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Abstract

A software package was written which will analyze an-
nular shaped laser wave-fronts. The polynomials used to
estimate the wave-{ront are based on the work of J.Y. Wang
and D.E. Silva in their paper "Wave-{ront Interpretation
with Zernike Polynomials," This involved generating a set
of orthogonal polynomials from the Zernike polynomials by
using the Gram-Schmidt orthogonalization process. The co-
efficients of the polynomials are detcermined by using the
orthogonality of the polynomials, instead of using the com-
mon least-squares method. The coefficients of the gener-
ated polynomials arc converted to Zernike coefficients,
and both sets of coefficients arc presented to the user,

By using the first moments of the wave-front's posi-
tion in the collection array, the software is able to de-
fine the basic parameters of the wave-front. These param-
eters are: center, outside radius, and the obscuration ra-
tio of the wave-front. With these parameters, the soft-
warce computes 6, then 11, then 22 coefficients to show the
stability of the coefficients. With well-defined circular
and annular wave-fronts, the program was consistantly able

to compute the coefficients with an RMS error of less than

0.050 waves,
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LASER WAVE-I'RONT ANALYZER SOITWARE IMPROVEMENT

I. Introduction

The Laser Wave-front Analyzer (LWA) at the Air Torce
Weapons Lab (AFWL) is used to measure the phzse and inten-
sity of a High Encrgy Lascr (HEL) beam. The LWA uses the
phase and intensity data to calculate the coefficients of
Patterson's polynomials (Ref.4). The coefficients are uscd
to determine the various optical aberrations present in the
laser; the aberrations inclﬁde: piston, tilt, defocus, and
coma. Once the aberrations are knowun, they can be used to
correct the laser's optical elements to maximize the far-
field intensity of the laser.

As stlated earlier, the Patterson polynomials are cur-
rently being used to analyze the wave-front. This set of
polynomials is simple and is not the best sct of polynomi-
als available, A better set would be the Zernike polynom-
ials modified for an annular wave-front, These polynomials
will be used to determine the coefficients which describe
the wave-front. Since the polynomials are defined over an
annular wave-front, the coefficients will better represent

the optical aberrations.
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Problem

This thesis involves the generation of a FORTRAN pro-
gram which will find the cocfficients to hoth Zernike poly-
nomials and a scet of polynomials defined over an annular re-
gion. Since most HEL's have annular wave-fronts, the Zernike
polynomials must be modified to remain orthogonal over the
wave-front (the Zernike polynomials are orthogonal with
circular wave-fronts). Orthogonality of the polynomials
will refer to the integral over the entire region of the
product of two polynomials, When the polynomials are the
same, the result is onc and zero when they are not the same.
The coefficients should be available as rapidly as possible

alter the collection of the data by the LWA,

Assumptions

Work has already been done to show that the Zernike
polynomials are not orthogonal when part of the beam is ob-
scured (annular) (Ref.6); therefore, this study will devel-
op the softwarc required to cvaluate wave-fronts. It is as-
sumed that the wave-{fronts arce annuli whose obscuration ra-
tio ranges from 0 to almost 1. The obscuration ratio is the
ratio of the inside radius to the outside radius. The soft-
ware will always try to fit the wave-front with the largest
possible annulus. The word wave-front will mean the phase
of the lascr's outpult at any instant in time. Thus with an

aberration-frce system or the Zernike coefficients are all




L ~v

-
> him, BT Bt

.
* -

A o BN s -,

il 3, Y &

zero, the wave-fLront will be planar,

It is assumed that the accuracy of the results will
not have to exceed the accuracy of a 16-bit computer (four
significant digits to the right of the decimal point); how-

ever, the software was developed on a GO bit computer.

Approach

The gencral procedure for modifying and finding the
coefficients to the Zernike polynomials has been presented
in Ref.6 . The basic procedure consists of the following
steps: (1) remove any invalid data points, (2) find the
center of the beam and determine the obscuration ratio,
(3) using the Gram-Schmidt orthogonalization method, com-
pute the modified Zernike polynomials, (4) solve for the
aberration coefficients, and (5) print the results. Each

of these steps will be presented in detail later.

