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EDITOR'S PREFACE

Four principal lecturers shored the task of presenting the subject
""Coherent Features in Geophysical Flows" to the participants of the twenty-
second geophysical fluid dynamics summer program. Glenn Flierl introduced the
topic and the Kortweg-de Vries equation via a model of finite amplitude motions
on the beta plane. He extended the analysis to more complex flows in the ocean
and the atmosphere and in the process treated motious of very large amplitude.
Larry Redekopp's three lectures summarized an extensive body of the mathe-
matical literature on coherent features. Andrew Ingersoll focussed on the
many fascinating features in Jupiter's atmosphere. Joseph Keller supplemented
an interesting summary of laboratory observations with suggestive models for ;
treating the flows. {

The seminars by participants and invited speakers, abstracts of which are
printed in the following pages, cover a broad range of topics in geo-
physical fluid dynamics. Included among the abstracts are the seminars
presented by McWilliams, Flierl, Redekopp, Rizzoli, Pierrehumbert and
Hendershott during the one-week workshop on coherent features.

The nine student lectures summarize the most creative product of the
summer program., This year was most unysual in that most of the students
worked on some aspect of the central theme. Some of these projects will be
reworked and extended for publication.

We are deeply indebted to Ralph Cooper of the Office of Naval Research for
arranging the funding from several government agencies. We are also grateful
to Florence Mellor and Maryanne Macaluso, who assembled the reports and
handled the practical functioning of the program and to A. L. Peirson who
helped in the administration of the program.

George Veronis
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INTRODUCTION TO COHERENT FEATURES
Glenn R. Flierl
LECTURE #1.
! 1. INTRODUCTION

, In this lecture we shall quickly derive several nonlinear equations
h governing the propagation of Rossby waves in a homogeneous f3 ~-plane ocean.
Some of these equations, such as the Korteweg-de Vries equation, are familiar i
from surface wave theory; others such as the modon solutions were first
derived in the context of J3 -plane dynamics. All these equations, however,
describe the evolution of features with finite total energy which retain their
identity for long periods of time, 1i.e., coherent features. Nonlinearity is
an essential part of their dynamics since it combats the linear wave
dispersion and holds the features together.

# Because an infinite plane Rossby wave is an exact nonlinear solution on a
uniform depth .ﬁ - plane, additional mechanisms are needed to induce non-

trivial nonlinearity. The mechanisms discussed in this lecture are nonuniform

depth, gradual modulation of a wave train and shear in a mean zonal current.

Finally, we distinguish between solitary waves and solitons. Solitons are
solitary waves which survive collisions with other solitary waves.

2. NONUNIFQRM DEPTH

In this section we show that the KdV equation governs the propagation of
Rossby waves in a zonal channel of uneven depth. The symbols associated with
the geometry of the channel are defined in Figure I'A 2

Lo £ /1\2/ L ;/////éz/ﬂ///
/ / = H-
. y g h(,) 7 \"(j‘ H b(-)) |
/ / 4'
oo S LTSS /////\,—//,// —J

The shallow water egquations:

r Du ) )
E -B—-t “"F\/ = F1 (1a)
| %{ r fu = - py (1b) i

(u\\«)x \-(V“a)j‘: (0] (o)

|
3




B i

imply potential vorticity conservation

%;E (1£%ifi \ =0 (2a) ‘

';: Qo‘\’ p‘j (2b)
L= Vx- uj (2¢)

The mass conservation Eqn. (2c) allows the introduction of a mass
streamfunction:

\\\-‘ = - “’1 (3a)
We = Yy, (3b)

so that (2a) is an equation in one unknown, 1*’ . This equation is simplified
using the following approximations:

1) The channel is rapidly rotating, i.e.

5 wo
TT"'&\-'R"«‘

2) The depth variation is slight, i.e. !

b
ﬁ fr O(Ra)

3) The channel is narrow, i.e.
W <« ﬁ" £ as  Radius of Earth
Using the above (2a) becomes
(3 + @ 3y - ¥y 3 ) (T Py ¥ ‘%b) = 0 (R,,“f)(")

where @ = H-1¢ . Equation (4) is the quasigeostrophic potential
vorticity equation.

Equation (4) is now nond.mensionalized using Pouv, Yy ~ W, x ~L
t ~ (L/ pw’- )i the x and y scales are different. The subsequent
perturbation analysis uses the nondimensional numbers

t = particle speed = w/ w*
wave speed f3
S = y scale = W/L
X scale
s = vortex stretching = +o (5\3:8)

planetary vorticity variations /BH




We will analyze the simplest case g~§~5 ¢<L Because S“‘ y the
perturbation solutions cannot be applied strictly to synoptic weather systems
or mesoscale ocean eddies which have comparable EW and NS length scales.

The scale separation, however, allows the y dependence to be removed and
produces an x~t problem which ultimately reduces to the KdV equation.

The nondimensional form of (4) is
T
[é{* 2(‘?,(33—‘93 gx)][a(pj-) -\—{_3 (Pxx*'\]‘—')b]:o(’i)

Now, it is easily seen that a naive expansion of CP in powers of & must
fail; simply consider the dispersion relation calculated using linear theory;

when b = O:

g

& Lk SR

et T £z &
Because X is constant all the dispersive effects, which must balance
nonlinear steepening, are in the term 'S'hﬁ/eﬂ This term can only be
important on time scales of order §~% . Thus a successful perturbation
expansion must contain the time scale T = ¢%“{ explicitly. This motivates
the multiple time scale expansion

CP = (P(”(‘(»‘)lt;‘r) + i({)(”(*:‘))t)"r) + ilcf“)("aj\t)T) (7a)
R

@ = (6)

. and in (5)

s Ly Lt

The ¢ expansion of Eqn. (7a) is motivated by & ~ §

Equations (7a and b) are now substituted into Egn. (4) and like powers of
collected to produce a hierarchy of problems the first of which is:

O(e) : d¢ CP“’;j N (8)

x

The solution of Egqn. (8) which satisfies the boundary condition:
Y%= 0o ot j = 0O end

(-Pb) - F(’X ¥ (__v\ﬂ\')'Lt )T) SV wlTj (9)

F 13 unknown at the moment;it is determined by requiring that the subsequent
i problems in the hierarchy be free of resonant forcing so that all the ((n)
‘ are bounded as t — oo , For simplicity make the nonessential simplification
m=11in (9).

I
! is
1
'

The next problem in the hierarchy is then

O(¢Y): )t‘-?‘f;j + CPL','(: - 3 p, ‘(":’ (10)

2 J




Note how the expected nonlinear term [ L'l; ’) vanishes identically. The
nonlinear Jacobians appear at the next order and so the nonlinear terms are
important on times of 0(g "%) . Since the dispersive effects are important on
times of order %% the scaling ¢~ S is necessary for a balance. Witn
stronger topography ( $~! ) the y structure of the lowest order solution
would be more complicated and )(ﬁﬁ‘” \féf ') would not be zero. Then we
would choose €+§* to bring dlsper51on and nonlinearity in together. The weak
topography shows explicit}ly the necessity of curvature in b(v)

steepening.

To solve Egn. (10) it is necessary to specify a particular topography; for
illustrative purposes b = sin ( Wy ) is simple. The solution of ggqn. (10) in
this case is

i - . .
(_?Lu - l‘é 5{ T Z,Tr7 Flx+ntt, T (1)

The next problem in the hierarchy is

S ‘ (0 (({,(o) {{(li
(o) + 2 b ¢ + y 1)
\ 2 (12)
SICADN {qnf et | DI a(x,)
(p LV o) (o) g e
i ifu\, nor S5 v 470

Substituting Egn. (9) and Eqn. (10) into Eqn. (12) one obtains

— - / St o
{) L -gv F +rt x xx J Sta rrj + 3{) E 17x (»ﬂ) Jra ‘"}(13)
< — e ot
{) F\'x Ls"\ £W7 2. N n'j — ./_s.—\u‘.} € » enjj A ‘/'( ";‘])t‘ Asl '{,‘ ‘.—. b

)
From the structure of the inhomogeneous terms it is clear that (P
v @YY . If @}’ is to remain bounded the forcing terms in (13) must be
orthogonal to the adjoint solution of (w-* %—; 1) X=o0 ; thus if (13) is
multiplied by sin ( wy ) and integrated acroSs the channel the inhomogeneous
term must vanish. This condition is the desired evolution equation for F

B T 3 /LS 4

L e S B EVREE R VI 2 <) Fho= (14)
Apart from the constant coefficients Egn. (1Y4) is the standard form of the
Korteweg-de Vries equation. If s = 0, corresponding to a flat bottom, the

nonlinear term in Eqn. (14) is removed. Without it the straightforward linear
solution is, in fact, an exact nonlinear solution and the above perturbation
theory merely generates successive terms in the Taylor series expansion of the
dispersion relatinn as in Eqn. (6).

3. PROPERTIES OF THE KORTEWEG-DE VRIES EQUATION

The transformation

F - 88" ab(xt- (% )T -TT )

\Z
£s r"




puts £gn. (l4) into the more elegant form

‘bt Al N *'(‘*“bu.‘i.:‘) (15)

with
L o2 s -4
T=xr S09)T and T= -v'T
One can write (formally) an exact solution to Eqn. (15) ;

In order to gain some simple intuition about Eqn. (14), however, let us
consider two special cases:

S\t - -

1) The linear cases F-‘r "}'1 —S) rx -n * FX»CO. The initial tendency
of a symmetric hump to steepen at the rear is sketched in Figure (2a). This
rear steepening occurs because long waves travel faster ( C total for a wave
with wavenumber k is given by — (g )’l '1\'7_ st e Y k* S ).

T

2) The strongly nonlinear case F-\- 'zrq" (ES/S‘)FF‘ . The initial
tendency of a positive symmetric hump to steepen at the front is sketched in
Figure (20). Negative humps steepen at the rear.

(a) (bl

Figure 2
These special cases suggest that for positive humps it may be possible to i
strike a balance between forward and rear steepening to produce a hump which

travels without distortion. To prove conclusively that this balance can be
achieved, construct a solitary wave solution of Eqn. (15); it is found that

g = g0 et [3R (x-ct)] e




i magdiitiii Akl ek _1"

where the amplitude and the speed are related by

Te = 5
or in terms of our original variables
F = ot t™ ot Ekix-‘-t)l
wées et
¢ = - ﬂ""]\lSI'%\"ih'a

One might expect that the soliary wave solution Egn. (16) is a delicate
structure which would arise from a limited class of initial conditions.
However, one of the major successes of the inverse scattering method was to
prove that all reasonable initial conditions eventually break up into a finite
number of solitary waves plus 3 weakly nonlinear wave train. Moreover, the
solitary solutions of the KdV equation can collide and pass unchanged through
other solitary waves. Thus since the larger waves move faster the eventual
behaviour as t —» o@ consists of a finite number of solitary waves lined up
with size and velocity increasing to the front. In the following lectures we
will reserve the term soliton for robust solitary waves such as these which
survive interactions.

4, MODULATED ROSSBY WAVES

In this section we will investigate the nonlinear evolution of a slowly
modulated Rossby wave group {(Yamagata, 1979) 1

('P - A(K)T) e z(b.x—%t) Sin

Our goal is to determine the evolution of the envelope A on the slow space and
time scales X and T.

wy + complex conjugate (17)

The nondimensionalized equation is 3

Note the following differences between Eqn. (18) and Eqn. (5):

1) There is no topographic term in Eqn. (18); nonlinear effects are
provided
by the slow modulation of the plane wave.

2) Tre x and y scales are the same in Eqn. (18), this is because the zonal
wavelength of the carrier may be comparable to the width of the
channel.

Equation (18) is solved using a multiple scale perturbation expansion
@ = @, yiX, T+ e @ Ixyy,t X, T) (19)
K = t(xovat)
T = <t
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where VS is the X-component of group velocity. We will see below that the
well known result v’- will be recovered at second order in the perturba-
tion expansion.

The first problem in the hierarchy is

O(e') (¥ +3) ¢@ =0 (20)
the solution of which is
2 st
@@ = A(XT) ec(ha)*’ﬂ“j
- ) (21)
> = — k/(Rtex)
The next problem is
' ()
O™ )t 3T+ 3) & + [\-V)V‘f 23, 34) 40 (22)
- _ ((‘e‘to) ot q(.))
JL‘“)“)‘
The term proportional to <9 X in Egn. (22) is resonant, to eliminate it take
- |+ 22 _ 59 »
W T e T Ok 2

The general solution of Eqn. (22) is then an infinite sum of plane waves, the
only one of which produces resonant terms at next order is the quasi-zonal
flow:

@™ = Blx,T) 6 () o
The next order is
O(¢?): /\QQV‘+ax)Q‘¢)+ (\_. )({; W (g q(.) G )?“,(25)
= - é_(f{?",s"e‘_") _, afc_e'_», ;m ) alevq $ e v"{"')
> )( . alxyy, >Ux,4) 3_(‘,),

When Egn. (21) and Egn. (2U4) are substituted into Eqn. (25) there are two
types of resonant forcing terms which must be eliminated.

1) Terms independent of the fast time and length scales such as ("V]A])*X‘
Elimination of these terms implies

@Y = -2k Cle 4nty

bl t
Since we shall choose \+4y'v 3#© , there will be no second harmonic
resonance. j

2) Terms dependent on kx - $¥ t. Elimination of these terms implies

iAT + [ R (3w? k") 1 &k.ﬂ \ﬁﬁ ,i._') h.ﬂ)'MA\(Z—,)
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Equation (27) is the cubic Schroedinger equation. Time can be rescaled to
put it in the forg

(’A‘C + ax,‘:V;\A\L

(28)
v ¢ h_ n / "L Q-ﬁ )_
i oM rbntet - sat
£q. (28) has soliton solutlons' -
A -é .‘ ~ L. ',t / '
A - & - A:‘ Sr_m 2 X <

This is a solution of Egn. (28) only when v <9 or equivalently

k<w [Ty - 3.
This is the wave number range in which our infinite train of waves is
modulationally unstable (Plumb, 1977).

5. ROS3BY WAVES IN SHEAR FLOWS AND NONQUASIGEOQOSTROPHIC EFFECTS

In this section we will use a model equation which is not strictly
derivable from the equations of motion but which crudely represents some of
the nonlinearities associated with nonquasigeostrophic effects. The model
equation is

( Sy s W3- % _}_P_t_{;m_ o

Op + oy + ‘& = v - (29)
j 3 IS gy
The nonquasigeostrophic term is the VVFQ in the denominator of the potential
vorticity. The closest physical analog is a two layer system with an upper
layer which is passive because it is much thicker than the lower layer. The

nonquasigeostrophic term represents the perturbation of the density structure
(i.e., the interface displacement) associated with the disturbance.

Now look for steadily moving solutions to Eqn. (29) so that )k = -C 3,
and a first integral is then

Vel -ty (-2 e L) PC ey TR (30)

where P is an, as yet, arbitrary function.

For streamlines which extend to *e@ | P can be evaluated by requiring
that the eddy be isolated { W20 as x 2 +ov ) so that:

TR s Pl SR (30)

We can use Eqn. (31) to rewrite Eqn. (30) in the form

Gy - U-%q/f) % (-2 X i i?(ﬂrﬂjﬂ - Ply-$a ]32)
({— b/ )
which is a type of nonlinear oscillator equation. In the quasigeostrophic
approximation, the leftnand side of Eqn. (31) becomes {6*ﬁ + £, —uy while
(32) is partially linearized to 3 " 3

oY - 1'.‘:&.. = P(lhuj—%’@ - PC“)"S‘V-‘)
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In principle Egn. (31) can be solved to find P as a function of its argument
and Egn.(32) can then be solved for the wave shape A}y and speed ¢ ., In
practice, to make analytic progress it is necessary to use approximations.
The first is the weak wave approximation which simplifies the righthand side
of Eqn. (32) by expanding the square bracket in a Taylor series in Y so
that finally

< LS
v Y= A(s.s,f-) Y+ o+ BLTC) Y + (higher order terms) (33)

"’—
A and B in Egqn. (33) contain derivatives of P evaluated at Cj_ { L . For
example, the linear coefficient is , 4 —
Al\.),c)': V-wy /g \’/KL y (= b7y) 4 ch'g =)
\— b/y i Y f =
— 2 s |
= \,,‘13\'1/" ez + (v L/H)Q,; ) 34 ( | - b/“)
These derivatives can be written in terms of known functions such as u and b
using Egqn. (31). In general A in Egn. (33) depends on y and the linear term
is much greater than the A4* term. In this case we get a balance by forcing
the waves to be elongated in the x-direction, )j; >> 3,% , so that at

lowest order o
)L,\LO' to) tey
sy T Al 39

The solution of Egqn. (34) is

(o)
Y= Flo H (‘j) and ¢ = €' + higher order terms where c(0)
is an eigenvalue determined by the y boundary conditions. F(x) is determined
at the next order where dispersion and nonlinearity enter. The equation for
4*"" is an inhomogeneous boundary value problem, and the solvability
condition is an equation for F:

Ygﬂ‘c\j\ e = [ g A (yoet) o dj] (c-c@)F + &HsB(-)»(w)’l}(;_s)

éc(\n

This equation determines the structure of F and the corre?t'on to c(0). As
in section 1, F has a sechZ shape and the correction to clo} is positive

S0 that the nonlinear wave moves faster than the fastest linear wave.

There is an exceptional class of solutions to Eqn. (33) which are worth

noting. When %ﬁ = 0, as happens when u = b = 0, then it is possible to
find radially symﬁetric solutions in which nonquasigeostrophic effects provide

the nonlinear steepening. In this case, the potential vorticity functional is
Jjust
Ple) = ¥,+ ﬁﬁé-

R - A R Lt

The lowest order balance for scales large compared to R is just
Alce®)=o0

(o) t .
or ¢ :—PK . At first order
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which has both sechZ2 and radially symmetric solutions if the scale is small
enough so that f can be replaced by f,,

The other assumption which simplifies the general form Egqn. (32) is the
strong eddy approximation. Assume that both mean flow and topography are
weak; P in Egqn. (31) is approximately linear since

cle
c‘j’ gi": = 2 implies «j ~ ¢tz 4 f w
and so £ ';_‘L ( . <\ Ry Sc"; Eu(e %)
Plz) = - ~ (f,+'pe )l e b/n /5 y

L= /u
With simple choices of topography and shear Egn. (33) is recovered and the
subsequent analysis is applicable.

Both the weak wave approximation and the strong eddy approximation are
based on (31) and so apply only to streamlines which extend to <@ , i.e., open
streamlines. It is possible to construct solutions having closed streamlines
and in this case it is necessary to specify P in the region where the
streamlines close. There are two different approaches:

1) Assume P is an analytic function and continue to use Eqn. (31) to
define P,

2) Let P be a multivalued function and use different branches in the open
and closed regions.

The simplest solution with closed streamlines is the quasigeostrophic
modon with u = b = 0. In the exterior region the eguation is linear

,q/___ _ Con K|EVW]
KilaJperer ]

is one convenient solution. This solution has a closed streamline at r = a
and within this circle P need not satisfy Eqn. (31). Instead take

Ple) = - (—?: rR") 2

where k is an arbitrary constant and then the corresponding interior solution
which is continuous at r = a is

ey TRT) o opariete 2, }.-qe
= {paa(‘kpa‘)gjl(; - e (pErcLE Rl s

Continuity of 4+} at r = a implies the dispersion relation:

klf 4 (7§ZI:TET1 ) j;(‘t)
Ao K((a{pver) LT, (k)

and
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Equation (36) connects the speed, amplitude and size of the nonlinear modons;
the dispersion curves are sketched in Lecture 2.

The following table shows how various published Rossby solitary wave
solutions fit within the classifications discussed above.

TABLE 1

Effects Included

Topographic Mean Flow Nonguasigeostrophic Multi-valued P
Weak Rizzoli (1978) Maxworthy & Redekopp Clarke (1971)
Redekopp (1976) Charney & Flierl (1980)%
Redekopp (1976) Boyd (1978)
Strong Rizzoli (1980) Flierl (1979)%* Flierl (1977)% or
Henrotay (1980)* Long (1964) Charney & Flierl (1980)%

Larsen (1965)
Benney (1966)

Modon Ingersoll (1973) Stern (1975)
Larichev & Reznik (1976)
Flierl, Larichev,
McWilliams & Reznik
(1980)
#*Indicates radially symmetric cases.
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MODONS AND ATMOSPHERIC BLOCKING

Glenn Flierl

LECTURE #2

Isolated features with long lifetimes are associated with atmospheric
blocking. The 700 mb surface from June 1963 illustrates this phenomena. A
paired high and low were observed over the North Atlantic. The high lay north
of the low and both features were nearly stationary.

A possible model for these features is a "Modon" solitary Rossby wave.
The modon solutions are exact solutions of the guasigeostrophic equation and
exhibit strong nonlinearity and strong dispersion which still cancel each
other. These solutions are isolated in both the north-south (y) and east-west
(x) directions.

The single layer guasigeostrophic eguation in nondimensional form is
(WY + W, +T(w, %) =0 (1)

Here x is nondimensionalized by the radius of deformation Rg= &%;? /Qo ,
time by (BRn™ and velocity by R4 . If the solutions are steadily
moving the time derivative Bt may be replaced by —-¢ 2« where ¢ 1is
the velocity of propagation in the east-west direction. [Conservation of
vorticity prohibits steady motion with a component in the north-south directio
for any wave wanich carries fluid with it. Particles in these trapped regions
(closed streamlines in the moving reference frame) would after one period have
moved north or south without a corresponding change in relative vorticity.]
Equation 1 becomes:

TCW*'C\}) th"q*j)’o (2)

and therefore
v ,
VY -y = P (rey) (3)
where P(Z’) is any function of Z. Far from an isolated feature ’L*«—vo'

Ple)- L7 )

In any region with streamlines which extend to infinity:
¢ - g
VAR N (5)

The linear form of this equation is a conseguence of dynamics, not just an ad-
hoc choice. Vertical shear and stratification does not change the linearity
of the exterior equation althougl. topography and horizontal shear will,

s
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The solution to this equation is:

1’&/5 g Dn Kv\(m (> ‘i\hwe + Z_ EV\ Kn(m f) co>n8
w“woi =0 ‘j
| e m @ =t ‘;_"c"t

The requirement that the eddy be isolated and energy and enstrophy be
finite restricts the propagation velocity ¢ to e 2 0 or ¢ < -1. Linear waves
are possible only in the complement of this domain, -1€c¢ < 0. Initially, we
shall consider only a single term of this solution. The stream function
written in a coordinate frame moving with the wave is

y,_-, q/kc\s - D K\(E:T f) s O + Cr 67-\-(9 (7

, If De > 0, this solution will be singular with all streamlines closing at
: this singularity at the origin (see sketch). When Dec <0, however, there is a
‘ streamline Y+ ¢y = 0 at position v = a, where a is related to D and ¢ by

| DK (a{Lri) £ga =0 S
; De o

ConTooRS De >0 "/////////’_—N\\\\\\~§\___-

\\_——_—.’_’/___,————‘

(6)

Since equation 4 applies only to regions with streamlines extending to
infinity, a different choice of P(Z) can be made inside any closed
1 streamline. P(Z) can be chosen which allows solutions which are nonsingular,
have finite energy and enstrophy, and match to the exterior solutions.

.q’
The matching conditions are continuity of 1L and %g‘ where n is normal
to the boundary closed streamline. Higher order derivatives may also be made
continuous, but some discontinuous derivatives are necessary. :

The continuity of the first derivative is a consequence of this Bernouilli
equation ( 2 N y
D {u—c)+v S I
¥ L — < (¢ d = O
Dt 2 +op £y (8)
which can be obtained from the equations of motion:
\’
Duey - C ! 2 ¢ -(prel’s
Zlue) -ky =z - rc('€ Z oy bl = * (
Dt preS el gy i y )
The last two terms in Eqn. (8) are continuous across a boundary; therefore, ;
the change in the square of this tangential velocity with tangential distance ]
must be the same on either side of the dividing streamline. The simpliest

condition which accomplishes this and simultaneously avoids potentially
unstable shear layers is to require that the tangential velocity be continuous.
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An auxilliary constraint on the modon solutions is evident from the
x-moment of the guaisgeostrophic Eqn. (1). The constraint can be relaxed if
there is a mean shear, stratification or topography. If this equation times x
is integrated over a2ll x and y, all terms except the /3 effect ( '\\rx )
give no contribution. The result is

gg"-\' c\xo\‘) =0 (10)

or no mean surface displacement. This is equivalent to no net coriolis force
on the nodon.

The idea of matching one solution within a closed streamline to an
exterior solution can be carried to three dimensional solutions. A volume
will be found within closed streamlines and an exterior solution matched onto
the solution within the volume.

For the one term exterior solution (Eqn. 7) there is a circular closed
streamline at radius a if a = -DK|(q)/c (q = 3 é*\ ). This choice of
closed streamline (required by keeping only the simple term) will lead to only
a few of a large class of solutions. P(Z) can be made a linear function of Z
within the circle:

Y(2)= Q-5¢ (11)

Unlike the exterior regicns, the linearity in the interior is 2 completely
ad hoc assumption made to lead to soluable equations. However, this
linearization does not lead to vanishing of the advection terms in Egqn. (1);
this solution is not linear.

Let S = |+ &%/t then £9. (3) becomes
ot , o t
‘\’(zq’f“&‘f:?—\w"-J (12)
av ’ 4"/

This equation has the solution:
P

. L o - - /.
Yo Qv L Z s LY e 200y 0

nz! [0
Let Q = 0. The matching conditions allow only By to be nonzero and
require:
Xb(h'_) ‘:L,L'b)
_ ) /._
hd\(k) 1)!<|Lv)

These solutions are antisymmetric about an east-west axis., A high lies
south of a low for eastward moving waves and nortnh of the low for westward
moving waves.

(14)
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These solutions may be better understood by first examining the vortex
pair solutions of Batchelor (1967). A southern high drives a northern low to
the east and the low pushes the high also to the east. If the right amount of
this eastward tendency is added to the westward /9 tendency, Stern's (1975)
modon solution is recovered. Increasing the strength of the vortex pair leads
to eastward motion as in Larichev and Reznick (1976) and where the pair is
very strong Batchelor's solution is again the correct description.

The wave speed is a function of the size and amplitude. Small scale

(short distance between vortex centers) and large amplitude waves travel
faster.

Y at+

NORIHERW
CENTER

Riders
Additional solutions can be found by adding an arbitrary constant (E,)

times the K, Bessel function to the exterior solution. The solution in the
interior now requires a Jo term. The new matching conditions are:

Eo Ko(“{*\ a~) = g.—:":-‘ 4 Co To(k)
EO db/a Kolcm a) = Co h/a S-D,(k) (15)
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These solutions become more symmetric (more like a single vortex) as Egq
is increased. The name "riders" has been given to these solutions because the
radially symmetric fields have no influence upon the shape, strength or speed
of the sin® solutions. The riders move with the original solution.

Numerical Studies

A number of experiments have indicated that solutions evolve only slowly.
Numerical studies by McWilliams et al. (1980) suggest the solutions without
riders are stable. This study also illustrated the necessity of fine
resolution (15 or more grid points per diameter) to obtain the correct wave
speed for these nonlinear features. Poorly resolved features moved as little
as half as fast as the actual wave speed.

The stability of the solutions without riders to finite perturbations was
also examined. The stability depends both on the scale and amplitude of the
perturbations. Large amplitude, small scale perturbations allowed the two
vortex centers to drift apart until they were independent features. The
larger scale perturbations did not need to be as strong to destroy the modons,
and destroyed the modons by shearing out the features. The modons appear
stable to perturbations with an r.m.s. stream function amplitude less than
10-20% of the modon amplitude.

A last set of numerical experiments included parameterized friction in the
equations. The amplitude of 3 modon solution was found to decay slowly. The
velocity of the wave decreased, following the dispersion curve until the
amplitude was too small for the wave to be sufficiently nonlinear to avoid
dispersion (essentially when ¢ decreases to O for eastward moving eddies).

The wave then dispersed.

Tnis model will not allow stationary features in an eastward mean flow.

The single layer gquasigeostrophic Egn. (1) is not Galilean invariant.
Requiring a wave speed ¢ = 0 in a mean flow at U leads to this equation:

JC-Uy v %, -y ) =0 (16)

There are only solutions with flow from the east. This is contrary to
atmospheric observations of the blocking phenomena.

Vertical Shear and Stratification

In order to apply this model, we need to construct 3 one mode description
of motions in an atmosphere with vertical stratification and shear. The
equations for a stratified atmosphere are:

()_u _ = -® D_" - = _d) a}E = - X

Dt by * ot F ) > (17)
- =0 Q - .ib; -
V- a 5t £a X 4 $p 0

(_\) coordinokes )




The vertical velocity in pressure coordinates is @ and <o is the
specific volume. ¢ is the geopotential gz. The boundary condition is
at a pressure po such that 4)(%:\.), ?-,t)ﬂ’ . A quasigeostrophic stream
function can be defined

D¢= 0

Y= ®/g (18)

The boundary condition linearized in accordance with the quasigeostrophic
approximation is

5] . B 2CP3)
St = 2 (19)

2
with x(p) a mean specific volume profile.

The equations in (17) can be approximated by a pair of coupled equations

.\%t (v %+ Py) = Co é-s% (20)
D /Y o B oINS (21)
A — =0 s =
Dt(, ¢ ) ¥ %o j’-

For solutions which are stationary in a mean flow, these equations become:

Vox" % + (fi- vﬂ) Yu v T4, 00 %) = & %’% (22)

. (23)
AW _ { 6,&’ ) _?_9. =

AT . > U",’fo"_\'\% a\,)\— i o)

The boundary condition is reduced to B®W=0 at Y=V% . The stream function
may be written as a modal expansion.

. - > . [ Yy Y= L
b= 2 Atk Bty (24)
Lo e d. - (25)
b *-) v P - di
2
The mean velocity is assumed to have only p dependence (vertical shear).
U o= U &G) (26)

An equation describing a one mode approximation for standing motions in
the atmosphere cau be obtained by first plugging their expressions into Egns.
(22) and (23). Egn. (22) is then multiplied by Fj, and Egn. (23)
by ﬁ; ),F’ ; both equations are integrated in p from 0 to p . Eliminating
the terms in W between the equations and truncating to one term gives this

result: a - R R -~
URVa - Y 3x + pAaxs v T (x,V¥'a)=0
Rl

. - * v - OF W -
V- <fF'U> %;(%:&%%)V‘%Sé‘:w)
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The brackets are used to signify integration in p from 0 to p,. An
appropriate choice for F (the first term in the expansion) is the first
empiricgl orthogonal function as determined from observations. The values of
R, and are not very precise, but R is close to the internal radius of
deformation.

Equation (27) may be put in the same form as Egqn. (2) by
nondimensionalizing. Thus the one vertical mode model will have the same
modon solutions as the single layer quasigeostrophic equation. However, it is
necessary that the vertical structure of the mean flow be different from the
vertical structure of the waves. Otherwise there are no stationary solutions
in an eastward mean flow.

Two Layer Models

Flierl, et al. (1980) describe modon solutions for a two layer model.
Solutions are possible with closed streamlines in either layer or in both
layers. The exterior solution (defined in the same way as for a single layer
model) can have both barotropic and baroclinic parts, but if there is a
barotropic part the motion must be eastward.

——— -y

/Q/: b_‘_ K“\ E_\') \\.—\’3 - XV,_ ‘;\"I}.qq(‘j',-«{} + .. (28)

The solutions are sums of modes with the mode number k, the Kty zero of
the Bessel function. Which modes are possible in each layer depends
principally on the ratio of layer depths 9~ ®,/u, +» but 2lso on the scale of
the features (a).

For the typical ocean model =.%& . A possible solution with four

centers is sketched.
upper layer lower layer (E;D

. @™ SON
N)¥a) -@tb) —@. a) b)

he solution is antisymmetric and propagates westward at C = 1.1. There
is very little motion in the lower layer.

In the atmosphere 34,\ which changes the solutions considerably
because we must use the first and third roots of (1U4) rather than the first

and second. .
upper
o
< <D )
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In both cases the solutions exist only for a limited range of wave
velocity and scale. Riders can be added to these solutions also.

Vertical structure seems to be important. These solutions have similar
patterns to observations, but lack close dynamical similarity. In all
solutions vortex pairing is apparent. The vortices advect each other in such
3 way as to stay together and move with constant velocity.

This theory also suggests moving features should exist that have not been
observed. Perhaps they have not been recognized in the data or else forcing
and dissipation are important.

Forcing and Dissipation

An example of the effect of forcing and dissipation can be examined with
the model equation.

T Ty By ¢yt ey ) e g

The last term represents dissipation. The local topography and forcing is

modeled by by (x,y). Some terms arising from the mean shear have been
modeled as topogruphy bo(y) to make the problem more tractable.

The length scale is assumed to be much longer than the width. Then the first
order terms (e.g., Lecture 1) from the Egqn. (29) are

My - DF gy TNFFy = Clx) —w " (30)

Here F(x) is the amplitude of the stream function as a function of the
east-west direction. The x-variable topography leads to f(x) which is
proportional to an integral of some function of y times by; D, N, ) are
the coefficients of the dispersive, nonlinear and dissipative terms. The

1

first order correction to the wave velocity is /A( ) . This equation with
no forcing (f'(x) = 0) or dissipation ( ¥ = 0) has solitary wave solutions.

(@D :'
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Periodic forcing by topography, but with no nonlinear term (N = 0) exhibits
resonances:

ft- e

¢ lex { - e
“(xy=, Yo (32)
;Jfﬂl”4—k} D‘)+ Z?{

The nonlinear term (N = 0) adds the possibility of multiple states in a
periodic system.
) |
. cRx VLo e - N
Floz Ac tc.c. LA'\ - . ’ - .
' /&(I)? k‘LP _ lﬁ\_
N D

NINLINE RR

/‘A“) + kLD

| fe—— 2 STABLE STATES
JNDER THESE
LaNDIMoVS
A stationary solution exists for tanh(x) topography. In this solution
friction balances topography and nonlinearity balances dispersion:
- - N
— = i (.\4‘ “,: V] Q\—A = Tzamtbn yz - — (33)
‘ (x ) N e *® , Y 4 , J= T X, 20

This special solution indicates that forced and dissipative systems can have
solitary wave responses given the proper relationship between the topographic
scale, amplitude and mean flow speed.
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GULF STREAM RING DYNAMICS

Glenn Flierl

LECTURE #3.
1. SOMe OBSZRVATIONS OF RINGS

Gulf Stream rings are formed when a meander of the stream pinches off into

A A S B

A cold core ring "Bob" was formed in February-March 1979 and disappeared
in November of the same year., It was observed to interact with the stream in
April and May, spinning up and entraining cold water. Such interactions
appear to be very common., After detaching again, it moved steadily southwest
at about 5 1/2 cm/s from June through August. In September, it coalesced with
the Stream through 3 process very much the reverse of its formation. The ring
formed onto the Gulf Stream, opened up, and left the center of the ring again
2n the northside of the Stream.

Other rings have apparently been destroyed by mixing into the Stream after
being sheared out in tnhe Stream. Every r ng that has been observed has
2ventually reattached to the Gulf Stream, but some have had lifetimes as long
3s twn years.

darm rings break off to the north of the Stream and travel southwest,
trapped between tnhe Stream and the topography of the shelf. Cold rings form
south of the Stream. They 2also travel roughly southwest but are not
constrained by a3 coast as the warm rings are and can be found thousands of
Kilometers from the Stream.

The isotherms in a3 ring are displaced ~ 300-400 meters from their depths
in the surrounding environment. The maximum azimuthal velocities occur at
radius 00-30 km from the center. The velocity profile is not well known, but
velocities are largest above the thermocline reaching 150 cm/sec at the
surface. It is not clear whether the velocity reverses with tne depth. In 3
newly formed ring the isotherms 3all the w3y to the bottom show displacement.
Tne velocity field is strong enough to transport material at least above tne
tnermocline. The rings have anomalous T-S, T-0, and biological
characteristics which can persist for well over 3 year. There is some
inlication of a jump in potential vorticity from outside the ring into the

ejge of the ring; i.e., potential vorticity is not a function of density alone.

Tne rings decay slowly. The isotherms fall (for a cold ring) about .8
m/day. Likely decay processes include friction, radiation due to Jdispersion;
instabilities and meridional circulation probably caused by surface processes.

e e e
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Gulf Stream rings are common. Nine or ten cold rings, three warm rings
and one ring being formed were observed from March to July 1975 in a
twenty-five by twenty degree area near the Gulf Stream. The rings covered
10-20% of the total area. Five cold rings and five warm rings may be formed
each year.

Two rings may coalesce. Rings Al and Bob collided during which a single
feature with two centers was observed. Later it split apart. At times,
azimuthal waves can be seen and occasionally rings appear to split in two.

2. MODELING WITH SOLITARY WAVES

The Gulf Stream rings nhave been modeled as radially symmetric baroclinic
solitary waves by Flierl (1979). The guasigeostrophic; [3 plane equations in
continuously stratified fluid are the basis for these solutions. A mean
horizontal shear flow or topography is necessary for the solutions to exist.

Tne stream function is governed by the conservation of quasigeostropbhic
potential vorticity

3P o+ (%, P)=o Pr VS NSy

ne stream function is written 3s the sum of a part due to the mean velocity
and a traveling wave

/ .
W Wl v Rl

The time derivative is replaced by -< 37 where < is the velocity of
propagation, *
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wnere (. &3) is any function of z .

Far from an isolated solitary wave LP43 and C?{i)e) may be determined
from the mean flow. Then:
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Plugging into Egn. (5): e

1 < 7 z . p /
VAR %%; 2 )@= P;(‘ i[l-%)'l/\' By -t (8)

The argument of the square root must be positive. This is assured by
making the mean shear small enough and the possibility of a critical layer is
excluded.

Under certain assumptions the right side of Eqn. (8) can be made nearly
linear. Let AlL be the change in the mean flow over the scale of an
eddy, L , W be the particle speed in the eddy and R the radius of

deformation.
Require: <
A s w o B oy
o << “ < < (9)

then the righthand side can be Taylor expanded

" ( 3 K <
aen B gq = PR r BI G
2t Nt 9t - -< (10)
Y
The scale is chosen so that |Q'{| << \ 2% of \. Then the lowest order
. 2t W™ Jt
balance is:
F‘ g ( 1
A s o™ 3/ ‘0"’ (11) ,
> = [
I N ¢ C
[he stream function is approximated by
. — o
e 2leg Pl v S
s ; 7 '
k
At next order, the governing equation for G is derived as a solvability
condition: 5
-5
5KL T A1
Loe L s - . Z
v 1 ¥ | o RN R A (12)
’,.2)0\" {/5.—(> J Aa v
If 5 is unly a function of x, 3 "ridge wave" soliton is a3 solution
s TS CA P (13)
N - ' S0 . A ’C/
‘i“-- 7 [ /“j‘)
Ini3 propagates at 3 velocity _ ,’,R- < Y 1Y A second solution

73n be founi which is radially symmetric. The solution is parabolic in the
interior ani decays as ¢ /7 in the exterior (outside the closed
streamlines).

i T _
N ?@ -
T 2

Figure 2
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This solutinn is intrinsically baroclinic and lies embedded in a
barotropic mean flow. In these solutions dispersion is balanced by the
steepening effects of the interaction with the mean shear.

Anticyclonic rings are observed only north of the Gulf Stream and cyclonic
to tne south. This model of the rings would require recirculating regions on
either side of the Gulf Stream if the mean shear is to be the right sign to
support the rings. \

| anticyclonic eddies
\

)
e e e T > Gulf Stream

-t
/
\\\ \
A ) cyclonic eddies

{
\

~ 1000 km

Figure 3

Circulation models suggest some regions of recirculations may exist. As
an eddy moves the mean shear it experiences will change. The eddy therefore
may always be adjusting towards a new equilibrium.

In the absence of shear these solutions do not exist. Other possible
models for the rings were discussed in the preceding lecture. The "modon" i
solutions do not require a mean shear flow. The solutions with riders can be
single centered in the baroclinic field and look like rings, but propagate
eastward. These have developed in numerical initial value problems, but
appear to be unstable.

3. DYNAMICS OF THE INTERMEDIATE SCALE }

The quasigeostrophic equations have been applied to mesoscale motions in
the ocean for many years. These equations can be derived for small Rossby
number and a horizontal scale on the order of the deformation radius (50 km
for the ocean). Charney and Flierl (1980) have recently shown that other
terms begin to enter at larger scales (200 km) such that the dynamics permit
solitary waves. In these waves, linear dispersion can be balanced by a non
quasigeostrophic effect, vertical density advection. The scales at which this j
may occur can be found from the vorticity, (vertical component) and buoyancy 1
equations 1

{e VAR & +[3_! ’S;:__'fb = ——(\.A)x\fzou).)u%) +.(/3.) +h ) W

S

E’t VL +w Nt = - wb,

where ¥ is the horizontal gradient, € the vorticity and b the buoyancy.
Tne terms on the righthand sides are not included in quasigeostrophic
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dynamics. For larger scale waves, the underlined terms are comparable, (non-
dispersive long wave dynamics) leading to the following estimates for time and
vertical velocity scales

£~ LRt wi o PRVUE,

where L is the horizontal scale, R = NH/ {, the deformation radius scale and
V the horizontal velocity scale. Thermal wind has been used. The vertical
density advection will be comparable in effect to vorticity changes if

wbe/wv\)" -~ 4*//‘5\/

implying N/t ~ RY/24 . For a given V, the vertical density advection
becomes important for some scale larger than the deformation radius. Hori-
zontal advection of vorticity enters at the same order as these terms if
V.4 ~ %, implying Vo Pg which leads to

Lo~ (et

a scale of 200 km for the ocean. At this "intermediate' scale, the Fy-ﬂ
term is also comparable to Kt:*’"V( .

We can demonstrate the existence of solitary wave solutions near the inter-
mediate scale by describing the linear and nonlinear free oscillations of a
single-layer, homogeneous, incompressible fluid with a free surface on the
P -plane. The analog to vertical density advection is the W(uy + vy ) term
in Eqn. (l4c) below. In dimensional form, the shallow water equatlons are

V- - U;v*—ﬁ-))f

Bk

= (14a)
D\;«t v e @) y~ T TS (14b)
%qt N ,\'\“,(]l‘) . JS\ (14c)

\;;r = 2w :—* - v %3 (14d)

where v is the surface displacement, H the mean depth and g the reduced

gravity.

With the geostrophic scalings

A‘J ~

A l(,q ~ -

Eqn. (l4a) and Equn. (14d) become

and

/l'./ G \}"/»)

e *’/,5 l(‘.

n L : 2 J - -
) = - e ) 1 x
/ . ]
! Ve ' ) \ (15a)
\‘ v ‘\ \ -y
, - ly --“T’i YN : )
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RV AT v (154)
Ve >t 37 I 0y
The three nondimensional numbers in Eqn. (15) are

\ ~ rA
i - . - L
¢ = \'L/( “ . o ',$~—/ ;o ) 5 = R/_ (16)
It is useful to think of these parameters as the ratio of L to various natural
length scales: the radius of an inertial circle U/fo, the distane to the

equator in the tangent plane approximation Lﬁ= fo//a and the deformation
radius R = (gH/fo.

In Figure 4 the dependence of these three nondimensional numbers on L and
U is shown.

”
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Figure 4:
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The quasigeostrophic approximation is valid when'i”‘ and E“E"‘\. As L
increases one moves into a parameter range where f~1 and S,t<<]1. 1In this
rang= the term ‘/g 1 in Egn. (15c) is not negligible and consequently the
juasigeostrophic approximation is invalid, Egr the ocean this transition to
nonquasigeostrophic dynamics occurs when 3~ S~ (€ /S) which is at a
relatively small scale ( ~ 200 km) because the deformation radius is so small
compared to LB .

To completely characterize the wavelike solutions admitted by Egn. (15a-d)
and further elucidate tne role of the different nonlinearities, look for
motions translating steadily with a speed ¢. In this case, there are two
conservad quantitie=s

1) The Bernoulli function:
L v
Lo oV 1 e . /(L +L'S )
blw-e) 4 5 v r 1~H+/l) r < > Y
2) ihe Potential vorticity
/

gty v ey / iﬁmvl )

Since the mass conservation equation becomes

CATE) Ay r vy (gl =0
. \| s x 5 7 .
it is possible to introduce a streamfunction
TN Aray ¢ - dbq’ - ":‘ ~ "€"C\'{j } (173)
\ J )
Rg .
/ L. ) - '5 - d_ Y : 17b
i ™ P ( ol j ] ( 7 )

and write our conservation statements in the form

LS . ,s .7 v O o
\;\’\(’.{\"\'4))\ + j.?‘{*‘i) - \’(*'/]I \VO)T’:;’} ¥} (183)

v\r').}b'l: {0—'.‘())

\

. . - SV
VAR 1'\; \ \k»4)) Footar 0, S R T Y r(q) ) (18b)
J i

If the streamlines extend to ¥ , B can be evaluated in the familiar fashion
by requiring that the eddy be isolated. In this case,

Lo - %‘.'LY' Hov AR yb e " (19)
) :
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. /,
and Eqns. (18a, b) are the two equations for the two unknowns ‘£ and 1 . We
shall assume Eqn. (19) is valid throughout the fluid even within closed

streamlines. In nondimensional form these equations are
. [

Lrwert v 35k e livy 0 ‘7,"3'-‘-3.&'-:—?1/ P lepys D (20m)
< 4 3 ¢
" :3 P ”g"q«)

CRAWE ot s - sy et e B2 0yt (a0
s ' by TR TR < 31

Before discussing the nonlinear terms in Eqn. (20a,b) it is essential to
determine the various linear balances. The linear case is recovered by
setting ¢ =o in Egn. (20a3,b). Then Eqn. (20a) can be solved for 1 in terms
of @; this relation is substituted into Eqn. (20b) to yield

. Tt Cr
ST - 2T L ﬁ‘))- oo s T (e
. ;

The righthand side of Egn. (21) corresponds to gravity wave terms and is
negligible on th scales we're considering. With this term absent there are
four different types of behaviour:

A A
1) Midlatitude Rossby Waves, /5 el 5
X A -
P = f_n)v) - - f'\q—d',)'
2) Intermediate Scale Waves, /> ~°%<! ., The above dispersion relation
is invalid, instead c¢= -{4+3<" where ¢’ is the eigenvalue
of .
Lo vy YR S
LR TR ST
3) The Sverdrup-Burger limit /3 ~U St 1 this limit all the terms

on the lefthand side of Egn. (21) are equally important.

~ n
4) The equatorial limit [>\ 3¢\ 1In this limit {=F9 and the NS
structure functions are parabolic cylinder functions. These eigen-
fungt}og§'confine the motion about the equator with a merid}onal scale
of /3"‘3 4 (corresponding to a dimensional scale ( “p R ).

