,
*
r, = (r1 + h)M" - h M(tl)rl (58)
28
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and . .
(rl + h)M - h
M(rl) = T . (59)

Differentiating with respect to Iy

M) o - 1w
dr 2

1 rl

But, by Equation (55),

2 1
[M(rl)rll = 2] W dr, + b .

Differentiating this expression with respect to Iys

dM(rl) r,
Z[M(tl)tll M(rl) + rl T = 2 "(Tl)- R (60)
The intensity transformation function is, then,
r
1 .
G(rl) = [ dM(rl)
M(rl)rl -M(rl) + 1‘1 Tl—
1
) . [(c, + WM - h - (4 - DA
[(r1 + h)M" - h]
r
1
r
- 1 . (61)

(r, + h)M*2 _ M*h

A specific case will now be examined. Let the input beam have
a radius of 1, and an intensity of Ii =1, Let h=1, and M* = 3,
This will give an annular output beam having an inside radius of 2,

and an outside radius of 5. Figure 9 shows the radial intensity

distribution across the annular beam. For comparison, an equivalent
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Figure 9., Radial energy distribution of parabolic reflaxicon,
compared with equivalent constant intensity distribution.

annular beam of uniform intensity is shown. In this case, the intensity

transformation function for the beam of constant intensity is

6(1‘1) = 1/21,

2, Constant Intensity Reflaxicons ) E

The constant intensity transformation is especially useful L

in high-energy laser systems, The input and output beams will have

30




the same radial energy distribution, i.e., a uniform cylindrical
input beam will be transformed into a uniform annular beam; a
Gaussian cylindrical beam will be transformed into a Gaussian annular
beam, et cetera. Of course, the reverse transformations are just as
easily accomplished.

If, in the surface Equations (56) and (57), O(rl) is a constant,

I, we have for the first mirror:

1
2 2 2
. I(I rldr1 + b) d 1 2 rl + C
1 k
2l
_ I(Tl-+b)2 ar, -3l
k
or,
1
_l_'{r (rz + Ib)2 + Ib &n [r + (rz + Ib)
. _2T 1\ 1 1
1 k

\

Similarly, for the second mirror, we find that
1

Ijldr+ ( [ ar; +b)
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Writing Equation (60) in terms of Ty

2, = rg "5 [(rg - b)I]i +oT 2“{[("5 - b)I]% + rz/f}- K2+ 2¢
k

(65)

Figures 10, 11, and 12, illustrate some of the possible forms of
the constant-intensity reflaxicon. The reflaxicons in Figures 10 and
11 accomplish exactly the same thing; only the shape factor, k, has
been varied. Careful inspection of these two figures will show a very
peculiar feature of the mirrors. They have both positive and
negative regions. The inner mirror is concave near the point and
convex near the rim. The outer mirror has, of course, exactly the

same slopes, but the convex region, corresponding to the concave
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Figure 10. Forward-reflecting constant-intensity reflaxicon.
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Figure 11. Near-normal-incidence constant-intensity reflaxicon.
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. Figure 12. Constant-intensity reflaxicon giving
unit beam-intensity transformation.
>
' region of the inner mirror, is confined to a very narrow zone about
)
;‘ the inner edge of the mirror. t
) The packing of the rays near the inner boundary of the annular beam '
!
does not indicate that the beam is brighter at the inside boundary than )
K it is at the outside. This ray-packing only compensates for fall-off
4 .

i in intensity at the inside boundary, which exists in an uncompensated

"

system.




The system in Figure 12, giving a unit intensity transformation,

does not show an inflection zone, but the same S-shaped curve would be

present if the mirror surface were extended far enough. Thus, these
surfaces are properly termed "ogees-of-revolution."

Clearly, the surfaces used in these systems are virtually
impossible to manufacture by classical optical grinding and polishing
techniques. They are, however, well within the capabilities of
single-point diamond turning.

The ray-trace analysis will show that these ogees-of-revolution
are extremely sensitive to alignment errors, and every reasonable

effort must be made to assure high-precision alignment.




Chapter III. WAXICON SYSTEMS
A. Generalized Surface Equations

Generalized surface equations for the waxicon will now be
developed analogous to those developed for the reflaxicon. The same
two conditions will be imposed that were imposed uvii the reflaxicon
system, i.e., constant path~length and afocality. There is one
significant difference. In the reflaxicon, the slopes of the two
mirrors at the ray-intercepts were required to be equal; the waxicon
requires the tangents to the surfaces to be at right angles to one
another. This makes the system retroreflecting as well as afocal.
Also, the entrance and exit planes may now be represented by a single
plane with the rays passing through it from both directions.