Development

The basic operation of a LWA and the polynomials used
to analyze wave-fronts are presented in Chapter II. The
mechanical and software operation of the LWA.is shown. In
Chapter III, the conversion of Zernike polynomials to a
set which are orthogonal over an annulus is presented.
Chapter IV deals with the development of the software.

The validation of the software is presented in Chapter V,
and the conclusions and recomumendations are presented in

Chapter VI.
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II. Detailed Analysis

This chapter deals with the basic workings of a Lascr
Wave-front Analyzer. Beforc explaining the mathematics re-
quired to analyze a wave-front, the basic operation of the
LWA will be discussed. The next two sections present an
overview of some of the methods used to analyze wave-fronts.
Included in the sections is an explanation of the limita-

tions of these methods.

LWA Operation

The LWA consists of two basic parts, a sliding refer-
ence interferometer to collect the data and a computer to
control and analyze the data. The inteferometer is design-
ed to work at two wavelength bands: 2.1lum to 10.7um and
3.2um to 3.8um (Ref.7:58), The LWA is capable of collect-
ing the phase gradient and intensity of the beam at each
point of a 32 by 32 array 100 times a second. The data is
collected by two cryogenically cooled Hg:Cd:Te detectors,
one for the X axis data and one for Y axis data. The phase
map is assembled later under software control.

The actual phase measurement is done by collecting the
difference in phasc between a reference beam and the input
beam. The input beam is passed through the optical system

shown in Figure 1, and is focused on two sets of apertures,
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Figure 1. Optical System layout or IMA

One set is used to find X axis data, and the other Y axis

data, with each set consisting of two small circular aper-
tures. The apertures generate Airy diffraction patterns

and their proximity to each other generates interference

patterns similar to Young's double slit experiment. The
optical system focuses the interference pattern on a chop-
ping wheel, which is used to modulate the two beams. The
position of the interfercnce pattern is proportional to
the optical path difference of the wave~front at the two
apertures, Figure 2 shows examples of parallel and tilted
wave-fronts. The chopper in Figure 1 modulates the inter-
ference pattern into a sine wave, Since a tilted wave-
frontts interference pattern is shifted off-axis, its mod-

ulated signal will have a corresponding phase shift. 1In

order to measure the phase shift, a reference beam is pass-

ed through the same set of apertures and is focused on its

own detector,

Since the modulated

as shown in Figure 1,

[&1]
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Figure 2, Delta Phase Measurement Procedure

reference beam's signal is constant with respect to time,
the phase difference between it and the input beam's sig-

nal is used to represent the optical path difference, The

LWA is capable of detecting a phase difference as small as
2/200 (Ref.7:60), The phase difference is called delta
phase. The delta phase data is collected at each point in
the array by using two orthogonal pair of apertures, re-
sulting in X and Y axis delta phase maps. At the same time
the intensity of the wave-front is measured by using the DC
value of the modulated signal, 1
Due to the physical layout of the LWA, the X and Y
dclta phase is not collected at the same time. The X
delta phase is collected starting at row one and ending
with row 32, The Y delta phasc starts at column 24, de-
creasing column-wise to one, then Lo column 32 down to col-

umn 25 (Ref.2:6). This collection method is alright as
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long as the wave~-front does not change shape faster than
the sample period of 0.01 scconds; otherwise, the phase
measured at onec pair of apertures may have changed by the
time the other pair of apertures is at the same point,

The delta phase and intensity data is digitized such
that the intensity is sent as an eight-bit word and the
two delta phases are sent as eleven-bit words, with one bit
used to signify valid data. This data is sent as two 16-
bit words every 1l0Ousecs to a high speed storage disk to
hold the data until it can be processed. The next step in
the wave-front analysis is the reconstruction of the wave-

front. This is discussed in the next section.

