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EDITOR'S PREFACE

Four principal lecturers shored the task of presenting the subject
"Coherent Features in Geophysical Flows" to the participants of the twenty-
second geophysical fluid dynamics summer program. Glenn Flierl introduced the
topic and the Nortweg-de Vries equation via a model of finite amplitude motions
on the beta plane. He extended the analysis to more complex flows in the ocean
and the atmosphere and in the process treated motions of very large amplitude.
Larry Redekopp's three lectures summarized an extensive body of the mathe-
matical literature on coherent features. Andrew Ingersoll focussed on the
many fascinating features in Jupiter's atmosphere. Joseph Keller supplemented
an interesting summary of laboratory observations with suggestive models for
treating the flows.

The seminars by participants and invited speakers, abstracts of which arE
printed in the following pages, cover a broad range of topics in geo-
physical fluid dynamics. Included among the abstracts are the seminars
presented by McWilliams, Flierl, Redekopp, Rizzoli, Pierrehumbert and
Hendershott during the one-week workshop on coherent features.

The nine student lectures summarize the most creative product of the
summer program. This year was most unusual in that most of the students
worked on some aspect of the central theme. Some of these projects will be
reworked and extended for publication.

We are deeply indebted to Ralph Cooper of the Office of Naval Research for
arranging the funding from several government agencies. We are also grateful
to Florence Mellor and Maryanne Macaluso, who assembled the reports and
handled the practical functioning of the program and to A. L. Peirson who
helped in the administration of the program.

George Veronis
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INTRODUCTION TO COHERENT FEATURES

Glenn R. Flierl

LECTURE #1.

1. INTRODUCTION

In this lecture we shall quickly derive several nonlinear equations
governing the propagation of Rossby waves in a homogeneous j -plane ocean.
Some of these equations, such as the Korteweg-de Vries equation, are familiar
from surface wave theory; others such as the modon solutions were first
derived in the context of f3 -plane dynamics. All these equations, however,
describe the evolution of features with finite total energy which retain their
identity for long periods of time, i.e., coherent features. Nonlinearity is
an essential part of their dynamics since it combats the linear wave
dispersion and holds the features together.

Because an infinite plane Rossby wave is an exact nonlinear solution on a
uniform depth S - plane, additional mechanisms are needed to induce non-
trivial nonlinearity. The mechanisms discussed in this lecture are nonuniform
depth, gradual modulation of a wave train and shear in a mean zonal current.

Finally, we distinguish between solitary waves and solitons. Solitons are
solitary waves which survive collisions with other solitary waves.

2. NONUNIFORM DEPTH

In this section we show that the KdV equation governs the propagation of
Rossby waves in a zonal channel of uneven depth. The symbols associated with
the geometry of the channel are defined in Figure 1.

The shallow water equations:

P --t - ,v - i(la)

"L (lb)
( ---A
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imply potential vorticity conservation I
D ((4 (2a)

(I (2c)

The mass conservation Eqn. (2c) allows the introduction of a mass
streamfunction:

,A (3a)

'f = (3b)

so that (2a) is an equation in one unknown, .4 This equation is simplified
using the following approximations:

1) The channel is rapidly rotating, i.e.

-( LA

2) The depth variation is slight, i.e.
- O(to)

3) The channel is narrow, i.e.

J 3 -t " Radius of Earth

Using the above (2a) becomes

' ~~7 + 0 Rc),c 6

where W H-I1 . Equation (4) is the quasigeostrophic potential
vorticity equation.

Equation (4 ) is now nond.mensionalized using T-UW, y V, x -- L
t % (L/fWJ ); the x and y scales are different. The subsequent
perturbation analysis uses the nondimensional numbers

particle speed L 7t

wave speed )s "

y scale : I/
x scale

5 vortex stretching
planetary vorticity variations PH
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We will analyze the simplest case '-m 5 Because ?-I , the
perturbation solutions cannot be applied strictly to synoptic weather systems
or mesoscale ocean eddies which have comparable EW and NS length scales.

The scale separation, however, allows the y dependence to be removed and
produces an x-t problem which ultimately reduces to the KdV equation.

The nondimensional form of (4) is

Now, it is easily seen that a naive expansion of q in powers of L must
fail; simply consider the dispersion relation calculated using linear theory;
when b = 0:

- -(6)

Because 3L is constant all the dispersive effects, which must balance
nonlinear steepening, are in the term V'iJ/e. This term can only be
important on time scales of order S-4 . Thus a successful perturbation
expansion must contain the time scale T = explicitly. This motivates
the multiple time scale expansion

T tT) ) + tT)(7a)

and in (5)

+ (7b)

The f. expansion of Eqn. (7a) is motivated by . -

Equations (7a and b) are now substituted into Eqn. (4) and like powers of
collected to produce a hierarchy of problems the first of which is:

(.Ifo X (8)

The solution of Eqn. (8) which satisfies the boundary condition:

is '2't- I= o e ^ Ik
is

F is unknown at the moment;it is determined by requiring that the subsequent
problems in the hierarchy be free of resonant forcing so that all the y(n)
are bounded as t-.o . For simplicity make the nonessential simplification
m = 1 in (9).

The next problem in the hierarchy is then

L(10)

tX



-4-

Note how the expected nonlinear term , -- vanishes identically. The
nonlinear Jacobians appear at the next order and so the nonlinear terms are
important on times of OC5- ) . Since the dispersive effects are important on
times of order S the scaling f-S is necessary for a balance. With
stronger topography ( i-1 ) the y structure of the lowest order solution
would be more complicated and would not be zero. Then we

would choose f--S to bring dispersion and nonlinearity in together. The weak
topography shows explicitly the necessity of curvature in b(v)
steepening.

To solve Eqn. (10) it is necessary to specify a particular topography; for

illustrative purposes b = sin ( iT ) is simple. The solution of Eqn. (10) in
this case is

w r s : ' "i  ( . - t r ) ( ]

The next problem in the hierarchy is

tt -} . - 7jb (f -- !{ j )

L (12)

Substituting Eqn. (9) and Eqn. (10) into Eqn. (12) one obtains

L-I S(13)

, 

rF 
-

From the structure of the inhomogeneous terms it is clear that D

-r ch' .If If"" is to remain bounded the forcing terms in (13) must be
orthogonal to the adjoint solution of (-n +-i) %- o ; thus if (13) is
multiplied by sin ( wj ) and integrated across the channel the inhomogeneous
term must vanish. This condition is the desired evolution equation for F

. F- t F -IT \ ) FF/LS (14)

Apart from the constant coefficients Eqn. (14) is the standard form of the
Korteweg-de Vries equation. If s = 0, corresponding to a flat bottom, tle

nonlinear term in Eqn. (14) is removed. Without it the straightforward linear
solution is, in fact, an exact nonlinear solution and the above perturbation
theory merely generates successive terms in the Taylor series expansion of the
dispersion relation as in Eqn. (6).

3. PROPERTIES OF THE KORTEWEG-DE VRIES EQUATION

The transformation I- () -u4T
-



puts Eqn. (14) into the more elegant form

with

and - -'-4 --

One can write (formally) an exact solution to Eqn. (15)

In order to gain some simple intuition about Eqn. (14), however, let us

consider two special cases:

.L Fx-i 4f-)i0.Teinta tendency1) The linear cases FT - The initial en
of a symmetric hump to steepen at the rear is sketched in Figure (2a). This
rear steepening occurs because long waves travel faster ( C total for a wave
with wavenumber k is given by W i S' + - ) )

2) The strongly nonlinear case Fr - ( S/SL)FF. The initial

tendency of a positive symmetric hump to steepen at the front is sketched in
Figure (2o). Negative humps steepen at the rear.

(a) (b)

Figure 2

These special cases suggest that for positive humps it may be possible to
strike a balance between forward and rear steepening to produce a hump which
travels without distortion. To prove conclusively that this balance can be
achieved, construct a solitary wave solution of Eqn. (15); it is found that

j $-C C (x t(6

' -'- = .. .. 1
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where the amplitude and the speed are related by

Z C

or in terms of our original variables

F I - L 5~ L L

One might expect that the soliary wave solution Eqn. (16) is a delicate

structure which would arise from a limited class of initial conditions.
However, one of the major successes of the inverse scattering method was to
prove that all reasonable initial conditions eventually break up into a finite
number of solitary waves plus a weakly nonlinear wave train. Moreover, the
solitary solutions of the KdV equation can collide and pass unchanged through
other solitary waves. Thus since the larger waves move faster the eventual
behaviour as t--** consists of a finite number of solitary waves lined up
with size and velocity increasing to the front. In the following lectures we
will reserve the term soliton for robust solitary waves such as these which
survive interactions.

4. MODULATED ROSSBY WAVES

In this section we will investigate the nonlinear evolution of a slowly

modulated Rossby wave group (Yamagata, 1979)

Cf - A(,)T) e Si irI + complex conjugate (17)

Our goal is to determine the evolution of the envelope A on the slow space and
time scales X and T.

The nondimensionalized equation is

4. -X,+- - (18)

Note the following differences between Eqn. (18) and Eqn. (5):

1) There is no topographic term in Eqn. (18); nonlinear effects are
provided
by the slow modulation of the plane wave.

2) The x and y scales are the same in Eqn. (18), this is because the zonal
wavelength of the carrier may be comparable to the width of the
channel.

Equation (18) is solved using a multiple scale perturbation expansion

Cf (', I+ + f- L P" LY.1 ,t X T - (19)

t
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where V5 is the X-component of group velocity. We will see below that the
well known result v - t will be recovered at second order in the perturba-
tion expansion. 7 k

The first problem in the hierarchy is

t) o (20)

the solution of which is

- A (T) e . (21)

The next problem is

Lo)) L

The term proportional to in Eqn. (22) is resonant, to eliminate it take

14 S -(23)

The general solution of Eqn. (22) is then an infinite sum of plane waves, the
only one of which produces resonant terms at next order is the quasi-zonal
flow:

(4 = 'CA,V, ) 6 (,j ((24)

The next order is

-1 , x) a -V , -toX,, (25)

(1) Ut4(0)0 10

L-x- .j )_) )X

When Eqn. (21) and Eqn. (24) are substituted into Eqn. (25) there are two
types of resonant forcing terms which must be eliminated.

1) Terms independent of the fast time and length scales such as N .
Elimination of these terms implies

C(") = -ee- I +4]-- IA 1 (26)

Since we shall choose 1+"TI'V4e4c , there will be no second harmonic
resonance.

2) Terms dependent on kx - t. Elimination of these terms implies

+ v
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Equation (27) is the cubic Schroedinger equation. Time can be rescaled to
put it in the form

A x A, (28)

Eq. (28) has soliton solutions:

This is a solution of Eqn. (28) only when '-') or equivalently

This is the wave number range in which our infinite train of waves is
modulationally unstable (Plumb, 1977).

5. ROSSBY WAVES IN SHEAR FLOWS AND NONQUASIGEOSTROPHIC EFFECTS

In this section we will use a model equation which is not strictly
derivable from the equations of motion but which crudely represents some of
the nonlinearities associated with nonquasigeostrophic effects. The model
equation is

A '! -XA L) (29)

The nonquasigeostrophic term is the 'I / in the denominator of the potential
vorticity. The closest physical analog is a two layer system with an upper

layer which is passive because it is much thicker than the lower layer. The
nonquasigeostrophic term represents the perturbation of the density structure

(i.e., the interface displacement) associated with the disturbance.

Now look for steadily moving solutions to Eqn. (29) so that -c
and a first integral is then

where P is an, as yet, arbitrary function.

For streamlines which extend to t-0 , P can be evaluated by requiring

that the eddy be isolated ( s- x -' 4-o ) so that:

-~ (31)

We can use Eqn. (31) to rewrite Eqn. (30) in the form

1 I - Z, )1 - (I G- ' K)~ ?'c-" ?(oyS',)( 32)( - R I H4 {.

which is a type of nonlinear oscillator equation. In the quasigeostrophic
approximation, the lefthand side of Eqn. (31) becomes _jA-, while
(32) is partially linearized to -

1 - -
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In principle Eqn. (31) can be solved to find P as a function of its argument
and Eqn.(32) can then be solved for the wave shape A4 and speed C- . In
practice, to make analytic progress it is necessary to use approximations.
The first is the weak wave approximation which simplifies the rightband side
of Eqn. (32) by expanding the square bracket in a Taylor series in i so
that finally

J*= All, 4- B + (higher order terms) (33)

A and B in Eqn. (33) contain derivatives of P evaluated at C- . For
example, the linear coefficient is

Al - ,/ k

These derivatives can be written in terms of known functions such as u and b
using Eqn. (31). In general A in Eqn. (33) depends on y and the linear term
is much greater than the '4  term. In this case we get a balance by forcing
the waves to be elongated in the x-direction, , so that at
lowest order

- A 1,Cb °)) i (34)

The solution of Eqn. (34) is

1 to) = F ) H(J) and c + higher order terms where c(O)
is an eigenvalue determined by the y boundary conditions. F(x) is determined
at the next order where dispersion and nonlinearity enter. The equation for

ytV" is an inhomogeneous boundary value problem, and the solvability
condition is an equation for F:

This equation determines the structure of F and the corre t.on to c(O). As
in section 1, F has a sech 2 shape and the correction to co) is positive
so that the nonlinear wave moves faster than the fastest linear wave.

There is an exceptional class of solutions to Eqn. (33) which are worth
noting. When ,- = 0, as happens when u = b = 0, then it is possible to
find radially symmetric solutions in which nonquasigeostrophic effects provide
the nonlinear steepening. In this case, the potential vorticity functional is
just ? ) -

so thatItIA 4t

The lowest order balance for scales large compared to R is just

, -L A (C V-) 0 0
or C . At first order

P /~ C-c 3 i~ L
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which has both sech2 and radially symmetric solutions if the scale is small

enough so that f can be replaced by fo.

The other assumption which simplifies the general form Eqn. (32) is the
strong eddy approximation. Assume that both mean flow and topography are
weak; P in Eqn. (31) is approximately linear since t

implies C1 - 4- C. LA-

and so =-! u/b-) ¥c 5 --
-

L

With simple choices of topography and shear Eqn. (33) is recovered and the
subsequent analysis is applicable.

Both the weak wave approximation and the strong eddy approximation are
based on (31) and so apply only to streamlines which extend to - , i.e., open
streamlines. It is possible to construct solutions having closed streamlines
and in this case it is necessary to specify P in the region where the
streamlines close. There are two different approaches:

1) Assume P is an analytic function and continue to use Eqn. (31) to
define P.

2) Let P be a multivalued function and use different branches in the open
and closed regions.

The simplest solution with closed streamlines is the quasigeostrophic
modon with u b 0 0. In the exterior region the equation is linear

and

1< +
is one convenient solution. This solution has a closed streamline at r = a
and within this circle P need not satisfy Eqn. (31). Instead take

where k is an arbitrary constant and then the corresponding interior solution
which is continuous at r = a is

Continuity of at r = a implies the dispersion relation:

~ ~~L) TLL,

4~ I('t K1(-4 ,c.FR) kTj 00
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Equation (36) connects the speed, amplitude and size of the nonlinear modons;
the dispersion curves are sketched in Lecture 2.

The following table shows how various published Rossby solitary wave
solutions fit within the classifications discussed above.

TABLE 1

Effects Included

Topographic Mean Flow Nonquasigeostrophic Multi-valued P

Weak Rizzoli (1978) Maxworthy & Redekopp Clarke (1971)
Redekopp (1976) Charney & Flierl (1980)*
Redekopp (1976) Boyd (1978)

Strong Rizzoli (1980) Flierl (1979)* Flierl (1977)* or
Henrotay (1980)* Long (1964) Charney & Flierl (1980)*

Larsen (1965)

Benney (1966)

Modon Ingersoll (1973) Stern (1975)
Larichev & Reznik (1976)
Flierl, Larichev,

McWilliams & Reznik
(1980)

*Indicates radially symmetric cases.

REFERENCES

Benney. D. J., 1966. J. Math. & Phys., 45, 52.

Boyd, J. P., 1978. Review Papers of Equat. Oc. FINE Workshop Proceedings.

Charney, J. and G. Flierl, 1980. Oceanic analogues of large-scale atmospheric

motion (Preprint).

Clarke, R. A., 1971. G. F. D., 2, 343-354.

Flierl, G., 1977. Warm Core Rings Workshop notes.

Flierl, G., 1977. D. A. 0., 3, 15-38.

Flierl, G., V. Larichev, J. McWilliams and G. Reznik, 1980. D. A. 0. (current

or next issue.

Ingersoll, A., 1973. Science, 182, 1346-1348.

Larsen, L. H., 1965. Jour. Acoust. Soc., 22, 222-224.



-12-

Long, R. R., 1964. Jour. Acoust. Soc., 21, 197-200.

Maxworthy, A. and L. Redekopp, 1976. Icarus, 29, 261-271.

Plumb, R. A., 1977. Jour. Fluid Mech., 80, 705.

Redekopp, L., 1977. Jour. Fluid Mech., 82, 725-745.

Rizzoli, P. M., 1978. Solitary Rossby waves over variable relief and

their stability properties. PhD. Thesis, SIO.

Stern, M., 1975. Jour. Mar. Res., 33, 1-13.

Yamagata. T., 1979. Submitted to J. Met. Soc., Japan.

NOTES SUBMITTED BY

WILLIAM YOUNG



- 13 -

MODONS AND ATMOSPHERIC BLOCKING

Glenn Flierl

LECTURE #2

Isolated features with long lifetimes are associated with atmospheric
blocking. The 700 mb surface from June 1963 illustrates this phenomena. A
paired high and low were observed over the North Atlantic. The high lay north

of the low and both features were nearly stationary.

A possible model for these features is a "Modon" solitary Rossby wave.
The modon solutions are exact solutions of the quasigeostrophic equation and
exhibit strong nonlinearity and strong dispersion which still cancel each

other. These solutions are isolated in both the north-south (y) and east-west
(x) directions.

The single layer quasigeostrophic equation in nondimensional form is

Here x is nondimensionalized by the radius of deformation A ' / ,
time by (32. -f and velocity by / . If the solutions are steadily

moving the time derivative may be replaced by -C_ x where c is
the velocity of propagation in the east-west direction. [Conservation of
vorticity prohibits steady motion with a component in the north-south directio
for any wave which carries fluid with it. Particles in these trapped regions

(closed streamlines in the moving reference frame) would after one period have
moved north or south without a corresponding change in relative vorticity.]
Equation 1 becomes:

(2)

and therefore

-~ (3)

where P () is any function of Z. Far from an isolated feature

In any region with streamlines which extend to infinity:

The linear form of this equation is a consequence of dynamics, not just an ad-
hoc choice. Vertical shear and stratification does not change the linearity
of the exterior equation although topography and horizontal shear will.
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The solution to this equation is:

"4' Z V r)(6)

K -c

The requirement that the eddy be isolated and energy and enstrophy be
finite restricts the propagation velocity c to c 0 or c < -1. Linear waves
are possible only in the complement of this domain, -l-c < 0. Initially, we
shall consider only a single term of this solution. The stream function
written in a coordinate frame moving with the wave is

If Dc > 0, this solution will be singular with all streamlines closing at
this singularity at the origin (see sketch). When Dc --0, however, there is a
streamline "'+ cy 0 at position r,= a, where a is related to D and c by

~a4T~T) Ca -=.O

<O"~TOJC 3L'->-- S'4

Since equation 4 applies only to regions with streamlines extending to
infinity, a different choice of P(Z) can be made inside any closed
streamline. P(Z) can be chosen which allows solutions which are nonsingular,
have finite energy and enstrophy, and match to the exterior solutions.

The matching conditions are continuity of t+ and where n is normal
to the boundary closed streamline. Higher order derivatives may also be made
continuous, but some discontinuous derivatives are necessary.

The continuity of the first derivative is a consequence of this Bernouilli

equation z _ L * I~(' ' 0 (Iuaoo I
which can be obtained from the equations of motion:

t PDj(9

The last two terms in Eqn. (8) are continuous across a boundary; therefore,
the change in the square of this tangential velocity with tangential distance
must be the same on either side of the dividing streamline. The simpliest
condition which accomplishes this and simultaneously avoids potentially
unstable shear layers is to require that the tangential velocity be continuous.

I
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An auxilliary constraint on the modon solutions is evident from the
x-moment of the quaisgeostrophic Eqn. (1). The constraint can be relaxed if
there is a mean shear, stratification or topography. If this equation times x

is integrated over all x and y, all terms except the P effect
give no contribution. The result is

or no mean surface displacement. This is equivalent to no net coriolis force
on the nodon.

The idea of matching one solution within a closed streamline to an

exterior solution can be carried to three dimensional solutions. A volume
will be found within closed streamlines and an exterior solution matched onto

the solution within the volume.

For the one term exterior solution (Eqn. 7) there is a circular closed

streamline at radius a if a = -DK,(q)/c (q = a 7-7 ). This choice of

closed streamline (required by keeping only the simple term) will lead to only
a few of a large class of solutions. P(Z) can be made a linear function of Z
within the circle:

,?(Z) - (Q-

Unlike the exterior regions, the linearity in the interior is a completely
ad hoc assumption made to lead to soluable equations. However, this
linearization does not lead to vanishing of the advection terms in Eqn. (1);
this solution is riot linear.

Let S = -i- /?.2 then Eq. (3) becomes

This equation has the solution:

Let Q 0. The matching conditions allow only B1 to be nonzero and

require:

(14)

These solutions are antisymmetric about an east-west axis. A high lies
south of a low for eastward moving waves and north of the low for westward
moving waves.

Cc --.
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These solutions may be better understood by first examining the vortex

pair solutions of Batchelor (1967). A southern high drives a northern low to
the east and the low pushes the high also to the east. If the right amount of
this eastward tendency is added to the westward jG tendency, Stern's (1975)
modon solution is recovered. Increasing the strength of the vortex pair leads

to eastward motion as in Larichev and Reznick (1976) and where the pair is
very strong Batchelor's solution is again the correct description.

The wave speed is a function of the size and amplitude. Small scale

(short distance between vortex centers) and large amplitude waves travel

faster.

/3
t .LtO -to

1-t

L i --

.l I

I

, \1

-to -J C 10 'L o-I C I D to

Riders

Additional solutions can be found by adding an arbitrary constant (Eo)

times the Ko Bessel function to the exterior solution. The solution in the

interior now requires a Jo term. The new matching conditions are:

a.

, 0/ F a (15)
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These solutions become more symmetric (more like a single vortex) as E
is increased. The name "riders" has been given to these solutions because the
radially symmetric fields have no influence upon the shape, strength or speed
of the sin@ solutions. The riders move with the original solution.

Numerical Studies

A number of experiments have indicated that solutions evolve only slowly.
Numerical studies by McWilliams et al. (1980) suggest the solutions without
riders are stable. This study also illustrated the necessity of fine
resolution (15 or more grid points per diameter) to obtain the correct wave
speed for these nonlinear features. Poorly resolved features moved as little
as half as fast as the actual wave speed.

The stability of the solutions without riders to finite perturbations was
also examined. The stability depends both on the scale and amplitude of the
perturbations. Large amplitude, small scale perturbations allowed the two
vortex centers to drift apart until they were independent features. The
larger scale perturbations did not need to be as strong to destroy the modons,
and destroyed the modons by shearing out the features. The modons appear
stable to perturbations with an r.m.s. stream function amplitude less than
10-20% of the modon amplitude.

A last set of numerical experiments included parameterized friction in the
equations. The amplitude of a modon solution was found to decay slowly. The
velocity of the wave decreased, following the dispersion curve until the
amplitude was too small for the wave to be sufficiently nonlinear to avoid
dispersion (essentially when c decreases to 0 for eastward moving eddies).
The wave then dispersed.

Tnis model will not allow stationary features in an eastward mean flow.
The single layer quasigeostrophic Eqn. (1) is not Galilean invariant.
Requiring a wave speed c =0 in a mean flow at U leads to this equation:

7Y -~~ i0 (16)

There are only Solutions with flow from the east. This is contrary to
atmospheric observations of the blocking phenomena.

Vertical Shear and Stratification

In order to apply this model, we need to construct a one mode description
of motions in an atmosphere with vertical stratification and shear. The
equations for a stratified atmosphere are:

- (17)

40
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The vertical velocity in pressure coordinates is M and a( is the
specific volume. 47 is the geopotentia] gz. The boundary condition is 0
at a pressure Fo such that )()L, , o . A quasigeostrophic stream
function can be defined

t4-= (1~oe8)

The boundary condition linearized in accordance with the quasigeostrophic
approximation is

_D_ (19)

with .?) a mean specific volume profile.

The equations in (17) can be approximated by a pair of coupled equations

C V' , A-(20)

-- ° (21)

For solutions which are stationary in a mean flow, these equations become:

-t * ((- Y-+-, . * &', -'T (22)

-- (23)

The boundary condition is reduced to t$ 0 at . The stream function
may be written as a modal expansion.

) "i(24)

(25)

The mean velocity is assumed to have only p dependence (vertical shear).

1J:± IJ0 -i-( ) (26)

An equation describing a one mode approximation for standing motions in
the atmosphere ca, be obtained by first plugging their expressions into Eqns.
(22) and (23). Eqn. (22) is then multiplied by Fj, and Eqn. (23)
by . )vF ; both equations are integrated in p from 0 to p . Eliminating
the terms in " between the equations and truncating to one term gives this
result:

"- (27)

" ""J .. . .. . a .... II iF ...... . -r ... d.-
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The brackets are used to signify integration in p from 0 to p,. An
appropriate choice for F (the first term in the expansion) is the first
empiric 1 orthogonal function as determined from observations. The values of
R, and iare not very precise, but R is close to the internal radius of
deformation.

Equation (27) may be put in the same form as Eqn. (2) by
nondimensionalizing. Thus the one vertical mode model will have the same
modon solutions as the single layer quasigeostrophic equation. However, it is
necessary that the vertical structure of the mean flow be different from the
vertical structure of the waves. Otherwise there are no stationary solutions
in an eastward mean flow.

Two Layer Models

Flierl, et al. (1980) describe modon solutions for a two layer model.
Solutions are possible with closed streamlines in either layer or in both
layers. The exterior solution (defined in the same way as for a single layer
model) can have both barotropic and baroclinic parts, but if there is a
barotropic part the motion must be eastward.

~ *- ~ ~(28)

The solutions are sums of modes with the mode number k, the kth zero of
the Bessel function. Which modes are possible in each layer depends
principally on the ratio of layer depths - / , but also on the scale of
the features (a).

For the typical ocean model ,. A possible solution with four
centers is sketched.

upper layer lower layer

)b) a) b)

!Te solution is antisymmetric and propagates westward at C = 1.1. There
is very little motion in the lower layer.

In the atmosphere which changes the solutions considerably
because we must use the first and third roots of (14) rather than the first
and second.

upper _lower

(~~ :/D-
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In both cases the solutions exist only for a limited range of wave
velocity and scale. Riders can be added to these solutions also.

Vertical structure seems to be important. These solutions have similar
patterns to observations, but lack close dynamical similarity. In all
solutions vortex pairing is apparent. The vortices advect each other in such
a way as to stay together and move with constant velocity.

This theory also suggests moving features should exist that have not been
observed. Perhaps they have not been recognized in the data or else forcing
and dissipation are important.

Forcing and Dissipation

An example of the effect of forcing and dissipation can be examined with

the model equation.

The last term represents dissipation. The local topography and forcing is

modeled by b, (x,y). Some terms arising from the mean shear have been
modeled as topography bo(y) to make the problem more tractable.

The length scale is assumed to be much longer than the width. Then the first
order terms (e.g., Lecture 1) from the Eqn. (29) are

F, - DF , -t FF -= '-x -,jF(30)

Here F(x) is the amplitude of the stream function as a function of the
east-west direction. The x-variable topography leads to f(x) which is
proportional to an integral of some function of y times bl; D, N, V are
the coefficients of the dispersive, nonlinear and dissipative terms. The
first order correction to the wave velocity is ,A. . This equation with
no forcing (f'(x) 0) or dissipation 0 v . 0) has solitary wave solutions.

_ 
3 jj"~(31)
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Periodic forcing by topography, but with no nonlinear term (N 0 0) exhibits
resonances:

e 2 (32)
'pA 4-~~

The nonlinear term (N = 0) adds the possibility of multiple states in a
periodic system.

• A -- c(,.7 /4 1- 1 t -a

.2 -rA d L 5'FT~cT

A stationary solution exists for tanh(x) topography. In this solution
friction balances topography and nonlinearity balances dispersion:

S_ c ' . / ", -, ,.(33)

This special solution indicates that forced and dissipative systems can have
solitary wave responses given the proper relationship between the topographic
scale, amplitude and mean flow speed.
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GULF STREAM RING DYNAMICS

Glenn Flierl

LECTURE #3.

1. SOME OBSERVATIONS OF RINGS

Gulf Stream rings are formed when a meander of the stream pinches off into

a ring.

A cold core ring "Bob" was formed in February-March 1979 and disappeared

in November of the same year. It was observed to interact with the stream in
April and May, spinning up and entraining cold water. Such interactions

appear to be very common. After detaching again, it moved steadily southwest
at about 5 1/2 cm/s from June through August. In September, it coalesced with
the Stream through a process very much the reverse of its formation. The ring
formed onto the Gulf Stream, opened up, and left the center of the ring again

on the northside of the Stream.

Other rings have apparently been destroyed by mixing into the Stream after

being sheared out in the Stream. Every r ng that has been observed has
eventually reattached to the Gulf Stream, but some have had lifetimes as long

as two years.

4arm rings break off to the north of the Stream and travel southwest,

trapped between the Stream and the topography of the shelf. Cold rings form
south of the Stream. Tney also travel roughly southwest but are not

constrainei by a coast as the warm rings are and can be found thousands of
Kilometers from the Stream.

The isotherms in a ring are displaced - 300-400 meters from their depths

in the surrounding environment. The maximum azimuthal velocities occur at
radius 00-90 km from the center. Tne velocity profile is not well known, but

velocities are largest above the thermocline reaching 150 cm/sec at the

surface. It is not clear whether the velocity reverses with the depth. In a
newly formed ring the isotherms all the way to the bottom show displacement.
The velocity field is strong enough to transport material at least above the
tnermocline. The rings nave anomalous T-S, T-02 and biological

characteristlc3 which can persist for well over a year. There is so'ne
inlication of a jump in potential vorticity from outside the ring into the

eige of the ring; i.e., prtential vorticity is not a function of density alone.

rne rings decay slowly. The isotherms fall (for a cold ring) about .8
M/day. Likely decay processes include friction, radiation due to dispersion;
instabilities and meridional circulation probably caused by surface processes.
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Gulf Stream rings are common. Nine or ten cold rings, three warm rings

and one ring being formed were observed from March to July 1975 in a

twenty-five by twenty degree area near the Gulf Stream. The rings covered

10-20% of the total area. Five cold rings and five warm rings may be formed
each year.

Two rings may coalesce. Rings Al and Bob collided during which a single

feature with two centers was observed. Later it split apart. At times,

azimuthal waves can be seen and occasionally rings appear to split in two.

2. MODELING 41TH SOLITARY WAVES

The Gulf Stream rings have been modeled as radially symmetric baroclinic

solitary waves by Flierl (1979). The quasigeostrophic; /3 plane equations in
continuously stratified fluid are the basis for these solutions. A mean

horizontal shear flow or topography is necessary for the solutions to exist.

The stream function is governed by the conservation of quasigeostrophic

potential vorticity

A-~~~~A TI t.V) o,):0 1

Fne stream function is written as the sum of a part due to the mean velocity

and a traveling wave

rhe time derivative is replaced by -C '- where Z is the velocity of

propagat ion.

3 - 3

There fore

(4)

wnere (L1 jl is any function of £

Far from an isolated solitary wave and t i) ) may be determined

from tn mean fl)w. Then:

It' tn xternal snear flow -Athen

inj tnere'ore

A K -

L'
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Plugging into Eqn. (5):

The argument of the square root must be positive. This is assured by
making the mean shear small enough and the possibility of a critical layer is
excluded.

Under certain assumptions the right side of Eqn. (8) can be made nearly
linear. Let ALL be the change in the mean flow over the scale of an
eddy, L , Ik be the particle speed in the eddy and R the radius of
deformation.

Require: __

SC(9)

then the righthand side can be Taylor expanded

L~

The scale is Chosen so that Then th lowest orderbalance is:, Then the lowest order
balance is:W

rne stream function is approximated by

PL P ') )) P ,-/-'

At next order, the governing equation for G is derived as a solvability
condition:

• *. - 5"& . -
"

15V , (12)

if J is only a function of x. 3 "ridge wave" soliton is a solution

(13)
/-"

n13 propagates at 3 velocity -A second solution
-3n be founi whi h is ra3ially symmetric. Tne solution is parabolic in the
interior anJ decays as C-'/;- in the exterior (outside the closed
3treiml ines)

Figure 2 -
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This solution is intrinsically baroclinic and lies embedded in a
barotropic mean flow. In these solutions dispersion is balanced by the
steepening effects of the interaction with the mean shear.

Anticyclonic rings are observed only north of the Gulf Stream and cyclonic
to the south. This model of the rings would require recirculating regions on
either side of the Gulf Stream if the mean shear is to be the right sign to
support the rings.

anticyclonic eddies

Gulf Stream

1000 km

cyclonic eddies

Figure 3

Circulation models suggest some regions of recirculations may exist. As
an eddy moves the mean shear it experiences will change. The eddy therefore
may always be adjusting towards a new equilibrium.

In the absence of shear these solutions do not exist. Other possible
models for the rings were discussed in the preceding lecture. The "modon"
solutions do not require a mean shear flow. The solutions with riders can be
single centered in the baroclinic field and look like rings, but propagate
eastward. These have developed in numerical initial value problems, but
appear to be unstable.

3. DYNAMICS OF THE INTERMEDIATE SCALE

The quasigeostrophic equations have been applied to mesoscale motions in
the ocean for many years. These equations can be derived for small Rossby
number and a horizontal scale on the order of the deformation radius (50 km
for the ocean). Charney and Flierl (1980) have recently shown that other
terms begin to enter at larger scales (200 km) such that the dynamics permit
solitary waves. In these waves, linear dispersion can be balanced by a non
quasigeostrophic effect, vertical density advection. The scales at which this
may occur can be found from the vorticity, (vertical component) and buoyancy
equations

where W is the horizontal gradient, the vorticity and b the buoyancy.
The terms on the righthand sides are not included in quasigeostrophic
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dynamics. For larger scale waves, the underlined terms are comparable, (non-

dispersive long wave dynamics) leading to the following estimates for time and
vertical velocity scales

and j 1 H

where L is the horizontal scale, R = NH/f 0  the deformation radius scale and

V the horizontal velocity scale. Thermal wind has been used. The vertical
density advection will be comparable in effect to vorticity changes if

implying '4 4.L - I . For a given V, the vertical density advection
becomes important for some scale larger than the deformation radius. Hori-
zontal advection of vorticity enters at the same order as these terms if

k implying . which leads to

a scale of 200 km for the ocean. At this "intermediate" scale, the
term is also comparable to 4 +

We can demonstrate the existence of solitary wave solutions near the inter-

mediate scale by describing the linear and nonlinear free oscillations of a
single-layer, homogeneous, incompressible fluid with a free surface on the
3-plane. The analog to vertical density advection is the vZ(ux + vy) term
in Eqn. (14c) below. In dimensional form, the shallow water equations are

- -- (14a)

L- (14b)

(14c)

-- " -(14d)

where q is the surface displacement, H the mean depth and g the reduced
gravity.

With the geostrophic scalings

S _ L and "

Eqn. (14a) and Eqn. (14d) become

(15a)

UL (15b)
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E 1 A, (15c)

_ -~ -~ 15d)

The three nondimensional numbers in Eqn. (15) are

. .. . (16)

It is useful to think of these parameters as the ratio of L to various natural
length scales: the radius of an inertial circle U/fo, the distane to the
equator in the tangent plane approximation L= fo/ and the deformation
radius R = f-gY/fo.

In Figure 4 the dependence of these three nondimensional numbers on L and
U is shown.

10.

100

J0 "'o t

• .Fir 4:1.-

.3 T

I0 Io I0' * ~

Figure 4:



The quasigeostrophic approximation is valid when 
\ and As L

increases one moves into a parameter range where -1 and S,i-<.I. In this

range tne term tl in Eqn. (15c) is not negligible and consequently the

quasigeostrophic approximation is invalid% For the ocean this transition to
nonquasigeostrophic dyna-ics occurs when f;- S- (* -/S) which is at a
relatively small scale C - 200 km) because the deformation radius is so small

compared to L P

To completely characterize the wavelike solutions admitted by Eqn. (15a-d)

and further elucidate tne role of the different nonlinearities, look for
motions translating ste3Jily with a speed c. In this case, there are two

conserved quantities

1) The Bernoulli function:

LL

2) ihe Potential vorticity

Since the mass conservation equation becomes

it is possible to introduce a streamfunction

.. -- .4 ( 1 7 a )

- i / -J -< (17b)IV-l ') A, I

and write our conservation statements in the form

S(8b)

If the streamlines extend to c , B can be evaluated in the familiar fashion

by requiring that the eddy be isolated. In this case,

- (19)
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and Eqns. (18a, b) are the two equations for the two unknowns and . We

shall assume Eqn. (19) is valid throughout the fluid even within closed
streamlines. In nondimensional form these equations are

~V (20a)

r \ I '- (20b)

Before discussing the nonlinear terms in Eqn. (20a,b) it is essential to
determine the various linear balances. The linear case is recovered by

setting L =o in Eqn. (20a,b). Then Eqn. (20a) can be solved for i in terms

of(4; this relation is substituted into Eqn. (20b) to yield

L -•',(21)
- --. .)

The righthand side of Eqn. (21) corresponds to gravity wave terms and is

negligible on th scales we're considering. With this term absent there are

four different types of behaviour:

1) Midlatitude Rossby Waves, /& I -

2) Intermediate Scale Waves, : The above dispersion relation
is invalid, instead i- where c is the eigenvalue

of

3) The Sverdrup-Burger limit f " - In this limit all the terms

on the lefthand side of Eqn. (21) are equally important.

4) The equatorial limit \j. In this limit and the NS
structure functions are parabolic cylinder functions. These eigen-
functions confine the motion about the equator with a meridional scale

of (corresponding to a dimensional scale ( L_ P, )"-).

As the amplitude of the motion increases (or equivalently i. increases)

nonlinearity modifies the linear solutions described above. On the
mid-latitude synoptic scale, 5 -I , the nonlinearity modifies the phase speed

and shape but does not produce solitons. As the scale increases the
dispersive effects become weaker until they can be balanced by nonlinearity to

produce solitons. The structure of the isolated disturbances is the same as
the sech 2 solutions of the KdV equation. The relationship of these

solutions to the KdV equation will be clarified in the next section when we
derive an equation governing the time evolution of arbitrary initial

disturbances. For the moment return to Eqns. (20a,b) and observe that for
nonlinearity to be important one of the j. terms must be balanced by a linear
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term. For the oceanic intermediate scale this implies the scaling

5 and I $

where E and B are order unity. Then from Eqn. (20a)

so that Eqn. (20b) becomes L

The order one terms in the above imply

C-- L +-^ c

and so

L to)o 1-0 to) 4- L) (22)

Equation (22) can be simplified in two limits

1) BZe1l, E - 1. In this case the coefficients of Eqn. (22) are

independent of position coordinates and there is x-y symmetry. Various
solutions such as cnoidal and solitary waves can be found. Perhaps the most
interesting is the radially symmetric solitary wave found by Flierl:

G (k (x2 + y2)"' )

c = -1 - S k2

E = 1.59 k2

The shape + dispersion relation are sketched in Figure 5.

i0-I

0

R A _ ,A ,Y ,

Figure 5

• • • o-e e ls * S .0*•
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2) B> 1 E - 1. In this case y can be rescaled by B-1/3 and the equation
solved by expanding in powers of B-2/3. At first order there is a linear
equation for the y-structure. At next order x dispersion and nonlinear
steepening balance and the x-structure has a sech 2 form.

When the fluid is continuously stratified, similar results can be obtained
in density coordinates except that the quadratic factor in Eqn. (22) is
multiplied by t.

4. INTERMEDIATE SCALES - KORTEWEG DE VRIES DYNAMICS

In the previous section, it was shown that the steadily translating,
intermediate scale solutions have a sech 2 shape when B 4e 1 and E -v 1. This
is suggestive of Korteweg - de Vries dynamics. However, we must still
determine the form of the time evolution equation for intermediate scale
motions; for this, we return to the governing Eqns. (15a-d) and derive the
time evolution equation in the limit f = ES2 , : BS by expanding in powers

of S. For the ocean, this parameter range corresponds to (U,L) z (5 cm S-1,
200 km) and for the atmosphere (U,L) = (20 ms- 1 , 1500 km).