In Figure 13, a ray propagating from the reference plane, z = zO,
through the system and back to the reference plane will travel a total

distance given by

4 2 2
OPL = z1 -z, + 7/ (22 - zl) + (r2 - rl) + z, — 29 = L (66)

a constant.

L}

Then,

2 2
/(;2 - zl) + (r2 - rl) =L + 220 -z + z, = H - (zl + 22) (67)

where H is a constant. The mathematics which follows can be simplified

by translating the coordinate system along the z-axis by an amount H/2,

T TNt 3 T o (et R oy s, Tt
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Figure 13. Diagram

so z. and z, become z, + H/2 and z

1 1 2

then becomes

/2

This involves no loss of generality.

2

2 —
, -z (ry - ) = H -

equation, we find that:

2

2
(22 - Zl)

+ (r2 -r,) =

or,

of waxicon system.

+ H/2, respectively.

(zl + 2 -H= —(zl + 22)

2)

Squaring both sides of the

1 (z) + z))

This is the condition for constant path-length.

From the preceding figure, it can be seen that

tan 26 = PR s

Equation (67)

(68)

(69)

(70)

(71)




2 2
(z) - z))" - (ry - 19)
-1 +
T2 (z, ~ z )2

-1+ /1 - tan” 20 _ 2 1
tan 6 = tan 2 © - r, -~ r
2 1
Z 77
2 2

=-(22-zl)t/(zz-zl) - (rz—rl)
rz—rl

Substituting 42122 for (r2 - rl)z, the preceding equation becomes

-(z, - z,) + (z, + z,)
tang=—2 L L1 2 : (73)
2 1

Taking the positive sign will yield imaginary or complex solutioms.

Therefore, the negative sign will be used. Then,

-2 z, ) -2 z, ) Efl.z ) Eig .
r, -1 [M(rl) - l]r1 dzl dr2

tan 6 =

The equation for the outer mirror is, then,

dr

dz
]72—2=fr —2r ? (75)
2 2 1
or,
dr2
ln22=21}——:—;—+1nc (76)
2 1

where &n C is the constant of integration.

h The equation for the inner mirror can be written very simply as
1
} a function of the outer mirror by combining the constant path-length
[ ) and slope equations.

j From Equation (74), we see that:

dr 2 4 22

1 2

| L) —2 . o)
( 1 (r2 - rl)
i
v
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But the condition for constant path-length requires that

2
(r2 - rl) = 4 z,2,

Then, 2 2
4 2 4 z
2 _ 2
2 4z oz ’ (78)
(ry - ) 172
or,
4 z§ z,
—t = . (79)
(ry -1 1
Solving this equation for Z15 the following is obtained:
2 2
. = (rp-t) 2 (poryp) (80)
1 4 ZZ 4 z,

2
We shall now direct our attention to the intensity transformation

in waxicons.
B. Intensity Transformation

The waxicon gives a radial inversion of the input beam. The
inside rim-rays of the input beam are transformed into the outside
rim-rays of the output beam, and conversely. If an input annulus has
an inside radius of ry and an outside radius of T + £, the output
beam of the waxicon will have an inside radius of (r1 + E)M(r1 + &), and
an outside radius of rlM(rl). The reflaxicon, on the other hand, would
have an output beam with an inside radius of rlM(rl), and an outside
radius of (r1 + E)M(r1 + £). In either case, the area of the input

annulus would be

Al = n[(rl + {,)2 - ri] . (81)
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The output annulus of the waxicon would have an area of

2 2
r{[ee]? - e, + omeey + 0] b (82)
and that of the reflaxicon, an area of
. 2 2
Azr = n{[(rl + ;)M(rl + f‘)] - [rlM(rl)] } . (83)
L Combining Equations (46), (81), and (83), in the case of the

reflaxicon, it can be seen that

22
pesy = (rl + &) ] .
1 [(rl + zi)M(rl + E)]z - rlM(rl)]2
1 .
= @E) (84)
[M(r )] + T M(r))