LWA Softwarc Operation

Once the data has been collected by the interferometer,
the computer portion of the LWA must first reconstruct the
wave-front from the‘delta phase data, and analyze the wave-
front. The analysis includes isometric and isocontour plots,
far-field intensity distribution, and polynomial coefficient
fitting. This thesis deals only with the coefficient fitting.,

Before presenting the current polynomial fitting rou-
tinc, the method used to reconstruct the wave-front will be
presented.  The basic technique is to use a least-squares
technique with the delta phase. Figure 3 shows a diagram of
a basic 3 by 3 wave-front collection matrix. Each Wi
point on the array corresponds to a specific value of the

7
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Figure 3. Simple Wave-front Collection Array

wave-front, The ai's and bi's correspond to the measur-
ed delta phase in the X and Y dircction respectively.
At cach point in the matrix the sum of the squarce of the

differences is computed. For example at the point Ws

the difference equation is
0s = (We=Ws-a3)2 + (Ws=Wy-22)2 + (We-Ws5-Db3)* + (Ws-W2-b,)?,

Each of the oi equations are differentiated with respect
to Wi . All of the equations are presented in Appendix
A. Tor this examplc, the result is nine equations which

can be solved simultanecously. As a reference, one of the

points is set to zero. The resulting matrix cquation is

AW=B8 (2.2.1)

where W 1is a column matrix on the actual phase values of
the wave-front, B is formed from thc measurcd delta phase,

and A is formed from the difference equations. In this




| .3} and all other matrix equations, A represents a n by n
t : matrix, A vrepresents a n by 1 colwm matrix, and A
[ a

: represents a scalar., It has been shown by others (Ref.5)
; that A in Equation (2.2.1) is Hermitian, irreducibly
diagonally dominant, and all diagonal entiries arec positive
rcal numbers,

The solution is slightly more involved than inverting

A and multiplying times B to get W . Some of the

points in the delta phase may be invalid because of the an-

T T TR TR T T T T R S TR R e T R R PR TR T T
e e

nular region of the wave-front. The software computes B
i by trying to find dominant rows and columns which circum-
1 .
{ scribe the annular region, Once the obscured region is

‘ i "boxed" in, the program works in toward the inside region

e

and outward to thc ouler radius as shown in Figure 4. This
c is done to reduce the possible errors introduced by edge

i effects,

‘ The result of this routine is a reconstructed wave-

front which can then be described in terms of various poly-

nomials. The softwarc used now utilizes Patterson's poly-
nomials; more familiar to those in the field of optics are

the Zernike polynomials. The next two sections deal with

- el NS

L these polynomials.

Patterson Polynomials

The Patterson polynomials arc a set of polynomials

{m. that were developed at Perkin-Elmer Corporation., They are




P ]

e e v g —

o e =y

o ————

A Central Reglon of
Annulus

B Major Axes of “Box™"

C Dlrection of Scan

D OQutside Radlus of
Annulus

Figure 4, Vave-front Construction from Delta Phasec Data
basically a simpler set of the Zernike polynomials., Table

I shows a comparison of the first 23 Patterson and Zernike
polynomials, The most important point about the Patterson
polynoﬁials is they are not orthogonzl over a unit circle;
thus, the coefficients of the polynomials will change as
more or fewer of the different polynomials are used in esti-
mating the wave-front. This is the phenomenon the users are
faced with at this time. As they increase the number of co-
efficients being solved for, the previously found coeffi-
cients change; therefore, they do not know when .the coeffi-
cicents are the actual cocfflicients,

Besides using polynomials which are not orthogonal, the
currcnt softwarc assumes that the wuvé-front will fill the
32x32 collcction array, and that ii{ is also centered on the
same. Thus an off-center, small beam will introduce much
more error than the non-orihogonality of the Pattcrson poly-

nomials, Figure 5 shows this c¢ase. The Patterson polynomials

10




3’ Table I
Polynomial Comparison

; Patterson (Ref 4) Zernike (Ref 8)
" P(1) 1 7(1) 1

P(2) r cos 9 Z2(2) 2 r cos ©
3 P(3) r sin © 7(3) 2 r sin 6
‘ P(4) r? 7Z(4) V3 (2r?-1)
| P(5) r?cos 26 72(5) VB r?sin 28

P(6) r?sin 20 7Z(6) VG r?cos 26

P(7) ricos 0 Z(7) /8 (3r®-2r)sins
‘ P(8) r’sin 9O ‘ Z(8) V8 (3r®-2r)coss

P(9) r3cos 360 Z2(92) V8 r3¥sin 30
( é P(10) r3sin 30 Z2(10) V8 r3cos 38
" P(11) r* 7.(11) /5 (6r“-6r’+1)