As the amplitude of the motion increases (ur equivalently ¢ increases)
nonlinearity modifies the linear solutions described above. On the
mid-latitude synoptic scale, 2 A\ + the nonlinearity modifies the phase speed
and shape but does not produce solitons. As the scale increases the
dispersive effects become weaker until they can be balanced by nonlinearity to
produce solitons. The structure of the isolated disturbances is the same as
the sech2 solutions of the KdV equation. The relationship of these
solutions to the KdV equation will be clarified in the next section when we
derive an equation governing the time evolution of arbitrary initial
disturbances. For the moment return to Egns. (20a,b) and observe that for
nonlinearity to be important one of the ¢ terms must be balanced by a linear




i

term. For the oceanic intermediate scale this implies the scaling

A A A7
/3 = B and ¢= € S
where E and B are order unity. Then from Egn. (20a)
A T A
ﬂ: Q*- Ef%j@ - E—SIS.) +‘3(SL)
2c
so that Egqn. (20b) becomes A . A QQL _~§ ¢
F TR = @ (v ) +2B54Qe3; > & +2EE
The order one terms in the above imply
-~
C= —l+5c)
and so
to) (o) ) )" _
VL(QD ka\‘(PQ—-—ZB\j ce(\! *%_ELP - 0 (22)

 § Equation (22) can be simplified in two limits

1) Beel, E~ 1. In this case the coefficients of Egn. (22) are
independent of position coordinates and there is x-y symmetry. Various
solutions such as cnoidal and solitary waves can be found. Perhaps the most
interesting is the radially symmetric solitary wave found by Flierl:

P =G (x (x2 + yz)v")

c -1 - S k2
E = 1.59 k2

The shape + dispersion relation are sketched in Figure 5.
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2) B>»1 E ~1. 1In this case y can be rescaled by B-1/3 and the equation
solved by expanding in powers of B-2/3, At first order there is a linear
equation for the y-structure. At next order x dispersion and nonlinear
steepening balance and the x-structure has a sech? form.

When the fluid is continuously stratified, similar results can be obtained
in density coordinates except that the quadratic factor in Egn. (22) is
multiplied by E.

4, INTERMEDIATE SCALES - KORTEWEG DE VRIES DYNAMICS

In the previous section, it was shown that the steadily translating,
intermediate scale solutions have a sech2 shape when B<< 1 and E~ 1. This
is suggestive of Korteweg - de Vries dynamics. However, we must still
determine the form of the time evolution equation for intermediate scale
motions; for this, we return to the governing Eqns. (15a-d) and derive the
time evolution equation in the limit € = ES2,ﬁ: BS by expanding in powers
of S. For the ocean, this parameter range corresponds to (U,L) = (5 cm S-1,
200 km) and for the atmosphere (U,L) = (20 ms-1, 1500 km).

The zero order equations

(o? to)

= "Vl' \) (233)

v - V\ (_;) (23b)

ULW‘-\— \I“‘ -0 (23¢)
x =

)

tell us the flow is geostrophic. At first order in 8 we have:

()
we' %v) w = *v\ 9 (24a)
ver g Bv) VR Vl‘“x (24b)
(o) — Lo\\ () = (0 V.v (o) . ) -0
BAL + BNV e BT VT Wy (2bc)

The above imply (o)

(o -
V\ {: h-lelo (2)
W® = 1ty T) 5
T in Egn. (25)“is a slow time, T = St, zhich is required to remove secular

effects at 0 (S2), At second order in S the vorticity and density equations
are

B %‘“1&) + V‘y(l) v B") V~V(|) ¥y B v = 0
t

and
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{0
£limination of /. ¢ ¢ between these equations leads to an evolution equation
for ‘l(O)'

. . > /U ey ¢ - T R
PR TS N t“sy}f;\,tz r“‘3 Ty i °Ox ) v X v J <1 v ql:)/
T l ¢ /1 t {

73]
When B £«] and E v 1, and ?,z v‘b(x,T), surface height is indeed governed by
the KdV equation. For B laége and E ~ 1, the solution takes a model form in y
with tne x-structure governed by the KdV equation. However, for two
dimensional disturbances, we must include vorticity advection as well as
quadratic nonlinearity and the evolution may be much more complicated.

NOTES SUBMITTED BY ;
SPAHR WEBB AND WILLIAM YOUNG :
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MEAN FLOWS, EDDIES, AND LONG-LIVED VORTICES

[ Andrew Ingersoll

Lecture #
A. Jupiter

i) Is a fluid planet composed mainly of Hydrogen and Helium (solar
composition atmosphere), i.e.

H2 0.886
He 0.112
H,0 1.5 x 1073
CH, 6.3 x 1074
NHj3 1.52 x 1074
H,S 2.9 x 1073

1i) Has a radius ten times bigger than the earth's
iii) Bulk density 1.3 g/cmd

iv) Period of rotation 9"55M29,75 - measured by the rotation
of the magnetic dipole (tilted 10°)

v) Interior adiabatic (or nearly so) due to the presence of
convection (and internal cooling)
vi) Intecrnal heat flux ~ 6 Wm 2
Sun's input ~ 8 Wm~
Total output ~ 14 Wm™2 which is relatively uniform across
latitude circles.

vii) How much latent heat? 1If all three gases condense
(H,0, NHy and NH, SH of fractional abundance 1073)

AT = 2K, a significant amount

viii) Colors come from the compounds S,, P, CiHy - In a
bydrogen atmosphere, these elements tend to be present as (H3S,
PH3, CH,) . Thus chemical equilibrium must be destroyed. This can occur
by the presence of
a) lightning
b) charged particles
¢) solar ulcraviolet

Pictures of the dark side show the presence of (a) and the possibility of

(b).

ix) Interior structure
There is a gradual transition from gas to liquid (at .97R)

and a phase transition from molecular to metallic at t =
0.75R.
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B. Heat Balance and Thermal Inputs

An observational fact which has to be explained is that there are no
appreciable meridional curreats on the surface of the planet. This should not
be the case if we just take into account the solar heating which is much
stronger on the equator than on the poles. There is no difference in tempera-
ture between the equator and the poles so there must be a distribution of
internal heat which compensates for the sunlight.

radiant ~ emitted infrared

energy flux

/-*"~ absorbed sunlight

equator latitude

¥ AN
| Pl

pole

The model proposed to explain this is that the interior is a better heat
conductor than the atmosphere so that the temperature is adjusted in the
interior. The mechanism of heat transfer will be by convection. There can be
poleward heat transfer in the interior so that the surface will be essentially
isothermal.

A simple example of this effect is the following: <counsider a sphere of
any good conductor rotating fast and the sunlight incident perpendicular to
the axis of rotation

-

- the equation for the interior is
- c 2T _ VAR = (1)
- (O ot

At the surface, the normal heat flux must be continuous

AT i
ke 5T = o T - solar flux (2)
The solar flux can be averaged over longitude if the sphere is rotating fast,
in which case it is (1-A) § sin@ S = solar constant
us = albedo

There are two time scales which characterize tne problem: the intermal time T,
which is the time it takes to reach an internal equilibrium configuration aand
an external time Tg which is the time it takes to reach equilibrium with
the ambient medium.

2
From (1) Tt: — ﬁ—%f——

-~ 3
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The ratio of these two times € = Z}/ﬁé is small for high conductivities.
We want to consider what happens for times t, 7, << t << Te . First for
all, from the boundary condition we see that the ratio f temperature
differences to mean temperature is also small AT/T = v‘d‘T’/k <2 €.To
order € , the problem can be solved and the equilibrium isothermal pattern
in the sphere is found to depend on the parameter

E =(total emitted heat)
absorbed sunlight

There are three different patterns of isotherms depending on the value of E:

a) For E < Y%/x =1.27 the heat flow at the surface is inwards which is
contradictory with the assumption that there will
be convection.

b) For 4 « E «£ 1.3125 the heat flow at the surface is outward near the
m surface but inside a ring of radius R it is
NGy directed inwards. Taking the radial variations
of density into account raises the upper limit
from 1.3125 to > 2.0.

+
c¢) For E * 1.3125 heat is conducted outwards at all latitudes

It turns out that the behavior of the isotherm pattern with E in this
example 1is very similar to the isotherm pattern found when considering a
convecting interior for Jupiter. The radial and horizontal heat fluxes are
computed using mixing length theory. Since the value of E for Jupiter
probably falls in category (b), the horizontal heat transfer must be
considered also in stably stratified regions where it will be possible due to
baroclinic instabilities. The external equilibrium time T can be estimated
to be longer than the age of the solar system and the internal readjustment
time T, 1is short compared to it. The model is consistent with 4.5 x 10
yrs for the age of Jupiter. The results of the calculation show the same
qualitative behavior as that of the example. For small values of E the
tendency of the sun to heat the equator is the dominant factor. As E is
increased the isotherm pattern becomes spherically symmetric with heat flow
always directed outwards. The estimated value of E for Jupiter gives a
configuration in which there 1is a central stably stratified region where the
vertical heat transfer will depend on the existence of horizontal gradients.
The outer part of the planet will have a spberically symmetric (to order €)
pattern which would account for the temperature differences between the pole
and the equator being unobservable,
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RECENT NUMERICAL EXPERIMENTS ON LONC-LIVED VORTICES
Andrew Ingersoll

LECTURE #2
Jovian Spots

There are some qualitative features of the main coherent features observed
which may be synthesized as follows:

i) the most coherent, compact and time independent features teund to be
anticyclonic (for example red spot, white ovals)

i1i) cyclonic "wakes' exist to the west nf the spots. Here the flow varies
rapidly. The typical form of the flow (in the southern hemisphere) is

) >

turhulence = . - SP = stagnation points
- \
sp sp

—_— 7
Size of the red spot is 10,000 x 25,000 km (NS diameter x EW diameter).

1ii) ratio of relative vorticity 1is ffspot/ % shear 2~ 4, i.e., the
spot i1s a large amplitude disturbance.

iv) large scale eddies do not occur on the equator. The most prominent
are in mid latitudes (for example red spot is at 22°S, a white oval at
3095), smaller scale features occur near the poles, having a more granular
like appearance.

v) the structure of the flow near the stagnation points is not constant
in time, for example it was seen to change from a ::>. to a PN ad

vi) there is an exception to this pattern: a brown cyclonic spot in the
northern hemisphere (which is a hole in the clouds). It has very large
eccentricity. It oscillates in length and width roughly conserving area with
a period of about 15 days.

vii) there is a region at 35°N where there are small spots which rotate
very fast, sometimes colliding and merging, emitting a stream of fluid.

Some quantitative observatiouns:

i) The spots have approximately elliptic form. The velocity of the flow
tangent to the ellipses has no angular dependence. For the red spot
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The contrihution of these larger features to the correlation !
is too small to be resolved. The net tilt is at most 5 which would

/ . .
correspond T (u'v' Y% 5 m/sec. Since Veang = 100 m/sec it 1s hevond
the resolution possible.

ii) Red Spot White Oval
latitude 22%s 10°s
uni fe max P "
(}o—g5"> f 13 19
(3 y = Af (NS diam) 6 2.5
Z shear outside spots 1.5 x 107°g7!

Red spot has a longitude oscillation of about 29,

Models for Steady Isolated Features

Three models are considered:

1) A two-dimensional quasigeostrophic, barotropic single laver of
fluid.

2) A two-layer model. The lighter upper layer is the one of
interest. Below there is a very deep laver with no mean flow. The
mean flow E((}) of the upper layer is given.

3) Same as (2) but the lower layer has mean horizontal flow 11(5).
which is assumed to be a given function independent of time and of the
motion of the upper layer. The upper and lower layer have the same
mean flow v (4).




In these two last models the motion of the interface is negligible for the
lower laver. When applying a two fluid model to Jupiter the upper layer
can be taken to be about the depth of the clouds, the deep bottom layer
would correspond to the adiabatic zone below the clouds.

First consider the field far away in a moving reference frame.

. . . 4 2
ode : he equation for is model 1s —_ - -
Model 1: The equatio th del d‘t<\7 \p,.{) O)-F £+<33

The stream function ¥ = —Iady +¢(x - ct, y) and the linear equation for
the field far away 1s

2 !2"“,
V (¢)X v ( b: -c > #X - O
For a regular (non-singular) solution ¢ , the speed € 1s determined
requiring that A= (@ -dyy)/(&-¢) be an analytic function, It is
measured that @ -u,, =0 at some latitudes. The value of G where this
occurs i1s € . For U = cos y/L, we get X -1 /L2 >0. (V}+ )\l\¢ =Q does
not have exponentially decaving solutions in the plane. It 1is poss1b1e to get

decay 1n one direction by confining in one direction. Let ¢ ~ Y 2 ,
then 2
d 2 2
P (M -k )P, = o
dx? d

For . large enough (in a narrow channel), there is exponential decay in
x, 4nd isovlated, closed-streamline features can exist.

Two Laver Models
The usual two laver model equatum can be written in the form
9 OV O ¥, Q .
N CH HoEF o (K%)epy |=0
ot QX 2y <Y X h 4 2

for n =1, 2, the upper and lower layers respectively. The (+) sign applies
1

for n =1, and the (-} sign for n = 2. The F, are
Foos fPL /(988 k)
4 o e n
if the tower Taver 1s much deeper than the upper layer, Fyp << F{, so the
vortex stretching i1n the lower laver is negligible compared to that of the
apper taver. For this case the two laver equations become

2, 2k 2 9% 2Ty +Ief(ﬁ—vr,)+(*‘a]’o

ot T ox DYy 9y Ix

et kS = F,
s Db & -
(;—t T S Y aLJ aX>[V ¥, r GQ-J =0




- 40 -

Model I1: W, = 0, The equation for the far field in a movine frame is
VY kS
2 G -%yy "% ) 2 —
\% qu t ( gy o d‘))( ’— Ec 4’, = O
Here too, C is determined requiring that X\° = ((5—1:.33*‘%,214>/(1Z-¢) be

analytic. For example, for (x = €25 Y/L we find ¢ = —@,/(k3+l_—2)and the
equation for ¢ s

2 i
Vi, + T2 Px = O
which is the same as obtained in Model I aund again there is no exponential
decay in the plane. Isolated structures cannot exist except in a channel.

e T A At O AR SR Ry (1)

where ¥, = —STde is given.

Introducing ‘}" =—§Gdy + <}> (x-ct, y) the linear equation for qS is
2 . 2 ( - ) _
V qb)t _‘20 Cbx + ‘%&_‘_‘28 Cbx = <
Choosing for ex. U = cos y/L we get

2 -2, 2
% Cbx * (L -k )cﬂ:}( = O which has decaying solution in the
plane for k2 >}"2. 1In this case it is possible to obtain an isolated vortex.

The time dependent equation (l) was integrated then numerically. For the
reference frame moving with speed € it is found that a stable isolated

vortex 1s formed at latitudes in which %— Lc.,J?/ is zero.
e - *

a = U -=-C

The structure is unstable if perturbed by a finite displacement in
latitude. A tilt develops giving rise to a u'v' which destroys the eddy. The
structure is stable to infinitesimal perturbations. This solution is not
analytic, i.e., there is a discontinuity in the derivative of potential

vorticity across the critical streamline.
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INTERACTION BETWEEN LARGE-SCALE EDDIES AND MEAN FLOW
Andrew Ingersotl

LECTURE #3.

Interaction of Eddies and Zonal Flow 1

Eddies form perhaps by convection and are then ripped apart by shear.
The zonal currents have been determined to be permanent features, only the f
clouds changing patterns. The currents also show north-south symmetry up to
about 45° in latitudes. From maps of velocity vectors it is found that the
correlation wWw'v' of deviations of zonal and meridional winds from their
longitudinal mean is positively correlated with the meridional gradient du/d
in such a manner that it implies a large rate of conversion from eddy kinetic
energy to zonal mean kinetic energy.

[+ —_ AT AS . . -2
{K K} = wv'diMdy-M | the rate of conversion, is calculated to be 3 Wm©<, M
the mass per unit area equivaleant to a layer 2.5 bar thick. This is a large

rate of energy transfer which is comparable to the total IR emission (14 Wm?).

Conversion ofeddy kinetic energy to mean kinetic energy divided by the
total infrared radiation emitted by Jupiter is 3/I% while the same ratioc on
[ earth is about 0-3/300. A rough time scale is K over {K'K} which is 50
earth days. Here we are taking K = /2 (50 ms™}y" 1f {K'K} were the
only term acting the mean kinetic energy and {K'K} would have to oscillate
with a period =50 days. Such oscillatory behavior is predicted in_
Williams' model (1979). The longitudinal gradient of vorticity, F—tyy is
negative at westward jets and positive at eastward jets, the observed limits
are —3@ < Egjsze. There have been different numerical experiments to see

whether it is possible to obtain flows with such an extreme behavior for ny' !

For example, in two dimensional turbulence, given initially a state with

an energy spectrum € (k), so that the total kinetic energy = _f:ﬁo(k)dk, the ‘
deviation &, from the average wave number (k) = Ské'(k)dk /gf(h)dk is
2 k-<k>YE(k)dR , 2
I St = (k- 2R (R kE = SRemde 0

(€(k)dk Se(k)dk
¥ both unurgys € (k)dk and mean square vorticity Skzi (k)dk are constant,

o 2 . ; S 2
then S S, > O implies J—t<‘e> < O

This means that the energy is transferred to smaller values of k so the large
sizes eddies end up carrying away most of the energy.

Now, if the @ effect is included not only this phenomenon occurs but, due
to the possibility of Rossby waves, the eddies may drift apart before inter-
acting so the rascade of energy to low wave numbers stops in the horizontal
direction. This teads to the formation of zonal flows. For wave numbers
k< kg = (?/ZMY/‘ this is a significant effect. The numerical results
indicate that for such flows S Z(‘jﬁSG which is not in very good agreement
with the Jupiter observations.




The plane models correspond to thin spherical shells. If we suppose
that the currents may be circulating deep within the planet. A more
appropriate model to consider is a rotating sphere of density F .

The linear equation for inertial oscillations is
2 P
=0

2
O VPrHQ S5
QL , where P = pressure, the

boundary condition being no normal velocity at the surface. If the modes
considered correspound to oscillatious of thin cylinders then the variation in

Z is slow and we can approximate
P(r, 8, 2) = Pi(r, 8)Q(r,z)
with Qa slowly varying function of Z and r.

|L 2R Ll 2R s Lo L 9’6?[
p, or: > [P, vz e rr T lQ 9z,

The result of the problem is that the surface flow is mainly horizontal
aad the speed is strongly dependent on latitude. The "effective@ " is larger

4 30° Jak than @. Distance from the
Rossby..\ &0° Iat. origin gives phase speed in
waves > k. units of @ k2.
spheria x
Shell

This can be compared with a Rossby wave which for the same value of L
gives smaller speed and the flow in opposite direction independeant of latitude.

For spherical shells we do not get u,, large enough. In the sphere
configuration, however, at some latitudes 0 y is as large as 3@ . Of
course the result is not correct at all latitudes. This indicates that it may
be possible in some geometries to obtain values of ny more consisteat with
the observations.

REFERENCE

Williams, G. P., 1979. J. Atmospberic Sci., 36, 932.
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LONG INTERNAL WAVES: GENERAL THEORY AND THE EFFECT
OF DENSITY STRUCTURE AND VELOCITY SHEAR

L. G. Redekopp
LECTURE #1
1. INTRODUCTION
The theoretical development for the propagation of long, finite-amplitude
internal waves can be clarified and motivated by considering the simple model

of interfacial gravity waves in a stably stratified two-layer system. For
this model the linear dispersion relation is given by

TN pan /'z='?("-t)
N

TEEL~ 23 )
0 V2

where ( W, R ) are the frequency and wave number of an infinitesimal, sinu~
soidal disturbance of the interface., There are several long-wave limits for
this system which imply different space/time scalings relevant to the weakly
nonlinear theory.

(1.1)

(i) The shallow-water limit. In this case we consider the limit of
long-wave (k-—» 0) disturbances holding the wave guide length scale h =
h1 + hz fixed

4
lim 001'= C:kz—ZQ?f‘k*"' N

k>0 (1.2)
i R, hy fixed
a_ §98)A6, o pp SRrobs
Co"' yle“"ge‘i b 3‘— 6C°’h 2 ?|e\z*?;€\,

Then, considering only waves propagating in one direction (to the right,
say) and truncating the expansion after the first dispersive term, we
obtain

3
(w-Gk) =-¥K. (1.3)

This relation defines a unique scaling relationship between the slow space
and time scales in a frame moving with the nondispersive motion

f= plxcd) , t:}ﬂc , )J.«i. (1.4)
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is the long-wave parameter measuring the ratio of the wave-guide scale to
the wave length.

(ii) The deep-water limit. In this case we take the sequence of limits
where first the depth of one of the layers (h,, say) is allowed to
increase indefinitely and then we take the long-wave limit (k->0)
holding h; fixed.

lim lim 2 2,2 3 .
k—> 0 hz"@ w = Cok—'Q/sC,k%""k"' (1.5)
by fixed klhl fixed
2 - Y
= -t =15 ch
gk FTageh. |
The truncated dispersion relation for waves propagating in one direction is
w-Gk =-BRIKI.

The space/time scaling for this limit bas
2
f=po-ct), T=pt. (1.7)

(iii) The intermediate limit. An intermediate case exists where the lower
depth is much larger than the upper depth (hy>> hp), but not
infinite (i.e., khy €41, kh, = 0(1)), The truncated dispersion
relation for this case is

€~ Cok = "'li% Q‘].kz[(bﬂl (kf\z)-fé\,}. (1.8)

(1.6)

Each of the limiting dispersion laws quoted here implies the existence of
a linear evolution equation for the field variables like w(x,t). The
equation corresponding to an arbitrary dispersion relation (k) = ke(k) is
given by (Whitham,¢}974)

M, + IK("'Z) 7 &) dz =0, (1.9)
oo
where the kernal is the inverse Fourier transform of c(k),
aRx
K(x)-:%t TC(‘*)C dk. (1.10)
~ a0
For the respective cases we have the following equations:
. . s 2,
(i) Shallow-water limit: C= Cc_xk,
n
Kx)= S+ 35w, (1.11)

Do+ Gt Tax =0
(ii) Deep-water limit:

c=c,,-PlkI, o (1.12)

iR
Kx) = ¢ S0 - g% (ke K,
~a

e + Yy — 16%:, Hm = o,




where 3‘(?)denotes the Hxlbert transform

2“ +) dz
;+(7) = /f JF
(iii) Intermediate limit:

=G~ 4B ik [tk ig,]

(1.13)
Kx) = ¢ 8ex) - —P‘-ff' ,% Goth (ﬁ)‘sﬁ"“]-

Evaluating the first nonlinear correcton to these equations for long waves we

obtain
T+ Cx + XYY + _‘[o [Koen - ¢, 8x-»r] Yu(Z ) dZ = 0. (1.14)

This generalized KdV equation incorporates the leading effects of nonlinearity
and dispersion on the evolution of long waves, where the adjective "long" has
been made precise by the different limits applied to the linear dispersion
relation (1.1). For the present model, the coefficient O is

2 2

“, % Q ﬁ-ﬁl‘ﬁgz
i{lﬂl fz"fﬁﬂz ?
and does not require a separate evaluation for the deep-water limit. Its form

for the deep-water case is obtained from the above expression by allowing hy
to be large compared to hy; namely

fim «=—§—2-. (1.16)
(]

fyrco 2
2:
ég :gm§1gﬁgisogﬁe%'1nwg$%erjzg dlsgugg theaggm fné gggggggrgftgonlinearity
and dispersion on the long-wave evolution. However, restricting the discussion
to those situations with quadratic nonlinearity and defining the amplitude
parameter €= a/h, where a is the wave amplitude, the space/time scales for
which the nonlinear and dispersive effects balance are:
(i) shallow-water theory:

4, L%
b= %(x-ct), T=€"t,

(1.15)

(1.17)
(i1) deep-water theory:

§=ewxct), T= e't. (1.18)

This preliminary discussion is presented to demonstrate the role of the linear
dispersion relation in selecting the appropriate space/time scales for the
weakly nonlinear theory. The usefulness of this general approach will be
emphasized again in Lecture #3.
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2. THE EFFECT OF AMBIENT DENSITY STRUCTURE ON LONG WAVES IN A THERMOCLINIC
WAVE GUIDE: DEEP WATER THEORY

Consider the 2-D equations of motion for a continuously stratified fluid

V’i=o:
PEE . —vp-pg8,, (2.1)

B-o

The total density P is represented as a background stable stratification
plus a perturbation

pP=p+ flazt). (2.2)

We define a perturbation buoyancy @Y and the Brunt-Vdisald fréquency by

a'=%f ) N’=—g§§- (2.3)

Let N, denote the maximum value of N(z) and introduce the following scales
to make the problem dimensionless.

Scale
X,z with b
. -1
t with No
u with N b
o
. 2
a with Noh

N(z) with N

Introduce a streamfunction defined by
u’\Pi 3 w=_‘P‘- (2.5)

For convenience we invoke the Boussinesq approximation in which terms of
order 9/g and R/ are neglected. The governing equations in
dimensionless form are then

Y, + T(Vigy) = G,
o, + J(oy) + Nioy, =0

where J(a,b) is the Jacobian operator.

(2.6)

The analysis which follows will address the specific thermocline model
shown here.
Zy

Na)




Later we will quote results when velocity shear is included and when the lower
boundary is removed. The space/time scales for this "deep-water'" case are
those given in (1.18). Then the equations are

{e'at - GO + (4% ‘4’;'3&)}(?11 ' etil!)‘* =

(2.7)
N
{e% -G + (9% - *a,)} o+ ‘«l’s =
i and we seek solutions by the perturbation expansions
L P50 = eyY® + ¢Pu ol
] (2.8)
eIt = €TV Soy ...
The leading order equations are
) o)
"C"\Vs:z % (2.9)
-G G' + N \pg =0,
which can be combined to give
o)
'o;(u‘ ) =0O. (2.10)
Looking for a separable solution
v"= Ago dw@),
N2 (2.11)1
a..(ﬁ:_. A'c': ¢ s
yields the problem
2
¢'+ ?N}d;=o, $=0, dwa» o0, (2.12)

When Noo = 0(1), long waves cannot be confined to the thermocline with
vertical scale h and it is meaningless to talk about "long waves'. When

New < 0(€ ), the solution as 2»® is ¢» ¢.+¢ £ and we cannot satisfy the
condition that the velocity perturbation decays as #-» o . The resolution of
this difficulty requires an inner-outer matching since, in the deep fluid
0(z) »> b, b is no longer the vertical scale for the motion. Instead, the
deep fluid is forced by the thermocline heaving which has the wavelength scale
h/eé . We will account for this explicitly by defining the outer variables

¢= ¢z,
Yuter = P (5,5,0),

(2.13)

«Mw = a: (tytnt’) .

Before discussing the outer flow, however, we continue the inner problem to
second order and get




(8 1 2 2
ICRE - TSP FUNPRLRL SV

(2.14)

Multiplying by ¢ and mtegratn:g yields
‘b; (4’ ‘Ps - ‘H’m)l = 'AV @ j" $dz - AAS Q3 ! (N%) 4'3“"0 (2.15)

after using the boundary condit ions <|>(O) The evaluation of
the lefthand side can be made only after the out:er flow solution has been
obtained and the matching accomplished.

Introducing the outer flow variables (2.13) into the governing equations
(2.6) yields

(e - g +e (3% - %2 ] 9§ = T3
[_e'bc - Q%I + e(‘{’;gs \P:cag)]o‘ + N ;Ivjs = O, (2.16)

Notice that the Laplacian ( V kp ) now appears in the vorticity equatlon so
that decaying solutions are possible. The outer flow scaling requires \y—
0(e) to match the vertical velocity forced by 'ghermoclme mot ion. Then, we
must vequire T< 0k \P) to avoid the result = \P 0 which implies
either that the flow is blocked or that the scalmg 1s wrong and the wave
disperses throughout the entire fluid colummn. This forces a restriction on
the magnitude of Ny [ N: € O] in order for long waves to remain ducted
along the thermocline. In dimensional form, this ducting condition is

—NN2 < O(%’). (2.17)
0

Ducting of a linear wave with wave number k requires that (k) > Ng 80
that the motion is evanescent in the outer region. However, this is clearly
impossible for New 7 0 because W0 as k — 0. Ducting of long-wave modes is
possible with Ng 3 O only on a nonlinear basis whereby the linear frequency

correction is sufficiently large to give > Ng.
w A

T T
L

ducted wave modes

VS Eoinivis pedram

Assuming that Ng= €] , LL=0(1), the outer flow expansion has the form

\T](;‘g',t)z eq‘)“)‘.. e‘l. q)(2)+ vee ,

~ ~e 4~
G380 = €FV% € %t ,

(2.18)

P
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The leading order equations valid in the outer region are
X T O] ~(1)

"Cov ‘P; = S b}

(2.19)

- Q,&”'(') Q uyg’
which can be combined to give
R+ G970
or, after one integration, .
V"""’ o §P=0 o= %;- . (2.20)

If the stratification in the outer region is weaker, the outer flow is
potential and one recovers the situation analyzed independently by Ben jamin
(1967) and Davis and Acrivos (1967). The boundary conditions for (2.20) are

(i) P"¢ao) = Qg

(ii) the radiation conditionas £%¢%*»w

The relation of (I £, T ) to the wave ampl itude ACE, 1) will be found
by matching. The problem defined by (2.20) is analogous to the classical
lee-wave problem except that here the shape of the "mountain'" is unknown and
t ime-dependent.

The solution of (2.20) is readily obtained by Fourier transforms:

\’i\)(l)(h‘c't) = —L’q(t)é-'l kgdfg

A1)
LY (R P= 0, (2.21)

dge > .
$eao) = QkD)=f OG0 E 4y,

The solution satisfyiang the radiation condition is

Arp & S Ikl> o
A CJ 1 (2.22)
\f‘“zh.c,'th G e € k s O<Rcu

A (o R

dam ™R L _yckeo,

The choice of branch for |k{ <O can be understood by recalling the
propagation of linear internal waves in an environment with N = const.
(i.e., W= N cosQ where © is the angle the wave vector makes with

PRV P R ORE

Db,

ek i
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PN O

respect to the horizontal). j

A X |
K)}(V %fc’

In the present situation, if we consider the ducted wave mode travelling
to the right with speed c (or, in a frame stationary with respect to the wave,
a mean flow with speed ¢ from the right), we must choose that branch circled ‘
in the diagram above and having pbase fronts with a positive slope. The phase ,%

Energy s* e '\/:;

Flux vector
relative to stationary "mountain

kil 6

£
e

in the solution (2.22) is

B = ki & ¢ Jxtg>,

(2.23)

and we have chosen that branch to which the lines of constant phase have a

& % _ &
<i§ (bg§4é§ (;!’OEE];;)

B=consl.

positive slope

> 0. (2.24)

2

Hence, we must choose the ( § ) sign in (2.23) when k 2 O.

In order to carry out the mat:chmg with the inner solution we need the
behavior of \pm as C—?O . This is obtained by expanding (2.22) for

small $’ and takmg the inverse transform:

Jou 2 [Cl(in:)df {SC:-:) CUF— cosk(5-¢ )dR.

$ro
H “ i (2.25)
- [Jo=k* siRz-¥)R] - ARG ESEL RIS IR 0(;)}.
o
We make the approximation, purely for amalytical convenience,
(2.26)

0 »®
(7w wskGEDdk 3 [ k oskes-g)ak,
o S



which is only valid as X»©O . What is really involved in this approximation
is neglecting the effect of the ambient environment ( Ne ) on the first
dispersive correction for the ducted wave modes. However, we do retain the
radiation damping effect contained in the integral [o,m].

Then, we can write

foin FO2 Qgry - ¢Dist) - $ (Clgg rot@) + 01%), (2.27)

¢»o

where

‘ p )
D) = 2 H@ - £ [ “g("‘; 2D g

and H(a) is the Hilbert transform and H; is the Struve function of order
one. The leading order matching gives

i*‘” \V;ﬂ“ef = e A(gllr){¢¢ + ¢; 5} r O(e‘) >
2 1 (2.28)
Youter = € Qege) - €2 Dis0) + OEH),
so that ¢:= OJ ¢n= 1 and a'( s, T') = A (5 "t’) . Matching the velocity
gives
9 ?Ekﬂ)
!m inney eﬂ. + océ) (2.29)
L Y Y 2Z 5
Z2y® -
Lur W’“’"’ = - D(§,1) + ),
1 7 '
(n
so that §£ l — D) . wWith these results the lefthand side of (2.15)

is known y1e1d1ng the evolution equation for the ducted long-wave modes

Ap+ ¥AM - BioHCA) = — p JAmmey [n (" RIaTR cosk(s-5)dK]
where
J(Nl) ¢ dz {
J=- -4 5 = (2.30)
"4 ds f I

At this point we will just note that, if there were another region of deep
fluid below the thermoclinic wave guide, an additional dispersive and damping
term would appear in the evolution equation characterizing the effect of the
additional ambient region on the confined wave modes.

Considering a wave packet solution,(2.30) has the following properties.

«©
(i) Q.
s _LAUE.‘L‘) dg

%(A) =0, (2.31)

 are s AN B X bt K




integrate over a wave length instead of the unbounded domain.

of the lecture (except we now allow the lower layer to be weakly stratified)
and seek an estimate for the lifetime of a coherent long-wave structure
propagating along the density interfafe. In dimensional form, equation (2.30) is
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This impliesa relationbetween the amplitude and length of the packet
as the wave "volume" is conserved (essentially a conservation of mass ),

= 8
(ii) QLAY = - % fk\lu“— K lF(R.’t)lzdlzJ

ar (2.32)

where

a0
F(k,1T) = j Acey € *ox
iy, v

This relation gives the energy decay of the wave packet via
excitation and radiation of internal waves in the deep fluid
surrounding the thermocline wave guide.

The same results are obtained for a periodic wave train solution if we

At this point we return to the proto-type model discussed at the beginning

W}AA_ - N(l)
’ ‘ :
—_— ,,__-;—_____\L__ - —
£
—> Neo

= rs ’ T 2 .3 7
T RT3 h T M) < —phch fruindd [RIEER asku-0l], o)

1 91'9! ‘\' NQ
a =0 o=z —
©r gt <
We assume that the term on the right is small and that the long-wave structure g
is a solitary wave solution of the equation with the LHS = 0
% ]
2 c-¢ 3 Qo (2.34)
== — an= 4% =lo o3 Qo |
The integral relations (Eqn. 2.31, 2.32) give
<:”2:> = 7Ylloﬁ. = constamt ,
(2.35)

<<"22> = z%fh’(aom),

~ LR
I:(kﬂ» = 1r<30?~ e .




We assume that the solitary wave structure is maintained even when the damping
term on the right is included, but that the solitary wave parameters are
slowly varving in time ( Q= Q_(t), A= A(t)). 1In this adiabatic
approximat iton the decav is given by

T = 2GR @A) o Iip,

{
d -pt
I(p)=g‘,,“l—t‘ e’ dt , p= 200k

Two limiting cases can be identified

(2.36)

2
(i) For p>»o (steep wave), I‘P”‘é— ',7'4:? + O('P)‘

In this case the decay is linear in time.

(ii) For p-» 0@ (shallow wave), I(p) ~ - ’L; and the decay varies
inversely with time. There is a threshold amplitude below which the
wave can no longer remain ducted, but disperses throughout the deep
fluid. §Qoltd

Qe (0)

iaJo)- ——————
|

i

e 3t,—A

Defining a "half-life' as indicated in the sketch and using 5)‘.,1=C08t'/z;

one obtains YR
qul - /8 [ A/).(O)J

Aoy 4 No LNoh/c, ) °

—» t !

(2.37)

The quantity in square brackets must be Z_O(l) for ducting and the other
factor ( Ce ) is essentially (N,/Ne ). Hence, unless Ng<« N, the
wave will decay after propagating several initial wave lengths. This is
probably why long-wave packets of internal waves are not observed in the deep
ocean with nearly the frequency with which they are observed on the
cont inental shelf.

The adiabatic theory presented here has been tested by numerical solution
of Eqn. (2.30) for solitary wave initial conditions (Pereira and Redekopp,
1980). The adiabatic approximation slightly overestimates the decay, but :
gives a quantitatively useful result. The important point to make, however,
is that we have here an example of a coherent structure which radiates and
that the life-time of the structure depends crucially on its '"radiation
efficiency".

3. THE EFFECT OF VELOCITY SHEAR

A similar analysis can be carried out when velocity shear is included
(Maslowe and Redekopp, 1980). Our purpose heve is to provide an anaiytical
example of the existence of solitary eddies in a shear flow which are




describable in terms of a nonlinear evolution equation which implies that
these eddies exhibit special interaction properties. The discussion here will
also set the stage for our next lecture.

Suppose we wrlte the total streamfunction and perturbation buoyancy as

Y= S{ U@rda’+ e A dz) + € \p +... (3.1)
<
= - €A LT?C. + €*et, ..

and substitute into Bqn. (2.6). Then, for Couette flow with constant
Brunt-Vaisala frequency, the linear eigenvalue

£=+1
N@) = Const.
rrrrr T —2=-
problem is - 2=
J =
¢. —(—_1-_—1‘)1¢ = O, ¢(ti) o,
(3.2)

= N(2) ] : tant
J Jia "

We consider only the case where the Richardson nuwber J >%4 so the flow
is stable on a linear basis. The eigenvalue problem then has the solution

Y
$ = 13-zt ws (pdniz-zi-8), (3.3)
= \]J-‘/4

where Z_. is the eigenvalue (the phase speed measured relative to the linear

velacitvy profile with unit slope). There are two classes of solutioms.

f1) Internal wave modes (Z. >4 ,

(3.4)
n .
Z.=1t mﬁx(i-;{)J n=4,3,.. ]
t11) Singular neutral modes |Z.[< 4
Z - tmnk(""" n=20,4,2,.., . (3.5)

Miles proved that there were no singular neutral modes for J:>Z; based on
a visrous critical layer theory. Here, we have implicitly invoked the result
of nonlinear critical } ;er theory by which we make the interpretation that
the quantity (2 - Zc) Fecomes simply |z - z¢ xi when
7€ 7.- In the next lecture, we will give a detalled description of
nonlinear critical layer theory in the context of Rossby waves in a shear flow.

We conclude our discussion by noting that, after adopting the KdV
(shallow-water) scaling and computing the *JGJ, TY terms in (3.1), one

PN




obtains the KdV equation
Ae + TAA v 8 A -0 (3.6)

for either of the modes (3.4) or (3.5). For the singular neutral modes we have

.ﬁ: _ 2% (1-22)
47 +3 2
(3.7)

/2 "
f = o (|~Z¢; - (-1) (1+Zc_)yl
T2 (4-i§)"7~

These modes will always have closed streaal ine regions whose shape can be
determined by a detailed analysis of the critical layer region.
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Richard Gregory-~Allen

SOLITARY ROSSBY WAVES WITH CRITICAL LAYERS

L. G. Redekopp
LECTURE #2

1. INTRODUCTION

We consider in this lecture a zonal shear flow U(y) which goes to constant
values Upin and Upay @85 y—»-% and y —» + 00 respectively, and we study
the question: Can a solitary wave evolve and exist with a propagation

. . i ” o Lo
velocity ¢ between U_. and U_ 7 There will then be a critical value of

y for which U(y) = ¢, This level y = y. and a band in v around it, the
so-called critical layer, will be seen to deserve special attention.
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Let the total %treamfunct1on in a frame moving with speed c be
g P

Y = Jdn (Uigr-c) + ey (1.1)

where is a pegturbation. If we furthermore adopt the KdV type scaling
from Lecture #1:

i. W
X— € % 5 t—» € t, (1.2)

the model equation for q/ that we consider becomes

{€9, + (U-02% + (9 ~g o [Ty K e Gl y
e (=YY = T Yy

In Sec. 2 we consider perturbation expansions for in the region away
from the critical layer and derive the matching problem that the critical
layer gives rise to. In Sec. 3 we consider the critical layer region and
solve the matching problem. 1In Sec. 4 the time evolution of the vorticity in

the critical layer is discussed.

(1.3)

2. THE OUTER REGION

We first look at the region away from the critical layer and consider a
straightforward expansion of the perturbation stream function in powers of €

) 2)
\.*/: \V('i- G\Y( +ree (2-1)
Since the perturbation, € , 1s itself 0(€ ) the first term has
superscrlpt (1). We substitute Egn. (2.1) into Eqn. (1.3) and collect terms
0(€®). Since we are assuming that we are away from the critical layer,

]\J-C\)) ¢ » we can divide through by U-c to obtain an equation

[¢]
Ly =o, (2.2)

where at is the linear operator
9 _ 2
L= 'b% (z"z“k + B(y)). (2.3)

with “
-U
Ehﬂ)?; fz__c R (2-4)

We look for separable solutions to this equation

'\Ym___ A(x,{;) ¢(3), (2.5)

where ¢ then must satisfy the eigenvalue problem

$'-K'é+3d=0 (2.6)
with bounday conditions
4’(‘];) = d’(t’n) =0 (2.7)

etk
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at stations far below and far above the critical layer, y, << Yo &< Yp-
We note that for Equn. (2.6) one can identify at least three possibilities:

(i) U(y) f c for all y, i.e., there is no critical layer at all,
B(y) is regular and the equation for ¢ has no
singularities. This case leads to what we shall call
propagating neutral modes (PNM), Rossby waves
modified by the shear.

H
(ii) \J(yc) = ¢ but /3".Lr(yc) vanishes. In this case B(y) can
have a series expansion about y.
B(y) = B, + B, (y-y.) + ...
Then § will also be regular
$(y) = ¢ + ?2 (y=y) + ...
and the solutions will be called regular neutral
modes (RNM).

1]

!
We shall con51stent1y use the notation \JYyC = \Jé, XJ(YC) =

UL, U'vo = Ul , etc.

Finally we have

., B
(111.) v(yc) = ¢ but B(y) = __y_. + B + B]. (y—yc) +
=Ye
is 51ngu1ar at the cr1t1cal layer. From Equn. (2.4)

B_ v UL
5 R PY R AR CA- Ul HUr Hacul )2

and SO on.

According to the theory of Eqn. (2.6) there will be two linearly
i independent solutions $,(y) and §, (y). These will be given by Frobenius
series. The regular solution is

[ -]
mn,
by = goan‘ﬂ ) (2.8a)
and the singular solution is

E 4’5‘5’ = %b,.(g-y,_)n + boo‘t’a(‘j) I ly-y.] . (2.8b)

The coefficients ag» al,...bo, byj... and boo are determined by
substitution of (2.8) into (2.6) using the expansion given for B(y). By
straightforward calculation we find

B"a"‘:o’ (2.9a)
zaz—kzq° +Q'B_‘ + aoBo =0

) (2.9b)
G0y - k'a, +a,8,, + 4,8, + 4eB, =0, (2.9¢)
i and so on. Hence a, = 0, we fix a; = 1 and then
"
| — -Ue
0,=-348, = - 25 (2.10a)

2U¢
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2 o )
Gad(K-Bo+d )= By U, 8L UD,
¢ ew (2 (U (2.10b)
and so on. Similarly we find
bha| + B_‘ b° = o, (2.118)
2b,+43b,Q, -KR'b.+ B, b, + B b, = 0. (2.11b)

We normalize ¢, by demanding that b, = 1 and we fix b; = 0 to assure
that no multiple of ¢a is added to the regular part of %b‘ We then obtain

)

bee = - B, =24, = - .ﬁ—-——t'}cl‘ s (2.12a)

ﬂ -2 2 £ ut . B-u)du-38) (2.12b)
b= (K-B-60})= 7 + 35t " .

For this case we can only assume the anmsatz (2.5) to be valid for y » y. and
we must have a similar outer solution for y & y.. We write these

\{/f): A(x,t){ o(+¢,‘ly) + Q,‘,‘P} 5 .'.‘f’yc 5

)

vE - pwp{adwGuf, Pk

(2.13)

The problem posed is solved by examination of the critical layer region to
determine a matching between A, D, & and o .

3 Before considering this matching problem, let us go back to Eqn. (1.3) and
: extract the 0( € ) terms.

We get

. 3,0 2
= W-0XY = - DY -0-0LE - (%% -¥23) G- 10

ot

Using Eqn. (2.6) in the form

“ 2 )

(92"'1"1)3"«"3‘/“{ (2.15)
i ; we get
o o )
g i J (l)= _@, ? - ﬂ B m_,m (2.16)
;';b w ¢ 5-?' ‘be - U__c' X
. B oA _4TA _ 8% 9k
‘ v-c 9 W T e Mk

N i U S A 0
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Note that the first and third terms here are singular even for RNM (they are
strongly singular for SNM). To derive an equation of motion for A we want to

c S& gy

For both RNMM and SNM we exclude from the integral aon interval of size S (to
be determined) about y. For SNM we furthermore must change A to D for
y < yc Now for any 11m1ts a, b

fda b [ By / 4P (.1
hence, . L b b @/ a
f({”So{’v/J = ?%{[75@1{}‘7'“)75,]4 *é/'{‘/y (7"(’5‘*8?)]: (2.18)

where the second integrand vanishes identically by Eqmn. (2.6). Using this
relation with b = y,, a =y, + 8 and then with b =y, - § , a8 =Yg
and finally adding the second result to the first we get

j{dj LY~ 52 [#y” ‘Pm o f "’Aj(_i_ér 2’9%#{7,(2 19a)

where Yo Y- $ 31»

]f—:if +j‘{$ ’ (2.19b)

and we have used the boundary conditions (Eqn. 2.7) and

(2.20)

@ W
% "js) = wx () =0

For PNM the jump is zero and to this order in € we obtain the KdV equation
for A. For RWM ¢ is continuous and () {s continuous and the unknown jump
term in Eqn. (2.19a) is

YIg-)

For this case, and for SNM where the corresponding term is

a (&Y)
s #v )“f%w]




an examination of the critical layer equation is necessary before the
evolution equatxon for A can be determined.
Let us write \Y

2 Y ‘“
=3A ¢, + A“ b ¥ (fdx (2.21)
)
where ¢"t , ¢Q“P and ¢L , depeund only on y. Then

‘X‘Pw AA (d] k 5) m * Axxx (ny’ kfﬁ) df:;
+ A (dJ‘ k 5) >
(]

and, from Eqn. (2.16), the most singular part is nt - We write a Frobenius
expansion for ¢;¥ :

’:l = ad ot
b= g v ZSYWT e bl Z 450"

(2.22)

(2.23)

+ Lalyg | MZ: hty-10".

(E D - e

we can obtain all the coefficients r gn, Pn ns bq

and & ( = &% according as y % c We shall not write out all the
necessary equations but only extract r.1._ On the lefthand side of Eqn.
(2.24) the only term to vary as (y - }- is 2v_y (y-y. )=3. on the
right the only such term is (B_y/ U )(Y‘YC)_3
Hence

Then from

in terms of a b

Y: = z-l — boo

= _ (2.25)
] 2 U°I z Uc/

Now we go to the critical layer region.