. : 1
In the case of the waxicon, combining Equations (46), (8l1), and

) (82), vyields 2 2
(r1 +£) - r;

l) ) [rlbfl(rl)]2 - l:(rl + é;)M(rl + E,)]z

3(r

2
r
_ 1
[(r1 + F,)M(r1 + E):l2 - [rlM(rl)]2

i (r1 + &)2

e -1
' 2 dM(rl) * (85)
> [M(r )] +r M(r ) —/——
", 1
The negative sign does not imply a negative intensity, but only
‘ .
>‘ a reverse ordering of the rays. We now have the following
4
i !
] : differential equation: -
!
i dM(r.)
; 1 2 1
¢ — M) + [M(rl)] Yy 0 (86)
i 1 1
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It will be noted that this is exactly the differential equation

obtained for the reflaxicon, except that 0(r1) has been replaced by
-ﬂ(rl). Hence, the solution is

r dr 2

[M(rl)"'l]z 0(r ) tb=1, . (87)

Substitution of this expression into the waxicon surface equations
provides a general solution for all O(rl).
The surface equation for the outer mirror becomes

dr

n z, = 2~’ z + on C (88)

N =

r dr
-2 ]- (rl) -
and that of the inner mirror becomes

r dr

2.[ (r ) !

17

The surface equation for the outer mirror can easily be written
as a function of r; and 0(r1) alone by differentiating Equation (87)
with respect to ¥y to obtain the expression

r,dr

dr. = _1 1 . (90)

2 0(r1)r2

or,

dr = dr . (91)

r dr

9(ry) | b - 2] o(r)

41
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' Equation (88) then becomes

Qn22=2[

r,dr

[
(=

+ n C .

N
N

~|
al
~ | b=

1°71
9(r,) {b - 2| —/— b -2 -r
1 f 1 f (rl) 1

C. Constant Intensity Waxicons

If the intensity transformation function assumes the constant

value, I, it can be seen that Equation (87) becomes

r.dr r2
2 _ o S N §
©=b zf L - b - = ) (93)
and
. 2 2
r] = (b - rz) I . (94)

Thus, the surface equation for the outer mirror is

dr
2
n z, = 2 . (95)
2 ] r, - »[I(b - xjg)

In order to integrate this expression, the following change of

variables is made:

rz = vb cos ]
dr2 = - v/b sin dad
/b 2
¢ = arccos ;—é. = arctan ——2 . (96)
T2

Then,

v/I.(; - rz) = v/Ib - Ib c052 ¢ = \/{b sin2 ¢ 97)
and

Ln "‘2=zf = /b sin ¢do +9.nc=—2[—————9—ta“ 4 _ 4 enc

/gcoscb-/l—bsind) 1-/ftan¢ (98)

42

t - - - - P .




Integrating, we have,

Ln zz = I i 1 [/f¢ + n (COS ¢ - /i—sin ¢)] + &n C :
2 /é—rg r2 —rg '

=I+1 V1 arctan ——= + in ——ﬁ—;-/f 5 + n C . i

2 (99) :

Since(-1/I + 1)¢n b + &n C is a constant, these terms may be written

as a single constant, fn C. This new constant becomes a system shape
factor, in the same manner as k in the reflaxicon system. Equation (99)

may now be written

A -2

n z, = 2 Y1 arctan -2 +e¢nlr, - YI(b - r2) +4nC .
2 I1+1 r 2 2
2 (100)

Taking the exponential of both sides,

2
I+1 2 Vi V{)- - t%
z,.=Clr, - YI(b - 1) exp arctan ——— | . (101)
2 2 2 I+1 T,
The surface equation for the inner mirror is now
1 2
r2 :
1

. = b-5v/ -0
)}' 1 4 z,
b, or
1 2
! Y
1 . b - _1_ -r

Zl = - L 1 j

2 .

. I+ 1 /{ - ri
¢ 4Cl r, - YI(b - r.) exp 2 /T arctan N1
i 2 2 I+1 T,
]
’
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or

1 2
2\ 2
1
b-3 S

2
il - ex 2 /T- arcta rl
i PIT+1 n

N

Ib ~ rz.

Turning now to the meaning of the constants in the waxicon surface
equations, Equation (94) shows that when r, = 0, corresponding to the
axial ray, T, = Yb. Since the axial input-ray is reflected into the
outside rim of the annular beam, vb is the radius of the outside rim.
Compare this to the case of the constant-intensity reflaxicon, in
which /b was the radius of the inside rim of the annular beam. This
points out, again, the radial inversion of the beam in the waxicon.