P(12) r“cos 20 Z(12) V10 (4r*-3r?)cos 26
! P(13) r*sin 20 Z(13) v/I0 (4r"“-3r?)sin 20
;% P(14) r“cos 40 Z(14) V10 r“cos 496
v P(15) r*sin 40 Z(15) /10 r*sin 40
¢% P(16) r®cos 9 Z(16) v/12 (10r5-12r*+3r)cosd
&f P(17) r’sin o Z(17) V12 (10r5-12r?+3r)sine
ii P(18) r®cos 30 Z(18) /12 (5r°-4r?)cos 36
! P(19) r’sin 30 Z(19) /12 (5r°-4r?)sin 30
q P(20) rdcos 50 2(20) VI2 rScos 56
}] P(21) r®sin 50 Z(21) /12 r®sin 56
-‘* 3 P(22) r® 2(22) V7 (20r®-30r"+12r?-1)
!
‘. 11
A .
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Filgure 5. Possible Error Condition for Input Beam

will give a wave-front which appears to be correct, via the

RMS error, but if the same coefficients were used to recon-

struct the actual wave-front with the proper coordinates for
the center and the true radius, the KMS error would be much

higher.

In conclusion, the Patterson polynomials are best suit-

ed to give only a rough approximation of the wave-front when
it fills the array and is circular. As soon as the wave-
front becomes either annular or does not properly fill the
collection array, the Patterson polynomials do not even

closely represent the aberrations in the wave-front.

Zernike Polynomials

The Zernike polynomials are the classical method used

in the field of optics to describe the aberrations present
in a wave-front described by a rotationally symmetric op-

tical system., As pointed out in the previous scction,

12




ar these polynomials are orthogonal over a unit circle, Ap-

pendix B (p.105) gives the reader an idea of what the first
22 polynomials look like. As an example, Figure 6 shows
the results when the first five coefficients have the value
of 0.1 waves, wherc one wave equals one wave-length of the

wave-front.

The Zernike polynomials are well behaved when the wave-

——— e

front is circular. But when the wave-front becomes an an-
nulus, the Zernike polynomials are no longer orthogonal
over the annular region., Thus they are not well suited to
‘i the analysis of most HEL beams. Even though the polynomials
are not well suited, they are the most familiar to those in
y optics; therefore, it is desirable to express the wave-
front in terms of Zernike coeﬁficients. The next chapter
will present a method of converting the coefficients of the

newly described polynomials to the coefficients of Zernike

polynomials.

Summary

v

In this chapter the basic operation of the LWA has been

- -

presented, along with the way the wave-front is analyzed.
The previous discussion has shown that neither the Zernike
or the Patterson polynomials are well suited to define the

output of most HEL's. The possible sources of error that re-

oS SO <t A

sult from the sampling and analysis have also been presented.

13

-

f e . D —
e — Tles = . . e - -
e e e e o e - N 4 _ - )




WAVE-FRONT WITH FIRST S COEFS. AT O.1

P, S
SRS

SO

S

53

CSOC

53982 ‘
RIS

L
CSRSS

.“

<D

TR

S

AR GOSN

S

OIS

N
N
KOO

eSSy
NSNS

A

S

14

Wave_Front with First 5 Coefficients at 0.1

Figure 6,
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converted to Zernike coefficients.

next chapter will present a method of generating a
of polynomials which are orthogonal over an annulus,
only will they be orthogonal over any-sized annulus,

the coefficients to the new set of polynomials can be




I1I. Theoretical Development

As pointed out in the last chapter, the Zernike poly-
pomials are not orthogonal over a region defined by an an-
nulus. This chapter deals with the theory bechind and the
development of a set of polynomials which are orthogonal
over an annula region with the bosic Gram-Schmidt method
of orthogonalization being presented first. This will then
be applied to the Zernike polynomials, which are defined in
more detail, to generate the new set of polyvnomials brthog—
onal over an annular domain . Finally, the new polynomials
are tested to verify their orthogonality. This chapter is

based on the work of Wang and Silva (Ref 8),

Gram--Schmidt Orthogonalization

The Gram-Schmidt orthogonalization process is a method
in which a set of linearly independent vectors is combined
to form a new set of vectors which are orthogonal, In par-
ticular, this process will be applied to the Zernike poly-
nomials, This will be donc in the next section; this secc-
tion deals with the specifics of the Gram-Schmidt orthogon-
alization process, |