The zero order equations

LA -- Cal (2 3a)

v X (23b)

Lk O Cal(23c)

tell us the flow is geostrophic. At first order in 3 we have:

LA 4- ? LA. = (24a)
,, ,' +B 3 v' °  %,(24b)

• ~~t U - (24c)

The above imply

.{(25)

T in Eqn. (25) is a slow time, T St, which is required to remove secular
effects at 0 (S2). At second order in S the vorticity and density equations
are

and

LO*
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Elimination of 4.d between these equations leads to an evolution equation
for ,(o).

I J0 I- /L. x J)*- j

When B Z-1 and E v 1, and .i = , (x,T), surface height is indeed governed by
the KdV equation. For B large and E - 1, the solution takes a model form in y
with the x-structure governed by the KdV equation. However, for two
dimensional disturbances, we must include vorticity advection as well as
quadratic nonlinearity and the evolution may be much more complicated.

NOTES SUBMITTED BY
SPAHR WEBB AND WILLIAM YOUNG

....... .a
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MEAN FLOWS, EDDIES, AND LONG-LIVED VORTICES

Andrew Ingersoll
Lecture #1

A. Jupiter

i) Is a fluid planet composed mainly of Hydrogen and Helium (solar
composition atmosphere), i.e.

H2  0.886
He 0.112
H 20 1.5 x 10- 3

CH4  6.3 x 10- 4

NH3  1.52 x 10- 4

H2 S 2.9 x 10- 5

ii) Has a radius ten times bigger than the earth's

iii) Bulk density 1.3 g/cm
3

iv) Period of rotation 9h 55m2 9 ,7 s - measured by the rotation
of the magnetic dipole (tilted 100)

v) Interior adiabatic (or nearly so) due to the presence of
convection (and internal cooling)

vi) Intecnal heat flux - 6 Wm 2

Sun's input -8 Wm -2

Total output -- 14 Wm -2 which is relatively uniform across
latitude circles.

vii) How much latent heat? If all three gases condense
(H2

0, NH3 and NH4 SH of fractional abundance 10
- 3)

AT = 20K, a significant amount

viii) Colors come from the compounds Sn' Pm) CkHl" In a
hydrogen atmosphere, these elements tend to be present as (H2 S,
PH3 , CH4 ) . Thus chemical equilibrium must be destroyed. This can occur
by the presence of

a) lightning
b) charged particles

c) solar ultraviolet

Pictures of the dark side show the presence of (a) and the possibility of
(b).

ix) Interior structure

There is a gradual transition from gas to liquid (at .97R)
and a phase transition from molecular to metallic at r =

0.75R.

I
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B. Heat Balance and Thermal Inputs

An observational fact which has to be explained is that there are no

appreciable meridional currents on the surface of the planet. This should not

be the case if we just take into account the solar heating which is much

stronger on the equator than on the poles. There is no difference in tempera-
ture between the equator and the poles so there must be a distribution of
internal heat which compensates for the sunlight.

radiant A-- emitted infrared

energy flux

absorbed sunlight

equator latitude

p0
pole

The model proposed to explain this is that the interior is a better heat

conductor than the atmosphere so that the temperature is adjusted in the

interior. The mechanism of heat transfer will be by convection. There can be

poleward heat transfer in the interior so that the surface will be essentially

isothermal.

A simple example of this effect is the following: consider a sphere of

any good conductor rotating fast and the sunlight incident perpendicular to

the axis of rotation

eIt

r the equation for the interior is

0 r - T- (1)

At the surface, the normal heat flux must be continuous

_ - -T solar flux (2)

The solar flux can be averaged over longitude if the sphere is rotating fast,

in which case it is (l-A) S sinE) S = solar constant
Ir A= albedo

There are two time scales which characterize the problem: the internal time 'V

which is the time it takes to reach an internal equilibrium configuration and

an external time ZL. which is the time it takes to reach equilibrium with

the ambient medium.

From (1) T.

(1) VoI ~ cTr r T

. . . . .
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The ratio of these two times =VZ1"/- is small for high conductivities.
We want to consider what happens for times t, T7 <-- 1 C< Q . First for
all, from the boundary condition we see that the ratio )f temperature
differences to mean temperature is also small A T'/- = , (rT 3 -- E.To
order 6 , the problem can be solved and the equilibrium isothermal pattern
in the sphere is found to depend on the parameter

E (total emitted heat)
\absorbed sunlight

There are three different patterns of isotherms depending on the value of E:
a) For E lky = 1.27 the heat flow at the surface is inwards which is

contradictory with the assumption that there will
be convection.

b) For 4 . E < 1.3125 the heat flow at the surface is outward near the
r- surface but inside a ring of radius R it is

--- directed inwards. Taking the radial variations
of density into account raises the upper limit
from 1.3125 to >2.0.

c) For E > 1.3125 heat is conducted outwards at all latitudes

+
It turns out that the behavior of the isotherm pattern with E in this

example is very similar to the isotherm pattern found when considering a
convecting interior for Jupiter. The radial and horizontal heat fluxes are
computed using mixing length theory. Since the value of E for Jupiter
probably falls in category (b), the horizontal heat transfer must be
considered also in stably stratified regions where it will be possible due to
baroclinic instabilities. The external equilibrium time Te can be estimated
to be longer than the age of the solar system and the internal readjustment
time "r; is short compared to it. The model is consistent with 4.5 x 105
yrs for the age of Jupiter. The results of the calculation show the same
qualitative behavior as that of the example. For small values of E the
tendency of the sun to heat the equator is the dominant factor. As E is
increased the isotherm pattern becomes spherically symmetric with heat flow
always directed outwards. The estimated value of E for Jupiter gives a
configuration in which there is a central stably stratified region where the
vertical heat transfer will depend on the existence of horizontal gradients.
The outer part of the planet wilt have a spherically symmetric (to order e)
pattern which would account for the temperature differences between the pole
and the equator being unobservable.
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RECENT NUMERICAL EXPERIMENTS ON LONG-LIVED VORTICES

Andrew Ingersoll

LECTURE #2

Jovian Spots

There are some qual itative features of the main coherent features observed
which may be synthesized as follows:

i) the most coherent, compact and time independent features tend to be
anticyclonic (for example red spot, white ovals)

Li) cyclonic "wakes" exist to the west of the spots. Here the flow varies
rapidly. The typical form of the flow (in the southern hemisphere) is

turbulence s C -- SP = stagnation points

sp sp

Size of the red spot is 10,000 x 25,000 km (NS diameter x EW diameter).

iii) ratio of relative vorticity is spot/ Y shear 4, i.e., the
spot is a large amplitude disturbance.

iv) large scale eddies do not occur on the equator. The most prominent
are in mid latitudes (for example red spot is at 220 S, a white oval at
301S), smaller scale features occur near the poles, having a more granular

like appearance.

v) the structure of the flow near the stagnation points is not constant
in time, for example it was seen to change from a i to a : (21

vi) there is an exception to this pattern: a brown cyclonic spot in the

northern hemisphere (which is a hole in the clouds). It has very large

eccentricity. It oscillates in length and width roughly conserving area with
a period of about 15 days.

vii) there is a region at 35 0 N where there are small spots which rotate

very fast, sometimes colliding and merging, emitting a stream of fluid.

Some quantitative observations:

i) The spots have approximately elliptic form. The velocity of the flow
tangent to the ellipses has no angular dependence. For the red spot

rr .....................
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The contribution of these larger feature,; to the correlaition (4L[ ;

is too small to be res;ol ved . Thu net tilt is at most 5. which would
corepod c( ;--7-_) 1'--5- ml/sec . Since Vtang = 100 m'-ec it is bevond

the resolution possible.

ii) Red White oval

latitude 22"S 36-

VI ma

( " - f 1 39

y = A~f (NS diam) fi 2. h

shear outside pots 1 .5 x 10-5 S -I
Red spot has a longitude oscillation of about 2).

Models for Steady Isolated Features

Three models are considered:

c ) A two-dimensional quasigeoStrophic, barotropic ingle laver io
fluid.

2) A two-layer model. The lighter upper layer is the one of
interest. Below there is a very deep layer with no mean flow. The
mean flow of the upper layer is given.

3) Same as (2) but the lower layer ha mean horizontal flow L(),

which is assumed to be a given function independent of time and of the
motion o the upper layer. The upper a er laer have te ame

mean flow uT



In these two last models the motion of the interface is negligible for the

lower laver. When applying a two fluid model to Jupiter the upper layer
can be taken to he about the depth of the clouds, the deep bottom layer
would correspond to the adiabatic zone below the clouds.

First consider the field far away in a moving reference frame.

Model I: The equation for this model is j ( 2df

The stream function = fudy +O(x - ct, y) and the linear equation for

the field far away is

LA, - C

For a regular (non-singular) solution , the speed C is determined
requiring that Az= (1j; --)/(L-c )  be an analytic function. It is
measured that 3 - t; I-0 at some latitudes. The value of Zi where this
occurs is C . For U, : cos y/L, we get A2 = I/1 >0. (V'4X' does
not have exponentially decaying solutions in the plane. It is possible to get
decay in one direction by confining in one direction. Let e k -  ,

t hen 2

For v large enough (in a narrow channel), there is exponential decay in
x, and isolated, closed-streamline features can exist.

Two I.aver Model s

The usual two laver model equation can he written in the form

f,nr n 1, 2, the upper and lower layers respectively. The (+) sign applies
fk r n , and the (-) sign for n =  2. The Fn areFr - fo' Lo ! '-
if the ower a iver i- rmuch deeper than the upper layer, F 2 << F, , so the
v,ortex tretchIng in the lower laver is negligible compared to that of the
, pper aver. For thl dsp the two laver equations become

k+ + 2

'd h e r e + , - F "

+ 7 -1
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Model II: .= O. The equation for the far field in a movin2 frame is

Here too, C is determined requiring that >J 7 b
analytic. For example, for V = L /L we find c - /k2+L-)and the
equation for 4 is

which is the same as obtained in Model I and again there is no exponential
decay in the plane. Isolated structures cannot exist except in a channel.

Model III 2 CD -

where = -- udy is given.

Introducing J =- dy + (x-ct, y) the linear equation for 9 is

0 Jr LA-+
Choosing for ex. u = cos y/L we get

17 - - 0 which has decaying solution in the
plane for q >C2. In this case it is possible to obtain an isolated vortex.

The time dependent equation (1) was integrated then numerically. For the
reference frame moving with speed C it is found that a stable isolated
vortex is formed at latitudes in which is zero.

= - C

The structure is unstable if perturbed by a finite displacement in
latitude. A tilt develops giving rise to a 77 which destroys the eddy. The
structure is stable to infinitesimal perturbations. This solution is not
analytic, i.e., there is a discontinuity in the derivative of potential
vorticity across the critical streamline.
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INTERACTION BETWEEN LARGE-SCALE EDDIES AND MEAN FLOW

Andrew Ingersoll

LECTURE #3.

Interaction of Eddies and Zonal Flow

Eddies form perhaps by convection and are then ripped apart by shear.
The zonal currents have been determined to be permanent features, only the
clouds changing patterns. The currents also show north-south symmetry up to
about 450 in latitudes. From maps of velocity vectors it is found that the
correlation ut'if' of deviations of zonal and meridional winds from their
longitudinal mean is positively correlated with the meridional gradient da/dc,
in such a manner that it implies a large rate of conversion from eddy kinetic
energy to zonal mean kinetic energy.
{K'K~ i = LAJ'dC4/drM , the rate of conversion, is calculated to be 3 W ,vZ M
the mass per unit area equivalent to a layer 2.5 bar thick. This is a large
rate of energy transfer which is comparable to the total IR emission (14 W- 2 ).

Conversion ofeddy kinetic energy to mean kinetic energy divided by the
total infrared radiation emitted by Jupiter is 3/i'- while the same ratio on
earth is about 0.3/300. A rough time scale is K over {K'K I which is 50
earth days. Here we are taking K - Yz(50 ms- ). If JK'KY were the
only term acting the mean kinetic energy and {K'K would have to oscillate
with a period 2 50 days. Such oscillatory behavior is predicted in
Williams' model (1 979). The longitudinal gradient of vorticity, f- U is
negative at westward jets and positive at eastward jets, the observed limits
are - 3 1 t5 !:2(. There have been different numerical experiments to see
whether it is possible to obtain flows with such an extreme behavior for y

yy

For example, in two dimensional turbulence, given initially a state with
an energy spectrum E (k), so that the total kinetic energy = E(k)dk, the
deviation 0 from the average wave number <k) = k67Y()dk /fE( ) k is

.F~k~dkS9(k) dik

If buth unergy iE (k)dk and mean square vorticity kk2j(k)dk are constant,

then > 0 implies _<k> < .

This means that the energy is transferred to smaller values of k so the large
sizes eddies end up carrying away most of the energy.

Now, if the I effect is included not only this phenomenon occurs but, due
to the possibil ity of Rossby waves, the eddies may drift apart before inter-
acting so the -ascade of energy to low wave numbers stops in the horizontal
direction. This leads to the formation of zonal flows. For wave numbers
k -- this is ,i significant effect. The numerical results
indicate that for such flows ( -! which is not in very good agreement
with the Jupiter observations.

_4
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The (3 plane models correspond to thin spherical shells. If we suppose
that the currents may be circulating deep within the planet. A more
appropriate model to consider is a rotating sphere of density

The linear equation for inertial oscillations is

2LVP + 4 o
where P = pressure, the

boundary condition being no normal velocity at the surface. If the modes
considered correspond to oscillations of thin cylinders then the variation in
Z is slow and we can approximate

P(r, O, Z) = P(r, O)Q(r,Z)