As has been mentioned, the constant, C, functions as a system
shape-factor. When C is very small, the inner mirror will be used at
near grazing-incidence, and the outer mirror will work at near normal-
incidence. The reverse is true when C is large. Figures 14, 15, and
16 illustrate this variation with C.

Waxicons are usually made in a configuration similar to that in

Figure 15. As has been pointed out by David Finkl, if waxicons are

1David Fink, "Polarization Effects of Axicons," Applied Optics,
Vol. 18, March 1979, p. 581.

44

(102)




Figure 14. Waxicon with near-grazing-incidence on the inner mirror.




Waxicon with nearly equal angles of incidence
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1 = 0.1
b = 16.0
¢c = 005

Figure 16. Waxicon with near-grazing-incidence
on the outer mirror.
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dielectric coated, the polarization direction of the output beam is
rotated through an angle of 26, where 8 is the azimuthal angle around
the annulus. This can cause beam cancellation, clearly an undesirable
consequence. This can be prevented, however, by making one reflection
at less than Brewster's angle, and the other greater. A waxicon, such
as that in Figure 15, in which the angles of reflection at the two
mirrors are roughly equal, would almost always give polarization
problems. However, the polarization problem can be alleviated by
using designs similar to those in Figures 14 and 16, in which one
angle is large and the other small, With metallic coatings, waxicaons
similar to the one in Figure 15 provide a more compact system.

It is interesting to note that reflaxicons do not present this

polarization problem.

48




-

a4

Chapter IV. PERFORMANCE ANALYSIS
A. Ray-Tracing Procedures

Attention is now directed to the practical design of reflaxicons
and waxicons. One of the most serious problems in the use of these
systems is the sensitivity to alignment error. This can be readily
anticipated, because of the complexity of the surfaces. This sensitivity ;
was investigated by means of exact ray-tracing. Third- and fiftk order
theory is of little value in analyzing the performance of these systems
in the configurations in which they are usually made, because small-
angle approximations are inadequate for the angles involved.

An extremely versatile ray-trace computer program has been H
developed by Dietrich Korschz. This program ray-traces systems of
conic sections of revolution,using exact formulas, and allows the tilt 7

of each component about two axes orthogonal to the optical axis, and

displacements along all three axes. 1t provides data-options of
centroid shift, root mean square (rms) spot-size about the centroid

in both the Gaussian and best-focus planes, intensity distribution
within the image of a point-source, field curvature, and spot-diagrams.
The program has been modified to give angular, as well as linear

measurements, rms decollimation, and a statistical output-beam

2Dietrich Korsch, "Ray Trace Evaluation Program,” Vol. 1,
Teledyne Brown Engineering, Huntsville, Alabama, 1977.
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evaluation when all misalipgnment parameters are chosen randomly within
speciited limits. The propram was expanded to accept the complicated
surtace cgaations, characteristic of reflaxicons and waxicons. !

oo dfntersections of the rays with the surfaces were found by

fteration an o albl misaligned cases. At first, the Newton-Raphson
fteratior schems was used, but it was found that the iteration
trequentiv did not converge. The iteration was then changed to the

regula ralsi, or false position scheme, which was made to work reliably.

B. Reflaxicon Systems

As a basis for our analysis, a reflaxicon of a configuration will

be chosen that would be suitable for use in high-energy laser systems
as a beam-shaper or as a beam expander. The system will be required to
give a constant intensity transtormation, and the cylindrical beam will
have an intensity ten times that of the anpular beam, i.e., I = 0.1,
The cvlindrical beam will have a radius of V1.5, being just large

enough to allow adequate space for mounting the inside mirror, without

its interfering with the annular beam. This would allow its use in

E N conjunction with conventional optizal svstems of moderate size, and
;
i ; would minimize the cost of the reflaxicon beam shaper.
; ) The shape factor, k, will be given a value of unity, making the
!
ﬁ mirrors forward reflecting. This system is very different from
h normal-incidence and grazing-incidence systems. The anglus of
( incidence are large, and no small-angle approximations are valid. The
J' constant, C, may be arbitrarily chosen, unless otherwise noted.
]




For the actual ray-tracing, the origin is shifted for each mirror
in order that tilt variations will not be made about a distant origin.
If the origin is far removed from the mirror, a tilt of the mirror
about that origin would result in a large lateral displacement of
the mirror. This would make it impossible to study the effects of
tilt without significant decentering ot the mirror. For each surface,
the origin was arbitrarily shifted to such a position on the z-axis,
that the intercept of a ray having an initial height of r, = 0.5 in
the cylindrical beam would fall over the origin, except in the case
where the origin was being deliberately shifted in order to determine
the effect of tilting the mirrors about various pivot-points.