The basic theorem for the Gram-Schmidt orthogonaliza-
tion process is to:

lct the vectors LEWRIEIPAUN form a set of linearly in-
dependent. set in a vector™space Vo with inner product

16
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Then one
Xl,...,Xq
set ol vectors

(e5°)
vecetors
the

such that for

Ny, eoe, X,
138).
The basic process involved to

to take the first vector u,

V)

—7
(vyi,v1)¥

where (Vj’vj) is the inner product of

span the same vector space, the second

multiplic of X,

Vo = U, = o31X)

where o, 1is chosen such that x,

To find a valuc for a, , the vector

times both sides of Equation (3.1.2

rach i
spans precisely the same
subspace as does the set of vectors

vector u,

subtracted from it, or

and

can construct an orihogonal sct of

with 1%iss

Ui, ...,u;  (Ref.3:

generate an orthogonal set is

and to normalize it, or

(3.1.1)

1

v, and v. . To
J

has a

(3.1.2)

vz are orthogonal.

is multiplied

and the inner product

is then taken to satisfy the orthogonality requirement of

x1 and vz giving

(xy,v2) = (xXj,uz2) - a1(X1,X;)

When two vectors arce orthogonal,
Zero.
a normalized vector with itselfl is one.
1.1) is the process used to generate
and vy

and X, muist be orthogonal

17

(3.1.3)

their inner product is

Another important point is that the inner product of

Since Fquation (3.

a normalized vector,

Lo satisfy the thecorem,




—

Equation (3.1.3) becomes
ay = (x1,uz) (3.1.4)

Putting this result into Bquation (3.1.2) gives

K Va = Uz = (X1,U2)X; ,Xp = —— TPy (3.1.5)

(Vz,Vz)2

E The third vector v; follows the same process, thus
Vy = U3 - 02X2 - B1X) (3.1.6)

where o2 and B; are found such that vj3 1is orthogonal
i to x; and x, .
As an example, just B; will be solved for, but the

process is the same for a2 . Thus

(x1,vs) = (x31,u3) ~ az2(x,X2) - B1(x1,%1) (3.1.7)

) where again (x;,u;) must be zero to satisfy the theorem

;§ and (x;,x2) 1is zero because they are two previously de-

i

‘i fined orthogonal vectors. Equation (3.1.7) becomes

!
| T . |
1 &i B1 = (x1,us) (3.1.8)

i}

and in the same manncr

o2 (x2,u3) (3.1.9)

Using Lquations (3.1.8,9) in Equation (3.1.6) gives

Vi = Uy - (X2,u3)Xs - (X;,U3)xy , X3 = ——2—r (3.1,10)

(V3 pVS)a

18
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This process is continued until all of the desired x vee-
tors are produced (Ref.3:138),

As point out carlier, the above process is the basic
means to produce a set of orthogonal veectors. It has becen
found that this process can be numerically inaccurate (Ref.
3:141), and thus a modificd Gram-Schinidt process has been
developed. 1In the original method, x; was computed from
u: and Uz,...,u  Were left alone, with each new Xy
vector using only uy and not affecting the remaining vec-
tors Ujpqseeesly o In the modified Gram-Schmidt process,
besides computing x; from u, (xl,ui)xl is subtact-
ed from ug to produce a ncw u; with i ranging from
two to S to make uy orthogonal to x; (Ref.3:142),
Since wu} 1is the same as Lquation (3.1.5), u; is normal-
ized to produce x, . As before this vector is used such
that (xz,uli)x2 is subtractced from ui to produce ui
with 1 rapnging from three to S to make ui orthogonal
to x, as well as x, (Ref.3:142). This is continued un-
til Xy has becn generated.

The following example shows how the sef {X;,X2,X3}

is gencerated from {u,,u,,u;} . As before

Xy = ——l (3.1.11)

(uy,u;)*

but the remaining vectors are modificd such that

uy = wp - (Xp,u2)%) (3.1.12)




u; = u; - (X;,u3)Xx, (3.1.13)

Again from Equation (3.1.5)

1
X, = —22 (3.1.14)

T 1 %
(uz,uz)®

1
which is used to modify u

; giving
2 1 1
u, = uz - (x2,u3)X2 (3.1.15)
and
u?
Xy = —,—3‘2—'3; (3.1.16)
(ug,u,)”

Notice the difference between Equations (3,1.16) and (3.1.
10). 1In Equation (3.1.10) the inner product is taken with
an unmodified x, and u; ., Thus the modified Gram-
Schmidt process gives more accurate results over that of
the basic process. It is this modified Gram-Schmidt pro-
cess which is useced to generate the new polynomials. Before
presenting the modification of the Zernike polynomials, the

basic formulation of the Zernike polynomials is presented.