with Qa slowly varying function of Z and r.

~~~r1' I PPy~L

The result of the problem is that the surface flow is mainly horizontal
and the speed is strongly dependent on latitude. The "effective@" is larger

3so °aj. than ,. Distance from the
0s l at. origin gives phase speed in

Wve )units of ( k- 2 .

This can be compared with a Rossby wave which for the same value of X-L
gives smaller speed and the flow in opposite direction independent of latitude.

For spherical shells we do not get UiJv large enough. In the sphere
configuration, however, at some latitudesuyy is as large as 3( . Of
course the result is not correct at all latitudes. This indicates that it may
be possible in some geometries to obtain values of Zy more consistent with
the observations. yy

REFERENCE

Williams, G. P., 1979. J. Atmospheric Sci., 36, 932.
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LONG INTERNAL WAVES: GENERAL THEORY AND THE EFFECT
OF DENSITY STRUCTURE AND VELOCITY SHEAR

L. G. Redekopp

LECTURE #1

1. INTRODUCTION

The theoretical development for the propagation of long, finite-amplitude
internal waves can be clarified and motivated by considering the simple model
of interfacial gravity waves in a stably stratified two-layer system. For
this model the linear dispersion relation is given by

f2 , d-A-A J , . "

,2 1 L, LofTZrIJ 11

where ( &), . ) are the frequency and wave number of an infinitesimal, sinu-
soidal disturbance of the interface. There are several long-wave limits for
this system which imply different space/time scalings relevant to the weakly
nonlinear theory.

i) The shallow-water limit. In this case we consider the limit of
long-wave (k--0) disturbances holding the wave guide length scale h =

hl + h2 fixed

k-o 0 C.(1.2)

Then, considering only waves propagating in one direction (to the right,
say) and truncating the expansion after the first dispersive term, we
obtain

(CG°-crk) k-. (1.3)

This relation defines a unique scaling relationship between the slow space
and time scales in a frame moving with the nondispersive motion

: . ., L .(1.4)
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)Ais the long-wave parameter measuring the ratio of the wave-guide scale to

(ii) The deep-water limit. In this case we take the sequence of limits
where first the depth of one of the layers (h2 , say) is allowed to

increase indefinitely and then we take the long-wave limit (k--*0)
holding h I fixed.

lim lim oL 3 , k
k---D 0 h2 - D O (1.5)
hI fixed klh I fixed1- P'. C.

C, ,
The truncated dispersion relation for waves propagating in one direction is

Wo-CA = -A I kl .(1.6)
The space/time scaling for this limit has

(X- C , t - (1.7)

(iii) The intermediate limit. An intermediate case exists where the lower
depth is much larger than the upper depth (h 2 > hi), but not
infinite (i.e., kh I  4.1, kh 2 = 0(1)1 The truncated dispersion
relation for this case is

(A)- k T (1.8)

Each of the limiting dispersion laws quoted here implies the existence of
a linear evolution equation for the field variables like y(x,t). The
equation corresponding to an arbitrary dispersion relationo)(k) kc(k) is
given by (Whitham, 1974)

where the kernal is the inverse Fourier transform of c(k),

K60=*) jCWe C1k. (1.10)

For the respective cases we have the following equations:

(i) Shallow-water limit: C= Co-k'

Kw = C,, , +(1.1)

(ii) Deep-water limit: c= c, -1 :1 ,o(1.12)

K(Y) . ) - S M eA
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where $(C?)denotes the Hilbert transform

(iii) Intermediate limit:

2 P, (1.13)

Evaluating the first nonlinear correcton to these equations for long waves we
obtain t0

4- cr~ # [~~ -C 0 (X-)) (ZJ) dr o. (1.14)

This generalized KdV equation incorporates the leading effects of nonlinearity
and dispersion on the evolution of long waves, where the adjective "long" has
been made precise by the different limits applied to the linear dispersion
relation (1.1). For the present model, the coefficient XC. is

OC3 Co A,___'X-4 f (1.15)

and does not require a separate evaluation for the deep-water limit. Its form
for the deep-water case is obtained from the above expression by allowing h2
to be large compared to bl; namely

LM OC(1.16)

In some cases (e.g., when fYh2Zf2h ) O= 0and it is npfesar to
go to higher order in order- o discuss the comoine e ts nonlinearity
and dispersion on the long-wave evolution. However, restricting the discussion
to those situations with quadraticnonlinearity and defining the amplitude
parameter C= a/h, where a is the wave amplitude, the space/time scales for
which the nonlinear and dispersive effects balance are:

(i) shallow-water theory:

I = G'1/2( _C, ) I z'r= E -6. (1.17)

(ii) deep-water theory:

Sg= C- Ct) C-2 (1.18)

This preliminary discussion is presented to demonstrate the role of the linear
dispersion relation in selecting the appropriate space/time scales for the
weakly nonlinear theory. The usefulness of this general approach will be
emphasized again in Lecture #3.

ALI
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2. THE EFFECT OF AMBIENT DENSITY STRUCTURE ON LONG WAVES IN A THERMOCLINIC
WAVE GUIDE: DEEP WATER THEORY

Consider the 2-D equations of motion for a continuously stratified fluid

7. 0
D 9 - YO eA (2.1)

The total density j9 is represented as a background stable stratification
plus a perturbation

f oJr(X, It). (2.2)

We define a perturbation buoyancy a' and the Brunt-Viisili frequency by

07r (2.3)

Let No denote the maximum value of N(z) and introduce the following scales
to make the problem dimensionless.

Scale
x,z with h

t with No

u with N h
0

c0 with N2h
0

N(z) with No

Introduce a streamfunction defined by

U , =-4c (2.5)

For convenience we invoke the Boussinesq approximation in which terms of
order OV/ and are neglected. The governing equations in
dimensionless form are then

t = TX(2.6)

q T J(aqi ) +~ N to T. 0
where J(a,b) is the Jacobian operator.

The analysis which follows will address the specific thermocline model
shown here.

777 77J77774z
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Later we will quote results when velocity shear is included and when the lower
boundary is removed. The space/time scales for this "deep-water" case are
those given in (1.18). Then the equations are

(2.7)

10Et -C_'13 + (PO _4 ,xr-1i~ . N'4' ,

and we seek solutions by the perturbation expansions

'f(, C ) = C y Elt .,T"2+-

(j = (4) Q. 
(2.8)

The leading order equations are

-ly (2.9)

which can be combined to give
0. - ) =  (2.10)

Looking for a separable solution

1z (2.11)1

yields the problem

(2.12)

When Noo = 0(l), long waves cannot be confined to the thermocline with
vertical scale h and it is meaningless to talk about "long waves". When
N ( O ), the solution as J-0 is *t . and we cannot satisfy the
condition that the velocity perturbation decays as £-oO . The resolution of
this difficulty requires an inner-outer matching since, in the deep fluid
O(z) >> h, h is no longer the vertical scale for the motion. Instead, the
deep fluid is forced by the thermocline heaving which has the wavelength scale
h/0- .We will account for this explicitly by defining the outer variables

= ,(2.13)

0", t,, = citk, ).

Before discussing the outer flow, however, we continue the inner problem to
second order and get

V . _ _ _ _ _ _ _



- 48 -

SA A (2.14)

Multiplying by 4 and integratinj yields o

'Pa~- 9''~I =A N4?E - E 1A-j (M)~a (2.15)
i-a 0 (2)

after using the boundary conditions +(0) Y =0. The evaluation of

the lefthand side can be made only after the outer flow solution has been
obtained and the matching accomplished.

Introducing the outer flow variables (2.13) into the governing equations
(2.6) yields

-- (2.16)

4-'

Notice that the Laplacian ( V 2 ) now appears in the vorticity equation so
that decaying solutions are possible. The outer flow scaling requires q)=

0(e) to match the vertical velocity forced by thermocline motion. Then, we
must require " Oc ) to avoid the result Gj = 0 which implies
either that the flow is blocked or that the scaling is wrong and the wave
disperses throughout the entire fluid column. This forces a restriction on
the magnitude of NO [ N. -e 00iC-)] in order for long waves to remain ducted
along the tbermocline. In dimensional form, this ducting condition is

0(2.17)
No

Ducting of a linear wave with wave number k requires that W(k) > Nao so
that the motion is evanescent in the outer region. However, this is clearly
impossible for Nao 6 0 because C.-WO as k -- 0. Ducting of long-wave modes is

possible with N. $ 0 only on a nonlinear basis whereby the linear frequency
correction is sufficiently large to give CO>Nw.

t. ---

duct ed wave modes

N 0
//I//I/I/Icov.4r..ous sg, ec- -,'vv

Assuming that N O= f , .= 0(1), the outer flow expansion has the form

(2.18)

4ca +,,. = " (2)Tc,: ) E T' 4- T -...
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The leading order equations valid in the outer region are
-2-m)

CV . _

(2.19)
1c() . W o,

which can be combined to give

or, after one integration,

.Lf :, • (2.20)

If the stratification in the outer region is weaker, the outer flow is
potential and one recovers the situation analyzed independently by Benjamin
(1967) and Davis and Acrivos (1967). The boundary conditions for (2.20) are

- (1)

(ii) the radiation condition as + -*

The relation of 0 ,t ) to the wave amplitude A( ) will be found
by matching. The problem defined by (2.20) is analogous to the classical

lee-wave problem except that here the shape of the "mountain" is unknown and
time-dependent.

The solution of (2.20) is readily obtained by Fourier transforms:

The solution satisfying the radiation condition is

A ) + . (,) (2.22)-,,0) e= &!*,-* <

The choice of branch for Ik (0( can be understood by recalling the
propagation of linear internal waves in an environment with N = const.
(i.e., cc N cosG wher is the angle the wave vector makes with
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respect to the horizontal). - k

k
In the present situation, if we consider the ducted wave mode travelling

to the right with speed c (or, in a frame stationary with respect to the wave,
a mean flow with speed c from the right), we must choose that branch circled
in the diagram above and having phase fronts with a positive slope. The phase
for

C, C C

Mn I Energy-S1 7
Flux vector

n relative to stationary "mountain"

in the solution (2.22) is

16= k t ±: tT- . (2.23)

and we have chosen that branch to which the lines of constant phase have a
positive slope

> L' (2.24)

Hence, we must choose the ( ) sign in (2.23) when k-k 0.

In order to carry out the matching with the inner solution we need the
behavior of j as -o . This is obtained by expanding (2.22) for
small and taking the inverse transform:

(-.

o - ]} (2.25)

We make the approximation, purely for analytical convenience,

00 W*(2.26)" T
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which is only valid as K-+0 What is really involved in this approximation
is neglecting the effect of the ambient environment C N. ) on the first
dispersive correction for the ducted wave modes. However, we do retain the
radiation damping effect contained in the integral [O O].

Then, we can write

-0)~ Cl"U %0t) OW(,)-V ag~~t (2.27)
00

where

-

and It(a) is the Hilbert transform and il is the Struve function of order
one. The leading order matching gives A

q 't r C-6L(Tr) +(2.28)

so that Oj 4,0.= 1 and V)  
= A ( .i) Matching the velocity

gives

k__ j +cx*. ) (2.29)

'b& €,b)

-e-t cC - )

so that % - -D( ,qV) . With these results the lefthand side of (2.15)
is known yielding the evolution eq ation for the ducted long-wave modes

A ,-Pi 1 A) T)dL? I Lh-L')k
where

3(2.30)

At this point we will just note that, if there were another region of deep
fluid below the thermoclinic wave guide, an additional dispersive and damping

term would appear in the evolution equation characterizing the effect of the

additional ambient region on the confined wave modes.

Considering a wave packet solution,(2.30) has the following properties.

(O
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This impliesa relationbetween the amplitude and length of the packet
as the wave "volume" is conserved (essentially a conservation of mass

Ar IT 
(2. 32)

where

=RX S Act e1,) "k dy

This relation gives the energy decay of the wave packet via
excitation and radiation of internal waves in the deep fluid
surrounding the thermocline wave guide.

The same results are obtained for a periodic wave train solution if we

integrate over a wave length instead of the unbounded domain.

At this point we return to the proto-type model discussed at the beginning
of the lecture (except we now allow the lower layer to be weakly stratified)
and seek an estimate for the lifetime of a coherent long-wave structure
propagating along the density interface. In dimensional form, equation (2.30) is

'CC

We assume that the term on the right is small and that the long-wave structure

is a solitary wave solution of the equation with the LHS = 0

_______ C-CO (2.34)

The integral relations (Eqn. 2.31, 2.32) give

< > - a .L = cost ,rt, (2.35)

S = WA



We ;issume that ihe sol itarv wave structure is mainta ined even when the damping
term on the right is included, but that the sol itary wave parameters are
slowly varying in time ( = .(t), = (t)). In this adiabatic

approximat ion th , decay is given by
dabt

dt 
(2. 36)

0

Two limiting cases can be identified

I- ff oce)(i) For P-P o (steep wave), L[p) 3 i p
In th is case the decay is I inear in t ime.

(ii) For 0-1, 0 (shallow wave), I(p) 'V - % and the decay varies
inversely with time. There is a threshold amplitude below which the

wave can no longer remain ducted, hut disperses throughout the deep
f luid. C% OLtj

- O. o)

Defining a "half-life" as indicated in the sketch and using Sgs =C. StIL,
one obtains r2.

4 to "  L Ncf,1/c. J (2.37)

The quantity in square brackets must be Z 0(1) for ducting and the other
factor ( C ) is essentially (No/No ). Hence, unless ND<.c No, the
wave will decay after propagating several initial wave lengths. This is
probably why long-wave packets of internal waves are not observed in the deep
ocean with nearly the frequency with which they are observed on the
continental shelf.

The adiabatic theory presented here has been tested by numerical solution
of Eqn. (2.30) for solitary wave initial conditions (Pereira and Redekopp,
1980). The adiabatic approximation slightly overestimates the decay, but
gives a quantitatively useful result. The important point to make, however,

is that we have here an example of a coherent structure which radiates and
that the life-time of the structure depends crucially on its "radiation
efficiency".

3. THE EFFECT OF VELOCITY SHEAR

A similar analysis can be carried out when velocity shear is included
(Maslowe and Redekopp, 1980). Our purpose here is to provide an anatytical
example of the existence of sol itary eddies in a shear flow which are
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describable in terms of a nonlinear evolution equation which implies that
these eddies exhibit special interaction properties. The discussion here will
also set the stage for our next lecture.

Suppose we write the total streamfunction and perturbation buoyancy as

) ' . (3.1)

A eA + c- ("

and substitute into Eqn. (2.6). Then, for Couette flow with constant
Brunt-Vais~la frequency, the line r eigenvalue

problem is

(3.2)

We consider only the case where the Richardson nutrber J >1/4 so the flow
is stable on a linear basis. The eigenvalue problem then has the solution

- Z"jCos I a.Q i-l - kA) (3.3)

1y J-/ 4

where ZC is the eigenvalue (t',e phase speed measured relative to the linear
volocitv profile with unit slope). There are two classes of solutions.

Internal wave modes IZ.4>1, .
(3.4)

) ingular neutral modes f J<

t - ( -J , - , ,. . (3.5)

Mile; proved that there were no singular neutral modes for J >V4  based on
a virou; critical layer theory. Here, we have implicitly invoked the result
of nonlinear critical 1ayr theory by which we make the interpretation that
th. quantity ( Z - Zc) 2 ecomes simply IZ - ZcI 1/2 1i when

Z< 7c.  In the next lecture, we will give a detailed description of
nonlinear critical layer theory in the context of Rossby waves in a shear flow.

We conclude our discussion by noting that, after adopting the KdV
(shallow-water) scaling and computing the If T" ) terms in (3.1), one
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obtains the KdV equation

At i- I AA1 A , =o (3.6)

for either of the modes (3.4) or (3.5). For the singular neutral modes we have

S/2 (3.7)

(i- )'IZ

These modes will always have closed streamline regions whose shape can be
determined by a detailed analysis of the critical layer region.
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SOLITARY ROSSBY WAVES WITH CRITICAL LAYERS

L. G. Redekopp
LECTURE #2

1. INTRODUCTION

We consider in this lecture a zonal shear flow U(y) which goes to constant
values Umin and Ur x as y --- and y--p+ *0 respectively, and we study

the question: Can a solitary wave evolve and exist with a propagation
velocity c between Umin and UMax? There will then be a critical value of
y for which 1J(y) = c. This level y = yc and a hand in v around it, the
so-called critical layer, will be seen to deserve special attention.
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Let the total streamfunction in a frame moving with speed c be

'.g J ~(T)'- C) 0 (.1)

where Y is a perturbation. If we furthermore adopt the KdV type scaling
from Lecture #1:

'/Z Vz

the model equation for 1 that we consider becomes

(1.3)

In Sec. 2 we consider perturbation expansions for Y in the region away
from the critical layer and derive the matching problem that the critical
layer gives rise to. In Sec. 3 we consider the critical layer region and
solve the matching problem. In Sec. 4 the time evolution of the vorticity in
the critical layer is discussed.

2. THE OUTER REGION

We first look at the region away from the critical layer and consider a
straightforward expansion of the perturbation stream function in powers of 6

Y =V + e -.- (2.1)

Since the perturbation, E , is itself 0(6 ) the first term has
superscript (1). We substitute Eqn. (2.1) into Eqn. (1.3) and collect terms
0( 6 ). Since we are assuming that we are away from the critical layer,

we can divide through by U-c to obtain an equation
( ,(2.2)

where is the linear operator

92. ~ B~y)(2.3)

with
t- (2.4)

We look for separable solutions to this equation

if=A t t) (2.5)

where then must satisfy the eigenvalue problem

1-k 11 + ~B~ 0 (2.6)

with bounday conditions

4(r) -- 0 (2.7)
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at stations far below and far above the critical layer, Y. 4. Yc -4 yn.
We note that for Eqn. (2.6) one can identify at least three possibilities:

(i) U(y) /c for all y, i.e., there is no critical layer at all,
B(y) is regular and the equation for + has no
singularities. This case leads to what we shall call
propagating neutral modes (PNM), Rossby waves
modified by the shear.

to

(ii) U(yc) = c but - .T(yc ) vanishes. In this case B(y) can
have a series expansion about yc

B(y)= B + Bc (y-yc) + ...
Then 4 will also be regular
(y) = 4c + f" (Y-Yc) +

and the solutions will be called regular neutral
modes (RNM).

We shall consistently use the notation J(yc) = Uc' J(Y) =

Uc' *(Yc) = U etc.

Finally we have

(iii) tY(Yc) = c but B(y) = + Bo + BI (y-yc) +

is singular at the critical layer. From Eqn. (2.4)
B_i =2 A --",*[ "/U[ )2

Bo - 2 + (/3 - J . ) . )/2( Tj ' )2
and so on.

According to the theory of Eqn. (2.6) there will be two linearly
independent solutions Wa(y) and fb(y). These will be given by Frobenius
series. The regular solution is

n00

and the singular solution is

2 b 0;) j~ (2.8b)
= 0)

The coefficients ao, al,...b o , bl... and boo are determined by
substitution of (2.8) into (2.6) using the expansion given for B(y). By
straightforward calculation we find

B- &- = 0 (2.9a)

Z a.2, o - " .+ I" b_1 + C1O~ = (2.9b)

(0a 3 - 1, + 4,L. 1 + ( 3, (2.9c)

and so on. Hence ao = 0, we fix a1 = I and then

S - - # . (2.10a)
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-(. 1 2 (w~')" (2.10b)

and so on. Similarly we find

bo. C1 + '8_1 bo. (2.1la)

'Z tI+ 3 b ..-A2,- b .+ .b, + 0 o (2.11b)

We normalize +b by demanding that bo = 1 and we fix b= 0 to assure
that no multiple of fa is added to the regular part of Ab' We then obtain

bo - 1 t- Za2. = - 1:. (2.12a)

u" (6_ v) 4 U'- / (2.12b)

2, 2 k 02-,I

For this case we can only assume the ansatz (2.5) to be valid for y > Yc and
we must have a similar outer solution for y 4 Yc" We write these

Au y + 3>1~l
(2.13)

5)K)o- OY + #tiy)J

The problem posed is solved by examination of the critical layer region to
determine a matching between A, D, 0(,and C(.

Before considering this matching problem, let us go back to Eqn. (1.3) and
extract the 0( r ) terms.

We get

!2 (t P-- 2x21?X

Using Eqn. (2.6) in the form

(~-k y~%-v'~(2.15)
we get

i 0 (2.16)

V-r V -c C. i(

_ 4) g5A "j- r(o#A
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Note that the first and third terms here are singular even for RNM (they are
strongly singular for SNM). To derive an equation of motion for A we want to
cons ider

For both RNM and SNM we exclude from the integral an interval of size 5 (to
be determined) about yc. For SNM we furthermore must change A to D for

y < Yc" Now for any limits a, b

by (2.17)JU d,7

hence,
bf , [ [d, jb2 J "f BO( )] (2.18)

where the second integrand vanishes identically by Eqn. (2.6). Using this
relation with b = Yn, a = yc + S and then with b = yc - 8 , a = Ys
and finally adding the second result to the first we get

d° lCZLs 9A f B_02-4 2A " Y"f~- Al jy+  ___. ~~l$ _3 f# (2.l9a)

is YfS

where y Y.

f ff (2.19b)
and we have used the boundary conditions (Eqn. 2.7) and

(2) C O) (2.20)

For PNM the jump is zero and to this order in C we obtain the KdV equation
for A. For RNM 0 is continuous and Y¢c) is continuous and the unknown jump
term in Eqn. (2.19a) is

For this case, and for SNM where the corresponding term is+ -* (V
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an examination of the critical layer equation is necessary before the
evolution equation for A can be determined.
Let us write as

x

y . A 2) , t -t , 0,, AA (2.21)

4 ) AAlp. 0

and, from Eqn. (t.16), the most singular part is .We write a Frobenius
expansion for and :

d2

y - B (2.23)

Then from (,jfl

tt

we can obtain all the coefficients in, qn, Pn in terms of an, bn
and , ( fr according as y yc. W shall not write out all the

necessary equations but only extract r_. On the lefthand side of Eqn.
(2.24) the only term to vary as (y - Yc is 2r I (Y-Yc) 3  On the
right the only such term is (B..l/ Uc)(y-yc) -3 .
Hen ce

TY-, )Ir) (2.23)y 6 y
3.~~~~~~ CRTCLLCREUTO

right te onyth telsrm function in th c riicllaera

Il [ . .. . .." - - - I. . . . " .. . . . . ... . I I I I I I IIen c.. . .. .. IIel
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where:
(i) Y = (Yyc-)/S we want Y = 0(M) in the critical layer region

and so is a gauge function to be determined

(ii) T = t/. (with )k so far undetermined) is a second time
scale. We shall find that the critical layer is
quasisteady on time scale t. To follow the time
evolution of the vorticity in the critical layer
we must go back and introduce T with the
appropriate choice for ) .

The coefficient of f is e in order to match to the dominant term outer
flow as y--p Yc" Putting Y , Eqn. (3.1), into the basic Eqn. (1.3) we
obtain the expansion 0 a

A1 t 21

The equation is written with the term U" Y being 0(M) since it is the
basic term giving rise to the singular behavior in the outer expansion. We
now consider possible balances in Eqn. (3.2).

S= 
.

(i) Viscous balance: In this case--, = 0(0), S(16E 9 and
C/8 L <.c. The C'i2 term appears in the
expression for S because the wave number
is O(gIL) for the long-wave motion con-
sidered here. This limit and those that follow
are best characterized by the parameter A
(sometimes referred to as the Benney-Haberman
parameter)

3

2.A [.J
The viscous balance occurs for )L>>1

(ii) Nonlinear balance: In this case C/9 0(l) or 8 S . Also
we require ;k4 so that the viscous terms

are weak.

(iii) Hybrid case: A third possibility is = 0(0) so that
both nonlinearity and viscosity are impor-
tant to leading order in the critical layer.

We shall focus exclusively on case (ii) in this lecture. For earlier work
dealing with this limit of the critical layer theory the reader should consult
Benney and Bergeron (1969) and Haberman (1972).
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Consider for SNM the outer solution (Sec. 2) )4 as y--W yc. From Eqn.
(2.13) and Eqn. (2.23) the leading terms are

~ A {I r A (

To match this we consider an inner expansion of of the form
I¢ °  II/'g (IV) (3.4)= , E " E '/ ...

Substituting this into Eqn. (3.2) with the assumed scaling, viz.

2W lx V,(3.5)

J ,- iskb E;:j? + E"[,--,u- Ea"-...]f -,S t,,fy,,,

where z < 1 , we get

C

A solution that matches uniformly is A(x,t). Similarly, matching
as Y-+-00 we obtain D (see Eqn. (2.13)). Thus we have A = D in

0(6" 1 %C-) X ' -= 0 whence A matches identically

''(a

The second and fourth terms vanish identically leaving

{A 2 - -, a.-) AX = )o. (3.6)

To discuss this equation consider the transformation to new independent
variables

S= 2jfUY ' 4  A, (3.7)

' X.

Since

LCYA -A Y
)- X tL1A X U"Y~



V . . .. - .... .. . -- - - ..-- = - -_ --T -: - -.- .... ... .. " '

Eqn. (3.6) becomes simply

2-x ==-A-' x = .

where gives the leading order perturbation vorticity. Before
integrating this equation let us interpret the transformation Eqn. (3.7).

The total streamfunction in the critical layer region is (see Eqn. 3.1

7T fdy( [-yC) 4 .

Expand Uy) as t<) a + ' Y;+.
O(Y) = ic"

and integrate term by term to obtain*y' J'Y2 r 'u'+. + E( # A' E 4 ... )

E + O(EJC 'A )+ oc 9 + .

Thus S is simply the leading order part of the total streamfunction in thE
critical layer.

Now consider the streamline pattern, i.e., the level curves of S(x,Y

=U" Y + A. Since A is assumed to go to zero as Ixl4'a, S(x,Y) has
least one stationary point given by Y = 0, Ax = 0*). To determine its tyl
consider the matrix

/ A,<,1
I 21 St s A . K o

Thus, if Uc > 0, we have two possible cases:
(a) For Axx< 0, A has a maximum and the stationary point is a saddle

point. Tn this case A "> 0.

(b) For Axx ; 0, A has a minimum and the stationary point is a maximu

In this case A < 0.

Streamlines corresponding to the two cases are sketched in Figs. la a
lb. It is clear that as X--p ± t the streamlines have asymptotcs
parallel to the X-axis.

*We assume that these equations have just one solution whi ch wt, pl ;ick, at

origin of coordinates without loss of generality.
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Fig. I Streamline patterns for solitary waves in a critical layer:
(a) A > 0, (b) A < 0.

(The case U j <. 0 is analogous except that pattern (a) occurs for A < 0
pattern (b) for A> 0). In both patterns there is a dividing streamline
separating those streamlines that run continuously from - 4 to + a (in
from those that do not. In case (a) this dividing streamline clearly ha,
Amax, the maximum value of A; in case (b) S = 0 on the dsl. In either c
denoting the value of S on the dsl by Sc , the equation for the dsl becom(

Outside the dividing streamline it is straightforward to integrate E
(3.8). Substituting, from (3.7),

Y= ~, Y 2:( -
we get ') = 66.o Ax

0 (s-A)

which is easily integrated to give

using the boundary condition that -o and A-O as IXI-- o. In ter,

Hence for JY) --V 00

A A A'
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From Eqn. (3.3) this has to match with

TAP 1,i A r r.A!

Y y3J

But this matching is valid uniformly according to Eqn. (2.25) ( and the
A = D derived previously.)

To determine the matching of the coefficients OC± we integrate Eq
once to obtain

9Y" f AY' ¢ * ?n (Xt)

.wl..V f 1J ~ 2A ~2 y/* + y- 2A%.y2J

When we consider this expression for IYI--- o- we get a term independen

7 = & o) A , l l , -A ' , r , .
1  2 AZo Y

and, when this is compared with the first Y-derivative of 14). in Eqn.
the main conclusion is that

Together with A = D (already derived twice) this completes the solution

matching problem posed after Eqn. (2.13). Stated differently, the matc

has shown that the leading order outer solution for / is the same on

sides of the critical layer. It is also clear from the discussion in

that A evolves according to KdV.

We still need to obtain a solution valid inside the dsl. To do th

rewrite Eqn. (3.6) as

' -S )P"o

where

The general solution is r= F(s). (In our previous analysis of Eqn.
via Eqn. (3.14), we found r ,-1+ (1dU,') Y + b. S + (- b
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which is consistent with this type of general solution). To determ
form of F(S) inside the dsl we must consider the two basic streamli
patterns, (a) and (b) (cf. Fig. 1) separately.

For case (a) where all the streamlines extend to infinity we ha
Eqn. (3.7) that

o r + L4- S ') y s
as --Y t since both and A vanish asymptotically. Thus f1
discontinuous across the Y-axis:

r= F(S)-_ A/.2) 1 Yjvi, VS

the discontinuous jump being KPIJ = 2 b. fWA

It is stated without proof that this can be avoided by allowin
appropriate distortion of the mean flow. It is clear from the disci
Eqn. (3.23) matches with Eqn. (3.15) on the dsl.

For case (b) the presence of closed streamlines suggests that w,
F(S) by requiring that the steady solution being found is consisten
equations of motion in the limit of vanishing viscosity. For IJ 0
(3.21a) becomes

We seek P7 as a regular perturbation solution of this equation:

/Y = F(S)+ '

whence

- S )Y) p "I -2F

This equation may be rewritten as

where the two-dimensional vector

(S-- r(' )

By the divergence theorem, we see that the integral of arouni
curve , where n is the normal to , is zero. We choose
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a closed streamline so that

A (SX,_ )
Then

'% F~ _ 15 ;7 , S r

Hence, in the contour integral, 4Q.ndi. , the position dependei

the integrand is positive definite and the integral itself vanishe!

follows that F'(S) = 0 or F(S) = const. This result is generally

as the "PramltI-Batchelor" theorem. The value of the constant is di

matching on the dividing streamline. Since Sc = 0 for case (b) (si

discussion just before Eqn. (3.13)) it follows that

dsj.

or T,' = F(S) = 0 and so the solution is simply

Notice that if we applied the result of this analysis to case (a)
would give F = boo2- S lis"\g which is not a const

Furthermore, Eqn. (3.26) would not match on the dsl and would not

x - 0.

There is, of course, no paradox since in case (a) the streamlines

closed and the Prandtl-Batchelor theorem need not apply.

Finally, we make some general comments about the effects of vi

general, if one considers the eigenvalue problem (2.6) one has to

solutions on the two sides of the critical laver of the form

_, = Q.. t.,p + b. tj)

It may be shown that for the steady problem considered here the m
the form of the following Jump conditions on the coefficients a+,

[a, 1- a.- = ---- o

where b is the common value of b+ and b-. The quantity 0(A) p1
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of a phase jump in the term ln(y-yq). When Eqn. (3.27b) hol

interpret In (y-yc) as In y-yc + i E (N) sign U" for y <

argument, , of G( \ ) is defined as

and measures the relative importance of the viscous and nonl
both are important. The nonlinear analysis presented above
yielded -- 0 . The other limit \-- 00 (the viscous crit
known to give (-7- 7, In between these two limits the re

varies as shown in Fig. 2.

C)~

0-

Fig. 2. Variation c+ phase jump &(

In the general case the Reynolds stress averaged over on(

the motion along the critical layer has a jump discontinuity

1Jz k(

where k is the wave number.

4. TIME EVOLUTION OF VORTICITY IN THE CRITICAL LAYER

In this section we want to consider briefly the conseque,

time dependence to the equation for c , (Eqn. 3.6). To in'
derivative into (Eqn. 3.6) we must select the scaling )4=

thus becomes a fast time scale compared to t. Introducing s.

QXYi) =Lt . ),, T -- U IL'T A = 0 OA

we obtain

where the primes have been dropped for convenience. Let A b

solitary wave solution: A = 12 £ sech2 (X-4st)
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which solves the KdV equation
At + r AA, + sAx x = 0

We have Ax = Aosech 2gtanhO

where
AO 2- G X- 45t =)<- 4se"ZT"

This expression for A, is to be substiruted into (4.1) and the eq

solved with 
= 0 at T = 0.

Particular solution of Eqn. (4.1) is

and, since the equation is Iinear, all that remains is to find tl

solut ion of the homogeneous ,oquat ion

Note that sech2X, t~nh X appoar here since by Eqn. (4.9) 0 - X

We can again adopt the stroaml ine coordinates (Eqn. 3.7) viz

to obtain

We now seek a new variable p such that

ap

or (assuming Ao/2S > 0)

fP 2 .f2Q2* AcAX 1 / N+

Then (Eqn. 4.9) becomes

so that

L (p-T
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is the general solution sought. The full solution is

=-4Y + ,-T) (4.14)

where the choice of the second term is determined by the initial condition

0 at T = 0:

Y'cb)= h.'r. (4.15)

Hence, all that remains is to express Y in terms of p. We have

2 (ssx# 2~ (4.16)

and from (Eqn. 4.11)

A. (4.17)
5 ~X= (t )(

Thus

y = 2,. ' n " lr (4.18)

CwA 2(,vrTS) 4- AoS";f2p(?
Finally then

Equations (4.8) and Eqn. (4.11) give the variable transformations to X, Y

and T. We have assumed Y > 0 throughout but for Y < 0 we simply change T to

-T and change the sign of the second term.

As T-* we (formally) get from Eqn. (4.19) that

" - ,t ( Y- ) (4. o20)

which is precisely Eqn. (3.15). (Recall that we are using units such that
01 = I).

If we look inside the recirculating region we have S 0 0 for Ao> 0

(since the dsl has S = 0). Then Eqn. (4.11) becomes

.., -. 1 S.L_. __1 h (4.21)

Skm



- 71 -

and the solution corresponding to Eqn. (4.19) becomes

A0-/S cos~ (Y/ -[C 1.)

This result has the unfortunate feature that it continues to oscillate as

T -r+ 0 . However, we conjecture that the addition of a weak viscosity (L<<i
as opposed to ?3.= o) will effectively damp this oscillation and yield a
constant vorticity in the closed streamline region consistent with the

Prandtl-Batchelor criterion.

The theory presented in this lecture is the basis for the hypothesis that
some of the large eddy structures in the Jovian atmosphere (e.g., the Great
Red Spot) are solitary Rossby Waves (cf., Maxworthy and Redekopp, 1976, 1980).
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HI(;HER DIMENSIO)NAJ. SYSTEMIS

L. G. Rc'dekopp

LECTURE #3., Part I: The 2-1) KdV Equation

The form of the 2-D KdV equation can be obtained quite simply through the
long wave (shallow-water) limit of the dispersion relation for interfacial

gravity waves (see Lecture 1, Eqn. 1.2).

2. 2 'Q.1=~ Z +..- . (1.l)

We want to bring the leading effects of transverse (y, say) variations intoth sa dVblne• 2 2 .n 2
the usual KdV balance. Hence, we write k = k + ky and consider 0
kx << h 2 , where h is the wave guide scale. We obtain from Eqn. (1.1) the
relation cI 2{1- zj(k+k)+'"}2l

CO' + '4

Truncating the expansion after the first longitudinal and transverse
dispersive terms yields

2. 4-

with the corresponding linear evolution equation

t- +~ C. -k, AK)X_ 1 (1.4)

Transverse variations are coupled with longitudinal dispersion if k\.I
O(k' ) . This dispersion law implies the space/time scalings.

yk(-c3), (1.5)

If the first nonlinear term has the same quadratic form as in the I-D
KdV equation, we obtain the nonlinear equation

(with

+X R~g += O.(1.6)

This equation was first obtained by Kadomstrev and Petviashvili (1970) to
study the stability of the KdV solitary wave to transverse disturbances. It
is found that the solitary wave is stable (unstable) if >O ( X<O ). The
situation with 0 corresponds to the long-wave phase speed c being a local
maximum/minimum. We will focus on the stable case only in this lecture. How-
ever, it is worth pointing out that we had 1<O for the singular neutral mode
case for internal waves (see Lecture #1, Eqn. 2.7). Also, Ablowitz and



-73-

Satsuma (1973) have shown that two-dimensional lump solitons Lixist tor this
equation with '<o

For convenience we will write Eqn. (1.6) in the scaled form

and also restrict our discussion to the soliton solutions of this equation.*

Zakharov and Shabat (1974) have presented a linear (inverse) method for
solving the equation. The essence of this method is as follows:

Step 1. Find solutions to the pair of linear equations involving the
auxiliary independent variable r:

Qt+ Qyx+ q 0,

(1.8)
KY - Qrr'OG

Note the relation of the first equation to the linear, I-D KdV equation
and that, when = , Q = Q(x + r,t) which is the form arising in the
inverse scattering transform for the 1-D KdV equation.

Step 2. Knowing Q, find K (x,r; y,t) from the linear integral equation
(Gelfand-Levitan eqn.) o

K -(x,r) - JK(,S) c i . (1.9)

We have suppressed the y and t dependence which enters only parametrically.

Step 3. Obtain the solution Lu(x,y,t) from

. 2 K(x,x ,±). (1.10)

This solution procedure is quite remarkable. Nevertheless, it suffers
from the lack of any direct connection with the initial data. The direct
scattering problem and the time evolution of the scattering data are not
prescribed.

As an illustration of the solution method, we construct the single soliton
solution. Suppose we look for separa' e solutions of the Q-equations having
the form

Q = Q0 " e- Y + (1V.113)

The Gelfand-Levitan equation is also separable with the solution

K o r ,t) -k~ ( x;, ) e -' Y Q (x ~ ;' t j. t) - x n r (1 .1 2 )

discussed by Redekopp (1980).

L~~ ~t ... k .n S .......
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Hence, the solution for u is obtained

¢ t =z 4c×xj 't) =L i ,) secli -

0 (+ n)x-x) +(L-Y'j -W(L+n3)t , (1.13)

This is a plane solitary wave propagating oblique to the x-direction. In
fact, it is useful to define the soliton wave vector K = (K, M) and write the
phase as

= K.x- t X ,),

K , N _. L 1 a- Q 3+ .n -- . ( K 3 -_ ) . (1 .14 )

One should note the close relation to the dispersion relation of the linear
eq uat ion

(1.15)

Also, if = n so that K = (2L, o), we recover the solitary wave solution of
the KdV equation

Interesting results are obtained when we seek to construct multi-soliton
solutions. We then write

(1.17)

The integral term in the Gelfand-Levitan equation will have the form

x "i
This integral is singular and the solution method fails when

Ij-L -= 0 ) . (1.19)

The case j = i is never singular because the solitary wave vanishes identi-

cally (Eqn. 1.13). To understand what this singular condition corresponds to,
we construct the function

F Ki K . =) C2 4-Q('.' (', + K2 ) (.0

1<.+ K2.

A ...... . ...
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The singular condition corresponds to a satisfaction of the triad

resonance condition for soliton dispersion relation. In this case there is a

strong resonance and a third soliton is created (corresponding to the third

member of the triad) yielding the configuration

Further discussion on aspects of the interaction is provided in the following

references.
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LECTURE --3, PART 11. 1LONG-WAVI: /SHORT-WAVE RESONANT I NTIRACI IX

In our previous discussion we considered some examples of coherent
structures described in terms of a single, weakly nonlinear wave mode. We
will now present results for a particular multi-modal interaction which also
admits coherent behavior with some interesting properties. First, however, w
make some preliminary remarks concerning the linear evolution of a narrow-ban
wave packet and also its nonlinear evolution which is described by the (cubic
nonlinear SchriSdinger (NLS) equation.

A linear wave packet in a dispersive media with linear dispersion
relation c(k) is given in terms of the Fourier integral

-  Fk)e'(2.1

where F(k) is the transform of the initial packet. We suppose F(k) has
central wave number ko , spectral width E and, purely for analytical
convenience, that its shape is Gaussian

-0-e I

If the spectral bandwidth is narrow ( G<< 1), the dispersion relation is
well approximated by several terms in its Taylor series expansion about ko

CO(k W ( + (k~ + (*-02) (2.3
2

When W3(k) and F(k) have these simple forms, the Fourier integral for
(x,t) can be integrated directly and yields

. _ _ _
b e [ C= Z,' 2 J14 r- CL_2. V}

This defines the appropriate space and time scales which are relevant to
the weakly nonlinear evolution of a wave packet

9 = oc-5t) 't et(2.'

In terms of these variables the envelope function defined in Eqn. (2.z
satisfies the linear Schr6dinger equation

S"(2.
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In fact, the envelope function satisfies the equation defined in Eqn.
(2.6) for arbitrary F(k) whenever the dispersion relation has the fl:rm Eqn.
(2.3). However, the approximate form of the dispersion relation is valid oni
if the bandwidth is narrow ( E:44 1) and then there exists a clear separatic
in scales between the rapid phase (ko - cot) and the envelope variation

f ( , r ).-

Considering the extension of Eqn. (2.6) to include the first nonlinear
correction, a balance between the (self) nonlinearity and dispersion is
achieved if we identify E with the nondimensional wave amplitude ak (i.e.,
the maximum wave slope). One then finds that the envelope function obeys the
NLS equation (written in dimensionless form)

SAlt + As = v AIA. (2.7

Several remarks regarding this equation are in order.

(i) The NLS equation is implicity applicable only to the evolution of a
narrow bandwidth wave packet or wave train in the weakly nonlinear
regime. How narrow the spectral width must be for the equation to
provide a good description of the motion in any physical situation

not so easy to define.

(ii) The coefficient ) of the nonlinear term has the general form

Q o (2.F

where D(W), k) = 0 is the linear dispersion relation, c(k) is the
phase speed and c,,(k) is the group velocity. This coefficient is
singular when either of two resonance conditions are satisfied:

a) Harmonic resonance, D (2 LO , 2k) = 0

b) Long-wave/short-wave resonance, c(o) = cg (k).

In either case, the single mode theory leading to the NLS equation is
invalid and a multi-mode interaction occurs on a faster time scale. The
following discussion will focus exclusively in the long-wave/short-wave
resonant interact ion.

The theoretical development leading to the coupled pair of equations
describing the resonant interaction of a long and short wave can be briefly
outlined as follows. The expansion of the dependent variable q) (the
streamfunction, say) is written in the form (assuming that the waves are loc
in x and modal in z)

qT e{ S 1 r.e C () L(;t + (2.c

where the slow space/time scales( , t ) are defined by

"t73.- ), (43C (2.1
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Note that 6 is the nondimensional amplitude (e.g., the slope ak) o
short wave. Hence, the long-wave amplitude is asymptotically smaller tha
short-wave, but much larger than the streaming motion associated with the
short wave (i.e., e 2 IS12). The time scale is much faster than that
associated with single-mode modulation (cf. Eqn. (2.5) where T- r2t ).
Proceeding to higher order in the expansion (Eqn. (2.9)) we obtain the
amplitude equations

+OE4 ,3)
C o (O) L-- ( S 1  21
Lr {N3LLL( SI E3 LL p(ISIf~

We have included the higher order terms on the rigiithand-sid to x11i1,it
relation of these equations to their respective single mode form: namely
NLS equation and the KdV equation. It is clear from the second term in E
(2.llb) that the bandwidth of the resonance is O( 62/3). Detailed
derivations of these equations are given by Djordjevic and Redekopp (1977
Grimshaw (1977).

In the remaining discussion we consider the leading order equations f
on-resonance conditions. Furthermore, we choose to normalize the equatio
such that we obtain

i St + SL,

L = -2 (I"is
Based on the coupled set of equations, we note the following properties:

(i) The long wave is unstable (even if L ( t = O)=o) to modulati
the short wave.

(ii) The equations permit a uniform amplitude, periodic wave train so

G= So

L =Lo
where S and L are constants. The short wave has a frequency correctior
proportional to the long wave amplitude. This solution, however, is unst
to small modulational perturbations.

+ s+

* S_ a~t
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Linearizing the equations for w , l [e, we obtain the eiger
relation 

I

13 3£.-_ KS - ,K 0
The perturbation is unstable (complex eigenvalues) "or

O<K<z 3' =z2.8.-

The maximum instability occurs for K = 1.51 with the growth rate ImiL
Numerical simulations of the equations confirm the instability and shou
the

1.2-

4

0

long-time character of the instability is one in which the energy of t
shortwave is transferred reversibly to side-hands of the short wave as
to the long wave and back again with periodic recurrence. Other aspec!
the long-time behavior of this interaction together with some experimer
results on the initial instability and the resonance bandwidth are dis
by Koop and Redekopp (1980).

4

4

C
0 2 4 6 8

7;,
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(iii) Envelope pulse soliton solutions exist also. The single s(
wave form is

S=.K(-sCz [K (x9.0

L:- ZK~ ~~[K~c'

Note that the wave travels to the left (c 4 0); that is, its speed i
necessarily less than the carrier wave group velocity. Also, the wa'
K and the speed c are independent so that breather (or, bound state)
exist for which two (or more) solitons with different wave numbers c
the same velocity. Such solutions are localized in space, but are ti

dependent.

The long and short scale motions propagate together in a coherent

time-dependent manner. This example is presented to emphasize that c
features can be unsteady and exhibit motion on several length scales.

solitary wave solutions and others are described in Ma and Redekopp
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MIXING LAYERS AND SPATIAL STABILITY

Joseph B. Keller

LECTURE #l.

Introduction

It is well known that the interface between two fluid strear
when the streams are moving paralIel tcL the interface w
velocities. This is called Helmholtz instabil itv becauise Helm
it theoretically in 1863. We shall present his analysis later.

A typical wind tunnel or water tunnel demonstration of this
sketched in Fig. 1. Fluids of densities and .2 with ve

and U) , are separated by a flat plate which ends in the I
passing-the end of this plate, the streams produce an interface w
with increasing amplitude. Ultimately, the strc, asmix together
zone called a "mixing layer". The width (x) of the mixing lay

to increase linearly with distance x from the end of the plate.
the width is given by (Brown and Roskho, 1974)

U - U
~(x) 0.38 12

U + U,2

2

FIGURE t
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Dimensional Anal ysis

The observed lI near growth of (x) can be deduced t
invisc id fluids as follows. For such fluids, the only quantit

3(x) can depend are :I "'2 U, and x:

"(x) =  F(. ]' 2' ,IU 9 ,x)

Dimensional analysis requires that the dimensionless ratio

function of dimensionless quantities, so

'(x) = xf(),l/) 2, u /U 2)

Thus, the mixing layer thickness increases linearly with x.

Velocity Profile

To describe the mean horizontal velocity in the mixing la
the averaged equation for the x-component of momentum of a

fluid:

u t + UUx + VLy + WU p +

Here u, v, w are the velocity components, p is the press
density, f denotes the average of f, and = (u - u) is

of the Reynolds stress. In the mixing layer we assume that ut

Uz = 0 while vu V  and -l a re sma Il compared tc

terms. Then Eqn. (4) becomes

uu X

We now assume that - can be written in terms of u(x,y) i

dXmen s whereX "e is an eddy viscosity coeffi

d menion- eo~v " are time (length), and should vanish

Therefore, we choose to be

a )S2.U)x/U
e

Here L' -U U +i /2 and c is a d Imens ionl es
1 2-Eqn. (5) becomes

a 2-
uu = u( ) Xu /U

X VV

We expect Eqn. (7) to hold in the region x o , and the -app