3. CRITICAL LAYER EQUATION

We write the total streamfunction in the critical layer as

J
Y= fo'(Vg-c) +ecd)t,T) (3.1)
L




where:

(i) Y = (y-y.)/§ we want Y = 0(1) in the critical layer region
and so § 1is a gauge function to be determined
(ii) T = t{y. (with g+ so far undetermined) is a second time

scale. We shall find that the critical layer is
quasisteady on time scale t. To follow the time
evolution of the vorticity in the critical layer
we must go back and introduce T with the
appropriate choice for P

The coefficient of §F is € 1in order to match to the dominant term outer
flow as y —p y,. Putting YJ , Bqon. (3.1), into the basic Eqn. (1.3) we
obtain the expansion " e

€ 2 ,€2 vy LN ‘) v = 'a_§>’3)}-
peoT "gaE " Y (1 7 3o~ 5 (&% 8%
4 (3.2)
v ¢

['6’_6%'1 —%lkad- (:82,-52;1§ + S[#‘U:‘ Uc'"é'rm..] ﬂ :g,z—g'g 2—),-‘4 .

The equation is written with the term U; Y being 0(1) since it is the
basic term giving rise to the singular behavior in the outer expansion. We
now consider possible balances in Eqn. (3.2).

Y4

(1) Viscous balance: In this case —Jz:—)ga = 0(1), S=("/€"2) and
€/8" <<4. Tﬁe €' term appears in the
expression for § because the wave number
is 0(€" for the long-wave motion con-
sidered here. This limit and those that follow
are best characterized by the parameter A
(sometimes referred to as the Benney-Haberman

parameter) y
(u/ellz)J }3

A=
The viscous balance occurs for A y»»| .

. . . 2 -
(ii) Nonlinear balance: In this case €/8 = 0(1) or §=€"%. Also
we require A <<} so that the viscous terms
are weak.

(iii) Hybrid case: A third possibility is A= 0(1) so that
both nonlinearity and viscosity are impor-
tant to leading order im the critical layer.

We shall focus exclusively on case (ii) in this lecture. For earlier work
dealing with this limit of the critical layer theory the reader should consult
Benney and Bergeron (1969) and Haberman (1972).




Consider for SNM the outer solution (Sec. 2) Y, as y — yo- From Eqn.
(2.13) and Eqn. (2.23) the leading terms are

A
= A {I e b¥ e s €[ a,Y + by Y InIY/ + t‘r ]+...j (3.3)

To match this we consider an inner expansion of é of the form

(o) /. {%J U4 (%)
$=0"+ e d +eF 4o (3.4)
Substltutmg this into Eqn. (3.2) with the assumed scaling, viz.
é _@_ 3 W/ .12
}L T +E 3% + Uer[, ‘#/ € r+"]2x +(§ 9)( —46 a)')}. (3.5)

[ e SE]F + Apra- et -Apery
where ),: Jye”lgs = y/él <] , we get

s\, 2 710 p ‘o 91(9
Oce): o( § {UYQX"“ ﬁz_é) 5

Yq,-— Y 2% x Y 51"0'
A solution that matches L)mlformly is f(; A(x,t). Similarly, matching
as Y-+ =-% ye obtain D (see Eqn. (2.13)). Thus we have A = D in
o. (2.13).
Eq 2 (‘6) ‘I‘)

?
O(Guzjn@): J 7—%‘%: 0 whence _é = —%—’-’AY matches identically.
lz 6) "
o™ of 287, 787 U B

v " ator?
%) (‘9 76
9 by a2 o.
# [0V (B0~ 8.9 aye ~
The second and fourth terms vanish identically leaving

Y2
, 2 1Y “
{% Yye “Axa?/a'ff * -0 A =o. -9

To discuss this equation consider the transformation to new independent
variables

S = -2LU:Y2'+ A, (3.7)
X =x

Since




TR————— v — -

Eqn. (3.6) becomes simply

ot __ BUy | b
x =y X YA |

(%5)
where §= 6)’)’ gives the leading order perturbation vorticity. Before
integrating this equation let us interpret the transformation Eqn. (3.7).

The total streamfunction in the critical layer region is (see Eqn. 3.l
V- f/t{f[l/(f)-c)+ ¢g. <
¢

Expand U‘j) as
Ug) = U, + UC' (4-4/ )+ ‘

and integrate term by term to obtain

14

” o) 04)
ety £ ey e + e (F e d enn)

= €S + O he) + 0] ++--.

]

Thus S is simply the leading order part of the total streamfunction in the
critical layer.

Nowzconsider the streamline pattern, i.e., the level curves of S(x,Y
=';'[UZY + A. Since A is assumed to go to zero as Ix|9o0, S('x,Y)_ has :
least one stationary point given by Y = 0, A, = 0%). To determine its ty)
consider the matrix

2,
S S o
Gy XY Acx
%S S - U/
Y 21* © ¢ !

Thus, if Ué > 0, we have two possible cases:
(a) For Ay, < 0, A has a maximum and the stationary point is a saddle

point. Tn this case A 3> 0.

(b) For Ay > 0, A has a minimum and the stationary point is a maximu
In this case A < 0.

Streamlines corresponding to the two cases are sketched in Figs. la a
1b. It is clear that as X—> t = the streamlines have asymptotes
parallel to the X-axis.

*We assume that these equations have just onme solution which we place at
origin of coordinates without loss of generality.




(a) (b)

Fig. 1 Streamline patterns for solitary waves in a critical layer:
(a) A >0, (b) A<LO.

(The case UC’ < 0 is analogous except that pattern (a) occurs for A< O :
pattern (b) for A> 0). 1In both patterns there is a dividing streamline
separating those streamlines that run continuously from - @ to +a (in
from those that do not., 1In case (a) this dividing streamline clearly ha:
Apax» the maximum value of A; in case (b) S = 0 on the dsl. 1In either c:
denot ing the value of S on the dsl by S., the equation for the dsl becom

Vs = % [ & (8- A"‘**‘)J I’f‘

Outside the dividing streamline it is straightforward to integrate Ec
(3.8). Substituting, from (3.7),

Y= sqn Y (gzcs—m)""

we get

9¢

r. S, = o Y

A
29X ki ,/U?;; (s-A)

which is easily integrated to give

¢ = b.,,/z_Ufs?nY{;/':s——/;/?j

using the boundary condition that ¢-70 and A~» 0 as |X]|—> 0. In temn
gv Aoo VZUC s?“Y ,/fUJY"*A - ZLU‘/YZf )

Hence for lYl—) oo s

ellzg'-'-'é”z[AoA _ boo Al ‘..].

Y ~ v vs?




From Eqn. (3.3) this has to match with

2%::6”"[5”"&* ;;I_'_Af +]

But this matching is valid uniformly according to Eqm. (2.25) ( and the
A =D derived previously.)

To determine the matching of the coefficients X+ we integrate Eq
once to obtain

;’g’l’i Sar'toyy » mxt)
40U IV + 2 b (i Y12 ) -

When we consider this expression for |Y|-» ® we get a term independen

42)
(:f s4.0 {8 bcvey + 22 i) +

AZ.
z(u:)’f“'"} i

and, when this is compared with the first Y-derivative of 1#* in Eqn. (
the main conclusion is that

“*zuq ,

Together with A = D (already derived twice) this completes the solution
matching problem posed after Eqn. (2.13). Stated differently, the matc
has shown that the leading order outer solution for \ is the same on
sides of the critical layer. It is also clear from the discussion in ¢
that A evolves according to KdV.

We still need to obtain a solution valid inside the dsl. To do th-
rewrite Eqn. (3.6) as

(SY‘D%E _Sx'b%)['= 0,

'a'gZS)
o - - ur)y.

where

The general solution is ['= F(S) (In our previous analysis of Egqn.

via Eqn. (3.14), we found = [T+ { XY Y = 2 v Yau’s + (B-L
B U o0 V2U




which is consistent with this type of general solution). To determ
form of F(S) inside the dsl we must consider the two basic streamli
patterns, (a) and (b) (cf. Fig. 1) separately.

For case (a) where all the streamlines extend to infinity we ha
Equ. (3.7) that

o= [+ (,B—Uc”) Syn)’\)i;s

as X-» Tt 00 since both _(,‘ and A vanish asymptotically. Thus [~
discontinuous across the Y-axis:

= F(S)= 4o VZ0Z gny VS

the discontinuous jump being [r'l] =2 b“,JZU"A .

It is stated without proof that this can be avoided by allowin
appropriate distortion of the mean flow. It is clear from the disc
Eqn. (3.23) matches with Eqn. (3.15) on the dsl.

For case (b) the presence of closed streamlines suggests that w
F(S) by requiring that the steady solution being found is consisten

equations of motion in the limit of vanishing viscosity. For 9#0
(3.21a) becomes

(Srz% “‘g(b%)/,:'“;)’ '

We seek /7 as a regular perturbation solution of this equation:

F=FS)e A% e

whence

) 2
(Sy 9 - SOy ) L K

This equation may be rewritten as
——r
v-Q

where the two-dimensional vector

~ _ ) m QF
8= (5,7 ~s,r- X

-
A
By the divergence theorem, we see that the integral of Q'n arount
curve r , where ﬁ is the normal to ; , 18 zero. We choose
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a closed streamline so that

(Sx, Sy)
V é%: 4 55} .

F 2
= A S. S
CQ- n = - Y'DY = — f‘( ) Y

VSers Y515

Hence, in the contour integtal, \é QR df. , the position depende:
the integrand is positive deflnlte and the integral itself vanishe:
follows that F'(S) = 0 or F(S) = const. This result is generally -
as the "Prandtl-Batchelor" theorem. The value of the constant is d
matching on the dividing streamline. Since S, = O for case (b) (s
discussion just before Equ. (3.13)) it follows that

A
n =

Then

Cl = Mg (DY, = buV20l sy /S +p-0)

or l;l= F(S,) = 0 and so the solution is simply
4
§=(B-UDy

Notice that if we applied the result of this analysis to case (a)

would give ¥ = b, N0 SgmY VA max which is not a const
Furthermore, Eqn. (3.26) would not match on the dsl and would not
X —» +00.

There is, of course, no paradox since in case (a) the streamlines
closed and the Prandtl-Batchelovr theorem need not apply.

Finally, we make some general comments about the effects of vi

general, if one considers the eigenvalue problem (2.6) one has to
solutions on the two sides of the critical laver of the form

s = 4)“(3) + b, q)b‘J)

It may be shown that for the steady problem considered here the me
the form of the following jump conditions on the coefficients a#+,

[b]= b -b =0,

It

fl_}u‘l"_b o),
Uc

fa, = a,-a.

where b 1s the common value of b+ and b-. The quantity G;(A) pl




). When Eqn./(3.27b) hol
interpret ln (y-y.) as ln ly—ycl + 160 (A) sign Ul for y «
argument, 9 , of @ ( N) is defined as

Y -3
(Ye™ i M)
A = [ éllz_) J - QL )

of a phase jump in the term ln(y-y.

and measures the relative importance of the viscous and nonl
both are important. The nonlinear analysis prasented above
yielded ©—=> 0 . The other limit A-» % (the viscous crit
known to give 89 -7t . In between these two limits the re:
varies as shown In Fig. 2.

A N

o.{ 10
(@] +—

-

\ 4
>

Fig. 2. Variation ot phase jump & A

In the general case the Reynolds stress averaged over one
the motion along the critical layer has a jump discontinuity

ETII: 2 k(f-lk)f) Lo

10X

where k is the wave number.

4, TIME EVOLUTION OF VORTICITY IN THE CRITICAL LAYER

In this section we want to consider briefly the comnsequer
time dependence to the equation for g , (Eqn. 3.6). To in
derivative into (Eqn. 3.6) we must select the scaling W=
thus becomes a fast time scale compared to t. Introducing s

XYY = DLOKY),  TE=UT,  AN=ULA

we obtain

Q k19 %
B Y ~ Moay m e A

where the primes have been dropped for convenience. Let Ab
solitary wave solution: s

? A =12 T; sech?(X-4st)
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which solves the KdV equation

Ag * roAAg + shyy =0
We have

A, = Ajsech’eranne

where

A =-24% | Oz X- 4st=X- 4s€°T,

This expression for A, 1s to be substiruted into (4.1) and the eq

solved with & =0 at T = 0.

particular solution of Eqn. (4.1) is

= b“f( ,

and, since the equat ion is linear, all that remains 1is to find tt

solution of the homogenrous equat ton

119 iES -~ 2 515 -

i .
Note that sech®X, tanh X appear here since by Fan. (4.

L}

5) @ - X

We can again adopt the streamline conrdinates (Egqn. 3.7) viz.

S=4v"+ A

to obtaln

We now seek a new variable p such that
Y .Y = -
== 25N

or (assuming A,/25 > 0)

d X Ll s X
p= j\/Z(SréAbsecAz){) =2% w[ /+2°j

Then (Eqn. 4.9) becomes

ﬁbé’ + EZ§T:= O

—_—

2T 2P )

so that

$=8p-1)
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is the general solution sought. The full solution is

é’=__b”Y +§'§p-7‘) (4.14)

wz‘ere the choice of the second term is determined by the initial condition
=0at T = 0:

Clp) = boo Y. (4.15)

Hence, all that remains is to express Y in terms of p. We have

YZ__: 2,(-5-'4)= 2 (S + S soiqth +éA.>/(14sM2X)) (4.16)

and from (Eqn. 4.11)

Sond’x = (1+ -z—%") sk’ ( pVZS). (4.17)

Thus

2 (S+#As) coh(pV2S)
Coh® (pVI5) + %w/ﬁ’(pﬁ?) .

(4.18)

Y=

Finally then
17 22 cosh (p-ES) (
é.: _boo{Y"‘ /z_g _A.° 1 715} 4.19)
[coh?(@HEES) + £ suct’(p-TE)] " I+
Equat ions (4.8) and Eqn. (4.11) give the variable transformations to X, Y

and T. We have assumed Y > 0 throughout but for Y € O we simply change T to
-T and change the sign of the second term.

As T—® 00 ye (formally) get from Eqn. (4.19) that

¢ o b (Y- /2‘5) (4.20)

which is precisely Eqn. (3.15). (Recall that we are using units such that

vl = 1).

If we look inside the recirculating region we have § £ O for A» O
(since the dsl has S = 0). Then Eqn. (4.11) becomes

| -l Swh X (4.21)
P= J2isi &M[ j

od L4
'ZIS‘I !

k2 N g

L e
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e m e e i en

and the solution corresponding to Eqn. (4.19) becomes

Mo2ls) Cos (V2isi (B~ v 1)

= - Y{ Y- .
é. b"’srn { [Cosq'(/z—/g/‘(/b-%yﬁ),‘ ,‘Z%S‘g/ Sen? }675‘7.("%"‘/7))] n(4.22)

This result has the unfortunate feature that it continues to oscillate as

T —»+ 00 . However, we conjecture that the additiun of a weak viscosity (QA<<i
as opposed to A=0) will effectively damp this oscillation and yield a
constant vorticity in the closed streamline region consistent with the
Prandt1l-Batchelor criterion.

The theory presented in this lecture is the basis for the hypothesis that
some of the large eddy structures in the Jovian atmosphere (e.g., the Great
Red Spot) are solitary Rossby Waves (cf., Maxworthy and Kedekopp, 1976, 1980).
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HIGHER DIMENSTONAL SYSTEMS

L. . Redekopp

LECTURE #3., Part 1: The 2-D KdV Equation

The form of the 2-D KdV equation can be obtained quite simply through the
long wave (shallow-water) limit of the dispersion relation for interfacial
gravity waves (see Lecture 1, Eqn. 1.2).

2 4
2 2
W= 2R -2GYR +..- . (1.1
We want to bring the leading effects of transverse (y, say) variatigns into
tzl.'le usual KdV balance. Hence, we write k“ = ky + k% and comsider k% <<
ky << h-z, where h Is the wave guide scale. We obtain from Eqn. (1.1) the
relation "y
T pad{— 28 (p* R .”}
w= IR R {1 2K
2 3 54 5 2
=Qkx+£‘i—ké-—”dk,‘+0(—é‘-}ekx> ka) (1.2)
2 Rx X

Truncating the expansion after the first longitudinal and transverse
dispersive terms yields
2

4
kx(w‘c‘)kx)= %k\‘-’*”‘hx > 1.3)

with the corresponding linear evolution equation
G
Lu =
(ut”aux +zu,g,‘,‘)x + 7 "y o (1.4)

Transverse variations are coupled with longitudinal dispersion if lk\,l =
0(ky, ) . This dispersion law implies the space/time scalings. )

3t 2 (1.5)
g=)k()(~(’.°t), T= o 3 72=}&§.
Lf the first nonlinear term has the same quadratic form as in the 1-D
KdV equation, we obtain the nonlinear equation
(with
0! m, o O] } C .,
U u + 2 Uy, =0. (1.6)
{ur”‘ p FT Mg Tz Wy

This equation was first obtained by Kadomstrev and Petviashvili (1970) to
study the stability of the KdV solitary wave to transverse disturbances. Tt
is found that the solitary wave is stable (unstable) if ¥>0 ( ¥<O ). The
situation with ¥ Z O corresponds to the long-wave phase speed ¢ being a local
maximum/minimum. We will focus on the stable case only in this"lecture. How-
ever, it is worth pointing out that we had ¥< O for the singular neutral mode
case for internal waves (see Lecture #1, Eqn. 2.7). Also, Ablowitz and




_73_

Satsuma (1973) have shown that two-dimensional lump solitoms c¢xist for this
cquation with ¥<0O

For convenience we will write Eqn. (1.6) in the scaled form
3 4 3 -
(ut+5uu,+4u,(“)x+4u“_o, (1.7)
and also restrict our discussion to the soliton solutions of this equation.*

Zakharov and Shabat (1974) have presented a linear (inverse) method for
solving the equation. The essence of this method is as follows:

Step 1. Find solutions to the pair of linear equations involving the
auxiliary independent variable r:

Qe + Ruux + Rrer =0,

(1.8)
Qj + Q&X’Q"T:o.

Note the relation of the first equation to the linear, 1-D KdV equation
and that, when %2= 0, Q = Q(x + r,t) which is the form arising in the
inverse scattering transform for the 1-D KdV equationm.

Step 2. Knowing Q, find X (x,r; y,t) from the linear integral equation

(Gel fand-Levitan eqn.)

~ -
Kxor) + Q) + _(K(X,S)Q(S.r‘)ds = Q. (1.9)
X
We have suppressed the y and t dependence which enters only parametrically.
Step 3. Obtain the solution u(x,y,t) from
W = 2%( Ko,xyy,t) . (1.10)
This solution procedure is quite remarkable. Nevertheless, it suffers
from the lack of any direct connection with the initial data. The direct
scattering problem and the time evolution of the scattering data are not

prescribed.

As an illustration of the solution method, we construct the single soliton
solution. Suppose we look for separa’ e solutions of the Q-equations having
the form

Q= Qo exp{~Ax-ur - L=ty + (13+n3)t} . (1.11)

The Gelfand-levitan equation is also separable with the solution

K(x,rJ- yt) = ‘k (x:4,t) e’\'ws Qe yt) = %“J't) e—lx”"\r')

. . %élx-m" (1.12)
1 X ~ ¢ —(Ln)s ~
k+qoe' +%k§€ ds = ) =T - (24m)x

x i+ e

*Interesting dispersive solutions of Eqn. (1.7) exist as well and are
discussed by Redekopp (1980).
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Hence, the solution for u is obtained

’lk(x.g.t) = 2% K(x,x;j.t) = %(QW\) Sech? % ,
(L) (x-x0) + (Rf—n‘)g —(Pe)t, (1.13)
= L+n *QM(ZW\ )

This is a plane solitary wave propagating oblique_\to the x-direction. In
fact, it is useful to define the soliton wave vector K = (K, M) and write the

phase as - —
©=KX-0t X=1(x,4),
3 = | 3 m*
K=g+n , M=L‘-n“) Q=L+n? —Z(K +33

oy _L(k-M
-’i(K‘“T':l) » mn=7( <)
One should note the close relation to the dispersion relation of the linear

uat i
equation uN exp{i(h‘+m3—wt)} )

(1.14)

3 2 (1.15)
] ™
©=-z (k-z,—,l

Also, if § = n so that X = (2 {, o), we recover the solitary wave solution of
the KdV equation

= L seeh { L(x-xo 228D} . (1.16)

Interesting results are obtained when we seek to construct multi-soliton
solutions. We then write

_fix-niv
J (1.17)
~ —~ __n.r\
K = Z kj(x‘ﬂ,{‘) e J 3
J
The integral term in the Gelfand-Levitan equation will have the form
©
" T s (5 Gmds (1.18)
jK(X.S)GL(s,f)dS =ZZ 9k é! R
X J t X
This integral is singular and the solution method fails when
Lismi=0 , 43, (1.19)
The case j = i is never singular because the solitary wave vanishes identi-

cally (Eqn. 1.13). To understand what this singular condition corresponds to,
we construct the function

F(E,?z3 = Q&) + QK - .Q.(’?ﬁ?z) (1.20)
= -3 -1 - K K (Q*“)(Q*"NB
K + K,




The singular condition corresponds to a satisfaction of the triad
resonance condition for soliton dispersion relation. In this case there is a
strong resonance and a third soliton is created (corresponding to the third
member of the triad) yieldinghtﬁs configuration

K‘k\, Ki+ Ky ?;
S

Further discussion on aspects of the interaction is provided in the following
references.
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LECTURE #3, PART IT. LONG-WAVE/SHORT-WAVE RESONANT INTERACTION

In our previous discussion we considered some examples of coherent
structures described in terms of a single, weakly nonlinear wave mode. We
will now present results for a particular multi-modal interaction which also
admits coherent behavior with some interesting properties. First, however, w
make some preliminary remarks concerning the linear evolution of a narrow-ban
wave packet and also its nonlinear evolution which is described by the (cubic
nonlinear Schrddinger (NLS) equation.

A linear wave packet in a dispersive media with linear dispersion

relation WwW(k) is given in terms of the Fourier integral
0
\ i(kx-—wf)
¢=5,—J Flo e dk w=wlk), (2.1
)

where F(k) is the transform of the initial packet. We suppose F(k) has
central wave number k,, spectral width & and, purely for analytical

couvenience, that its shapqzis Gaussian %
ikox - (&) \Few
Py = e € (2.2
- 1 *
_ik (-‘3&—'?) €

m‘g\

Fip= | pum € dx= BF &
)

+ Ak
>

1f the spectral bandwidth is narrow ( € << 1), the dispersion relation is
well approximated by several terms in its Taylor series expansion about kg,

W) 2 oo+ G Chkd+ S8 (kR (2.3

When W(k) and F(k) have these simple forms, the Fourier integral for

f(x,t) can be integrated directly and yields

Pxt) = o (Rax- et o b tan' (S et/2)

\ exp- M}
BSOS

= e‘i(kox—wo't> %cg),‘:).

This defines the appropriate space and time scales which are relevant to
the weakly nonlinear evolution of a wave packet

(2.4

f=ex-gt), T=¢% (2.1

In terms of these variables the envelope function édefined in Eqn. (2.¢
satisfies the linear Schrodinger equation

iz-@*'w“"}z—é——O. (2.1

1 2 > -




In fact, the envelope function ; satisfies the equation defined in Eqn.
(2.6) for arbitrary F(k) whenever the dispersion relation has the firm Eqn.
(2.3). However, the approximate form of the dispersion relation is valid onl
if the bandwidth is narrow ( €4< 1) and then there exists a clear separatic
in scales between the rapid phase (kox - (th) and the envelope variation

¢C¥,TH.

Considering the extension of Eqn. (2.6) to include the first nonlinear
correction, a balance between the (self) nonlinearity and dispersion is
achieved if we identify € with the nondimensional wave amplitude ak (i.e.,
the maximum wave slope). One then finds that the envelope function obeys the
NLS equation (written in dimensionless form)

iAt+)\A§5=lelQA. (2.7

Several remarks regarding this equation are in order.

(i) The NLS equation is implicity applicable only to the evolution of a
narrow bandwidth wave packet or wave train in the weakly nonlinear
regime. How narrow the spectral width must be for the equation to
provide a good description of the motion in any physical situation 1
not so easy to define.

(ii) The coefficient 42 of the nonlinear term has the general form

L (2.8
De,2k) (G- C)

where D(w, k) = O is the linear dispersion relation, c(k) is the
phase speed and c,(k) is the group velocity. This coefficient is
singular when either of two resonance conditions are satisfied:

~n

a) Harmonic resonance, D (2 W, 2k) = 0O
b) Long-wave/short-wave resonance, c{o) = cg(k).

In either case, the single mode theory leading to the NLS equation is
invalid and a multi-mode interaction occurs on a faster time scale. The
following discussion will focus exclusively in the long-wave/short-wave
resonant interaction.

The theoretical development leading to the coupled pair of equations
describing the resonant interaction of a long and short wave can be briefly
outlined as follows. The expansion of the dependent variable Y (the
streamfunction, say) is written in the form (assuming that the waves are locs
in x and modal in z)

3 (Rx-wot) 4, c
Pzip) = e{ Same” e + c.c.}¢(z) + € 3L(§,‘t)§(2)+--- , (2.¢

where the slow space/time scales( g,’t ) are defined by

/ 4
£ = e“(x-clt) , T= et (2.1




Note that € is the nondimensional amplitude (e.g., the slope ak) o
short wave. Hence, the long-wave amplitude is asymptotically smaller tha
short-wave, but much 1arger than the streaming motion associated with the
short wave (i.e., |S|2) The time scale is much faster than that
associated with single—mode modulation (cf. Eqn. (2.5) where T =€t ).
Proceeding to higher order in the expansion (Eqn. (2.9)) we obtain the
amplitude equations

i 1(*30
igc*’%s SL {o{ IslS+0(,_SL5+lX3SL+ z §§§}
O(e”)
Ceor = G (k) 2/ 2
Ly + —eé’;_ca—((%_l“g -, (I8l )g 3{’8 Lhg +f, L§§§ G i
rh, |S|2L} + OE™).

We have included the higher order terms on the righthand-side to c¢xhibit
relation of these equations to their respective single mode form: namely
NLS equation and the KdV equation. It is clear from the second term in E
(2.11b) that the bandwidth of the resonance is 0( €2/7). Detailed
derivations of these equations are given by Djordjevic and Redekopp (1977
Grimshaw (1977).

In the remaining discussion we consider the leading order equations f
on-resonance conditions. Furthermore, we choose to normalize the equatio
such that we obtain

iSt+ SSg = SL,
a
Le = ~2 (IS
Based on the coupled set of equations, we note the following properties:

(i) The long wave is unstable (even if L ( g t = 0)=0) to modulati
the short wave.

(ii) The equations permit a uniform amplitude, periodic wave train so

S S "‘l.L't
L ='l~o 5

where S and L_are constants. The short wave has a frequency correction
proportional to the long wave amplitude. This solution, however, is unst
to small modulational perturbations.

- (KT —a(ki-0Fv)
Gog ] g, gt

3

(K% - ~i(kE- %)
1(K§ S’L’L‘)+ Q’*el( 3 j

L=L°{1+£e
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Linearizing the equations for ’5; ), [l ,(4 1, we obtain the eiger
relation -

Sf- K's2 ryk3=0

The perturbation is unstable (complex eigenvalues) lor

Y. \
O<CKe 2?3 22182

The maximum instability occurs for K = 1.51 with the growth rate Im 4%
Numerical simulations of the equations confirm the instability and show
the

:I?"1-/7- {6 N T T T .

{2+ —

4 i
0 | L o 1 |
0 4 8 {2 16 20 2.4
K

long-time character of the instability is one in which the energy of tt
shortwave is transferred reversibly to side-hands of the short wave as
to the long wave and back again with periodic recurrence. Other aspec!
the long-time behavior of this interaction together with some experime:r
results on the initial instability and the resonance bandwidth are dis
by Koop and Redekopp (1980).

6 -
Ly (8
4t
4L
C 1 | 1
¢ 2 4 6 8 1
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(iii) Envelope pulse soliton solutions exist also. The single =sc¢

wave form is
- PR\ L[Ei (X-%B]
S=ke'e sech [K (x-c )]

L= - 2" cock [Kx-ct)]

Note that the wave travels to the left (¢ < 0); that is, its speed it
necessarily less than the carrier wave group velocity. Also, the wa:
X and the speed c are independent so that breather (or, bound state)
exist for which two (or more) solitons with different wave numbers c:
the same velocity. Such solutions are localized in space, but are ti
dependent.

AY
T T R T A e E

The long and short scale motions propagate together in a coherent
time-dependent manner. This example is presented to emphasize that ¢
features can be unsteady and exhibit motion on several length scales.
solitary wave solutions and others are described in Ma and Redekopp (
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MIXING LAYERS AND SPATTAL STABILITY
Joseph B. Keller

LECTURE .

Introduction

It 1s well known that the interface between two fluid strear
when the streams are moving parallel to the interface w
velocities. This is called Helmholtz instability becanse Helmt
it theoretically in 1863. We shall present his analysis later.

A tvpical wind tunnel or water tunnel demonstration of this
sketched 1n Fig. 1. Fluids of densities - and ., , with ve
and U, , are separated by a flat plate which edds in the |
passing the end of this plate, the streams produce an interface w
with lincreasing amplitude. Ultimately, the streams mix together
zone called a "mixiung layer'. The width  <(x) of the mixing lay
to increase linearly with distance x from the end of the plate.
the width is given by (Brown and Roskho, 1974)

. T
(%) ;,().38——11—“—;-?—1\ .
1 2
. e
l] — .
-
l . -
— g
=
\\\\
—_— -~
2 U T~ -
) -

FIGURE 1.
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Dimensional Analysis
The observed 1linear growth of £(x) can be deduced t
inviscid fluids as follows. For such fluids, the only quantit
3(x) can depend are S Ul’ U2 and x:

S(x) = F(»],;Z,Ul,UZ,x) .

Dimensional analysis requires that the dimensionless ratio
function of dimension less quantities, so

< = s Ae
S(x) Xf(”l’“Z’Ul/UZ) .

Thus, the mixing layer thickness increases linearly with x.

Velocity Profile

To describe the mean horizontal velocity in the mixing la
the averaged equation for the x-componeant of momentum of a
fluid:
_ - - _ -1-
u, +uu +tvu +wu_ = - p_ + T
t X v 4 X

X

Here u, v, w are the velocity components, p is the press

density, F denotes the average of f, and ¢ = (u = u)- is
of the Reynolds stress. In the mixing layer we assume that u
u, = 0 while vu and . 7'p 4re small compared tc¢
N X
terms. Then Eqn. (4) becomes
au_ o= T
X X
We now assume that - can be written in terms of u(x,v) i
Ty = U where" Ve is an eddy viscosity coeff:
: : ¢ Yy . i : g
dimensions o¥‘ ”O are time;(length)~, and e should vaaish w
Therefore, we choose to be
€
2 2
Vo= ) Tx/U
e
. ' 1 1 . . . .
Here L= U —UZ" L = ,U1+Uﬁ\/2 aad ¢ 1s a dimensionless

Eqn. (5) becomes

_— 2 2 -
uu = ¢ (MU)Txu /U .
X }Y -\Y

We expect Equ. (7) to hold in the region x > o , and the app
conditions are

a0, y)

|
=
-
’
2
-




It is convenient to replace x in Eqn. (7) by the new vari
2 50,2 2 - . . .
T =c¢ (179 X . Then u(T,y) satisfies the equation
20u, /U = ny

The nonlinear parabolic FEqn. (9) and the boundary conditi

invariant in form under the transformation y = Ly', T

choice of L. Therefore the solution also must be 1inva
transformation. fonqequently, the solution must be 3 funct
variable z = y/T1 “, which 1s itself invariant. Therefore, wi

u (T,y) = w(z) and then Egns. (8) and (9) become

—zww'/U = w

w(e) = U s w(=r) =1, .

The two-point boundary value problem Eqns. (L0O) and (11) for
of w(z) can be solved numerically. However, many features of
be found by introducing into Eqn. (10) the simplification w/
(10) becomes, upon division by w',

. . 2 . .
Integration yields logw' = -27/2 + log B where B 1s an 1inte
Solving for w', integrating again, and using the boundary cor
leads to the solution

u(x,v) = w(z) = U,

=) v de S
This solution 1indicates how u varies across the mixing la
layer width increases linearly with x.

From Eqn. (13) we can find the laver width. We may
difference in y values between the places where nlx,vY = Uys
takes on two particular values, say .25 and .75. The result
form Eqn. (1) with the numerical factor dependent upon the val

Recent Ohservations

More recent ohservations of mixing lavers have reveale
pitterns within the turbulent zone (Brown and Roshko, 1974; W;
19,%; Roshko, 19765 Dimotakis, 1980; Browand and Troutt, 1980

vortex=like structures form and "roll up" the interface haot
2

shown 1n Figure
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These structures extend very far in the cross-stream ( z) direction. However,
the motions appear to be de-correlated over very large distances in this
direction because the structures have a small tilt (Browand and Troutt, 1980).
Pairing of vortices is also observed, and the pairing or coalescence of two
vortices occurs repeatedly as the structures move downstream. The overall
growth of the mixing layer appears to be dve primarily to the vortex pairing

process, rather than to the growth of individval vortices. 1

When two vortices coalesce they produce a single vortex whose dimensiong
are roughly double the dimensions (in x and y) of the initial structures. !

A linear growth of the mixed layer results.

Temporal or Helmholtz Ionstability of an Interface

We shall now determine when an interface is vonstable, and also examine the
initial stages of its unstable evolution, following the procedure of Helmholtz
(See Lamb, 1916). Thus, we consider the two dimensional irrotational motion
of a fluid with deunsity o and veloc.ty potential Ql in the regiony > n(x,t),
and of a fluid with density P, and velocity potential ®2 in y < n(x,t) .
Both ¢l and @ avre harmonic fuunctions, and in terms of them the pressure
P is given by the Bernoulli equation. At the interface the pressure must be
continuous and the normal component of the fluid on each side must equal the
normal velocity of the interface. Far from the interface y = n (x,t), the
velocity must tend to ( Ul,O ) above the interface and to ( U2 , 0 ) below it.

P P P S

We write ¢ in the form i

i

O = Ux +d.(x,y,8) -2 (W%, j=1,2. (14) |

N i 3 2] j

Here ¢. is the perturbation potential which is also harmonic. When i
¢, = 0 and n = 0 the flows are uniform, the interface is flat and the |
three boundary conditions are satisfied on it. When the ¢, and n are ;

small, we linearize the boundary conditions around the uvniform state. Then we
seek a solution of the form

6. = C i ot-kx)-k|y|
| | (15)

n = ael(Ot-kx) Re(k) > 0 .

Here ¢ and k are respectively the frequency and wave onumber of the perturba-

tion while Cy, Cp and A are constants. These constants are rvelated hy
three bomogeneous linear algebraic equations obtained by substituting Egn.
(15) into the three linearized boundary conditions.

S PNy T S U O WU S




Ia order that these equations have a non-trivial solution, the determinant
of the coefficient matrix must vanish. This yields the dispersion equation

2 2
p[(0 = UI)" + gkl = p,[-(0 - UK)" + gk] . (16)

Here g is the acceleration of gravity, which points along the negative y-axis.
When g = 0 and U; = U, | Eqn. (16) yields the Rayleigh-Taylor imstability
which occurs when a heavy fluid is accelerated toward a lighter fluid. We
shall consider only the case g = 0.

Upon setting g = 0 in Egqn. (16) and solving for O we obtain the two
solutions
1/2
+ -
5 (k) = F)lul. Pals | . (pypy) " 71Uy Uzljk W
+ B + - : 1
L Ol 02 pl + 02
The solution 0 (k) has a negative imagimary part so the corresponding
perturbation (15) grows exponentially in time. For Py = P, we have
from Eqns. (15) and (17),
ik (Ut-x)- 2
n(x,t) = el (Ut-x)-AUkt/ ) (18)
Thus the flat interface N = 0 is temporally unstable. Initial perturbations

of any wave number k > 0 can grow, and the growth rate is proportional to k.
There is no finite wave number of maximum growth rate.

When U = U, then g and g are real and equal, and the two
solutions given by Eqn. (15-5- are identical and not growing. However, then
there is another solution with the time factor tei®Ft . It can be
obtained by differentiating Eqn. (15) with respect to U; with R fixed, and
then setting U = U,. In this case an initial perturbation can grow
linearly in time.

Spatial Instability

In the mixing layer problem the interface perturbation grows with x but
not with t. Such growth 1is usually called spatial instability, although in
plasma physics it is called drift instability. To analyze spatial stability
we must consider O to be real and solve the dispersion Eqn. (16) for k(o).
Next, we must see if there are solutions for which Im k( 0 ) is positive. If
so, the corresponding solutions will grow exponentially with increasing x
but just oscillate with increasing t. Then, if there are disturbances of the
upstream flow which can excite these growing modes, the interface is spatially
unstable.

PSP
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The two solutions of Equn. (16) for k(o) with g =0 are

. 1/2
U+ 0,0y + 100,0)7 Uy - U
k (g) = o . 19)
hs v? + o, v
P1%1 T P2%
The solution k,( O ) has a positive imaginary part so the corresponding
3 disturbance (Eqn. 15) grows exponentially with increasing x. The growth vrate

is Im k(o).

It is of interest to compare the spatial growth rate Im k, (0 ) given by
Eqn. (19) with an approximate value. It is that given by the usual method of
converting the temporal growth rate to a spatial growth rate. The conversion
is performed by writing t = x/c and k =0 /¢, in the growth exponent -Im o_(k)t,
where ¢ is the phase velocity of the disturbance. This yields the new growth
exponent -c-lIm O_(c‘lo Jx , so the approximate spatial growth rate is
-c‘IImO_(c-lc) . From this result and Egn. (17) we get

- U

(ploz)l/zful .
Im k+(o) = 5 (p, + p,)o . (20)
(p,U; + p,U0) 1 2
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Comparison of Eqn. 720) with Eqn. (19) shows that the approximation (Eqn. 20)
is good when [ Im O_| << {Re o_|.

When U; = Uy the two solutions k, and k_ become real and equal.
Then there 1is another solution, in addition to (15), in which eTikx 4o
replaced by xe %X This solution grows linearly in x. It can be found by

differentiating Egqm. (15) with respect to U, with O held fixed, and then
setting Uy = Uj.

The spatial growth rate increases linearly with 0 , as we see from Egn.
(19). However, in a real mixing layer, the disturbance has a rather definite
frequency. That frequency is presumably the frequency of aaxiwum spatial
growth rate of waves in the viscous boundary layer and shear layer near the
edge of the plate. We shall aot consider it further because it has not been
determined theoretically.

Are Unstable Modes Excited?

We have seen that there are spatially unstable modes associated with an
‘ interface. We must now consider whether these modes are actually produced or
excited by any perturbation. The example of potential flow in a semi-
infinite pipe extending from x = 0 to x = ® with cross section D will be
examined to illustrate this point.

Let ¢ (x,y,z) be the potential function for the perturbed velocity field
and let U(y,z) be the prescribed perturbation of the x-component of velocity
at the pipe entrance x = 0. Then ¢ satisfies the equations

Apb=0, x>0, (y,2) in D , (21)

Y

P
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9 ¢ =20 on boundary (22)

n
¢x(0,}’,z) = U(y,z) . (23)
To solve this problem we seek normal modes of the form
. x
¢, =e I y.(v,2) . (24)
J J
Then Eqns. (21) and (22) become
2 2 2
(@ +93), +AY, = 01in D (25)
y oz Yy JwJ ’
anwj = 0 on boundary of D . (26)
For each positive eigenvalue A%, j=1,2,..., we obtain the two solutious
(24). For A2 = 0 we find) instead the solutions ¢ = counstant and ¢ =
x. Thus, there is Jone growing mode and one decaying mode for each positive
eigenvalue. For Xj = o0 both modes yield counstant velocities, so they do not

grow.

It appears likely that the flow is unstable because there exists growing
modes, in fact infinitely many of them. However, there is a solution satis-
fying the boundary condition (Equ. 23) at the pipe entrance, which does not
involve any of the growing modes no matter what the perturbation Uly,z) is.
This solution is

o U, -A.x
o(x,y,2z) = ¢, + U.x - 2 “-LUJ.(}UZ)Q J . (27)
0 0 LA TS
i=1 3
Here ¢ is an arbitrary constant and Uj is defined by the guo{ient of
" i'nneY products C t D
u, = (U,¥, HSU.) .
3 ( ,WJ)/(U)JJPJ) (28)

Thus, despite the existence of the growing modes, they are not excited im this
probl em.

Modes of the Interface Behind a Plate

Let us now consider the spatial stability of the flow with an interface
bebind a semi-~infinite flat plate. This problem differs from that considered
above because of the presence of the plate, so that the interface is also semi-
infinite. This problem was solved by John Neu (1980, unpublished) and we shall
now outline his results. The flow configuration is shown in Figure 3.

We seek solutions of the linearized problem of the form

iot
1 1 = ¢1(X,Y)e »

e
I
[=
b
i

(29)

o
|
(=]
]
[

iot
2 2 = ¢2(X;Y)e b

N(x,t) = n(x)el®t |

e
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Figure 3

In order to simplify the resul ting boundary value problem, we introduce the new
variables u and v by the conformal transformation

x=u2~v2, y = 2uv . (30)

We then find that the solution for nN(x) satisfying n(0) = 0 is a multiple
of

on 2 g2
R S

. .. 1/2
n(x) = [ sinkc/ { ldk . (31)
C
-1 . ..
In Egqn. (31), =0 "[U+ iAU] and tbhe contour Cl goes from the origin
to infinity in the k-plane with 1/2 arg § < arg k < 7 = 7 arg Q.
The asymptotic form of Equn. (31) for x large is, with A a certain constant,
n(x)—vAexpTG—A-U—-ix—i'—z—'gU—‘—?x . (32)
U~ + (AU) U” + (AD)
This 1is a spatially growing mode of the form we obtained before for the
infinitely extended interface. In the special case when AU = 0, we find
instead that for large x, with B another constant,
nexy ~ BV (33)

Again, this is the linear growth we found before for the unbounded interface.
Thus both for AU # O and for AU = 0, the interface behind a flat plate has
spatially growing modes.

Vortices and the Roll-up of Interfaces

In order to construct a model of the roll-up observed in mixing layers,
Jimenez (1980) considered the influence of a single point vortex placed at the
initial fluid interface. The vortex models the vorticity that is present in
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the real shear flow. Each poiant on the interface will move along a streamline
with velocity

where I'(t) is the circulation in the vortex that is placed at z = 0. To
model the shear due to a velocity difference AU between the fluids, we
require T (t) = 2nAU , where n(t) is the initial length of that part

of the interface which is rolled up at time t. The interface position
x(n,t) of the point initially at z = n is found to be

t
z(t) =n expE. f P(t)dt/ZTmﬂ .

0
To find n (t) we set argz(n,t)= —T,T-ZZ = - J I'(t)dt/szZ . This yields
) 0

n=é-7t. Then T’(t)=g'@‘——t.

T il

Thus points on the interface move along circular streamlines and those
closest to the point vortex move with greatest angular velocity. The
interface becomes 'rolled up" to form a spiral structure reminiscent of those
observed in mixing layers.

3] e

initial
interface position

streaml ines /

z(n,t)

The cross-stream width (2 n ) of the region occupied by the rtolled-up
interface also increases 1linearly with time. Thus, an analogy between these
spiral structures produced by a point vortex and those observed in mixing
layers would predict that the overall growth of the mixing layer thickness is

é. ____.____Zn = i . —_.__AU
x ~ 1 T2 U +u,
5 (Ul + Uz)t m 1 2

This growth 1is simply due to growth of individual vortex structures. The
coefficient (0.4) 1is very close to that observed in experiments. However, it
is also necessary to counsider the interactions of vortex structures with each
other.

Jimenez (1980) has also studied the flow induced by placing a row of
equally spaced point vortices along a straight line (to be identified with the
interface in the mixing layer problem). A velocity difference between fluids
is simulated by requiring the strength of each vortex to be K = XAU ,
where A is the distance between adjacent vortices. The vortices are fixed
in space and moving with the mean flow velocity 1/2 (U + Up). Summing
the logarithmic potentials of the infinite line of vortices gives the complex
streamfunction

w(z) = ¢ + 1) = -;—E log sin(3) .

il

ey

gt




The complex velocity of any point on the interface is then

dw _ - _ .o mz
3z - U iv = -27 cot(T)

so that the position of any point on the interface can be found by solving the
equation

d:ﬁt) = - %Kx cot(T;—z) .

The solution shows that the streamlines take the shape of the broken lines
in the sketch, and the interface ''rolls-up" about the closest vortex. The
resul ting

-
———a - ~ ', "" \\5__d’—
—_—— . ‘~-- —’— -
—-.. ﬂ--\ esmap—
\‘I ‘ .gp
interface ""'—' *— '- _ Y
- —‘ —
-
oo - ’-~-~ \“,.—’ ’-_— - -‘ —-‘\~--
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——— s§‘_‘

structure has an aspect ratio X:Y that varies in time. Because both scales X
and Y increase toward upper limits (determined by the vortex spacing), the
area occupied by the spiral structure, o ~XY, also tends toward a well-
defined upper 1imit.

However, there 1is no reason why the point vortices should be fixed
relative to each other. Suppose a small perturbation is imposed on their

initial positions so that the vortices lie at the points

Xa (£=0) =m X + B8 X , modd

=m A , ™ even

L)

Ym (t 0) =0,

where B << A . Then relative motion of the vortices ensues.

“ initial interface

gl
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Each vortex moves on an elliptic path, and so each pair must reach a
"point of closest approach" when odd and even numbered vortices lie on a
vertical line. This occurs at a time eo , where

_ _4AK -
eo_TrAU’ K = ~log 28 .

Pairing, or coalescence, of vortices is assumed to occur at this time. The

distance between the new, larger vortices will be 2} , and the whole
pairing process is free to recur. If the initial vortices were the zeroth
generation, then the nt generation vortices will be at a distance 2P
apart and will pair at a time ©6_ = (1 + 2 + 2% + _ .+ zn-l)eo . From
this, the lifetime of an individial vortex structure in the nt" generation
can be shown to approach the value

lifetime of vortex > 1 as n > .

birthtime of vortex
Some observations of mixing layers by Roshko (1976) and Hermnon ( ) have

given the values 0.43 and 0.89, respectively, for this ratio of time scales.

The area occupied by the "rolled~up" structure at the beginning of the
(a + 1) %% generation of vortices will be given by

0n+l =2(1 + u)on ,

th generation. The

where O is the area covered at the beginning of the n

factor a includes the influence of the growth of the nth generation
structures during their lifetime, as well as any deviation from a simple area
doubling when two equal sized vortices coalesce. A normalized area may be

defined as

S = _?Il.ﬂ_
k] . .(.2n+]_).2A P s e . B
so that
S -1 (1 +a)s
ntl 2 n *

By making a suitable renormalization of the area (multiplying by 2/14a)
after each pairing, Jimenez (1980) obtained a limit cycle for the sequence of
successive area s.