Zernike Polynomials

The basic characteristics of the Zernike polynomials
were discussed earlier, whereas this section deals with

their basic construction. Table I showed 22 of the Zernike

20
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' : polynomials. It can be seen that cach polynomial consists
of the product of a radial and an angular tcrm., Since the

new set of polynomials deals with annular regions, the poly-

nomials will be independent of any angular functions; there-
fore, it is desirable to separate these two Lerms.

The means of deriving the radial terms of the Zernike

e e -

polynomials has already been done by others (Ref.l:sec.9.2).
The basic process is described in Appendix C, Table II
shows the radial polynomials and all of the corresponding

Zernike polynomials. Each radial polynomial was produced

by
(n-m)/2 S n-2s
RM(r) = 2{: ('1)‘(“‘3)’ r . (3.2.1)
o s![(n+m)/z - s]![(n—m)/z - s]!

where m and n are radial degree and azmuthal frequency

respectively. The following conditions must also be met

with m and n , such that mSn and n minus m is even,.
The Zernike polynomials are generated by the following

set of equations:

- I 3 ,m <
Zeven 5= f(n+1)] Rn(r) cos mé
m#0
7z, = Rm+1)]? Rr) sin mo (3.2.2)
odd j L n e
[ 3 .m
Z. = J(nt+l) R (r) m=0
J L 11

22




' . where j  is the mode-ordering number (Ref.8:1510)., In
: other words, if the sccond Zernike polynomial is desired,
i
f J is set to two. DBesides the conditions on m and n
mentioncd earlicr, the following properties cof the Zernike
polynomials exist:
1
s (1) The polynomials arc invariant with respect to ro-
2 tation about the center of the unit cirecle,.
! m I | P
(2) Rn(r) = Rn (r) (3.2.3)
1
m m _ &nn
(3) ~/ﬂRn(r)Rn,(r)rdr = 9(n+T (3.2.4)
0
j (4) J/.der(r)Z (r)Z A(T) = GJJ, (3.2.95)
|
i
. where
} > _ {1/ for|¥|=<1
! W(r) = N
| 0 for|r]<0
H
H and
r 1 i=j
] 013 -4
4 0 i#j
i}
The first ten Zernike polynomials have other names
which are familiar to those in the field of optics. Table
III lists these names with the corresponding Zernike poly-
nomial, With the definition of the Zcrnike polynomials
(_ which are orthogonal over an annular region; this is the
23
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Table III

Aberration and Corresponding Zernike Polynomial

(1) Piston

Z(2) X Tilt

7(3) Y Tilt

Z(4) Defocus

Z(5) 0° Astigmatism
72(6) 45°% Astigmatism
Z(7) Y Coma

Z(8) X Coma

Z(9) Y Clover

Z(10) X Clover

topic of the next section.

Generation of Orthogonal Polynomials

In the previous section, the equations which define
the Zernike polynomials were presented, along with the
specific properties of the Zernike polynomials. In par-
ticular, Lquation (3.2.5) decals with the orthogonality of
the Zernike polynomials and the region of space in which
they arc valid. 1In the case of an annulus, the weighting
function W(?) can no longer have the domain of -1 to

is the

1 but must have a domain of B5|¥|%1 , where B

obscuration ratio.