The misalignment errors in the afocal reflaxicon fall into three
types. They are angular misalignment of one mirror with respect to
the other, a decentering of one mirror relative to the other, and a
tilt of the whole system with respect to the input beam.

Since the input beam is collimated, a lateral, or longitudinal
shift of the whole system has no effect on the collimation of the
annular beam. It would change the intensity profile of the annular
beam, however, unless the input beam were of uniform intensity.

In the afocal reflaxicon system, either a decentering or a tilt
of the inner mirror can be thought of as a decentering or a tilting
of the outer mirror with a corresponding misalignment of the whole
system with respect to the input beam. Therefore, only tilt, decenter,
and despace on the outer mirror will be considered as well as an off-

axis tilt of the whole system with respect to the input beam.
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1. Mirror Tilt
The effect of the shape factor, k, on the sensitivity to a

tilt error can be seen bv choosing a fixed tilt angle of 0.1 mra

for the outer mirror, and computing the rms decollimation of the output
beam for several values of k. This tilt angle mav seem large, but it
Gust B Foemetdered that oo~ wtes whiie wonld possindy require alignnent
in the field with minimil alignment equipment is being examined. The
relationship between the rms decollimation produced by this tilt, and

the shape factor, is seen in Figure 17,
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Figure 17. Beam decollimization produced by a constant tilt of 0.1 wmrad
on the outer mirror, as a function of shape factor.
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It is noted that the grazing-incidence systems, represented by a
small k, are considerably more sensitive to tilt than the normal-
incidence systems, in which k would be larger than approximately four.

The direction of the annular beam will be changed by this tilt of
the outer mirror, and its dependence on k can be seen in Figure 18.
Clearly, the centroid shift increases sharply with increasing k,
although with the 0.l-mrad tilt, the centroid shift is still quite
small. Figure 18 illustrates conspicuously the effect of the location
of the origin when tilt is present. Notice that the centroid
shift is negative in the k = 0 to k = 1 region. This shift is in the
opposite direction to the mirror tilt. As seen in Figure 10, the outer
mirror is a very deep, barrel-shaped mirror, and the origin was placed
near its center. As will be seen, the system is very sensitive to
decentering. The inside region of the mirror, which contains the most
complicated part of the surface, is decentered in the opposite direction
of the mirror tilt. This introduces a negative component in the
centroid shift. Since this region of the mirror contains a convex rim
and an inflection of the curve, it is more sensitive to the negative
decentering than the remainder of the mirror is to its positive
decentering. The tilt contributes an extremely small positive centroid
shift, and is overpowered by the negative decentering. 1If the origin
were placed behind the inside edge of the outer mirror, the resultant
decentering would be positive, and there would be a relatively large

positive centroid shift.
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. If the shape factor, k, is held constant, and the tilt angle is
?' varied, then the rms decollimation varies linearly with tilt angle 1
P
j (Figure 19). Also, the effect is shown in Figure 17, since each k j
. produces a different slope. This linear variation of decollimation
¢
I' with tilt is indicative of coma.
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Figure 19. Beam decollimization versus tilt of outer mirror.

The beam decollimation is also dependent on the location of the

! axial point about which the tilt occurs. Figure 20 shows this

dependence. The decollimation is minimized when the pivot-point lies
! almost exactly in the plane of the inside edge of the outer mirror.
It is at this edge that the mirror has the strongest curvature, and
the most rapid change in curvature. Whenever possible, reflaxicons
should be designed with the mounting surface of the outer mirror so
positioned that any tilt will occur about a point as close to the

hJ
7 plane of the inside edge as possible.
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The effect of tilring the outer mirror can be best described by

the nomogram in Figure 21. A straight-edge can be applied to this
nomogram, and, for an arbitrary k, the rms decollimation produced by

any tilt of the outer mirror can be seen immediately within the range

of the nomogram.
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Figure 21. Nomogram relating beam decollimization,
shape factor, and tilt of outer mirror.
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Because of the slight dip in the curve relating decollimation to
k, in the vicinity of k = 2, the k-scale folds back at k = 2 in the
nomogram. The k = 2 case represents a system in which there is,
roughly, a right-angle reflectinn at each mirror. The dip is not
strong enough, though, to influence a decision in the choice of k

significantly.