An analogy can now be drawn between the observed pairing of vortex-like
structures in mixing layers and the pairing of point vortices. This suggests
that the mixing layer thickness should increase with distance from the
splitter plate according to

YLAU
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P

where the distance is again given by x = 1/2 (U + Upltand Y| is a 11
constant. This predicts the observed linear growth and dependence upon AU. b
REFERENCES i

Browand, F. K. and T. R. Troutt, 1980. A note on spanwise structure in the
two dimensional mixing layer. J. Fluid Mech., 97, 771-782.

Brown, G. and A. Roshko, 1974. On density effects and large structure in
turbulent mixing layer. J. Fluid Mech., 64, 775-816.

Dimotakis, P., 1980. Preprint.

Helmhol tz, H. von, 1868. Ueber discontinuirliche Flussigkeitsbewegungen.
Phil. Mag.

Lamb, H., 1916, Hydrodynamics. Cambridge Univ. Press.

Roshko, A., 1976. Structure of turbulent shear flows. AIAA Jour., 14,

1349-1357.
Notes Submitted by
J. Meiss
BOUNDARY LAYERS AND TURBULENT SPOTS
Joseph B. Keller
LECTURE #2.

Turbulent spots in boundary layers are the analogs of the vortex
structures observed in mixing layers. The net effect of observations of these
"coherent features" has been to reintroduce fluid dynamics into the theory of
turbulence. Theorists must now develop dynamical models of these flows which
are, in some sense, embedded in turbul ence.

We begin by recalling some properties of boundary layers. For the
Eulerian fluid equatiouns

u, + (uVyu = -Vp , (1a) l
N E
Veu = 0 (1b) :

~ o~

governing fluid flow in some region D , the appropriate boundary conditions
are that the fluid velocities normal to the boundary vanish

u*n = 0 on 3D . (2)

H
5
4
f.
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The Navier-Stokes (N-S) equations - when the viscous term, VAU , 1s

added to the righthand side of (la) - are a higher order system and the

boundary condition (2) wmust be supplemented by the requirement that the
tangential velocities also vanish

~

u*t = 0 on 3D . (3)

The limit of vanishing viscosity 1is therefore a singular 1limit for the N-§
equations, and it 1is mnot obvious how to treat the tangential boundary
condition in this case. If this condition were applied to the Euler equations
there would, in general, be no solution.

In 1903 Prandtl investigated this problem and thus began the theory of
singular perturbations. He postulated that in the limit V > 0 the solution
to the N-S equations approaches the Eulerian one everywhere except within a
vanishingly small layer near the boundaries. To analyze this boundary layer,
where viscosity dominates, he introduced a simplified set of equations
assumiug that the boundary layer is so thin that longitudinal derivatives are
small compared to transverse derivatives. In 1907 Blasius found a similarity
solution to these equations for uniform flow along a flat plate, reducing the
problem to a single nonlinear ordinary differential equation. This equation
must be solved with boundary conditions both at the surface and far from the
surface, where the Eulerian solution 1is wvalid. Without a computer the
solution of the Blasius equation is difficult; however, it is interesting to
note that in 19%1 Weyl developed an iterative technique for this purpose. The
Blasius solution 1is the standard laminar boundary layer when the external
stream velocity is uniform. A slightly more general case, when the external
velocity varies as a power of downstream distance, was studied by Falkaner and
Skan  (1930).

In the 1920's Heisenberg studied the stability of the Blasius boundary
layer. Tollmien and Schlichting concluded this work im 1935. They assumed a
perturbation to the boundary layer solution of the form

¢(y)ei(kx'{”t) , (&)

where x is the longitudinal and y is the normal coordinate. For certain wave
numbers and a range of Reynolds number, they showed that there is temporal
instability. <(Here is another problem where it would be more appropriate to
study spatial instability). 1If the perturbation varies in the transverse (z)
direction then, as Squires has shown, instability sets in at a higher Reynolds
number than before. Therefore, a study of two dimensional perturbations is
sufficient to find the onset of instability. 1In the 19%0's Schubauver and
Skramstad demounstrated the existence of the Tollmien-Schlichting waves. In
their experiments a vibrator was inserted into the boundary layer with the
appropriate real frequency to excite the instability. (Note again, that it is
spatial 1instability that is being observed.) These experiments led to the
supposition that these waves are involved in the transition to a turbulent
boundary layer. Turbulence may occur when the waves reach sufficient ampli-
tude to '"break'. Measurements of the wave amplitudes show that typically
growth occurs by a factor of e’ to e before the boundary layer becomes
turbulent.
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In 1951 Emmons discovered that just before the transition point, localized
spots of turbulence could be observed. These spots probaly play a role in the
breakdown of the laminar flow. Ewmons' student Mitchner (1954) examined these
further and Schubauer and Klebanoff also reported observations ia 1955.
Observations of the flow by Elder in 190 showed that if a thin layer of dye i
was placed along the plate, then some of it would become entrained by the
spots. The impact of these experiments was small until the 1%4~67 observa- :
tions by Kline and Reynolds. They claimed to observe these same spots in the
turbul ent boundary layer itsel f.

Since this time there have been many quantitative measurements due to the
development of laser-Doppler velocity measuring techniques. The 1976 3
measurements of Wygnanski revealed the 3-D structure of these spots and in ]
1978 Cantwell, Coles and Dimotakis examined the flow in the symmetry plane of
the spot. All of these observations were done with artifically generated 1
spots 1n a laminar boundary layer.

The experimental apparatus was a water tunnel with uniform flow 1in the P
x—-direction. A laminar boundary layer is formed on a plate inserted in the :
flow. Spots are generated by perturbing the flow with a pulse of water from a
nozzle near the head of the plate. The spots grew linearly in size with
distance downstream after an initial region of more rapid growth. Linear
growth continued over a large distance until (presumably) viscous effects
become important aud the growth rate declined (see Fig. 1).

Meosuring Stations

Spot
Virtual  Disturbonce
Origin  Generator T ? @i

u:wcthG
vy Y
l U= 53.5 cm/sec I' Assumed Conlcal Growth
l___._x e~ —
- X - -\-Rul Growth

T -

e Xo=15CM
L
e

l‘|9Cn H

244w —=J‘I

Fig. 1. Sketch of Cantwell, Coles, and Dimotakis (1978) Experiment.

The plan view of the spots show that they develop a characteristic
arrowhead shape. In the photograph, dye that was placed in a thin layer next
to the plate was swept into, and entrained by, the spot leaving a clear region
bebind.
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In the Cantwell, Coles aund Dimotakis experiment a laser was positioned at
three positions along the plate (x = 19, 59 and 119 cm) pointing in the z
direction and focussed on the symmetry plane of the spot. Measurements of the
streamwise velocity as a function of y showed that near the plate the spot
enhanced the unperturbed velocity while far from the plate the velocities were
reduced. This suggests a vortical nature for the flow in the spots.

While the velocity profile for an individual spot contains large wiggles,
an average over an ensemble of spots produces a smooth velocity profile.

With these profiles it is possible to follow the evolution of features on
the profile moving downstream. This analysis shows that the velocity scales as

v = £(x/t,y/t) , (5)

with high accuracy.

Wyganski showed that in the symmetry plane of the spot w, = 0, so the
continuity equation becomes u, *+ v, = 0 in that plane. Therefore, a
stream function, ¥ , can be introduced in the x, y plane with { = u and
_ . . ; Y Pl y
U)x = -v. The conical scaliang of v given above implies that
A
E
b = tg(x/t,y/t) . (6)

This is a counsistent form for solution to Euler's equations 1in
?2-dimensions. The streamline patterns of the spot show closed streaml ines, ]
and an integration of the fluid particle trajectories shows that some
particles are indeed entrained by the flow. The streamline patterns show that
the center of the spot moves at .78 times the free stream velocity.

Wyganski's measurements show that there are stream-wise striations
in the flow which may be Taylor-Gortler vortices. It appears that a good
model for the spot 1is a horseshoe shaped vortex where the feet of the
horseshoe are planted in the generation regiqp.. As .the,head pf the horseshoe

"moves downstream the vortex lines are stretched.

There have not been many theoretical studies of turbuleat spots.
Theodorsen suggested long before these measurements that horseshoe vortices
might play a role 1in turbulence, and as noted above this appears to be a
reasonable model for the spots.

Most of the theoretical work has been linear analysis. In 19%0 Kovaszny
and Criminale considered a point disturbance to the laminar boundary layer.
If a perturbation of the form
{ (0E<K X
i(wt kxx kyy)

f(z)e (7

is assumed then an ordinary differemtial equation for f (the Orr-Sommerfeld
equation) can be obtained. A Fourier integral of these solutions can be used
to describe the flow due to an initial point disturbance. This solution shows
that a kidney shaped region develops downstream from this disturbance. This
may be the initial stage of a turbulent spot.




Additional work along these lines was done by Gasster and Graant (1975).
They treated both stable and unstable boundary layers.

The only nonlinear case so far treated was by Landahl (1979). He studied
short linear waves growing on large waves aud inducing an instability.

Extensive numerical computations have been done by Leonard (1978~80). He
represented the iuviscid flow by an array of vortex lines aligned in the =z
direction. A small localized wiggle was put on some of the lines and allowed
to propagate. The equations of motion for a point x; ( & ) on the ith

vortex line at a distance ¢ along the line are given by

X,
T, (x. - x.) =+
3 _ i ' i 737 eg!
e @ = -m LTy J dg O - =12+ ac 2,372 © (®)
j i : ocoi—cj ]
Here Fi is the strength of the vortex line and 0y represents the
radius of the core. The constant « is empirically adjusted to obtain the

correct velocity for the known ring vortex solution. This constant is an ad
hoc computational device to avoid singularities when two vortex lines are
close together. Leonard has produced a movie of the evolution of this system
showing the generation of a horseshoe shaped region which 1is suggestive of the
experimental measurements.

Let us now suppose that a turbulent flow is composed of a collection of
spots. Consider, for example, the flow through a cylindrical pipe with axis
in the 2z direction. Assume that the fluid velocity aund pressure can be
written as a sum of contributions due to individual spots.

N ; N .
u= ) u, P=) pt
i=1 i=1

(9

where N represents the number of spots. Each spot is assumed to satisfy the
N-S equations

up + (Dt = pt o+ uaet (10)
i
Veum =0, auv)
i
u = 0 on 3D . (12)

Note, however, that the full fluid velocity is retained in the nonlinear term
so that no approximation is made.

The velocity profile of each spot may have a rapidly varying or stochastic
part as well as a mean component. Of course, we do not know the form of this
profile although experimental measurements could be used. In any case,
suppose that the functional form of the spot is universal

ui

y(x"f:L,t'tl’S) ’ (13)

i
p

P(x-xT, t-t1,s) . (14)

P
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Here, U and P are universal functions and (x', t!) represent the position
and time where the it spot forms. We suppose that this formation takes
place on the pipe boundary and therefore if the pipe is not circular, the
functions U and P will depend on the parameter s, which indicates the arc
position of formation on the pipe boundary.

The idea is to attempt a sel f-consistent formulation where the equations
for determination of U and u are intertwined. To this end, we define the mean
fluid velocity by

%/2 T/2
g(X:Y) = 1lim flT‘ J u(x,y,z,t)dt{iz » 5)
e /2 -T/2

L0

where we average over downstream position 31s well as time. Now we substitute
into Eqn. (15) the assumed form (9) and (13) for U, and introduce the
spot number density: n(s) = number of spots per unit arc length per unit
distance downstream per unit time. Then n(s)LT is the number per unit arc
length in a section of pipe of length L during time T, and Egn. (15) becomes

G(x,y) = n(s) f J E(X-xo(s),y—yo(s),z,t,s)dtdz . 16)

For a circular pipe, U is independent of s. In this case we integrate the
above equation over s = adf obtaining

®© o 27 17)
?(r) = na f j J U(r,8,z,t)dd,dt,dz .

Here U(r, 6 ,z,t) represents the velocity in a spot born atr = a,8=z=t=0.
Similarly the pressure gradient is given by

P_(r)

© 2T
na j j [P(r,0,+°,t) - P(r,0,->,t)]d6dt )
B (18

[o o]

2Tna J [P(40,t) - P(~o,t)]dt

where the righthand side contains the pressure drop along the pipe, which is
independent of r and §. Therefore, from (18) the local mean pressure gradient
and the total pressure drop along the pipe due to one spot determine the
number density of the spots.

If the number of spots is large (or infinite as it is in the infinite
pipe) then it seems reasonable that the total fluid velocity could be
approximated by the mean. Thus, the sum over a great number of spots acts as
an averaging. In this case the N-S equation for a spot would become

ol + (1_1-°V)ui = -Vpi + vAu®

~

o chdtasiug g
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which is an integro-differential equation for the universal function l. An
improved theory could be obtained by replacing u by u + gl, retaining the

PN

1 th ~ ;

velocity u- of the i spot itsel f.

As a computation with this equation one could assume that u is given by
the experimentally measured profile and that at t = 0 ul =7 §2 (x-x!).
In this case would the u obtained from computation of u!' be approximately
the same as the assumed “profile? Perhaps an iterative technique could be

devel oped.

This theory does not account for the triggering mchanism for the spots.
The computations of Landahl show how new spots could be triggered by the flow
field of other developed spots.

In view of its importance, we shall call a turbulent spot a turbulon - an
acronym for The Universal Rapid Burst upon Laminar Outer Flow.
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Notes Submitted by R. Griffiths

SOLITARY WAVES AND BIFURCATION THEORY
Joseph B. Keller
LECTURE #3

Shallow Water Theory and Solitary Waves Derived by the Scal ing Method

The analysis of long waves in shallow water, such as the tides, is usually
based upon certain simplified equations called the equations of shallow water
theory. These equations are inadequate to describe solitary waves or cnoidal
waves, however. Therefore, Boussinesq (1871) derived another set of
simplified equations which were adequate to describe such waves. Lord
Rayleigh also devised an equation to describe solitary waves, and later
Korteweg and DeVries (1895) devised their well known equation which accounts
for these waves and their interactiouns.

The derivations of all these equations were unsystematic. They 1involved
the neglect of some terms and retention of others without a definite basis for
estimating their relative sizes. Thus, it was not clear whether or not the
derivations were consistent, nor how the equations could be improved upon if
that were necessary.

K. 0. Frederichs (198) introduced a new method to derive the equations of
the nonlinear shallow water theory in a systematic way. It involved the
explicit scaling of horizontal and vertical distances and velocities with
different scales. The ratio € of the vertical scale length to the
horizontal scale length was then defined and assumed to be a small parameter.
Then all the unknown functions were written as power series in €, substituted
into the equations, and coefficients of each power of € were equated. In
this way, the nonlinear shallow water theory was obtained for the leading
terms in the expansion.

When applied to steady progressing waves, the nonlinear shallow water
theory yields only two types of solutions: wuniform flows and bores. In order
to obtain other steady progressing waves, Keller (19%8) extended the expansion
to higher order im ¢ , starting with the uniform flow. 1In that way he
obtained the solitary wave as well as the nonlinear periodic waves which are
called cnoidal waves. Since then the scaling method has been used to derive
the Korteweg-DeVries equation and the equation for solitary internal waves.
In fact, it has become a standard tool in fluid dynamics.
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A particularly interesting development of this method was made by Shen and
Keller (1973). They considered waves which did not have to be plane, in a
stratified fluid which could vary in depth and in stratification in bhoth
horizontal directions. However, the horizontal variations had a length scale
large compared to the length scale of the waves, and the length scale of the
waves was large compared to the vertical length scale. From these assump=-
tions, they found that the waves travelled along rays, as in geometrical
optics. The wave amplitude satisfied an equation like the Korteweg-DeVries
equation along these rays. Thus, the theory of these waves combines the
essential feature of short waves, 1i.e., propagation along rays, with the
finite ampl itude effects usually associated with long waves,

Solitary Waves Derived via Bifurcation Theory

Keller's (19%8) derivation of the solitary and cnoidal waves leads to an
interpretation of these waves in terms of bifurcation theory. There is a
family of solutions, the uniform flows, which exist for every flow speed. At
the critical flow speed (gl-l)l/2 another family of solutions branches off
from this family. It is the family of cnoidal waves parameterized by a
wavel ength, an amplitude, and a phase. The infinite wavel ength members of
this family are the solitary waves.

There 1is also another way of viewing the occurrence of a solitary wave as
a bifurcation phenomenon. It is based upon the fact that the solitary wave

solution tends to a uniform flow at x = -* . Thus, by considering a steady
flow as evolving in the direction of increasing x, we see that two different
flows can evolve from a uniform flow at x = - ® . One is the uniform flow

itsel f, and the other i{s a solitary wave of arbitrary phase.

In order to make this description more explicit, let us consider the
amplitude A(t) of any unstable motion of a dynamical system. Linear theory
yields for the evolution of A, an equation of the form

At = QA . 1)
Because the growth rate o 1s positive, this equation predicts unbounded
exponential growth. However, as Landau pointed out, nonlinear terms will
ultimately become important enough to limit the growth of A. Therefore he
proposed that Egn. (1) should be replaced by
_ 3
At = 0A - BA” ., (2)

The coefficients 7 and B can be obtained from the original problem
governing the field of which A is the amplitude. For example, let us suppose
that the field u(t,x) satisfies the equationm

u, = F(u) . (3)

Let ¢ (x) be the most unstable mode of the equation linearized about the steady
solution uy(x) for which F(u,) = 0. Then we write

u(t,x) = ug(x) + A()P(x) . ()




By substituting Egqn. (4) into Eqn. (3) and taking the inner product of the
resul ting equation with ¢ , we get

<0, Fluy + AD)> ]

A = <$,0> ()

Upon expanding the rifht side of Egmn. (5) in a Taylor series, and keeping
terms up to order A° we get Eqn. (2}, provided that the quadratic term
vanishes. 1In this way, we find explicit expressions for & and B .

Each folution of the Landau equation grows from zero at t = -~® to
+ (a/B)1/2 except for the solution A(t) = 0. Thus the solutions bifurcate 3
from A = 0 at t = - » . If we interpret t as a space variable, the Eqn. (2)
describes the spatial growth of a disturbance. By interpreting shock waves in 1
this way, we have been able to analyze weak shocks governed by the Boltzmana
equation as well as by the Navier-Stokes equations. The shock solutions
bifurcate from a sonic flow at x = - =,

The preceding considerations, based upon the Landau equation (2), show why
the profile shown in Figure 1 is of such common occurrence in nonconservative
systems. We shall now examine the amalogous equation for the amplitude of motion

of a conservative system. Let us begin with the energy equation, which we o
assume to be of the form
2 1
Ay +V(@A) =E. (6)

Here V is the potential energy and E is the total energy. We suppose that A =
0 is a state of rest so that V(0) = E and VA(O) = 0. Then we write

E - V(A) = a?A2 = PAS 4 eee . (7)

Now omitting the higher order terms, we can rewrite Egn. (6) in the form
1/2

A, = [02a? - ga3) i (8)

This equation replaces the Landau equation for conservative systems.

Each solution of Eqn. (8) which starts at A = 0 when t = -» increases
until A = a2/g . (See Fig. 2.) Then if A(t) has a continuous second
derivative, the solution decreases to A =0 at t = + ® , When we interpret t

as a space variable, these solutions are solitary waves. They differ from one
another only by a phase shift. This analysis indicates why solitary waves are
so prevalent. When V(0) # E, Eqn. (6) describes periodic waves, such as the
cnoidal waves.
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Notes Submitted by
R. Griffiths and J. Meiss

NON-~LINEAR EQUATORIAL WAVES
John P. Boyd

Using the method of multiple scales, I show that long, weakly nonlinear
equatorial Rossby waves are governed by either the Korteweg-deVries (KdV)
equation (symmetric modes of odd mode number n) or modified Korteweg-deVries
(MKDV) equation. From the same localized initial conditions, the nonlinear
and corresponding linearized waves evolve very differently. When nonlinear
effects are neglected, the whole solution is an oscillatory wave-train which
decays algebraically in time so that the symptotic solution as t —» @@ ig
everywhere zero. The nonlinear solution consists of two parts: solitary
waves plus an oscillatory tail. The solitary waves are horizontally localized
disturbances in which nonlinearity and dispersion balance to create a wave of
permanent form.

The solitary waves are important because (i) they have no linear
counterpart and (ii) they are the sole asymptotic solution as t =» @ . The
oscillatory wave-train, which lags behind and is well-separated from the
solitary waves for large time, dies out algebraically like its linear
counterpart, but the leading edge decays faster rather than slower than the
rest of the wave-train. Graphs of explicit case studies, chosen to model
impulsively excited equatorial Rossby waves propagating along the thermocline
in the Pacific, illustrate these large differences between the linearized and
nonlinear waves. The case studies suggest that Rossby solitary waves should
be clearly identifiable in observations of the western Pacific.

DYNAMICS AND STATISTICS OF POINT VORTICES

Hassan Aref

The motion of N point vortices in a plane was considered for 1 &£ N &£
0(104). The system is integrable for N = 1, 2, 3 (Novikov, 1975 and Aref,
1979). For NN = 4 stochasticity sets in (Novikov and Sedov, 1978, 1979 and
Aref and Pomphrey, 1980). Numerical experiments revealing chaos were
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described and the result was related to the question of predictability of
two-dimensional fluid motions and to the ideas of KAM theory.

For N = 0(10) configurations of identical vortices in uniform rotation
were sought. The classical results were reviewed and the recent numerical
study by Campbell and Ziff (1979) mentioned. Results of some recent work in
collaboration with F. Calogero was briefly touched upou.

For N 2, 0(100) the detailed motion of every single point vortex is of
little interest and the emphasis is on using the point vortices as a
convenient discretization of the continuum equations (the two-dimensional
Euler equation). The Brown and Roshko (1974) structure of the shear layer
provided the motivation to do a large scale numerical study of this problem
(Aref and Siggia, 1980a). In the simulation discussed 4096 point vortices
were followed in time using the vortex-in-cell algorithm of Christansen (1973)
with a 256x256 background grid. A lengthy exposition of the conclusions would
be out of place here and the reader is referred to our paper.

More recently we have considered the evolution of two parallel rows of
oppositely signed vortices (Aref and Siggia, 1980b). Dependiag on the
symmetry of the initial perturbation the flow evolves either toward a
two-dimensional wake or jet. From the large number of pictures shown we
select Figure 1 which illustrates the pairing of vortex structures in a plane
jet. Each dot corresponds to a point vortex; the bottom ones are all
positive, the top ones all negative. The large, diffuse vortex blobs are our
"coherent structures" and the pairing interaction is a basic mechanism in the
evolution (Winant and Browand, 1974; Crow and Champagne, 1971).
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CANONICAL EQUATIONS FOR SLOWLY VARYING SOLITARY WAVES
Roger Grimshaw

A general theory is developed for the evolution of a dispersive and weakly
nonlinear wave packet in an inhomogeneous medium. The wave packet propagates
along rays determined by the linear dispersion relation, and the equation
describing the evolution of the wave amplitude A along a ray is obtained. For
unidirectional modulations the equation is the nonlinear Schrodenger equation

o898 +6 228 4v/)R)*An =0
“ 3 a§2+/) ’

with appropriate generalization for multi-dimensional modulations. Here the
coefficients ¢ , V¥V are functions of s alone, s is a time-like coordinate
which varies along a ray, and § is a coordinate which is constant along a
ray, but whose spatial projection defines the spatial direction of wave
propagation. | A 2|is the wave action flux along a ray if there is no
dissipation im the system. The scaling required to produce this equation
scales s with a=2, ¥ with a~l and the inhomogeneous medium with a~2,

where a is a small parameter measuring amplitude.

Plane wave solutions of the nonlinear Schrodinger equation are unstable
when Vv 0, but it will be shown that for long waves ¢ and " unecessarily
have opposite signs. For the case OV > 0, and both constant, there is a
solitary wave solution. The behavior of this solitary wave is described
when € and V' are not constant, but vary slowly with respect to the
solitary wave. The principal result here is that the solitary wave deforms so
that A2 0V -1 remains constant. Also, for some special forms of oV
there exist transformations which convert the variable coefficient equation
into a constant coefficient equation.

For long waves a related theory is developed to describe the evolution of
a weakly nonlinear wave in an inhomogeneous medium. The wave propagates along
rays determined by the linear long wave dispersion relation. The equation
describing the evolution of the wave amplitude A along a ray is the Korteweg-de

Vries equation
2R ,\M +/°'Haﬂ + B= O
as 3&3

=

Here the coefficients)\ ,  , and ¢ are functions of s alone, s is a
time~like coordinate which varies along a ray, ® is a phase variable, and W
is a coordinate transverse to a ray. A2 is the wave action flux along a ray
if there is no dissipation in the system. The scaling required to produce
this equation scales s with a=3, @ with a~l, |  with a~Z, the
inhomogeneous medium with a=3, where a is a small parameter measuring
amplitude. The behavior of the solitary wave solution is described when A
and M are not constant, but vary slowly with respect to the solitary wave.
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The principal results here is that the solitary wave deforms so that
A%\"'l remains constant, with a shelf developing behind the wave.

UNSTABLE VORTICES IN A ROTATING, TWO-LAYER FLUID
R. W. Griffiths

There are a number of geophysically important situations in which surfaces
of constant density, under the influence of the Coriolis force due to the
Earth's rotation, intersect one horizontal boundary and in which the fluid
motion is not constrained by rigid vertical walls. 1Isolated eddies, con-
taining closed streamlines and with horizontal length scales of the order of
102 km, are found at the surface in many parts of the oceans. More
rectilinear frontal zones between air or water masses of unequal density,
intersecting the free surface of the ocean or the rigid bottom boundary of the
atmosphere, also exist far away from vertical boundaries.

In the laboratory, density fronts can be established in an axisymmetric
configuration, We released either a constant flux of fluid from a point
source or a constant volume of fluid into a rotating enviroument with a
different density. In the constant volume experiments, fresh water was placed
inside a bottomless cylinder which was surrounded by a homogeneous layer of
salt solution. After the system was brought to solid body rotation, the
cylinder was carefully removed. The buoyant fluid then collapsed and spread
radially until it reached a state in which the radial pressure gradient, due
to buoyancy forces, is balanced by the Coriolis and centrifugal forces. The
resultant anticyclonic vortex was always unstable to wave-like azimuthal
disturbances, and broke up into a well-defined number of smaller vortices. In
the point source experiments the source was placed at the free surface and the
resulting anticyclonic vortex grew continuously with time. It reached a
critical size at which the flow became non-axisymmetric.

The transition to non-axisymmetric flow can be described by two
parameters: O, the square of the ratio of the internal Rossby radius of
deformation to the horizontal length scale of the flow, and § , the fraction
of the total fluid depth occupied by the layer inside the front. For € ¢<l
and § ® 101 unstable disturbances obtain most of their energy from the
potential energy of the flow, whilst for & < 10-l extraction of kinetic
energy from the basic shear becomes the dominant driving mechanism. When
is not too small in the point source experiments, we observe an azimuthal
disturbance whose phase increases with depth, a characteristic feature of g
baroclinically unstable waves. When the front intersects the free surface (as :
opposed to the rigid bottom of the tank) m = 2 is the minimum azimuthal wave }

:

number for an unstable disturbance.

At large amplitude of the growing waves, baroclinic and barotropic ;
processes combine to form n vortex dipole structures which entrain buoyant
fluid from the original vortex and propagate radially over the free surface.
The relative strengths of the paired cyclone and anticylone appear to depend
upon the ratio, & , of layer depths. Also, the anticyclones are confined to
the upper layer, while the cyclones extend throughout the depth of the tank
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(at least for § not too small). The vortex pairs are long-lived features and
eventually dissipate their energy due to friction.
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EVOLUTION OF LONG NONLINEAR WAVES IN STRATIFIED SHEAR FLOWS
Roger Grimshaw

There are now a number of reports of long nonlinear internal gravity waves
occurring on the thermocline in inland lakes, fjords or coastal waters, or on
the nocturnal inversion in the atmosphere. When these long waves can be
identified as solitary waves, the appropriate equation to model their evolu-
tion in the first instance is either the Korteweg-de Vries (KdV) equation when
the horizontal wave-guide has limited vertical extent, or the Benjamin-Davis-
Ono (BDO) equation for a deep fluid. Here these equations are derived for the
case when the waves are propagating on a basic stratified shear flow.

The basic state, as well as having the usual dependence ou the vertical
coordinate which defines the wave modal structure, is allowed a slow variation
in the horizontal and temporal coordinates. The waves then propagate along
rays defined by this basic state, and the evolution equations, either KdV or
BDO, describe the evolution of the wave action flux as the wave propagates
along the ray. For the KdV equation, if £ 2 is a small parameter measuring
the amplitude of the vertical particle displacement, the phase of the waves
varies on the scale &-! , while the evolution of the wave and the basic
state vary on the scale £~% ., For the BDO equation, £ measures the
amplitude of the vertical particle displacement, the phase varies on the
scale - » and the evolution of the wave and the basic state vary on the
scale €3, 1o derive the equations, an operator formalism is developed
to handle the analytical complexities, and this formalism may be readily
applied to other complex wave systems.

A brief discussion is given of the solutions of each of these equatiouns in
three special cases. First, if the coefficients are constant, there is the
solitary wave solution, the N-soliton solution and the inverse scattering
formalism is available to solve certain initial value problems. Second, the
asymptotic solution describing a slowly varying solitary wave is presented;
this deforms so as to conserve its energy, and a shelf develops behind the
wave so that overall the mass is conserved. Third, it is shown that a
solitary wave incident on an abrupt change in the basic state will generally
either fission into a number of solitons, or break up into a dispersive wave
train.

Both the KdV and BDO equatiomns are restricted to modelling small amplitude
waves, whereas observations often show waves of large amplitude. In an
attempt to model this, the BDO equation is extended to a higher order in {
amplitude. Second order in amplitude corrections to the wave speed and wave ;
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length of the solitary wave are computed. 1In one case of interest, it is
found that these second order terms decrease the wave speed relative to the
first order theory, and increase the wave length for a given wave amplitude.

Finally, some solitary wave solutions of the full nonlinear equations are
presented which are long, but unrestricted in amplitude. The solutions
describe the 'snake-like' deformation of a thin layer of stratified fluid,
separating two regions of constant density. When this thin shear layer has
constant Brunt-Vidisala frequency the solitary wave solutions are governed by
the steady BDO equation.

SOME NOT-ALTOGETHER-INCOHERENT LARGE STRUCTURE IN TURBULENT
CONVECTION AND A NOT-ALTOGETHER-COHERENT MODEL

L. N. Howard

Recent experiments of R. Krishnamurti have found that, in a certain range
of Rayleigh number near 107, turbulent convection in the Benard configura-
tion 1s accompanied by a large scale circulation, frequently filling the
entire convection box, which appears to persist for long periods (days, in the
experiments). These experiments were described in this lecture, together with
others designed to investigate various possible perturbing influences which
might be conjectured to be responsible for the large scale flow. Lack of
proper levelling of the convection tank was, for example, found to have very
little effect, even when the tank was tipped (in either direction) to an angle
many times any possible experimental uncertainty. Differential heating of the
ends of the tank, if large enough, has an effect -- it can reverse the
direction of the large scale flow, but the new direction is retained when the
differential heating is removed, or even reversed to a limited extent. On the
whole it appears that this phenomenon is an au.onomous property of convection
whose precise orientation depends on initial circumstances or minor extraneous
perturbations, but which, when once established, appears to be fairly stable.

A six-dimensional truncated model illustrating a possible mechanism for
this phenomenon has been constructed and explored by Krishmamurti and the
speaker. This model contains the Lorenz model on a 3-dimensional invariant
subspace, but has the potential of modelling also a large-scale flow. At low
Rayleigh number the Lorenz subspace is attracting. Above the critical
Rayleigh number at which steady convection sets in, but below the (sub-
critical) oscillatory bifurcation of the latter in the Lorenz model, a second
bifurcation to stable steady motions not in the Lorenz subspace occurs. These
may be described as tilted cells with asymmetry between the clockwise and
counterclockwise omnes; this gives a non-zero horizontally-averaged horizontal
velocity oppositely directed in the upper and lower halves of the layer, but
no large scale Lagrangian transport. (We have seen analogs of these steady
tilted cells in preliminary qualitative experiments ou convection in a
Hele-Shaw cell.) At higher R the tilted cell solution (in the mathematical
model) undergoes a supercritical Hopf bifurcation to stable periodically
oscillating "cells" which do have a net large scale Lagrangian transport.
These periodic solutions are suggestive of the large scale motion seen in the
turbulent experiments. Further increase of R in the model gives complicated
other phenomena including sequences of period-doubling bifurcations,
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hysteresis effects, and irregular oscillations. Some of these resemble
phenomena familiar in iterations of certain one-dimensional maps, as well as
in the Lorenz model, but also exhibit certain significant differences, notably
in the hysteresis effects.

I. ARCTIC OCEAN EDDIES AND BAROCLINIC INSTABILITY
Kenneth Hunkins

Baroclinic eddies with diameters of from 10 to 40 km have been observed in
the deep Arctic Ocean north of Alaska. These eddies have a velocity maximum
with orbital speeds which may reach 50 cm/s at a depth between 100 and 200 m.
From 10 to 20% of the ocean area north of Alaska is covered by these eddies,
and they account for almost all of the kinetic energy in the region, com-—
pletely dominating the mean flow. The water mass within the eddy differs from
the surrounding water and points to a source on the Alaskan shelf.

The origin and some of the characteristics of these eddies can be
accounted for by the instability of the mean geostrophic shear at the Alaskan
shelf edge. A generalized Eady model with exponential mean shear and
stratification is applied using ocean parameters appropriate to this region.
Small perturbations tend to grow with an e-folding time of 154 days, which is
sufficiently short for large amplitude eddies to develop. The half-wavelength
of the fastest-growing wave is 37 km in reasonable agreement with the observed
eddy diameter. Application of the same model to the West Spitsbergen current
between Greenland and Spitsbergen gives a growth rate of 7 days and a half-
wavelength of 22 km suggesting that eddies similar to those north of Alaska
may be expected on the other side of the Arctic Ocean.

II. SOLITONS IN SENECA LAKE

During summer and fall when the lake 1is well stratified, internal surges
are often observed traveling from south to north at a speed of 35 to 40 cm/s.
Isotherms are as much as 20 m deeper after the surge has passed. The surges
are accompanied by a wave train with two distinct parts. First there are a
number of vertically coherent waves with broad peaks and sharp troughs,
wavelength of about 250 m. This is followed by a train of lower amplitude and
less coherent waves. The initial coherent waves are interpreted as the
solitons of nonlinear wave theory. Numerical solutions of the Korteweg-
deVries equation for an initial pulse are invoked to explain these weakly
nonlinear waves.

LONG THERMOHALINE WAVES
E. A. Spiegel
This is an account of a calculation of two-dimensional couvection in a

plane layer of Boussinesq liquid carried out with S. Childress. The static
vertical density contrast is of the form

Alnp = (Alnp)S + (Alnp)T < 0.
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The Rayleigh nu?ber we use is
R = Eg—[(Alnp)S/Ks + (Blnp)p/Kpl -

When the fluxes of salinity and heat are prescribed on the upper and lower
boundaries, convection first appears t zero horizontal wave number. For small
wave number, k, linear theory tells us that steady solutions occur when

_ _ 2
R = Ro(k) = Rc(l+ak )

Where R, is the critical Rayleigh number for the onset of ordinary thermal
convection and ® is close to unity.

For the nonlinear case we may use a "shallow water" expansion for small
amplitude and large horizontal scale. There results the evolution equation

3
£ -1)f - atf = BI(E )T oy = Oy

- 1(R
tt Rc XXXX XXXXXX
where
T = KT/KS'
P is nearly unity, and f(x,t) is proportional to the leading expressions for
the temperature and salinity perturbations.

Let 62

i}

T(R-RO)/RC << 1

and
f

SR(St)sin[kx+6(48t)].

An ODE for R alone is obtained and the behavior shown in the accompanying
figure emerges for small & . The solution is in the form of a wave that
hardly progresses for some time, then surges forward. The effort being
apparently too great for it, it comes almecst to rest, gathers its strength for
a while, and then it hurtles forward once more - like progress in GFD.

Nigel Weiss and I have argued that in a suitable extension of the
Boussinesq approximation, the equations governing magneto-convection,
including the effects of magnetic buoyancy, are the same as those on which the
foregoing results are based. Therefore, the figure showing R ( § t) is just
an arm wave away from being a theory of the time dependence of the solar
cycle. Or it would be if the results of Depassier elsewhere in these
proceedings did not indicate that the Boussinesq approximation fails when the
convection occurs on sufficiently large horizontal scales.

GULF STREAM AND KUROSHIO CYCLONIC RINGS

Thomas W. Spence

Gulf Stream cyclonic rings are strong mesoscale eddies formed from
meanders of the Stream. During the past few years an interdisciplinary
program, including biological, chemical, and physical oceanographers was
engaged in observation of these features. One particular example (BOB) was
observed on several cruises between its formation in February 1977 until its
coalescence in September 1977. A summary of some results of the cruise and
other measurements was presented, including the work of many investigators.
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The CTD data were described insofar as they indicate the mean radially
symmetric part of the density field. Quantities derivable from the density
were shown; in particular, the velocity and potential vorticity (Olson,

1980). From the spatially distributed XBT data, noun-axially symmetric
perturbations can be identified and partitioned into modes {(~ sin n ©) with
the largest amplitudes in the lowest two modes (n = 1, 2). Mode two amplitude
decreases with time and from satellite imaging rotates counterclockwise (Olson
and Spence, 1478; Spence and Legeckis, 1980). Some preliminary computations
from a numerical ring model with a non Gaussian height field show some similar
effects (Smith, 198C). Observations of a cyclonic eddy in the Kuroshio system
(Cheney, 1977) provided data for a comparison of features from the two
systems. Velocity fields are somewhat stronger in the Gulf Stream ring, and
the size is somewhat smaller. Non-dimensional parameters are rather
comparable (Hua and Spence, 1980).
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INTERNAL WAVE INTERACTIONS IN THE INDUCED DIFFUSION APPROXIMATION
J. D. Meiss

The Induced Diffusion (ID) approximation was introduced into the study of
internal waves by McComas and Bretherton (1977). They present numerical
computations of action transport rates for Garrett-Munk (1979) action spectra
which show that for high frequency, small scale waves the transport is
dominated by triads of the ID class; that is, diffusion of action in wave
number space for small scale waves is induced by large amplitude, large scale
waves with nearly inertial frequency.

The importance of the ID triads was demonstrated quantitatively by
Pomphrey, Meiss and Watson (1980). 1In this paper two Langevin techniques are
applied, yielding relaxation equations for wave amplitudes:

d W, LB P = o x Yea >
a5 f% 7 P o % V) X (1)

The first method utilizes the fluctuation-dissipation theorem and requires the
assumption that the action spectrum, < Ji >, is nearly in "equilibrium".
The relaxation rate derived by this method is denoted Vg . A second
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relaxation rate, derived by a multiple time scale perturbation theory, is
denoted t* .

There is a formal relationship between these relaxation rates and the
radiative transport equation used by McComas and Bretherton (1977). The

transport equation (derived in a geophysical context by Hasselmaun, 1967) can
be formally written

,}E<Tz>=lvg('1)<jg> (2)

The transport rate 1/0 is, of course, a complicated functional of the
spectrum -- and therefore evolves in time with the spectrum. Comparison of
the expressions for the three rates introduced above yields the relationship

=J_ -~V
VB F P (3)
An "equilibrium" spectrum has ¥g = 0 by definition. Equation (3) then
implies Vo ¥p . Recalling that the derivation of Vg required that the
spectrum be in equilibrium, we see that the two relaxation rates are equal
when this assumption 1is satisfied.

Pomphrey, Meiss and Watson (1980) give analytic expressions for the
rates Y, Vp , and Up in the ID approximation. These expressions show
that the ID triads dominate the interactions for frequencies Wy > 3 €
and vertical mode numbers ™ > 5. Furthermore, it is just in this region that

|1/3|'<<|vﬁ,‘, implying that the Garret-Munk (1979) spectrum is nearly in
equilibrium.

These calculations also imply, however, that in this region the derivation

of Eqn. (1) is invalid. This derivation used o weak nonlinearity assumption
which is only valid if

v(k) <« & Wi %)

where (WJy is the linear frequency. It is precisely in the ID region where
the relaxation rate becomes comparable to the linear frequency.

To attempt to circumvent the weak nonlinearity approximation we consider

the ID interactions from a dynamical viewpoint. Assuming that the large scale
waves have large amplitudes we drive equations for the small scale waves:

‘%‘6 b, = Z A,_S~(t)b,:)' b,iza,K e * kT

~ ™~ Al (s)

. m . .
Here the matrrix A“" depends linearly on the large scale wave amplitudes.

Since the large scale waves have large amplitudes, they are decoupled from
the small scale waves. As a simplest model we assume that these waves form a

stationary, homogeneous, Gaussian random field. Under these assumptions
(Eqn. 5) becomes a stochastic differential equation.
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If we make no further approximations, Eqn. (5) cannot be solved
analytically, but it can be treated by perturbation theory (Van Kampen,
1974). At this point we note that for the internal wave case

A = £k -w) 46/l 2l ®
-~ ~ - ]&‘+ Y

Since ¥ ~ m is the large scale wave number, we can neglect the higher order
corrections and assume that R;ﬁ is a function of k - m only.

With this approximation, Eqn. (5) can be solved explicitly yielding

b d Lo
This equation is exact so long as the higher order terms in Eqn. (6) are
neglected. Corrections to Eqn. (7) due to these terms can be obtained by Van
Kampen's perturbation technique (1974).

In the weak interaction limit, K; becomes time independent and equal to
the relaxation rate Vp . More generally, however, the relaxation implied
by Eqn. (7) is slower than that of Eqn. (1). The effects of nonresonant
trifds are included in Eqn. (7).

A transport equation, similar to Eqn. (2) may also be derived using this
technique. This equation is derived for the second moments < b:’bm > .
If we assume that the initial condition for the small scale waves 1s a wave
packet, then this transport equation can be Fourier transformed to an equation
for the Wigner function, F(k,x).

For more details the reader is referred to Meiss and Watson (1980).
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SURFACE VISCOSITY, THE PARTIALLY FILLED ROTATING
CYLINDER AND OSCILLATING DROPS

Roger F. Gans

When a cylinder, partially filled with a liquid, is rotated rapidly about
its principal symmetry axis, held horizontally, the liquid is held against the
curved sidewalls by centrifugal force. The action of gravity on the density
contrast between central core of air and the annulus of liquid induces a
secondary circulation. The most easily measured feature of this secondary
flow is the "retrograde rotation"'" of the interface: the difference between
the container rotation rate and the (slower) interface rotation rate.

A weak nonlinear and boundary layer double expansion, based on the
smallness of € = g/-M2a and E = W /1 a2, where g, /L , a and WV
denote gravity, rotation rate, container radius and liquid kinmematic
viscosity, allows oune to calculate the retrograde rotation. 1Its magnitude is
sensitive to the nature of the interface. For an ideal free surface, the
magnitude 1is 2; for a rigid free surface (a buoyant straw), E’-E’~V#,
Measurements give an intermediate result, suggesting partial "rigidity" of the
surface. This ability to support some shear stress can be parameterized by
surface viscosity coefficients.

Because the relation between surface viscosity and retrograde rotation is
indirect, and because surface viscosity is not well-understood, a simpler
problem is useful: the effect of surface viscosity on the free oscillations
of a drop. If the viscous diffusion lengths are small compared to the drop
radius in both media, a boundary layer analysis works for any values of the
surface viscosity coefficients to the decay rate of the normal modes by means
of an expansion essentially in terms of the length scale ratio.

At lowest order the result is the inviscid Lamb result. At the next order
the decay rate and a frequency correction appear. In the limit of zero
surface viscosities it agrees with the leading term found by Marston (1980)
from Miller aud Scriven's (1968) integral formulation. A novel feature of the
first order solution is that the surface viscosity effects drop out when

h(ﬁz/“z)z‘ = ("*')(P:/"l)y‘

where n] £ and A~ denote mode number, density and viscosity and the
subscripts 1 and 2 refer to the drop and surrounding fluids.
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FRONTOGENESIS IN THE ATMOSPHERE
William Blumen

The formalism for studying the frontogenesis problem within the framework
of the geostrophic momentum approximation has been presented by Hoskins (1975).
Under this approximation, geostrophic momentum is advected by the geostrophic
and ageostrophic three-dimensional velocity field. 1In addition, the motions
are constrained to be adiabatic and hydrostatic.

The Eady baroclinic instability problem, posed in this system, can be
solved exactly i1f the motiouns are restricted to the (x,z) plane. Although
this latter restriction limits application to real flows, the fundamental
dynamical mechanism that concentrates gradients of cross—front geostrophic
velocity and temperature may be exposed. The amplitude of the motion
increases exponentially, as a comnsequence of baroclinic instability.
Simultaneously, the cross-isobaric ageostrophic motions increase gradients
until an infinity in the vertical component of relative vorticity occurs in a
finite time at a horizontal boundary. The physical mechanism that produces
the discontinuity is that which is inherent in the rudimentary one-dimensional
advection equation.

Comparison of the solution, before the discontinuity forms, with detailed
observations of an inteuse cold front indicates that the model captures
fundamental aspects of frontal motions down to scales of a few hundred
kilometers. Extension to smaller scales of motion is limited by the neglect
of latent heat release, a boundary layer and small-scale mixing processes.
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EFFECT OF SIDEWALL ON WAVE NUMBER SELECTION
IN RAYLEIGH-BENARD CONVECTION

P. C. Hohenberg

An analysis is presented of the steady states of two-dimensional
convection in a laterally finite container near threshold. It is shown that
the presence of sidewalls severely restricts the allowed wave vectors which
can oceur in the bulk of the container. This effect provides a possible
mechanism to explain the observed wavelength increase of convective rolls with
increasing Rayleigh number.

SMALL SCALE SYSTEMS IN THE MEDITERRANEAN
Ettore Salusti

I was interested in small scale systems detected in the Mediterranean
Sea. A first example has been seen by French researchers of LOP, Museum
d'Histoire Naturelle, Paris.

During the 1975 Medoc cruise in the northwestern Mediterranean basin,
cyclonic and anticyclonic eddies where detected in the presence of a system of
unstable baroclinic currents (Jeannin, 1976; Gascard, 1977). The observations
were made by CTD casts Swallow floats and by moored current meters.

Gascard (1977) bhas interpreted these data as two eddies of a baroclinic
unstable wave of wave-length 4 = 2 ™ R4, where Rq is the internal Rossby
radius of deformation; g the gravity; D the depth =~ 2300 m; N the
Brunt-Viisi13 frequency = 10-4sec-1

d=am 2 = 2% D\/?’ ‘f?’: ~ 30 Yo Km.

5o

From eleven stations in the East-West section of the two eddies,
temperature, salinity and ¥g were calculated. Lagrangian floats gave the
velocity of the cyclonic eddy. The velocity has a tangential component
averaged over 12 h, and a weak radial component of less than 2 cm/sec. For
the inner region (r & 5 kms, r being the distance from the middle »f the
eddy), the data came from Swallow float measurements and are in agreement with §
the hydrographic results. A strong Mistral wind started to blow on March 8 1
and the cyclonic eddy moved northwards at 4.5 cm/sec speed. At this time the
anticyclonic eddy was not being tracked.