conditions are

u(0,y) = U, 0

= 2a 0 .
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It is convenient to replace x in Eqn. (7) by the new vari

2) ' U 2 2
T =c ('U) x Th en u(T,y) satisfies the equation

2UT U v

The nioni inear parabol ic Eqn. (9) and the boundary condit i
invariant in form tinder th e tra ns f orma t ion y =Ly , T
choice o f L. Th eref ore the solIt tion al so must be inva
trans formt ion . ,%ous;equentl y, the sol ution mus t be a funct
variable z =y/T1 2, whi1ch is itsel f invariant. Therefore, wi
ui (T,y) = w(z ) and then Eqns. (8) and (9) becomle

-zww'/l' =-

U 1 , w(-c) = U1,

The two-point boundary valuno problem Eqns. (10) ind (11) !,)
of w(z) can be solved numerically. However, ma ny feaitures oj
be found by introducing into Eqn. (10) the simplification w/1
(10) becomes, upon division by w',

ti -
w

w V 2

Integration yields logw' = -z 2/2 + log B where B is an int(
Solving for w', integrating aga in, and uisinig the boundary cor
leads to the solution

, I 2

Tb i s solu1tion indica tes how u varies -across the mix. nY, Ia
laive r width increases linearly with X.

From Eqn. (1 3) we can Find the layer width. We ilav
it ffer eknce in y val ues b etween the pla c es where u ( x I

eslc oln two particul.3r valuies, sa y .25 aind .7S. The T,'Snl1

torm Eqn. 0I ) with the numerical factor dependent u)pon th Iv%,-

M1r0 re'cent o)bservatLions Of Tnixing l.a -vers ha-ve rev'eal
pa tt eras1 wit i th t I r IjII en t ZonIe ( Br1owln aIndi Rosh k n , 1 97) T4
1 9, '4; Roshk I1<o 1 )7 I 11 t; I 1 )m t is 1) 98(1; B rowand , a' I 'd T rout t L (A
voi-t ox- I Ike sruicttres, form :In 'O"r oll up'' the I int er ic.

sown in F igumre 2.
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U'I

U2

Figure 2

These structures extend very far in the cross-stream (z) direction. However,
the motions appear to be de-correlated over very large distances in this
direction because the structures have a small tilt (Browand and Troutt, 1980).
Pairing of vortices is also observed, and the pairing or coalescence of two
vortices occurs repeatedly as the structures move downstream. The overall
growth of the mixing layer appears to be due primarily to the vortex pairing
process, rather than to the growth of individual vortices.

When two vortices coalesce they produce a single vortex whose dimensions
are roughly double the dimensions (in x and y) of the initial structures.
A linear growth of the mixed layer results.

Temporal or Helmholtz Instability of an Interface

We shall now determine when an interface is unstable, and also examine the
initial stages of its unstable evolution, following the procedure of Helmholtz

(See Lamb, 1916). Thus, we consider the two dimensional irrotational motion
of a fluid with density PI  and veloc.ty potential I in the regiony > T(x,t),
and of a fluid with density P2 and velocity potential (12 in y < T(x,t)
Both 'Di. and 'D2 are harmonic functions, and in terms of them the pressure
P is given by the Bernoulli equation. At the interface the pressure must be
continuous and the normal component of the fluid on each side must equal the
normal velocity of the interface. Far from the interface y = n1 (x,t), the
velocity must tend to ( U1 ,0 ) above the interface and to ( U 2 , 0 ) below it.

We write c. in the form

3.
(D Ux+jXYt - IU j = 1,2 (14)

Here c. is th- perturbation potential which is also harmonic. When
= 0 3and u = 0 the flows are uniform, the interface is flat and the

th'ree boundary conditions are satisfied on it. When the (. and 11 are
small, we linearize the boundary conditions around the uniform state. Then we
seek a solution of the form

= Cje i (c t- k x l- k y

(15)

TI Ae ( t k  , Re(k) > 0 .

Here a and k are respectively the frequency and wave number of the perturba-
tion while C1 , C2 and A are constants. These constants are related by

three homogeneous linear algebraic equations obtained by substituting Eqn.
(15) into the three linearized boundary conditions.
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In order that these equations have a non-trivial solution, the determinant
of the coefficient matrix must vanish. This yields the dispersion equation

01(CF - U1 k)2 + gk] = P2 [-(a - U 2 k) 2 + gk] (16)

Here g is the acceleration of gravity, which points along the negative y-axis.

When g = 0 and UI = U2  , Eqn. (16) yields the Rayleigh-Taylor instability
which occurs when a heavy fluid is accelerated toward a lighter fluid. We
shall consider only the case g = 0.

Upon setting g = 0 in Eqn. (16) and solving for cr we obtain the two

solutions
°+(k) =-IUI + 02U2 (0P12)I1/21UI U U2-i

T4 (k) = l 2I ± i] k (17)_- + - 2 (17

The solution 9_(k) has a negative imaginary part so the corresponding
perturbation (15) grows exponentially in time. For p 1 = 0 2 we have
from Eqns. (15) and (17),

n(x,t) = eik(Ut-x)-AUkt/2 (18)

Thus the flat interface fl = 0 is temporally unstable. Initial perturbations
of any wave number k > 0 can grow, and the growth rate is proportional to k.
There is no finite wave number of maximum growth rate.

When U1  = U2  then a. and (a are real and equal, and the two
solutions given by Eqn. (151 are identical and not growing. However, then
there is another solution with the time factor te ia. It can be
obtained by differentiating Eqn. (15) with respect to U1 with R fixed, and
then setting Ut = U2 . In this case an initial perturbation can grow
linearly in time.

Spatial Instability

In the mixing layer problem the interface perturbation grows with x but
not with t. Such growth is usually called spatial instability, although in
plasma physics it is called drift instability. To analyze spatial stability
we must consider a to be real and solve the dispersion Eqn. (16) for k()a
Next, we must see if there are solutions for which Im k( a ) is positive. If
so, the corresponding solutions will grow exponentially with increasing x
but just oscillate with increasing t. Then, if there are disturbances of the
upstream flow which can excite these growing modes, the interface is spatially
unstable.
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The two solutions of Eqn. (16) for k(a) with g = 0 are

I U 1+ P 2U2 ± i(p1P2 )
1 /21UI - U2 1

k _ 2 2 ( 9)

S 1U + 2

The solution k+( a ) has a positive imaginary part so the corresponding
disturbance (Eqn. 15) grows exponentially with increasing x. The growth rate
is Im k+( a).

It is of interest to compare the spatial growth rate Im k+(a ) given by
Eqn. (19) with an approximate value. It is that given by the usual method of
converting the temporal growth rate to a spatial growth rate. The conversion
is performed by writing t = x/c and k = a/c, in the growth exponent -Im a._(k)t,
where c is the phase velocity of the disturbance. This yields the new growth
exponent -c- 1 1m a (c - 1 a )x , so the approximate spatial growth rate is
-c- 1 ImaT (c- 1  ) . -From this result and Eqn. (17) we get

( 1 I/21UI _ U2

Im k (a) 2( + P2)a (20)++ 2 U2 ) 2(PlU +P

Comparison of Eqn. 20) with Eqn. (19) shows that the approximation (Eqn. 20)
is good when Ilma_| << IRe a_.

When Ul  = U2  the two solutions k+ and k_ become real and equal.
Then there is another solution, in addition to (15), in which e- ikx is
replaced by xe - ikx This solution grows linearly in x. It can be found by
differentiating Eqn. (15) with respect to U, with a held fixed, and then
setting U1 = U2.

The spatial growth rate increases linearly with a , as we see from Eqn.
(19). However, in a real mixing layer, the disturbance has a rather definite
frequency. That frequency is presumably the frequency of ea..\iwum spatial
growth rate of waves in the viscous boundary layer and shear layer near the
edge of the plate. We shall not consider it further because it has not beendetermined theoretically.

Are Unstable Modes Excited?

We have seen that there are spatially unstable modes associated with an
interface. We must now consider whether these modes are actually produced or
excited by any perturbation. The example of potential flow in a semi-
infinite pipe extending from x = 0 to x = o with cross section D will be
examined to illustrate this point.

Let f (x,y,z) be the potential function for the perturbed velocity field
and let U(y,z) be the prescribed perturbation of the x-component of velocity
at the pipe entrance x = 0. Then satisfies the equations

A = 0 , x > 0 , (y,z) in D , (21)
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n 0 on boundary (22)
n

x(O,y,z) = U(y,z) . (23)

To solve this problem we seek normal modes of the form
+%.x

= e- 3 ji(y,z) . (24)

Then Eqns. (21) and (22) become

)2 + 2 = 0 in D , (25)

y z j j

Si. = 0 on boundary of D . (26)
n J

2
For each positive eigenvalue A., j = 1,2,-..., we obtain the two solutions
(24). For X2 = 0 we find instead the solutions q = constant and 4' =
x. Thus, there isione growing mode and one decaying mode for each positive

eigenvalue. For A. o both modes yield constant velocities, so they do not
grow.

It appears likely that the flow is unstable because there exists growing
modes, in fact infinitely many of them. However, there is a solution satis-
fying the boundary condition (Eqn. 23) at the pipe entrance, which does not

involve any of the growing modes no matter what the perturbation U(y,z) is.
This solution is

o U. -X.x
4(x,y,z) = + U0x - I XJ- J-(y,z)e j  . (27)

j=l j

Here is an arbitrary constant and .Uj is defined by the quotient of
innei products

U. = (Ui j)/(4 jj). (28)

Thus, despite the existence of the growing modes, they are not excited in this
problem.

Modes of the Interface Behind a Plate

Let us now consider the spatial stability of the flow with an interface
behind a semi-infinite flat plate. This problem differs from that considered
above because of the presence of the plate, so that the interface is also semi-
infinite. This problem was solved by John Neu (1980, unpublished) and we shall
now outline his results. The flow configuration is shown in Figure 3.

We seek solutions of the linearized problem of the form

D1 - U1 X 
= 0 1(xy)e 

i t  
(29)

D2 - U2x = 42 (xy)e

N(x,t) = O(x)e
l o t
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splitter
plate

~x

y -- n(x, 0
U V2 2  = 0

2

Figure 3

In order to simplify the resulting boundary value problem, we introduce the new
variables u and v by the conformal transformation

2 2
x = u -v , y = 2uv. (30)

We then find that the solution for n (x) satisfying n (0) = 0 is a multiple
of

Ssinkx.l/2 [eik 2/4 ei*k 2/4rn(x) = - e E]dk .(31.)

C

In Eqn. (31), Q = -1 [U + iAU] and the contour C, goes from the origin
iTT I

to infinity in the k-plane with 1/2 arg Q < arg k < 2 2 arg Q.
The asymptotic form of Eqn. (31) for x large is, with A a certain constant,

n(x) - A e 2 xj (32)LU2 + (AU)2 U2 + (Au) 2

This is a spatially growing mode of the form we obtained before for the

infinitely extended interface. In the special case when AU = 0, we find

instead that for large x, with B another constant,

d(x) - Bxe i ax/U (33)

Again, this is the linear growth we found before for the unbounded interface.

Thus both for AU A 0 and for AU = 0, the interface behind a flat plate has

spatially growing modes.

Vortices and the Roll-up of Interfaces

In order to construct a model of the roll-up observed in mixing layers,

Jimenez (1980) considered the influence of a single point vortex placed at the

initial fluid interface. The vortex models the vorticity that is present in



-89-

the real shear flow. Each point on the interface will move along a streamline

with velocity

dz = iF(t)

dt 27r z

where (t) is the circulation in the vortex that is placed at z = 0. To
model the shear due to a velocity difference AU between the fluids, we
require r (t) = 2TAU , where 2)(t) is the initial length of that part
of the interface which is rolled up at time t. The interface position

x(Tl,t) of the point initially at z = il is found to be

z(t) = n expli r(t)dt/22

To find T) (t) we set argz(,t)=- = - 2 This yields

L- t Then (t) 2
IT 7

Thus points on the interface move along circular streamlines and those
closest to the point vortex move with greatest angular velocity. The
interface becomes "rolled up" to form a spiral structure reminiscent of those

observed in mixing layers.

streamlines inital

interface position
- - i .~ -••J

" ' " " (n,t)

The cross-stream width (2 n ) of the region occupied by the rolled-up
interface also increases linearly with time. Thus, an analogy between these
spiral structures produced by a point vortex and those observed in mixing
layers would predict that the overall growth of the mixing layer thickness is

_ 2n 4 AU

(U + U)tU 2

This growth is simply due to growth of individual vortex structures. The
coefficient (0.4) is very close to that observed in experiments. However, it
is also necessary to consider the interactions of vortex structures with each

other.

Jimenez (1980) has also studied the flow induced by placing a row of

equally spaced point vortices along a straight line (to be identified with the
interface in the mixing layer problem). A velocity difference between fluids
is simulated by requiring the strength of each vortex to be K = XAU

where X is the distance between adjacent vortices. The vortices are fixed
in space and moving with the mean flow velocity 1/2 (U1 + U2 ). Summing

the logarithmic potentials of the infinite line of vortices gives the complex
streamfunct ion

w(z) = + i4 = log sin(!,-)
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The complex velocity of any point on the interface is then

dw u -iv = iK (z
dz - cot( ,

so that the position of any point on the interface can be found by solving the
equa tion

dz(t) =__ cot(z)

dt 2X X

The solution shows that the streamlines take the shape of the broken lines
in the sketch, and the interface "rolls-up" about the closest vortex. The
resul ting

-- C ..- ,

interfa ce V~

X-

structure has an aspect ratio X:Y that varies in time. Because both scales X
and Y increase toward upper limits (determined by the vortex spacing), the
area occupied by the spiral structure, cf -XY, also tends toward a well-
defined upper limit.

However, there is no reason why the point vortices should be fixed
relative to each other. Suppose a small perturbation is imposed on their
initial positions so that the vortices lie at the points

m (t 0) = m X + \ , m odd

M m even

Ym (t 0) = 0,

where < < X Then relative motion of the vortices ensues.

i II
Iinitial interface

-% I - -

o A 0 (1.,..) II

..-6
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Each vortex moves on an elliptic path, and so each pair must reach a
"point of closest approach" when odd and even numbered vortices lie on a
vertical line. This occurs at a time 0 , where

0

4XK
0 K z-log 2.

o rAU

Pairing, or coalescence, of vortices is assumed to occur at this time. The
distance between the new, larger vortices will be 2 X , and the whole
pairing process is free to recur. If the initial vortices were the zeroth
generation, then the nth generation vortices will be at a distance 2nX
apart and will pair at a time 0 = (I + 2 + 2 n + "''+ 2 n-l) e- . From
this, the lifetime of an individual vortex structure in the nth generation
can be shown to approach the value

lifetime of vortex _ 1 as n . o+
birthtime of vortex

Some observations of mixing layers by Roshko (1976) and Hernon C ) have
given the values 0.43 and 0.89, respectively, for this ratio of time scales.

The area occupied by the "rolled-up" structure at the beginning of the
(n + I) st generation of vortices will be given by

a n+l = 2(l + a) n 1

where a is the area covered at the beginning of the n t h generation. Thefactor On  includes the influence of the growth of the nth generation

structures during their lifetime, as well as any deviation from a simple area
doubling when two equal sized vortices coalesce. A normalized area may be
defined as

CF n+l

Sn+1 U=.(2n -

so that
1

Sn+ I  2 (+ Sn .

By making a suitable renormalization of the area (multiplying by 2/14U)
after each pairing, Jimenez (1980) obtained a limit cycle for the sequence of
successive area s.

An analogy can now be drawn between the observed pairing of vortex-like
structures in mixing layers and the pairing of point vortices. This suggests
that the mixing layer thickness sh oul d increase with distance from the
splitter plate according to

6 YLAU

x k(U I + U2 )
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where the distance is again given by x = 1/2 (Ul + U2 )t and YL is a
constant. This predicts the observed linear growth and dependence upon AU.
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BOUNDARY LAYERS AND TURBULENT SPOTS

Joseph B. Keller

LECTURE #2.

Turbulent spots in boundary layers are the analogs of the vortex

structures observed in mixing layers. The net effect of observations of these
"coherent features" has been to reintroduce fluid dynamics into the theory of
turbulence. Theorists must now develop dynamical models of these flows which
are, in some sense, embedded in turbulence.

We begin by recalling some properties of boundary layers. For the

Eulerian fluid equations

u + (u'V)u = -Vp , (la)

V'u = 0 (lb)

governing fluid flow in some region D, the appropriate boundary conditions
are that the fluid velocities normal to the boundary vanish

u'n =0 on 3D . (2)
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The Navier-Stokes (N-S) equations - when the viscous term, vAl , is
added to the righthand side of (la) - are a higher order system and the
boundary condition (2) must be supplemented by the requirement that the
tangential velocities also vanish

u't = 0 on 9D (3)

The limit of vanishing viscosity is therefore a singular limit for the N-S
equations, and it is not obvious how to treat the tangential boundary
condition in this case. If this condition were applied to the Euler equations
there would, in general , be no solution.

In 1903 Prandtl investigated this problem and thus began the theory of
singular perturbations. He postulated that in the limit V - 0 the solution
to the N-S equations approaches the Eulerian one everywhere except within a
vanishingly small layer near the boundaries. To analyze this boundary layer,
where viscosity dominates, he introduced a simplified set of equations
assuming that the boundary layer is so thin that longitudinal derivatives are
small compared to transverse derivatives. In 1907 Blasius found a similarity
solution to these equations for uniform flow along a flat plate, reducing the
problem to a single nonlinear ordinary differential equation. This equation
must be solved with boundary conditions both at the surface and far from the
surface, where the Eulerian solution is valid. Without a computer the
solution of the Blasius equation is difficult; however, it is interesting to
note that in 1941 Weyl developed an iterative technique for this purpose. The
Blasius solution is the standard laminar boundary layer when the external
stream velocity is uniform. A slightly more general case, when the external
velocity varies as a power of downstream distance, was studied by Falkner and
Skan (1930).

In the 19 2 0's Heisenberg studied the stability of the Blasius boundary
layer. Tollmien and Schlichting concluded this work in 1935. They assumed a
perturbation to the boundary layer solution of the form

(Y) e i ( k x - a° ) 0 (4)

where x is the longitudinal and y is the normal coordinate. For certain wave
numbers and a range of Reynolds number, they showed that there is temporal
instability. (Here is another problem where it would be more appropriate to
study spatial instability). If the perturbation varies in the transverse (z)
direction then, as Squires has shown, instability sets in at a higher Reynolds
number than before. Therefore, a study of two dimensional perturbations is
sufficient to find the onset of instability. In the 1940's Schubauer and
Skramstad demonstrated the existence of the Tollmien-Schlichting waves. In
their experiments a vibrator was inserted into the boundary layer with the
appropriate real frequency to excite the instability. (Note again, that it is
spatial instability that is being observed.) These experiments led to the
supposition that these waves are involved in the transition to a turbulent
boundary layer. Turbulence may occur when the waves reach sufficient ampli-
tude to "break". Measurements of the wave amplitudes show that typically
growth occurs by a factor of e 9 to ell before the boundary layer becomes
turbulent.
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In 1951 Emmons discovered that just before the transition point, localized
spots of turbulence could be observed. These spots probaly play a role in the
breakdown of the laminar flow. Emmons' student Mitchner (1954) examined these
further and Schubauer and Klebanoff also reported observations in 1955.
Observations of the flow by Elder in 1960 showed that if a thin layer of dye
was placed along the plate, then some of it would become entrained by the
spots. The impact of these experiments was small until the 1964-67 observa-
tions by Kline and Reynolds. They claimed to observe these same spots in the
turbulent boundary layer itself.

Since this time there have been many quantitative measurements due to the
development of laser-Doppler velocity measuring techniques. The 1976
measurements of Wygnanski revealed the 3-D structure of these spots and in
1978 Cantwell, Coles and Dimotakis examined the flow in the symmetry plane of
the spot. All of these observations were done with artifically generated
spots in a laminar boundary layer.

The experimental apparatus was a water tunnel with uniform flow in the
x-direction. A laminar boundary layer is formed on a plate inserted in the
flow. Spots are generated by perturbing the flow with a pulse of water from a
nozzle near the head of the plate. The spots grew linearly in size with
distance downstream after an initial region of more rapid growth. Linear
growth continued over a large distance until (presumably) viscous effects
become important and the growth rate declined (see Fig. 1).

Spot Measuring Stotions

Virtual Diasjwanc
Origin Generator

IPL.ATE T K

LEADING
EDGE

M m=5.5 cm/sec Assumd Conica Growth

X CZU00 V Rqog Growth

0=15 CM
14cM'-59c.--'-1

59CM-..

"2 4 4 cm

Fig. 1. Sketch of Cantwell, Coles, and Dimotakis (1978) Experiment.
The plan view of the spots show that they develop a characteristic

arrowhead shape. In the photograph, dye that was placed in a thin layer next
to the plate was swept into, and entrained by, the spot leaving a clear region
behind.
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In the Cantwell, Coles and Dimotakis experiment a laser was positioned at

three positions along the plate (x = 19, 59 and 119 cm) pointing in the z
direction and focussed on the symmetry plane of the spot. Measurements of the
streamwise velocity as a function of y showed that near the plate the spot
enhanced the unperturbed velocity while far from the plate the velocities were
reduced. This suggests a vortical nature for the flow in the spots.

While the velocity profile for an individual spot contains large wiggles,
an average over an ensemble of spots produces a smooth velocity profile.

With these profiles it is possible to follow the evolution of features on
the profile moving downstream. This analysis shows that the velocity scales as

v = f(x/t,y/t) , (5)

with high accuracy.

Wyganski showed that in the symmetry plane of the spot wz = 0, so the
continuity equation becomes ux + vy = 0 in that plane. Therefore, a
stream function, i , can be introduced in the x, y plane with y = u and

x = -v. The conical scaling of v given above implies that

= tg(x/t,y/t) . (6)

This is a consistent form for solution to Euler's equations in
?-dimensions. The streamline patterns of the spot sho.' closed streamlines,
and an integration of the fluid particle trajectories shows that some
particles are indeed entrained by the flow. The streamline patterns show that
the center of the spot moves at .78 times the free stream velocity.

Wyganski's measurements show that there are stream-wise striations
in the flow which may be Taylor-Gortler vortices. It appears that a good
model for the spot is a horseshoe shaped vortex where the feet of the
horseshoe are planted in the genera tion reg.iQ9.. As .tbe..head _of the horseshoe
moves downstream the vortex lines are stretched.

There have not been many theoretical studies of turbulent spots.
Theodorsen suggested long before these measurements that horseshoe vortices
might play a role in turbulence, and as noted above this appears to be a
reasonable model for the spots.

Most of the theoretical work has been linear analysis. In 1960 Kovasznv
and Criminale considered a point disturbance to the laminar boundary layer.
If a perturbation of the form

i~ciit-k x-kyy)(7)

f(z)e x y (7)

is assumed then an ordinary differential equation for f (the Orr-Sommerfeld
equation) can be obtained. A Fourier integral of these solutions can be used
to describe the flow due to an initial point disturbance. This solution shows
that a kidney shaped region develops downstream from this disturbance. This

may be the initial stage of a turbulent spot.
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Additional work along these lines was done by Gasster and Grant (1975).
They treated both stable and unstable boundary layers.

The only nonlinear case so far treated was by Landahl (1979). He studied
short linear waves growing on large waves and inducing an instability.

Extensive numerical computations have been done by Leonard (1978-80). He
represented the inviscid flow by an array of vortex lines aligned in the z
direction. A small localized wiggle was put on some of the lines and allowed
to propagate. The equations of motion for a point x i ( $ ) on the ith

vortex line at a distance $ along the line are given by
P. r (x. - x .

= ~ F. d~'1
1 xi(4) -4-r J [1xi _ xj[ 2 + (ai_ )213/2 * (8)

Here Fi  is the strength of the vortex line and cai  represents the
radius of the core. The constant O is empirically adjusted to obtain the
correct velocity for the known ring vortex solution. This constant is an ad
hoc computational device to avoid singularities when two vortex lines are
close together. Leonard has produced a movie of the evolution of this system
showing the generation of a horseshoe shaped region which is suggestive of the
experimental measurements.

Let us now suppose that a turbulent flow is composed of a collection of
spots. Consider, for example, the flow through a cylindrical pipe with axis
in the z direction. Assume that the fluid velocity and pressure can be
written as a sum of contributions due to individual spots.

N N (9)

U = u 1 , P = pi

where N represents the number of spots. Each spot is assumed to satisfy the
N-S equations

ut + (u-Vu -Vp + VAU (10)

V'u i = 0, (11)

i
u = 0on9D . (12)

Note, however, that the full fluid velocity is retain,'d in the nonlinear term
so that no approximation is made.

The velocity profile of each spot may have a rapidly varying or stochastic
part as well as a mean component. Of course, we do not know the form of this
profile although experimental measurements could be used. In any case,
suppose that the functional form of the spot is universal

i " "

u U(x-x ,t-t ,s) , (13)

p P(x-x ,t-t ,s) (14)



- 97 -

Here, U and P are universal functions and (x', t) represent the position
and time where the ith spot forms. We suppose that this formation takes
place on the pipe boundary and therefore if the pipe is not circular, the
functions Q and P will depend on the parameter s, which indicates the arc
position of formation on the pipe boundary.

The idea is to attempt a self-consistent formulation where the equations
for determination of U and u are intertwined. To this end, we define the mean
fluid velocity by

L/2 T/2

~(x,y) = lim - u(x,y,z,t)dtaz , (15)

T->°° -L/2 -T/2

where we average over downstream position 3s well as time. Now we substitute
into Eqn. (15) the assumed form (9) and (13) for U, and introduce the
spot number density: n(s) = number of spots per unit arc length per unit
distance downstream per unit time. Then n(s)LT is the number per unit arc
length in a section of pipe of length L during time T, and Eqn. (15) becomes

I(x,Y) = n(s) fU(x-x0 (s),y-y0 (s),z,t,s)dtdz . (16)

- -. o

For a circular pipe, U is independent of s. In this case we integrate the
above equation over s = ade obtaining

0 00 2Tr (17)
=na U(r,O,z,t)dB,dt,dz

Here U(r, 0 ,z,t) represents the velocity in a spot born atr = a, 0 =z=t=O.
Similarly the pressure gradient is given by

z f f [P(re,+-,t) - r(rO, -,t)]ddt (18)
- 0

=2lTna J [P(+-s,t) - P(- ,t)]dt

where the righthand side contains the pressure drop along the pipe, which is

independent of r and 0. Therefore, from (18) the local mean pressure gradient
and the total pressure drop along the pipe due to one spot determine the
number density of the spots.

If the number of spots is large (or infinite as it is in the infinite
pipe) then it seems reasonable that the total fluid velocity could be
approximated by the mean. Thus, the sum over a great number of spots acts as
an averaging. In this case the N-S equation for a spot would become

u + U)i = -Vp i + vAu,
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which is an integro-differential equation for the universal function j. An
improved theory could be obtained by replacing u by u + ui retaining the

velocity u1 of the ith spot itself.

As a computation with this equation one could assume that u is given by
the experimentally measured profile and that at t = 0 u i = 63 (x-x').
In this case would the u obtained from computation of ui be approximately
the same as the assumed -profile? Perhaps an iterative -technique could be
developed.

This theory does not account for the triggering mchanism for the spots.
The computations of Landahl show how new spots could be triggered by the flow
field of other developed spots.

In view of its importance, we shall call a turbulent spot a turbulon - an
acronym for The Universal Rapid Burst upon Laminar Outer Flow.
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Notes Submitted by R. Griffiths

SOLITARY WAVES AND BIFURCATION THEORY

Joseph B. Keller

LECTURE #3

Shallow Water Theory and Solitary Waves Derived by the Scaling Method

The analysis of long waves in shallow water, such as the tides, is usually
based upon certain simplified equations called the equations of shallow water
theory. These equations are inadequate to describe solitary waves or cnoidal
waves, however. Therefore, Boussinesq (1871) derived another set of
simplified equations which were adequate to describe such waves. Lord
Rayleigh also devised an equation to describe solitary waves, and later
Korteweg and DeVries (1895) devised their well known equation which accounts
for these waves and their interactions.

The derivations of all these equations were unsystematic. They involved
the neglect of some terms and retention of others without a definite basis for
estimating their relative sizes. Thus, it was not clear whether or not the
derivations were consistent, nor how the equations could be improved upon if
that were necessary.

K. 0. Frederichs (1948) introduced a new method to derive the equations of
the nonlinear shallow water theory in a systematic way. It involved the
explicit scaling of horizontal and vertical distances and velocities with
different scales. The ratio C of the vertical scale length to the
horizontal scale length was then defined and assumed to be a small parameter.
Then all the unknown functions were written as power series in c, substituted
into the equations, and coefficients of each power of c were equated. In
this way, the nonlinear shallow water theory was obtained for the leading
terms in the expansion.

When applied to steady progressing waves, the nonlinear shallow water
theory yields only two types of solutions: uniform flows and bores. In order
to obtain other steady progressing waves, Keller (1948) extended the expansion
to higher order in E , starting with the uniform flow. In that way he
obtained the solitary wave as well as the nonlinear periodic waves which are
called cnoidal waves. Since then the scaling method has been used to derive
the Korteweg-DeVries equation and the equation for solitary internal waves.
In fact, it has become a standard tool in fluid dynamics.
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A particularly interesting development of this method was made by Shen and
Keller (1973). They considered waves which did not have to be plane, in a
stratified fluid which could vary in depth and in stratification in both
horizontal directions. However, the horizontal variations had a length scale
large compared to the length scale of the waves, and the length scale of the
waves was large compared to the vertical length scale. From these assump-

tions, they found that the waves travelled along rays, as in geometrical
optics. The wave amplitude satisfied an equation like the Korteweg-DeVries
equation along these rays. Thus, the theory of these waves combines the
essential feature of short waves, i.e., propagation along rays, with the
finite amplitude effects usually associated with long waves.

Solitary Waves Derived via Bifurcation Theory

Keller's (1948) derivation of the solitary and cnoidal waves leads to an
interpretation of these waves in terms of bifurcation theory. There is a

family of solutions, the uniform flows, which exist for every flow speed. At
the critical flow speed (gH)1 /2 another family of solutions branches off
from this family. It is the family of cnoidal waves parameterized by a
wavelength, an amplitude, and a phase. The infinite wavelength members of
this family are the solitary waves.

There is also another way of viewing the occurrence of a solitary wave as
a bifurcation phenomenon. It is based upon the fact that the solitary wave

solution tends to a uniform flow at x = - . Thus, by considering a steady
flow as evolving in the direction of increasing x, we see that two different
flows can evolve from a uniform flow at x = -co . One is the uniform flow
itself, and the other is a solitary wave of arbitrary phase.

In order to make this description more explicit, let us consider the
amplitude A(t) of any unstable motion of a dynamical system. Linear theory
yields for the evolution of A, an equation of the form

At = aA . (I)

Because the growth rate a is positive, this equation predicts unbounded

exponential growth. However, as Landau pointed out, nonlinear terms will
ultimately become important enough to limit the growth of A. Therefore he
proposed that Eqn. (1) should be replaced by

3A t = aA-6A (2)

The coefficients rt and 8 can be obtained from the original problem
governing the field of which A is the amplitude. For example, let us suppose
that the field u(t,x) satisfies the equation

u = F(u) (3)

Let W(x) be the most unstable mode of the equation linearized about the steady

solution uo(x) for which F(u o ) 0 0. Then we write

u(t,x) = u0 (x) + A(t)4(x) (4)
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By substituting Eqn. (4) into Eqn. (3) and taking the inner product of the
resulting equation with cb , we get

<,F(u0 + At)>A-= (5)

Upon expanding the rifht side of Eqn. (5) in a Taylor series, and keeping
terms up to order A we get Eqn. (2), provided that the quadratic term
vanishes. In this way, we find explicit expressions for c and R

Each solution of the Landau equation grows from zero at t = -co to
+ (/B)i 2 , except for the solution A(t) 0: 0. Thus the solutions bifurcate

from A = 0 at t = - ,,. If we interpret t as a space variable, the Eqn. (2)
describes the spatial growth of a disturbance. By interpreting shock waves in
this way, we have been able to analyze weak shocks governed by the Bol tzmann
equation as well as by the Navier-Stokes equations. The shock solutions
bifurcate from a sonic flow at x = - - .

The preceding considerations, based upon the Landau equation (2), show why
the profile shown in Figure I is of such common occurrence in nonconservative
systems. We shall now examine the analogous equation for the amplitude of motion
of a conservative system. Let us begin with the energy equation, which we
assume to be of the form

A2 + V(A) = E (6)
t

Here V is the potential energy and E is the total energy. We suppose that A =

0 is a state of rest so that V(O) = E and VA(0) = 0. Then we write

E - V(A) = a A2 - PA 3 + .. . (7)

Now omitting the higher order terms, we can rewrite Eqn. (6) in the form

At = [xA - A3] / 2 . (8)

This equ3tion replaces the Landau equation for conservative systems.

Each solution of Eqn. (8) which starts at A = 0 when t = -- increases
until A = c 2 /3 (See Fig. 2.) Then if A(t) has a continuous second
derivative, the solution decreases to A = 0 at t = + I. When we interpret t
as a space variable, these solutions are solitary waves. They differ from one
another only by a phase shift. This analysis indicates why solitary waves are
so prevalent. When V(O) 4 E, Eqn. (6) describes periodic waves, such as the
cnoidal waves.
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NON-LINEAR EQUATORIAL WAVES

John P. Boyd

Using the method of multiple scales, I show that long, weakly nonlinear
equatorial Rossby waves are governed by either the Yorteweg-deVries (KdV)
equation (symmetric modes of odd mode number n) or modified Korteweg-deVries
(MKDV) equation. From the same localized initial conditions, the nonlinear
and corresponding linearized waves evolve very differently. When nonlinear
effects are neglected, the whole solution is an oscillatory wave-train which
decays algebraically in time so that the symptotic solution as t -- 0 is
everywhere zero. The nonlinear solution consists of two parts: solitary
waves plus an oscillatory tail. The solitary waves are horizontally localized
disturbances in which nonlinearity and dispersion balance to create a wave of
permanent form.

The solitary waves are important because (i) they have no linear
counterpart and (ii) they are the sole asymptotic solution as t -- cc . The
oscillatory wave-train, which lags behind and is well-separated from the
solitary waves for large time, dies out algebraically like its linear
counterpart, but the leading edge decays faster rather than slower than the
rest of the wave-train. Graphs of explicit case studies, chosen to model
impulsively excited equatorial Rossby waves propagating along the thermocline
in the Pacific, illustrate these large differences between the linearized and
nonlinear waves. The case studies suggest that Rossby solitary waves should
be clearly identifiable in observations of the western Pacific.

DYNAMICS AND STATISTICS OF POINT VORTICES

Hassan Aref

The motion of N point vortices in a plane was considered for 1 . N
0(104). The system is integrable for N = 1, 2, 3 (Novikov, 1975 and Aref,
1979). For NN = 4 stochasticity sets in (Novikov and Sedov, 1978, 1979 and
Aref and Pomphrey, 1980). Numerical experiments revealing chaos were
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described and the result was related to the question of predictability of
two-dimensional fluid motions and to the ideas of KAM theory.

For N 0(10) configurations of identical vortices in uniform rotation
were sought. The classical results were reviewed and the recent numerical
study by Campbell and Ziff (1979) mentioned. Results of some recent work in
collaboration with F. Calogero was briefly touched upon.

For N > 0(100) the detailed motion of every single point vortex is of
little interest and the emphasis is on using the point vortices as a
convenient discretization of the continuum equations (the two-dimensional
Euler equation). The Brown and Roshko (1974) structure of the shear layer
provided the motivation to do a large scale numerical study of this problem
(Aref and Siggia, 1980a). In the simulation discussed 4096 point vortices
were followed in time using the vortex-in-cell algorithm of Christansen (1973)
with a 256x256 background grid. A lengthy exposition of the conclusions would
be out of place here and the reader is referred to our paper.

More recently we have considered the evolution of two parallel rows of
oppositely signed vortices (Aref and Siggia, 1980b). Depending on the
symmetry of the initial perturbation the flow evolves either toward a
two-dimensional wake or jet. From the large number of pictures shown we
select Figure 1 which illustrates the pairing of vortex structures in a plane
jet. Each dot corresponds to a point vortex; the bottom ones are all
positive, the top ones all negative. The large, diffuse vortex blobs are our
'coherent structures" and the pairing interaction is a basic mechanism in the
evolution (Winant and Browand, 1974; Crow and Champagne, 1971).
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CANONICAL EQUATIONS FOR SLOWLY VARYING SOLITARY WAVES

Roger Grimshaw

A general theory is developed for the evolution of a dispersive and weakly
nonlinear wave packet in an inhomogeneous medium. The wave packet propagates
along rays determined by the linear dispersion relation, and the equation
describing the evolution of the wave amplitude A along a ray is obtained. For
unidirectional modulations the equation is the nonlinear Schrodenger equation

_QA 4-~ a p2 +vMAi o,

with appropriate generalization for multi-dimensional modulations. Here the
coefficients o , V are functions of s alone, s is a time-like coordinate
which varies along a ray, and V is a coordinate which is constant along a
ray, but whose spatial projection defines the spatial direction of wave
propagation. I A 2 1is the wave action flux along a ray if there is no
dissipation in the system. The scaling required to produce this equation
scales s with a- 2 , with a- I and the inhomogeneous medium with a-2 ,
where a is a small parameter measuring amplitude.

Plane wave solutions of the nonlinear Schrodinger equation are unstable

when 0-V 0, but it will be shown that for long waves W and V necessarily
have opposite signs. For the case 0 V > 0, and both constant, there is a

solitary wave solution. The behavior of this solitary wave is described
when 4 and V" are not constant, but vary slowly with respect to the
solitary wave. The principal result here is that the solitary wave deforms so
that A 2 0-V-1 remains constant. Also, for some special forms of Opv

there exist transformations which convert the variable coefficient equation
into a constant coefficient equation.

For long waves a related theory is developed to describe the evolution of
a weakly nonlinear wave in an inhomogeneous medium. The wave propagates along
rays determined by the linear long wave dispersion relation. The equation
describing the evolution of the wave amplitude A along a ray is the Yorteweg-de
Vries equation

3 ~ ale

Here the coefficients A- , and 6 are functions of s alone, s is a
time-like coordinate which varies along a ray, 0 is a phase variable, and %N
is a coordinate transverse to a ray. A2 is the wave action flux along a ray
if there is no dissipation in the system. The scaling required to produce
this equation scales s with a-3 , e with a-1 , VY with a- 2 , the
inhomogeneous medium with a- 3 , where a is a small parameter measuring
amplitude. The behavior of the solitary wave solution is described when
and - are not constant, but vary slowly with respect to the solitary wave.
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The principal results here is that the solitary wave deforms so that
A I remains constant, with a shelf developing behind the wave.

UNSTABLE VORTICES IN A ROTATING, TWO-LAYER FLUID

R. W. Griffiths

There are a number of geophysically important situations in which surfaces
of constant density, under the influence of the Coriolis force due to the
Earth's rotation, intersect one horizontal boundary and in which the fluid
motion is not constrained by rigid vertical walls. Isolated eddies, con-
taining closed streamlines and with horizontal length scales of the order of
102 km, are found at the surface in many parts of the oceans. More
rectilinear frontal zones between air or water masses of unequal density,
intersecting the free surface of the ocean or the rigid bottom boundary of the

atmosphere, also exist far away from vertical boundaries.

In the laboratory, density fronts can be established in an axisymmetric

configuration. We released either a constant flux of fluid from a point
source or a constant volume of fluid into a rotating environment with a
different density. In the constant volume experiments, fresh water was placed

inside a bottomless cylinder which was surrounded by a homogeneous layer of
salt solution. After the system was brought to solid body rotation, the
cylinder was carefully removed. The buoyant fluid then collapsed and spread
radially until it reached a state in which the radial pressure gradient, due
to buoyancy forces, is balanced by the Coriolis and centrifugal forces. The
resultant anticyclonic vortex was always unstable to wave-like azimuthal
disturbances, and broke up into a well-defined number of smaller vortices. In

the point source experiments the source was placed at the free surface and the
resulting anticyclonic vortex grew continuously with time. It reached a
critical size at which the flow became non-axisymmetric.

The transition to non-axisymmetric flow can be described by two

parameters: @, the square of the ratio of the internal Rossby radius of
deformation to the horizontal length scale of the flow, and 8, , the fraction

of the total fluid depth occupied by the layer inside the front. For 6 CC 1
and 10-1 unstable disturbances obtain most of their energy from the
potential energy of the flow, whilst for S 4 10-1 extraction of kinetic
energy from the basic shear becomes the dominant driving mechanism. When
is not too small in the point source experiments, we observe an azimuthal
disturbance whose phase increases with depth, a characteristic feature of
baroclinically unstable waves. When the front intersects the free surface (as

opposed to the rigid bottom of the tank) n = 2 is the minimum azimuthal wave

number for an unstable disturbance.

At large amplitude of the growing waves, baroclinic and barotropic

processes combine to form n vortex dipole structures which entrain buoyant
fluid from the original vortex and propagate radially over the free surface.

The relative strengths of the paired cyclone and anticylone appear to depend
upon the ratio, 4' , of layer depths. Also, the anticyclones are confined to

the upper layer, while the cyclones extend throughout the depth of the tank
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(at least for S' not too small). The vortex pairs are long-lived features and
eventually dissipate their energy due to friction.
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EVOLUTION OF LONG NONLINEAR WAVES IN STRATIFIED SHEAR FLOWS

Roger Grimshaw

There are now a number of reports of long nonlinear internal gravity waves
occurring on the thermocline in inland lakes, fjords or coastal waters, or on
the nocturnal inversion in the atmosphere. When these long waves can be
identified as solitary waves, the appropriate equation to model their evolu-
tion in the first instance is either the Yorteweg-de Vries (KdV) equation when
the horizontal wave-guide has limited vertical extent, or the Benjamin-Davis-
Ono (BDO) equation for a deep fluid. Here these equations are derived for the
case when the waves are propagating on a basic stratified shear flow.

The basic state, as well as having the usual dependence on the vertical
coordinate which defines the wave modal structure, is allowed a slow variation
in the horizontal and temporal coordinates. The waves then propagate along
rays defined by this basic state, and the evolution equations, either KdV or
BDO, describe the evolution of the wave action flux as the wave propagates
along the ray. For the KdV equation, if E 2 is a small parameter measuring
the amplitude of the vertical particle displacement, the phase of the waves
varies on the scale E-1 , while the evolution of the wave and the basic
state vary on the scale E-1. For the BDO equation, E measures the
amplitude of the vertical particle displacement, the phase varies on the
scale and the evolution of the wave and the basic state vary on the
scale E-. To derive the equations, an operator formalism is developed