2. Decentering of the Outer Mirror
The beam degradation caused by decentering the outer mirror

will now be considered. This 1s especially important because by usual
alignment techniques, the centering of a component is usually much less
precise than the angular alignment. Angular alignment can be reudily
accomplished with optical-tooling telescopes and interferometers.
Centering, however, usually depends on aberration analysis because the
optical center of an element may not coincide with the physical center.
Diamond machined optics can be better in this respect, since the
outside edge of the mirror can be machined in the same operation as
the optical surface. This procedure would guarantee coincidence of the
optical and geometrical centers. Depending on the configuration of
the element and its mount, however, this may not always be feasible.

Figure 22 shows the variation of the decollimation with the
decentering of the outer mirror for several k. Once again, it is
noted that the variation is linear for any k. Thus, both tilt and
decentering introduce coma.

The various k give different slopes to the straight lines, however,

indicating a functional dependence of the decollimation on k, for any
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Figure 22. Beam decollimization versus decenter of outer mirror. ﬂ
fixed amount of decentering. Thils dependence is shown in Figure 23,
where the amount of decentering is taken as 0.002 times the input
» beam radius.
; It should be noted that the grazing-incidence systems, k = 0.1,
\: for example, show the least sensitivity to decentering, even though

they are the most sensitive to tilt error. But even in these systems,

e v

the magnitude of the decollimation due to decentering is high compared
to that produced by tilt. Near-normal-incidence systems (k = 5), have

low sensitivity to both tilt and decentering.
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Figure 23, Beam decollimization versus shape factor for constant
decenter of 0.002 cylindrical beam diameters at the outer mirror.
The most sensitive to decentering are intermediate systems such
as those chosen in the example. From Figures 19 and 22, it can be seen
that in the example in which k = 1, 0.1-mrad tilt produces approximately
the same beam degradation as a decenter of 0.0015 times the input beam
radius.

The effect of decentering the outer mirror can be determined quite

easily from the nomogram in Figure 24. This nomogram is also read by
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Figure 24. Nomogram relating beam decollimization,
shape factor, and decentering outer mirror.

applying a straight-edge, and observing its intersections with the

three scales.
The centroid shift resulting from a decentering of 0.002 input-
beam radii is shown as a function of k, in Figure 25. Once again the

grazing-incidence systems are least sensitive.
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Figure 25. Centroid shift versus shape factor for constant
decenter of 0.002 cylindrical beam diameters at the
outer mirror.
The centroid shift is probably the least serious of all the
effects of misalignment. In the laser systems in which a reflaxicon .

might be used, this effect could be compensated by the aiming of the
system. The system would simply be aimed to position the average beam

spot center on the target. In some systems, this is done via an

automatic hot-spot sensing system.




3. Despacing
It is obvious from Figure 26, that the reflaxicon system is
exceedingly sensitive to a mirror spacing error. In order to maintain
an rms decollimation of not more than 0.1 mrad, the mirror spacing
must be accurate to within 0.000017 times the input beam radius. If
precise collimation of the output beam is required, the mirror spacing
must be set with as high a precision as possible. Fortunately, this

spacing can be readily checked by autocollimation.
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Figure 26. Beam decollimization versus despacing of mirrors.
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Of f-Axis Angle
When the reflaxicon systems were checked for sensitivity to
a misalignment of the whole system with respect to the input beam, it

was found that the rms decollimation was independent of k, to within

the error of computation (approximately seven significant figures).
Thus, the graph in Figure 27 applies to all shape factors, at least

within the range of 0.1 < k < 5.
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Figure 27. Beam decollimization versus off-axis
angle of incident cylindrical beam.
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The rms decollimation varies linearly with the off-axis angle,

and is 0.245 times the off-axis angle in the example.
5. Inside Kadius of Annular Beam

Thus far, annular beams having an inside radius of /1.5, or
b = 1.5 have been considered. Although this parameter will usually be
fixed by the size and type laser and/or optical system with which the
reflaxicon is used, it is instructive to let b vary in the hypothetical
system. Keeping k and I fixed at 1 and 0.1, respectively, and a tilt
of 0.1 mrad at the outer mirror, the relationship between b and the
rms beam decollimation can be found (Figure 28). The sensitivity to
tilt increases with the inner radius of the annular beam. In order to
minimize sensitivity to tilt, the inside radius of the annular beam
should be kept as close to the ocutside radius of the cylindrical beam
as possible.