To summarize, the cyclonic eddy was a 5 km-large, rather rigidly rotating
system. Its Brunt-V&isdld frequency N was about 2.5 10-“se0‘1; the
velocity distribution V¥~ in the region r & 7 km, was shaped like a bell and
at r 4 5 km, 2 == 600 m, it resulted that V4 =37 . 10-5 sec -1,

Another system has been seen in the North Tyrrhenian Sea, south of Genoa.
Near a front (df/f ~/0"),on1y 50 + 100 meters deep a small cyclonic eddy of ;
2-3 km of radius, 50 + 100 m of depth, has been found. One could also add 3
that the system was seen (with one day of observations gap due to necessity of :
ship entailment) at its real beginning (Stocchino, 1980).
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SECONDARY FLOWS AND THE FORMATION OF SHEAR ZONE
IN STRAINING NON-~NEWTONIAN FLUIDS

Ron Smith

Starting with the Reiner-Rivlin equation reduced for two-dimensional,
incompressible flow, and by allowing the viscosity function to depend omn the
pressure, a coustitutive relation is developed which describes materiazls as
they approach different types of plastic behavior. Von Mises (e.g., hot creep)
and Coulomb (e.g., granular materials) plastics are included. The nature of
these materials is examined by determining the secondary flow driven by a
localized force, during straining. An analytic solution for the flow field is
obtained which progressively takes on the form of narrow shear zones as the
plastic limit is approached. 1In the pressure independent von Mises plastic
the shear zones lie at +45° to the principal axes of the background
straining, but for a Coulomb material they are aligned more closely to the
axis of compression. Intense far-reaching shear zones are possible even from
weak point disturbances, as such a flow field can efficiently draw on energy
stored in the basic flow.

NUMERICAL STUDIES OF MODONS
J. C. McWilliams

Numerical solutions of barotropic and equivalent barotropic (i.e., with
finite deformation radius) modons are examined to assess the accuracy with
which they can be calculated, their behavior under the influence of dissipa-
tion, their resistance to pertubations, and their ability to survive
collisions. In brief summary, the results are the following:

(i) Modons can be successfully calculated by standard numerical
techniques if the resolution scales in space and time are sufficiently small.
In particular about 20 grid points per modon diameter are required to obtain
greater than 95Z accuracy in the bulk propagation rate using second-order
finite difference techmniques.
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(ii) Under the influence of momentum dissipation, modons decrease in
amplitude, reduce their zonal propagation rate, and expand their meridional
scale. The first two processes occur in ways which are insensitive to gross
aspects of the nature of the dissipation, and the third is rather simply
related to the order of the dissipation law. After sufficient amplitude
decay, the modon structures make a transition to a dispersive Rossby wave
regime. While still within the modon regime, the decline in amplitude and
; speed crudely follows a modon dispersion curve.

(iii) Modons are resistant to perturbations of small amplitude and are
destroyed by perturbations of moderate amplitude. The critical amplitude for
destruction is dependent upon the scale content of the perturbation, in a 4
manner consistent with larger-than-modon-scale advective shearing being the
dominant destructive mechanism.

(iv) Collisions between initially non-interacting modons have much in
common with classical soliton collisons, where, before and after collision,
each of the structures are uniformly propagating and isolated, and the only
residual consequences of the collision are phase jumps in the direction of
propagation. For modons, however, there are some additional consequences of
the collisions (e.g., the propagation speeds can be different before and
after), and the modons collide by sliding around each other, with transient
but large accompanying deformations of the structures, rather than passing i
through each other as solitons do. :

A MODEL OF THE KUROSHIO MEANDER
Glenn R. Flierl

The Kuroshio off the coast of Japan appears to have two stable states:
the "normal" path which stays fairly close to the coast and the "meander" .
pattern in which the Kuroshio turns near Shikoku in a loop of about 250 km and i
returns to near the coast at Honshu. The Kuroshio seems to switch rapidly
from one path to the other and may remain in either state for long periods of
time. This behavior is reminiscent of the response of a nonlinear oscillator
to forcing.

Several models have been constructed to explore the possibility that the
meander can be modelled as a nonlinear respounse to forcing near resonance by
either topography or coastline shape. For a steady flow, the potential
vorticity functional can be evaluated upstream if we assume that the topog- i
raphy vanishes or the coastline becomes zonal and the flow becomes zonal. 1If
the upstream flow has shear, this functional will be nonlinear and the
equation for the forced response become L (~F ) + N (W) = forcing, where
Lo( ¥ ) is a second order elliptic operator, N ( ¢ ) is a nonlinear
function, and the forcing terms arise from interaction with the topography or
coastline variations.

If we assume the downstream scale is long compared to the cross-stream
scale, we end up with an equation similar to the KdV equation in the
steady-state limit but with the inclusion of forcing. For a strongly-sheared
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upstream flow in a semi-infinite region, stationary, long, neutral waves can
exist given the correct current profile and speed. The nonlinearity will be
quadratic in the downstream structure with the variations in coastline or
topography entering as an inhomogeneous team. When this forcing is periodic,
multiple equilibrium states may exist. For single-bump forcing, the existence
of multiple states is more questionable. For weakly sheared flow, including a
deformation radius term, a southern boundary and cubic nonlinearity, it is
possible to find isolated responses to an isolated topographic bump where the
amplitude of the response obeys a cubic equation and thus has multiple

states: either an isolated inward or an isolated outward excursion of the
jet. Transitions will occur for particular values of the mean flow speed and
hysteresis would also be expected. Such models, while certainly over-
simplified, do suggest that the meander may be modelled as a nonlinear
response to forcing.

THE STRUCTURE AND STABILITY OF VORTICES IN A FREE SHEAR LAYER
R. T. Pierrehumbert

Many experiments have confirmed the presence of large scale organized
vortex structures in the planar mixing region between two streams of fluid of
different velocity (Wyganski, et al., 1979 and Browand and Weidman, 1976
present typical results). The character of steady configurations of
vorticity, and the instabilities of such configurations, are therefore of
considerable interest. We have exhibited a new family of steady solutions to
the Euler equations corresponding to an infinite row of vortices of like sign
arranged in the form of a shear layer. The family bifurcates from a parallel
shear layer with constant vorticity and extends continuously to a state
consisting of a row of point vortices. The intermediate states exhibit the
flattened shape characteristic of observed shear layer vortices and have
values of vorticity thickness/spacing comparable to those observed. Considera-
tion of the energetic properties of the family has shown that the core size
for a member of the family produced by rollup of a vortex sheet into vortices
of a given spacing is bounded below, and that successive pairings may cause
this lower bound to be attained if dissipation is sufficiently small.

We have also examined the two- and three-dimensional stability properties
of periodic arrangements of vortices in the form of a shear layer. Two
principal classes of instability were revealed. The first class is
subharmonic, repeating in the streamwise direction with a wavelength twice the
undistrubed vortex spacing. The subharmonic mode 1s most unstable for two-
dimensional perturbations and has a cut-off for short spanwise wavelengths.
The character and growth rate of this class of modes strongly suggest that it
is associated with the observed pairing transition. The second class of
instabilities has the same streamwise periodicity as the uunperturbed state,
and is most unstable at spanwise wavelengths 2/3 of the unperturbed vortex
spacing. For sufficiently compact cores, the growth rate is comparable to
that of the subharmonic instability. The spatial structure of the instability
is similar to the pattern preceding transition to three-dimensionality
observed by Breidenthal (1978).
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PROPERTIES OF ASYMMETRIC SOLITARY ROSSBY
WAVES IN A ZONAL CHANNEL

Paola Malanotte Rizzoli

The barotropic, quasi-geostrophic potential vorticity conservation
equation over variable topography is considered a zonal channel as the basic
model capable of supporting nonlinear permanent form solutions, namely
solitary Rossby waves. The considered solutions are asymmetric being
characterized by a small aspect ratio &= L‘:'/ L:’_ if L) is the
North-South length scale (channel width) and Ly the East-West length scale.
Then two kinds of solutions are possible. The first is the weak wave
solution, for which U €&c, U being the particle speed and ¢ the wave phase
speed. Weak solitary Rossby solutions can be shown to exist over the most
general topographies in the zgnal channel. The second kind of solution is the
strong wave type, (U > > c¢) which can be obtained allowing for the relief to be
quasi-linear in its argument.

For the weak wave type of solitary solutions, stability properties have
been explored and collision experiments carried out, in analogy to the
one-dimensional case.

The stability analysis of the solitary solution with respect to pertur-
bations in the initial conditions has been investigated in the context of a
linearized analytical theory. The results of the theory have been extended to
finite amplitude perturbations through a series of numerical experiments, in
which the perturbation intensity bhas been gradually increased. Thus, a
threshold in the solitary solution stability can be shown to exist, separating
a region of deterministic, wave-like behavior, from a region in which the
permanent solution is being destroyed by the superimposed perturbation with
with successive turbulent evolution of the flow field. For perturbations with
energy concentrated at scales smaller than the basic field (for instance,
random perturbations with an isotropic emergy spectrum proportioned to k3)
this stability threshold can be qualitatively shown to be reached when

Al

r.m.s. o~ [ n.s.
-

PERTURBATION SOLITARY SOLUTION

‘;r.m.s. gr.m.s.

LfAL ¢+ w.s., r.m.s. are respectively the r.m.s. velocity and vorticity

of the perturbation and basic field. The overpassing of the stability




threshold can be shown by the sudden loss of correlation in the locked Fourier
phases of the solitary wave.

Collislon experiments between two solitary solutions have also been
carried out for the weak wave type. In them, the amplitude of one of the
interacting waves is held fixed (A} = ~0.02) while the amplitude of the
other is gradually increased through the values

Ay = -0.02; ~0.05; -0.1; -0.5; -1; -2.

Until the two waves have comparable amplitude, one-dimensional soliton
collision properties are respected insofar both waves maintain their
permanence upon the interaction. Redekopp and Weidman's results are therefore
maintained in the weak wave case, for two interacting wves of comparable
intensity. However, when the stronger wave reaches an amplitude one order of
magnitude bigger than the other (A7 = -0.5), one is outside the range of
values for the solutions to survive interaction, and the stability properties
previously discussed are observed. Thus, the weaker solitary eddy A is
progressively distorted by the stronger-and larger scale-eddy Ao, showing

the evolution of the flow towards final turbulent behavior. This is
immediately evident in the extreme case Ay = -2, where the weaker solitary
wave can be regarded as a superimposed perturbation randomized by the strong
(and stable) basic solitary field.

INTERMITTENCY IN FULLY DEVELOPED TURBULENCE
Mark Nelkin

The statistical properties of the small scale fluctuations of
incompressible fluid turbulence are analyzed. The emphasis is on universal
exponents defined by various correlation functions. After briefly reviewing
the experimental support for the 1941 Kolmogorov theory, we consider the
fluctuations in local dissipation rate. The simplest and least model
dependent measure of intermittency is the dissipation autocorrelation
L E€(x) € (x+r)> . This function is expected to have an inertial range
form (L/r)* . The exponent #~ is expected to be universal. It has the
geometrical interpretatin that 3- A~ is the fractal dimension of the non
space filling objects in which the dissipation is concentrated. To
determine A+~ experimentally required some model of the correlations in the
dissipation range. Using a simple model of this behavior, the existing data
are reanalyzed to give A& 2z 0,25,

A variety cf other correlation functions can be measured, and several
families of scaling exponents can be defined. Scaling theories give relations
among these measurable exponents. A oune exponent scaling theory expresses all
of these expounents in terms of A . One candidate for one exponent scaling
is the 1962 theory of Kolmogorov and Obukhov. This theory is critically
analyzed, and an alternative and simpler theory is proposed.
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PERMANENT FORM SOLUTIONS AND THE INITIAL VALUE PROBLEM
Myrl C. Hendershott

The salient feature of the initial value problem for the barotropic
potential vorticity equation (BPVE) A "Pz + J(Y, A*+ + h) = 0 without relief
h is exponentially growing instability to infinitesmal perturbations of finite
amplitude initial conditions (Lorenz, 1969, Tellus). But with zonal relief
h(y), initial conditions having small aspect ratio d = Y-scale/X-scale and
small amplitude £ = §9 << 1 evolve according to a set of coupled Kortweg
deVries (KdV) equations. For initial conditions which are also the product of
a function of A(x) and one of the cross-channel eigenfunctions ¢“ (y)
characterizing long linear topographic waves over the zonal relief, these
coupled equations collapse to the well known KdV equation for A(x). This
predicts the existence of permanent form (nonlinear Rossby) solutions of the
BPVE with zonal relief (Rizzoli, 1980) and suggests very different properties
for the initial value problem in the limit £ = &§*<¢ <1. These con-
siderations motivate two numerical experiments. In the first experiment a
uniformly progressing solution of the BPVE having € = §%¢ ¢ 1 is perturbed
in the x-direction with red noise and this solution is used as the initial
condition for (a) the BPVE with zonal relief and (b) the corresponding set of
coupled KdV equations. The coupled KdV equations do not anticipate the
sharing of energy among different cross-channel modes which develops as the
solution of the BPVE evolves. In the second experiment, initially random and
isotropic but low amplitude initial conditions are imposed. The solution of
the BPVE with zonal relief evolves towards small aspect ratio on account of
the zonal relief, a special case of the general tendency for a strong
correlation between relative vorticity and relief to develop in two
dimensional turbulence over relief (Holloway, 1978). The solution is
decomposed according to

ﬂ#

Z apm einX @ (y). Although apl, ap2 and an3
1,3
1,3

,

remain of comparable amplitude the ap> evolve towards a state in which apg

n x constant, i.e. in which 2: appellX  5(y) progresses without change
of form.
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DIFFERENTIAL ROTATION IN THE SUN
Willem V. R. Malkus

It is proposed that the 40% difference in equatorial and polar rotation
rates observed in the sun can be due to magnetic torque. Previous theories
require significant meridional circulations in the convection zone and pole to
equator temperature contrasts which are not observed. Here it is shown that
solveabilities conditions imposed on the solar dynamo process require zonal
circulation in the stably stratified region below the convection zone. This
circulation must override the flow due to other causes or the growing magnetic
field will produce large corrective forces. The non-linear eigenvalue
problems which emerge from this formulation are derived. The order-one
circulation required for solveability here is called the 'eigenflow'. Sample
analytic solutions for eigenflows are found for the simplified problem of
purely axisymmetric magnetic fields produced by -dynamo effects confined
to a spherical boundary layer. A more complete numerical study is in
progress, oriented towards the determination of those macrodynamic flows which
are most insensitive to details of the presumed field.

WEAKLY NONLINEAR STABILITY OF FINITE AMPLITUDE FREE 1
ROSSBY WAVE AND FORCED WAVE INSTABILITY

Richard Deininger !

The weak nonlinear behavior of a slightly unstable perturbation to finite
amplitude free Rossby and topographically forced waves has been investigated
using a model consisting of a single layer of barotropic fluid on an infinite
beta-plane. The nonlinear evolution equations

3?:“22)(-0':;1)(”""}77:)(:0 '

dA. = - /] 7‘—';()(’), &, » 9 (1a,b,c)
d7T
F = ); X‘z-

obtained by using the method of multiple scales describe the long time
evolution of the free Rossby wave problem. In (1), X, A, and F are the
perturbation amplitude and basic state wave amplitude and frequency cor-
rections, respectively. & ¢ 1is the growth rate obtained from the linear

theory of Gill (1974) and &n (n = 1,2,3) are coefficients which depend upon :
the truncation of the perturbation field. These equations describe the ]
stabilizing feedback that occurs between the perturbation amplitude and both 3

teshemlark,




the amplitude and phase of the basic wave. Equation (1b) describes the change
in amplitude of the basic wave via the tilted trough mechanism which does not
necessarily involve a zonal flow. It is interesting to note that the system
of equations reduces in form to that obtained by Pedlosky (1970) in the
context of the inviscid baroclinic instability of a zonal flow when )’3 = 0.
The additional result here is that of the additional feedback taking place
between the phase of the basic state and the perturbation amplitude which
occurs simultaneously with the amplitude feedback between the perturbation and
Rossby wave which gives rise to an oscillatory exchange between the basic and
perturbation fields.

The forced wave set up by a uniform zonal current U flowing over a
sinusoidal topography of amplitude h, has an amplitude proportional to
Uh
T-c
which exhibits the topographic resonance where u = ¢. The linear stability
analysis for this basic field was carried out by Charney and Flierl (1980).
An analysis similar to that done for a free wave was carried out assuming U-c
is order one. In this case, there was no frequency feedback so the basic wave
remained stationary. Only an amplitude feedback exists. It is described by

d2Xx -a£2X+NXA=o
dTa' A:X2

where X and A are defined as before. The nonlinear coefficient N changes sign
as U-c does. Thus the nonlinearity is stabilizing for subresonant flow (U¥»
c) and destabilizing for super resonant flow (U > c¢). This seems to suggest
the topographic instability of Charney and Devore (1979).

The analyses demonstrate fundamental differences between free and forced
waves.
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EXPERIMENTS ON THE STRUCTURE OF A TURBULENT JET
B. T. Chu

Recent experiments conducted at Yale University on the mixing mechanism
and the structure of a turbulent jet are reviewed.® Fluid from a 4 mm round
nozzle is seeded with uniformly dispersed submicron size aerosol particles.
Assuming that each unit mass of the nozzle fluid is always "tagged" by
approximately the same number of aerosol particles with approximately the same
size distribution, the degree of mixing of the marked nozzle fluid with the
unmarked surrounding air will be reflected in a change in the aerosol
concentration. If a sheet of radiation is allowed to pass through the mixing
layer, the instantaneous distribution of the aerosol (and, therefore, the
nozzle fluid) concentration in the sheet can be monitored and inferred from
the distribution of the elastically scattered radiation. The scattered light
from the sheet is digitalized at 10,000 points in a 100x100 array and stored
in the computer. Subsequently, the record allows one to examine both
guantitatively and qualitatively the degree of mixing of the nozzle fluid with
the surrounding air in a plane. By storing a large number of such records in
the computer, statistical information relevant to turbulent mixing can be
deduced. In particular, the distribution of the mean concentration and the
rms fluctuation in a meridian plane are presented. The characteristic
"shoulders" in the mean concentration profile and the "depressions"” in the rms
profile are shown to be conseguences of the vortical mixing mechanism. A
second mixing mechanism which dominates further downstream is responsible for
the development of small scale concentration fluctuation and may be attributed
to the instability and ultimate disintegration of vortex rings. The next
effect of the instability is the production of bursts of nozzle fluid
projected radially outward.

The spatial structure and coherence of the turbulent jet is characterized
quantiatively by the longitudinal covariance. The instantaneous two-
dimensional mapping of the constant concentrating contours also allows one to
determine the various statistical properties of such contours. These contours
are generally multi-valued functions of the axial distance. The average
multiplicity of such contours and the increase of their length per unit axial
distance in the direction of the flow have been computed.

*The work reported here was carried out in collaboration with Professor
Marshall Long and Richard Chang under the sponsorship of Project SQUID. A
fuller account of this work may be found in the following preprints of the
American Institute of Aeronautics and Astronautics, AIAA 80-1370 and 80-1354.
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WHAT DETERMINES THE VERTICAL STRUCTURE
THE GENERAL CIRCULATION?

William Young
l.Introduction

The wind driven homogeneous models of ocean circulation describe the
qualitative horizontal features of the actual stratified flow remarkably
well. The verisimilitude of these models can be attributed to the simplicity
of the planetary-scale vorticity equation in a stratified fluid, viz.

f\/:fk}z (1.1)

(The notation here is standard; see Pedlosky (1979) section 6.19 for a careful
explanation of the scaling arguments leading to (1.1)). If (1.1) is
integrated over the depth of the ocean and the vertical velocity at the bottom
is neglected we find

"
/ v dZ = W = Vx z_ ’Z\ (1.2)
/g [ f‘f ‘ﬁf)
where 4% is the vertical velocity at the base of the Ekman layer produced by
the curl of the wind stress, £ . Equation (1.2) is independent of the density

profile and is identical to the Sverdrup relation used to determine the
interior flow (away from boundary layers) in homogeneous circulation models.

The Sverdrup relation (1.2) tells us nothing about how the transport is
distributed in the vertical. I shall use the simplest possible wind-driven
stratified circulation model to investigate this question. The goal of this
study is the vertical resolution of the interior flow, the boundary layer
dynamics are of secondary interest here.

2.A Fundamental Difficulty of Completely Inviscid Circulation Models

The fundamental difficulty referred to in the heading is that in a seuse
we have too many solutions to the problem outlined at the end of section 1.

This is best illustrated by a specific example. For the sake of
simplicity I shall solve the two layer quasigeostrophic equations,

Je ;) = We + dissipation (2.1)
= dissipation (2.2)
T4, 3
(2.3)
in a rectangular basin ©<x < Xg, -~1<Yy <! . Eqns (2.1) - (2.3) are

nondimensional using the scalings summarized in Table 1. The nonessential
simplification of equal layer thickness is made.




(Q W/BH) - Magnitude of Sverdryp balanceq

horizontal velocities.
$e - uL
q, = FL q‘
WP* =z Ww
£2. = (U/ﬁL“)
F = z
(o U/54)
Now attempt tq solve (2.1 < (2.3 17 the interior of the basip where both
d1381pat10n and relative vorticity are negligible. In thig Case, the Sum of
. and (o, is just the Sverdrup relatiop
(Psx = LJE (2-“)
whepe =4 ¢ » If, say, p ~-COS(E1) then the Solution of (2.4)

F‘s 1. The, Lato’l‘rofy.'c, S‘f"eamfunt;{iomlq)s B}
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Now the lower layer equation in the interior is

3T.4a,g,) = O
or since zl =y o+ F Qg - 2F 4,1 + OCEY)
2.6
30, Y+ Fg) = © (2.0
The solution of (2.6) is
¢, = Gy + Fdg) (2.7)
where G is an arbitrary function of Y4 F¢¢ . If a y-&th contour hits
an Eastern* boundary, where ¢ =, , then G is determined,
C-l = O (2.8)

The specification (2.8) implies that the lower layer is at rest at interior
points threaded by y +F¢ contours which reach the Eastern boundary. Rooth,
Stommel and Veronis (1978) and Rhines and Holland (1979) gave a more general
proof of this result. They proved that in a multi-layer model, where the
density surfaces are allowed to strongly deform (i.e. the quasigeostrophic
approximation is not made), the abyssal layers are gquiescent wherever they are
connected to Eastern boundaries by contours of gl/(layer thickness).

Fortunately however, not all y +Fd@ contours reach Eastern boundaries;
some close in the basin and the specification (2.8) is not forced on us by
lateral boundary conditions. As the forcing g is increased (or equivalently
F is increased) larger areas of the basins are threaded by closed y+ Fyg
contours. This is shown in figures 2 - 5. The details of the Western
boundary region are not shown in these figures. It is clear, however, that
since q« =z 0 on the boundary, a contour which starts at y = y,» on the Ezstern
boundary must also hit the Western boundary at y = y;, Thus the details cf
the y + ¢ yg contours in the Western boundary layer must look roughly like
Figure 6, no matter what higher order dynamic process is used to form the
barotropic Western boundary layer. In the closed regions & is undetermined
and there may be nontrivial abyssal flows.

It is important to realize that within the context of the inviscid
theory ( is arbitrary. There is no physical reason for favouring one
particular choice. It is in this sense that there are too many solutions;
each choice of provides an acceptable resolution of the vertical
structure. I shall discuss three methods of removing this degeneracy
(i.e.finding a preferred (@ ):

*There is a bit of imprecision here; in a stratified fluid the deformation of
the density surfaces can reverse the roles of Eastern and Western boundaries
in much the same way as topography does in a homogeneous fluid (Pedlosky, 1979
Section 5.13). Specifically, if (%+F4@)<c> then it is the Western
boundary at which a no flux condition must be satisfied by the interior
solution.

Sa e e o
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Figures 2-5. Contours of V+F for various values of F, As F increases

larger areas of the basin are threaded by closed contours.
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(a) Solve an inviscid nonlinear initial problem i.e. start with an ocean
at rest, switch on the Ekman pumping and let the circulation evolve.
Presumably the circulation will find its own (3 . (Actually this presumption
1s incorrect, in the closed y + Fyy regions no steady state is ever reached,
see section 3.)

(b) Introduce some small dissipation and determine (3 wusing a
Batchelor-Prandtl theorem, see section 4.

(c) Introduce small dissipation and attempt to solve a complete general
circulation model, see section 5.

3.An Initial Value Problem }
The initial value problem discussed in this section is i
P+ T, g, = we (3.1) i
Tt + 3, 92) = © (3.2)
where ;
o t <
Weg = { © (3.3)
-cos(y) t>o

and 4« and 41 are zero on the boundary of the rectangular basin

Equations (3.1) and (3.2) have two linear wave solutions with different
vertical structures. The first is the barotropic mode which crosses the basin
East to West and establishes a barotropic flow like that in Fig. 1 in a few
weeks. The second is the much more slowly propagating baroclinic mode which
travels through a density and flow field produced by the barotropic mode. 1Its
transit time across the basin is about a year. In solving (3.1) - (3.3) we
will assume the barotropic mode has already gone through and produced as a new
initial condition the barotropic flow given by:

"Ps ¢+ ¢ = (Xe-x) CDS(%%) (3.4)
¢ = 4a

The equation governing ¢, is then (the relative vorticity is neglected)

4’,_t - @F) T4, 4+ Fg)=0 (3.5)
q/-:. = J?.' Q/B C‘+ t o
. ¢ - o on the boundary of the basin.
2

Note how (3.5) reduces to (2.6) if we seek steady solutions.

Equation (3.5) can be solved using the method of characteristics (Carrier
and Pearson 1976 ). The characteristics are curves in { Y, X , y , ¢t )
space parameterized by s. From (3.5), the characteristic equations

f;‘-t =! (3.6)
J_.’f’:o 3.7

ds
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3"—; = - (2F)"" a%

?s: (26) ﬁ(.{*Fl&e) (3.9

Fquations (3.6) and (3.7) imply that ¢ can be replaced by t and that ¢,
1s constant along characteristics, or equivalently the projections o! the

(y + Fuy) (3.K)

characteristics onto the (x, v) plane are just the familiar curves of
constant .
bR

It a characteristic intersects the boundary then the boundary condition
¢ = 0 1s propagated 1nto the interior., If (FYyg+4) >0 the characteristac
leaves the Eastern boundary, while i1t JB(;Q%-o,)<o the characteristic
leaves the Western boundary. In either case, the result is tue same; at
polnts connected to boundaries by characteristics the abvssal flow 1s
eventually "switched off" by the arrival of information from the boundary.
Rhiines (1977 ) gives an explicit example of this using the approximation v

*FQ&: y.

It a y +F4gcontour closes then the corresponding characteristic 1s a
helix in (x,y,t) space. This curve never intersects the boundarv. No steadv
solution is ever produced. Thus 1n the closed regions although there are an
infinite number of steady solutions, none are ever '"found" by an inviscid
initial value problem.

This last result makes it clear that in closed regions we must 1nvoke some
disspation to resolve the vertical structure of the circulation.

A Batchelor-Prandtl Theorem for Potential Vorticity

The degneracy associated with closed streamlines is familar in fluid
mechanics. Thus usual method of overcoming this difficulty 1s to derive an
integral constraint, based on the existence of the dissipation, which must he
satisfied by the flow no mater how small the dissipation is (Batchelor, 19955).

The dissipative process discussed in this article is vertical diffusion of
momentum, represented by the last term in

M
Dt

There are undoubtedly other important dissipative processes, such as vertical
density diffusion

e bz‘{:/_ = - VP + (‘JV‘)I (4. 1)

_DD_E = (KPI)Z (-4.‘)
I shall, however, focus on vertical momentum diffusion since it 1s the most
straightforward mathematically and the results can easily be interpreted
physically. The small scale process (small compared to the general

circulation that is) primarily resuponsible for vertical momentum transfer in
the ocean is baroclinic instability. This is the underlying process crudely
modelled by the last term in (4.1).




_ﬁmff!ff._~?"*“___;::ﬂl"

The planetary scale quasigeostrophic potential vorticity formulation
tollows from (4.1) and (4.2) 1n the usual way (Pedlosky 1979, section 6.19),

T 3) = (v ). (4.3)
3 7 3t s (4.4)
- ol\l
F= g (éﬁ') (4.5)
v ot e (4.6)
¢ = .
TR I
we 1n {(4.6) 1s the Ekman pumping at the top of the interior flow, the vertical ;

velocity at the bottom Ekman layer has been neglected. V! is a horizontal
Lapacian.

1t v=o then (4.3) 1mplies

- (4.7
9= QRY,2) ) ]

As 1n section 2, 1f a streamline reaches the boundary of the basin the
1mposition ot a no flux condition determines Q -

Now, to obtain the desired 1integral constraint, integrate (4.3) over the
arca enclosed by a c¢losed streamline. The integral of the Jacobian vanishes
since

I

ffjwf,‘g) d%a TR ZICTD da

= §¢vg.d_ﬁ

: ¢y évgdl=o
The second last step tollows trom the constancy of 4 on a streamline. The
tinal result 1s

[JOrova): da = 4(vod), LR dl
= o (4.8)
The result (4.,8) is valid tor arbitrarv v ., If Vv is now very small it 1s

plansible that (4.7) may also by valid (to 0 (v)). 1In this case we (4.7) to
cast {a.8) 1n the form

92—::4! dal 4+ $1F§Y1.J_l = © (4.9)

where 2 = F'v . Inusing (4.7) to rewrite (4.8) it 1s assumed that the

viscous term 1s small everywhere on the closed streamline. This 1s certainly
not the case for the streamline pattern shown 1n figure 1, every streamline
passes through a viscous boundary layer. Similar objection to the use of
(4.9) applv 1n many potentially 1mportant flow configurations. Thus, although
interesting solutions can be constructed using (4.7) and (4.9) (Rhines,

the general utility of (4.9) 1s open to question. 3

jY84)

’
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The consequences of (4.9) will be explored elsewhere, at the moment the
difficulties associated with the application (4.9) motivate a third approach
to the problem of resolving the vertical structure of the circulation.

A Stratified General Circulation Model

In this section I solve a very simple two layer general circulation
model. The dissipation is provided by bottom drag and the layers are coupled
by interfacial stress (a force proportional to the jump in velocity across the
interface). This interfacial drag is the two layer analog of the last term in
(4.1).

The two layer quasigeostrophic equations are

Ty = We + v V- 4) (5.1)

Thyg) = v Y, -¢) - §9°¢, (5.2)
where

%‘ = N + FlY,- )

‘B‘ = 5 + F (4',"4’;)

The relative vorticity is neglected; in the interior it is u~important because
of the large length scale of the flow while in the boundary layers it 1is
assumed that the viscous forces dominate. This last assumption is
unrealistic, but once again I emphasize that the goal of this study is the
vertical resolution of the interior flow.

The sum of (5.1) and (5.2) is

Your = We - 8 V¢, (5.3)
In the interior the friction term is neglected and the Sverdrup balance is
recovered. With wg = - cos(Ey4) and using the same rectangular basin

previously defined, the interior barotropic flow is

= - (5.4)
%3 = Yi+qe = (Xe -X)(DS(%,)
As 1n section 2, the lower layer equation can be put in the form
T4, 94 Fg) = ¥ Tdg - (2748 T (5.5)

Now, by inspection, an exact solution of (5.5) is

¢, = (zv\:a)(v'rFF%) (5.6)

¢3 in (5.6) would be an exact s~lution of the problem if the no flux
lateral boundary conditions are satisfied. This is the case if the y +Fyg
contour closes in the basin. In the regions threaded by y + Fyg contours

e
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which reach the boundary an alternative solution must be sought. In these
regions ¢ 1is order y and Y, ~ ¥ . The streamfunctions are sketched in
figures 7 and 8. For the moment, however, notice that if v ~ & , (5.6)
gives an order one abyssal flow. Because (5.6) is the most important result
in this article it's worthwhile attempting to interpret it physically. In the
abyssal layer the 'matural paths" for the circulation are y + F Vg contours
(essentially paths of f/(layer thickness)). A very weak force (such as
interfacial stress) with a nozero circulation round a closed y + FYs contour
accelerates a flow around the contour until a frictional force (in this case
the bottom drag & ) becomes large enough to balance the driving force. This
is a physical interpretation of (4.9). On the other hand if the contour does
not close the forced flow is across rather than along the contour. The
amplitude of this cross contour flow is determined by the driving rather than
the friction.

As an example of this latter process counsider the problem of solving (5.5)
in regions where the y + Fiy contours are open. For simplicity the weakly
forced limit

ye Flg > Y (5.7)

will be investigated. The more general case can be discussed using similar
method; see Welander (1968) for a similar calculation.

With (5.7) the equations of motion are reduced to

,_’ch = Wwo- 5 v1¢1. (5.8)
Gar = -~ C2v+8) V‘&{',, + VV"‘PB (5.9)
Equations (5.8) and (5.9) are easily solved in the interior where the
friction terms are negligible
Yo == (xe -x) Wiy (5.10)
(5.11)

Yo = 3 v(x-xe)w"

Note how the abyssal flow is order y because its driven by the order V¥
forcing term v#m}n (5.9). The solutions (5.10) and (5.11) don't satisfy the
boundary conditions at x = o (the Western boundary). 1In this region we use a
familiar boundary layer technique. Begin by introducing the boundary layer
variables S &' x

4/‘ = (¥Xg-~- ¥) W + @s (&, ")

Yo = -éV(XE*X)zk’“ + ‘Pz(t;‘ﬂ
which transform (5.8) and (5.9) to
fey = - g + 0¢S) (5.12)
Pop = -C22+0%y + 1 fayy + 0cd) (5.13)

A= S7'v
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- 7,

Figures 7 & ¥ The upper and lower layer streamfunctions , V= &
and F =) . 1In the regions where the contours of y4F¢,
close (see Fig. 4 ) ¢, is given by(5.6).
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The final uniformly valid solution for the ¢‘ and Y, 1is constructed in the
standard fashion,

= (% Xg) W [~ (a- kY (ke e M8 e ““)} +E VI Uk Kgw' [em 3 - T
Ve 2l b 'l e 5w

¢, = Yo-xeryw |- ke k) (e ¥ el + Xewlia - )" [e7h e70T] (5,15

where
Ky = (12)“":7.2+l + (H’Xl#i)"'}

i€z = (27 [2a+1 L“‘x"“).“.]

Note that ¢, in (5.15) is order 1, but only in a narrow region of thickness s
near the Western boundary. This is in contrast to (5.6) which gives an order
one abyssal flow in the interior of the basin.

To summarize the conclusions of this section, in a region where the y + FQ&
close, very small vertical momentum transfer can create order one abyssal
flows. By contrast in a region where the contours are open the interior
abyssal flow is very weak (order v ).

6. A Three Layer Model

In this section the vertical resolution of the previous model is increased
by considering a model with three identical layers. This model is interesting
because the dynamics of the middle layer are qualitatively different from the
upper layer (which is directly forced) and the lower layer (where the bottom
drag provides the dissipation).

The three identical layer quasigeostrophic equations are

T, g = w + v (dam )

(6.1)
3('4‘,, zl)= vv.‘(q’l -+ 4’3) (6.2)
J L‘(’; y ) = VI (Y- - 8 Y (6.3)

where the potential vorticities are

%. = j + F(‘{’;"‘(’.)
31 =y + F (¢, —2d, + ¥s)

%3 =Y + F(‘(’t"q’s)
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In (6.1) - (6.3) the terms proportional to ¥ are the interfacial stress terms
while the last term im (6.3) is the bottom drag.

The barotropic equation is obtained by adding (6.1) - (6.3),

q’Bx = - 572‘*1 (6.4)

As before the last term in (6.4) is neglected in the interior, so that the

barotropic flow field is know. This allows us to simplify (6.2) by observing
that

fe = 3+ F¥s —3F¢,

so that (6.2) can be rewritten as

J(q'z, y + F&PB): VvV Vt“’s - 3y V"qlz (6.5)

If the y + F{y contours close than an appropriate exact solution of (6.5) is

Yo = GEY'LY + Fy) (6.6)

1f the contours are open an analysis similar to that in section must be
used. 1In this section we will focus on the more physically interesting case

of closed contours. Now that ¢, is known, we can simplify (6.3) using
(6.6). We have

P35 = %4 + TFdg - Fy,

so that in the lower layer
Ty $4 + §Fdg) = 3V oty ~ W+ T (6.7)

Once again, in a region enclosed by a closed %y +FY, contour, (6.7) can
be solved exactly,

¢y = v[Fves) " [ %"} + -lz—Fcp‘] (6.8)

‘{" is now the residual when LPZ and *3 given by (6.6) and (6.8) are
subtracted from (, . Note carefully the restriction on (6.8) (closed 4y

+ 4§ FYy ) is stronger than the restriction on (6.6) (closed y + Fiyg ).
This observation, together with Fig. 2~5, leads to the tentative prediction
that the wind driven circulation in a stratified subtropical gyre should be
deeper in the Northwest. Clearly it will be necessary to investigate a
variety of models with increased vertical resolution to assess the importance
of this prediction.
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BAROCLINICALLY GROWING SOLITARY WAVES
Richard Deininger
1. 1Introduction

Previous studies of solitary waves have for the most part, not dealt with
their generation mechanisms except to say they evolve from general initial
conditions. Possible generation mechanisms for solitary waves include
localized forcing (e.g. mountains) and/or instability processes (e.g.
baroclinic). This work represents an attempt to study the role of baroclinic
instability in producing solitary waves.

It is well known the balance between dispersion and nonlinearity is
responsible for the permanence of the solitary wave. Then, to allow for the
possiblity for a growing solitary wave, we must simultaneously allow an
instability (baroclinic in our case) to be present. It is also of interest to
include a frictional process such as Ekman friction. The method to be used is
the method of multiple scales. Each of the fundamental processes which are
dispersion, instability, friction, and nonlinearity are assumed to be weak.

As a result each fundamental process defines a slow time scale., The
baroclinic instability time scale is a function of the small parameter which
measures the degree of supercriticality of the zonal shear from its critical
value (Pedlosky, 1970). The dispersive time scale is proportional to the
ratio of the meridional scale to the zonal scale of the baroclinic wave. The
frictional time scale is proportional to the Ekman number. To allow all of
these processes to act simultaneously, we choose the respective measure of
each process to give them the same long time scale. A weak cross channel
topography produces the nonlinearity. Thus using the method of multiple
scales we shall seek the evolution equation for a wave which is to lowest
order neutrally stable and nondispersive. In doing so we hope to find growing
solitary waves.

2. The Model
The model is the quasi-geostrophic two layer model with the equal layer

depth, in a channel on a beta-plane, with bottom topography, and Ekman
friction in the lower layer (Pedlosky, 1980). The nondimensional equations are

(%t %y =)V -F(4-¥) eAy ] =0

(2.1a,b)

(%282 = 2 ) [V~ F(K~¥) rhy+ 7 ] = =TV,

P

where
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and 4& and ¥2 are the stream functions in the upper and lower layers
respectively. x and y are the zonal and meridional coordinates respectively

and g - "Blvd represents the topography. The space and time coordinates
and pressure have been nondimensionalized according to

Xg ) (L dy, B, b L Y)

where U is the velocity scale, f, is the Coriolis parameter, and/pn is
the density in each layer. The parameters are:

$ = {Z (wave anisotropy)
Py
L opl
gL
P (Froude number)
Lt .
A= ¥ (planetary vorticity factor)
U
. % é - U
€= {TI ) ‘4£?L (Rossby numbers)
Ny - fﬂ? (topographic variation)
3" 55 pograp
J
Ay
15 YN (Ekman number)
r - éf (friction parameter)

where D is the depth of each layer, g’is the reduced gravity, 4 is the
meridional gradient of the vertical component of the earth's vorticity, hg
is the topographic variation, and V is the viscosity coefficient. The
boundary conditions are that there be no momentum source at the wall
integrated over the length of the channel (or over a wavelength for periodic

solutions) i.e.
=0
i gt g 4

) 4 .
:,yyn. J\ "}X q/n7 { b O
Ko -8 :

We now write the streamfunction in each layer as a zonal flow plus a small
but finite deviation, i.e.

¥, 2 -y +

(2.3)
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Using (2.3), (2.1) becomes
et U 27 = P =) v [ ety ]
+ L v, S o

o o (2.4a,b
(242 2LV -F(f-4)] + [ p-Flu-uy Y, Y

- =2y sy : o - 2y
$TLY VY, - F-dy s ] -0V,
We now proceed to review the important points of the linear theory.
3. Linear analysis

Assume the Vﬁ are infinitesimally small and for the time being neglect
the topographic term. Equs. (2.4a,b) now become

(g U, 2,) 9 =2 ] Ay Ty =0

001U, 0,0 [ 8, =F(4-%)] + La-Fli-d ) ]§ -V % Guaaw

Taking a solution of the form

lhx~w
lp__AhE(L w 1)

n e s

results in the following dispersion relation

.ow o Uy, ﬂ(K‘fFQ _ ivr/k“rr‘- ! . fq"(,(‘..,,:’)(u',ulj‘

CTRT T T K2R K e eR)T 2800
-3 X & 2z 2 - .2 [ § zK" z (3.2)
JHG T v 2K [n‘(& FIFYK=F U, =U ) +28F ] - (k+F) ¢ o
L
where
K= s+ (3.3)

In the nondispersive {3 =0) and frictionless (r=0) limits, baroclinic
instability results when #7°<¢2® and the vertical shear ( U,-¢,) exceeds the
critical value 2

u 2 4éLF

c :n‘f/‘”;l__ﬁ-‘f) (3.4)

For a slightly supercritical shear

- << (3.5)
u-u, =u rAa , A<
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the growth rate due to the instability is given as
ke =2t VIkpr A>i (3.6)
- mArt+2r) (U,
and the real part of the frequency is
oo = kldri) _ BR(TrF)
Y TrT +2F)

Eqn. (3.6) suggests the long time scale corresponding to the instability, 1i.e.

(3.7)

o ialf
7, =8t A (3.8) ;

The frequency corresponding to the dispersive correction to L,Cr of (3.7)
is
U (TP 2R
kCJ = 1 e - Sk (3.9)
,I'/// ".Jf'/

to leading order in 5 . Note that when 7 el F othis dispersive term
contributes to the instability. We shall refer to this region of parameter
space as the short wave side. We shall refer to the region in parameter space
defined by /ZF< 7‘<2F as the long wave side. In this latter region the long
dispersive time scale from (3.9) is defined as

7o~ $ 4 (3.10)
o

It is important to realize that in this scaling k is 0(1). The
parameter § measures the anisotropy of the wave. When $<< 1 the wave 1is
weakly dispersive. Similarly, if friction is small (r<< 1) the frictional
part of w is

R i = 2 2 . e £
L., 3 (rrd)n ! [/T'{IT +t2F)(K=F)uU +23F ](* (3.11)
St T aptiamar) Kk

to leading order in r. From (3.11) we define the frictional long time scale

— L (3.12) 4
l{ - r Li

We note that friction is destabilizing (Holopainen, 1961). 1In the finite
amplitude analyslis we shall make use of these long time scales.

4. Finite amplitude analysis

In order that the growth, dispersion, and friction act simultaneously, we
choose the respective parameters so that the time scales defined in (3.8),
(3.10), and (3.12) are the same. Therefore

b= 8= rf o (4.1)




Now the time operator in (2.4) can be replaced by

1
- iy
St (4.2)
where
L
T Mt A (4.3)
To bring in nonlinearity we choose the topography to be
N, o= 185 b i
’6 - ‘ ' (,(.‘1-/ ? (4.&)
and expand the streamfunction in each layer as
L oatr) 912 ¥ A0
'Jn = |A|“f,.‘ +1d1 ¥, - jal Lp" + e (4.5)

Using (3.5), (4.2), (4.4) and (4.5) in (2.4) we obtain a sequence of problems
for each power of (Al* .

The O(Wt*) problem is

R . ) - G4) ") - “l -
[0p + (u 1 )0 ]] ‘F,M 0 -4 )] t(prru)d, = 0C (4.6a,b)

f Wi - o ted « 5 - i oo
(')f*uxjx)[‘{l - FlY “'f’l)_l t {A—HJ‘)\O‘“ o
b 2 1
Eqns. (4.6a,b) lead to the specification of the neutrally stable nondispersive
disturbance whose evolution we seek, i.e.

\f‘l“) = A (/(X’tdt) & /T"?

o) (4.7a,b)
L&) - XA(L\‘—«J/(),'_&L/Y‘?_

The O(/) problem after the inhomogeneous terms are evaluated using (4.7) is

(L) _ (2} =) - . (z)
[ o0 00,3, 1[5 5 FAATN] ol 2

- ]_,T’_F(J’—/)]Arwa,lf‘? {4.8a,b)
;(z) - {x} (3 - (o
(0, 7, ) [ Vg ~FI4"-6")] + (2-ru )4

1 - " J
- [ (-fr(r—/)JATm?fy - YYAxb/mir‘?,

The long time inhomogeneous terms are handled just as in Pedlosky (1970), his
equations (4.15)-(4.19). They give rise to the particular solution

q)ﬂ)_'o

I

({)lz; - 4 Atrd Lc&’f‘?fdk Ai'

(46.9)

b Fou-¢)?

ataliatiamiot

"
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The topographic inhomogeneous term produces a topographically forced wave
which is due to the interaction of the neutrally stable, nondispersive wave

This forced solution 1s

‘p’:? = 'Fﬂ A(wa;i, T)Anwllfg,

with the topography.

where

+-oﬁ X b

¢ 2 f(f§'0(ul-¢)

{ ~--Z Y= L

2 LRSS -1) (U )

g - HHE . pAril
r F(u,-c)

T - 4TtF k- FUe

/: /:{u,_‘b)

(4.10)

(4.11a-d)

We could add a solution consisting of a zonal flow which would depend on y and

T only, since it is a trivial solution to the homogeneous problem.

However,

with the selection of the functional form (4.7), appropriate in the nondis-
persive limit, and looking for a solution which decays to zero as x approaches

+ ¢ , there is no way to produce a zonal flow.

z Thus,
solution would be zero and need not be included.

. /%
The final order {14877

inhomogeneous side using (4.7), (4.9), and (4.10);

- - - - () - [CY h
L )1 T, !d‘).)"][ L}vh‘,“} +,‘{(/L - 4, “)] t (/'31FU¢,) ‘*ffl ’

X

<31 IY, :
P ’w—‘» W }f - N . . )
() (e yjcfx A” (U~} ’—"“”7‘ '4\“«
N I TS R
+ ,Z} ( e ’I’) chlfy‘/4x
L _ Ty NS _ o
(3‘4U‘27‘}[ ?:’y,f..{lf:‘- __.-,‘h‘*'/] ¢ (,f;-/ru_, ) 42
- (e F N prra) - ,
~ Rl < e . . u. - T
,:(u'_;); L’(L/IJ}Ll)‘ 4f'[ y[ b L_)[l‘_, :

4 - W I - _
P Y ey A s Al iy Wy At Yaelly A

A

this additional

can be written, after evaluating the

XXy

2 >
iT L_")_ L/ 2 (-t /7.» [V 2 l-’,‘l— 4 e /7 . atlny ) I q ‘
4 ) 1 ¥ ¥/ $)(A°),

where we have written down only resonant terms.