to handle the analytical complexities, and this formalism may be readily
applied to other complex wave systems.

A brief discussion is given of the solutions of each of these equations in
three special cases. First, if the coefficients are constant, there is the
solitary wave solution, the N-soliton solution and the inverse scattering
formalism is available to solve certain initial value problems. Second, the
asymptotic solution describing a slowly varying solitary wave is presented;
this deforms so as to conserve its energy, and a shelf develops behind the
wave so that overall the mass is conserved. Third, it is shown that a
solitary wave incident on an abrupt change in the basic state will generally
either fission into a number of solitons, or break up into a dispersive wave
train.

Both the KdV and BDO equations are restricted to modelling small amplitude
waves, whereas observations often show waves of large amplitude. In an
attempt to model this, the BDO equation is extended to a higher order in
amplitude. Second order in amplitude corrections to the wave speed and wave
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length of the solitary wave are computed. In one case of interest, it is
found that these second order terms decrease the wave speed relative to the
first order theory, and increase the wave length for a given wave amplitude.

Finally, some solitary wave solutions of the full nonlinear equations are
presented which are long, but unrestricted in amplitude. The solutions
describe the "snake-like" deformation of a thin layer of stratified fluid,
separating two regions of constant density. When this thin shear layer has
constant Brunt-Vgisalg frequency the solitary wave solutions are governed by
the steady BDO equation.

SOME NOT-ALTOGETHER-INCOHERENT LARGE STRUCTURE IN TURBULENT

CONVECTION AND A NOT-ALTOGETHER-COHERENT MODEL

L. N. Howard

Recent experiments of R. Krishnamurti have found that, in a certain range
of Rayleigh number near 107, turbulent convection in the Benard configura-
tion is accompanied by a large scale circulation, frequently filling the
entire convection box, which appears to persist for long periods (days, in the
experiments). These experiments were described in this lecture, together with
others designed to investigate various possible perturbing influences which
might be conjectured to be responsible for the large scale flow. Lack of
proper levelling of the convection tank was, for example, found to have very
little effect, even when the tank was tipped (in either direction) to an angle
many times any possible experimental uncertainty. Differential heating of the
ends of the tank, if large enough, has an effect -- it can reverse the
direction of the large scale flow, but the new direction is retained when the
differential heating is removed, or even reversed to a limited extent. On the
whole it appears that this phenomenon is an autonomous property of convection
whose precise orientation depends on initial circumstances or minor extraneous
perturbations, but which, when once established, appears to be fairly stable.

A six-dimensional truncated model illustrating a possible mechanism for
this phenomenon has been constructed and explored by Krishmamurti and the
speaker. This model contains the Lorenz model on a 3-dimensional invariant
subspace, but has the potential of modelling also a large-scale flow. At low
Rayleigh number the Lorenz subspace is attracting. Above the critical
Rayleigh number at which steady convection sets in, but below the (sub-

critical) oscillatory bifurcation of the latter in the Lorenz model, a second
bifurcation to stable steady motions not in the Lorenz subspace occurs. These
may be described as tilted cells with asymmetry between the clockwise and
counterclockwise ones; this gives a non-zero horizontally-averaged horizontal
velocity oppositely directed in the upper and lower halves of the layer, but
no large scale Lagrangian transport. (We have seen analogs of these steady
tilted cells in preliminary qualitative experiments on convection in a
Hele-Shaw cell.) At higher R the tilted cell solution (in the mathematical
model) undergoes a supercritical Hopf bifurcation to stable periodically
oscillating "cells" which do have a net large scale Lagrangian transport.
These periodic solutions are suggestive of the large scale motion seen in the
turbulent experiments. Further increase of R in the model gives complicated

other phenomena including sequences of period-doubling bifurcations,
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hysteresis effects, and irregular oscillations. Some of these resemble

phenomena familiar in iterations of certain one-dimensional maps, as well as
in the Lorenz model, but also exhibit certain significant differences, notably
in the hysteresis effects.

I. ARCTIC OCEAN EDDIES AND BAROCLINIC INSTABILITY

Kenneth Hunkins

Baroclinic eddies with diameters of from 10 to 40 km have been observed in
the deep Arctic Ocean north of Alaska. These eddies have a velocity maximum
with orbital speeds which may reach 50 cm/s at a depth between 100 and 200 m.
From 10 to 20% of the ocean area north of Alaska is covered by these eddies,
and they account for almost all of the kinetic energy in the region, com-
pletely dominating the mean flow. The water mass within the eddy differs from
the surrounding water and points to a source on the Alaskan shelf.

The origin and some of the characteristics of these eddies can be
accounted for by the instability of the mean geostrophic shear at the Alaskan
shelf edge. A generalized Eady model with exponential mean shear and
stratification is applied using ocean parameters appropriate to this region.
Small perturbations tend to grow with an e-folding time of 154 days, which is
sufficiently short for large amplitude eddies to develop. The half-wavelength
of the fastest-growing wave is 37 km in reasonable agreement with the observed
eddy diameter. Application of the same model to the West Spitsbergen current
between Greenland and Spitsbergen gives a growth rate of 7 days and a half-
wavelength of 22 km suggesting that eddies similar to those north of Alaska
may be expected on the other side of the Arctic Ocean.

II. SOLITONS IN SENECA LAKE

During summer and fall when the lake is well stratified, internal surges
are often observed traveling from south to north at a speed of 35 to 40 cm/s.
Isotherms are as much as 20 m deeper after the surge has passed. The surges
are accompanied by a wave train with two distinct parts. First there are a
number of vertically coherent waves with broad peaks and sharp troughs,
wavelength of about 250 m. This is followed by a train of lower amplitude and
less coherent waves. The initial coherent waves are interpreted as the
solitons of nonlinear wave theory. Numerical solutions of the Korteweg-
deVries equation for an initial pulse are invoked to explain these weakly
nonlinear waves.

LONG THERMOHALINE WAVES

E. A. Spiegel

This is an account of a calculation of two-dimensional convection in a
plane layer of Boussinesq liquid carried out with S. Childress. The static
vertical density contrast is of the form

Ainp (Alnp) S + (Alnp) T < 0.
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The Rayleigh number we use is

R = s + (AlnP)/IT

When the fluxes of salinity and heat are prescribed on the upper and lower
boundaries, convection first appears t zero horizontal wave number. For small
wave number, k, linear theory tells us that steady solutions occur when

R = R (k) = R (1+ak 2 )
0 c

Where Rc is the critical Rayleigh number for the onset of ordinary thermal
convection and at is close to unity.

For the nonlinear case we may use a "shallow water" expansion for small
amplitude and large horizontal scale. There results the evolution equation

f - T(R1-)f - -rTf - [(f ) ] = 0,
tt Xxxx xxxxxx X xxx

where

T T =T/S'

1 is nearly unity, and f(x,t) is proportional to the leading expressions for
the temperature and salinity perturbations.

Let 62 = T(R-R o)/Rc < 1

and
f = 6R(6t)sin[kx+e(6t)].

An ODE for R alone is obtained and the behavior shown in the accompanying
figure emerges for small 6 . The solution is in the form of a wave that
hardly progresses for some time, then surges forward. The effort being
apparently too great for it, it comes almost to rest, gathers its strength for
a while, and then it hurtles forward once more - like progress in GFD.

Nigel Weiss and I have argued that in a suitable extension of the
Boussinesq approximation, the equations governing magneto-convection,
including the effects of magnetic buoyancy, are the same as those on which the
foregoing results are based. Therefore, the figure showing R ( C t) is just
an arm wave away from being a theory of the time dependence of the solar
cycle. Or it would be if the results of Depassier elsewhere in these
proceedings did not indicate that the Boussinesq approximation fails when the
convection occurs on sufficiently large horizontal scales.

GULF STREAM AND KUROSHIO CYCLONIC RINGS

Thomas W. Spence

Gulf Stream cyclonic rings are strong mesoscale eddies formed from
meanders of the Stream. During the past few years an interdisciplinary
program, including biological, chemical, and physical oceanographers was
engaged in observation of these features. One particular example (BOB) was
observed on several cruises between its formation in February 1977 until its
coalescence in September 1977. A summary of some results of the cruise and
other measurements was presented, including the work of many investigators.
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The CTD data were described insofar as they indicate the mean radially
symmetric part of the density field. Quantities derivable from the density
were shown; in particular, the velocity and potential vorticity (Olson,
1980). From the spatially distributed XBT data, non-axially symmetric
perturbations can be identified and partitioned into modes (-- sin n 9) with
the largest amplitudes in the lowest two modes (n = 1, 2). Mode two amplitude
decreases with time and from satellite imaging rotates counterclockwise (Olson
and Spence, 1378; Spence and Legeckis, 1980). Some preliminary computations
from a numerical ring model with a non Gaussian height field show some similar
effects (Smith, 198). Observations of a cyclonic eddy in the Kuroshio system

(Cheney, 1977) provided data for a comparison of features from the two
systems. Velocity fields are somewhat stronger in the Gulf Stream ring, and

the size is somewhat smaller. Non-dimensional parameters are rather
comparable (Hua and Spence, 1980).
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INTERNAL WAVE INTERACTIONS IN THE INDUCED DIFFUSION APPROXIMATION

J. D. Meiss

The Induced Diffusion (ID) approximation was introduced into the study of
internal waves by McComas and Bretherton (1977). They present numerical
computations of action transport rates for Garrett-Munk (1979) action spectra
which show that for high frequency, small scale waves the transport is
dominated by triads of the ID class; that is, diffusion of action in wave
number space for small scale waves is induced by large amplitude, large scale
waves with nearly inertial frequency.

The importance of the ID triads was demonstrated quantitatively by
Pomphrey, Meiss and Watson (1980). In this paper two Langevin techniques are

applied, yielding relaxation equations for wave amplitudes:

d z cL +;p JZW -6 P -V e- a,

The first method utilizes the fluctuation-dissipation theorem and requires the
assumption that the action spectrum, 4 Jk > , is nearly in "equilibrium".
The relaxation rate derived by this method is denoted V. A second
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relaxation rate, derived by a multiple time scale perturbation theory, is

denoted V .

There is a formal relationship between these relaxation rates and the
radiative transport equation used by McComas and Bretherton (1977). The
transport equation (derived in a geophysical context by Hasselmann, 1967) can
be formally written

-i-t a(2)

The transport rate 1/8  is, of course, a complicated functional of the
spectrum -- and therefore evolves in time with the spectrum. Comparison of
the expressions for the three rates introduced above yields the relationship

VB = -J F "V (3)

An "equilibrium" spectrum has IB 0 by definition. Equation (3) then
implies Vp V . Recalling that the derivation of VF required that the
spectrum be in equilibrium, we see that the two relaxation rates are equal
when this assumption is satisfied.

Pomphrey, Meiss and Watson (1980) give analytic expressions for the
rates V , 1/p , and 2/D in the ID approximation. These expressions show
that the ID triads dominate the interactions for frequencies p , 3" f
and vertical mode numbers Che > 5. Furthermore, it is just in this region that
I V j <(4V p 1, implying that the Garret-Munk (1979) spectrum is nearly in
equilibrium.

These calculations also imply, however, that in this region the derivation
of Eqn. (1) is invalid. This derivation used a weak nonlinearity assumption
which is only valid if

V WK (4)

where (W is the linear frequency. It is precisely in the ID region where
the relaxation rate becomes comparable to the linear frequency.

To attempt to circumvent the weak nonlinearity approximation we consider
the ID interactions from a dynamical viewpoint. Assuming that the large scale
waves have large amplitudes we drive equations for the small scale waves:

d b (5)

Here the matrix depends linearly on the large scale wave amplitudes.

Since the large scale waves have large amplitudes, they are decoupled from
the small scale waves. As a simplest model we assume that these waves form a
stationary, homogeneous, Gaussian random field. Under these assumptions
(Eqn. 5) becomes a stochastic differential equation.
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If we make no further approximations, Eqn. (5) cannot be solved
analytically, but it can be treated by perturbation theory (Van Kampen,
1974). At this point we note that for the internal wave case

At Z ( K I ) 4 6 ,) - ! 1 (6)
6 -( + -I )

Since k - m is the large scale wave number, we can neglect the higher order
corrections and assume that R is a function of k -m only.

With this approximation, Eqn. (5) can be solved explicitly yielding

> L > (7)

This equation is exact so long as the higher order terms in Eqn. (6) are
neglected. Corrections to Eqn. (7) due to these terms can be obtained by Van
Kampen's perturbation technique (1974).

In the weak interaction limit, KL becomes time independent and equal to
the relaxation rate Vp . More generally, however, the relaxation implied
by Eqn. (7) is slower than that of Eqn. (1). The effects of nonresonant

triads are included in Eqn. (7).

A transport equation, similar to Eqn. (2) may also be derived using this
technique.. This equation is derived for the second moments < bk bm >
If we assume that the initial condition for the small scale waves is a wave
packet, then this transport equation can be Fourier transformed to an equation
for the Wigner function, F(k,x).

For more details the reader is referred to Meiss and Watson (1980).
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SURFACE VISCOSITY, THE PARTIALLY FILLED ROTATING
CYLIDERAND OSCILLATING DROPS

Roger F. Gans

When a cylinder, partially filled with a liquid, is rotated rapidly about
its principal symmetry axis, held horizontally, the liquid is held against the
curved sidewalls by centrifugal force. The action of gravity on the density
contrast between central core of air and the annulus of liquid induces a
secondary circulation. The most easily measured feature of this secondary
flow is the "retrograde rotation"" of the interface: the difference between
the container rotation rate and the (slower) interface rotation rate.

A weak nonlinear and boundary layer double expansion, based on the
smallness of C g/-A12a and E = U /-** a2 , where g, ,a and W
denote gravity, rotation rate, container radius and liquid kinematic
viscosity, allows one to calculate the retrograde rotation. Its magnitude is
sensitive to the nature of the interface. For an ideal free surface, the
magnitude is 2; for a rigid free surface (a buoyant straw), EXE 11q. i
Measurements give an intermediate result, suggesting partial "rigidity" of the
surface. This ability to support some shear stress can be parameterized by
surface viscosity coefficients.

Because the relation between surface viscosity and retrograde rotation is
indirect, and because surface viscosity is not well-understood, a simpler
problem is useful: the effect of surface viscosity on the free oscillations
of a drop. If the viscous diffusion lengths are small compared to the drop
radius in both media, a boundary layer analysis works for any values of the
surface viscosity coefficients to the decay rate of the normal modes by means
of an expansion essentially in terms of the length scale ratio.

srAce viowstires t aresl with the leading tem fosud. by Mrthenex (1980)
Ate lowyraes ord th freultc isrretheioniscideab reut.A the ext orderr

therdcate andoitesi arewhte rrcting pear Ind he lMto (1ero
from Miller and Scriven's (1968) integral formulation. A novel feature of the
first order solution is that the surface viscosity effects drop out whentj () YA z (h + ) (I A-, )'/AI
where n, if and A- denote mode number, density and viscosity and the
subscripts l and 2 refer to the drop and surrounding fluids.
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FRONTOGENESIS IN THE ATMOSPHERE

William Blumen

The formalism for studying the frontogenesis problem within the framework
of the geostrophic momentum approximation has been presented by Hoskins (1975).
Under this approximation, geostrophic momentum is advected by the geostrophic
and ageostrophic three-dimensional velocity field. In addition, the motions
are constrained to be adiabatic and hydrostatic.

The Eady baroclinic instability problem, posed in this system, can be
solved exactly if the motions are restricted to the (x,z) plane. Although
this latter restriction limits application to real flows, the fundamental
dynamical mechanism that concentrates gradients of cross-front geostrophic
velocity and temperature may be exposed. The amplitude of the motion
increases exponentially, as a consequence of baroclinic instability.
Simultaneously, the cross-isobaric ageostrophic motions increase gradients
until an infinity in the vertical component of relative vorticity occurs in a

finite time at a horizontal boundary. The physical mechanism that produces
the discontinuity is that which is inherent in the rudimentary one-dimensional
advection equation.

Comparison of the solution, before the discontinuity forms, with detailed

observations of an intense cold front indicates that the model captures
fundamental aspects of frontal motions down to scales of a few hundred
kilometers. Extension to smaller scales of motion is limited by the neglect

of latent heat release, a boundary layer and small-scale mixing processes.
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EFFECT OF SIDEWALL ON WAVE NUMBER SELECTION
IN RAYLEIGH-BENARD CONVECTION

P. C. Hohenberg

An analysis is presented of the steady states of two-dimensional
convection in a laterally finite container near threshold. It is shown that
the presence of sidewalls severely restricts the allowed wave vectors which
can occur in the bulk of the container. This effect provides a possible
mechanism to explain the observed wavelength increase of convective rolls with
increasing Rayleigh number.

SMALL SCALE SYSTEMS IN THE MEDITERRANEAN

Ettore Salusti

I was interested in small scale systems detected in the Mediterranean
Sea. A first example has been seen by French researchers of LOP, Museum
d'Histoire Naturelle, Paris.

During the 1975 Medoc cruise in the northwestern Mediterranean basin,
cyclonic and anticyclonic eddies where detected in the presence of a system of
unstable baroclinic currents (Jeannin, 1976; Gascard, 1977). The observations
were made by CTD casts Swallow floats and by moored current meters.

Gascard (1977) has interpreted these data as two eddies of a baroclinic
unstable wave of wave-length A = 2 I Rd, where Rd is the internal Rossby
radius of deformation; g the gravity; D the depth,=. 2300 m; N the
Brunt-V~is~l9 frequency d 10-4sec-I

From eleven stations in the East-West section of the two eddies,
temperature, salinity and & were calculated. Lagrangian floats gave the
velocity of the cyclonic eddy. The velocity has a tangential component
averaged over 12 h, and a weak radial component of less than 2 cm/sec. For
the inner region (r 4 5 kms, r being the distance from the middle of the
eddy), the data came from Swallow float measurements and are in agreement with
the hydrographic results. A strong Mistral wind started to blow on March 8
and the cyclonic eddy moved northwards at 4.5 cm/sec speed. At this time the
anticyclonic eddy was not being tracked.

To summarize, the cyclonic eddy was a 5 km-large, rather rigidly rotating
system. Its Brunt-V~isilg frequency N was about 2.5 lO-4sec-1; the
velocity distribution 1" in the region r 4 7 km, was shaped like a bell and
at r 4 5 km, 7 = 600 m, it resulted that Vlr=3.7 • 10-5 see -.

Another system has been seen in the North Tyrrhenian Sea, south of Genoa.
Near a front (hP 0%'.-/ .- %only 50 1 100 meters deep a small cyclonic eddy of
2-3 km of radius, 50 - 100 m of depth, has been found. One could also add
that the system was seen (with one day of observations gap due to necessity of
ship entailment) at its real beginning (Stocchino, 1980).
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SECONDARY FLOWS AND THE FORMATION OF SHEAR ZONE

IN STRAINING NON-NEWTONIAN FLUIDS

Ron Smith

Starting with the Reiner-Rivlin equation reduced for two-dimensional,

incompressible flow, and by allowing the viscosity function to depend on the

pressure, a constitutive relation is developed which describes materials as

they approach different types of plastic behavior. Von Mises (e.g., hot creep)

and Coulomb (e.g., granular materials) plastics are included. The nature of

these materials is examined by determining the secondary flow driven by a

localized force, during straining. An analytic solution for the flow field is

obtained which progressively takes on the form of narrow shear zones as the

plastic limit is approached. In the pressure independent von Mises plastic

the shear zones lie at +450 to the principal axes of the background

straining, but for a Coulomb material they are aligned more closely to the

axis of compression. Intense far-reaching shear zones are possible even from

weak point disturbances, as such a flow field can efficiently draw on energy

stored in the basic flow.

NUMERICAL STUDIES OF MODONS

J. C. McWilliams

Numerical solutions of barotropic and equivalent barotropic (i.e., with

finite deformation radius) modons are examined to assess the accuracy with

which they can be calculated, their behavior under the influence of dissipa-

tion, their resistance to pertubations, and their ability to survive

collisions. In brief summary, the results are the following:

i) Modons can be successfully calculated by standard numerical

techniques if the resolution scales in space and time are sufficiently small.

In particular about 20 grid points per modon diameter are required to obtain

greater than 95% accuracy in the bulk propagation rate using second-order

finite difference techniques.
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(ii) Under the influence of momentum dissipation, modons decrease in
amplitude, reduce their zonal propagation rate, and expand their meridional
scale. The first two processes occur in ways which are insensitive to gross
aspects of the nature of the dissipation, and the third is rather simply
related to the order of the dissipation law. After sufficient amplitude
decay, the modon structures make a transition to a dispersive Rossby wave
regime. While still within the modon regime, the decline in amplitude and
speed crudely follows a modon dispersion curve.

(iii) Modons are resistant to perturbations of small amplitude and are
destroyed by perturbations of moderate amplitude. The critical amplitude for
destruction is dependent upon the scale content of the perturbation, in a
manner consistent with larger-than-modon-scale advective shearing being the
dominant destructive mechanism.

(iv) Collisions between initially non-interacting modons have much in
common with classical soliton collisons, where, before and after collision,
each of the structures are uniformly propagating and isolated, and the only
residual consequences of the collision are phase jumps in the direction of
propagation. For modons, however, there are some additional consequences of
the collisions (e.g., the propagation speeds can be different before and
after), and the modons collide by sliding around each other, with transient
but large accompanying deformations of the structures, rather than passing
through each other as solitons do.

A MODEL OF THE KUROSHIO MEANDER

Glenn R. Flierl

The Kuroshio off the coast of Japan appears to have two stable states:
the "normal" path which stays fairly close to the coast and the "meander"
pattern in which the Kuroshio turns near Shikoku in a loop of about 250 km and
returns to near the coast at Honshu. The Kuroshio seems to switch rapidly
from one path to the other and may remain in either state for long periods of
time. This behavior is reminiscent of the response of a nonlinear oscillator
to forcing.

Several models have been constructed to explore the possibility that tile
meander can be modelled as a nonlinear response to forcing near resonance by
either topography or coastline shape. For a steady flow, the potential
vorticity functional can be evaluated upstream if we assume that the topog-
raphy vanishes or the coastline becomes zonal and the flow becomes zonal. If
the upstream flow has shear, this functional will be nonlinear and the
equation for the forced response become L2 (-fd ) + N (%P ) = forcing, where

L2(* " ) is a second order elliptic operator, N ( - ) is a nonlinear
function, and the forcing terms arise from interaction with the topography or
coastline variations.

If we assume the downstream scale is long compared to the cross-stream
scale, we end up with an equation similar to the KdV equation in the
steady-state limit but with the inclusion of forcing. For a strongly-sheared
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upstream flow in a semi-infinite region, stationary, long, neutral waves can
exist given the correct current profile and speed. The nonlinearity will be
quadratic in the downstream structure with the variations in coastline or
topography entering as an inhomogeneous team. When this forcing is periodic,
multiple equilibrium states may exist. For single-bump forcing, the existence
of multiple states is more questionable. For weakly sheared flow, including a
deformation radius term, a southern boundary and cubic nonlinearity, it is
possible to find isolated responses to an isolated topographic bump where the
amplitude of the response obeys a cubic equation and thus has multiple
states: either an isolated inward or an isolated outward excursion of the
jet. Transitions will occur for particular values of the mean frow speed and
hysteresis would also be expected. Such models, while certainly over-
simplified, do suggest that the meander may be modelled as a nonlinear
response to forcing.

THE STRUCTURE AND STABILITY OF VORTICES IN A FREE SHEAR LAYER

R. T. Pierrehumbert

Many experiments have confirmed the presence of large scale organized
vortex structures in the planar mixing region between two st.eams of fluid of
different velocity (Wyganski, et al., 1979 and Browand and Weidman, 1976

present typical results). The character of steady configurations of
vorticity, and the instabilities of such configurations, are therefore of

considerable interest. We have exhibited a new family of steady solutions to
the Euler equations corresponding to an infinite row of vortices of like sign
arranged in the form of a shear layer. The family bifurcates from a parallel
shear layer with constant vorticity and extends continuously to a state
consisting of a row of point vortices. The intermediate states exhibit the
flattened shape characteristic of observed shear layer vortices and have
values of vorticity thickness/spacing comparable to those observed. Considera-
tion of the energetic properties of the family has shown that the core size

for a member of the family produced by rollup of a vortex sheet into vortices
of a given spacing is bounded below, and that successive pairings may cause
this lower bound to be attained if dissipation is sufficiently small.

We have also examined the two- and three-dimensional stability properties
of periodic arrangements of vortices in the form of a shear layer. Two
principal classes of instability were revealed. The first class is
subharmonic, repeating in the streamwise direction with a wavelength twice the
undistrubed vortex spacing. The subharmonic mode is most unstable for two-
dimensional perturbations and has a cut-off for short spanwise wavelengths.
The character and growth rate of this class of modes strongly suggest that it

is associated with the observed pairing transition. The second class of
instabilities has the same streamwise periodicity as the unperturbed state,
and is most unstable at spanwise wavelengths 2/3 of the unperturbed vortex
spacing. For sufficiently compact cores, the growth rate is comparable to

that of the subharmonic instability. The spatial structure of the instability

is similar to the pattern preceding transition to three-dimensionality
observed by Breidenthal (1978).
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PROPERTIES OF ASYMMETRIC SOLITARY ROSSBY

WAVES IN A ZONAL CHANNEL

Paola Malanotte Rizzoli

The barotropic, quasi-geostrophic potential vorticity conservation

equation over variable topography is considered a zonal channel as the basic

model capable of supporting nonlinear permanent form solutions, namely

solitary Rossby waves. The considered solutions are asymmetric being

characterized by a small aspect ratio c5 = L ' L if LI is the

North-South length scale (channel width) and L2 the East-West length scale.

Then two kinds of solutions are possible. The first is the weak wave

solution, for which U (4c, U being the particle speed and c the wave phase

speed. Weak solitary Rossby solutions can be shown to exist over the most

general topographies in the zonal channel. The second kind of solution is the

strong wave type, (U >> c) which can be obtained allowing for the relief to be

quasi-linear in its argument.

For the weak wave type of solitary solutions, stability properties have

been explored and collision experiments carried out, in analogy to the

one-dimensional case.

The stability analysis of the solitary solution with respect to pertur-

bations in the initial conditions has been investigated in the context of a

linearized analytical theory. The results of the theory have been extended to
finite amplitude perturbations through a series of numerical experiments, in

which the perturbation intensity has been gradually increased. Thus, a

threshold in the solitary solution stability can be shown to exist, separating
a region of deterministic, wave-like behavior, from a region in which the

permanent solution is being destroyed by the superimposed perturbation with
with successive turbulent evolution of the flow field. For perturbations with

energy concentrated at scales smaller than the basic field (for instance,
random perturbations with an isotropic energy spectrum proportioned to k

3 )

this stability threshold can be qualitatively shown to be reached when

PERTURBATION SOLITARY SOLUTION

r.m.s . I r . ..

ifAL r.m.s., e r.m.s. are respectively the r.m.s. velocity and vorticity

of the perturbation and basic field. The overpassing of the stability



122m

threshold can be shown by the sudden loss of correlation in the locked Fourier
phases of the solitary wave.

Collision experiments between two solitary solutions have also been
carried out for the weak wave type. In them, the amplitude of one of the
interacting waves is held fixed (A, = -0.02) while the amplitude of the
other is gradually increased through the values

A2 = -0.02; -0.05; -0.1; -0.5; -1; -2.

Until the two waves have comparable amplitude, one-dimensional soliton
collision properties are respected insofar both waves maintain their
permanence upon the interaction. Redekopp and Weidman's results are therefore
maintained in the weak wave case, for two interacting wves of comparable
intensity. However, when the stronger wave reaches an amplitude one order of
magnitude bigger than the other (A2 = -0.5), one is outside the range of
values for the solutions to survive interaction, and the stability properties
previously discussed are observed. Thus, the weaker solitary eddy Al is
progressively distorted by the stronger-and larger scale-eddy A2, showing
the evolution of the flow towards final turbulent behavior. This is
immediately evident in the extreme case A2 = -2, where the weaker solitary
wave can be regarded as a superimposed perturbation randomized by the strong
(and stable) basic solitary field.

INTERMITTENCY IN FULLY DEVELOPED TURBULENCE

Mark Nelkin

The statistical properties of the small scale fluctuations of
incompressible fluid turbulence are analyzed. The emphasis is on universal
exponents defined by various correlation functions. After briefly reviewing
the experimental support for the 1941 Kolmogorov theory, we consider the
fluctuations in local dissipation rate. The simplest and least model
dependent measure of intermittency is the dissipation autocorrelation

E W Ex (x + r) > . This function is expected to have an inertial range
form UL/0r. The exponent 4- is expected to be universal. It has the
geometrical interpretatin that 3- P- is the fractal dimension of the non
space filling objects in which the dissipation is concentrated. To
determine "-~ experimentally required some model of the correlations in the
dissipation range. Using a simple model of this behavior, the existing data
are reanalyzed to give A- .. 0.25.

A variety of other correlation functions can be measured, and several
families of scaling exponents can be defined. Scaling theories give relations
among these measurable exponents. A one exponent scaling theory expresses all
of these exponents in terms of h"- . one candidate for one exponent scaling
is the 1962 theory of Kolmogorov and Obukhov. This theory is critically
analyzed, and an alternative and simpler theory is proposed.
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PERMANENT FORM SOLUTIONS AND THE INITIAL VALUE PROBLEM

Myrl C. Hendershott

The salient feature of the initial value problem for the barotropic

potential vorticity equation (BPVE) A r1- + J(*Th- ja' + h) =0 without relief

h is exponentially growing instability to infinitesmal perturbations of finite

amplitude initial conditions (Lorenz, 1969, Tellus). But with zonal relief
h(y), initial conditions having small aspect ratio 6' = Y-scale/X-scale and
small amplitude E = 1 <1 evolve according to a set of coupled Kortweg
deVries (KdV) equations. For initial conditions which are also the product of
a function of A(x) and one of the cross-channel eigenfunctions 4" (y)
characterizing long linear topographic waves over the zonal relief, these
coupled equations collapse to the well known KdV equation for A(x). This

predicts the existence of permanent form (nonlinear Rossby) solutions of the
BPVE with zonal relief (Rizzoli, 1980) and suggests very different properties

for the initial value problem in the limit E = S'4 4 1. These con-
siderations motivate two numerical experiments. In the first experiment a
uniformly progressing solution of the BPVE having C = 1 is perturbed
in the x-direction with red noise and this solution is used as the initial

condition for (a) the BPVE with zonal relief and (b) the corresponding set of
coupled KdV equations. The coupled KdV equations do not anticipate the
sharing of energy among different cross-channel modes which develops as the

solution of the BPVE evolves. In the second experiment, initially random and

isotropic but low amplitude initial conditions are imposed. The solution of
the BPVE with zonal relief evolves towards small aspect ratio on account of
the zonal relief, a special case of the general tendency for a strong
correlation between relative vorticity and relief to develop in two
dimensional turbulence over relief (Holloway, 1978). The solution is
decomposed according to

= : anm einx + m(y). Although anl, an2 and an3
: 1,3

,t 1,3

remain of comparable amplitude the a02 evolve towards a state in which an2

n x constant, i.e. in which T an2einx 2(Y) progresses without change
of form.
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DIFFERENTIAL.ROTATION IN THE SUN

Willem V. R. Malkus

It is proposed that the 40% difference in equatorial and polar rotation
rates observed in the sun can be due to magnetic torque. Previous theories
require significant meridional circulations in the convection zone and pole to

equator temperature contrasts which are not observed. Here it is shown that
solveabilities conditions imposed on the solar dynamo process require zonal
circulation in the stably stratified region below the convection zone. This
circulation must override the flow due to other causes or the growing magnetic
field will produce large corrective forces. The non-linear eigenvalue
problems which emerge from this formulation are derived. The order-one
circulation required for solveability here is called the 'eigenflow'. Sample
analytic solutions for eigenflows are found for the simplified problem of
purely axisymmetric magnetic fields produced by -dynamo effects confined
to a spherical boundary layer. A more complete numerical study is in
progress, oriented towards the determination of those macrodynamic flows which
are most insensitive to details of the presumed field.

WEAKLY NONLINEAR STABILITY OF FINITE AMPLITUDE FREE

ROSSBY WAVE AND FORCED WAVE INSTABILITY

Richard Deininger

The weak nonlinear behavior of a slightly unstable perturbation to finite
amplitude free Rossby and topographically forced waves has been investigated
using a model consisting of a single layer of barotropic fluid on an infinite
beta-plane. The nonlinear evolution equations

d2X - A a a )( +
cI~ d (a) ~(la,b,c)

obtained by using the method of multiple scales describe the long time
evolution of the free Rossby wave problem. In (1), X, A, and F are the
perturbation amplitude and basic state wave amplitude and frequency cor-
rections, respectively. 4; is the growth rate obtained from the linear
theory of Gill (1974) and r" (n = 1,2,3) are coefficients which depend upon
the truncation of the perturbation field. These equations describe the
stabilizing feedback that occurs between the perturbation amplitude and both
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the amplitude and phase of the basic wave. Equation (lb) describes the change
in amplitude of the basic wave via the tilted trough mechanism which does not
necessarily involve a zonal flow. It is interesting to note that the system
of equations reduces in form to that obtained by Pedlosky (1970) in the
context of the inviscid baroclinic instability of a zonal flow when V 3 = 0.
The additional result here is that of the additional feedback taking place
between the phase of the basic state and the perturbation amplitude which
occurs simultaneously with the amplitude feedback between the perturbation and
Rossby wave which gives rise to an oscillatory exchange between the basic and
perturbation fields.

The forced wave set up by a uniform zonal current U flowing over a
sinusoidal topography of amplitude h, has an amplitude proportional to

Uh
U-c

which exhibits the topographic resonance where u = c. The linear stability
analysis for this basic field was carried out by Charney and Flierl (1980).
An analysis similar to that done for a free wave was carried out assuming U-c
is order one. In this case, there was no frequency feedback so the basic wave
remained stationary. Only an amplitude feedback exists. It is described by

d2X - o 2 X + N X A = 0
dTs A X2

where X and A are defined as before. The nonlinear coefficient N changes sign
as U-c does. Thus the nonlinearity is stabilizing for subresonant flow (UP
c) and destabilizing for super resonant flow (U > c). This seems to suggest
the topographic instability of Charney and Devore (1979).

The analyses demonstrate fundamental differences between free and forced

waves.
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EXPERIMENTS ON THE STRUCTURE OF A TURBULENT JET

B. T. Chu

Recent experiments conducted at Yale University on the mixing mechanism
and the structure of a turbulent jet are reviewed.* Fluid from a 4 mm round
nozzle is seeded with uniformly dispersed submicron size aerosol particles.
Assuming that each unit mass of the nozzle fluid is always "tagged" by
approximately the same number of aerosol particles with approximately the same
size distribution, the degree of mixing of the marked nozzle fluid with the
unmarked surrounding air will be reflected in a change in the aerosol
concentration. If a sheet of radiation is allowed to pass through the mixing
layer, the instantaneous distribution of the aerosol (and, therefore, the
nozzle fluid) concentration in the sheet can be monitored and inferred from
the distribution of the elastically scattered radiation. The scattered light
from the sheet is digitalized at 10,000 points in a lOOxlOO array and stored
in the computer. Subsequently, the record allows one to examine both
quantitatively and qualitatively the degree of mixing of the nozzle fluid with
the surrounding air in a plane. By storing a large number of such records in
the computer, statistical information relevant to turbulent mixing can be
deduced. In particular, the distribution of the mean concentration and the
rms fluctuation in a meridian plane are presented. The characteristic
"shoulders" in the mean concentration profile and the "depressions" in the rms
profile are shown to be consequences of the vortical mixing mechanism. A
second mixing mechanism which dominates further downstream is responsible for
the development of small scale concentration fluctuation and may be attributed
to the instability and ultimate disintegration of vortex rings. The next
effect of the instability is the production of bursts of nozzle fluid
projected radially outward.

The spatial structure and coherence of the turbulent jet is characterized
quantiatively by the longitudinal covariance. The instantaneous two-
dimensional mapping of the constant concentrating contours also allows one to
determine the various statistical properties of such contours. These contours
are generally multi-valued functions of the axial distance. The average
multiplicity of such contours and the increase of their length per unit axial
distance in the direction of the flow have been computed.

*The work reported here was carried out in collaboration with Professor
Marshall Long and Richard Chang under the sponsorship of Project SQUID. A
fuller account of this work may be found in the following preprints of the
American Institute of Aeronautics and Astronautics, AIAA 80-1370 and 80-1354.
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WHAT DETERMINES THE VERTICAL STRUCTURE
THE GENERAL CIRCULATION?

William Young

I. Introduction

The wind driven homogeneous models of ocean circulation describe the

qualitative horizontal features of the actual stratified flow remarkably
well. The verisimilitude of these models can be attributed to the simplicity
of the planetary-scale vorticity equation in a stratified fluid, viz.

ft '/ =A/ (1,.1)

(The notation here is standard; see Pedlosky (1979) section 6.19 for a careful
explanation of the scaling arguments leading to (1.1)). If (1.1) is
integrated over the depth of the ocean and the vertical velocity at the bottom
is neglected we find

jv dz = =. (1.2)

where h4 is the vertical velocity at the base of the Ekman layer produced by
the curl of the wind stress, T . Equation (1.2) is independent of the density

profile and is identical to the Sverdrup relation used to determine the
interior flow (away from boundary layers) in homogeneous circulation models.

The Sverdrup relation (1.2) tells us nothing about how the transport is
distributed in the vertical. I shall use the simplest possible wind-driven
stratified circulation model to investigate this question. The goal of this
study is the vertical resolution of the interior flow, the boundary layer
dynamics are of secondary interest here.

J.A Fundamental Difficulty of Completely Inviscid Circulation Models

The fundamental difficulty referred to in the heading is that in a sense
we have too many solutions to the problem outlined at the end of section 1.

This is best illustrated by a specific example. For the sake of
simplicity I shall solve the two layer quasigeostrophic equations,

J34, , ,) We + dissipation (2.1)

dissipation (2.2)

(2.3)

in a rectangular basin 0 x < E, -I< < I Eqns (2.1) - (2.3) are

nondimensional using the scalings summarized in Table 1. The nonessential
simplification of equal layer thickness is made.
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Now the lower layer equation in the interior is

or since F + OCO)

J , 4 p4)) o (2.6)

The solution of (2.6) is

+ 4 (2.7)

where E is an arbitrary function of 4 F, . If a 4 F4'8 contour hits
an Eastern* boundary, where 0, = , then g is determined,

= (2.8)

The specification (2.8) implies that the lower layer is at rest at interior
points threaded by j 4F+, contours which reach the Eastern boundary. Rooth,
Stommel and Veronis (1978) and Rhines and Holland (1979) gave a more general
proof of this result. They proved that in a multi-layer model, where the
density surfaces are allowed to strongly deform (i.e. the quasigeostrophic
approximation is not mide), the abyssal layers are quiescent wherever they are
connected to Eastern boundaries by contours of f/(layer thickness).

Fortunately however, not all J 4-F4s contours reach Eastern boundaries;
some close in the basin and the specification (2.8) is not forced on us by
lateral boundary conditions. As the forcing W is increased (or equivalently
F is increased) larger areas of the basins are threaded by closed y + F(Ps
contours. This is shown in figures 2 - 5. The details of the Western
boundary region are not shown in these figures. It is clear, however, that
since = o on the boundary, a contour which starts at y = y, on the Eastern
boundary must also hit the Western boundary at y = Yl. Thus the details of
the y + Fi4' contours in the Western boundary layer must look roughly like
Figure 6, no matter what higher order dynamic process is used to form the
barotropic Western boundary layer. In the closed regions Cj is undetermined
and there may be nontrivial abyssal flows.

It is important to realize that within the context of the inviscid
theory GL is arbitrary. There is no physical reason for favouring one
particular choice. It is in this sense that there are too many solutions;
each choice of (I provides an acceptable resolution of the vertical
structure. I shall discuss three methods of removing this degeneracy
(i.e.finding a preferred ( ):

*There is a bit of imprecision here; in a stratified fluid the deformation of

the density surfaces can reverse the roles of Eastern and Western boundaries
in much the same way as topography does in a homogeneous fluid (Pedlosky, 1979
Section 5.13). Specifically, if ( +F+g)4o then it is the Western
boundary at which a no flux condition must be satisfied by the interior

solution.
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(a) Solve an inviscid nonlinear initial problem i.e. start with an ocean

at rest, switch on the Ekman pumping and let the circulation evolve.
Presumably the circulation will find its own . (Actually this presumption

is incorrect, in the closed y + F. 5 regions no steady state is ever reached,

see section 3.)

(b) Introduce some small dissipation and determine using a

Batchelor-Prandtl theorem, see section 4.