Figure 29 shows the relationship between decollimation and b when
the outer mirror is decentered by 0.002 times the input beam radius.
The effect 1is just the reverse of the tilt sensitivity. The larger
the inside radius of the annular beam, the less sensitive the system
is to decentering.

6. Intensity Transformation

The intensity transformation function will almost certainly
be determined by factors other than alignment sensitivity. However,
Figure 30 shows beam decollimation for a ringe of intensity transforma-

tions with a constant tilt of 0.1 mrad. The model system becomes very

sensitive to tilt when the intensity transformation becomes very small




Figure 28. Beam decollimization versus inside radius of annular

beam for constant tilt of 0.1 mrad at outer mirror.
or large. The chosen value of I = 0.1 is nearly optimum for this
system. Figure 31 is similar, but for a constant decentering of
0.002 input-beam radii.

7. Statistical Analysis

Obviously, there are many factors which govern the

performance of a reflaxicon, some of which have opposing effects.
At this point, all angular and linear misalignments will be allowed

to occur simultaneously. The angular misalignments were varied
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at outer mirror.

| within a range of # 0.1 mrad, and the linear errors varied

)

\ randomly within a range of 0.001 times the radius of the cylindrical

?f input beam. This was accomplished by multiplying each error limit by
‘s a random number between 1 and -1. The system was ray-traced 100 times,
, using 112 rays per run. The shape-factor was varied through the range
j from k = 0.1 to k = 5.
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Figure 30. Beam decollimization versus intensity transformation
for constant tilt of 0.1 mrad at outer mirror.

Figure 32 shows the results of these calculations. The mean
values of the rms decollimations are plotted along with the standard
deviations. It can be seen that the decentering was the dominant
error, since Figure 32 looks very much like Figure 23.

The standard deviations are rather large, but making 200 sets of
calculations per data point, instead of 100, produced almost no change
in the standard deviation of the mean rms decollimation. The mean value

of the rms decollimations was repeatable within 57%.
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\ Figures 33 through 39 show the distributions for each plotted

}

Y ’ value of k. They show the percentage of runs falling within 0.l-mrad
{

Y increments of decollimation. It is noted that the narrowest

4 distribution and the best performance were given by the grazing-

) incidence system, k = 0.1.
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C. Waxicon Systems

Waxicons, as they are commonly constructed, present far fewer
alignment problems than reflaxicons. A waxicon system is almost always
made in one piece with both mirrors machined on a single metal blank.
This would not be practical with a reflaxicon system because the beam
must pass through the system. The support structure for the inner
mirror would interfere with the machining of the outer mirror, and the
two mirrors face opposite directions, requiring that the blank be
removed from the lathe and turned around to machine the other side.
Proper alignment would be very difficult to preserve in this way.

Since waxicons can be machined from one piece of metal, this
procedure should always be followed unless extraordinary design con-
straints prohibit it. 1If the two mirrors are machined on a single
blank without removing the blank from the lathe until the work is
completed, there will not be anv significant alignment error within
*he system. The centering and the angular alignment will be as good
as, and probably better than, the figure accuracy of the surfaces,
This can certainly be within fractional wavelength tolerances. The
spacing of the mirrors will have roughly the same accuracy and
precision as the mirror surfaces. Thus, the only realistic alignment
error is a misalignment of the entire waxicon with the input beam.

If the system is used with a collimated beam, there is zero sensitivity
to a lateral displacement of the system, leaving only an off-axis tilt

as the only source of alignment error.
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Even though the waxicon would almost always be made in one piece,
nevertheless, the sensitivity of the outer mirror to decenter and tilt
will be examined.

A model system will be defined just as it was for the reflaxicon.
In this case, the intensity transformation, I = 0.1, will be retained
and the outside radius of the annular beam will be vb = 4. The
constant, C, will be allowed to vary at will.