(4.12a,b)

In (4.12) we see the presence



of all the desired processes, namely instability, dispersion, friction, and
nonlinearity. Removal of these resonances results in the following evolution
equation for A. It 1is

Y . (4.13)
Aa‘, LTS Axx T Ax * L ’4xux + %A ),y &
where the 4, are given in Appendix I. The second through fifth terms are

in order, the growth, frictional, dispersive, and nonlinear terms.
5. Inviscid exact solutions

From here on we shall concentrate our discussion on the inviscid
form «;-¢  of (4.13). The remaining coefficients of (4.13) change sign
according to whether we are on the long wave or short wave side of parameter
space (see Fig. 1), whether the term ¥, Ay, 1s actually a growth or decay term,
and the sign of topography. Whether or not we are in the long or short wave
side of parameter space depends upon the width of the channel relative to the
internal deformation radius, i.e., the parameter F. On the long wave side

I .
7,7 < = o< X
] P vz
while on the short wave side
_ 2
F > 4
VI

by definition.

i
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Figure 1: Schematically shows the region of parameter space
covering the long wave and short wave sides of parameter
space. UC is the solid line.

We now rescale the variables in (4.13). On the long wave side we obtain for
b>0 (topography of elevation)

Bre 2 Bag * Baxzy *(B8),, =0 (5.1)

ediinkitaia

Fr

sy

e




where the (+) sign refers to the unstable case ( £, >¢& ) and the (-) sign
reters to the stable case ( « ¢ ). The following scaling was used

4
T=d
X = ax (5.2)
A= NB
where
a=,11"
Voot
-_
d= ¢t Y (5.3)
‘o
—_—
N= 3 %
A -

and (+) sign has the same meaning as in (5.1). On the short wave side (4.13)
becomes for b > 0.

’?rz 18,5 " By, Az "(’8‘)12 = (5.4)

where (4.15) was again used and

2= T
v ‘e
d = i ; - i-'” 1 ( 5 . 5)
Vo fe
N= _(t o
J { ‘ <y

For topography of depression (b< 0) the sign of the nonlinear term in (5.1)
and (5.4) is changed and (5.3c) and (5.5c) are interchanged.

We look for the solitary wave solution

) > i _
B -G wech [/4'/1(-'((_)_} (5.6)
to (5.1) and (5.4). 1In order for (5.6) to be a solution to (5.1), we must
satisty the following conditions
kS
¢ k= &
(5.7a,b)

z

C o -2 vk O

the first of which is the nonlinear-dispersive balance. Equation (5.7a) tells
us that only solitary waves of elevation are possible (& > 0). If b < 0
(5.7a) would become 6k** - - ( and only solitary waves of depression

(& < 0) would be possible. Equation (5.7b) says that there are no solutions
of the type (5.6) when the unstable case ((+) sign of 5.7b) is considered
since that would imply C2< 0. 1In the stable case ((-) sign of 5.7b), (5.6)

PrRNST

TPRP " PR
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P
is a solution when 4k’ 2> 1. On the short wave side similar arguments
apply. Equation (5.7a) still applies but the phase speed condition becomes

LS
T

(Tl -] >0 (5-8)

which 1s satisfifd for all wavenumbers in the stable case ((-) sign of 5.8)
and only for 4k°° > 1 in the unstable case. See Table 1 for a summary of
these results. It is important to realize that in Table 1 k’ =1/2 k. It
1s interesting to note that when the signs of Fyx and Fyyxx are opposite

only long wave (0 <k < 1) solitons are possible on the long wave side and
only short wave (k2 > 1) solutions are possible on the short wave side. N
soliton solutions are also possible. The reader is referred to Hirota (1973}
for a discussion of this.

We have still not found solutions for some wavenumbers on the short and
long wave sides of parameter space. We svall look for some of these missing
solutions 1n the next section.

6. Envelope solitary wave solutioas

In this section we look for envelope solitary waves to (5.1). To do this
we derive a nonlinear Schrodinger equation (NSE) from (5.1) for the amplitude

a(X, Ty) of the wave packet solution " )
- T
Q(X‘,‘C,)(;"( A )

where ¢, and X are the long time and space scales, respectively. These are
defined

T - €' ¢
/ (6.1la,b)

X = c—/x-v; T)

where ., 1is the group velocity of the packet and ¢ measures the width of
the packet in wavenumber space (€ in this context is not the Rossby number as
in section 2). Using (6.1) the time operator 7, and the space operator

can be replaced by

~ .2
QZ-C‘L? :)X *+ € UZ' (6.2)
371—# eJX
If we expand
8= C./gl -r(:lk)l - {:365 + .. (6.3)

and use (6.2) to replace the time and space operators of (5.1) we obtain a
sequence of problems in successive powers of £ . To 0 (&) we have

ey + qlﬁll T 0 (6.4)

As a solution to (6.4) we take

o0 g

b = alX Z)e‘ie L (6.5)
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where * denotes the complex conjugate and

& -‘/(’}- -ul T (6.6)

The dispersion relation is

Ul k(LT (6.7)
When the (+) is chosen (possible instability) we must have k2> 1 so actual
instability is not allowed. The group velocity corresponding to (6.7) is
20° -1 (6.8)

V, - [ — Z
g Skt )’
From (6.8) we note that in order to avoid an infinite group velocity we must

have k2 # 1. The 0(4°) problem is

ey NE SR 8 YRS 2.6
it 2y T rrEx 4(2:.297 t2f - ¥ )(4)((- + “ha’ e r oy

[

) 1 j') +
where (6.5) was used to evaluate the righthand side. Using (6.7) and (6.8)

the inhomogeneous term proportional to g% vanishes. The inhomogeneous term
1e £

proportional to g yields the forced solution
!, _‘-Zlu;
by aeie Tt (6.9)
At C(€7) we have
4 ¥ - ). t ) e
})]7(_ 7 ),«,z '/)5111/ {2 "y ‘\74'_),:#1)(/'-’/‘
. (6.10)
- A t) ‘I ‘ - ’ / e —|,'7.‘. 5 ) - ! f
it ! L7, Py Uik T o TE % xx )b’
-4 Iy (0 )
The ounly resonant terms of (6.°0) are proportional to b} and bibsp.
Using (6.5) and (6.9) in their removal vields
ot (,-c, - A L“‘)(_X w ot _e/“,/“ (6.11)
where
YRR
A e -4, vt
! (6.12,a,b)
A T .
Sk k 1)l

P R bl




It is well known that envelope soliton solutions of the form

)t BTSN - (6.13)
o ) Pk ey AN x eV

L

exist 1f

s (6.14)

(Y] 4 (/

On the long wave side for which this analysis was just carried out, (6.14)
is true for kZ> 3/2 in the unstable case and always true for the stable
case. On the short wave side A 1is replaced by ) ° where

AT = A
Iao this case the condition Ay zo 1s satisfied and the analysis is valid
for D<k*< s in the stable case and the analysis cannot be done on the unstable

side because L 1s not real for any wavenumber. This is summarized in Table

1.
Table 1.
EXACT ENVELOPE
SOLITARY SOLITARY
LONG WAVE SIDE WAVE WAVE
UNSTABLE NONE k2>13/2
O smase ocwer ALk
SHORT WAVE SIDE
UNSTABLE k2> 1 NONE

STABLE ALL k

A comparison of the wavenumber space which allows exact solitary
and envelop solitary waves on both the short wave and long wave sides
of parameter space. Note k' of (5.6) is 1/2 k.

8. Discussion

We have discussed some special solutions to the inviscid form of
(4.13). The search tor viscous solutions has not as yet proved fruitful.
The exact solitary and envelop solitary solutions have complimented each

other. 1t is interesting that on the long wave side there are no solitary

waves with a wavenumber that would give rise to instability through the
linear dispersion relation (6.7). However, on the short wave side the
exact solitary wave exists for wavenumbers for which there is instability
according to the dispersion relation

plte L@ k)

e s

T e s,
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which 1s the counter part to (6.7) on the shortwave side. As a result we
might conjecture that there may be a difference in the way these solitary
waves evolve from initial conditions on the long and short wave sides if
they do at all. To test this the initial value problem must be attempted
which may be possible in some parameter regimes through inverse scattering
techniques and/or a combination of numerical and asymptotic expansion
techniques.

Pedlosky (1972) has sought wave packet solutions directly from (2.4).
The essentlal difference between that analysis and this is that in the
nondispersive limit we have considered, the zonal flow cannot be altered
when we seek solutions which decay towards + » in the zonal coordinate.
This modification of the zonal flow is essential for the eventual quelling
of the initially exponential instability. Therefore, the inital value
problem corresponding to (4.13) may not always have bounded solutions in
time since the feedback with the zonal flow 1s not present.

We have not reached the ultimate goal of this work which was to find
growing solitary wave solutions. It seems if they exist in this model,
that they are tangled up in the initial value problem for (4.13).
Furthermore, it seems likely that one must abandon the idea of the growing
classical soliton and to give way to finding a growing isolated feature
(i.e., at the very least we should allow a different spatial structure).
However, the classical solitary wave is certainly a useful concept in
reaching that goal in that the necessary physics may be contained within
it. Namely, as we have suggested in this paper that combining an
instability with the classical nonlinear dispersive balance of a solitary
wave may produce a growing isolated feature. Although growing isolated
solutions have not yet been obtained we have succeeded in deriving a
relatively simple equation which contains the physical mechanisms which
may lead to such solutions.
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APPENDIX I

The coefficients are

= L
L ptate )t U
A AU 1
A = o2 ¥ s
YF(U,-)D(5T -1)
! 3 1 3 -— — E™ ¢
x, T | i+ ar) (T =F)d_ r2uaF” ]

3 artpteaf)tt

Cutn s

Ly T
grint+2F)
LRI A !
5 - — -
?D[(jz“)
«b = X, + X,

where

D = /”_C_"_:.UPJ[}'(WL{/‘} N uL-—r—) y
“ - A (‘J,—“— < /

x),%3, and %, agree with the results of the linear analysis, i.e.
with (3.6), (3.11), and (3.9) respectively. We note that the total growth

term %, consists of the baroclinic part <, and a topographic
part =, due to the interaction of the topographically forced wave with
the topography.
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A FORCED BURGERS EQUATION

James Meiss and William Young

1. Introduction

It 1s now well known that rather mild looking systems of third order,
ordinary differential equations such as the Lorenz model have chaotic, or more
precisely aperiodic, solutions. Although the Lorenz model was derived by
modally truncating the partial differential equations describing two
dimensional convection, its chaotic solutions are found only for parameter
values at which the modal truncation is unjustified. Thus one could argue
that the Lorenz model, and other similarly constructed ordinary differential

systems, tell us litle about the chaotic solutions of partial differential
equations.

This report began as an attempt to find a simple model partial
differential equation which exhibited chaotic behaviour. Our hope was that
the equation would be simple enough to allow an exhaustive numerical study,
thus we restricted ourselves to two independent variables. Although we were
not successful we felt it would be pedagogicaly useful to summarize our
attempts. The one conclusion we can unequivocally draw is that forcing,
dissipation and nonlinearity are not sufficient to ensure the existence of a
chaotic regime in a partial differential system.

2. The First Model

The first model we consider 1s the nonlinear eigenvalue problem

Uy = UUx + Ru + Uxx (1a)

U(o) = W) = o (1b)

Burgers considered this model in 1939. We will reexamine it from a more
modern prospective.

First u = o is a steady solution of (1). When R< z£2 it's also linearly
stable. To see this, represent u as a sin series:

oo
Wi, t) = D7 Qutt) sim (mrx) @

ney
The linear evolution equations for the anls are
2n = (R- n*n*) An

I -1 < o then all the a,’s decay exponentially to zero.

We can prove a much stronger result than this using a variational argument
viz when R¢nZ all initial conditions decay to u = o.
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Begin by multiplying (la) by u and integrating over the interval. One has

i’j{" Cwl> = R<uty - <ux> (3)
!
where o> = /o () dx
Equation (3) 1s an energy equation, the left hand side is forced by R<«*>
and < ui> provides dissipation. A simple variational argument shows that

the smallest value of the functional

_ < wid>
Ilo) = S
Ato) = wi) = o

is 7z 2, Thus (3) becomes

j’lé <ut> € 2 (R-7*)<u?>
so that if R~ 7% < 0 then ¢u2>»0.
Eqn. (1) is so simple that all the steady solutions can be reduced to
quadratures by introducing
\— ?-/Mx

and writing (la) in the form

Ux = Y% (5a)

Ve = —ulli+v) (5b)

The trajectories of this system are sketched in Figure 1. Equs. (5) are now
simplified by eliminating x and using Vv as an independent variable,

du _ Rv
dv wir+v)
or
- o+ 44 K (6)
u = *(@ze)”, /4 + Z}(IN) -V

where A is the constant of integration. A is determined by requiring that (6)
satisfy (1b). Using (5a) and (5b)

u du
X:/:dﬂ:/o TV

; fw v dv (7
=- f/o M‘I - ./v, 23
where V) is the value of v at x = o. At x = 1, where u = 0 and v =va, (6)

and (7) imply

m (2R) " = /V‘ A (8)

] ,/ﬂ + /o;lllv)—v

m is an integer which determines the number of zeroes in the interval.

Equation (8) determines A as a function of R and m. This is equivalent to

choosing a particular trajectory in Fig. 1 and traversing it (m+ %)
times starting at u = o.

e o dnintd o
L ————
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The results of a numerical evaluation of (8) are summarized in Figure 2
(Burgers discusses some analytic approximations). Instead of plotting A
against R we use a more conventional measure of the amplitude of the
solution. The linear solutions are at R = ( "W )2 on the {<«> =0
line. The steady solutions we have found using (5) all bifurcate from these
points.

We shall discuss the first bifurcation at R =12 in detail. Let
E= R-7n* > o

and substitute (2) into (la) retaining the nonlinear term uuy, Whené« 1l it
is only necessary to retain two modes to capture the leading order behaviour;

&= ta - Lap (9a)
b = (-38%+e¢v)b + La (9b)
where u = a sin(Tx)+ b sin(2mx)+ -~~~ . Now use the usual scaling which
applies in a slightly supercritical situatioun:
a = JeA b = B T = ¢t

and to leading order (9a,b) reduces to the Landau equation
3
Ar = A- LA (10)

Equation (10) shows that when R> 722 the solution u = o is unstable and the
system bifurcates to a new steady (and also stable) solution.

Before discussing the stabiity of these steady solutions we will
investigate them in the limit R » 1, u ~ R using boundary layer techniques.
This investigation supplements the exact solutioms in (6) - (8) and provides
ugseful insight into the stability problem.

If

then (la) is
[ = w + aa,‘ + ‘2\‘ a,:x (11)

1f the term R-1 Y, , is neglected we get

T=-x+c¢ (12)

This solution cannot satisfy all the boundary conditions and must be
supplemented by thin boundary layer regions in which the neglected term is
important. To resolve the boundary layers introduce

E = R (X - Xo)




where x, 1s the position of the boundary layer. With this new variable (11)
is

© = R'U + UAy + Uy (13)

The relevant solution of (13) is

X = za Tawh [ak’(x—xo)] (14)

The constant « is chosen to satisfy the various boundary and matching
conditions. For example to construct the solution sketched in Fig. (3a) we
have ¢ = 1 in (12) and « = 1/2, x, = 0 in (14).

w “u

1 |
- ~—> ¥ + — x
® b}
1 §
N> x e x
©) )

Fig. 3: A schematic illustration of the boundary layer solutions
constructed in using the limit R>» 1, u~R.

The other solutions sketched in Fig. 3 can be constructed in a similar
fashion.

We turn now to a discussion of the stability of the steady solutions.
This is an issue which Burgers completely ignored and it is of course vitally
important in deciding whether (la,b) has chaotic (or even periodic) solutions.

Linearize about the steady solution

W= ki + wixt)

EPEINY
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where W (x) is now the steady solution. The linearized equation for u' can be
reduced to

“ G+ fo-R -4 oat tw]* = o© (15)

using the substitution
P00

Equation (15) is the time indepeundent Schrodinger equation. 1Tt tells us
immediately that o 1is real, so there are no oscillatory instabilities. This
is disappointing since the appearance of chaos in ordinary differential
systems 1s frequently preceeded by the overstable oscillations characteristic
of the Hopf bifurcation.

It is possible to use (15) combined with the large R solution to discuss
the stability of the solutions sketched in Fig. 3. Using just the interior
solution (12), the potential in (15) is very simple and the eigenmodes and
eigenvalues can be discussed using the well known solution of the simple
harmonic oscillator. This analysis suggests that the solutions in the (3a,b)
are stable while those in (3c,d) are unstable. This analysis 1s not
conclusive since it is hard to assess the importance of perturbations to the
potential resulting from the boundary layers and higher order terms in the
R-l expansion. However, a numerical solution of (la,b) using spectral
methods confirmed this tentative conclusion and strengthened it to fully
nonlinear perturbations. No matter what the initial condition was the system
always evolved to a final state resembling (3a) or (3b). The nature of this
instabilty is sketched in Fig. 4 for the solution in Fig. (3c). Basically a
small first mode perturbation to a solution with a boundary layer at x = 1/2
breaks the symmetry about x = 1/2 and causes the shock to propagate (initially
with a speed T¢ ). As the shock moves towards x = o it evolves into an m =
1 solution.

£ sin(nx)

}Q{A, +}Q ]Nf\ﬁ. N ]
. . = .

Fig. 4: A huqristic illustration of the m = 2 solution. A small
first mode perturbation breaks the symmetry about x = 1/2 and
causes the shock to propagate.
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To summarize, (la,b) is not a successful model. If R€7m2, y =0 is an
absolutely stable solution. If R » # 2 the solutions sketched in Fig. (3a,b)
and located on the uppermost, m = 1, curve in Fig. 2 are absolutely stable.

In no case did we find any interesting (even periodic) time dependent
behaviour. These conclusions were supported by a numerical solution of (la,b).

3. The Second Model

In an attempt to find more interesting behaviour we considered a more
complicated model, also proposed by Burgers in 1939. The idea is to maxe R
time dependent in a way which depends on the integral properties of u

Be = P-R - o <u?*>

(l6a)
Ue = Ru + LUx + Hxx (16b)
«(o) = uw) = o (16c)

P and O are constants, Burgers only considered the case O =1l.
The energy equation for (l6a,b,c) depends on the sign of oo . Let -
= & (R-P)* + <u*>
then
o = Peut>— <ur> - /3/:/ (R-P* + (/- Sﬁnr) (R-P)<ur>
If o> o then using a variational argument we can prove as before that
when P <« 7zt , r > 0 as taoo.
The nature of the solutions when P is just supercritical:
P= gt +¢ and £ &/
can be determined as before. Once again a =, A satisfies a Landau equation
Ar = A - E(6T+DA* (17)

Note that the bifurcation 1s subcritical if o ¢ —Z”.

The steady solutions can agaln be reduced to quadratures. The amplitude
is plotted against P for the m = 1 solution in Figure 5. If & > o0 the curve
bends down closer to the P axis for a given amplitude. When o = - £ the
curve 1s perpendicular to the P axis at P = % . This is in agreement with
(17) which shows that at this value of ¢ there is a transition from super to
subcritical instability.




Fig. 5: The position of the m = 1 steady solutions of (16) in the
(amplitude, R) plane for various

Now consider the range ©>o>-F£, say & = - 1/12 to be specific. We
originally thought there would be interesting time dependent solutions for
sufficiently large P. We reasoned as follows. Suppose P = 10 say. Then from
Fig. 5 there is an m = 1 steady solution which a given initial condition can
evolve into. The model 1 results suggest this steady solution is stable.

This was confirmed numerically. When P is increased past the "turm over
point" A of the 0= - 1/12 the curve in Fig. 5 there is no longer anm = 1
steady stable solution available to trap the system. There is an m = 2 steady
solution with a very large amplitude, but it 1is probably unstable. Thus we
expected some interesting time dependent behaviour for P in this range.
Instead what was observed numerically, and later proven analytically, was that
the system goes to infinity in this parameter range. In fact it does so in a
finite time. The analytic proof is based on the observation that when R is
large then

so that

|
]
|




- 163 -

Thus, when o< 0, (lba) is forced by an R2Z term which can produce explosive
instability. Presumably this is what's responsible for the rapid growth
observed numerically when P 1s taken past the turnover point on Figure 5.

4. Modal Truncations

We also investigated the three mode truncation of (l6a,b,c). By this
stage we had abandoned all hope of finding chaotic behaviour in (16). The aim
of this investigation was simply to see how the behaviour of the modally
truncated system differed from that of the partial differential equation.

The three mode truncation 1is

= P-R - 40 (a*+ b

(18a)
4 = (R-aYa - fmab (18b)
b = (R-419b 4+ 4 ra? (18¢)

We will discuss the case o =o in detail. Apart from a few unresolved
questions, the 6# o case appears to be qualitatively similar in the regions we
explored using primarily linear stability theory.

With 6 =0 and R = P > o, (18a,b,c) reduce to

a’, = (P- ’l'z)a - -21'1[' aé (193)
b = (P-sn¥)b + #ra* (19b)
An "energy' equation follows immediately

ﬁs’(aub‘) = (P-ava  + (P-4r) b (20)

Eqn. (20) implies that

(1) If (P -72)«0 then all solutions fall into the attractor (a,b) =
(0,0).

(11) 1f P - 472 >0 then all solutions go to infinity as t o0 .

One of the unresolved questions alluded to at the start of this section is
the behaviour of the system with o o and P - 4112 >0. It does not appear
to be possible to determine the asymptotic state of the system using a clear

cut energy argument as above.

The case not covered by the energy argument 1s

Tt € P g T

v

oot AN gl S




T
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E
| In this case its convenient to use
f

‘ A= b a*

f as an independent variable. The equation for o is

: A A A A R (21)
| 7. = #8*- P> o * 7> = =2(P-a*) > O

|
E

If 7, # 0 the system has a steady solution at

M~ 2
et = mIT
- 2 -
a = ke “f',/(#/?’— PICP-x?)

Moreover its clear from (21) that this equilibrium position is stable even
under finite amplitude perturbations. However, linear stability theory shows
that the return to the equilibrium position takes the form of damped

oscillations 1if
7> —;ilz‘
This is in contrast to partial differential equation where the corresponding

solution is also stable under fimite amplitude perturbations but linear

stability theory shows that all the eigenvalues are real so that the return to

equilibrium is an exponential decay. This qualitative difference in behaviour

occurs at a not too large value of the supercriticality.
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CONVECTION WITH [EMPERATURE DEPENDENT MATERIAL PROPERTIES

M. Cristina Depassler

L. Introduction

We want to coasitder what are the non-linear etrfects i1ntroduced by assuming
tuat the material properties of tue tlutd are included 1n tne Boussinesq
equattons.  Tols was first done by Palm (196U) and Busse (1962) for the case
ol L1Xed temperature on the boundaries aad Lor a siagle wave number kKoo
Here we will consider a continuous tinite band of lincarly unstaole modes.
[here dre two extreme cases ol laterest, ovne is the case of fixed temperatures
o tue poundarles for which the critical wavelength 1s ot tne same order as
tne depta ol tne layer of tluld. When tue flux across the boundarics is rixed
tnstead, the most unstable wave number is zero (Hurle, Jakeman and Pixe
(lyn7)). In tne flrst situatlon there are two relevant norizontal scales and
10 can be approached usiug the method of Newell & Whitehead (19Yn9). 1In the
second case, slace the wavenumber and the amplitude are small, one can ase
sunallow water methods (Cnildress & Spilegel). We consilder only this last case
nere. We find that for large wavenumbers (large 1n tae smaltl scale) there is
no qualitative effect. The bifurcation rfrom the static state 1is
supurcritical; nowever, lor small enough wavenumbers, small 1n a sensc wilcn
will pecome clear later, the bifurcation is subcritical.

II. Equations o tie Problem

We will consider a two dimensivnal tluid contained between two 1nsuliating
. . . - . . . - T A
plates at 2=+ /2 under tne 1atluence 0@ a constant gravitational tiely g:gl
and beated trom below with toe tlux held coustant at both boundaries. e

equatlons thal describe the provlem are
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L) - 44 (o) dk (o) = Rlo) =g (c) =0 (7)
at AT

Toe functions £, g and h which contaln the temperature dependence ot tne
material, except for the properties stated above are arbitrary. The
parameter € will be considered a small quantity.

[ne bouundary conditions are
KAT . ¢
dla on z- * Dz (8)
i
= 22 = O
w’ ot

Je nave coosen tree-free bouadary conditions for simpllicity but everything can
be repeated for rigid boundaries.

static solution and dimensiouless torm of the equations

Equation (3) can be integrated at ouce. Choosing T.(0) = To we obtain
Ke (To-To) + gk, B (Te-T) = Fz (9)
‘etting Tb-T0 = Z_ " T;n we find
i, = f 2/

Tar = A (Tou) R (Tse)

Prine denotes ditferentiation with respect to the argument. Since both 4 and
K depend on the temperature, the Rayleigh and Prandtl numbers depend on Z:

R - &323 (Ts(D/Z) 'Ts(']’/z)) ;T A ' i
K/& i

,_
[
-

<

It 15 convenient to evaluate them at the middle of the layer, where T, -
To. Choosing untts in which D =1, £ =1, Ko = 1l and F = 1 we find

GTlr=0): u, R (=0)- ‘33_”‘((+EA&+--> (1
s /"O "

wilere
) [y - 3
bk~ k(h) -k (1)
9 . . i ) . > .’~".
Since V'V 2O | we introduce the stream function ¥ defined by v = (¥, O)—4;).
wo also let the temperature be T = Ts + 8. The equations then reduce to

4
A
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(v, 990, %, VT v o2p, 024,

. 12
)L\q“."p"‘s‘:v‘pb*

(-

“+ 2)/*—)\ Vlvx < L"/Uv)q: ‘pb;\ + (/“11 ~/Lxx)<d/‘¢z-\p"*) =

(12)

R (tvedhe)(t-¢ LT r8)) 6,
-, -~ , _ . T T, { aw

O+ Wy - b, By )W Toz wd {l R 0))(0,4 T )]

S EETT A AN RENIEA
Adx
witn boundary cunditions

Ve Ve 7O on 2= iz (14)

e e 2T T, <0) I T v 82 ) -4

3caling and Expausions

It the Rayleigh number 1s above its critical value Ro by an amount of
order & , then a bandwidth of wavenumbers of order ¢ 1/2 is linearly
unstable. Toneretore, we introduce the new horizontal variable ¥ = gl/2x,
Tue scaling for tne time comes from the fact that 1f in linear theory we let

tne tlme dependeace be PR we find that P (RO + €)Yz €2, Tols leads to
tne slow trmne scale T = t',z‘ . We also introduce a scaled stream function
o - oefr . AL tnls stage we also identify €  with the small parameter
taLroduced 1a eqgas. (4) - (6H).

Expanding in &

‘i:: \‘L_fé\&‘?."

~

E;T e) !Qe\r» . "

R - R

we ubtaln 1o leading order:

~£—5{\\~

v
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whiete @ ) . , Y4
) (2) - = -2 « 3
L 4 g L

SV By -

?‘z' . (13)
2 %,

and Ro, the critical Rayleigh number.

NS i i
{’;;%L e, (19) ;

and 3(% , T) 1s an arbitrary ifunction,
[0 order &€ we ubtain tae equations
1
—_— . \
% (\\‘;.'t Vb\}_fe\k‘%,r(;u//
dt
IR (s "G .7 \\V
Vivere ° I N B 2

- {V
R .
- Z,ta Clser b‘\,) Yore
witt poundary conditions
¥
i

vz ¥ 6«?. A e\ k—‘SL"'Bv) ®

by - Wipe T U

integrating toe cuergy equation between & =

rrgnt hand side must vanish

rmplies
t

S

2, L) dw
|

.

-1
o 7:1 =
Wwe can then solve ftor E’L and P'L.

The

L Tl et T {
_{};{lqtl \'45 PRt

B bk o+ € 8 p (v,

1]

in order to

2) . A+ V\J) -ft(?.vj)

- i(\‘yux‘*,tza'wu ~‘JLch) L
4

(1,,, (T>¢*'9u] V.oiz (24)

g P

-9 (TsorB) Yosz22 ¥
:

chn # = Ly (zt)
E

-1/2 and 2= + 1/2 we see that the

satisty tne boundary coandition. Tnis
{20 (22) i

solutrion 1s
(23)

we have not included an arbitrary tunction of § and & since we only go to
wrder ¢ 2. foe function h( ) nas been introduced for cunvenience only. Tj
and Ty yre derined oy ,
’ 3 -
v v f > /o
T 7__‘ B \(}\EJ d;‘" k,-" ”/b @Q‘z )J
' y -
i3
oL ; /
T L2) o) e Redy e
. l.
foe solution tor V) g
- , 2 . )
Vo) s Rudola) o v 7ald) oy v () P2l Ro(qosho b)) dutz)
2 - (24)
12(,% (P/\TZ‘\— A%Z//, "2,2*\4t"’b)

i

Q J§[,J AEJ{dl é,(,% ‘;({"‘ ‘\,1*

a\z jl(z'lj)i;o' (-,g")j

_{)'

l [




- 169 -

where we have lotroduced the tollowlng notation:

? 2

i1s the solution to

?lll&l T R“Tl -22“ i)cll w'.ﬂ'\ ?2_ =?;\_t1 SO e 2x Yo

and?3 1s the solution to

- . 2 ;
Thaezz * - ReTav Ry ("I!';t c# &, @abtk)/lq— wi & ?35’6‘-? o omt=® .

A= - 'r)” (J*"L) . f)" (J?‘{z.)
s Loprgeta) w2

¢ = Al v ply-ile) ~P(jr'/L)

D = - B/y _ [F(J*‘/z)rF(J—‘/P_)]/?—

where

uy

iy )

In order ¢ 2 we only need tie energy equation

;L. (;. ;1(‘*‘) = e -+ (V'Lv}_e‘? "vl)_- lagf - W.J§e|1-q/1; Guk )

ae - (25)
Vi Ts - Wi o TR (Tace 1 e Dg - Ougg
d; 3
Agaln,
gy n s
S“] L 2 Flusdd =C =7
R B R W
e gt "L It vt (A -
f‘l ; . . o [ N ‘ )
] N ! N N _ . _ 2*
IS ;.waf‘“ ¥ hd - Hede - (6 da j,ﬂ( iede
‘ -“z‘ 1L "IIL -

where we nave used the expression for Tsl, and the fact that b’o.\_- 0

and that \V,‘ (v) - +1(~‘\ :O

Intruducmg the expressions tor 91, vl 3[14‘4/0 we obtaln an evolution
equation tor j(§,T ) witn which the solution ot ovrder one 13 completely




determined:

) . | . 3 T el . A 7
(}Z 0 \‘wjgggg T (AR~ %‘) - '-23(35 )§ ~ &, L3 ’L)'fi‘j""}_tif

{Ru [GE,.* (2&‘37443“2?”)_](‘) )_i(ff = O (2067

*

\
/

L

M
where ¥ denotes tihe convolution (5 . E )(J) - j { dz @c(;) Flz~
- -.ll

Finally we conslder two examples which show some of the main features of this
equation.

Example 1
onsi - C o= ARt - 2t ! A
Consid t le 1 = 2 * -
vaslder the simple laws & ZZ: , ‘3 ét ,K, \E&
which correspond to .
P- [:ul;i-a((T-T.,)vé*;\(T‘To)/L:]
Fropo (e epr-t) ]
k -k Do ep (1277
we2 obtaln
] +* Ql‘ (5\ L -\‘:‘
\\z‘o"q(ﬂfﬁf Q_Jﬂ-nz‘s s ¢ ‘%_(\) \” (ZY“\"A /) e}

At tnls stage we recall that there are two contributions to R| gne is a

purely linear contribution R || which is obtalned from the linear theory for
margilnal stability. The other is the nonlinear correction which we call Ry,

Let us luook for solutions which satisfy the boundary conditions
~ by expanding in a new small parameter d :
en 5= C, l“/& '

g5+ dret
A:BLJK‘(\;:},*' )
.2__‘ 2 2.‘_‘: -~ g"‘ 2._’_'
Ro o R.
We tind then that
Jv AG) was whea A = &'t
2
R = c@ba Ry

and that A( &) obeys the Landau equation

2 3
Als): @ R A« E[LZP*“') . 2&«&30."]:‘\
2 8

Qa0 6
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We see that we can have finite amplitude instability for

- 3 h
A - i[q-ﬁ-o\% (;X\VA—F} -2<123Q ] >0

e
- - - - .
thac is, tor Q< u - 066 (‘-{“ A ﬁ) . Then for a given
set of parameters 4, 2, 8 there is a critical aspect ratio zi/, which
- . <.
separates stable trom unstable solutions.

Example 2

To see turtner what happens tor small a, we can take for example

- hd - 2} -- - 5
F ’ (i. Lo v} oy (0 T, - ’Y[‘S (p-T,,)

Tue equation tor J becomes

. - 0, 5 , 3
]y 10 AL sy T\ ‘% - .L; - L ) - LZ?QF )§

s Ve

TSEWERL
n ) : et YT "‘5’\ -
NIRRT W “; RN '“’('_;‘\, IETE

/ The corrections to Ry are linear, so we call the coefficient of j"’r.
We can include the effect of )5 by assumming

= —_ S Sow
-(Y],_ﬂ- Wty fa) = & , - ’}3 : Ma -, s Ny
' i
A
n - d L
and scaling x © = £§ , A = £6t, we expand as in the previous example. This
tine we [ind
N '
5o A(s) tyax
wite re
. T p 31 3 ¢ 3 ,3(19 S AR AS
Alsd: @ 22 A~ An ~ 24 m.—-iru.a € Ta Ny
2, Grtl
$0 that for Ny <C tne solutions can be stabilized, nowever i‘\t we
O . . . - :
plout RS v kefR, for tone steady solution A = 0, tl{\‘. turning point Rz2,R, 13
proportional to a” and the amplitude A2 o so that for very
small wavenumbers tne assumption ot small amplitude is not valid aaymore
1
A
‘ N
At -
[}
ol »>
A RafR,
R’J-/Ro

de do nol know 1Y Ehis can be avolded by covasidering small but finite

conductivity ot the voundiaries.
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The maln point we wanted to show is that small departures from the
Boussines¢q approxlmation can alter the nature of tne solutions in a way which
depends on the horizontal scale involved, at least for the boundary conditioas
we nave used aere. Only tor large eaough values of the wave number, the
biturcation 1s supercritical as in the Boussinesq problem (Chapman, 1979).
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FELTECTS QE VISCOSEEY ANDVER PICAT THERMAL GRADIENT
ONSHATTOW WA TR SOI FYONS
Richard W. Gregory-Allen
Introduction

The equations of inviscid shallow water theory have soliton solutions with an infinite set of conser-
vation Laws, “Phe inclusion of viscous dissipation eflects will of course damp the was e~ the conserva-
ton laws Gt Jeast some of them) are lost I an effort o modet a physical system capable of sustaining
a soliton in the presence of viscosity, the fluid is heated from below and cooled frlom above—the
hope being that the wave could somcehow extract energy from this thermal gradient. The equations
ate formulated in o Boussinesg approximation and surface tension effects are ignored. Perturbation
expanstons mthe dimensionless wavenumber £ and N (related to viscosity ) are used to break the
problemingo solvable picces. Made necessary by the boundary conditions are a viscous boundan
Lever at the bottom and a thermal boundary Tayer at the free surface (e effects of i viscous boundary
faver at the tice surface are bevond the order of this calculation). These tao boundary layers and
the region of the main Now will be referred 1o as TOP MIDDI L and BOTTOM. The leading order
approximation. in the it of no thermal gradient. gives the KdV equation. Higher order corrections
vield the time evolution ot the amplitude.

§ I he equations governing the flow o be studied are

u 4 un, +wu, +p/p= (urr + u:z)
w + uw, + ww. + P:/P -+ g“ - (1(7‘ - Tlml)] = V(wfr -+ wzz)

l
T[ ‘]L u'l'_,» —i‘ U17‘; - K(T.r.r '+ Tz;) ( )

u, + w; =
subject to the boundary conditions
onz = 0:
u=w=T=10
onz =h+4n:
ntun=w
T = —AT

[—-pbi; 4 w(wi; + u; )l =0

or expressing the surface stress in normal and tangential components

p= T L [ur(nz)7 + w; — 771'(“2 ’.L w.r)]
+ (n:)?

—————— (v + w,) + n(w. — u,) = 0.

The boundary conditions to be used in the horizontal direction are that everything dics at infinity with
the exception of the horizontal velocity and pressure gradient which only vanish to feading order. This

———— = —— i e et e
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Figure 1.

15 a result of the fact that as a wave damps, the fluid, once displaced. must leave the system at the ends.
This will be made more precise when some notation is in place.

The governing cquations are scaled using the dimensionless wasenumber k by the <ubstitutions

T == h'lk
z=h?

1 [k,
N
u = k?y/ghu’ @)
w = k’\/ghw'
T = ATK’T — 2)
AT -
p= pgh[l —~7Z+ (—172—-(l —2%) + k?p

n = k’hy'.

Defining t"e parameters




the scaled equations become (dropping the primes)

w k(w4 ww) 4 pr = Ak, o)

krw + k'(ww, + ww) + p. — YT = K w,, + w..)
2 (3)

T+ k2 (uT: + wl) — w = % (K*Tr. + T-)
[ u, +w. =0

with boundary conditions

onz =
u=w=T=0

onz = 1 4+ k?n:
n + kfun, = w
T=n
. 2 2.2 1
p—n— o (2n+kn) — U'Ew. = O(k)
u; 4 k2w, = O(k").
Balanaing the tine derivative and the viscous diffusion terms in the momentum cquations defines a
stow difhusion tine scale o be 7 = el Let the £ position of the wave be given by & = @(7)/¢ so that
the peak of the wave stays fixed in the variable § == z — ¢(7)/c. 'Ihe viscous houndary condition at
z = 0 requires a boundary Tyer at the bottom and the thermal boundary condition at the free surface
makes necessary a boundary Tayer at the top of the fluid. Then at the bottom, let ¢ = z/e so that
A v d/cand & = . ALthe top we define s = (1 4 k?n — 2)/0/¢ so that 8. v~ —( /o /e,
and & — & - k*(/o/Ond,. “The lines of constant s are "parallel” to the free surface (s = 0 is
the surface) so that this is not an orthogonal coordinate system and the Jacobian mixcs the derivatives,
Introducing the parameter N by ¢ = A2k? establishes a relation hetween the viscous and long-wave
parameters to bring the corresponding terms in at the roper arder. Thus the working cquations are:

TOP
—(bmg -+ DIVOL + NP — b,k — 0it) + kP [Voneis, -+ Naudie + N'a,] = O(k®)

2 -~
b+ w;’/—&r = (k")

—(@me + w)Vo T, — N(¢. T 4 w + T) 4 k2 [VoneaTy + NaTe + N'To] = 0(k°)

v, — k2 n.i )‘_2- =0
Wy Nei, + g | =

(4)

subject to the free surface boundary conditions at s = 0:
¢me + W — k¥ [ime + N, ] =0
2
p—n(l 44— k’%ff = O(k*)
il, = O(k")

a

T=n
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AMIDDILF
— @+ p t k‘z[uu{ A4owu - )\‘)u,] =2 O(kh
po—= YT - klpw, = Ok (5)
—¢,Te ~ w-f kK uTe + wT. 4+ NT,] == 0(k")
ug + w. =0
BOTTOM

Wit + N(pe — o-lte — 1) + KN iy - N, = (kY
P, — kN YT = O(k')

V@wﬁ-—v(¢ffpw+-Wg)+¢ﬂwaﬁ4 AT,) == O(kY)
g
W, 4- kN == 0

subject to the candition at ¢ = 0:

G=w=T=0.
Natice that the horizontal stross condition at the free surface is zero 1o the order considered m this
paper so that there is essentially no viscous boundary layer at the free surlace i the caleulations to
follow . The horizontal boundary conditions can now be considered in detal. As np deereases an the
slow viscous time scale, the fluid from the crest must exit the system at € = +-oc and thus since the
modcetis incompressible, the sound speed is infinte and

u(-foo, 2} = ;{_l /‘_3c ndg = ~t; /_xn.df == Q).

This expression replaces the first conseryation faw for a soliton i an myvisard thad and must be used if
derivatives of w ot p are integrated over € at O(k7). In the Tollowing calculation these integrations are

avoided.
Now assuime a perturbation expansion in pawers of &2 far cach of the dependent variables, ie..
u = 1y - klzuz + -
2
n= o bk A

cte. then substitute these expansions mto the above equations and separate into prabiems for cach
order in k2.

O(kY%)
The equations in the top boundary layer are;
—(v, Mg + W)V o, + }‘2(?(15 — P, e — Ollgy,,) = 0 (7a)
, =10 (7b)
—(#u. 10 + ©)\/oTp, — N (¢n, Toe 4 tn + To,e) = 0 (Tc)

m)a =0 (7d)

‘w?‘



with boundary conditions ats = 0

B0 Mo + =0
Po = nall 4 ‘72) =0

Uy, =0
Ty —no=0.
Fgns. ¢7d) and (7¢) vield immediately
= —¢o,Nog

and likewise Egns. (7b) and {71) give
Py = no(l + ’72)-
Then the terms with coefficient A" in Fygns. (7a) and (7¢) vanish, so that
0 (Toe — nug) + Tous = 0
tgether with the boundary condition Egn, (Th) gives
T(J = N,

and
to,tng — (1) + oty =0
with Lign. (7g) gives
iy = (Z(:lr(l + ‘72)-

‘Thus the O(k") results in the top layer are

o = g:,-(l + '72) Py = no(l + '72)

Wy = —du,Mog To = no

In the middle the cquations are

— o, tog + pog =0

., —7To=0
"‘d’(),T()g —wp =10
Uog + uy, = 0.

Fgn. (9a) is integrated to give

m = ¢o,Uo

(8)
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while Bgn(9¢) is differentiated with respect o 7 to give
wy. == —oy, Tog,
which can be combined with Fgn. (9d) and integrated over € 1o get
Wy == %TTU:
so that
= (¢u,) T

and
((ﬁ“r)z’r():.: - ’727‘(1 = 0.

| ettingw == v/¢y,.
Th.. —wTy = 0.

I he solution matching with Tyatz =1 -+ O(k'z) is

. sinh wz cosh wz
Ty = (q0 — a) 0% g g OS2
sinh w coshw

where a = af€) is a function to be determined. This gives

. sinhwsz coshwz
uy = —~du, | (e —ag) -~ Qe — - =
~ sinhw coshw
and since the equations e the bottom boundary Taver give g == 0.a; —= 0 = a =const. But

m = (d0,) To- or

== (e, ) (;}r[(n., —a)

coshwz sinhwz
i 4-a -
sinhw coshw

sothatimatchimg atz = 1w py == no(l + 47) gives

(1 4+ v%) = v, [(no — a)cothw + atanh w]

or
| 2 n—a a
T =7 cothw -} tanhw.
Yo, Mo Mo

fhe quantity on the left is a pure number: so then must the right so that @ = Omodng, but then

a ==constant= a == (. "This gives the results

coshwz
Uy == Yo~
sinhw
sinhwz
uy = - o Mog T
sinh w (10)
cosh wz
m =Y,
sinhw
sinhwz
To=10— -~
sinhw
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; where ¢y, is given by
tanh | = —7%3.
o, 14~
3 Now we cansohve for the flow m the bottom houndars laver, The equations tusing @y = 0) are:
fJ(.i — @(),-{1(14\ - 1’141“ =0 (“0)
: P, =0 (11b)
w1
4 o, Tog + (’)’7‘0\»; =0 (1le)

Since the pressure is independent of ¢ matching with the middie gives

. Yéu,

= .0~ Mo
Po sinhw

{he solution o the heat-like equation for Ty is Ty = 0 since the boundars condition at both the top
1 and bottom of the laveris Ty == 0. Then Fgn. (114) becomes

Yo Moe Cschw — @y, Uye - Uy, =0

with the boundary conditions
l-ln(E, CD) = ’)’I]uﬁerS(‘.h w

f"ﬂ(ﬁl 0 ) -

bete == Qi — ymy eschw sothat

with

v(€, 0) = —mcschw.

This heat cquation with —§€ as the ume-hike variable determines the ditfusion of the viscous boundary
Loyer mnto the main flow behind the wave. {he equation is sofsed by taking 1ts Foarier sine transtorm

x o
(;5(1,/ sina¢ ve d¢ - / sina¢ v..d¢ == 0.
4 0

Iwo integrations by parts gives an ordinary differential equation tor @ (where iy the sine transform
of v). The first step is

oc
(o, 0)e + sina¢ v 5" — a/ cosa¢ v.d¢ =0
0
but the evaluation vanishes at both ends so
oo
(n,0)¢ - acosagv|y — 02/ sina¢ v.d¢ =0 (12)
0
and the BC give

(¢, 9)e — aynueschw — a’p = 0
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!
which is multiplicd by exp (—— ‘;—:;): ) to yicld the exact differential ‘
!
2 2 ;
E%[exp(——i—f&)b} = exp (—i)—f&);—lm cschw. z
|
Taking— [°( )d¢' = &
o=~ [T exp |- L — )| mie)ae 4
v= ¢, sinhw Je P o &) m
%
so that i
v= S B /masinag/wex —gi(s’— ) |no(¢')d€' da ‘
= a¢y,sinhw Jo ¢ P do, ! i
|

and

fig = Mo cschw + v. ]

The value of &, at the bottom will be needed later so notice that Eqn. (12) gives

a’y

oo o0 2
/0 cos a¢ ﬁo; d{ =T cschw — m ‘/; exp [‘“’i,*;(el - E)]ﬂn(f’)dfl

So
oo ) o ,
flo:; = % /0. cosas‘{"mo cschw — %——N‘asi:h ” ‘/E‘ exp [.—%(E’ . E)]’k)(f’)df'} da
1
or |
- 2 hat oo 2 |
U, = _rsin‘}nw /u nog(€ +ﬂ)/0 cosag exp (_:_o;'@)dadp {

wheref = ¢ — €. At¢ =0, i

do, b
tal6,0) = — wrescho [ 4=V imgle +B)dp. (13)

This crmpletes the O(k°) problem.

|
5
|
|
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O(k?)