(c) Introduce small dissipation and attempt to solve a complete general

circulation model, see section 5.

3.An Initial Value Problem

The initial value problem discussed in this section is

+ i(.4', wc (3.1)

4 ~ % 0 (3.2)

where

WE 4- < (3.3)
We = > o

and Y, and k are zero on the boundary of the rectangular basin

Equations (3.1) and (3.2) have two linear wave solutions with different

vertical structures. The first is the barotropic mode which crosses the basin

East to West and establishes a barotropic flow like that in Fig. I in a few

weeks. The second is the much more slowly propagating baroclinic mode which

travels through a density and flow field produced by the barotropic mode. Its

transit time across the basin is about a year. In solving (3.1) - (3.3) we

will assume the barotropic mode has already gone through and produced as a new

initial condition the barotropic flow given by:

-4- Coe,~Q 1  (3.4)

The equation governing 4, is then (the relative vorticity is neglected)

(2t - 1:)-- ( + + F Y) - (3.5)

Q 5= O on the boundary of the basin.

Note how (3.5) reduces to (2.6) if we seek steady solutions.

Equation (3.5) can be solved using the method of characteristics (Carrier

and Pearson 1976 ). The characteristics are curves in ( +i, x 9

space parameterized by s. From (3.5), the characteristic equations

(3.6)

0 =(3.7)



Equations (3.6) and (3.7) imply that e, can be replaced by t and that 4'z
is constant along characteristics, or equivalently the projections of the

characteristics onto the (x, v) plane are just the familiar curves of

constant I V

It a characteristic intersects the boundary then the boundary condition
o is propagated into the interi(,r. If LF' q.'s+ ) >0 the characteristic

leaves the Eastern boundary, while if 4C.g 1) < o- the characteristic
leaves the Western boundary. In either case, the result is tie same; at
points connected to boundaries by characteristics the abyssal flow is
eventually "switched oft" by the arrival of information from the boundary.
Rhines 119"7 ) gives an explicit example of this using the approximation v
+ F -419 Vy.

It a y + F,& contour c loses then the corresponding charac teri st ic is I
helix in (x,y,t) space. This curve never intersects the boundary. No steady
solution is ever produced. Thus in the closed regions although there are an

infinite number of steady solutions, none are ever "found" by an inviscid
initial value problem.

This last result makes it clear that in closed regions we must invoke some
disspation to resolve the vertical structure of the circulation.

i*.A Batchelor-Prandtl Theorem for Potential Vorticity

The degneracy associated with closed streamlines is familar in fluid
mechanics. Thus usual method of overcoming this difficulty is to derive an

integral constraint, based on the existence of the dissipation, which must be
satisfied by the flow no mater how small the dissipation is (Batchelor, 1455).

The dissipative process discussed in this article is vertical diffusion of
momentum, represented by the last term in

Y -. + X 1+

There are undoubtedly other important dissipative processes, such as vertical
density diffusion

ct

I shall, however, focus on vertical momentum diffusion since it is the most
straightforward mathematically and the results can easily be interpreted
physically. The small scale process (small compared to the general
circulation that is) primarily resuonsible for vertical momentum transfer in)
the ocean is baroclinic instability. This is the underlying process crudely
modelled by the last term in (4.1).
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The planetary scale quasigeostrophic potential vorticity formulation

tollows from (4.1) and (4.2) in the usual way (Pedlosky 1979, section 6.19),

5(~ )= ( 4X [(4.4)

F(Z) NH) (4.5)

-. JFJC q,) -- = = (4.6)

we in (4.h) is the Ekman pumping at the top of the interior flow, the vertical
velocity at the bottom Ekman layer has been neglected. vt is a horizontal

Lapac ian.

It v= o then (4.3) implies

%= Q Cq''Z) (4.7)

As in section 2, if a streamline reaches the boundary of the basin the
imposition o[ a no flux condition determines q

Now, to obtain the desired integral constraint, integrate (4.3) over the
area enclosed by a closed streamline. The integral of the Jacobian vanishes
s ince

z ~ 0

Iit- ;econd lait stop tfolows trorm the constancy of 1 on a streamline. The

a I resul1 I s

-. 0 (4.8)

The result (4.8) is valid tor arbitrary v . If v is now very small it is
plausible that 4( .7) may also by valid (to (0 (v)). In this case we (4.7) to

c ast (4.8) in the form

~-4v4 .z~v~ci 0 (4.9)

wher e V F v In using (4.7) to rewrite (4.8) it is assumed that the
viScous term is small everywhere on the closed streamline. This is certainly

not the case tor the streamline pattern shown in figure 1, every streamline
passes through a viscous boundary layer. Similar objection to the use of

(4.4) apply in many potentially important flow configurations. Thus, although

interesting solutions can he constructed using (4.7) and (4.9) (Rhines,

148(l), the general uti I ity of (4.9) is open to question.
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The consequences of (4.9) will be explored elsewhere, at the moment the
difficulties associated with the application (4.9) motivate a third approach
to the problem of resolving the vertical structure of the circulation.

5 A Stratified General Circulation Model

In this section I solve a very simple two layer general circulation
model. The dissipation is provided by bottom drag and the layers are coupled
by interfacial stress (a force proportional to the jump in velocity across the
interface). This interfacial drag is the two layer analog of the last term in
(4.1).

The two layer quasigeostrophic equations are

TLA),, -- ** V c '-'€) (5.1)

JC'4z,'g) = - ~4'L(5.2)

where

= 4- FL~~

z + F C,-k)
The relative vorticity is neglected; in the interior it is u--important because
of the large length scale of the flow while in the boundary layers it is
assumed that the viscous forces dominate. This last assumption is
unrealistic, but once again I emphasize that the goal of this study is the
vertical resolution of the interior flow.

The sum of (5.1) and (5.2) is

= - &(5.3)

In the interior the friction term is neglected and the Sverdrup balance is
recovered. With We =- C .*)and using the same rectangular basin
previously defined, the interior barotropic flow is

+5= 41 4 '2 = ( (.-x(5.4)

As in section 2, the lower layer equation can be put in the form

J( L s) = V - (ZV+)V41 (5.5)

Now, by inspection, an exact solution of (5.5) is

V + 's (5.6)
+F

in (5.6) would be an exact s'lution of the problem if the no flux
lateral boundary conditions are satisfied. This is the case if the y +F $
contour closes in the basin. In the regions threaded by y + F4'6 contours
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which reach the boundary an alternative solution must be sought. In these
regions 4j is order v and 4, . The streamfunctions are sketched in
figures 7 and 1. For the moment, however, notice that if -Y -i , (5.6)
gives an order one abyssal flow. Because (5.6) is the most important result
in this article it's worthwhile attempting to interpret it physically. In the
abyssal layer the "natural paths" for the circulation are y + F 4S contours
(essentially paths of f/(layer thickness)). A very weak force (such as
interfacial stress) with a nozero circulation round a closed y + F s5 contour
accelerates a flow around the contour until a frictional force (in this case
the bottom drag 6 ) becomes large enough to balance the driving force. This
is a physical interpretation of (4.9). On the other hand if the contour does
not close the forced flow is across rather than along the contour. The
amplitude of this cross contour flow is determined by the driving rather than
the friction.

As an example of this latter process consider the problem of solving (5.5)
in regions where the y + Fl4' contours are open. For simplicity the weakly
forced limit

+ FC (5.7)

will be investigated. The more general case can be discussed using similar
method; see Welander (1968) for a similar calculation.

With (5.7) the equations of motion are reduced to

0. (5.8)

- zv-6 v f. 41- + (5.9)

Equations (5.8) and (5.9) are easily solved in the interior where the
friction terms are negligible

Ue~ =- X)' wit~) (5.10)

'K = v (X -K) T "4 (5.11)

Note how the abyssal flow is order V because its driven by the order V
forcing term vl'asin (5.9). The solutions (5.10) and (5.11) don't satisfy the
boundary conditions at x = o (the Western boundary). In this region we use a
familiar boundary layer technique. Begin by introducing the boundary layer
variables 6 X

4'., - v(0-) " + )

which transform (5.8) and (5.9) to

z ( ~ o~ 5.12)

+ - = 6 0(d) (5.13)

= cwoy
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IX

00E

0.-Y.I

Figures 7 & ~' The upper and lower layer streamfunctions V 6
and F . In the regions where the contours of J +
close (see Fig. 4 ) t i is given by(5.6.
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The final uniformly valid solution for the 4L and +,is constructed in the
standard fashion,

r [C,e ) - '13 [eE e (5.15)

where

ICZ C= -EZ+

Note that in (5.15) is order 1, but only in a narrow region of thickness

near the Western boundary. This is in contrast to (5.6) which gives an order

one abyssal flow in the interior of the basin.

To summarize the conclusions of this section, in a region where the y + F4'

close, very small vertical momentum transfer can create order one abyssal

flows. By contrast in a region where the contours are open the interior

abyssal flow is very weak (order v

6. A Three Layer Model

In this section the vertical resolution of the previous model is increased

by considering a model with three identical layers. This model is interesting

because the dynamics of the middle layer are qualitatively different from the

upper layer (which is directly forced) and the lower layer (where the bottom

drag provides the dissipation).

The three identical layer quasigeostrophic equations are

3"c4, ,) = w + v v 4f, - q,,) (6.1)

3 L4, ,) = toq , -2 q, + q) (6.2)

C 4-~1 ) V LL O +3) (6.3)

where the potential vorticities are

-3 : F (I4-4')

+....z pT.. + ys-
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In (6.1) - (6.3) the terms proportional to Y are the interfacial stress terms
while the last term in (6.3) is the bottom drag.

The barotropic equation is obtained by adding (6.1) - (6.3),

(6.4)

As before the last term in (6.4) is neglected in the interior, so that the
barotropic flow field is know. This allows us to simplify (6.2) by observing
that

tz . + P4-'6 - SP

so that (6.2) can be rewritten as

3 + P+S V - (PZ (6.5)

If the y + F contours close than an appropriate exact solution of (6.5) is

(f'( + + F 6 ) (6.6)

If the contours are open an analysis similar to that in section must be
used. In this section we will focus on the more physically interesting case
of closed contours. Now that 4j, is known, we can simplify (6.3) using
(6.6). We have

&' F+-

so that in the lower layer

5C4) . + P 4) - ii.' V CV..+S) 3  (6.7)

Once again, in a region enclosed by a closed ty +*fF4d contour, (6.7) can
be solved exactly,

4;= (v+j7J E + (6.8)

+, is now the residual when L'2 and k43 given by (6.6) and (6.8) are
subtracted from 5. Note carefully the restriction on (6.8) (closed y
+ j F+% ) is stronger than the restriction on (6.6) (closed y + FS ).
This observation, together with Fig. 2-5, leads to the tentative prediction
that the wind driven circulation in a stratified subtropical gyre should be
deeper in the Northwest. Clearly it will be necessary to investigate a
variety of models with increased vertical resolution to assess the importance

of this prediction.
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BAROCLINICALLY GROWING SOLITARY WAVES

Richard Deininger

1. Introduction

Previous studies of solitary waves have for the most part, not dealt with
their generation mechanisms except to say they evolve from general initial
conditions. Possible generation mechanisms for solitary waves include
localized forcing (e.g. mountains) and/or instability processes (e.g.
baroclinic). This work represents an attempt to study the role of baroclinic
instability in producing solitary waves.

It is well known the balance between dispersion and nonlinearity is
responsible for the permanence of the solitary wave. Then, to allow for the
possiblity for a growing solitary wave, we must simultaneously allow an
instability (baroclinic in our case) to be present. It is also of interest to
include a frictional process such as Ekman friction. The method to be used is
the method of multiple scales. Each of the fundamental processes which are
dispersion, instability, friction, and nonlinearity are assumed to be weak.
As a result each fundamental process defines a slow time scale. The
baroclinic instability time scale is a function of the small parameter which
measures the degree of supercriticality of the zonal shear from its critical
value (Pedlosky, 1970). The dispersive time scale is proportional to the
ratio of the meridional scale to the zonal scale of the baroclinic wave. The
frictional time scale is proportional to the Ekman number. To allow all of
these processes to act simultaneously, we choose the respective measure of
each process to give them the same long time scale. A weak cross channel
topography produces the nonlinearity. Thus using the method of multiple
scales we shall seek the evolution equation for a wave which is to lowest
order neutrally stable and nondispersive. In doing so we hope to find growing
solitary waves.

2. The Model

The model is the quasi-geostrophic two layer model with the equal layer
depth, in a channel on a beta-plane, with bottom topography, and Ekman
friction in the lower layer (Pedlosky, 1980). The nondimensional equations are

(2.1a,b)
-  -F'J9'):~

where

VL
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and rl and V2 are the stream functions in the upper and lower layers
respectively. x and y are the zonal and meridional coordinates respectively
and '1,: 1t ) represents the topography. The space and time coordinates
and pressure have been nondimensionalized according to

where U is the velocity scale, f. is the Coriolis parameter, andio is
the density in each layer. The parameters are:

z 4I, (wave anisotropy)

(Froude number)

-~ (planetary vorticity factor)

6;" j ) > -(Rossby numbers)

" .(topographic variation)

' JJ

- "(Ekman number)

r - " (friction parameter)

where D is the depth of each layer, g'is the reduced gravity, <,,is the
meridional gradient of the vertical component of the earth's vorticity, hB
is the topographic variation, and Vd is the viscosity coefficient. The
boundary conditions are that there be no momentum source at the wall
integrated over the length of the channel (or over a wavelength for periodic
solutions) i.e.

,, J ., d ,.x , 0 J -. (2.2)

We now write the streamfunction in each layer as a zonal flow plus a small
but finite deviation, i.e.

n (2.3)
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Using (2.3), (2.1) becomes

-I L , ) - '- f tFr i- 3-.

1;. -, (2.4a,b)

We now proceed to review the important points of the linear theory.

3. Linear analysis

Assume the q are infinitesimally small and for the time being neglect
the topographic term. Eqns. (2.4a,b) now become

,, 4- ,. .-9 1 , - ')J .l, / r -, ) ] ,,

/D ILI, 'Y~~IL) ~-i', i. i~ZC./1 (3.la,b)

Taking a solution of the form

results in the following dispersion relation

ti, .2- k/ hRu" JK A. -, '.-.

.1f)(c Z (3.2)

where

K X/7(3.3)

In the nondispersive (0 =0) and frictionless (r=O) limits, baroclinic
instability results when 17& 2ir and the vertical shear ( U,- c4) exceeds the
critical value

0- 2  ri ,-t t[ (3.4)

For a slightly supercritical shear

U, U A A eLjC (3.5)
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the growth rate due to the instability is given as

kC: St V'' A (3.6)

and the real part of the frequency is

• k ,(a ' ."" 2) - (3.7)

Eqn. (3.6) suggests the long time scale corresponding to the instability, i.e.

A (3.8)

The frequency corresponding to the dispersive correction to kcr of (3.7)
is L

kc (d I ,(T-2) f (3.9)

to leading order in .3 . Note that when 77 /ZF this dispersive term

contributes to the instability. We shall refer to this region of parameter

space as the short wave side. We shall refer to the region in parameter space

defined byjYrE<-F as the long wave side. In this latter region the long

dispersive time scale from (3.9) is defined as

T (3.10)

It is important to realize that in this scaling k is 0(0). The
parameter S measures the anisotropy of the wave. When S4. 1 the wave is

weakly dispersive. Similarly, if friction is small (r<< 1) the frictional

part of tA: is

r2Lk -t F) LJJ -t(3.11)

to leading order in r. From (3.11) we define the frictional long time scale

L' (3.12)

We note that friction is destabilizing (Holopainen, 1961). In the finite

amplitude analysis we shall make use of these long time scales.

4. Finite amplitude analysis

In order that the growth, dispersion, and friction act simultaneously, we

choose the respective parameters so that the time scales defined in (3.8),
(3.10), and (3.12) are the same. Therefore

L (4.1)

--ALM-



- 146 -

Now the time operator in (2.4) can be replaced by

2# t (4.2)

where

-i k (4.3)

To bring in nonlinearity we choose the topography to be

'6 -3 /r (4.4)

and expand the streamfunction in each layer as

L r- { 1 W,,.t  - ~ 4)h - JA I , 111 ' (4.5)

Using (3.5), (4.2), (4.4) and (4.5) in (2.4) we obtain a sequence of problems
for each power of jAF

The ot') problem is

+ ( (4.6a,b)

Eqns. (4.6a,b) lead to the specification of the neutrally stable nondispersive
disturbance whose evolution we seek, i.e.

yoJ A (h, - t . ,rj

(4.7a,b)

The O040j problem after the inhomogeneous terms are evaluated using (4.7) is

-f .3 J' '. u , * F( 90t (2 . - P) T ) ] -, _ ) (,,
J, ~ 2

;r) A, te, A

The long time inhomogeneous terms are handled just as in Pedlosky (1970), his
equations (4.15)-(4.19). They give rise to the particular solution

I -

(4.9)

y. 121 - 1 tL4 dA

ah F (~CI~U A~
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The topographic inhomogeneous term produces a topographically forced wave

which is due to the interaction of the neutrally stable, nondispersive wave

with the topography. This forced solution is

f A'kM. T (4.10)

where

-- _ ,
2 .

V C)(4. lla-d)

#sT" F (, - C':

We could add a solution consisting of a zonal flow which would depend on y and

T only, since it is a trivial solution to the homogeneous problem. However,

with the selection of the functional form (4.7), appropriate in the nondis-

persive limit, and looking for a solution which decays to zero as x approaches

+ y , there is no way to produce a zonal flow. Thus, this additional

solution would be zero and need not be included.

The final order c(Ii,1' can be written, after evaluating the

inhomogeneous side using (4.7), (4.9), and (4.10);

1 c.gJ [ 'j *)- L - # ) I ,, Y' I

_ _ - =  ,,--, L. ,-,. j{ ,-TT -T ( ,- -) " ' ,

A (' ,2fLJ . ,- . 4
4+ A xi ,-

( Jj -'( € " "L '" ,.- f+(-f '.- . ' X

" - , -~ , ". *~-27 •j 2 ,i A 4 1 a b

e (nse-r

where we have written down only resonant terms. In (4.12) we see the presence
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of all the desired processes, namely instability, dispersion, friction, and
nonlinearity. Removal of these resonances results in the following evolution
equation for A. It is

A , , A/ 4 ,x.-,. A x , (4.13)

where the 4 , are given in Appendix I. The second through fifth terms are
in order, the growth, frictional, dispersive, and nonlinear terms.

5. Inviscid exact solutions

From here on we shall concentrate our discussion on the inviscid

form '.3- C of (4.13). The remaining coefficients of (4.13) change sign
according to whether we are on the long wave or short wave side of parameter

space (see Fig. I), whether the term *< ,is actually a growth or decay term,
and the sign of topography. Whether or not we are in the long or short wave

side of parameter space depends upon the width of the channel relative to the
internal deformation radius, i.e., the parameter F. On the long wave side

7-7

while on the short wave side

F> .
by definition.

, L., 7 \ nT

I "~~i~

C , . , /"

Figure 1: Schematically shows the region of parameter space
covering the long wave and short wave sides of parameter
space. Uc is the solid line.

We now rescale the variables in (4.13). On the long wave side we obtain for
b>O (topography of elevation)

r~Z lZllI ll r zI x .... ... -(" (5.1)



where the (+) sign refers to the unstable case ( A. - ) and the (-) sign
reters to the stable case c C ). The following scaling was used

T =d

x a - (5.2)

A N B

where

d = - - (5.3)

N

and (+) sign has the same meaning as in (5.1). On the short wave side (4.13)
becomes for b > 0.

J? _ - 6 - t' J2- I 8 ' Z ( 5 . 4 )

where (4.15) was again used and

a =

d - (5.5)

N =, ztm L

For topography of depression (b< 0) the sign of the nonlinear term in (5.1)

and (5.4) is changed and (5.3c) and (5.5c) are interchanged.

We look for the solitary wave solution

" 4 -cXL - C_)! (5.6)

to (5.1) and (5.4). In order for (5.6) to be a solution to (5.1), we must
satisfy the following conditions

(5.7a,b)

-('N1 ,#< >0-

the first of which is the nonlinear-dispersive balance. Equation (5.7a) tells
us that only solitary waves of elevation are possible (L: 0). If b < 0

(5.7a) would become 6k' - - b and only solitary waves of depression
( 0 0) would be possible. Equation (5.7b) says that there are no solutions

of the type (5.6) when the unstable case ((+) sign of 5.7b) is considered
since that would imply C2< 0. In the stable case ((-) sign of 5.7b), (5.6)



- 150 -

is a solution when 4k' > 1. On the short wave side similar arguments
apply. Equation (5.7a) still applies but the phase speed condition becomes

Li2. ~l (5.8)

which is satisfied for all wavenumbers in the stable case ((-) sign of 5.8)
and only for 4 k* I in the unstable case. See Table I for a summary of
these results. It is important to realize that in Table 1 k' = 1/2 k. It

is interesting to note that when the signs of Fxx and Fxxxx are opposite

only long wave (O < k -1 ) solitons are possible on the long wave side and
only short wave (k2 > 1) solutions are possible on the short wave side. N

soliton solutions are also possible. The reader is referred to Hirota (1973)
for a discussion of this.

We have still not found solutions for some wavenumbers on the short and

long wave sides of parameter space. We shlall look for some of these missing
solutions in the next section.

6. Envelope solitary wave solutions

In this section we look for envelope solitary waves to (5.1). To do this

we derive a nonlinear Schrodinger equation (NSE) from (5.1) for the amplitude
a(X, ZI) of the wave packet solution

where Z, and X are the long time and space scales, respectively. These are
defined

L (6.1a,b)

X C- 7,T

where "1 is the group velocity of the packet and d measures the width of
the packet in wavenumber space (i in this context is not the Rossby number as

in section 2). Using (6.1) the time operator )C and the space operator
can be replaced by

&U-e,3 , f"" (6.2)

If we expand

8 - C-h, "t &. Zz - # 3 " (6.3)

and use (6.2) to replace the time and space operators of (5.1) we obtain a

sequence of problems in successive powers of e To 0 (() we have

Z9 . : 1 X .X " t b. ;t- 0 (6.4)

As a solution to (6.4) we take

b, a(X, 1, 9 - (6.5)
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where * denotes the complex conjugate and

&-- i j -UZ (6.6)

The dispersion relation is

gJ { -tJ (6.7)

When the (+) is chosen (possible instability) we must have k
2 , I so actual

instability is not allowed. The group velocity corresponding to (6.7) is

- ----- 
l  

-_ (6.8)

From (6.8) we note that in order to avoid an infinite group velocity we must

have k2 1 1. The 0(W) problem is

I 2~ I ~ - -t ( ,' t

where (6.5) was used to evaluate the righthand side. Using (6.7) and (6.8)

the inhomogeneous term proportional to e' e  vanishes. The inhomogeneous term

proportional to 2 yields the forced solution

- -! d '. I <- f -r (6.9)

2 ?k

At ( J we have

3 :/ )  , i - ',}. j, 19 : > +" ;
7", A It Y Z t I A \" -t- ;(

(6.10)

-. ] , k 1)7 i :, )

The only resonant terms of (.O 0) are proportional to bI and blb 2.

Using (6.5) and (6.9) in their removal yields

A "- _ (6.11)

where

(6.12,a,b)

k ('k ,),
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it is well known that envelope soliton solutions of the form

I Z- (6.13)

exist if

2,,' (6.14)

On the long wave side for which this analysis was just carried out, (6.14)
is true for k2 > 3/2 in the unstable case and always true for the stable

case. On the short wave side A is replaced by i' where

In this case the condition A', is satisfied and the analysis is valid
for D #k"i in the stable case and the analysis cannot be done on the unstable
side because ;- is not real for any wavenumber. This is summarized in Table

1.

Table 1.

EXACT ENVELOPE
SOLITARY SOLITARY

LONG WAVE SIDE WAVE WAVE

UNSTABLE NONE k2.>3/2

STABLE O k2. 1 ALL k

SHORT WAVE SIDE

UNSTABLE k2> I NONE
...........................................................................

STABLE ALL k 0 fk 2 _ 1

A comparison of the wavenumber space which allows exact solitary

and envelop solitary waves on both the short wave and long wave sides

of parameter space. Note k' of (5.6) is 1/2 k.

8. Discussion

We have discussed some special solutions to the inviscid form of

(4.13). The search tor viscous solutions has not as yet proved fruitful.
The exact solitary and envelop solitary solutions have complimented each
other. It is irteresting that on the long wave side there are no solitary
waves with a wavenumber that would give rise to instability through the

linear dispersion relation (6.7). However, on the short wave side the

exact solitary wave exists for wavenumbers for which there is instability

according to the dispersion relation
S L( - )
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which is the counter part to (6.7) on tile shortwave side. As a result we
might conjecture that there may be a difference in the way these solitary
waves evolve from initial conditions on the long and short wave sides if
they do at all. To test this the initial value problem must be attempted
which may be possible in some parameter regimes through inverse scattering
techniques and/or a combination of numerical and asymptotic expansion
techniques.

Pedlosky (1972) has sought wave packet solutions directly from (2.4).
The essential difference between that analysis and this is that in the
nondispersive limit we have considered, the zonal flow cannot be altered
when we seek solutions which decay towards + y in the zonal coordinate.
This modification of the zonal flow is essential for the eventual quelling
of the initially exponential instability. Therefore, the inital value
problem corresponding to (4.13) may not always have bounded solutions in
time since the feedback with the zonal flow is not present.

We have not reached the ultimate goal of this work which was to find
growing solitary wave solutions. It seems if they exist in this model,
that they are tangled up in the initial value problem for (4.13).
Furthermore, it seems likely that one must abandon the idea of the growing
classical soliton and to give way to finding a growing isolated feature
(i.e., at the very least we should allow a different spatial structure).
However, the classical solitary wave is certainly a useful concept in
reaching that goal in that the necessary physics may be contained within
it. Namely, as we have suggested in this paper that combining an
instability with the classical nonlinear dispersive balance of a solitary
wave may produce a growing isolated feature. Although growing isolated

solutions have not yet been obtained we have succeeded in deriving a
relatively simple equation which contains the physical mechanisms which
may lead to such solution.

ACKNOWLEDGEMENT

This work has benefitted greatly from discussions with and guidance
from Glenn Flierl.

REFERENCES

Hirota, R., 1973: Exact N-soliton solutions of the wave equation of long
waves in shallow-water and in nonlinear lattices. J. Math. Phys., 14,
810-814.

Holopainen, E. 0., 1961: On the effect of friction in baroclinic waves.
Tellus, 13, 363-367.

Pedlosky, J., 1970: Finite-amplitude baroclinic waves, J. Atmos. Sci.,
29, 680-686.

,1972: Finite amplitude baroclinic wave packets, J. Atmos.

Sci., 29, 680-686.

,1980: Geophysical Fluid Dynamics, Springer-Verlag, 624 pp.



-154-

APPENDIX I

The coefficients are

efir Lr07--t~ 1/:)!-~ 'k

-r "-I (II

U /7

where

-11,l 3, and --4 agree with the results of the linear analysis, i.e.
with (3.6), (3.11), and (3.9) respectively. We note that the total growthI-term 44 consists of the baroclinic part ' and a topographic
part -4, due to the interaction of the topographically forced wave with

the topography.

I&M ON IM
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A FORCED BURGERS EQUATION

James Meiss and William Young

1. Introduction

It is now well known that rather mild looking systems of third order,
ordinary differential equations such as the Lorenz model have chaotic, or more
precisely aperiodic, solutions. Although the Lorenz model was derived by
modally truncating the partial differential equations describing two
dimensional convection, its chaotic solutions are found only for parameter
values at which the modal truncation is unjustified. Thus one could argue
that the Lorenz model, and other similarly constructed ordinary differential
systems, tell us litle about the chaotic solutions of partial differential
equations.

This report began as an attempt to find a simple model partial
differential equation which exhibited chaotic behaviour. Our hope was that
the equation would be simple enough to allow an exhaustive numerical study,
thus we restricted ourselves to two independent variables. Although we were
not successful we felt it would be pedagogicaly useful to summarize our
attempts. The one conclusion we can unequivocally draw is that forcing,
dissipation and nonlinearity are not sufficient to ensure the existence of a
chaotic regime in a partial differential system.

2. The First Model

The first model we consider is the nonlinear eigenvalue problem

4~ UXI 4- aw (1a)

Qco) L o (lb)

Burgers considered this model in 1939. We will reexamine it from a more
modern prospective.

First u = o is a steady solution of (1). When R< 72 it's also linearly

stable. To see this, represent u as a sin series:

00

The linear evolution equations for the an s are

alt =ci- nz2 r* )c4

I- - 0 then all the an's decay exponentially to zero.

We can prove a much stronger result than this using a variational argument
viz when R-jM 2 all initial conditions decay to u = o.



- 156 -

Begin by multiplying (1a) by u and integrating over the interval. One has

where <" .> dx

Equation (3) is an energy equation, the left hand side is forced by R(<'>

and < u> provides dissipation. A simple variational argument shows that
the smallest value of the functional

< &J'>

.J(.O) C. ) = 0

is 2. Thus (3) becomes

<~a2> < R Z 7') <' (A2,

so that if R- rtz < 0 then (L42>,0.

Eqn. (1) is so simple that all the steady solutions can be reduced to
quadratures by introducing

V Ux

and writing (la) in the form

(5a)

V " -L(I* V) (5b)

The trajectories of this system are sketched in Figure 1. Eqns. (5) are now
simplified by eliminating x and using V as an independent variable,

or

V = (2 F) O ±1o V )-v (6)

where A is the constant of integration. A is determined by requiring that (6)
satisfy (ib). Using (5a) and (5b)

x =f __ /L,

= -,j , v d%' (7)='- JV -a

where v, is the value of V at x = o. At x = 1, where u = o and v =-4, (6)

and (7) imply

, f, . (8)

m is an integer which determines the number of zeroes in the interval.
Equation (8) determines A as a function of R and m. This is equivalent to
choosing a particular trajectory in Fig. I and traversing it (#AI1 t)

times starting at u o.

, . . ..... l lN O N A
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of the system (5,,,) in the (u,v) Plane.
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F ig - 2 : T h e 2 0 
_ _ _

Position of the steady Solutions of la)
(amplitude, R) Plane. 8 f(ab n the
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The results of a numerical evaluation of (8) are summarized in Figure 2
(Burgers discusses some analytic approximations). Instead of plotting A
against R we use a more conventional measure of the amplitude of the
solution. The linear solutions are at R = ( nt )2 on the 4<d> = 0
line. The steady solutions we have found using (5) all bifurcate from these
points.

We shall discuss the first bifurcation at R =r 2 in detail. Let

S = R-T2 > 0

and substitute (2) into (la) retaining the nonlinear term uux. WhenL < 1 it
is only necessary to retain two modes to capture the leading order behaviour;

r= La- - a6 (9a)

b = r, -) + + (9b)

where u a sinri x)+ b sin(2 nx)+ Now use the usual scaling which
applies in a slightly supercritical situation:

A B T t

and to leading order (9a,b) reduces to the Landau equation

A = A - iAL (10)

Equation (10) shows that when R> 7C2 the solution u = o is unstable and the
system bifurcates to a new steady (and also stable) solution.

Before discussing the stabiity of these steady solutions we will
investigate them in the limit R * 1, u i R using boundary layer techniques.
This investigation supplements the exact solutions in (6) - (8) and provides
useful insight into the stability problem.

If

LA = '

then (la) is

0 = LL + DL - 1" (i)

If the term R-I 'xx is neglected we get

u -x + c (12)

This solution cannot satisfy all the boundary conditions and must be
supplemented by thin boundary layer regions in which the neglected term is
important. To resolve the boundary layers introduce

= (K C- Ko)
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where x. is the position of the boundary layer. With this new variable (11)
is

O =I1Z + k V, + U, (13)

The relevant solution of (13) is

k 2 ah. [-X-x (14)

The constant x is chosen to satisfy the various boundary and matching
conditions. For example to construct the solution sketched in Fig. (3a) we
have c = 1 in (12) and oc= 1/2, x. 0 in (14).

U..

kX

IA

CC)

Fig. 3: A schematic illustration of the boundary layer solutions

constructed in using the limit R>> 1, u,..,R.

The other solutions sketched in Fig. 3 can be constructed in a similar
fashion.

We turn now to a discussion of the stability of the steady solutions.

This is an issue which Burgers completely ignored and it is of course vitally
important in deciding whether (la,b) has chaotic (or even periodic) solutions.

Linearize about the steady solution

Lk + (k+
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where uk(x) is now the steady solution. The linearized equation for u' can be

reduced to

4-. 4 J--- a' 4 -Lj 0 (15)

using the substitution

L'l e & 0 4~

Equation (15) is the time independent Schrodinger equation. It tells us

immediately that o- is real, so there are no oscillatory instabilities. This
is disappointing since the appearance of chaos in ordinary differential
systems is frequently preceeded by the overstable oscillations characteristic

of the Hopf bifurcation.

It is possible to use (15) combined with the large R solution to discuss
the stability of the solutions sketched in Fig. 3. Using just the interior
solution (12), the potential in (15) is very simple and the eigenmodes and

eigenvalues can be discussed using the well known solution of the simple
harmonic oscillator. This analysis suggests that the solutions in the (3a,b)
are stable while those in (3c,d) are unstable. This analysis is not
conclusive since it is hard to assess the importance of perturbations to the

potential resulting from the boundary layers and higher order terms in the
R-1 expansion. However, a numerical solution of (la,b) using spectral
methods confirmed this tentative conclusion and strengthened it to fully
nonlinear perturbations. No matter what the initial condition was the system

always evolved to a final state resembling (3a) or (3b). The nature of this
instabilty is sketched in Fig. 4 for the solution in Fig. (3c). Basically a
small first mode perturbation to a solution with a boundary layer at x = 1/2
breaks the symmetry about x = 1/2 and causes the shock to propagate (initially
with a speed f€ ). As the shock moves towards x o it evolves into an m =

I solution.

Fig. 4: A hueristic illustration of the m = 2 solution. A small

first mode perturbation breaks the symmetry about x 1/2 and

causes the shock to propagate.
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To summarize, (la,b) is not a successful model. If R<7L2 , u = o is an
absolutely stable solution. If R > it 2 the solutions sketched in Fig. (3a,b)
and located on the uppermost, m = i, curve in Fig. 2 are absolutely stable.

In no case did we find any interesting (even periodic) time dependent

behaviour. These conclusions were supported by a numerical solution of (la,b).

3. The Second Model

In an attempt to find more interesting behaviour we considered a more

complicated model, also proposed by Burgers in 1939. The idea is to mane R
time dependent in a way which depends on the integral properties of u

R = ;D - - <U> (16a)

+t = RALx t U (16b)

a (o) U,) = 0 (16c)

P and q- are constants, Burgers only considered the case V- =I.

The energy equation for (16a,b,c) depends on the sign of 0- Let

then

7~~t ( ;> -~ C 2_-P)z (i- sS,, 0 )(?- P) <a2

If oa> o then using a variational argument we can prove as before that

when ?< 7, , Oas t--,oo.

The nature of the solutions when P is just supercritical:

? "and

can be determined as before. Once again a = vET A satisfies a Landau equation

,/4 - ( o-+)Aq (17)

Note that the bifurcation is subcritical if 0- " -.

The steady solutions can again be reduced to quadratures. The amplitude
is plotted against P for the m = I solution in Figure 5. If &->o the curve
bends down closer to the P axis for a given amplitude. When 0- = -,t the
curve is perpendicular to the P axis at P = Tz. This is in agreement with
(17) which shows that at this value of 7- there is a transition from super to
subcritical instability.
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0-0

Fig. 5: The position of the m = I steady solutions of (16) in the

(amplitude, R) plane for various

Now consider the range O>c>-,L, say a = - 1/12 to be specific. We

originally thought there would be interesting time dependent solutions for
sufficiently large P. We reasoned as follows. Suppose P = 10 say. Then from

Fig. 5 there is an m = I steady solution which a given initial condition can
evolve into. The model I results suggest this steady solution is stable.

This was confirmed numerically. When P is increased past the "turn over
point" A of the O-= - 1/12 the curve in Fig. 5 there is no longer an m = I

steady stable solution available to trap the system. There is an m = 2 steady
solution with a very large amplitude, but it is probably unstable. Thus we

expected some interesting time dependent behaviour for P in this range.
Instead what was observed numerically, and later proven analytically, was that

the system goes to infinity in this parameter range. In fact it does so in a
finite time. The analytic proof is based on the observation that when R is

large then

so that

(,t > 0 (2)

+i

I;



163

Thus, when oC- 0, (16a) is forced by an R2 term which can produce explosive

instability. Presumably this is what's responsible for the rapid growth

observed numerically when P is taken past the turnover point on Figure 5.

4. Modal Truncations

We also investigated the three mode truncation of (16a,b,c). By this

stage we had abandoned all hope of finding chaotic behaviour in (16). The aim I
of this investigation was simply to see how the behaviour of the modally

truncated system differed from that of the partial differential equation.

The three mode truncation is

- (18a)

We will discuss the case o- =o in detail. Apart from a few unresolved

questions, the 6-0 o case appears to be qualitatively similar in the regions we

explored using primarily linear stability theory.

With Or =0 and R = P > o, (18a,b,c) reduce to

(19b)

An "energy" equation follows immediately

cZ a7 , jr)X t, (20) b

2 a b e ) CP-rZ> al + (20)

Eqn. (20) implies that

(i) If (P -/Z 2 )40 then all solutions fall into the attractor (a,b)

(0,0).

(ii) If P - 4r 2 >0 then all solutions go to infinity as t>oo.

One of the unresolved questions alluded to at the start of this section is

the behaviour of the system with crp o and P - 4y12 >0. It does not appear

to be possible to determine the asymptotic state of the system using a clear

cut energy argument as above.

The case not covered by the energy argument is

-- Z,,
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In this case its convenient to use

as an independent variable. The equation for A is

A ~'* '2k 0 (21)

If / 0 the system has a steady solution at

2 2
e

Moreover its clear from (21) that this equilibrium position is stable even

under finite amplitude perturbations. However, linear stability theory shows

that the return to the equilibrium position takes the form of damped

oscillations if

This is in contrast to partial differential equation where the corresponding

solution is also stable under finite amplitude perturbations but linear

stability theory shows that all the eigenvalues are real so that the return to

equilibrium is an exponential decay. This qualitative difference in behaviour
occurs at a not too large value of the superrriticality.
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CONVEC LON WITH LEMPERATURE DEPENDENT MIA ERIL PROPERT IES

M. Grist ina uDepass I e r

We wani to consider what are tue 1nun-il tucar e IteCS tint roduced by assuming
Ltiat Lte matertal properties ot tue t bild are included InI tue, Bo'j"Sinesq
,e41Au3LLions. Lu ts was fitrst done by Palmn (19vhU) and B~usse ( 1962) tor the case.

ol Lixod temperaLure on tle bunda. r ee n orI aO sJ n SII e Wave numoc r k.
Here! we will consider a continuous finlite banud or linearly un)St;IDle mule~s.

tue re are Iwo ext reno cases ot Iinterest, one is tue case ut i I iXd Lou pe rtturea2
on tile 1ooundaries for which the critical wave Length Is a)t tile Same order as

tue deptnl ot tue layer Of fluid. Whenl tule tlUX ac:rOSS tue bOUIUaries, tS ttx(ed

insteal, the most unstable wave number is zero (Ifurle , Jaeman and Pt e

l09f)) . [I tile first situation there aire two relevantL norizonTIal sctalo

it can be appruached us ing the method of Newell & Wh itenead ( 19o9) . In tue
second case, since tue wavenunne r and thle amplitude are smut I ,one can' 1 ue
snlallow water miethods (CniLdre-ss & Spiegel). We constuo2r Only ctlie las;t cs

11ero12. W f id tua tot1 la r rge waveniumoe rs ( la rge i n tu(Ie simailI scale)t t e r I
nio q ua ILtti ve e fLCtc. The b Ifurcation from tile stat ic state Is
sn p,-rIc rt teal I; how, eer, 1.o0r small e t nou gh wa ve nuibe rs , smia I I n a s e n se w:, c i
willt necome, clear later, the, bifurcat Ion is subcritical.

I I. Eq uaL iun 0 a1S01t t e P ro ) 1ll

WC Wil I Lc 01n;tui-or a two) dIime ns ionalI tlIu ld c onlta inted be twee !n t wo Isut 11 . ug1 1'

p late, s t L Z + Dl 2 undr, I t, inf IlenIc e 0 1 a conlstLan t g -avitLatLi onalI itel gj
anid eatJ(ed rum11 he1O lwlL Liu te tLuAx htelId cOnistLan t a t bo thi bounda-is lr I
eq uaIL t onIs trIa L 1esc riu tue Li p rI)loh a)1( tr e

\Jt J

In)
iK I< ~ ~ -m

J,
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Witt)

CL" GLT

Tni,2 functions f, g and h which contain the temperature dependence ol tIl

material, except for the properties stated above are arbitrary. Thie
parameter t will be considered a small quantity.

Fle boundary conditions are

.qe nave cnosen tree-free Douodary conditions for simplicity but everything can
be repeated for rLgid boundaries.

StatLc soltiton and dimensLonLess form of the equations

Equation kJ) can be integrated at once. Choosing T,(o) 'To we obtain

K, (KT-T) 4 - o ?,(TS-T). (9)

eLtLng -T T L L we find

Prf.c denot:s difterentiation with respect to the argument. Since both / and
K depend oii tne temperature, the Rayloigh and Prandtl numbers depend on L

IL is convenient to evaluate thei at the middle of the layer, where T =

To. Ch os Ing unit', in which D I, J. I, No and F =  we find

wilere

J

S nc, ''V-' , w heintrodtce the stream functilon ' defned by = e (I -b).

, ailv let te temperature be T = Ts + H. The equations then reduc, to
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Vz 3 -t

(12)

* - , " '4,T. 4- L )( * ~(3
L\~ (t

WtiL Douildary Conditols

Sealitlg ano Expansions

If tile Rayleigh number is above its critical value Ro by an amount of
order L , tiien a bandwidth of wavenumbers of order k. 1/2 is linearly
unstable. Tneretore, we ittroduce the new norizontal variable = F1/2x.
file scaling tor tue time comcs trom the fact that if in Linear theory we let
Cue time dependence be o-02 - we find that p (R, + it z2. 'huis leads to
tue slow ttite sca le 7 -- t. We als introduce a staled streai function

- " '' At this stage we also identify E with the small parameter

LILn rodoced 1 il ejltuS (4) - (6)

ExpadinL~g in Li

we aota til n le;,ding order:

W lt i s Lil C4' f. G t 'A-.t

15)

¢ - - P (,_.



and j , ) ) a aioitrar/ junction, and Ro, tine critical Rayleigh number.

In ord r 6 we unti Cile equCtionS

~\

IT~,c

WLtil Donlndary Cld ILL uolS

C-'' G

lnterat ing tle elergy equLUtall n etween a -L/2 ald + 1/2 we see that tue
rlgIt iland side must valish in order to satisty tile boundary condition. Ill is
imp I les

(22)

JJ
4e canl then] solve tar e and "L. Tm auini

P C Lu -c k(Zl ) s

h4, nave not inc luded AIn arbitrary iunction ) a and ( since we un] v go tO
order r 2. TIe_ functioll h(j) las been introduced for convenience only. "T

alId T2 a re del I ed oy

2.l
t

ile so AL u ll tUrP 1  is

2 4
*~~~~~ a) ~~~ +~~(4



169-

where we hiave introduced the totLowing notation:

3 is tile solution to

and? 3  s tile solution to

:, =T ioPU. ,. ). ,', O-w,-

A " ( ) " "La- /

C : - AI/2 + t L3 -b/-) - /-l)
r- E T Lr ptt' - +

wn e re

In order t 2 we only need te energy equation

d t 
t25)

Aga L n,

wnere we ilVe ussed tile express ion for Tsl, and tile fCct that t " )

In t roduc ing the expressions tor e, o and we obtain an evolution
e i _jlaLiio)( tor j( 'C ) Wtril which tLe solution ot order one i conplietely
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de te rmined -

LI

wiiere denotes tue convolut ion F : ) ~ ~ J)~~
Finally we consider two examples which show some of the main features of this

equat ion.

Example I

Consider the simple laws tm 2

which correspond to

w a obtain

* G . , - ( I

At tnts stage we recall that there are two contributions to RL, one is a

purely linear contribution R lL which is obtained from the linear theory for

marginal stability. The other is the nonlinear correction which we call R,.

Let us look for solutions wnich satisfy the boundary conditions

- " ,by expanding in a new small parameter c

We find thien that

and that A( A) obeys the Landau equation

A (S) ( R IA I3 [2 +P ll .2 AI
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We see thaL w, can have finite amplitude instability for

3 .0 (3-, P, - - 2x 1 23 Q >

tuat is, tor a C) C 2 Then for a given
set ot parameters d, A, (- there is a critical aspect ratio which
separates stable from unstable solutions.

Exmnple 2

Fo see turtner what happens for smal I a, we can take for example
-'-S -,Y(

'ie equalion for j becoimes

1 2

The corrections to R, are linear, so we call the coefficient of j. r.
We can include the effect of j5 by assumming

and scaling x ES, a = 6 t, we expand as in the previous example. This
time we tind

wiIe re

A. 'n A 3 1  - .231

so thaitu tor- toe solutions can be stabilized, nowever it we

p1oL AL Vs i /Q, for Lne steady solution A = 0, the turning point isz,, Ls
pr.port L1n.1, to 4 and tile amplitude 'A2 to a so that for very