1. Decentering

Following exactly the same procedures that were used with the
reflaxicon, and remembering that the waxicon shape-factor is the constant
C, a decenter of 0.001 input-beam radii on the outer mirror will be

imposed and the rms decollimation as a function of C will be observed.

This relationship is shown in Figure 40. The first thing noticed in
this graph is that the magnitude of the decollimation is much larger
than that in the reflaxicon. Also, by far the best performance is
with a small C. Such a system would have near-grazing-incidence of
the inner mirror and almost normal-incidence on the outer mirror.

If C is held constant, and the amount of decenter varied,
Figure 41 shows that the variation in decol’imation is linear, just
as it was in the reflaxicon.

Combining the results of Figures 40 and 41, a nomogram can be
constructed for arbitrary shifts and shape-factors, as shown in
Figure 42. A straight-edge is used with this nomogram in the same

fashion as with the reflaxicon nomograms.
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Figure 40. Beam decollimization versus shape factor for constant
decenter of 0.001 cylindrical beam diameters at outer mirror.
2. Tilt in the Waxicon
If the tilt of the outer mirror is held constant and the
shape-factor allowed to vary, the variation in decollimation is shown
in Figure 43.
Once again, the system with a small C performs far better than
those with large C, and is comparable in performance to the reflaxicons.

A large C makes the waxicon very sensitive to mirror tilt.
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Figure 41. Beam decollimization versus decenter of outer mirror
for constant C.
If C is held constant, and the tilt-angle allowed to change, the
familiar linear relationship between tilt and decollimation results
as shown in Figure 44.
Combining the information in Figures 43 and 44, the decollimation
can be shown resulting from an arbitrary tilt and arbitrary C. A
nomogram showing this is given in Figure 45. It is also read with a

straight-edge.
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3. Off-Axis Angle
This is the only misalignment that is usually meaningful.

It is, therefore, of particular interest. If the decollimation is

computed as a function of the off-axis angle for many values of C, it

is found to be independent of C. This is the same phenomenon found in

the reflaxicon system. Figure 46 shows the rms decollimation to be
P equal to 1.21 times the off-axis angle.
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The rms decollimation was calculated for 100 off-axis tilt

angles, randomly chosen between the limits of -0.1 and + 0.1 mrad.
The mean of the rms decollimations was found to be 0.053 mrad with a :
standard deviation of 0.031 mrad. This is less than half the

decollimation found in the statistical analysis of the best reflaxicon

(k = 0.1) with its many sources of appreciable error.
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Chapter V. CONCLUSIONS

Reflaxicons and waxicons are extremely versatile systems, capable
of performing ray-height and intensity transformations that could not

be achieved with classical optical systems. The mathematical theory

has been developed for completely generalized transformations in
two-mirror, afocal systems.

It has been shown that near-grazing-incidence reflaxicons are
L capable of better performance than the more common configurations

because they are more tolerant of misalignment.

Waxicons are to be preferred to reflaxicons, whenever this
configuration is feasible. Their primary advantage is that they can
be made in one piece, thereby eliminating most of the potential
sources of misalignment.

The preferred configuration for waxicons is that with a small

' shape-factor. This configuration is not likely to cause serious
polarization problems when used with dielectric coatings. The inner

mirror, which usually has the higher heat-loading, is used at almost

]
grazing incidence. This spreads the heat load over a larger area
\
] and improves the reflectivity. It is a convenient configuration for
14
i: diamond-machining. This is a very different configuration from that
4

which is usually produced.




Waxicons are usually restricted to applications in which retro-
reflection is required, but they could readily be used as fixed-focus,
telescopic systems if combined with a flat mirror to turn one of the
beams to the side. If this flat is an annular mirror reflecting the
annular beam, there would be no need to have a mirror support structure
obstructing either the input or the output beams. The system would
be completely unobstructed.

In view of the hLigh performance of afocal vaxicons, it is
recommended that focusing waxicons be systematically studied to deter-
mine their suitability for use in laser welding and cutting devices.
They would allow contouring of the beam intensity profile to optimize
the welding and cutting processes and would probably be less sensitive
to alignment errors than more conventional focusing systems. Thus far,
their use in this field has been almost completely ignored.

There is also a great need for beam-contouring reflaxicons which
can be focused over a reasonable range. These systems would have to
use more than two mirrors. They would be particularly useful in

pointing and tracking systems for high-energy lasers.
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