————

Top

The cquations are:

2
s . N 1 2 A1 2
(P — o, lize — 0ta.) + (*j—?) NN + ?\1( L 3')7707 =0 (14a)

v, .
Y 14b
D, . —ny =10 4
p,.+ \/.a'l(l (14b)
; o (1Y 1472
d’u,’rze + é2.m0¢ + Wy + To — '*& = ) ot — A? "a;*- ny, =0 (14¢)
. 1492
Wy, — N LTy, = 0. (14d)
Vo, *
Integrating Egns. (14b) and (14d) from s == 0 gives
. ’72 2 2 '72 2
pr=— " _noNs -+l + %) + () (15)
Ve 2
and ) )
. 1 I ,
) = \/__:azr A28 — do, 12 — b2,m€ + - '?—g}'ﬂuﬂng + Nng,. (16)
Using this expression for @ in Fgn. (14c) gives
. X ) 2 -h e @
du,Tog + Tos + *\%;)—Tﬂufvs — $o.ne =0
so that : )
5 + 2
Ty=mn— ———nhs+0 (17)
Vo(¢v,)?

where @ is a lincar function of 8, i.c., @ == as, where a is some constant. An cxpression for @y will not
be needed.

BOTTOM
The only feature of the flow in the bottom layer that will be needed from this order is @iy, The

cquation is
oy, + Nlog == 0

but from the O(k%) cquations figg = Ynoe csch w — Tl /o, so that

f W
iy, = )\‘( = Yog csch w)

T




and f( )d¢ gives

NE™ (€, 0
), = \ (%)— = YMug cschw¢ — 'dff )) (l8)

MIDDLE

‘The equations are:

2
~ cosh wz A2 cosh wz
— o, Uy — ¢2T—s——rﬂug + e+ (smh ) oo + N ‘7 ohe T = 0 (19a)
: ,sinh
pre — VT2 + (%,)"is'ﬂﬁnn& =0 (%)
sinh wz 2sinh wz_
—¢0,Tog = o, Mg — W2 +A by o = 0 (19¢)
‘u2& + wy, = 0. (lgd)
‘Fake the z-derivative of Fgn. (19¢) ,
coshwz .
'_¢()7TL’{: + ':7_ ;;'—)B—w-()‘ln()r - ¢‘h’70() = Wy,

T

and combine it with Fgn. (19d) to substitute into Eqn. (19a) giving

coah w2z

2
—{¢u, ) ng- + 2y ()\ M, — ¢>zr'70£) + P2 + (—7;) NMog = 0.

sinh w sinh
Iliminating the pressure betwcen this and Egn. (19b) by cross differentiating gives
.. . « s ogm

Jon 2y sinhwz A2 2 ,sinh wz
—(d, ) Tac:: + do. sinhw (N1, — d2,m0¢) + ¥ Tae — (du,)’ Sinh e Msee = 0

so that ¢
‘ sinh wz 2
Tpos — W' Ty = — e [ Moee + @ );(¢zrﬂoe — M\ /_m 'Iurdﬁ')]

which has as the solution for T

Ty = AT 4 () O 2 g, (20)

where

2 4
Flenn = Srmee+ (1) (m,g - _mﬂordf') (1)
Now match T with Egn.(17) in the top layer to O(k*) atz = 1
T =no+ k?[ & coth win)? +A+B— coth “’P] SO LN

iacaandusibaily
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3
and
T =+ k2|m — }\z"ﬁf"l-*m)ﬁ +0] + 0(k?) !
Vo(e,)? ;
¥ 1+ I+
v ‘7 2
A=t o, E T ™ 8 2)
M.tching w with Lgn. (18} at the bottom will determine A¢ and Be. Using Fgn. (20) . 1ign. (19¢)
] becomes
sinh wz coshwz  z coshwz sinh wz ;
y = —— — = ¥ — Nn).
w ‘m’[ *sinhw Ccoshw v coshw * sinhw (27110 o,)
Combining this with wy from Egn. (10) and expressing w in the boundary layer coordinates,
0y TMoe . ¢()
— 22 § o2 Por ay.
k sinhw k costhﬁ +0(k%)
? Since iy == 0 and in the expression for i, the term &g /¢y, dics for large ¢ then i
- cschw A
W = N [7\7:? / B~ 7]() (B4 €)ds — ’.H"‘“ }‘*‘ O(k").
)y
Thus
N —1/2
b= =¥ T [T s + g4 (29
(d0.)2 /70, ¢
and then ) 0
1 4+ 1+9
A = —2- —5-——F¢ — Be. 24
‘ (o2 MMt g, e e 24
A substitution of Egn. (20) for Ty in oo
cosh wz ¥ 2
—(80,) Toe: + P2 + 27 Vi (Mo, — ¢2.me) + (sﬁl—l_w) nonee = 0
gives
g Losher|, g1t 1475, |4 3 sinhuzp
(0, (¢( G [mg @) nn'log + . TeBe + o, coshw
z sinhwz cosh wz cosh wz 5y 2
B ﬁ[tﬁur sinhw ’;;Ivnhw ()\ Mor — $2:0g) + (sinh w) ToMog = ’
Necarz =1 ’
— oo 2l — 22 o + L2 R — Befcothw + LB tanhw
P = (,) (%' ['llg ) mmug o, e B + o, ¢
—Fel— + cothw + 2ycothw(- ), noe — Na,) — | —=1— 2'107)0 + O(k?)
¢ ¢0, v T 7 sinhw ¢




and

P = Y, Mo cothw + “7277(1’(2(7](; — Rz\/ds) + O(k")

50
p = mo(l + %) — N%? :1/: shog + k2{2‘72770770g + (1 7)o — 2( j;j%)zmmug
n rﬁ[( ) (((z‘)’:)) (1427 )]v + ;}:‘ B(tanhw — cothw)
+ 2‘-7;57 (2,10 — Nomo,) — ( :{7 ) - l]nmmg} + O(k")
But

2
i)i = 1,(,£(] -+ ’72) — N \7/031]()£ -+ kl[nzi(] -+ '72) + '7277()77()5.] +- O(k')

so these can be mutched (being careful about the mixing of derivatives) to give

. ] 1 2 1 ¢,) 1 YAV " 2 2
3[71 — (';j(‘): )]nunua [{l +( ;—’j )}4’01} Mg + [( +17) 2,7(24;07) 1L —t'l)]”"ﬁée

i (o)’ — (1 + 1/2
=\ o
{[ B T ] f 8" (8 + €)dB
[(1 ) = (VL 297) 2(1+v‘2)]%

+ (¢Ur)4 ¢l)1

(25)
where the expression for B and F have been substituted back in. Naming the functions of vy in square
brackets ind allowing ¢, to vary with 7 makes this equation a bit more manageable,

3Pnomog + QA(T)noe + Rnogee = )\Q[L/(; B~ " Mnue(B + €)dB + Mﬂ()r]- (26)

Before solving this equation, an expression for the 7 evolution of ng can be obtained by multiplying
through by ny and integrating over all €. This is written

3 /_ _Molrmmg) dg +42 /_ 'medf‘*' " / MoMogee d€
2
e [ s e+ 0apag + L [ (rm)’de]

=p|*

Scveral integrations by parts finds the terms on the Icft hand side to be 0 so that

A" orae= =2 [~ 0o [" o 1mgo + 0apat ()

4

|
t
I
?.
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Now the equation for gy will be solved by expanding ny in powers of A2, i.c. let
o =g+ Nng+ -
and assuming A < 1 the O(A®) problem is written

3P778'l8& + QA"lge + Rnggee =0.

So fim( )€ to get
3P
5 (0)? + QAn§ + Rnfe, = 0

and then [ o )€ gives
P
200 + Ly + Foaber =o.

At € = 0, the wave is at its maximum so ng = A(r) and 118e = 0 so0 cvaluating at this point gives

so that

&, = —m,[——-——,—ft(r). (28)

The evolution of nd is governed by
R
0,0 0 0 _
3’70'705 - A'loe + I‘;"oggg =0

which has the solution
nd = Asech?y/AC¢. (29)
0 4R

Substituting this into Eqn. (27) gives for the long time evolution of iy (leta = /3f)

4 A?sech®at d¢ = %{l-‘ Asech?at /o B~ "%Aasech?a(B + ¢)tanha(8 + €)df d¢.

dT —0 ~—a0
Making the substitutions
AP AP
X = mf Y= mﬁ

Ieads to the expression

a0 174
AT3/4, sechiydy = —Ii( P ) I
—oo M

4R

PR Y Y - re@
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where o =~
1= / sech’x/ ¥ " sech? (¢ + x)tanh (v + x)dy dx
— oo Li]
or
ATIA, = —4N
where
__ L ("
T inm\R
So d
el Sl VL
dTA N

= T Ny )

Replacing 7 with dimensional time gives the more illuminating expression

—4
At) = A(0)(1+NA(0)'“ Yy
V kh/gh

= ghk? AQ) (31)

((kzgh-')" '+ Na(0)" 4u'/2t)4

which should be considered in the limits v — 0 (the inviscid limit) and AT — 0 (no thermal
. sgnhent). When i == 0. A == A(0) and the wave is unchanged in time—a gummc sullmn In the
lmity — 0; P—a-—lR——*——‘;L—*—\/,‘mdM S2sothat

= A(t) sech? —‘/2325

Alt) = ghk* — ———.—A0) N = 3

I
((kigh 9 4 NA©)Y ) VD2

Notice that there is no situation where the wave doesn't damp since L = 0 would imply that
tanhw = 1. certainly not within the range of the Boussinesq approximation. Higher order calcula-
tions and changing the thermal boundary conditions to constant flux (rather than constant tcmpera-
turc) still hold some promise for achicving a true soliton in the presence of viscous dissipation.
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.

A SIMPLE MODEL OF THE KUROSHIO MEANDER

Spahr Webb
I. Iotroduction

The Kuroshio takes onme of two distinct paths as it flows along the
south coast of Japan. The Kuroshio will flow along the upper part of the |
shelf for several years and then suddeonly shift to a path which loops far
offshore near the northern end of the island of Shikoku and theon back
onshore before it passes over the Izu ridge. This second path is known
as the Kuroshio meander and may remain in existence for several years
(Robinson and Taft, 1972) (see Figure 1). This phenomena has been
observed for several decades, Stommel and Yoshida, (1972), provides a
summary of the older references. The path of Kuroshio flucuates widely
arovnd either the meander or the coastal path.

A model 1is vneeded which explains the bimodel character of the path of
Kuroshio. Robinson and Taft (1972) base a theory on the theory of steady
free inertial jets. They suggest bottom topography strongly constrains
the path of Kuroshio when it lies on the shelf. They then hypothesize
a weakening of the bottom current velocity which reduces the topographic
steering and allows the current to flow offshore. Once offshore the
current no longer feels the bottom. The possibility of weak or strong
topographic constraint forces a bimodality in the possible paths.,

White and McCreary (1976) voted that since the bottom slope near the
shelf is large the change in depth across the width of the Kuroshio is
also large and the gentle topographic steering of Robinson and Taft
(1972) is not an appropriate model. An experiment by Taft, Robinson and
Schmitz (1973) weasured the bottom current velocity under the Kuroshio
over a 64 day period and found the mean bottom current was not generally
in the same direction as the surface current and is small. A later
paper, Taft (1978), based on the same experiment suggests = deep
countercurrent may exist.

McCreary and White (1976) model the Kuroshio meander as a Rossby lee
wave excited by a bump in the coastline, the Island of Kyushu. Their
model was based on a two layer ocean ~nd the equivalent barotropic
quasigeostrophic potential vorticity equation. The lower layer is
stationary so bottom topograpbhy is not in the problem except as a
bouniing coastline. The wavelength of the Rossby lee wave is larger for
larger current velocities. They invoked a secondary effect dve to the
Izu ridge "water gate" to explain the bimodality of the current paths.

The model to be discussed will include the Izu ridge specifically as
an "outlet". Nonlinearity ivn the equations will allow several steady
states to occur given one set of boundary conditions. Charney and Devore
(1979) presented another geopbysical phenomena where multiple stable
states arising from nonlinearity may be important in their examination of
atmospheric blocking. Charney and Flierl (1980) included nonlinearity in
a model of Kuroshio also, but their solutions require several "bumps" in
the coasstline to get more than one steady state.
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Three solutions will be found for the same boundary conditions for a
small range of the parameters in the problem. The last section of this
report will examine the stability of these solutions to show that two of
the solutions may be stable. Ovne stable solution includes a la. ze
cyclonic eddy and is similar to observations of the Kuroshio meander. In
the other stable solution the current is held tightly to the coast.

I1. The Model

The coastlines of Kyushu, Shikoku and Honshu and the Izu ridge will
be modeled as three sides of a square box with an inlet on the west and
outlet on the east side (Fig. 2). The Izu ridge is mostly quite shallow,
less than 500m deep but is cut by a steep walled channel approximately
100km soutb of Honshu. The Kuroshio usvally follows the coastlines of
Kyushu and Shikoku with separation (when the meander is present) occuring
vear the northern tip of Shikoku. It is thevo reasonable to use a model
which assumes a fixed location for the inlet. It seems to be necessary
to require the fourth side of the box to be closed also. No resonant
modes are possible in an open geometry uunless there is a reversal in the
direction of the mean flow. The box was made square, but the character
of the solutions is independent of the aspect ratio,

The ocean will be taken to have two layers, with a rigid lid
condition at the surface and the lower layer statiomary. Computations of
the geostrophic current by Worthington and Kawai (1972) and Taft (1978)
found that current speeds above 100 cm/s were confined to the vpper 500m
and nearly all the northward transport was in the upper kilometer of the
ocean.

The appropriate equation is the equivalent barotropic guasigepstrophic
potential vorticity equation.
- - s L2 )~
XIS / VY iyi=C
Bt(\/ % -D ‘/‘f Tkkﬂ) N i \'/’-—t. (1)
Here ? is the streamfunction, the coriolis parameter is f = fo + 3y

and D is the depth of the fluid. The north-south coordinate is y, and
the east—west, x. If the solutions are required to be steady:

W By F(Y) 2)

F(?ﬁ is now an arbitrary function and needs to be determined. This
equation requires the potential vorticity to be constant along 3
streamline. The streamfunction at the inlet is assumed to be of the form:

3 a3
Wos-ua (4o + Ly 3)
L 18 @3
(¥8 /
The width of the stream is a, u is a characteristic velocity and vy,
is the coordinate of the southern end of the inlet. The streamline at
the outlet may be chosen arbitrarily and will he chosen to match the




inlet streamfuoction. 1In the model presented bere the outlet is at the
same latitudes as the inlet. The Kuroshio usually crosses the Izu ridge
200km north of the path vear Shikoku. It is not difficult to do the same
problem as presented here, but with the outlet moved northward. It does
not alter the character of the solutions.

The stream velocity at the inlet is

L/R: W ('+_,3 éb(t,-tjﬁi> (eastward velocity) (4)
at

The current is approximately constant across the stream, but the
maximum velocity at the inmlet occurs at the northern edge of the
current, This is in rough agreement with observations which show the
current is asymmetrical and the largest velocities are more to the North.

The function F(Y) in equation 2 can be determined by a upstream
condition at the inlet. Some justification of this procedure can be
found by considering a slightly altered model with 3 long channel
connecting smoothly to the box.

I
5

Then from equation.Z) )
©4, 1 oy - 6l s = Fly)

Equation 3 caon be 1nverted for y as a fuoction of %’1f € is small

%I(LP): P éjij: + Yo+ 0(e (6)
N G T e

Therefore

F ) 2ly ey ) +@%O+O<é‘) 7

w RITE
Here it is seen that a cubic form of the streamfunction (eqn. 3)
leads to a cubic nonlinearity in the governing equation:

2 3 3

VY ply-y)*3 Y= é“f@ - 6’V . o(e) (8)

(/( az ua a’l é
A quadratic form for the streamfunction at inlet might have been

tried. It will be shown that with cubic nonlinearity three solutions are

possible but at most two are stable. It was expected that for a quadratic

nonlinearity in the inlet streamfunction there would be two solutions, of

which ove was stable. Charney and Flierl (1980) found this was true for ,

their model of the Kuroshio meander, |

S
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Nondimensionalizing x aua y by H, the length of the box over pi and
the streamfunciion by B3 leads to

VW (y-R) +K¥= KV + 6.Y 4 0(c¥)
K=@H R= 11:&/ * 9
m %‘VH 1 H

If € is small the streamfunction may be expanded in powers of €.
The zeroth order equation is

\/724/0+<L3_R)f‘<({}0=0 (10)

A resonant mode of the form

Y= s;njx Smﬁug

_)‘,,Q integer (11)

is possible if K = jz + 12, This mode is zero on the boundary of
the box. Off resonance (K # j2 + 12) a solution for % can be found
which satisfies the boundary couditions:

Y=-(+€)%) 9>R+q

3 + 6>y 2R

Y- - (‘4-%3 * Q—J__g(q’;m ) Yk Reg> (12)

q}: O \-ﬁé'-R

The solut}on is
g\/: _(ﬁi(ﬁ) +va=| Ba smmjcosh(\frﬁ:—K(x—"/z))'*A,SmVl?«g ¢AL(0§“’(3
A|:(7§—R1 Rcos VK N‘(L)/(K S”’]V—k ﬂ) (13)
Avs Nk
Bu= 2 [(cosnm(m-Rog)* R ) (Ve i) 7 )+ - (1)

The higher order in € equations are all linear and show small forced
corrections due to the nonlinear terms

Vit k=0 .

Vztr3+|,<%=”(7"’$*l<7’¢a (15)

——

% q

re

T

If the parameter K = Pm/u is pear a_valuve for resonance, there
will exist an integer N such that (n% - l()1 Z is complex and almost an
integer times J=1. Then cosh (Wik ®/2 ) is small and By will be
large. The expansion outlined above breaks down since €3\{13 may be
of order unity.




It will be assumed that K is approximately two, a value appropriate
for resonance of the lowest mode in the box:

‘Hﬁ Sin X Simy (16)

If K is two, and v, is 100 cm/s, and @ is evalvated at 30°N,
then H times pi, (the width of the box) must be about 700 km. This is
not an unreasonable scale for the meander.

Rewrite u as v, +& vy with v, such that @Hz/uo =K, =2

and
K= Koll- el + U - W) Ofe")
Uo blo Uus an
Theo equation 8 becomes:
2
V¥ e ly-RITK Y = Ko (e,
3 Wo
6e’Y 4 0(cY)
11
The coefficient By will of order 1/e¢ if ulon is of order
ove, It is then reasonable to look for an expansion of the form:

q/té“é% r e (19)

3 3,3
"€ (A +€un)4/+ (3 Kazll'— (18)
(.Ao us T

The order '/e¢ equation is

A V1 q/n + A Ko q’g =

which is just the equation for the resonant mode, The amplitude A
must be determived by the order ove equation:

: VA &
VP v Ked, - Koth A+ Ko Yo A (20)
Uo ((’z
and ¢, wmust satisfy the boundary conditions (eqn. 12)

3
Expanding the q/R term:

Ve, g - (KoU'A ﬁ A)SmXSMj*’S;BS(’3SM3wsm5—
o\ g6 (21)

3smxsm3y + s Ixsm &3)

The first term on the righthand side introduces a term which can
eliminate the singularity in the series (eqn. 13) provided

A’L“‘f& A*"’f: B.=0

/

' B, = FK.( “-ZQ‘Z)Z + SIV\Q'S/*‘(fff))

By is the projection of the boundary conditions on T/; siny.

(22)

The solution fo- &, is

(Q = —L\?’(‘,ﬁ + B,'(x—ﬂ/l)cosxsmtg + Z B SW‘P]L\ cosh(V'_—Ko(x ))

n=2

t AcsimIio v Agcesiie y ~ 4 (23)




There are several other forced terms besides the By term but all
are zero on the boundary

P, = _I/l: - '/g s1ndX Sm3lg + 3A,(Slh3xsxmg + SINX SN 3(9)) (24)

The three roots to the cubic equation for the amplitude of the
resonant mode (egn. 22) are plotted in Figure 3 for R = .64 and g = .15na .
For inlet velocities slightly greater than the value appropriate for
resonance, (uy/uy,™> 0) only one solution is found. Contours of the
streamfunction for this solution with “l/uo =1.0,€ = ,2 and A = -,25
are plotted io Fig. 4.

The flow is directed far south of the inlet and then returus north to
the outlet. A large cyclounic eddy is present.

This solution looks similar to the meander of the Kuroshio. There is
strong observational evidence for a recirculating region inside of the
meander of the Kuroshio. Taft (1972) and Shoji (1972) found the
transport downstream of Kyushu was generally 30% larger thau the
transport at the island. The maximum velocity in the meander region may
be more than twice the velocity near Kyushu.

This solution looks most like the physical situvation for large values
of the small parameter € . Increasing € reduces the amplitude of the
cyclonic eddy. Equation 7 is not vecessarily valid inside a closed
streamline, but since F(Y¥) can be chosen arbitrarily inside a closed
steamline it can be taken as ivn equation 6. This assumption is probably
not the most physically reasonable one.

Two additional solutions are possible if the velocity is reduced
below the resonant value (Us/y, £- 2.3 ). The amplitude of the resovnant
solution (A) in both these =zolutions is positive, and these solutions
contain large anticyclonic eddies: (Figures 5, 6). The Kuroshio is
forced tightly against the northern boundary.

White and McCreary (1976) cite Taft (1972) and Shoji (1972) for
evidence that meandering usvally disappears when the travsport of the
Kuroshio e ceeds a critical value., The model presented here would
suggest the coastal path of the Kuroshio would revert to the meander path
as the velocity of the Kuroshio was increased. (This is true for R =
.6x and 9 = .15%x ). A reexamination of equation 21 reveals that for 2R +
9<%, By is negative. In this case the diagram in Figure 3 should
be flipped around the x axis. A positive amplitude solution will exist
for all u;/ug, and two negative amplitude solutions for uj/ug < 0.

Stability

The stability of the solutions is of fundamental importance to this
problem, The nonlinearity was introduced into the problem to allow three
solutiong, It will be shown that two of these solutions may be stable,
while the third is not stable to small perturbations.
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Begin with the equation
32V ¥+ T(Y pigey)0 (25)

/
A small perturbation to the streamfunction ¢/, with time dependence
e can be added to the solutions found in the preceeding section
(equn. 23).

Y- \{RA/E M */ @ : (26)

VI T VYAl ey T(%h » @ TV Tl 7'0): 00299

ot

The last term will be dropped. The perturbation is assumed to be
small. The perturbation streamfunction can be described as a sum of
orthogonal modes which are zero on the boundary.

LP/: WZ S q’hed VY- ke Y Y SURP smﬂj

1 (28)
a2 i
kn = J *£ _\,Je IWTQOJ(?V
Equation 9 allows equation 25 to be rewritten as:
< 2 2
TZ K Y S0 Z S T, (= (€ Yeh s ) 4
v (29)
3
C(%eh )] < 0
ot €
This equation leads to an eigenvalue prohblem for o .
G S = Bam S (30)

The modes ?ﬁ can be made orthonormal. Multiply equation 29 by %In
and integrate over x and y then:

B = e |) g T kel 2o 4) e84 ) a1y

n

If O 1is real and positive for any eigenmode then the solution must
be unstable, It is helpful to rewrite Bonm as

Bawm = X AL+ A A% €d; e e AT O)
N T S )P (o™= (1 € 1)) Vi
A= e T W, 871D 0 002)

M= W T (W, 6D (k- Ko (\—G%))
Ny = (¥ 3\LPM,3‘PRICQ)> Kj/ql

(32)
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The brackets mean integration over x and y. This form is a little
misleading since @) is a function of A through the forced terms @
(equation 24). These integrals were calculated numerically for a small
set of modes. The notation 43! will refer to a term

'Pja = sInyx s“"ftj 3,4 mteger
Modes with any of the first three integral wave numbers in the x or y

directions are included in a table of Bom (Fig. 7). Only 3 few elements
of the matrix have order !/¢ terms since

T, Vo) = e () (™ Y o) )

q el n-d

For example consider a truncated form for the perturbation:
¢ -
WI >|4h + 5 %2 (34)

The eigenvalue equation is

ote Ty e 7o (35)

Then o is strictly imaginary., The solutions are stable to this
perturbation which represents two modes interacting with the resonant
mode. All such pairs are stable since T ( Wy, ¥g ) = =T (g, ¥a ).

The elements of Buaw which seem to be important in determining the
stability occur in the first column. All terms are at most order €
because k% = Kgqe

A perturbation of the form

*P:S\‘P“fg,_“hl‘ 32l e 3 (36)

leads to an eigenvalue equaticn

o'. (AW )= 0 C.20, c.20 (37)

)

Aoy solution ie atable (o complex) for uy/v > 0. But only one
golution exists in this region (Figure III1),

For U]/udd 0 any soluytion with
- o
Il = VCa["fa‘»] (38)
o

is unstable, This curve is plotted on Figure 3 for the largest value
or Cj found., The mode %L gives the largest value of C2° The
smaller of the two solutions with a positive amplitude for the regonant
mode ie certainly unstable,

The other two solutions appear stable for at least part of the range
of 1 /u .
o

P
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Calculations based on a truncated form of the matrix B,, are not
sufficient to show stability. It is also likely that other physics, not
included ion these solutions will influence stability.

- ——tue.

Conclusions

A simple model for the bimodality of the path of the Kuroshio has
been presented, This model depends on nonlivearity introduced by
imposing a form of the stream function upstream and the existence of a
resonant mode in the box modeling the basin between Japan and the Izu
ridge.

Three solutions are found if the nonlinearity is cubic, One of these
solutions is unstable to small perturbations.
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THE STABILITY OF CURRENTS BOUNDED BY TWO FREE
STREAMLLINES IN A ROTATING SYSTEM

Ross Criffiths

Introduction

Density fronts in the atmosphere and oceans are often highly unstable
features and are the site of active mixing between fluids of unequal
densities. Their instability also leads to the production of smaller
scale but long lived flow features. Three possible instability
mechanisms have heen studied. For a two layer fluid, there is the
harotropic shear instability which requires that the sign of the
potential vorticity gradient changes somewhere within the flow, the
two-~layer baroclinic iustability, which requires the presence of both
upper and lower boundaries and that the potential vorticity gradient take
opposite signs within the fluid (Pedlosky, 194) and the Kelvin-Helmholtz
shear instability, which requires an inflection in the velocity profile.
None of these mechanisms are able to cause instability if only one layer
1s active and has a uniform vorticity.

While most density fronts have one line of intersection with an upper
boundary (such as the ocean surface) or a lower boundary (such as the
ocean bottom), there are some situations in which the same density
surface has two intersections with the same boundary. This occurs
whenever buoyant water forms a narrow current at the ocean surface (away
from coastal boundaries) or when dense water flows in a narrow stream
over the ocean bottom under the influence of buoyancy forces. One such
case 1s the flow of cold, dense Norwegian Sea Water through the Denmark
Strait and along the sloping bottom south of the strait (Worthington,
19,9; Mann, 19 9). The Coriolis force is able to inhihit spreading in
the direction perpendicular to the direction of flow but not in the
downstream direction (due to the presence of the bottom slope).

The presence of tw. free streamlines (at the intersections of the
density interface with the horizontal houndary) gives rise to another
mechanism for instability that has not previously been considered. Here
we concentrate upon single-layer flows (in which a deep second layver is
stationary) with a uniform potential vorticity distribution, and show
that a rectilinear current adjacent to a horizontal boundarv is alwavs
unstable. It is first shown that variations of the current width, in the
limit of a very large downstream length scale, will give rise to a
meandering instability with linear growth rate. Then normal modes with
finite wavelengths are shown to have exponential growth. Both meandering
and varicose modes grow with time, and they lead to release of both
potential and kinetic energy from the original flow. For a current with
zero potential vorticity, the wavelength with maximum growth rate is
estimated to be eight times the Rossby radius based on the maximum depth
of the current. Qualitatively, our conclusions do not appear to depend
upon the simplifying assumption of uniform potential vorticity and the
'single-layer' instability is likely to continue to contribute to the
behavior of a two-layer system in which baroclinic instability 1is
important. Our analysis is readily modified to describe a current that
flows along a sloping bottom, and a similar instability will occur in

that case.
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The very unstable nature of a current with two free streamlines is
demonstrated by laboratory experiments. A narrow curreot of buoyant
fluid was produced at the free surface of a deep lower layer by floating
a layer of fresh water on top of a salt solution between two axisymmetric
cylindrical walls in a rotating system. When the walls were withdrawn,
gravitational collapse produced a narrow aonunular flow with uniform
potential vorticity. Wave-like disturbances appeared on each front and
regions of closed circulation rapidly developed within the current. The
preferred downstream length scale was equal to seven times the Rossby
radius of deformation, independent of current width. The structure of
the disturbances also appears to be very similar to that predicted.

2. Governing equations
We begin with the bydrostatic momentum and continuity equations

W (FeS)uny = -V(gL+YE), e
%% + V'(’ZY) =0 , (2.2)

where y is the height of the interface from the rigid borizontal
(geopotential) boundary, g' = gAR /P is the reduced gravity, V is the
borizontal velocity, f is the Coriolis parameter about the vertical axis
of rotation, X 1is a vertical unit vector, and €=5.(ng) is the
relative vorticity. Equations (2.1) and (2.2) together imply that the
potential vorticity (f + € )/7 is conserved by fluid columns. Hence

f+4€ £
= == ) (2.3)

'7 Ho

where Ho would be the fluid depth when the relative vorticity is zero.

Let the undisturbed flow be parallel to the x-axis, and H =% (y = o)
be the maximum deptb of the current., The flow is then characterized by
the Rossby radius of deformation (g'H)1 2671 and the time scale
f'., Because we will be interested in downstream (x) variations with
some large length scale A, say, we define a dimevsionless waveoumber

€ = 27r(g'H)] 2¢-1A~1 The dimensionless variables are then
defined by

Yo £ - - e
R S A S S
Weu(yHft | teve@N)® b KRN,

where x is the downstream coordinate, t is the time, y is the
cross-stream coordinate, v is the downstream velocity, v is the cross
stream velocity, b is the layer depth and #~1 is the dimensionless
potential vorticity. The stars denote dimensional variables. Equations

(2.4)
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(2.1) and (2.2) become in dimensionless form

£ &+ ‘U' I) = +

9t ( / ) 5 (2.5)
230 zyv— ) =_2—-(l'y+/€ ’U’)

i y7a = + 2
€52 t (8 5= ! oY (2.6)

and
Dl'l + 9 (a,/,) + _?_.(v/)) =0 , (2.7)
52

The potential vorticity equation (2.3) becomes

2.‘..1-' _ ezav — I__ h (2.8)
9;7 9 ##

The vundisturbed flow is assumed to be the steady solution of
(2.5-2.7) with v = 0, Then (2.6) reduces to the geostrophic relation

a = a’; (2.9)
Ay

while (2.8) gives the relative vorticity as *
da = | — J&_ (2.10)
- )
dv 4
("3

where the bars denote the basic flow whose stability is to be
investigated. Together (2.9) and (2.10) can be solved for h and T, the
boundary conditions being b = 1 at y = 0o and b = 0 at y = tL. If the
potential vorticity is assumed to take a constant value across the stream

the solution takes the form p
’/2‘ sl'nlo y/ff 72
A X S

- cosh y/ft//L -
h =ﬁ[{—W , a=# e L/ﬂl/z : (2.11)

Thus the flow involves the two length scales L and # . In the liwmit of
zero potential vorticity (F#—>02), the relative vorticity (2.10) becomes i

the constant value dU/dy = 1, the curcent is described by the single ]
dimensional length scale H, and the solution (11) reduces to :

— - P

h o= —%72 , a = 7 . (2.12)

The current width is fixed at L = /31

3. The long wave limit

An interesting observation is possible when a disturbance with a very
large length scale is imposed on the basir flow. In the limit £ -0,
the momentum and vorticity equations (2.6) and (2.8) become, respectively,

Jh
97 (3.1)

MU =
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and

‘.*-“M,.

Q¢ _ h

'5:"1 ( "_';; ? (3.2)

while the longitudinal momentum and continuity equations are unchanged.

We consider a spatial variatioon of the width L of an otherwise
parallel current, maintaining symmetry about the midpoint of the stream.
1f the midpoint is defived to be at y = y, (x,t) at subsequent times, as
shown in Figure 1, then b = o at y-y, = L(x,t).

The current depth is of the form b (x,y,t). However, we know it to
be symmetric at t = o. By assuming that the depth remains symmetric at
subsequent times, it may be written io the form

h = }’l (.Yzy"jf" ) L‘)' (3.3)

Figure 1. Coordinates for a symmetric current.

When the continuity equation (2.7) is integrated across the current,
the geostophic velocity (3.1) (or, alternatively, the symmetry of the
flow) can be used to show that the net flow of fluid through avny
cross—section is zero. Hence, the continuvity equatioo implies

L 9/. y
on =
L_ atd . (3.4)

I1f the functional form (3.3) is to satisfy (3.4) we require

oL =0 (3.5)

——

ot

Thus the variations of width are statiomary in time and L is a function
of x alone.

Returning to the vorticity equation (3.2) and evaluating it on the
two free streamlines y = + L (x), where b = o, yields

U _
S—jLL - (3.6)
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When this result is used in the (non-linear) momentum equatioo (5), the
time—dependence of the velocity on the free-streamline is given by

%% = ———g;(ﬁ +%uz) on ;7—‘-'-1'L . (3.7)

Along with the geostrophic velocity (3.1), (3.,7) leads to an equation in
b alone. Then, the form (3.3) for h and the result that QL/gt =0 give

: L
3% 2y _ [ Z,] [3_/1+2A % ldL _
i dYL3IY S L Y LY dpc
on the free streamlines., However, (3.1) and (3.6) imply that QZ/\/QY‘L:"

on y = L, so that L
P Ith Bk | de (3.8)
‘i [DL * ' dx >

SLaY Vs

The term inside the brackets in (3.8) is independent of time. This
result suggests that variatiovns of current width with very large length
scales will cause the current to meander, the amplitude of the meanders
growing linearly with time. The stream is expected to wander most
rapidly at those positions where dL/dx i3 greatest. However, (3.8)
also suggests that short waves will grow more rapidly then long waves.
This contradicts the approximations used ( £ -> o) and indicates that we
need to consider the stability of the vniform current to perturbations of
finite waveleogth. The stability of vormal modes is discussed in the
following sections, first for the special but simpler case of 2 current
with zero potential vorticity and then for the more general case with
finite but uniform potential vorticity.

4., Flow with zero potential vorticity

4.1 The eigenvalue problem

If a small perturbation is imposed gn the basic flow_(2.12) and each
variable is written in the form ¢ = @ + @’/ , where @ is the steady
flow, then ¢ wust satisfy equations (2.5-2.8). From the momentum
equations the perturbation quantities must satisfy

RPN TSI

_ _ K
-“"("‘*“—)3; +7J“(7 ) = T3 (4.1)
and
29v! v’ |, 2=’ ¢ — _9h'

es___+g 2 et vt = —20 . (4.2)
ot 97 z P

When the potential vorticity is zero, (2.12) gives Ju/a/ - = )
and this simplifies (4.1). 7




The continuity and vorticity equations (2.7) and (2.8) give

9/&’ —_ ?_é-l -'?_g' 2 /7 —
')(‘ 272 by +A S +9‘7(’U' /7) o (4.3)

and
/ /
2
'37 9
If the perturbation takes the form (u',v',h')=(G,c,g)ei(x—Ct) then

(4.1), (4.3) and (4.4) give the following three linearized equations for
the amplitudes:

. (4.4)

N

(ZZ’C)‘/‘\ + h =0, (4.5)
21.12 - c%(ff;) +(1I"'C)A =0 (4.6)

and A A
- L2
ju — 4 ETv =0 , (4.7)
N
Elimination of h and ¥ from the continuity equation (4.6) yields av
eigenvalue problem for the growth rate c:

J (/, ju’ ”Ez[/? _(1,(,-(;> w =0, (4.8)
4

AN

This equation is siogular at the edges of the current, where h(+L)

and we wish to fiond tbe solution for which the eigenfunction 4 is rogular

at y = +L. That is, df/dy (L) must be finite in order that ¥ be finite

on the free streamline. Therefore, when (4.8) is integrated across the

current we require

[T [k~ (a-f]a 4y =0. 4.9)
L

. A
In order to solve (4.8-9) with a non-zero wavenumber €, ¢ and u are
expanded in the power series

c = C, 1"86 '('SCZ o

u(y) U, (y)ffa,(y)+g e, (- )1-

and the amplityde is normalized by requiring (at a fixed value of x)

Lo)=1 . (4.10)

4.2 Terms of the lowest order

When these expansions for c and & are placed in (4.8), the leading

d ([ de) = o
‘7?( 2

order terms imply that
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For du,/dy to be finite at h = o, this requires

c/do - (4a1)

Hence the leading order downstream velocity perturbation is independent

of y. From (4.10) we set u, = 1 and require that uj(o) = uy(o) =
... = 0. The eigenvalue cg4 is given by (l;.9)’ in which the leading

order terms imply ¢ - 2 .

w, [[[F=(z-c]dy =0

This is a quadratic equation for ¢, but, with b and ¥ given by (12) and
L= ﬁ, can only be satisfied by

c, =0 (4.12)

Thus normal modes are stable in the limit £-20, as was predicted by the
long wave avnalysis in section 3.

The terms of order € obtaived from (4.8) imply that dul/dy = 0.
In order to satisfy (4.10), this requires vy = 0. Using this result
along with (4.12) leads to the expansion

L[ ~(a-cf]= h-a* +2eae +
t 82[25c2 el oy ([-’Z)J
| ¢ E[ra@(cstuc)~26e, +ug(h- 2|
+ 54[242 (c‘,_ U, c, *“361)"24‘3 ‘CS"“zCIZ-f—“,,.(Z'&Z)]

= +o (€%),

where the arbitrary amplitude vy has been set to v, = 1.

2 .
4.3 Terms of order € and bigher

Equating the terms of order 5'2 obtained from (4.8) yields an
equation for the second eigenfunction ujy:

d /T d _ T _2 .
(57‘:;2 = 4 — & (4.13)

4

%

T R PP em—
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By applying the conditions that du,/dy be finite at % = o and uy(0) = 0,
we find

Uy, = éy (4.14)
The coudition (4.9) becomes
2L 2 fuz(ﬁ—d)a/y =0,

giving c% = -4/15. Hence the growth rate c; is pure 1mag1nary and the
positive root ¢y = 21/ 415 describes exponentially growing modes that are

stationary in space. Disturbances with large but fivite waveleungths are
therefore always unstable.

The calculation can be continued to higher orders in € in order to
investigate the dependence of the growth rate vpoon the wavenumber and
determine the higher order structure of the growing disturbances. At order

g3, (4.8) gives J
(/, “s - 2c&

which reduces to the regular solut1on with ¢ (o) = 0:

3
uy = —2¢ (4.15)
From (4.9) . L
L _ — 7 2 "’0
c,cy — f )72 ——Zcf a --fa /,—a)ﬁf
Hlc,c; =2y [ Teby —2c, [ Ua@ly =] us(
and this implies that cp = 0.

Repeating this procedure at order'gﬁ yields the eigenfunction

/ 2(2 3 z)
= 5 1+ =
4=z (37%J
and the imaginary eigenvalue cq = /6’4’/(3/5'C,) . The positive
(unstable) root for Cl corresponds to

= —(5'2/3/5)4//—5:1' .

At orderg:s, the downstream velocity perturbation is
while C; = 0. From the 0fd€f£,6 terms we fiod that ¢1C5 =
-(32672/165375), aod from order g terms that Cg = 0. Similarly we find

cg=¢10=¢12=0, cy¢7 =0.1851, c1cg=-0.06139 and cycy1=0.2976.
Taking the positive root for cy, we bhave

(4.16)

(G5 = 0.3826¢ , C; = -0.3585(, Co= O-lIf9¢ = —05T762¢ (4.17)




Since the eigenvalues up to 0(512) are all imaginary, the growing

=1ct

disturbances are statlonary in space. Their growth factor e can be

written as e €lclft , where t* is the dimensional time and

€lc|=€Yet €%3 + €% cs + O(€F) -

The dimensionless growth rate £1c' is plotted in figure 2 as a
function of wavenumber, with each curve including extra terms. The
growth rate increases as the wavenumber increases at least until Ex0.7.
The growth rates have coonverged sufficiently for us to conclude that the
maximum growtb rate is close to 107!, and that this occurs at a
wavenumber between €= 0.7 and €= 0.8.

4.4 The eigenfunctiouns

The form of the downstream velocity perturbation is given by the sum
of 0 = u, *E€ u2+-£ ujt... Use of these individual functiovs
in the loungitudinal momentum equation (4.5) and the vorticity equation
(4.7) yields the depth and cross—stream velocity perturbations
respectively, for successive orders in £ . Some of these functions are
real, others are imaginary. Sionce the normalized amplitydes of all
perturbation quantities have the downstream dependence el'*, the reatl

parts of the lower order eigenfunctions are

U,=cosx U :ysinx h, :—7C097C
-4
-—e— C0% X
v, =% , h, = ——,s__sm-’c )
2 ] 3 a\.- (4.18)
“2=%Zf cosx |, VU =éy(%+§7)9mx ) /4 7cos7c

+ ., (5 z)c s 2 -.—:-»-(_5:?-_5' )so‘nx.
“3=ﬁ§'$’"x'7’3’f/?(z/ F)ot, b=

The structure of the zeroth order eigenfunctions is sketched in
figure 3(a). Because the cross-stream velocity v, is directed away
from the midpoint of the stream at x = /2, and toward the midpoint at
X = /2, while the undisturbed longitudivnal flow is positive for
positive y but negative for negative y, the zeroth order perturbation
corresponds to a meandering of the stream. The corresponding depth
perturbation is linear with y, so that the total depth profile,'ﬁ + hg,
remains symmetric (parabolic) about the local midpoint of the current.
This behaviour is consisteot with that found for the limit €0, described
in section 3,

The first order perturbation hl’ also maintains the symmetry about
the midpoint of the current. The cross-stream velocity vy OO the
other hand, is independent of position across the stream and corresponds
to variations in the current width, as sketched in figure 3b. 1Its
amplitude also has a phase that is T/2 radians ahead of v, and h,
The depth increases uniformly at the widest section of the current and
decreases at the narrowest section. Higher order eigenfunctions have the
same structure as those already described, but tend to concentrate
perturbations near the two free streamlines.
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Figure 2. The growth rates (a)/'00(€2} (t) fo 0(5-”) )
(c) fo O(€™)for disturbances on 3 current with zero
potential vorticity,

Figure 3. The structure of the eigenfunction at (a) zeroth order in€
(b) first order in € , and (c) the superposition of these
two lowest order modes.
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When the perturbations sketched in figures 3a and 3b are
superimposed, assuming comparable amplitudes, the structure of the flow
becomes that sketched in figure 3c. There is still a uniform reduction
of the current depth at x =TT/2 and a uniform increase at x = 3 /2.

At sufficiently large amplitudes, it is likely that regions of closed
circulation will develop withio the broader, deeper parts of the stream.

4.5 Evnergy transports

The source of energy for the growing disturbances may be determined
from the structure of the depth and velocity perturbations. Ion order to
calculate the potential emergy changes, we begin with the longitudinally
averaged continuity equation

<%> t <§§(/'V')> =0. (4.19)

The braces denote an average over the x coordinate and b = h + h' is the
total depth. Since h'&h, (4.19) glves

() +h iy o

aund by integrating across the stream the rate of change of potential
energy becomes

‘1
Dt/(—)c/(yz—fLA <h'v 74(7 (4.20)

The lefthand side of (4.20) involves the cross-stream dixergence of the
mass flux. Using the power series expansions for h and Vv in the normal
modes form of h' and v', the mass flux can be written as

h'v' = h v, + €(hv + hv) + OCE?).
Then the individual functions in (4.18) give, to an arbitrary amplitude,
< htv'> = ELTE + O(EY).
Hence, the lefthand side of (4.70) is negative. The potential energy
decreases with time. This s a 12sult of the coupling between the

meandering and varicose mod:s. The individual isolated modes would be
unable to decrease the total potential energy of the current.

The superposition of the meandering and varicose modes, with a phase
difference of /2, also removes kinetic energy from the mean flow. The
velocity correlation is € «u'vrD=<K¢v5> + EC4Y>+ o(g? ), where
(4.18) implies that <&V, > = 0, Then

Cu'v'> = =RELE  t+ o(€°).

Thus the perturbations induce a positive Reynolds stress which transports
momentum across the stream.
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5. Flow with finite potential vorticity

5.1 The eigenvalue problem

When the potential vorticity % ! is finite and vniform across the
stream, the undisturbed flow is given by (2.9-2.11) and is characterized
by an extra length scale L. This case is of greater oceanographic
relevance and involves more interesting behavior. The dimensionless
perturbation equations (4.1-4.3) are unchanged but the vorticity equation

(4.4) is replaced by ,
/ ov’ - h
out gt ¥ =T . (5.1)
oY ox
In (4.1), the undisturbed flow now has dG/dy-1 = - h/#.

A
The normal mode amplitudes {1\, ¢ and b are then related by the
linearized equations

(ﬁ—-czﬁ + c’%‘{} yh =2 | (5.2)
hé -—54[0/’) +@-c)h =2, (5.3)

(5.4)

A
Eliminating ¥ from (5.2) and (5.4) and eliminating h from the sawe two
. . A . . A
equations gives h and v, rvrespectively, in terms of uv. These can be used
in the continuity equation (5.3) to find the differential equation that

corresponds to (4.8):

—" +£)2—(/1 d‘&) ( 2 f)d [}l(u-c)a} +
J (@-<)k ‘74&
{(Z/fl‘q+€) f- Fis dy (5.5)

(e B2, 2 a2 -0

The above equat1on is presented in order to point out the nature of
the problem. For non-zero values of £ and the limit fé > 0, (5.5)
reduces to (4.8). Since an expansion of the variables in powers of the

wavenumber €, about the limit €20, will again be used to find the
elgenvalues CgsCyeeeat finite values of ¢ , we must require that

€E<< ™! . Hence our solution is not expected to be valid ion the

limit s 3 ’—90.

Rather than using (5.5) we note that the cross-stream momentum
equation (4.2) is unchanged for finite potential vorticity and reduces to
the linearized form

g———————-—-——‘—-————J
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A
4 + e¥(a-c)et + 23/" =0 (5.6)
for the normal modesh Using (5.6) in (5.4).yields
%;_E —ﬁl" _ —4’82['3' +j‘5’_7(‘-z-c)1'}] ) (5.7)
while (5.6) and (5.3) give

5 =% [ (,34.;,9;)-;5_; Jdy. o

The last two equations may be solved for'% and G, and then ¥ is given by
(5.6). Since b = 0 on the two free streamlines, the downstream momentum
equation (5.2) indicates that the solution is subject to the coundition
(G-c) 8 +D=0o0ny-= + L. Replacing § from (5.6), these boundary
conditions become

A
[zz-c,)g—yg —h + c‘€21/}(£2—6)2=0 on 7=1L. (5.9)

It is interesting to note that (5.9) is no longer a boundary condition
on the free streamlives in the limit of zero potential vorticity, but is
then satisfied at all values of vy.