.-miil 4avenmrers ta, assumptlon ot small amplitude is not valid anymore

qe Ido not Know if this can be avoided by co;sidering small but finite

Collduct ivty o) tile Dound n,iies.
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Foe in point we wanted to show is that small departures from the
Doussinesq approximation can alter tile nature ot tne solutions in a way which
depends on the norizontal scale involved, at least for the boundary conditions

we nave used nucre. Only tor large enough values of the wave number, the
biturcation is supercritical as in the Boussinesq problem (Chapman, 1979).
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() ICI \ INSGO I l NN \ I)\1 RI K\l I MIR MA 1.CiRI\IFN I
O\S'IlNI I (Ms \\ A I k SoI [IONS

R k lid c W. G regmr -Allen

Introduction

I le equlat ion\ o)f ill icid ,lillim \Natcr theor\ Ila\ e ,ol iton millntiow, \ ith anl inlfi nite set (ofeonser-
\.Itf 011 s Ilk IICltISiOn Of1 \ i5CiitiS cdi5\ipatiiott cl'ccI5. \% 111 Oft LtI1\C Clti , h \111 a\ e-- tile COnSer_\4a
lion I'I~s (aIt leastI Oinc Oif liil) ale ist III ml elff0 o 14) model al piIsictl stin pleof sustaining
at moliton in thle [iesence of \isL&)sity, the fluid k lheated frOm bejlo)\ aind coOlcd fiohm ahusc--thc
hIope w)iII2 thait thle Ait~c could ,olliceho extract lcu fromn ti. thermal giidicit. h Ie equationlS
mec hi mut1iited in aIhmins aipprOximtition anid smI'Ace tension effect,, ;ie ionorcd. P~erturbhation
eximisoms in the ditmensionmless \as emiumuber k andL X (relaited to kcosit\ ) are used to break the

prbe a ilnabl pioces. MmIde tueces"'at h. the hommtmtdar\ conditions; irc at kous boundar\
l't. er at thme htfitmu anld jm therimal loundir\ lii.em at the fIke sufiICe ( the elleiLt, OIl a\isecotis bomidar\
Lu\C rA theilee suirface are he,,Od the order of this calculation). I'licse i\ o hOondair) layers and
thie region Of thle i fim~ lb) ill be feircd to as, 101). NlII )I F. and IO"ITON1. Tfle leading order
;flproAXiittaiOtm Ill thie hintit of' no thecrmtal gradcient. gi\ Cs the Kd\ equation. Higher Oider corrections
\icld theL ltme es11.11 ol tion f th amplitude.

I hie equtliions' gosmIng11 thle tIlo to be studied are

U, + U71, + U'Uz + Pr/P = ',u,- + uI-2)
i + uul),. 4 wW) -tpt 4- g[I - a(7' - T1I== v(w, +1 wIL,)

TjiT, d - u ) w7' =, c(T.,~ -{ T' 2 .

U, + 2W, 0

subhject to tile bOundlry conuditions

oilz = 0:
u = w T =0

on z = h + q:

T -AT

p-6j, + p~ui,, + uj j) =n 0
or expressing thle SUrface Stress in tuonal and tatugentiall components

P -- 2M [u,(J1,) + u , - 77,(u. 4- W,)
\J +

-- -- (u-4- W.0 + 77, (wz - u,) = 0.
2

[he boundary conuditions t(o he uIsed in die hoi ionwl directionl are that cser\ thinig dlies at infinity with
tile exception of die hori/onwl velocity incd pressuire graidient which onllx vanish 14o leadinug order. This
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Figure 1.

isa i csiltof the fact that as a wa~ cdatmps, thc fluid, once displaced. mutst leave thc systemn at the ends.
I hiv,"ill h~c inade imole prwcce " hen some niUiohn is in place.

I hie gm CI ing equnations al C sca led Li s1n1LI the di incus .ioi leis w a ciii un h~er k li thke ib sti tuflons

z hz'/

u -'/gu (2)
w 0 V/-gwf

T - AT(k 2 T' - z')

p pgh[I + ,I± zT(, Z/2) +- O~p'

-k
2h,?'.

D~efining :>)e parameters

(;
2

kh

1 2 aAT
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the SCild equations bc'onike (drL ping Ithe primes)

u,- + k 2(7t,, -4- a)11) + P, = (2(k2 71.. -+ u Z)

k 2u, + kl(uwv, + ww.) - -- T = (k 2 (ku, -- -+w_)
2(( 2T (3)

T7 + k (uT, + aT-) - w = - (k + ) ± _- (3
c

u, + wZ = 0

N% fh I Ih d \la", conditions

()if Z 0:

u w a = T = 0

onz I 1 +- k 2 t:

ti + k 2ur 1 = W
T =r

p - -2 (2,+ k 7 ) - 2k' c2w2 = 0(k")

uz + k 2w., 0(k).

lIIaiing the tine dcii ktie and the \iSCOLIs diffusion termis in the nu meltui equttions defines a
sli m, dillitsio5n lIIcle ilC tLohe - = (t. let tie x position of the %;\e be giken h x = q(r)/ so thac
the pcAk of the \k'\e sta's fixed in the variable E = z - 0(7-)/c. 'I he \iscous boundary condition at

z - 0 rcquires ,i boI ndii r\ Li\ cr it the hottoni and the Ihermal boundary condition At the free surface
makes ncccssa\ a ho undar\ la\er at the top of the fluid. Then at the bottom, let -z/ so that
r! ,9(/c inde, t-- 4. .\t the top we definc s = (I + k2

7 - z)v /d/ so that3 ( -- ( r/o9,
,ind c' ± ( -+- kV/t). 'I lhe lines of constant s are "parallel to the free surface (s = 0 is
the surticc) so that this is not an olthogonal coordinate smstem and the Jacohian mixes tie derivatives.
Introdticing the parameter X b X2k 2 establishes a relation bet\meen the \iscous and long-wave

paranetcfrs to Iibing the corresp(ollding terms in at the roper order. Ibus the , orking equations are:

TOP

~--(Prvc -- i,,/W,.,+ X2( , f - Pe - ai.,) + k 2[I 77 T ,. + X2ft f + X If,,] = 0(k)

kr 2kX2  T 0(k 4)

+(rI -4 /- /t~ - X2(0,tE + ii, + k 2 [ k2IFC7E 6T + X 2 f, 1, + XTv I 0j (k ) (4)

V k +~s 2± l

subject to tie free surfate boundary conditions at s = 0:

0,77E + an k[itqE7 4- ),2y,,] =0

?,t(I + 12 )t - k22 2 ?7 0(k')
2

-fl, (k 4)

17
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-'- k 2 op, w 0(k 1)()
T, -- k')T 21 I,, u- +v XK7TT 0(k')

ui + Iv - 0

[to I' om

~ j- 2( t -- it. < + V )X 2 Ht -, X 'fij =0(k')

.- k2 X 2 - 27' = 0(k')

O- t -4 + I + k')2  T 0' X7) 0(k')(6

ki + 2 X2ft, 0

sllbject to the coiiditton at 0:
a ii ft 0.

N iice that the hin on tal si res on ditiion at the free surface is /ero to thle OIdCI con sidee'd inl this
pi'per 'so tHt there is Cssenidalk no tkicnis bmoar laier atl tilue snCC',it11lc tilte calultonS to
tkillo\\ Ihe hori/ontall bokliindr\ condition-, can nott be coDnsOIrd inl deLIol As q decreaises in1 thc
sio" \sons time scale. thc duid twin th de crest ouILSt CXIt thc S\S(Ctei t ±- J and 11iS Nin)ce the
imoi del is itici npiessible. thc si in d speed is infinte and

f(~z) ± 77d E -- j dwE 0k)f

Ilh', expiession replaces the first conscrsation laim o i iton inl anl In. sc d h11ad and nn111t he used if
derisuii~es of u ot i) p a ntcgritcd o\. ci E atl O(k). Inl thc Ikillo\% jog .cilituii these integrations arc

ax oidid.

NuIIA a1.sumeJ cuittIC'11 ji(ii cxpatusi(in inl picrs, i'k 2 hit- Cdh ofO he depenn \ ariabics. ic..

u1 = iui -+ k 2u 2 +

t77() J1 - 07r2 + ..

etc. then sulbstitute these xpinsions intO thle ulm e qoaions amd separate inli problems for each
order in k 2 .

2nk0

Ihe equations inl die top boundary layer are:

-(A,1o +. + X2A) _ Aj'4) _Co 8) -0 (7 a)

=0 (7 b)

i'1~tirriu+ f4 i~/Fq X(ki4ii ' + Tn) 0 (7c)
0 (7d)
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i ILI IId,I I CoIdit ns at s - 0

7'r/( +j fIA) - 0 (7c)

i - - -Y) = 0 (7f)
f,= 0 (7g)

To - 7o 0. (7h)

IFq s. 7dk).od (7) icld inmcdiatel.

,iod likemse I[qns. (7h) and (71) givc

i;,= ,og,( + 2

[hcn tile terns witih coefficient X(' in Iqns. (7a) and (7c) \anikh, so that

A),( T, -- ?1c) + .. = 0

together ith the boundal-\ condition Iqn. (71h) gives

77II -- ro,

and
Oo , . 'jo I + "Y) + , = 0

"ith -qn. (7g) gives 7 f (0 + -7 1) .

Ihus the 0(k0 ) results in the top layer are

77 oi (I + .7) P = 7(1 + - 2) (8)

fA Tn10 t) n~

In the middle the equations are

-0nLoE + Poe = 0 (9a)

Po. - To ^ 0 (9b)

toE - " = 0 (9c)

tJ4) + ub- = 0. (9d)

Lqn. (9a) is integrated to give

Th ,uo



-178-

\dl Il ti) (9is diffeucltitecd \Nihlet to Ito gms

\0.IIihc'm he combinled o ith Iqim. (Cd) '11d imegmted scrE l o get

so that

j2 To.___ 
2TuI .

w- '( iTm 0.

I hie somhitmmm umatchiug \011 ith - --- mz I +1 0(k2 ) is

sinh uoz cosh wz

vs hei c a a(E) is i a tiin tw he determinued. lIbis gives

S inw 11 AZ coshLmwz1

Jiud sinkte [le eklu itions in thie hmolom hmmdmr\ lam cis _,k u, 0. aL 0 a Bolt Ut

a) c osh toz siih .oz

(~)2'~ (i ~ sillh w cosh U)

th1,11 mmmmtehlimpm it z - I it) i( I +- )2) gives

Iu)(, Ir( ± 0+)='qm~(~ ) coth +o4 a tanlh W1]

or
+ - 7( cot -1- ta rihwu.

h le qutilty on thc e is a pureI- uumu1ber: so then mnust the right so that a On1(lo'iu butl then
a =corlstnt- a 0. 1 his give-, he results

cosh w~z

U~ u~1~sinh wo (10)
cosh wz

Sinh wo

siiih w



ta I II I_

~0 114 b)2

In , To~fi - 0. (1 a)

- -o

Po I- 77o.
sit) w)u

1 i 1W ul~ 1,0 1. t eI 11e,11-11h itk q o l 101 !'( i" !71 = 0 s111C O th I)Mltidir_ LOnditnnl J1 hill tile top
.idhhitoal of'the Li~cr i\ 0. 1he Lqn :11. (1LI) I)eCOImeS

th fihe hoildaii conditions

vl(E, oc) =S~ 0

il(E, 0 ) 0.' cc ~

hI hen V qi [jun( w oh LO as th tiele\iribetteiiehedfisi te eisWndr

Lee ino te miiiflo beindthewase.the e+ato is sisc aieistnnrsn iisj0

5IIl intcalratios \h - ' part c inny life rtialh eqtailImion (Il (1It1,11 OflI time 'S 1de inetrsfnn

of t). Me first step is

(~T)4- Sinl Q( VI a of Cos a i}< d = 0
but thces C\111a11.101 s anvihs it both ends so

(' -a Cos oao vIo - a 2 f sinl rr vA d 0 (12)
a nd t h e B C g i v e f 7 ( C 1 1 2 f
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%hich is imultiplicd by exp (-0,C to yield die exact differential

~ ex~ ~ ~j= exp -C)?icsch w.

Taikingr- fE00( )del1

- f~ j00 r a 2

441, sinh w ex(

so that

v 2- -0asn a c exp [a;7 2 C~ji 'd 'da J
7r400, sj -hw W a i fe a~

and

fi I% cscb w + v,.

T1he v'alue of f*) at the bottomn will be needed later so notice that Fqn. (12) gives

f0a 
2  TO a2C

0 cos q io d -y,7o schW w exp --( k(' '

So2

ai 2 - / cos a{ YfkioCc W (AJ0S-Y 0W exp [ a2 R- W' dld

or

2-y 0(~ a 2
v sinh w fuo~ , 1 o0 ep-~-L 1 a/

where#3 AtC=0

fije ) t- --Y cch W fo 00 #-1/o%(E+ P) df. (13)

This cnrvletes the NOk) problem.
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0(k2)

The equations are:

(P2 , --q)a - ofts.) + (Lh,)?uo, + 6,¢2-)or = 0 (14a)
22

S( Y2 + "2

4,f2, OI2s)+ 107o +X,__ - no, = 0. (1 4a)

Itegrating kqns. ( 14b and 14d) from s 1 0 gives

2 -+ + 2 15,

6 0,,-T2, + 02,770,7 + X,?+,0o.- (16)

Iliing this expre'sio n fbr O in lfq. (14c) gives
ViF 2

+ Y2 + . ) 2 Y2 2 ,-0

so that

t 172 17()2(1+)

where 0 is a linear function of 8. i.e., 0 -= as, where a is some constant. An expression for CA2 will not
be needed.

IlITOM

The only feature of ie flow in the bottom layer that will be needed from this order is &I. The
cquation is

fi,2 + X,2ii = 0

hut from the 0(k0 ) equations fio, = -)E csch w - fo 5/0o so that

X( - csch w
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and f1( )dC'gives
ii 2 X2 -11q Cs~h W (l, M0) (8

MII)I)LE

The equations are:

-ycoshwz + , - - ) , coshwz = 0 (19a)
-00,U2E~ , snhwsinh w

PZ _ --"2T2 + (=, 1)28Inh 0 (19b)

sinh wz .2 + sinh wz 0 (19C)--, T~ - ,,s-nh Wae- m sinh--rm w 1

u2k + wz -0. (19d)

Take tie z-derivatike of Eqn. (19c)

-y cosh Wz,. 2

-O T-2E +0, sinh W-Wx zI

and combinc it with I-qn. (19d) to substitute into Fqn. (19a) giving

+ -osh (Nz17o - .2th) + .)2

I Aim inafdng the pressure beteein this and lqn. (19h) by cross differentiating gives

S(11). + 2" sinh z? 2  + -Y2T2, (0)) 2 in h7.2,- + --- s -N - 2,77 (d.) --- -22 --( ) s nh -nh - 11° tM - 0

s'o,. Biinhw

so that
2 sinhwz x2 ( A,

TAlu - W2T2  + (4J '70~ 2rff - L

which has as the solution for T2

sinh Wz cosh wz z coshw z - k) (20)T-2 = A(E) - - + BM o-- t - -n  l '

sinhw cosh w -y sinhw

where )2( )
F(E , -, X) =-)E +- - - X2 orod(' (1

Now match T with Eqn. (17) in the top layer to O(k4) atz = l

T = io+AC2[_ -/cothw(17)2 +A +.B- coth wF] -k 2 X2s ot-wO(k4)
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and

77d + k2F72 -X -- 71( + 0 + 0(k')

so* 2

A = 72 + F -0) (o) -B. (22)

M.,tching w ith l.qn. (08) at tile houom will dctermine A. and B. Using Fqn. (20) lqn. (19c)
becomes

csinhnz . coshwz z cosh hz sinhwz 2,+,: =-<,.[All--- + .¢-- -1z Xoh ".T-.WO_,, -
siilu cosh L -Y cost)w '1- inh1L u p0

Combining ihis with u.) from Inqi. (10) and expressing w in the boundary laycr coordinates.

sXk I - k h2 
---- B + 0(k").

sinhw cosh w

Since fi, 0 and in the expression for f 2 de term i4)/4Ir dies for large then

[y jh 0-/7([I~ + E)dO +0()
;Yko - sinhw~J+0k)

Thus

BE __X2 )1 +iu-f( + E) d/ (23)

and then 12 1 +  + -y2-
A = 172c, - ,2-,7,,n,, + - - e - Be. (24)

A substitution of Fqn. (20) for T-2 in

2 oshwz(~ ~
-i)h w 4,7 ++ (in)- ±

gives

( coshwz I+ ± I+y2 B -+ y sinhwzB

z swz __si -~ coh z,__,_ ,,A(

sinhw ' ysi[IwII u) sinhow -i)0

Near z = I ( ++ -y2+ ]
= ~ 2± FEff -2 -B&lcoth w + -BEtanb w

F I-+coth w 1 + 2-ycoth w(, j~njot - ?2171(I7) + 0(k2

7 sinh w +~ 2
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and 2 2 7 _ X(= f,,,oh , U + 'I, 7 71 ,- V,/,s) f-(0 )

so

17<= (1 + "2 1 ,k 2 'os'?/, + k2 2-'i7tr/,,. + (I + )r 2 . - -2 - I NE

-. [ ( -1 +} + )( -2"7

+ 2 +(2 v Bj(tanh w - coth w)

+ 21± (0~2,770 X 2 -7 +~f!7 - ]iuyc + 0(0').

BLut
2

1(')jI + 12) - Xk 2 v qh,, -- k2[71 ( + _Y) + " 1 7 I (k)

so these can he matched (being careful about the mixing ol'derivatives) to give

++_ 
_ Y2 -

((2 + 
2 2Y

2)

~TO -22 f 1/2,1(13 + E) d/3

+[ + - ) I + 2y2) +
(25)

where the expression fort)and F ha~c been substituted back in. Naniing the functions of Y in square

brackets and allowing 02, to vary with r makes this equation a bit more manageable,

3P77or/e + QA(r)r/oE + R/ioEE = X2 [L f 3-/2r/ (13 + ) do3 + Mu],. (26)

Before sAlving this equation, an expression for the r evolution of?7(j can be obtained by multiplying
through by %/o and integrating over all C. This is written

3 f uio(n) d Y A , f dS+ A o+ Ro d

= 7[L (L o f 11/217 )e( + e)do dE + -d f(A))2 d

Several integrations by parts finds de terms on the left hand side to be 0 so that

df: (/o)2 de f .L 7. fI - 11/2 (( + C)dp de (27)____ ___0
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Now the equation for ,A) will be Ailved by expanding th, in powers of X2, i.e. let

, = %o + 172 +...

and assuming A, < I the 0(X") problem is written

3PzIot'i + QAi710, + Ri =t 0.

Sof"( )d('toget
3P (no) + QAnO + RTgo = 0

and then f - 7jo )d gives

+(T(,,) 2 + 2 =

At E = 0, the wave is at its maximum so Y° = A('r) and rt 0 so evaluating at this point gives

Q=-_p

so that [ 19 1±

, - , - A(). (28)

The evolution of Too is governed by

3Too7 -- At + R 1 0 =o

which has the solution

noo = A sech2y' - -. (29)

Substituting this into Fqn. (27) gives for the long time evolution of t7 (let a V')

"-L A2 sech 4 aede = J Aech'a/ /3-l 2 Aasech2 a( + t)tanha(P + C)dfdC.

Making thc substitutions

leads to the expression
eo L (P\ /4 .

A-'I4A, f ech4xdx= - 1RJ I
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where

I J seclh? X i - 11' 2sech 2 ( -1- X) tanh (V - x)dPdx

or

A-'IA,= -4N

where L (p) 1 4

Sod d A - 1 / 4 = N

A-'/' Nr + A(O) - 4

A(r) A(O) (30)
(1 + NA(0)"'1 r) 4

Replaing r with dimensional time gives the more illuminating expression

A(t) A(O) + NA(0o'I'

qh 2 A(0) (31)
((k2gh' 1+ NA(0)"I'a."Pt)4

which should he considered in the limits v - 0 fzhe invisLid limit) and AT 0 (no thermal
gaiicp). Whc n -- 0. A A(!)) and the walc is unchanged in time-a geuine soliton. In the
limit 0-( P - -IR -- -. ,L- -, andM -- 2SOthat

17= A(t) sech '2 --r{
2v~

A(i) = ghk 2  A(O) N' 31/4L

((kxgh'1" + N'A(O)'/ 4u /2t) 4  Vi2s/

Notice that there is no situation where the wave doesn't damp since L = 0 would imply that
tanhw = I. certainly not within the range of the Iloussinesq approximation. Hligher order calcula-
ts and changing the thermal boundary conditions to constant flux (rather than constant tempera-

ture) still hold some promise for achieving a true soliton in the presence of viscous dissipation.
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A SIMPLE MODEL OF THE KUROSHIO MEANDER

Spahr Webb

I. Introduction

The Kuroshio takes one of two distinct paths as it flows along the
south coast of Japan. The Kuroshio will flow along the upper part of the
shelf for several years and then suddenly shift to a path which loops far
offshore near the northern end of the island of Shikoku and then back
onshore before it passes over the Izu ridge. This second path is known
as the Kuroshio meander and may remain in existence for several years
(RoBinson and Taft, 1972) (see Figure 1). This phenomena has been
observed for several decades, Stommel and Yoshida, (1972), provides a
summary of the older references. The path of Kuroshio flucuates widely
around either the meander or the coastal path.

A model is needed which explains the bimodel character of the path of
Kuroshio. Robinson and Taft (1972) base a theory on the theory of steady
free inertial jets. They suggest bottom topography strongly constrains
the path of Kuroshio when it lies on the shelf. They then hypothesize
a weakening of the bottom current velocity which reduces the topographic
steering and allows the current to flow offshore. Once offshore the
current no longer feels the bottom. The possibility of weak or strong
topographic constraint forces a bimodality in the possible paths.

White and McCreary (1976) noted that since the bottom slope near the
shelf is large the change in depth across the width of the Kuroshio is
also large and the gentle topographic steering of Robinson and Taft
(1972) is not an appropriate model. An experiment by Taft, Robinson and
Schmitz (1973) measured the bottom current velocity under the Kuroshio
over a 64 day period and found the mean bottom current was not generally
in the same direction as the surface current and is small. A later
paper, Taft (1978), based on the same experiment suggests . deep
countercurrent may exist.

McCreary and White (1976) model the Kuroshio meander as a Rossby lee
wave excited by a bump in the coastline, the Island of Kyushu. Their
model was based on a two layer ocean "nd the equivalent barotropic
quasigeostrophic potential vorticity equation. The lower layer is
stationary so bottom topography is not in the problem except as a
boun,'ing coastline. The wavelength of the Rossby lee wave is larger for
larger current velocities. They invoked a secondary effect due to the
Izu ridge "water gate" to explain the bimodality of the current paths.

The model to be discussed will include the Izu ridge specifically as
an "outlet". Nonlinearity in the equations will allow several steady
states to occur given one set of boundary conditions. Charney and Devore
(1979) presented another geophysical phenomena where multiple stable
states arising from nonlinearity may be important in their examination of
atmospheric blocking. Charney and Flierl (1980) included nonlinearity in
a model of Kuroshio also, but their solutions require several "bumps" in
the coastline to get more than one steady state.
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Fig. 1. The geometry of the Kuroshio meander.
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Fig. 2. The model withi inlet and outlet.
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Three solutions will be found for the same boundary conditions for a
small range of the parameters in the problem. The last section of this
report will examine the stability of these solutions to show that two of
the solutions may be stable. One stable solution includes a la. e
cyclonic eddy and is similar to observations of the Kuroshio meander. In
the other stable solution the current is held tightly to the coast.

I. The Model

The coastlines of Kyushu, Shikoku and Honshu and the Izu ridge will
be modeled as three sides of a square box with an inlet on the west and
outlet on the east side (Fig. 2). The Izu ridge is mostly quite shallow,
less than 500m deep but is cut by a steep walled channel approximately
100km south of Honshu. The Kuroshio usually follows the coastlines of
Kyushu and Shikoku with separation (when the meander is present) occuring
near the northern tip of Shikoku. It is then reasonable to use a model
which assumes a fixed location for the inlet. It seems to be necessary
to require the fourth side of the box to be closed also. No resonant
modes are possible in an open geometry unless there is a reversal in the
direction of the mean flow. The box was made square, but the character
of the solutions is independent of the aspect ratio.

The ocean will be taken to have two layers, with a rigid lid
condition at the surface and the lower layer stationary. Computations of
the geostrophic current by Worthington and Kawai (1972) and Taft (1978)
found that current speeds above 100 cm/s were confined to the upper 500m
and nearly all the northward transport was in the upper kilometer of the
ocean.

The appropriate equation is the equivalent barotropic quasigepstrophic
potential vorticity equation.

Here " is the streamfunction, the coriolis parameter is f = fo + Py
and D is the depth of the fluid. The north-south coordinate is y, and
the east-west, x. If the solutions are required to be steady:

+ F (T)(2)

F(?) is now an arbitrary function and needs to be determined. This

equation requires the potential vorticity to be constant along a
streamline. The streamfunction at the inlet is assumed to be of the form:

y k 0, o (3)

The width of the stream is a, u is a characteristic velocity and yo
is the coordinate of the southern end of the inlet. The streamline at
the outlet may be chosen arbitrarily and will be chosen to match the
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inlet streamfunction. In the model presented here the outlet is at the
same latitudes as the inlet. The Kuroshio usually crosses the Izu ridge
200km north of the path near Shikoku. It is not difficult to do the same
problem as presented here, but with the outlet moved northward. It does
not alter the character of the solutions.

The stream velocity at the inlet is

IL - (eastward velocity) (4)

The current is approximately constant across the stream, but the
maximum velocity at the inlet occurs at the northern edge of the
current. This is in rough agreement with observations which show the
current is asymmetrical and the largest velocities are more to the North.

The function F(Y) in equation 2 can be determined by a upstream
condition at the inlet. Some justification of this procedure can be
found by considering a slightly altered model with a long channel
connecting smoothly to the box.

Then from equation 2)

__F (5)
(A

Equation 3 can be inverted for y as a function of f if E is small

q) + cY~ 3 + + (')(6)
. .t •

Therefore

F (M= (I
1-k-

Here it is seen that a cubic form of the streamfunction (eqn. 3)
leads to a cubic nonlinearity in the governing equation:

~2~ ( +q} 32~i -0q (8)

A quadratic form for the streamfunction at inlet might have been
tried. It will be shown that with cubic nonlinearity three solutions are
possible but at most two are stable. It was expected that for a quadratic
nonlinearity in the inlet streamfunction there would be two solutions, of
which one was stable. Charney and Flierl (1980) found this was true for
their model of the Kuroshio meander.
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Nondimensionalizing x jua y by H, the length of the box over pi and
the streamfuncLion by H3 leads to

v"Y ( P-) K~' KI-- C6 c

(9

R

U.

If - is small the streamfunction may be expanded in powers of 6.
The zeroth order equation is

V2q0+ -) ' K o (10)

A resonant mode of the form

q = SiyjX SMnP J, integer (11)

is possible if K = i2 + 12. This mode is zero on the boundary of
the box. Off resonance (K # j2 + 12) a solution for can be found
which satisfies the boundary conditions:

q -3 (12)

The solution is

L} -(3, co1 s +LC) A, s 1.i A(j3 R

0 'K Y" 1(13)

A,

The higher order in C equations are all linear and show small forced
corrections due to the nonlinear terms

V~ -ZL + ~ 4 i -(15)

If the parameter K = /U is near a value for resonance, there
will exist an integer N such that (N2 - K)1 /2 is complex and almost an
integer times F-i. Then cosh (VP -K 7 /Z ) is small and BN will be

large. The expansion outlined above breaks down since 6 3 j may be

of order unity.
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It will be assumed that K is approximately two, a value appropriate
for resonance of the lowest mode in the box:

Si -X5Y (16)

If K is two, and u. is 100 cm/s, and is evaluated at 300N,
then H times pi, (the width of the box) must be about 700 km. This is

not an unreasonable scale for the meander.

Rewrite u as u. +6 ul with uo such that H2 /uo = Ko = 2
and X 3 3

K-- K.( I- , -1 - e u, ) O()
ub U., ;L (17)

Then equation 8 becomes:
I-2tU~ I, 3) 3

dTA()K ''K I 1 -EK - (18)
6 C3)+ 0 u.q Lk

The coefficient BI will of order I/E if ul/U o is of order
one. It is then reasonable to look for an expansion of the form:

4'A + +9 c., (19)

The order '/c equation is

A Vz ' R+ A K. +1z - 0

which is just the equation for the resonant mode. The amplitude A
must be determined by the order one equation:

Vz4( 1 + k cV,= A A * K__4' i.&A(20)

and <P, must satisfy the boundary conditions (eqn. 12)

Expanding the +R term:

VC,+K- , g= ( -A A - Kb2A 3 ) SirixS In~ K.A( 117 /7
UO 6j (21)

The first term on the rigbthand side introduces a term which can
eliminate the singularity in the series (eqn. 13) provided

A - '  , A 0O
106 (22)

q,' ± ((2Q4 + SIM

Bl is the projection of the boundary conditions on 7/Th siny.

The solution fo- ' is

+)CsX5. -4 21 C, SI P)t Uo~VTk(-)

f t I V L + A 2 0 5 Vk. (23)

F7
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There are several other forced terms besides the B1 term but all
are zero on the boundary

A3F = (- s snr' sln 3 . + 3 /q(f113) s Iv51L * SlXSi'1 3) (24)

The three roots to the cubic equation for the amplitude of the
resonant mode (eqn. 22) are plotted in Figure 3 for R = .67i and q = .15n.
For inlet velocities slightly greater than the value appropriate for
resonance, (ui/Uo0 0) only one solution is found. Contours of the
streamfunction for this solution with ul/u o = 1.0,C = .2 and A 

= -.25
are plotted in Fig. 4.

The flow is directed far south of the inlet and then returns north to
the outlet. A large cyclonic eddy is present.

This solution looks similar to the meander of the Kuroshio. There is
strong observational evidence for a recirculating region inside of the
meander of the Kuroshio. Taft (1972) and Shoji (1972) found the
transport downstream of Kyushu was generally 30% larger than the
transport at the island. The maximum velocity in the meander region may
be more than twice the velocity near Kyushu.

This solution looks most like the physical situation for large values

of the small parameter C . Increasing C reduces the amplitude of the
cyclonic eddy. Equation 7 is not necessarily valid inside a closed
streamline, but since F(OP) can be chosen arbitrarily inside a closed
steamline it can be taken as in equation 6. This assumption is probably
not the most physically reasonable one.

Two additional solutions are possible if the velocity is reduced
below the resonant value (Ui/Lt, Z- 2.3 ). The amplitude of the resonant
solution (A) in both these olutions is positive, and these solutions
contain large anticyclonic eddies: (Fig,,res 5, 6). The Kuroshio is
forced tightly against the northern boundary.

White and McCreary (1976) cite Taft (1972) and Shoji (1972) for
evidence that meandering usually disappears when the transport of the
Kuroshio e ceeds a critical value. The model preseited here would
suggest the coastal path of the Kuroshio would revert to the meander path
as the velocity of the Kuroshio was increased. (This is true for R =
.6w and q = .15-n ). A reexamination of equation 21 reveals that for 2R +
q-'W, B1  is negative. In this case the diagram in Figure 3 should
be flipped around the x axis. A positive amplitude solution will exist
for all ul/uO, and two negative amplitude solutions for ul/u 0 -0.

Stability

The stability of the solutions is of fundamental importance to this
problem. The nonlinearity was introduced into the problem to allow three
solutio'ns. It will be shown that two of these solutions may be stable,
while the third is not stable to small perturbations.
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Fig. 3. Roots of equation 22.
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Fig. 4. Stream function of a solution.
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Begin with the equation

tV Y T PV( * O (25)

A small perturbation to the streamfunction , with time dependence
e t can be added to the solutions found in the preceeding section
(eqn. 23).

The last term will be dropped. The perturbation is assumed to be
small. The perturbation streamfunction can be described as a sum of
orthogonal modes which are zero on the boundary.

(28)

Equation 9 allows equation 25 to be rewritten as:
Z--. q S , -f 1( kl .(I I=+ ) ),A,(

C 3)]j 0 (29)

This equation leads to an eigenvalue problem for -

6 Z; 'SO (30)

The modes can be made orthonormal. Multiply equation 29 by P n
and integrate over x and y then:

If a" is real and positive for any eigenmode then the solution must
be unstable. It is helpful to rewrite Bnm as

Al A3 ~~A ~A'+ 0(,-

'~ (32)

3. ,o

.-~ ~ ~ ~ ~ ~ ~~~) k3 .... /I....... .. ... ,
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The brackets mean integration over x and y. This form is a little
misleading since (p is a function of A through the forced terms 49F
(equation 24). These integrals were calculated numerically for a small
set of modes. The notation 4, 1 will refer to a term

Modes with any of the first three integral wave numbers in the x or y
directions are included in a table of Bnm (Fig. 7). Only a few elements
of the matrix have order 11E terms since

For example consider a truncated form for the perturbation:

The eigenvalue equation is

16 (35)

Then 6 is strictly imaginary. The solutions are stable to this
perturbation which represents two modes interacting with the resonant
mode. All such pairs are stable since -T( q41, 0 ) = -3I( tir , (PA ).

The elements of 6." which seem to be important in determining the
stability occur in the first column. All terms are at most order C
because k2 = Ko .

m

A perturbation of the form

/ zZ S * , . 3 3 (36)

leads to an eigenvalue equation

,7 * '& c1 > 0 cA'o C -o (37)

Any solution iq qtable ( d complex) for ul/Uo> 0. But only one

solution exists in this region (Figure III).

For j,1 /u 0  0 any solution with

IA! L (38)

is unstable. This curve is plotted on Figure 3 for the largest value
or C2 found. The mode &? gives the largest value of C2 . The
smaller of the two solutions with a positive amplitude for the resonant
mode is certainly unstable.

The other two solutions appear stable for at least part of the range
of 'u IU O .
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2-: i23 45 1IZ _ _ 32 33

I0 a O3 1 37 2o'

02 0 0 q SA .o A- 0 0

10 a 0 0 .077 6A .17Z7 0 0

Zt I 53{,A') ~ 0 0 Q -1S0 A 35TZ

Z2 0

oS A ... .. . .....

23 0o67'

;-005' *6o A ;3113
31 0 0 0

32 C5-XA - IOiY 4 0.71A0 0

33 0 0 -.0194 ,OS'7 t 72 0

Fig. 7. The stability matrix B n

(( ozs~ ioonm
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Calculations based on a truncated form of the matrix Brm are not

sufficient to show stability. It is also likely that other physics, not
included in these solutions will influence stability.

Conclusions

A simple model for the bimodality of the path of the Kuroshio haq
been presented. This model depends on nonlinearity introduced by
imposing a form of the stream function upstream and the existence of a
resonant mode in the box modeling the basin between Japan and the Izu
ridge.

Three solutions are found if the nonlinearity is cubic. One of these
solutions is unstable to small perturbations.
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THE STABILITY OF CURRENTS BOUNDED BY TWO FREE
STREAMINES IN A ROTATING SYSTEM

Ross Griffiths

Introduct ion

Density fronts in the atmosphere and oceans are often highly unstable
features and are the site of active mixing between fluids of unequal
deus it It-. Their instabil ity also leads to the production of smaller
scale but long lived flow features. Three possible instability
mechanisms have been studied. For a two layer fluid, there is the
barotropic shear instability which requires that the sign of the

potential vorticity gradient changes somewhere within the flow, the
two-layer barocl inic instability, which requires the presence of both
Upper ant lower boundaries and that the potential vorticity gradient take
opposite signs within the fluid (Pedlosky, 1 %4) and the Kelvin-ttelmhol tz
shear instability, which requires an inflection in the velocity profile.
None of these mechanisms are able to cause instability if only one layer
is active and has a uniform vorticity.

While most density fronts have one line of intersection with an upper
boundary (such as the ocean surface) or a lower boundary (such as the
ocean bottom), there are some situations in which the same density
surface has two intersections with the same boundary. This occurs
whenever buoyant water forms a narrow current at the ocean surface (away
from coastal boundaries) or when dense water flows in a narrow stream
over the ocean bottom under the influence of buoyancy forces. One such
case is the flow of cold, dtense Norwegian Sea Water through the Denmark
Strait and along the sloping bottom south of the strait (Worthington,
19 9; Mann, 1 %9). The Coriolis force is able to inhihit spreading in
the direction perpendicular to the direction of flow but not in the
downstream direction (due to the presence of the bottom slope).

The presence of tw,, free streamlines (at the intersections of the
density interface with the horizontal boundary) gives rise to another
mechanism for instahil ity that has not previously been considered. Here
we concentrate upon single-layer flows (in which a deep second layer is
stationary) with a uniform potential vorticity distribution, and show
that a rectilinear current adjacent to a horizontal boiindary is always
unstable. It is first shown that variations of the current width, in the
limit of a very large downstream length scale, will give rise to a
meandering instability with linear growth rate. Then normal modes with
finite wavelengths are shown to have exponential growth. Both meandering
and varicose modes grow with time, and they lead to release of both
potential and kinetic energy from the original flow. For a current with
zero potential vorticity, the wavelength with maximum growth rate is
estimated to be eight times the Rossby radius hased on the maximum depth
of the current. Qualitatively, our conclusions do not appear to depend
upon the simplifying assumption of mi form potential vorticity and the
'single-layer' instability is likely to continue to contribute to the
behavior of a two-layer system in which harocl inic instability is
important. Our analysis is readily modified to describe a current that
flows along a sloping bottom, and a similar instability will occur in

tha t case. AL_
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The very unstable nature of a current with two free streamlines is
demonstrated by laboratory experiments. A narrow current of buoyant
fluid was produced at the free surface of a deep lower layer by floating
a layer of fresh water on top of a salt solution between two axisymmetric
cylindrical walls in a rotating system. When the walls were withdrawn,
gravitational collapse produced a narrow annular flow with uniform
potential vorticity. Wave-like disturbances appeared on each front and
regions of closed circulation rapidly developed within the current. The
preferred downstream length scale was equal to seven times the Rossby
radius of deformation, independent of current width. The structure of
the disturbances also appears to be very similar to that predicted.

2. Governing equations
We begin with the hydrostatic momentum and continuity equations

~+ (f~'?~Y -V~'*'+ ) (2.1)

V (2.2)

+

where y is the height of the interface from the rigid horizontal
(geopotential) boundary, g' = g4,/lQ is the reduced gravity, V is the
horizontal velocity, f is the Coriolis parameter about the vertical axis

of rotation, X is a vertical unit vector, and I--6.(17xV) is the
relative vorticity. Equations (2.1) and (2.2) together imply that the
potential vorticity (f + A )z is conserved by fluid columns. Hence

f + f

Ho ) (2.3)

where Ho would be the fluid depth when the relative vorticity is zero.

Let the undisturbed flow be parallel to the x-axis, and H =-(y = o)
be the maximum depth of the current. The flow is then characterized by
the Rossby radius of deformation (g'H)l/2 f- and the time scale
f-1 . Because we will be interested in downstream (x) variations with
some large length scale \ , say, we define a dimensionless wavenumber

_ 27r(g H) 'f-I?- The dimensionless variables are then
defined by V2

1P (2.4)IHJkHo=':

where x is the downstream coordinate, t is the time, y is the
cross-stream coordinate, u is the downstream velocity, v is the cross
stream velocity, h is the layer depth and -1 is the dimensionless
potential vorticity. The stars denote dimensional variables. Equations
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(2.1) and (2.2) become in dimensionless form

S) () (2.5)

2 ~

and

~" (2.7)

The potential vorticity equation (2.3) becomes

DU - b- (2.8)

The undisturbed flow is assumed to be the steady solution of
(2.5-2.7) with v B 0. The- (2.6) reduces to the geostrophic relation

Ol- (2.9)

while (2.8) gives the relative vorticity as

d _ I - - (2.10)

where the bars denote the basic flow whose stability is to be
investigated. Together (2.9) and (2.10) can be solved for b and ", the
boundary conditions being-h = I at y = o and b = o at y = ±L. If the
potential vorticity is assumed to take a constant value across the stream
the solution takes the form

Thus the flow involves the two length scales L and fl In the limit of

zero potential vorticity ( -o ), the relative vorti<ty (2.10) becomes
the constant value dT/dy = I, the cur,-ent is described by the single
dimensional length scale H, and the solution (11) reduces to

(2.12)

The current width is fixed at L - r2.

3. The long wave limit

An interesting observation is possible when a disturbance with a very
large length scale is imposed on the basi- flow. In the limit 6-10,
the momentum and vorticity equations (2.6) and (2.8) become, respectively,

.3/1
Lt= (3.1)
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and

and 44 
(3.2)

while the longitudinal momentum and continuity equations are unchanged.

We consider a spatial variation of the width L of an otherwise
parallel current, maintaining symmetry about the midpoint of the stream.
If the midpoint is defined to be at y = y, (x,t) at subsequent times, as
shown in Figure 1, then h = o at y-y, = L(x,t).

The current depth is of the form h (x,y,t). However, we know it to
be symmetric at t = o. By assuming that the depth remains symmetric at

subsequent times, it may be written in the form

A=AY=yy 0L.(.3)

hx

Figure 1. Coordinates for a symmetric current.

When the continuity equation (2.7) is integrated across the current,

the geostophic velocity (3.1) (or, alternatively, the symmetry of the
flow) can be used to show that the net flow of fluid through any
cross-section is zero. Hence, the continuity equation implies

f Y (3.4)

If the functional form (3.3) is to satisfy (3.4) we require

_ O(3.5)

Thus the variations of width are stationary in time and L is a function
of x alone.

Returning to the vorticity equation (3.2) and evaluating it on the

two free streamlines y = + L (x), where h = o, yields

(3.6)
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When this result is used in the (non-linear) momentum equation (5), the
time-dependence of the velocity on the free-streamline is given by

07 -t 0 r7 (3.7)

Along with the geostrophic velocity (3.1), (3.7) leads to an equation in
h alone. Then, the form (3.3) for h and the result that L/ =O give

D L4+ ?A , ; 1 I-=

on the free streamlines. However, (3.1) and (3.6) imply that Z AID Y -
on y = +L, so that

a - r L + Y- LA (3.8)

The term inside the brackets in (3.8) is independent of time. This
result suggests that variations of current width with very large length
scales will cause the current to meander, the amplitude of the meanders
growing linearly with time. The stream is expected to wander most

rapidly at those positions where dL/dx i; greatest. However, (3.8)
also suggests that short waves will grow more rapidly then long waves.
This contradicts the approximations used ( --* o) and indicates that we
need to consider the stability of the uniform current to perturbations of
finite wavelength. The stability of normal modes is discussed in the

following sections, first for the special but simpler case of 2 current
with zero potential vorticity and then for the more general case with

finite but uniform potential vorticity.

4. Flow with zero potential vorticity

4.1 The eigenvalue problem

If a small perturbation is imposed on the basic flow (2.12) and each
variable is written in the form ' = + , where is the steady

flow, then 0 must satisfy equations (2.5-2.8). From the momentum
equations the perturbation quantities must satisfy

4-_ ,+ 4 (4.1)

and

75' + -4+4 (4.2)

When the potential vorticity is zero, (2.12) gives da/d 1 --I
and this simplifies (4.1). ,

~-
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The continuity and vorticity equations (2.7) and (2.8) give

('V (4.3)

and

(4.4)

If the perturbation takes the form (u',v', h')=(' ,v,t)e'(xct) then
(4.1), (4.3) and (4.4) give the following three linearized equations for
the amplitudes:

AA

~~Z +-2 A & ~ y L O (4.8)

a nd d4AZ A6
"" 0 ,(4.7)

Elimination of h and v from the continuity equation (4.6) yields an

eigenvalue problem for the growth rate c:

This equation is singular at the edges of the current, where h(+L) = 0,
and we wish to find the solution for which the eigenfunction ' is regular

A thtA
at y = +L. That is, du/dy (L) must be finite in order that v be finite
on the free streamline. Therefore, when (4.8) is integrated across the

current we require

(4.9)

A

In order to solve (4.8-9) with a non-zero wavenumber £, c and u are
expanded in the power series 2

=~'; -t- E C" , 62,zz z  -t
=~a Ofy tL(,1 () t . ..

and the amplitude is normalized by requiring (at a fixed value of x)

a o . (4.10)

4.2 Termq of the loweqt order

A
When these expansions for c and u ire placed in (4.8), the leading

order termc imply that

d _=C ,
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For duo/dy to be finite at b = o, this requires

__ (4.11)

Hence the leading order downstream velocity perturbation is independent
of y. From (4.10) we set uo = 1 and require that ul(o) = u2 (o) =
... = 0. The eigenvalue co is given by (4.9) in which the leading

order terms imply

This is a quadratic equation for co but, with h and - given by (12) and

L = .r, can only be satisfied by

co = 0 . (4.12)

Thus normal modes are stable in the limit 0-0, as was predicted by the
long wave analysis in section 3.

The terms of order I obtained from (4.8) imply that dul/dy = 0.
In order to satisfy (4.10), this requires uI 

= 0. Using this result

along with (4.12) leads to the expansion

+ 427 -z,-9_

+- o +a Z3[2- I (#dZeICz e3C)2Cc3  4e~

where the arbitrary amplitude u0 has been set to u o =1.

4.3 Terms of order C and higher

Equating the terms of order IF2 obtained from (4.8) yields an
equation for the second eigenfunction u2 :

' 2 (4.13)

111 1 ' l'ii~lill -z I
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By applying the conditions that du2 /dy be finite at h = o and u2 (o) = 0,
we find

/L =(4.14)

The condition (4.9) becomes

?- fL (bJ)e- ~
giving c = -4/15. Hence the growth rate cl is pure imaginary and the
positive root c1 = 2i/rI describes exponentially growing modes that are
stationary in space. Disturbances with large but finite wavelengths are
therefore always unstable.

The calculation can be continued to higher orders in 0 in order to
investigate the dependence of the growth rate upon the wavenumber and
determine the higher order structure of the growing disturbances. At order
~,(4.8) gives d ( dp ) 2c i

which reduces to the regular solution with d(o) = 0:

From (4.9) C (4.15)

and this implies that c 2  0.

Repeating this procedure at orders 4 yields the eigenfunction

and the imaginary eigenvalue c3 = 1.04-1/31,,,"C-) The positive

(unstable) root for cI corresponds to

C 3  (-11Ow (4.16)

At order0 5 , the downstream velocity perturbation is

4t5 -= -y(C, #tC3 f-k
while C4 = 0. From the orderC 6 terms we find that cIC 5 =
-(32672/165375), and from order I7 terms that C6 = 0. Similarly we find
c8 =c1 0 c 12 0, c1 17 =0.1851, cLc 9=-0.06139 and clcll=0.2976.

Taking the positive root for cI , we have

* C5 = 0.3826i , C7 = -0.3585 Z C-- O= i j '-O-S-6 ?(4.17)

.. . ... .C..7...... ....... .... ,, . ,. .. ,.,, ,...... ...



- 208 -

Since the eigenvalues up to 0(E12 ) are all imaginary, the.growing
disturbances are stationary in space. Their growth factor e- ic t can be
written as e 0 Icgft*, where t* is the dimensional time and

GICI= Ic4 6 6c3 + £6 C5 i.

The dimensionless growth rate Gfcj is plotted in figure 2 as a
function of wavenimber, with each curve including extra terms. The
growth rate increases as the wavenumber increases at least until EZO.7.
The growth rates have converged sufficiently for us to conclude that the
maximum growth rate is close to 10- , and that this occurs at a
wavenumber between E= 0.7 and C= 0.8.

4.4 The eigenfunctions

The form of the downstream velocity perturbation is given by the sum
of '

= uo +£
2u2 + I 3u3 +... Use of these individual functions

in the longitudinal momentum equation (4.5) and the vorticity equation
(4.7) yields the depth and cross-stream velocity perturbations
respectively, for successive orders in ' . Some of these functions are
real, others are imaginary. Since the normalized amplitydes of all
perturbation quantities have the downstream dependence ei x , the real
parts of the lower order eigenfunctions are

/h

-~~~ Cy~ - ) i~ 0y c Xc (4.18)

The structure of the zeroth order eigenfunctions is sketched in
figure 3(a). Because the cross-stream velocity vo is directed away
from the midpoint of the stream at x = W7/2, and toward the midpoint at
x = 37/2, while the undisturbed longitudinal flow is positive for
positive y but negative for negative y, the zeroth order perturbation
corresponds to a meandering of the stream. The corresponding de 2 th
perturbation is linear with y, so that the total depth profile, + h o ,
remains symmetric (parabolic) about the local midpoint of the current.
This behaviour is consistent with that found for the limit -0, described
in section 3.

The first order perturbation b, also maintains the symmetry about
the midpoint of the current. The cross-stream velocity v1 , on the
other hand, is independent of position across the stream and corresponds
to variations in the current width, as sketched in figure 3b. Its
amplitude also has a phase that isl/r/2 radians ahead of vo and h0 .
The depth increases uniformly at the widest section of the current and
decreases at the narrowest section. Higher order eigenfunctions have the
same structure as those already described, but tend to concentrate
perturbations near the two free streamlines.
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0.2

0

-0 1

Figure 2. The growth rates (a)IkOO(0) (b) A ("
(c) hv O(E~for ditrbancesi on a current with zero
potential vortici ty.

0i UT 02w

0 w27T

Figure 3. The structure of the eigenfunction at (a) zeroth order inIO
(b) first order in 6 , and (c) the superposition of these
two lowest order modes.
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When the perturbations sketched in figures 3a and 3b are
superimposed, assuming comparable amplitudes, the structure of the flow

becomes that sketched in figure 3c. There is still a uniform reduction
of the current depth at x =7/2 and a uniform increase at x = 317"/2.
At sufficiently large amplitudes, it is likely that regions of closed
circulation will develop within the broader, deeper parts of the stream.

4.5 Energy transports

The source of energy for the growing disturbances may be determined
from the structure of the depth and velocity perturbations. In order to
calculate the potential energy changes, we begin with the longitudinally
averaged continuity equation

<' (4.19)

The braces denote an average over the x coordinate and h h + h' is the
total depth. Since h'<<'h, (4.19) gives

and by integrating across the stream the rate of change of potential
energy becomes Z.

A< .> -> . (4.20)

The lefthand side of (4.20) involves the cross-stream divergence of the
mass flux. Using the power series expansions for h and v in the normal
modes form of h' and v', the mass flux can be written as