The variables are again expanded in tbe form
¢c=c, + EC, + €2y +. ..

h = ho(y) + €/v,{‘:7) +E7‘Az[-‘7)+...

Similarly for 0 (y) and $(y). Theo a suitable normalization of the
amplitudes is again

and

alo)=1 . (5.10)

and this requires that uy(o) = u,(0) = ...= 0. Because solution of
tbis problem is more protracted than that of the zero potential
vorticity problem we will proceed to calculate only the lower order
eigenfunctions and the first non-zero eigenvalvue.

5.2 The zeroth order solution

When the power series expansions are gsubstituted ioto (5.7) the terms
of leading order in € give
o= b
o
JI b
and the boundary conditious become

(E—c,)gf'—" —h, =0 at :7"'1'1* . (5.12)

{
The general solution to (5.11), is ho = A siob y/f[’(i + B cosh y/#Z, aund
by substituting this ionto (5.12) we obtain, at y = L,

U-a) _ aless L V-4 cosh & _
[9( ﬂlfi) A]SMAF/’“+A(—j(—'7;)~g] SAJ{VZ =0

=0 (5.11)

e
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and at y = -L

G Qf;_)+A]s,~4 - A(V*“) geesh = = ©,

where U = 3 (L) = ﬂ‘itanh (L/j({)and Y (-L) = -U . Addition and
subtraction of these two identities shows that B = 0 and ¢, = 0. Hence
normal modes are again stable io the limit €20. The leading order terms
from (5.6) imply that v, =—dhffy, Hence v, = —(A/f{/"') cosh (y/p??

where the normalization (5.10) requires that A= —7(/2 The zeroth order
eigenfunctions are now

)
})0 = - ﬁésl‘nA y/f("z
U, = C’osé (7/7(% ,

with v, giveo by (5.8):
—¢ (7 /A
::f (&;Aa_ JA 3_-)4/? . (5.14)

Substituting (5.13) into (5.14), with K given by (2.11), avd requiring
v, o be finite on the free streamline, where y =X L and T = 0, the

cross—stream velocity perturbation is found to be

R N
v, = —-cf(z‘fnt/l 7/54'%- (5.15)

(5.13)

5.3 Terms of ovrder £ .

By equatiog terms of order £& obtaived from (5.7), (5.8) and (5.9) we
fiond

gy -;?‘ =0 (5.16)
- AV
v = 7%[:7(- AI’C:/'o"A 2‘71)‘/] (5.17)

- d‘, __A JAO — on 7:IL . (5.18)
7 9y |
The geveral solution for h; is by =¢ 91nh(y/ﬂz)+ D cosh(y/ff ).

This time, the terms involving the constant C cancel from (5.18),

leavmg one equatlcm relating D and the eigenvalue cq:
= cq cosh? (L/ft %) .

and

The first order longitudinal velocity is geostrophic, vy = -db,/dy,
as was the case for uy,. Then 01(0) = 0 requires that C = 0 and the

soluytion becomes

aadibht
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h = < cosh (t) cosh (U
(5.19)

== R cosk (e b (T :

The solution for vy that is finite at y = + L is

v =L q(/ + cosh E e cosh 1/)@5[ #e (5.20)

5.4 Terms of order €

Io order to find the first non-zero eigenvalue it is necessary to
evaluate hy. From (5.7), (5.8), and (5.9) the second order terms give

hy -f‘_,z =-cv, —c'j—‘//ic'%) ) (5.21)

and A .
Z dhy _ g db, -, ‘-j—-" —Az # @iy =0 myziL)u.zn |
while (5.6) implies tha? 54
- 2 * 77
£, = g:'} —cYu (5.24)

Subst1tut1ng for v, from (5.15) into (5.21) gives an equ tlon for b,

- /’2/}( =¥ 72 }.S”'/’ j/”k + 91»4(2:7/7( )/(osA (L/ﬂé)]

For thls equation the geuveral solution is

hz =d $I‘nl| %Vz +/9¢as£ %’/z - gyc‘”‘ f%ﬁ - g— z"““ ("%,7)‘“[’{;(7/1) }

Two algebraic equations in cy, ¢y and 2 are now obtained from
(5.23) aond the known forms of hy, hy, b, aod v, . By adding these
equattons it is found that [ = cy cosh °2 L f(«/’-) . The congtant ol
is thew evaluvated by fmdmg %2 from (5.24) and requiring uy(o) =

This procedure gives d,—.,% [’ + < ?. cosh™ ’(L/f(’/l)]

On the other hand, by subtractlng the two equations obtained from the
boundary conditions (5.23) we are left with an equation for c, alovne:

2c2 2L 2 2/ 2L /4"

k) = )= —) + = tank (——

= (iﬂ“) T ff'/‘)+ sinh(2L/#"%)

It ig preferable to rewrite this expregsion in terms of the parameter

L/ﬂ‘/z alone. From the shape of the undisturbed current (2.11), where
F (0) = 1, the dimensionless potential vorticity can be expressed as

-l _ cosh L/;(’/Z -
# - cas‘ L/ﬁlﬁ )

whence the growth rate c; is given by

(5.25)
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-2 L
2 ¢ L 2 2/L 2L/#7%
c, = E 605417,72—/] [/—-3 +au‘ (ﬁ% —gm%) . (5.26)

5.5 The gro-th rate and structure

Before discussing the first order growth rate further it is wseful to
introduce a new parameter that will enable a more direct comparison
between our predictions and experiments. In terms of the dimensional ;
parameters of the problem we have L/ﬂ’/2 ==1CL4'/,/3‘H, , where L¥* is the '
A similar dimensionless group can b

dimensional hal f-width of the current.
be defined in terms of the cross-sectional area, A, of the current:

f A 'ﬂ

f: = ! (5.27)
. P v .
/ 2
2K, (3'H.) J
Then, by integrating the depth profile (2.11) across the stream, ]

F o= L2 - tanh (L/g/?).

The square of the first order growth rate (5.26) is plotted in figure
4 as a function of F . The value of cf is negative for all values i
of F (or L/# %2 ) and so normal modes are always unstable. As J -0,
c% > -4/3 exF(-—L/]{’ﬁ) indicating that disturbances grow much more
slowly when the current width is large compared to the length scale
(g'Ho)]/zf:"'1 than they do when these length scales are comparable.
Note that Ho is the (uniform) depth that the current would have to assume
if the fluid was to be stationary in the rotating reference frame. In
the opposite limit of F-»0, c% approaches its minimum value=0.§.
In order to reach this limit it is necessary that Ho-»=© at a finite
value of the area A (or of the width L*), or that A —> 0 (L*—> 0)
at 3 finite valve of Ho. However, both of these cases imply that
7{'-1 —> 0 and the analysis is not expected to be valid in that limit,
since then 8)?1 for all non-zero wavenumbers. Indeed, the eigenvalue
¢y does not correspond to that found earlier (cf = -4/15) from the
equations with zero potential vorticity. Thus the growth rates obtained
at F << have no significance. At F Z 0(1), on the other hand, cy is
3 close approximtion to the eigenvalue ¢ for 3ll wavenumbers ¢ << 1.
The structure of the problem with zero potential vorticity aleo cuggests
that the value of cy will be an upper bound for c at larger !

values € < 1.

Having shown that the first order growth rate is imaginary, the
structure of the growing disturbances can be deccribed. Both the zeroth
and first order eigenfunctione (5.13, 5.15, 5.19, 5.20) have forme
similar to those found for the flow with zero potential vorticitv
(sketched in figure 3) and are modified only by the hypertolic functions
of v, which tend to concentrate the perturbation energy into regione
close to the two free ctreamlinec, Thic tendency i< etronger for wider
corrents, flows for which we know that the dicsturhances grow mich more
elowly. There ic 3g3in a3 superposition of a meandering mode in which the
width and depth are constant along the current and 3 varicose mode with 3
longitudinal width and depth variation, The two mndee have 3 phace
di fference of /2, producing a decrease in the potential energy of the

‘-“_—-—-—'-—'__



I R R S cxlasi PR MU

flow and a3 transport of momentum across the stream. The eigenfunctions
of higher order in & simply reinforce the structure of the lower modes
and, for larger wavenumbers £ , further restrict the release of energy
to regions adjacent to the edges of the current.

6. Laboratory experiments

6.1 Apparatus

In order to establish an initially "parallel” curreont of uniform
potential vorticity in a rotating container it was necessary to adopt an
axisymmetric geometry. A cyclindrical tank 92 cm in diameter was filled
with a layer of sodium chloride solution which in most experiments was
40 cm deep. Two rigidly connectad cylindrical walls that formed an
annylus were theon partially immersed into this deep layer, as sketched in
figure 5. The annulus was suspended, and held concentric with the
vertical axis of rotation, by three guides attached to the rim of the
tank. The aonulus width (2L*,) was 7cm, its inner diameter 36cm, and
its outer dismeter 50cm.

After the salt colution had come to the desired rotation rate f/2,
dyed fresh water was carefully floated onto the free surface inside the
annulus to form the shallow upper layer chown in figure 5. After filling
to the required depth H, the system was left for at least 30 minutes to
reach solid body rotation. The depth H, was most accurately determined
by measuring the volume of fluid placed in the annulus. At a time t=0,
the aonuluys was carefully drawn vertically upward and removed. The
subsequent flow was visualised by the dye in the upper layer and small
pellets of paper floating on the free surface, Photographs were takeo
with a camera mounted in the rotating reference frame and time exposures
of about one half of a rotation pericd were used to obtain streaks. Such
streaks revealed no motion before the annulus was withdrawn.

1 T T T
Py
10" .
[
102 -1 Fresh l
_p2 water !
> o
1073 - I 1K
u_____1 °
13ca 40
Nd(/ ~ ‘_____] Cm
107 - solvtion 26cm |
|
103 , . - $6Fem |
0t 10" { 10 10?
Fe Y/ Figure 5. The laboratory apparatus.
2t /5%
Fignre 4, The first order eigenvalue —c? for normal modes on 2

current with uniform finite potential vorticity.
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Values of the Coriolis parameter used ranged from 0.38571 to
2.5s7!, while the reduced gravity g' lay in the range 0.8 € g' <
lZcms_z. The ionitial depth of the upper layer was always between 4 and
6 cm. This gave a ratio of layer depths less than 0.16 when the lower
layer was 40 cm deep. However, two experiments were carried out with
shallow lower layers in order to observe the influence of the lower
toundary upon the flow. In these cases the initial depth ratios were 0.6

and 0.84.

6.2 Observations and results

The flow was observed to be very unstable at all values of the
parameters. When the avnnulus was removed the buoyant upper layer first
spread radially toward and away from the axis of rotation by a distance
that was measured to be close to the initial Rossby radius
(g'Ho)1/2¢71, A5 a result theve formed an anticyclonic (clockwise)
flow in the outer region of the upper layer and a cyclonic flow in the
inner hal{ of the dyed fluid. This collapsing phase occupied a time
scale of order f~!, Large disturbances to this flow became obvious
within two or three revolutions and the current broke up into a chain of
eddies within about six revolutions.

In figure 6 are shown four stages during the evolution of a current
that was formed when the initial Rossby radius was 10% greater than the
half width L*  of the anoulus. To (i) the flow is largely axisymmetric
and some of the curvature in the streaks is probably due to the later
stages of the collapsing phase. However, some meandering is already
present and in (ii) there have appeared five regions of closed
aoticyclonic circulation within the current. The fronts (edges of the
dyed fl1uid) also reveal 3 wavelike structure, Although the circular
geometry confuses the nature of the flow at this stage, there appears to
be come meandering away from a circular line as well as variations in
current width, The meandering becomes more obvious in (iii), where the
flow is qualitatively very <similar to that csketched in figure 3(c). In
(iv), individual eddies have broken off from their neighboring eddies.
The flow subceguently evolves very slowly, with the anticyclonic eddies
becoming more circular and motions <lowly decaying due to friction.

In figure 7 is shown a similar seguence in the evolution of a current
for which the initial Rossby radius was only 45% of the annulys
half-width L*_ . Frame (i) again shows an almost axisymmetric flow with
some turbylence produced in the wake of the annuluys, Large disturbances
are obvious in (ii). 1In this case, though, the waves have a much smaller
wavelength and there are more waves around the outer front than around '
the inner front. However, the meandering mode can be clearly <een. In
(i11) the varicose and meandering modes are both clear. The wider and
deepe= parts of the current form closed eddy circulations which, after 1
relatively slow evoluytion, make uyp the bhroad and turbulent current shown

fiv).

in




Figure 6.
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The evolution of a

(1) t = 2 days
(ii) t = 4 days
(iii) t = 6 days
(iv) t = 8 days.

current with £ = 2.07s”! and F = 0.90.
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The evolution of a current with f

(i) t =1 day

(ii) € = 4 days
(iii) t = 5 days
(iv) t = 17 days
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If we assume for the moment that the deep bottom layer {s stationary
and that there is no mixing between the layers, then the laboratory
current is descrlbed by the single dimensionless parameter

fL* /(g' Hy 172 , and this is exactly the quantity FF defined in
(5. 27) In figure 8 is plotted n, the oumber of waves that appeared
around the aonnular current. The straight line is a fit by eye to the
data and indicates that the wavenumber increases roughly linmearly withF.
Io figure 9 the same data 1s¢ presented as the dimensionless wavelength

£A /(g'H)1 , where the wavelength A is calculated from -"7rr'/n and
r is the radius of the inmer or outer front. The depth H at the midpoint
of the current is given by Ho, the measured width L* after collapse and
equation (2.11), but was always within 10% of Ho. We see that this dimen-
sionless wavelength is independent of F and is therefore independent of
the width of the current. The constant valye ‘FZ/(g H) 2 - 6.9 + 0.7
corresponds to the wavenumber € =20.9 + 0.1. Thus energy is most
efficiently released on a length scale that is determined solely by the
Rossby radius and that is not influenced by the distance between the two
fronts. Note that a most rapidly growing mode with€= 0.8 is consistent
with our avnalysis for zero potential vorticity while this wavenumber bhas
not beeu predicted for currents with finite potential vorticity.

Two vremarks can be made about the growth rates of the observed
disturbances., First, their appearance within about two revolutions after
the annulus was withdrawn implies a growth rate ¢ > 4x1072, This lower
limit is significantly less than calculated first order growth rate c1
at valves of < 5. Since 1 is expected to greatly over-estimate the
real growth vrate at €~1, the two values are vaguely consistent. Ov the
otber hand, the growth rate is predicted to decrease rapidly with
increasing £ . This is difficult to verify withiv the experimental range
of parameters because the appearance and growth of small amplitude
disturbances is poorly defined. A more clearly defined time scale, and
one that will be of importance in oceanographic observations, is that
time required for the initial current to form isolated eddies whose
circulations have pinched off from their neighbors. For the two
experiments shown in figures 6 and 7 this time scale was, resgpectively, 5
and 6 rotation periods.

6.3 Other instabilities

Immediately after the buoyant upper layer collapsed, some small scale
structure was visible at the fronts. This was probably the result of
turbulence produced in the wake of the withdrawn annulus walls. No
evidence of Kelvin-Helmholtz instability was observed,

Of greater importance is the influence of a two-layer baroclinic
instability. Griffiths aod Linden (1980) have found that the wavelength
of uynstable waves that appear oo an isolated two-layer vortex in a
rotating laboratory taok is dependent upon the ratio of layer depths.
They conclude that the instability is primarily baroclinic when the ratio
of the upper to lower layer depths is greater than 10‘1, At such depth
ratios the unstable waves led to the formation of cyclone-anticyclone
pairs which propagated away from any remaiving central vortex. 1In figure
10 are shown two stages in the evolution of an anoular current wheon the
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Figure 8. The number of waves observed around the annulus, and a
straight live fitted by eye to the data.

{2

10 - -1

O | |
0 { 2 3 4

. Lot
V7'

Figure 9. The dimensionless wavelength 7i.f/(g'H)1/2 as a function
of F = fL*o/(g'HO)l/z. The horizontal line is the mean
valve 6.9 + 0.7, The filled circles are chose cases in
which the lower layer was shallow,
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initial depth ratio is 0.6. While of smaller amplitude, each wave was
observed to "break" on the up-stream side, where vortices of opposite
sign appeared in the lower layer. At the later stage shown in (ii)
there are a number of cyclove-anticyclone pairs present and ove dipole
bas escaped from the vicinity of the current. On the other hand, the
dominant wavelength observed on the aunular currents does not depend upon
the ratio of layer depths (the wavelengths from experiments with large
depth ratios are shown as filled cir les in figure 9). There was also no
marked difference in the time that elapsed before large disturbances
appeared. We conclude that the lower layer is no longer statiomary at
the larger depth ratios and that the two-layer baroclinic mechanism is
able to belp release potential emergy. However, it seems likely that the
single-layer instability caused by the presence of two free streamlines
selects the most uonstable wavenumber and assists the evergy travnsfer,
even ion the distinctly two-layer flow.

7. Conclusiouns

A single-layer model of a narrow buoyant current that is bounded by
two free streamlines predicts that such a flow is very unstable. 1In the
limit of infinitely long waves, disturbances grow linearly with time aond
normal modes are stable, For flows with uniform potential vorticity avn
analysis of normal modes with finite wavelengths indicates that
disturbances will grow exponentially with time and be stationary in
space. A superposition of meandering and 'varicose' modes is predicted
to release both potential and kinetic evergy from the undisturbed current.
When the flow bhas zero potential vorticity, the wavelength of the mode
with the maximum growth rate is estimated to be 8 (g'H )V&E , where
H 1s the maximum depth of the current.

Our analysis for flows with finite potential vorticity leads to a
first order growth rate that depends upoo the ratio of width and depth
scales of the current. Two limits are of interest., First, the aonalysis
is oot valid ivn the limit where the potential vorticity approaches zervo.
The correct limit is that given by the equations with the potential
vorticity set identically to zero. Second, when the current width
becomes large compared to the Rossby radius based oo H, (the depth at
which the relative vorticity is zero) the growth rate of disturbances
becomes very small. This suggests that a single front (at the edge of an
infinitely wide current) is stable to normal modes in a one-layer wmodel.

Laboratory experiments with a shallow current at the free surface of
a deep lower layer coonfirm that such a current is very unstable and show
that the dominant downstream length scale is approximately 7 (g' ff) ‘f—'
The observed structure of growing disturbances corresponds closely to
that predicted., The experiments also indicate that the single-layer
frontal instability is likely to continue to be important when the second
layer is of finite depth and the two-layer baroclinic instability
mechanism assists the release of potential emnergy.

The analysis could be extended to investigate the stability of a
circular eddy that is bounded by a sharp density front. 1In this case,
there is a single free streamline. However, there may be a coupling




Figure 10. Two stages in the evolution of an apoular current when the

lower layer is shallow. f = 0.899_1, F = 1.36 and
initial ratio of layer depths 0.6

(i) t = 2.5 days

(ii) t = 6 days
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between tue antipodes of the front. A current flowing along a sloping
bottom can also be described by a minor modification to the cross~stream
momen tum equation (2.9). For a planar bottom with a slope d%/dy,
perpendicular to the direction of the undisturbed flow, (2.9) becomes

v =-d"—/4‘j "d?/dy and the perturbation equations are otherwise
unchanged. There is now a net flux of fluid along the stream and it caon
be shown that the velocity is even unidirectional when [ 4% /4y] >
%_1/2 tanb (L/fé’/z). As the symmetry of the original problem has now
been removed, the structure of the growing disturbances will be altered
and they will no longer be stationary in the spatial reference frame
moving with the velocity of the midpoint of the current.
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RATIONAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS

James Meiss

A soliton is usually defined as a localized solution to a partial
differential equation (pde) which "asymptotically preserves its shape and
velocity upon collison with other solitons.'" (Scott, Chu, aad McLaughlin,
1973). One explanation for this remarkable stability derives from the inverse
spectral traasform: in 'spectral space'" a soliton is represented by an
eigenvalue (of the associated linear problem) which is time indepeadent.

Another possible explanation for the particle-like nature of solitons was
first suggested by Kruskal in 1974, 1In his view a soliton is represented by a
polnt, or an array of points, moving in the complex plane. 1In this report we
review the development of this idea over the past six years for a number of
pde's.

For historical reasons, consider first the Korteweg-de Vries (KdV) equation

Ugd Uy + Uy, =0 e

which has the soliton solution
Ulx,t) = 3v sech? (Vg (x-v%)) ‘ (2)

Noticing that the function sechZ(y) has double poles evenly spaced along the
imaginary axis we could rewrite (2) in terms of a summation over poles:
%0 |

2 - - .C.
Sedh (ls) < "Z-a mﬂ)t +ce¢ ' (3)

The KAV soliton therefore can be thought of as an infinite line of points in
the complex plane with spacing A™W4y. 1n the single soliton, each pole moves
with constant velocity v in the '"real'" direction. To obtaln a two soliton
solution we begin with two well separated lines at poles, each with spacing
depending on its velocity. The subsequent evolution of the poles depends in
detail on the ratio VVVI, for if this is rational then the entire structure
1s periodic in the imaginary direction (Thickstun, 1976). This suggests
interpreting the poles as point particles which interact due to the
nonlinearity of the KdV equation. We will see that this is indeed the case
and suggest that this particle interpretation is connected to the stability of
the solitons.

To generalize the solitou solution (2-3), assume that the function u(x,t)
can be decomposed into a set of mth order poles with positions aj(t) and
residues R_',(t): N R: (6)

’J(Y-,t) = "J' . (4

m q)
.)"“ (X—OJ(t))
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Subscitution of this ansatz iato (1) shows that (4) is a solution only if m =

2 and Ry = -12 (Airault, Mckean, and Moses, 1977; ChoodnovskyZ, 1977). 1In
addition, the pole positions must satisfy the ordinary differential equations
(ode's)

) N_, )
t) = - —_— <

Finally, the initial conditions are constrained by the requirement

N
1
—7—0—'3 -O A‘-l,:l/...N (6)
k=1 (ql_ k) .
In tnese sums the prime iandicates the omission of the singular terms k = j.

We thus have a correspondence between the pde (1) and the N ode's (5).
The set of solutions (4) includes as a special case the multi-soliton
solutions. For finite N it has been shown (Airault, McKean, and Moses, 1977)
that tne coanstraint (6) can be satisfied only when

d ¢l
N = L(I*.) d=1,2, ... 7

The simplest case of (7), d = 1, yields a time independent solution
-1
Wix) L (8)
(x-a)

where a is a complex counstant

. . 3[
The next case, d = 2, has pole positions, proportional to ‘l and

-36x (\3-4¢)

N\
*

Figure | displays the trajectories of the poles for this case.
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Airault (1978) has presented solutions for higher values of d; however,
not much is known about the N=—9» 00 case other than the existence of the
multi-soluton solutions.

The pole equations (5) can be derived directly by substituting the ansatz
(4) into the pole or alternatively by Fourier transformation. We will
describe this latter method for another pde - the Benjamin-Ono equation
((Len, Lee, and Pereira, 1979). This equation results in the simpliest
possible pole equations and is for that reason pedagogically preferable.

The Benjamin-Ono equation (see Redekopp, this volume) is
Uy + Uy + Huyy =0 (10)

where }1 is the Hilbert transform

u(z) :.-
Hu % dz (11)

]}

| " |
Defining the Fourier transform by ’()'(k)-.gg* "u(x)dx and applying this f
to (10) yields " g :
~s ~v 3

~ A 1 . =

v ~
where we have used Hu= i sgn (k)W . 1If the ansatz (4) is again used, we
will see that (l2) can be satisfied only when m = 1. For this case the
Fourier transform of u 1is

- . . —ikai(t)
WiKe) = ~sqn (k) Ami an e J (13)
3 ,
where the summation is only over those poles in the upp~r (lower) half plane ‘

for k€0 (k?0). We will assume below that k< 0 for simplicity; however, it :
1s easy to see that the case k> 0 yields equivalent results. Using the form :
(13) in the three terms of (12) yields

-3kaQ; | . i
W= amZ e (ke ) ) |

" kl -aka: -AkG) ,‘QQ ; 2
%G{) JM; ZR"\ b4 Z Rje g(ﬁ (14b) “
-tk = Ana (4&1) _,Z+ Rje "‘C‘J (14c) ;

In (l4b) the first term on the right arises from the double poles in the %
Fourier integral. The three terms (14) must sum to zero for all k; 1in .
particular, the O (k2) terms must vanish i

24 k"[ Z ety (2:f125>:' = ‘Rj = -2 (15)




vanisniag all of the®(k) term implies

é;\: Z/ R, (1h)

EI SRR

) (0') "Q,g)
and finally tuoe Gy(ku) term gives éj = () which 1s consiscent with ({3).

The known solutions of the many-buody problem (lh) 1nclude the case N = |
where u is trivally time 1independent, N = 2 with complex cunjugate pules
where W 1s the single solitoa solution

4v
ulx t) = ——m—m—— 17)
't VE(x-vi) ¢+ | (17
and simitarly N = 2n when the poles are complex conjugate pairs where LS

tire n-solution (Joseph, 1977; Case, 1979; Matsumo, 1979, 1980). We will see
pelow that (16) can be embedded 1nto an integrable Hamiltonian system and
hence all solutions are known in prianciple.

The above analysis applies almost without change to the
Burgers-Benjamin-Qno (BBO) equation as defined by

ut+uu,t+a(Hun—(3u,x=O (18)

This equation has solutions of the form (4) with m = 1, Rj = =2 (Q +49 )
and

. . QR
Q= —'Q(@"‘q’) g (a;-ay) (19) l

Consider for example the N=2 case for which the equations (l19) are easily
solved

a = C+ \ﬁ)l'«l((““/)f (20)

i
a, = ¢ - D -2{peaarkt
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Fig. 2 Pole Trajectories for the Burgers Equation from (20).
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Flgure 2 Jdisplays the three types ot trdajectories tor (nis equition wiende
U, Note that 1t D s redal, tne poles collide and the velodity, accordiag to
(19), vecomes 1afinite.

The pole equations for the BBO equation can be embedded 1nto a Haniltanian
system, Begin by ditterentiating (l9) with respect to time and substituting
tor 4y on the right hand side to obtain

. N 2 ’ !
st 8(@’“’) Zk_ (::‘_';:)s ()

This set of equations is derivable trom the Hamiltonian

S 2 |
H - -&Z(O_,) + ‘-f-(@uq) Z @ o)t (22)
J key V)T
which 1s tne complex version ot tine Calugero-Moser lattice (Calogero, 19700,
This system can be shown to be i1ntegrable by Lux's metnod (Moser, 1973). [t
must be noted tnat there a e trajectories of tne Hamiltonian (22) wnhich are
not solutions to (19); however, the particular solutions ot (21) tnhat nave
inttiral conditivns satistying (19) are also solutions of («9). This 1s tne
meaning of tue term 'embedded” as used above.

The embedding ot the pole equations 1utuv d Hamiltonian system 1s dlso
pussible for the KdV system (5) (Airrault, Moser, and McKean, l977). (o tais
case one obtains a particle system wilh 4n Lnverse tourth power potential.
This Hamiltonian 1s also integrable - ouly however when tne constraint (h) 1s
satistired (Choodnovsky, 1977).

It 1s 1nteresting, 1n view uf tne above connections between 1ntegrable
pde's and 1o0tegrable ode's, to speculate tnat tnere 1s some deeper connection
Detween those pde's which can be pole decompused and integravilitv. Consider,

for example, the more general equation
ut+u7u,+fu=o (1

where p 1s an iateger and ;f a linear pseudo—difterential operator of order n
(that 1s, the Fourlier transtorm of ;t 1s a power series 10 k, and pernaps |«\,
with the highest power n). We can easily find a necessary requirement tor the
validity of the ansatz (4) by considering the highest vrder poles generated by
substitution into (23). The diagonal part of the noulinear term 1s a pole ot
order mp + m + l; while the highest order of the poles 1n the dispersive term
i1s m + n, These two terms must balance since 1f n 2 | the time derivative has
no poles of order larg enough. Thus we must have

mp +m + 1l =m+ n,

ap = a - 1

1in order for tne nonlinearity to balauce the dispersion. This necessary
requirement for the solution (4) already eliminates most equations (Table 1.




For example, when 0 = 3 only

\
I
| \
i
a4
i \ \
'
)
Taole 1: Fquations witn pole solutions
tne pocow CKAV) and po= 2 Gnoditied KdV) equations have pole solutions. We
nole thal these are also tone only two a = 3 equations with an infinite set of

porvitent b conservation liws. Tt 15 possidble, although apparently not yet
pUOVed, Lodal such 4 sel ot vonservation laws 1s required for integrability.

[t the connection belween pole solutions and conservation laws 1s true for
other n toen (24) umplies that tne only n = 2 equations which are integrable
tre tne 8B eqaallons.  sSwumilatay toere dre only two integrable equations for
no= e oand ondy three witn n = 5, etc.

4
As 1 tiaal reaark we dole that 1t 1s also possible to look for solutions
Colslatlag ot periodil, drtass ot poles.  For the KdV equation there is a
S aliron
Wi = 5 P (x-aw) :
! : J (25) 1
J
wwux.-6>\< e wWoelerstrass vliiptic tunction (Airault, McKean, and Moser, j
P47, vhootaovsky, 14.7).  We recall that the function consists of a
faab iy perTiodi. array ol secona order poles. In a similar fashion we can
cxpect to taad solution tor tne BBO equation which 1s a sum of Jacobi elliptic 4

Panct oS, dithough s Nas dparently not been done.
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COHERENT FEATURES BY THE METHOD OF POINT VORTICES

Hassan Aref

1. Introduction

This investigation arose from a desire to apply to the barotropic
potential vorticity equation the method of point vortex decomposition
that has proved so useful in nonrotating two-dimensional flow. In
particular, it seemed that point vortices (and the vortex-in-cell method,
see §3) might considerably reduce the computing time necessary to
calculate numerically a coherent feature such as a modon. The recent
work by McWilliams, Flierl, Larichev and Reznik (1980; henceforth
referred to as MFLR) provided a useful benchmark with which to compare.

In this work I asscss the accuracy and reliability with which one can
calculate certain dipcle vortex structures in nonrotating two-dimensional
flow. As shown in $2 these dipoles turn out to be the B3->0 limit of the
two-dimensional Rossby solitons found by Larichev & Reznik (1978) and
studied in MFLR. The dipoles, called 2D Euler solitons here by analogy,
can be calculated by the vortex-in-cell method. At comparable accuracy
and resolution this method is shown to be at least a factor 25 faster
than a straightforward finite difference calculation (§ 3). This
considerable saving of necessary resources allows collision experiments
between coherent features to be studied with ease (§ 4), The results
obtained here suggest that application of the vortex method to flow
features with finite p should be pursued.

2. The two-dimensional Rossby soliton (2DRS)

These special solutions, originally presented by Larichev & Reznik
(1978), consist of a3 dipole~like vortex on the infinite 4 -plane. The
streamfunction q,in the resttrame of such a "coherent feature" has the

form:
-[_!,L’i_f)_ - L+ )] e
K’J’,(KO.) a \K P

. (2.1)
'\}/ = -(.’.QSLWQ x

IS pr)
¢ 10 (pa) ?
where J)(K;) is the (modified) Besselfunciion of order 1. As written
the solution contains three parametars: a, ) and P - a is the radius
of the feature. K and are inner and outer wavepumbers charac.erizing
the feature. They are related by the condjition:

r>a

T, (xa) _ (pa)
wa J,(ka) “po i (pa)

(2.2)

i A Akt e Nt e ahni i1
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which results from demanding that the tangential velocity be continuous
at r = a. The dipole (2.1) translates with uniform speed:

U= (3/fz‘ (2.3)

to the East (x increasing). The relative vorticity of the f‘eature.§="A}L.
is given by the simple expression:

S ) 3, (kr) /3, (xa) ; T<a,
= - S\: X
po K (en /I5(pa) 5 r>a.

Two limits of the above result are worth noting. First, keep f3 and a
fixed but let p-» 00 so that U-»0 and '\};"0 for r > a. Then

- - fo ( J,(kr) J:) sind ;. r<a (2.5)

kt \ T, (ka] &
and the matching condition (2.2) becomes:

J,(xa)=0. (2.6)

Hence we recover the modon solution originally found by Stern (1975).

s,

(2.%)

The second limit to consider arises for a and U fixed but SJ->0 so
that (5—>O. For r > a we then get:

V= Ua sthb (2.7a)
r

while for r € a

J, (xr) ) :
=-U[(—Lt—+— - stnf . (2.7b)
Y U ( KT, (xa) r
The matching condition becomes:
J,(ka) = 0 (2.8

These solutions are discussed by Lamb (1916) and Batchelor (1967). Note
that U is now a free parameter (independent of a and £). I shall call
these solutions two-dimensional Euler solitons (2DES).

A couple of pertinent results about 2DES follow. First, note that X
is an average wavenumber of the flow in the sense that JmX for r£ a
or equivalently that

K2 € = K2 (2.9)

where Cu,\' is the kinetic energy of the flow (in the frame of
reference where the fluid is at rest at infinity) and 2 is the
enstrophy.

e —— <~ -
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Secondly, note that the nonvanishing component of the fluid impulse
2
P= ﬁolxoly 3}’ = 2w’ U (2.10)

For ‘ﬁdxol‘yr= 0 (as is the case here) P equals the total momentum
of the fluid (in the same reference frame as above). Finally,

Eki - éj(l’ﬂ'&")uz (2.11)

14%

The formulae (2.10), (2.11) are analogous to the expressions for momentum
and kinetic energy of a classical free particle with mass 2 7 a2 and
velocity U . I shall return to these formulae in §3 and §M.

3. Numerical simulation of a 2DES

A sequence of numerical calculations were performed to assess how
well a 2DES, Egn. (2.7), can be simulated using the vortex-in-cell
algorithm. A description of this algorithm is given in Christiansen
(1973). The actual code used here is the same as in previous work (Aref
& Siggia 1980). The basic independent variables of this algorithm are
the coordinates (xp,y,) and the strengths K,, n = 1,...,N of an
assembly of N point vortices. However, in calculating the motion of the
vortices a grid (of dimension M x M say) is used, and at each timestep
Poisson's equation for the streamfunction is solved and velocities
calculated (by finite differences) on the grid. At first sight one might
therefore assume that a vortex-in-cell calculation employing an M x M
grid would have a spatial resolution comparable to a finite difference
calculation on a grid of the same dimensions. However, it is possible to
have many vortices per grid square and so the spatial resolutinn of the
vortex-in-cell approach depends on both the grid size M and the available
number of point vortices N. Note that an FFT on an M x M grid requires
0(M2logyM) operations. Hence, in a finite difference code that
employs FFT technigue to solve for the streamfunction the operation count
goes up by at least a factor of 4 if M is increased by a factor of 2. In
the vortex-in-cell algorithm on the other hand the operation count
increases only linearly with N as the number of vortices is increased on
a grid of fixed size.

When calculating a structure like (2.7) the vortex-in-cell method
turns out to be much more efficient than a finite difference algorithm.
The reason is that M can be kept relatively small (M = 64 or 128 in the
calculations reported here) and all the vortices can be piled into the
vorticity containing regions of the flow field. The resulting resolution
is considerably beyond that of a finite difference code on an M x M grid.
By comparing with recent results in MFLR the spatial resolution of my vor-
tex-in-cell calculations with N = 0(M2) seems comparable to the spatial
resolution of a finite difference code on a grid approximately 5M x 5MI
The necessary computing resources are thus reduced by at least a factor
25.
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Now let me describe the numerical calculations performed. The setup
is shown schematically in the top half of Fig. 1. The numerical box has
rigid boundaries top and bottom, periodic boundaries left and right. The
2DES which is a solution for the unbounded plane is initialized in this
channel and its evolution followed in time. This procedure is repeated
for several values of the ratio a/L of structure radius to channel width.

LSS
I

L

—
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|
|
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S S S
Ucale/Ueo
A EQN. (3.9)
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Fig. 1 Defining sketch for numerical experiments (top). Calculated i
propagation speeds for different sizes of 2DES (bottom). '




In order to exploit the potential additional resolution of the vortex
method the 2DES were initialized as follows: First, using a 64 x 64
grid, a 2DES of radius a = L/2 was initialized by placing at each grid
site a point vortex of the appropriate strength. In all 3142 point
vortices were needed. Then the 2DES was contracted to the desired size.
To see how this works let §(r) be the vorticity of the solution (2.7)

ith di
W radius a ZUK,SL 6 (,cr) 5 r<a
() = (xa) (3.1)
0 3 r>a
and consider
J(;cr) .
(r)_(b }(r——) 2U)‘CSW\9 T (b)) r<b (3.2)
where A o
K= % s u=uUg . (3.3)

Tnis vorticity distribution produced by contracting and rescaling is
again of the form (2.7). Thus, in the calculations reported on here 3142
point vortices are used to represent the vorticity distribution
regardless of the size of the radius. Note that the product of
propagation speed and radius is the same for all 2DES obtained in this
way.

The following values of a/L were considered: 1/64, 1/32, 3/64, 1/16,
5/64, 7/64, 1/8, 1/5, 1/4 and ra equal to the first zero of Jj. 1In
each case the propagation velocity,bcalc, was calculated from the
simulation by following the motion of the centroids of positive and
negative vorticity. In Fig. 1 (lower half) the ratio Ucalo/Uoo '
where Uoo is the propagation velocity expected for the 2DES on the
infinite plane, is plotted versus a/L. Two effects are apparent in this
figure. For a/L20.1 the simulated propagation speed is smaller than Uw.
This is due to the effects of the boundaries on the structure (see the
discussion surrounding Eqns. (3.8) - (3.9)). For a/L < 0.025, Uutc/Uo.
again drops below unity. This is due to loss of resolution (ef. Fig.
3). To calculate the velocities plotted in Fig. 1 the 2DES was allowed
to move 1-3 radii, i.e. the calculation lasted for a time interval, 0<
t < teip, where U tein/a =2, Such a calculation consumed
approximately 10 sec of CRAY-1 CPU time. In the finite difference
calculations of MFLR similar calculations consumed several minutes of
CRAY-1 time (McWilliams, private communication).

Fluctuations in the value of U cale/ Uoo over the duration of
the run were smaller than the width of the dots in Fig. 1. The flag on
the point a/L = 0.125 signifies that this value of | ca1c/Uge was
reproduced with a longer run, Utfln/q, 2 5, and for a run with Ka
equal to the second zero of Jj. For the longer run the vorticity
profile
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(HJJEJ ZK(% 37{’4') (3.4)

for y on the grid, i.e. yxh4/L, =0, +1, , was also calculated at
several instants of time tl,...,ts. The histogram in Fig. 2 gives

the average
<3y E—Zt(y,d) G.5)

and the error bars give the size of the standard deviation [<§ VA <37l]z.
where

2 i <2
ANERS Z Syt (3.6)
J=l
It is obvious that the vorticity profile is well preserved. This check
on the accuracy of the simulation is more sensitive than just evaluating

the propagation speed. For, as is seen from Egns. (2.10) -~ (2.11), the
propagation speed is simply

£ @ [@®-@2)"

5 = 1.915

{+

.014
3.412 + .048

F—I—"I—T 4.229 + 055

4.266 + 048

r.- 3.550 b .045
3 B 2,308 +- .031
0.950 + .012
e e -
2 0.102 A .007

O 4 & & /r(64/L)

Fig. 2 Numerical check on persistence of 2DES vorticity profile.
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U= 2&,./P (3.7)

and is constant for a code that preserves P and éskdn .

To substantiate the claim that |J g510/Ugg for the large a/L
values is less than unity because of boundary interactions I have

calculated the analogous ratio of speeds for a pair of point vortices of
opposite strengths. Let U; denote the propagation speed of the pair
with the boundary conditions of Fig. 1 (top) and letlJoo denote the
propagation speed on the infinite plane. Then using results given by
Oberhettinger & Magnus (1949) I flnd

U./Up> TeotT= + Esin 2"3)}: (coshlimrr — 0052 2E) " (3.8)

where s is the distance between the point vortices. Expanding in powers

of s/L sz
.
UL/Uoo 2 1- 034 ('E) (3.9)

The dashed line in Fig. 1 (bottom) is this parabola with the
identification s = a.

To discuss the small a/L results I have replotted in Fig. 3 the data

points for a/L = 1/64, 1/32, 3/64, 1/16, 5/64 and 7/64. The ordinate is

again calc/L)oo but the abcissa now gives the number of grid
intervals within the diameter of the 2DES. Since my

a MFLR
Ucale /Uco this work
A

{.0+ e O o ®

0.5-

|
[
—D—

PR G S U WOUS SHY UH W N N SH SR SR S -
T + +—r—r

5 10 15
GRID INTERVALS PER DIAMETERS

Fig. 3 Comparison of vortex-in-cell and finite difference code
resolutions




grid is 64 x 64, a/L = 1/64 corresponds to 2 grid intervals per diameter
and so on. As already surmised, piling up vortices within the bounding
streamline increases the numerical resolution. To emphasize this point I
have also plotted in Fig. 3 the results obtained by MFLR for a 2DRS using
a finite difference code. (Results for the 2DES should be identical). It
is clearly seen that the point vortices enhance the numerical resolution
of the vortex-in-cell scheme well beyond that of the finite difference
code. As discussed before the overall savings of computational resources
are substantial.

Finally, consider contour plotsof the streamfunction for the case
a/L = 0.25 (Fig. 4a and b). The streamlines in the evolved structure
match the initial streamlines identically when shifted back. On the
other hand we know from Fig. 1 that the propagation speed is only about
0.8 of LJOQ and so the vortex must be adjusting to the imposed boundary
conditions. Figs. 5a, b give an indication of how this is happening.
Apparently waves propagate around the vortex lobes. Propagating waves on
vortices have been studied by Zabusky and coworkers (cf. Deem & Zabusky
(1979)) for the case of uniform vortices of finite area. I would like to
believe that the waves seen in Fig. 5b represent dynamically possible
modes and are not numerical artifacts. For a/L = 0.125 the boundary
effects should be much reduced. The vorticity contour plots in Fig. 6a,b
show that such is indeed the case.

4, Vortex collisions

In j 3 it was shown that the vortex-in-cell method can accurately
calculate a 2DES, Eqn. (2.7). In this section we venture beyond the
simulation of known analytical solutions and consider one of the
simplest dynamical processes involving the 2DES: the collison of two of
them. We shall see that calling these features solitons is not
completely appropriate.

The three numerical experiments performed all involve coaxial pairs
in which a 2DES of radius a; and speed U collides with another of
radius a, and speeleg. Table 1 summarizes the runs

Table 1: Collision experiments with 2 DES

Experiment  Figure aj as Qualitative description
A 7 3/64 1/4 "Elastic collision"
B 8 1/16 1/8 "Inelastic collision"
C 9 1/8 1/8% "Inverse cascade"

In experiments A and B all 2DES correspond to the gravest mode, Ka)
and Kap are both equal to the first zero of Jj. Furthermore, in
these two experiments Uja; =Ujsa,. In experiment C the second
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vortex is in the "first excited state", W3, equals the second zero of

Ji. (This is the significance of the * in Table 1). This "quadrupole
vortex" moves slowly to the left (x decreasing). Pictures of streamlines
for the three sequences appear in Figs. 7-9.

Qualitatively the three sequences may be described as follows: In
sequence A the smaller pair passes straight through the larger one, and
in Table 1 this was characterized as an "elastic collision." 1In sequence
B the small pair first passes through the large pair, then the largze pair
starts to contract and passes through the "small" pair. However, in the
process the like-signed blobs merge and a single dipole results. Notice
that in the lowest panels of Figs. 7 and 8 a vortex pair has passed
through the periodic boundary at the right and reappeared at the left.

Finally in the sequence C (Fig. 9) the lowipair absorbs the small
vorticity nucleus of the high K pair. Hence high wavenumber excitation
is obliterated and two relatively low wavenumber structures remain. This
process has been labelled "inverse cascade" in Table 1.

Expectations for experiments A and B are conditioned by knowledge of
the sequence of events for two point vortex pairs. An early analysis by
Love (1894) gives the following results for the initial value problem
sketched in Fig. 10. The vortices all have the same absolute strength.
Love showed that in every case all four vortices are collinear at some
instant. There are then two possible regimes according as

(3+2J??)"= 3-27 < A/A < 3422 (4.1)

at the instant the vortices are collinear or >/O\ is outside this

interval. If AAA is within the interval (4.1) the two pairs perform a
periodic leapfrogging motion in which one overtakes the other by passing
through it. If M/A is outside the range (4.1) the relative motion is
aperiodic and the pairs separate. Two pairs started infinitely far apart
as't+-ﬂ>a1ways belong to this regime and the only net effect of the collision
is a forward shift of the smaller pair and a retardation of the larger

o tK
1
e tK
4
______ Ae e mmm e e e mm e e e e — - =
¥
o -K
]
© -K

Fig. 10 Case of coaxial vortex pairs analyzed by Love (1894),
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relative to where they would nave been if they had propagated without
encountering one another. This case then is very reminiscent of the
collision of solitons in one space dimension.

When initializing the colliding 2DES for experiments A and B care was
taken to assure that the total circulation of each lobe had the same
absolute magnitude. Using (3.1) one can show that the dimensionless ratio

[fdxdy¥ /Ua = 2 H,(xa)

y>0 (4.2)

where ”41 is a Struve function. Since the vorticity distributions
rescaled according to (3.2) all have the same value of Ua it is seen
that this rescaling in fact produces 2DES of the desired type. Hence the
ratio of impulses for the colliding 2DES, which is the analogue of A/Q\ ;
for point vortex pairs, is equal to the ratio of radii aj/aj E
according to (2.10). It is then clear that experiment B with point ;
vortex pairs would lead to periodic leapfrogging. Due to the distributed

cores the vortex merging intervenes for 2DES after about 1.5 periods.

cxperiment A on tne other hand has a much larger value of ap/aj and

produces the slip-through gquasi-elastic collision in Fig. 7. Hence

analogues of both the modes known for point vortex pairs appear to be 0
present for the 2DES. It is apparent from Fig. 7 that even for the

elastic collision small modifications result in the shape of resulting

vortex dipoles. These may be thought of as the analogue of "dispersive

tails" in solitary wave collisions.

The formulae (2.10), (2.11) may be applied to experiment B if one
assumes that the resulting single vortex dipole is again of the form
(2.7). The streamline picture indicates that this is approximately
true. To proceed we also assume that the initial 2DES are so far apart
that the total kinetic energy of the flow field is

E = 7ro.,"U,1+ wa2 U, . (4.3)

The total impulse is initially

P = 2miU, + 2w U, (4.4)

Using (2.10) and (2.11) we can obtain expressions for a, U of the
final single vortex dipole. Since alljl = aZLJZ one obtains

U= % = Z U;Uz/(Ul"‘U‘,_) (4.5)

and

n

0

'p/\/Z,;g = @te)/NT (4.6)




The expression (4.5) for L] is about 10% larger than the actually
measured value (from pictures). The value of a, (4.6), is difficult to
measure from a streamline picture but is not unreasonable. The initial
structures may have been too close for (4.3) to be valid.
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