ht ,= A, Z" £ (A. -Lri +-/Y, -v) t0( '.a) .
Then the individual functions in (4.18) give, to an arbitrary amplitude,

Hence, the lefthand side of (4,70) is negative. The potential energy
decreases with time. This 9 a i-sult of the coupling between the
meandering and varicose modes. The individual isolated modes would be

unable to decrease the total potential energy of the current.

The superposition of the meandering and varicose modes, with a phase
difference of Ir/2, also removes kinetic energy from the mean flow. The
velocity correlation is <+'0)( 4V 4" 6<"v#'> + 0( 2), where
(4.18) implies that <04c = 0. Then

< , > = -2 / # f 0g).
Thus the perturbations induce a positive Reynolds stress which transports
momentum across the stream.
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5. Flow with finite potential vorticity

5.1 The eigenvalue problem
-I

When the potential vorticity It is finite and uniform across the
stream, the undisturbed flow is given by (2.9-2.11) and is characterized
by an extra length scale L. This case is of greater oceanographic
relevance and involves more interesting behavior. The dimensionles"
perturbation equations (4.1-4.3) are unchanged but the vorticity equation

(4.4) is replaced by

d (5.1)

In (4.1), the undisturbed flow now has dT/dy-I = -h/.
I'

The normal mode amplitudes u, and h are then related by the

linearized equations

A
A A6U 0 (5.2)

A

' ) (5.3)
A

(5.4)

A A
Eliminating v from (5.2) and (5.4) and eliminating h from the same two

A A
equations gives h and v, respectively, in terms of u. These can be used
in the continuity equation (5.3) to find the differential equation that
corresponds t9 (4.8):

+ r f ,-

b ~~~ + zTj 1 0

YleJ .kZ - CfJLJ

The above equation is presented in order to point out the nature of
the problem. For non-zero values of e and the limit 0-I 0, (5.5)
reduces to (4.8). Since an expansion of the variables in powers of the
wavenumberl, about the limit E-->0, will again be used to find the
eigenvalues coc 1 ...at finite values of k , we must require that
6« < . Hence our solution is not expected to be valid in the
limit -1-O

Rather than using (5.5) we note that the cross-stream momentum

equation (4.2) is unchanged for finite potential vorticity and reduces to
the linearized form
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A

t-) (6 -I d =y (5.6)

for the normal modes. Using (5.6) in (5.4) yields

while (5.6) and (5.3) give

b &__ (5.8)

A AY
The last two equations may be solved for h and v , and then u is given by
(5.6). Since h = 0 on the two free streamlines, the downstream momentum
equation (5.2) indicates that the solution is subject to the condition

(u-c) % + =0 on y + L. Replacing u from (5.6), these boundary
conditions become

oz - C-) c" f e 0t (5.9)

It is interesting to note that (5.9) is no longer a boundary condition

on the free streamlines in the limit of zero potential vorticity, but is

then satisfied at all values of y.

The variables are again expanded in the form

and

Similarly for u (y) and v(y). Then a suitable normalization of the

amplitudes is again A (o)= . .o
it (5.10)

and this requires that ul(O) = u2 (o) = .. 0. 0. Because solution of

this problem is more protracted than that of the zero potential

vorticity problem we will proceed to calculate only the lower order

eigenfunctions and the first non-zero eigenvalue.

5.2 The zeroth order solution

When the power series expansions are substituted into (5.7) the terms
of leading order in 1 give 4 0

Ao Y7 (5.11)

and the boundary conditions become

C CIAO (5.12)

The general solution to (5.11), is bo - A sinh y/ 2' + B cosh y/7', and

by substituting this into (5.12) we obtain, at y = L,

_c) A]5;i L tA V-c.)_I-
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and at y = -L L

ftI/Z

where (f =  (L) = 'tanh (L/J( and (-L) -*7 . Addition and
subtraction of these two identities shows that B = 0 and co = 0. Hence
normal modes are again stable in the limit F-40. The leading order terms
from (5.6) imply that u. =--q. . Hence u. = -(A/'2) cosh (y/fR'Z),
where the normalization (5.10) requires that A = The zeroth order
eigenfunctions are now

= S y(5.13)

with v. given by (5.8):

_ ~YA.) (5.14)

Substituting (5.13) into (5.14), with h given by (2.11), and requiring
v o to be finite on the free streamline, where y -L and b = 0, the

cross-stream velocity perturbation is found to be

= Ii Y~dz(5.15)

5.3 Terms of order.

By equating terms of order obtained from (5.7), (5.8) and (5.9) we

find h
-i _ c (5.16)

JU~iz~ch(5.17)
a,,A C-- ,o an =I (5.18) "

The general solution for hl is h1 = C sinh(y/fe)+ D cosh(y/7').
This time, the terms involving the constant C cancel from (5.18),
leaving one equation relating D and the eigenvalue cl:
D - cl cosh 2 (L/k#/').

The first order longitudinal velocity is geostrophic, uI 
= -dhl/dy,

as was the case for uo . Then ul(0) = 0 requires that C = 0 and the

solution becomes
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The solution for v1 that is finite at y =+ L is

C49/z- (5.20)

5.4 Terms of order 
C
2

In order to find the first non-zero eigenvalue it is necessary to
evaluate h2 . From (5.7), (5.8), and (5.9) the second order terms give

_ -=- Z ) (5.21)

- ~ ~&~h-ci -c~ 0-(iv~h(5.22)

and A. Z _ C C- vko Ob.2

while (5.6) implies tha '

& Z dhW_ Y - (5.24)

Substituting for vo from (5.15) into (5.21) gives an equation for h 2

For this equation the general solution is

hZ = o ihh4 Y3 It~/ VZ fCOZ 17

Two algebraic equations in c1 , c2 and are now obtained from
(5.23) and the known forms of h2, h,, ho and v. By adding these

equations it is found that 9 = c2 cosh 2(L./ J/z) . The constant cL
is then evaluated by finding u2 from (5.24) and requiring u2 (o) = 0.
This procedure gives O=fi C 372- c: " 4-1 I A)

On the other hand, by subtracting the two equations obtained from the
boundary conditions (5.23) we are left with an equation for cl alone:

it i, preferable to rewrite this expression in terms of the parameter

L/#?A alone. From the shape of the undisturbed current (2.11), where

(0) - 1, the dimensionless potential vorticity can be expressed as

- / (5.25)

whence the growth rate cl is given by
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4:1 1-3 e~lk (5.26)

5.5 The grer-vh rate and structure

Before discussing the first order growth rate further it is useful to
introduce a new parameter that will enable a more direct comparison
between our predictions and experiments. In terms of the dimensional
parameters of the problem we have /-/ft/ 2 = /Fi 7 ', where L* is the
dimensional hal f-width of the current. A similar dimensionless group can
be defined in terms of the cross-sectional area, A, of the current:

FA
iqj '-Z(5.27)

Then, by integrating the depth profile (2.11) across the stream,
= L/* 1 /2 _ tanh (L/* l / 2 ) .

The square of the first order growth rate (5.26) is plotted in figure
4 as a function of F The value of c? is negative for all values
of P (or L/k /2 ) and so normal modes are always unstable. As ' -,

- -4/3 ept(-Llt'l indicating that disturbances grow much more
slowly when the current width is large compared to the length scale
(g'Ho) 1 / 2 f - I than they do when these length scales are comparable.
Note that Ho is the (uniform) depth that the current would have to assume
if the fluid was to be stationary in the rotating reference frame. In
the opposite limit of F-*0, cl approaches its minimum value-O.4'.
In order to reach this limit it is necessary that Ho- >,O at a finite
value of the area A (or of the width L*), or that A -- 0 ( 0)
at a finite value of Ho. However, both of these cases imply that

k1- - - 0 and the analysis iq not expected to 1'e valid in that limit,
since then 1F . - for all non-zero wavenunibers. Indeed, the eigpnvalue
c] does not correspond to that found earlier (c? = -4/15) from the
equations with zero potential vorticity. Thus the growth rates obtained
at F<<1 have no significance. At F r!:0(1), on the other hand, cl '5

a close approximation to the aigenvalue c for all wavenunterQ E: << 1
The structure of the problem with zero potential vorticity al o -ugge tQ
that the value of c 1 w.,ill be an upper bound for c at larger
values 1 < 1.

Having shown that the first order growth rate is imaginary, the
structure of the growing disturbances can be deacribed. Both the zeroth
and first order eigenfunctionq (5.13, 5.15, 5.19, 5.20) have forns
similar to those found for the flow with zero potential vorticitv
(sketched in figure 3) and are modified only by the hyperbol ic finctions
of v, which tend to concentrate the perturbation energy into regionq
close to the twYo free ctreamline=. Thiq tendency iq ctronger for wider
cu-rrents, flows for which we know that the dicturbances grow m.)ch more
Qlowly. There iq again a quperposition of a nmeandering mode in .*)ich the
width and depth are constant along tho current and a varicose mode with a
longitidinal ,width and depth variation. The t.,o nd,. have a phace
difference of Tr/2, producing a decrease in the potential energy of the
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flow and a transport of momentum across the stream. The eigenfunctions
of higher order in 0 simply reinforce the structure of the lower modes
and, for larger wavenumbers 1 , further restrict the release of energy
to regions adjacent to the edges of the current.

6. Laboratory experiments

6.1 Apparatus

In order to establish an initially "parallel" current of uniform
potential vorticity in a rotating container it was necessary to adopt an

axisymmetric geometry. A cyclindrical tank 92 cm in diameter was filled
with a layer of sodi'm chloride solution which in most experiments was

40 cm deep. Two rigidly connected cylindrical walls that formed an
annulus were then partially immersed into this deep layer, as sketched in
figure 5. The annulus was guspended, and held concentric with the
vertical axis of rotation, by three guides attached to the rim of the

tank. The annulus width (2L* o ) was 7cm, its inner diameter 36cm, and

its outer diameter 50cm.

After the salt solution had come to the desired rotation rate f/2,
dyed fresh water was carefully floated onto the free surface inside the
annulus to form the shallow upper layer shown in figure 5. After filling

to the required depth H. the system was left for at least 30 minutes to

roach solid body rotation. The depth Ho was most accurately determined

by measuring the volume of fluid placed in the annulus. At a time t=0,
the annulus was carefully drawn vertically upward and removed. The
subsequent flow was visualised by the dye in the upper layer and small
pellets of paper floating on the free surface. Photographs were taken
with a camera mounted in the rotating reference frame and time exposures
of about one half of a rotation period were used to obtain streaks. Such

streaks revealed no motion before the annulus was withdrawn.

fd

10-I

I0*' e

CII

I02 I0" I 10 102

F: /4 Figure 5. The laboratory apparatus.

Figure 4. The first order eignvalue -ci for normal modes on a
current with uniform finite potential vorticity.
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Values of the Coriolis parameter used ranged from 0.38s - I to
2.5s - I while the reduced gravity g' lay in the range 0.8 _< g' S
l2cms - . The initial depth of the upper layer was always between 4 and
6 cm. This gave a ratio of layer depths less than 0.16 when the lower
layer was 40 cm deep. However, two experiments were carried out with
shallow lower layers in order to observe the influence of the lower
boundary upon the flow. In these cases the initial depth ratios were 0.6
and 0.84.

6.2 Observations and results

The flow was observed to be very unstable at all values of the
parameters. When the annulus was removed the buoyant upper layer first
spread radially toward and away from the axis of rotation by a distance
that was measured to be close to the initial Rossby radius
(g'Ho) 1 12 f-1 . As a result there formed an anticyclonic (clockwise)
flow in the outer region of the upper layer and a cyclonic flow in the
inner half of the dyed fluid. This collapsing phase occupied a time
scale of order f-. Large disturbances to this flow became obvious
within two or three revolutions and the current broke up into a chain of
eddies within about six revolutions.

In figure 6 are shown four stages during the evolution of a current
that was formed when the initial Rossby radius was 10% greater than the
half width L*o of the annulus. In (i) the flow is largely axisymmetric
and some of the curvature in the streaks is probably due to the later
stages of the collapsing phase. However, some meandering is already
present and in (ii) there have appeared five regions of closed
anticyclonic circulation within the current. The fronts (edges of the
dyed fluid) also reveal a wavelike structure. Although the circular
geometry confuses the nature of the flow at this stage, there appears to
be some meandering away from a circular line as well as variations in
current width. The meandering becomes more obvious in (iii), where the
flow is qualitatively very qimilar to that Qketched in figure 3(c). In
(iv), individual eddies have broken off from their neighboring eddies.
The flow subsequently evolves very slowly, with the anticyclonic eddies
becoming more circular and motions qlowly decaying due to friction.

In figure 7 is shown a similar sequence in the evolution of a current
for which the initial Rossby radius waq only 45% of the annuluQ
half-width L*o . Frame (i) again shows an almost axisymmetric flow with
some turbulence produced in the wakp of the annulus. Large disturbances
are obvious in (ii). In this case, though, the waves have a much smaller
wavelength and there are more waves around the outer front than around
the inner front. However, the meandering mode can be clearly qeen. In
(iii) the varicoqe and meandering modps are both clear. The wider and
d-p ,- parts of the current form closed eddy circulations which, after a
r-lativelv qlow evolution, make up the Nroad and turbulent current shown
in iv).
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ii

Figure 6. The evolution of a current with f =2.07s- and -0.90.

() t = 2 days

(iv) t = 4 days.

(-A =6dy
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i t Ida

(i) t = I days

(iv) t = 17 days
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If we assume for the moment that the deep bottom layer is stationary
and that there is no mixing between the layers, then the laboratory
current is described by the single dimensionless parameter
fL*o/(g'Ho)l/2, and this is exactly the quantityFdefined in
(5.27). In figure 8 is plotted n, the number of waves that appeared
around the annular current. The straight line is a fit by eye to the
data and indicates that the wavenumber increases roughly linearly withF.
In figure 9. the same data is preseitpd as the dimensionless wavelength

f k /(gIH)/2 , where the wavelength X\ is calculated from ?k=21rr/ and
r is the radius of the inner or outer front. The depth H at the midpoint
of the current is given by Ho, the mfasured width L* after collapze and
equation (2.11), but was always within 10% of Ho. We see that this dimen-
sionless wavelength is independent ofF and is therefore independent of
the width of the current. The constant value *F;k/(g'H)1 /2 = 6.9 + 0.7
corresponds to the wavenumber I = 0.9 + 0.1. Thus energy is most
efficiently released on a length scale that is determined solely by the
Rossby radius and that is not influenced by the distance between the two
fronts. Note that a most rapidly growing mode with e= 0.8 is consistent
with our analysis for zero potential vorticity while this wavenumber has
not been predicted for currents with finite potential vorticity.

Two remarks can be made about the growth rates of the observed
disturbances. First, their appearance within about two revolutions after
the annulus was withdrawn implies a growth rate c > 4xl0 -2 . This lower
limit is significantly less than calculated first order growth rate cl
at values of:F< 5. Since cl is expected to greatly over-estimate the
real growth rate at C-l, the two values are vaguely consistent. On the
other hand, the growth rate is predicted to decrease rapidly with
increasing Z . This is difficult to verify within the experimental range
of parameters because the appearance and growth of small amplitude
disturbances is poorly defined. A more clearly defined time scale, and
one that will be of importance in oceanographic observations, is that
time required for the initial current to form isolated eddies whose
circulations have pinched off from their neighbors. For the two
experiments shown in figures 6 and 7 this time scale was, respectively, 5
and 6 rotation periods.

6.3 Other instabilities

Immediately after the buoyant upper layer collapsed, some small scale
structure was visible at the fronts. This was probably the result of
turbulence produced in the wake of the withdrawn annulus walls. No
evidence of Kelvin-Helmholtz instability was observed.

Of greater importance is the influence of a two-layer baroclinic
instability. Griffiths and Linden (1980) have found that the wavelength
of unstable waves that appear on an isolated two-layer vortex in a
rotating laboratory tank is dependent upon the ratio of layer depths.
They conclude that the instability is primarily baroclinic when the ratio
of the upper to lower layer depths is greater than 10-1. At such depth
ratios the unstable waves led to the formation of cyclone-anticyclone
pairs which propagated away from any remaining central vortex. In figure
10 are shown two stages in th-e evolution of an annular current when the
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Figure 8. The number of waves observed around the annulus, and a
straight line fitted by eye to the data.

12

10

8T

4

2

0 I I I

0 1 2 3 4
Zof

Figure 9. The dimensionless wavelength 7tf/(g'H)1 /2 as a function
of F = fL*o/(g'Ho)l/2 . The horizontal line is the mean
value 6.9 + 0.7. The filled circles are chose cases in
which the Tower layer was shallow.
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initial depth ratio is 0.6. While of smaller amplitude, each wave was
observed to "break" on the up-stream side, where vortices of opposite
sign appeared in the lower layer. At the later stage shown in (ii)
there are a number of cyclone-anticyclone pairs present and one dipole
has escaped from the vicinity of the current. On the other hand, the
dominant wavelength observed on the annular currents does not depend upon
the ratio of layer depths (the wavelengths from experiments with large
depth ratios are shown as filled cir les in figure 9). There was also no
marked difference in the time that elapsed before large disturbances
appeared. We conclude that the lower layer is no longer stationary at
the larger depth ratios and that the two-layer baroclinic mechanism is
able to help release potential energy. However, it seems likely that the
single-layer instability caused by the presence of two free streamlines
selects the most unstable wavenumber and assists the energy transfer,
even in the distinctly two-layer flow.

7. Conclusions

A single-layer model of a narrow buoyant current that is bounded by
two free streamlines predicts that such a flow is very unstable. In the
limit of infinitely long waves, disturbances grow linearly with time and
normal modes are stable. For flows with uniform potential vorticity an
analysis of normal modes with finite wavelengths indicates that
disturbances will grow exponentially with time and be stationary in
space. A superposition of meandering and 'varicose' modes is predicted
to release both potential and kinetic energy from the undisturbed current.
When the flow has zero potential vorticity, the wavelength of the mode
with the maximum growth rate is estimated to be 8 (g'H)1/f-l, where
H is the maximum depth of the current.

Our analysis for flows with finite potential vorticity leads to a
first order growth rate that depends upon the ratio of width and depth
scales of the current. Two limits are of interest. First, the analysis
is not valid in the limit where the potential vorticity approaches zero.
The correct limit is that given by the equations with the potential
vorticity set identically to zero. Second, when the current width
becomes large compared to the Rossby radius based on H O (the depth at
which the relative vorticity is zero) the growhl. rate of disturbances
becomes very small. This suggests that a single front (at the edge of an
infinitely wide current) is stable to normal modes in a one-layer model.

Laboratory experiments with a shallow current at the free surface of
a deep lower layer confirm that such a current is very unstable and show
that the dominant downstream length scale is approximately 7 (g' H)"*"- f
The observed structure of growing disturbances corresponds closely to
that predicted. The experiments also indicate that the single-layer
frontal instability is likely to continue to be important when the second
layer is of finite depth and the two-layer baroclinic instability
mechanism assists the release of potential energy.

The analysis could be extended to investigate the stability of a
circular eddy that is bounded by a sharp density front. In this case,
there is a single free streamline. However, there may be a coupling
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JJ

Figure 10. Two tages in the evolution of an annular current when the

lower layer is salw f = 0.89sq F 1 .36 and

initial ratio of layer depths 0.6

Mi t = 2.5 days
(ii) t = 6 days
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between tiue antipodes of the front. A current flowing along a sloping
bottom can also be described by a minor modification to the cross-stream
momentum equation (2.9). For a planar bottom with a slope d'/dy,
perpendicular to the direction of the undisturbed flow, (2.9) becomes
,=-Ad -didy and the perturbation equations are otherwise
unchanged. There is now a net flux of fluid along the stream and it can
be shown that the velocity is even unidirectional when I d5 /dy/ >
k1/2 tanh (L//'2). As the symmetry of the original problem has now
been removed, the structure of the growing disturbances will be al tered
and they will no longer be stationary in the spatial reference frame
moving with the velocity of the midpoint of the current.
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RATIONAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS

James Meiss

A soliton is usually defined as a localized solution to a partial
differential equation (pde) which "asymptotically preserves its shape and
velocity upon collison with other solitons." (Scott, Chu, and McLaughlin,
1973). One explanation for this remarkable stability derives from the inverse
spectral transform: in "spectral space" a soliton is represented by an
eigenvalue (of the associated linear problem) which is time independent.

Another possible explanation for the particle-like nature of solitons was
first suggested by Kruskal in 1974. In his view a soliton is represented by a
point, or an array of points, moving in the complex plane. In this report we
review the development of this idea over the past six years for a number of
pde' s.

For historical reasons, consider first the Korteweg-de Vries (KdV) equation

LA+ U,4 0

which has the soliton solution

U 6c,~ = v se(' f (-V4)) (2)

Noticing that the function sech2 (y) has double poles evenly spaced along the
imaginary axis we could rewrite (2) in terms of a summation over poles:

00

The KdV soliton therefore can be thought of as an infinite line of points in
the complex plane with spacing W/4 - In the single soliton, each pole moves
with constant velocity v in the "real" direction. To obtain a two soliton
solution we begin with two well separated lines at poles, each with spacing
depending on its velocity. The subsequent evolution of the poles depends in
detail on the ratio 4v,/V, for if this is rational then the entire structure
is periodic in the imaginary direction (Thickstun, 1976). This suggests
interpreting the poles as point particles which interact due to the
nonlinearity of the KdV equation. We will see that this is indeed the case
and suggest that this particle interpretation is connected to the stability of
the solitons.

To generalize the soliton solution (2-3), assume that the function u(x,t)
can be decomposed into a set of mth order poles with positions aj(t) and
residues Rj(t): N

.w- (4)
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Substitution of this ansatz into (1) shows that (4) is a solution only if m
2 and Rj = -12 (Airault, McKean, and Moses, 1977; Choodnovsky 2 , 1977). In

addition, the pole positions must satisfy the ordinary differential equations
(ode's) V / I--IQ .Z d'a IJ"Ij2

(a0-k ' (5)

Finally, the initial conditions are constrained by the requirement

-o C(6
it essh 41. (6)

In t~ese sums the prime indicates the omission of the singular terms k = j.

We thus have a correspondence between the pde (I) and the N ode's (5).
The set of solutions (4) includes as a special case the multi-soliton
solutions. For finite N it has been shown (Airault, McKean, and Moses, 1977)
that toe constraint (6) can be satisfied only when

N (7)

The simplest case of (7), d = 1, yields a time independent solution

-1,2. (8)

where a is a complex constant

The next case, d = 2, has pole positions, proportional to 4 and

--3 (' 9)t)

Figure I displays the trajectories of the poles for this case.
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Airault (1978) has presented solutions for higher values of d; however,
not much is known about the N---M case other than the existence of the
multi-soluton solutions.

The pole equations (5) can be derived directly by substituting tile ansatz

(4) into the pole or alternatively by Fourier transformation. We will
describe this latter method for another pde - the Benjamin-Ono equation

((Len, Lee, and Pereira, 1979). This equation results in the simpliest
possible pole equations and is for that reason pedagogically preferable.

The Benjamin-Ono equation (see Redekopp, this volume) is

14. + U L)t 4 H = 0 (10)

where is the Hilbert transform

Defining the Fourier transform by e u(x)dx and applying this
to (10) yields "'

it+ ( - ikl'l -=0 (12)

wnere we have used j(A= i sgn (k)C . If the ansatz (4) is again used, we
will see that (12) can be satisfied only when m = I. For this case the

Fourier transform of u is

-sc~()~r~i(13)J-.

where the summation is only over those poles in the uppyr (lower) half plane
for k< 0 (k)00). We will assume below that k< 0 for simplicity; however, it

is easy to see that the case k> 0 yields equivalent results. Using the form
(13) in the three terms of (12) yields

2=A* ZJ e - A' 3 -t (14a)

•. Z a i kj -G (14b)

-;.kkl' : ,ln. (.z) 2je"4' J(14c)
J+

In (14b) the first term on the right arises from the double poles in the
Fourier integral. The three terms (14) must sum to zero for all k; in
particular, the (Y(k2) terms must vanish

-A e rA~~j& \ 7lJ Q (15)
J+
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Vanishing all of the&'(k) term impi es

and finally tne &'(ko) term gives Rj = which is consistent witl (5).

Tile known solutions of the many-body problem (16) include the case N
where u is trivally time independent, N = 2 with complex conjugate poles
wnere U is the single soliton solution

LI-v

and similarly N = 2n when the poles are complex conjugate pairs where is
tne n-solution (Joseph, 1977; Case, 1979; Matsumo, 1979, 1980). We will see
oelow that (16) can be embedded into an integrable Hamiltonian system and
hence all solutions are known in principle.

The above analysis applies almost without cliange to the
Burgers-Benjamin-Ono (BBO) equation as defined by

U. t + ULA),4 0q HU (A- (18)

This equation has solutions of the form (4) with m = 1, Rj = -2 to(
and

Consider for example the N=2 case for which the equations (19) are easily
solved

c + ~-~~-~t(20)

4 A * t

CkL -D ;z +oyA



ith Cr?~)

Fig. 2 Pole Trajectories for the Burgers Equation from (20).
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Figure 2 d isplays tthe ti ree types ot I ra jec tories tor L n is eqiat ion wnen C
ij. Note Ln t it D is rea I, tilt poles c01 I Ide alld tW v,-oL It , .1-:,rdi lg to
(19), Decomes 1ntinIte.

itie pole equations Ior Ltle Bli() equation can be embedded Lit,, a Hni [t I -ijo
system. Begin by ditterentiat ing (14) witLI respecto o L[ime Id scibst hut i g
tor dK oi toe right hand side to obtain

This set of equations is derivable trom the Haniltoni.in

H 4 () j(22)
J k<)

Whic1 is tie complex version ot tie caLoge ro-Moser latt ice Calogero, 4 7 1
rnis system can De shown to be integrable by Lox's Tnetnod iMoser, 197 ). It
must be noted troat there a .e i rajectories ot itn HamiIton iat 122) wnich are
not solutions to (19); however, tie part icular solut ions o 21) m1at nave
initial conditions sat isfying (19) are also solut ions of ( 1). TO Is is tile
meaning o t toe term "embedded" as used a 6ove.

The emoedding of the pole eqrations itto a ;Jami I tonian Vste:n I also
possible for the KdV system (5) (Airault, Moser, and McKean, 1977). In Lis
case one obtains a particle system wi to an Ilverse tIou rt power potential.
Ti s Jjaii [ton ian is also Integrable - only hlowever when ttie const r it it I ) s
satistied (Choodnovsky, 1977).

It is interesting, in view ot tie above connections between integrable
pde ' s and integrable ode's, to speculate toat toere is some deeper ,)nntect IOT
between t hose pde's whico c an be pole decomposed and integraoiIItv. Consder,
for example, tile more general equatiort

(At + (A? U, j 0i2

where p is an integer and t a linear pseudo--difterential operator ot order it
(that is, the Fourier transform of t is a power series in k, and pernaps N ,
with the highest power n). We can easily find a necessary requi reie nt Ior the
validity of the ansatz (4) by considering the highest order pols generated Ov
substitution into (23). The diagonal part of the nonlinear term is a pole o1
order mp + m + 1; while the highest order of the poles in tile dispersive term
is m + n. These two terms must balance since if n -) I the time derivative has
no poles of order larg enough. Thus we must have

mp + m + I m + n,

np = n - I

in order for toe nonlinearity to balance the dispersion. Totis necessary
requirement for the solut ion (4) already eliminates most equations (Fable Ii.

. S -

L. -
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COHERENT FEATURES BY THE METHO) OF POINT VORTICES

Hassan Aref

1. Introduction

This investigation arose from a desire to apply to the barotropic
potential vorticity equation the method of point vortex decomposition
that has proved so useful in nonrotating two-dimensional flow. In
particular, it seemed that point vortices (and the vortex-in-cell method,
see § 3) might considerably reduce the computing time necessary to
calculate numerically a coherent feature such as a modon. The recent
work by McWilliams, Flierl, Larichev and Reznik (1980; henceforth
referred to as MFLR) provided a useful benchmark with which to compare.

In this work I assess the accuracy and reliability with which one can
calculate certain dipole vortex structures in nonrotating two-dimensional
flow. As shown in 52 these dipoles turn out to be the (S->O limit of the
two-dimensional Rossby solitons found by Larichev & Reznik (1978) and
studied in MFLR. The dipoles, called 2D Euler solitons here by analogy,
can be calculated by the vortex-in-cell method. At comparable accuracy
and resolution this method is shown to be at least a factor 25 faster
than a straightforward finite difference calculation (§ 3). This
considerable saving of necessary resources allows collision experiments
between coherent featur'es to be studied with ease (f 4). The results
obtained here suggest that application of the vortex method to flow
features with finite p should be pursued.

2. The two-dimensional Rossby soliton (2DRS)

These special solutions, originally presented by Larichev & Reznik
(1978), consist of a dipole-like vortex on the infinite ( -plane. The
streamfunction in the rest.frame of such a "coherent feature" has the
form: -, ( y

2{ 1 K&Fotc
where Jl(K 1 ) is the (modified) Besselficuion of order 1. As written
the solution contains three pararnetrs: a, K and ) . a is the radius
of the feature. PC and P are inner and outer w3venumbers characLerizing
the feature. They are related by the ;oi~ion:

J-___ = - _ a) (2.2)
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which results from demanding that the tangential velocity be continuous
at r = a. The dipole (2.1) translates with uniform speed:

U= (/' (2.3)

to the East (x increasing). The relative vorticity of the feature,r=-A_'
is given by the simple expression:

X -- K,(r K (a >O (2.4)

Two limits of the above result are worth noting. First, keep (3 and a
fixed but let P- 00 so that U -10 and -+0 for r > a. Then

and the matching condition (2.2) becomes:

2T.( )  = 0. (2.6)

Hence we recover the modon solution originally found by Stern (1975).

The second limit to consider arises for a and U fixed but Y?-,O so
that P-10. For r > a we then get:

Ue' Sc G (2.7a)- r

while for r < a

= U -O( r) S(2.7b)

The matching condition becomes:

•,()c.)= 0 (2.8)
These solutions are discussed by Lamb (1916) and Batchelor (1967). Note
that U is now a free parameter (independent of a andPC). I shall call
these solutions two-dimensional Euler solitons (2DES).

A couple of pertinent results about 2DES follow. First note that A
is an average wavenumber of the flow in the sense that - for r < a
or equivalently that

=, 2 (2.9)

where F . is the kinetic energy of the flow (in the frame of
reference where the fluid is at rest at infinity) and S2 is the
enstrophy.
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Secondly, note that the nonvanishing component of the fluid impulse

P= aJS AX 4j = 21-e U (2.10)

For SJoLx a%= 0 (as is the case here) P equals the total momentum
of the fluid (in the same reference frame as above). Finally,

U 7, (2.11)

The formulae (2.10), (2.11) are analogous to the expressions for momentum
and kinetic energy of a classical free particle with mass 27ra 2 and
velocity U . I shall return to these formulae in 13 and f4.

3. Numerical simulation of a 2DES

A sequence of numerical calculations were performed to assess how
well a 2DES, Eqn. (2.7), can be simulated using the vortex-in-cell
algorithm. A description of this algorithm is given in Christiansen
(1973). The actual code used here is the same as in previous work (Aref
& Siggia 1980). The basic independent variables of this algorithm are
the coordinates (Xn,yn) and the strengths ln, n = 1,...,N of an
assembly of N point vortices. However, in calculating the motion of the
vortices a grid (of dimension M x M say) is used, and at each timestep
Poisson's equation for the streamfunction is solved and velocities
calculated (by finite differences) on the grid. At first sight one might
therefore assume that a vortex-in-cell calculation employing an M x M
grid would have a spatial resolution comparable to a finite difference
calculation on a grid of the same dimensions. However, it is possible to
have many vortices per grid square and so the spatial resolution of the
vortex-in-cell approach depends on both the grid size M and the available
number of point vortices N. Note that an FFT on an M x M grid requires
O(M21og 2M) operations. Hence, in a finite difference code that
employs FFT technique to solve for the streamfunction the operation count
goes up by at least a factor of 4 if M is increased by a factor of 2. In
the vortex-in-cell algorithm on the other hand the operation count
increases only linearly with N as the number of vortices is increased on
a grid of fixed size.

When calculating a structure like (2.7) the vortex-in-cell method
turns out to be much more efficient than a finite difference algorithm.
The reason is that M can be kept relatively small (M = 64 or 128 in the
calculations reported here) and all the vortices can be piled into the
vorticity containing regions of the flow field. The resulting resolution
is considerably beyond that of a finite difference code on an M x M grid.
By comparing with recent results in MFLR the spatial resolution of my vor-
tex-in-cell calculations with N = O(M2) seems comparable to the spatial
resolution of a finite difference code on a grid approximately 5M x 5M!
The necessary computing resources are thus reduced by at least a factor
25.
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Now let me describe the numerical calculations performed. The setup

is shown schematically in the top half of Fig. 1. The numerical box has
rigid boundaries top and bottom, periodic boundaries left and right. The
2DES which is a solution for the unbounded plane is initialized in this
channel and its evolution followed in time. This procedure is repeated
for several values of the ratio a/L of structure radius to channel width.

I-i-
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In order to exploit the potential additional resolution of the vortex
method the 2DES were initialized as follows: First, using a 64 x 64
grid, a 2DES of radius a = L/2 was initialized by placing at each grid
site a point vortex of the appropriate strength. In all 3142 point
vortices were needed. Then the 2DES was contracted to the desired size.
To see how this works let S(r) be the vorticity of the solution (2.7)
with radius a J cr)

= J.(Ica) (3.1)
0 r>&.

and consider

A OA J Kcr)
JX 

(3.2)

where
A CA

KU~u . (3.3)

This vorticity distribution produced by contracting and rescaling is
again of the form (2.7). Thus, in the calculations reported on here 3142
point vortices are used to represent the vorticity distribution
regardless of the size of the radius. Note that the product of

propagation speed and radius is the same for all 2DES obtained in this
way.

The following values of a/L were considered: 1/64, 1/32, 3/64, 1/16,

5/64, 7/64, 1/8, 1/5, 1/4 and Ca equal to the first zero of Jl. In
each case the propagation velocity,Ucalc, was calculated from the
simulation by following the motion of the centroids of positive and
negative vorticity. In Fig. 1 (lower half) the ratio UCOLIC/U6o
where U0o is the propagation velocity expected for the 2DES on the
infinite plane, is plotted versus a/L. Two effects are apparent in this
figure. For a/LZ0.1 the simulated propagation speed is smaller than U .

This is due to the effects of the boundaries on the structure (see the
discussion surrounding Eqns. (3.8) - (3.9)). For a/L< 0.025, Uc'c/U.

again drops below unity. This is due to loss of resolution (cf. Fig.
3). To calculate the velocities plotted in Fig. 1 the 2DES was allowed

to move 1-3 radii, i.e. the calculation lasted for a time interval, 0<
t ( tfin, where U tfin/a ZZ . Such a calculation consumed
approximately 10 sec of CRAY-l CPU time. In the finite difference
calculations of MFLR similar calculations consumed several minutes of

CRAY-i time (McWilliams, private communication).

Fluctuations in the value of U calc/ U over the duration of
the run were smaller than the width of the dots in Fig. 1. The flag on
the point a/L = 0.125 signifies that this value of U calc/U O was

reproduced with a longer run, Utfin/. ? 5. and for a run with Ka
equal to the second zero of J1 . For the longer run the vorticity
profile
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I

for y on the grid, i.e. yx M/ 0, + 1, , was also calculated at
several instants of time t19 ... ,ts. The histogram in Fig. 2 gives
the average $

<JI

and the error bars give the size of the standard deviation
where

I ~* (3.6)-j=I

It is obvious that the vorticity profile is well preserved. This check
on the accuracy of the simulation is more sensitive than just evaluating
the propagation speed. For, as is seen from Eqns. (2.10) - (2.11), the
propagation speed is simply

5 1.915 + .014

3.412 + .048

4 ,- 4.229 + .0SS

4.266 + .048

3.SSO + .04S

3 2.308 - .031

0.950 + .012

2 0.102 + .007

-L
0 2 4 6 8 yx64/L

Fig. 2 Numerical check on persistence of 2DES vorticity profile.
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U / ,P (3.7)

and is constant for a code that preserves P and

To substantiate the claim that U calc/U0 for the large a/L
values is less than unity because of boundary interactions I have
calculated the analogous ratio of speeds for a pair of point vortices of
opposite strengths. Let UL denote the propagation speed of the pair
with the boundary conditions of Fig. I (top) and let U denote the
propagation speed on the infinite plane. Then using results given by
Oberhettinger & Magnus (1949) I find

-- - - - ---J--. (3.8)

where s is the distance between the point vortices. Expanding in powers
of 7Ir/L

ULUC, )(3.9)

The dashed line in Fig. 1 (bottom) is this parabola with the

identification s = a.

To discuss the small a/L results I have replotted in Fig. 3 the data
points for a/L = 1/64, 1/32, 3/64, 1/16, 5/64 and 7/64. The ordinate is
again U calc/U.o but the abcissa now gives the number of grid
intervals within the diameter of the 2DES. Since my

Ucoc/[/co, MFLR
this work

0.5 -

5 10 15
CRIO INTER1AL S PER 0IAMETERS

Fig. 3 Comparison of vortex-in-cell and finite difference code

resolutions
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grid is 64 x 64, a/L = 1/64 corresponds to 2 grid intervals per diameter,

and so on. As already surmised, piling up vortices within the bounding
streamline increases the numerical resolution. To emphasize this point I
have also plotted in Fig. 3 the results obtained by MFLR for a 2DRS using
a finite difference code. (Results for the 2DES should be identical). It
is clearly seen that the point vortices enhance the numerical resolution
of the vortex-in-cell scheme well beyond that of the finite difference
code. As discussed before the overall savings of computational resources

are substantial.

Finally, consider contour plotsof the streamfunction for the case
a/L = 0.25 (Fig. 4a and b). The streamlines in the evolved structure
match the initial streamlines identically when shifted back. On the
other hand we know from Fig. 1 that the propagation speed is only about
0.8 of U00 and so the vortex must be adjusting to the imposed boundary
conditions. Figs. 5a, b give an indication of how this is happening.
Apparently waves propagate around the vortex lobes. Propagating waves on

vortices have been studied by Zabusky and coworkers (cf. Deem & Zabusky
(1979)) for the case of uniform vortices of finite area. I would like to
believe that the waves seen in Fig. 5b represent dynamically possible
modes and are not numerical artifacts. For a/L = 0.125 the boundary
effects should be much reduced. The vorticity contour plots in Fig. 6a,b
show that such is indeed the case.

4. Vortex collisions

In f 3 it was shown that the vortex-in-cell method can accurately

calculate a 2DES, Eqn. (2.7). In this section we venture beyond the
simulation of known analytical solutions and consider one of the
simplest dynamical processes involving the 2DES: the collison of two of
them. We shall see that calling these features solitons is not
completely appropriate.

The three numerical experiments performed all involve coaxial pairs
in which a 2DES of radius a1 and speed U 1 collides with another of
radius a2 and speed U2. Table 1 summarizes the runs

Table 1: Collision experiments with 2 DES

Experiment Figure a1  a2  Qualitative description

A 7 3/64 1/4 "Elastic collision"
B 8 1/16 1/8 "Inelastic collision"
C 9 1/8 1/8* "Inverse cascade"

In experiments A and B all 2DES correspond to the gravest mode, Kal

and Ja 2 are both equal to the first zero of Jl. Furthermore, in
these two experiments Ula I = U 2a2. In experiment C the second

I,
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vortex is in the "first excited state", Ka 2 equals the second zero of

Jd. (This is the significance of the * in Table 1). This "quadrupole
vortex" moves slowly to the left (x decreasing). Pictures of streamlines
for the three sequences appear in Figs. 7-9.

Qualitatively the three sequences may be described as follows: In
sequence A the smaller pair passes straight through the larger one, and
in Table 1 this was characterized as an "elastic collision." In sequence
B the small pair first passes through the large pair, then the large pair
starts to contract and passes through the "small" pair. However, in the
process the like-signed blobs merge and a single dipole results. Notice
that in the lowest panels of Figs. 7 and 8 a vortex pair has passed
through the periodic boundary at the right and reappeared at the left.

Finally in the sequence C (Fig. 9) the lowppair absorbs the small
vorticity nucleus of the high K pair. Hence high wavenumber excitation
is obliterated and two relatively low wavenumber structures remain. This
process has been labelled "inverse cascade" in Table 1.

Expectations for experiments A and B are conditioned by knowledge of
the sequence of events for two point vortex pairs. An early analysis by
Love (1894) gives the following results for the initial value problem
sketched in Fig. 10. The vortices all have the same absolute strength.
Love showed that in every case all four vortices are collinear at some
instant. There are then two possible regimes according as

3-2+2 < A < 3</.2< F (4.i)

at the instant the vortices are collinear or X/A is outside this
interval. If VA is within the interval (4.1) the two pairs perform a
periodic leapfrogging motion in which one overtakes the other by passing
through it. If )/A is outside the range (4.1) the relative motion is
aperiodic and the pairs separate. Two pairs started infinitely far apart
as t-0 always belong to this regime and the only net effect of the collision
is a forward shift of the smaller pair and a retardation of the larger

+ +K

e+K
4

F -K

o- K

Fig. 10 Case of coaxial vortex pairs analyzed by Love (1894).
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relative to where they would nave been if they had propagated without
encountering one another. This case then is very reminiscent of the
collision of solitons in one space dimension.

When initializing the colliding 2DES for experiments A and B care was
taken to assure that the total circulation of each lobe had the same
absolute magnitude. Using (3.1) one can show that the dimensionless ratio

SdaJao =-J& (4.2)

wtere #l is a Struve function. Since the vorticity distributions

rescaled according to (3.2) all have the same value of Ua it is seen
that this rescaling in fact produces 2DES of the desired type. Hence the
ratio of impulses for the colliding 2DES, which is the analogue of )/A
for point vortex pairs, is equal to the ratio of radii al/a 2

according to (2.10). It is then clear that experiment B with point
vortex pairs would lead to periodic leapfrogging. Due to the distributed
cores the vortex merging intervenes for 2DES after about 1.5 periods.
Experiment A on tne other hand has a much larger value of a2/al and
produces the slip-through quasi-elastic collision in Fig. 7. Hence
analogues of both the modes known for point vortex pairs appear to be

present for the 2DES. It is apparent from Fig. 7 that even for the
elastic collision small modifications result in the shape of resulting
vortex dipoles. These may be thought of as the analogue of "dispersive
tails" in solitary wave collisions.

The formulae (2.10), (2.11) may be applied to experiment B if one

assumes that the resulting single vortex dipole is again of the form
(2.7). The streamline picture indicates that this is approximately
true. To proceed we also assume that the initial 2DES are so far apart
that the total kinetic energy of the flow field is

2- U 2 - . (4.3)

The total impulse is initially

P = 2.L -+ ZwT Ua (4.4)

Using (2.10) and (2.11) we can obtain expressions for a, U of the
final single vortex dipole. Since a, U1 = a2 U 2 one obtains

U P z u 2/( U ) (4.5)

and

Q (a + a-2- (4.6)
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The expression (4.5) for U is about 10% larger than the actually
measured value (from pictures). The value of a, (4.6), is difficult to
measure from a streamline picture but is not unreasonable. The initial
structures may have been too close for (4.3) to be valid.
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