24
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Since an annulus is independent of any angular func-
tion, the orthogonalization procedure need only deal with
the radial portion of the Zcrnike polynomials. Thus the
modificd Cram-Schiidt procedure will only be performed on
the radial portion of the Zcrnike polyunoemial, Again re-
ferring to the aspect of angular indepondence, cach new
polynomial Nz(r) will only depend on those radial poly-
nomials with the same azmuthial f{requency m , or Ng(r)
. m m m
will depend on Nm(r) s Nm+2(r) s ey Nn_z(r) .
Starting with Rz(r) the modificed Gram-Schmidt pro-
ccedure yields
Rg(r)

No(r) = —; — (3.3.1)
(), R (r))?

where

1
(R, (r),Ro(r)) =/R2(1‘)l{z(r)rdr (3.3.2)
B
which comes from the definitioun of the inner product of two
continuous functions. Since Rg(r) has no lower order ra-
dial terms (ng0) , this is the final step for this new
polynomial. This is also truc for every new polynomial
where m equals n , since onc of the conditions on m
and n with the Zernike radial polynomials requircd that

n must be greater or equal to m ., Thus in gencral




n
Rn(r)

n _
Nn(r) - o, n 1£ (3.3.3)
(R (r),R ()
where again in gencral 1
1 i m j
(ng(r),nﬂ(r)) =./PRn(r)Hﬂ(r)rdr (3.3.4)
B

and where m , n , Jj and k are integers and obey the
rules set forth in the previous section. Since Ni(r) is
already covered in Equation (3.3.3), the next polynomial is
Nz(r) . In this case the vector space is Rg(r) and
R:(r) . N:(r) is found the same as that in Equation

(3.3.1) but R%r) .ust be modified to
2

ol
R, “(r)

R, (r)~(Ng(r),Ry(r))No(r) (3.3.5)

and therefore

0.,
R, (1)

N, (1) (3.3.6)

(RO7(r),RS7(r))?

Again Equation (3.3.3) covers the case of Ni(r) . Since
N:(r) is very similar to N:(r) , the next new polynomial
to be developed will be N:(r) . This polynomial will use
as its vector space Rz(r) , R:(r) , and R:(r) . The
process starts just the same as with N:(r) with Equations

0
(3.3.1,5,6). The next step is to modify R.(r) with N (r)

0
and then with Nz(r) , thus

26
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Ry“(r) = R, (r)-(N,(r),R,(r))N,(r) (3.3.7)

when Nz(r) was computed in Equation (3.3.1) and
0.. 0. 0 . 0
R“ (r) = R, (r)-(N,(r),R, “(r))N, (1) (3.3.8)
+
when N:(r) was computed in Equation (3.3.6). TFinally

c;’
R, “7(r)

(R, “*(r),R, "7 (r))

N (r) = (3.3.9)
This process is continued until all of the desired
Nz(r)'s have been found., Obviously 1f 22 polynomials are
to be used in the wave-front analysis, the process of com-
puting all of the integrals would bc time-consuming. It
is possible to rcduce this time factor by realizing that
once B is found, all of the inncr product integrals can
be done at once. The next section deals with the genera-

tion of these integration terms.

Inner Product Coef{ficients

As mentionced in the previous scction, the fastest way
to compute the new radial polynomials would be to compute
all of the inner product integrals at once. This process
would have to be done in an orderly fashion since each in-
tegral is dependent on the previous integral. For cxample

in Equation (3.3.9), thc inner product terms are dependent

27




on the results of the inner product integrals in Equations
(3.3.1,G6). It would appecar that cach integral would have
to be computed before doing the next one, Mathematically
this is true, but since this system of dependent equations
will be put into a program, the problcm can be solved in
a different way. First a sct of variables which will ease
the computation of solving for the new radial polynomials
will be derived.

In Equation (3.3.1), if the inner product in the de-

nominator is changed to

0 X
Yoo = (RO(r),R!(r))* (3.4.1)
and by substituting Equation (3.4.1) in Equation (3.3.1)
one gets
o Ro(r)
No(r) = ._.0_‘;-——-. (3-4.2)

YOO

where an is the inner product of N:(r) and R?(r) for
j=m,m+2,...,n-2 , and the square root of the inner product
of Rg(r) and R?(r) when n=j ., To clarify this, the
radial polynomial Ns(r) will be recomputed making use of
the y terms.

As before, N:(r) uses the vector space {Rz(r),R:(r),
Ri(r)] . Thus using Equation (3.4.2) as a starting point,

the remaining two vectors must be modified yielding

28




RI“(r) = RO(r)-(N2(r),R)(r)INS(r) (3.1.3)

RY“(r) = RO°(r)~-(N(x),R°(r))N°(r) (3.4.4)
4 L 0 4 0

The inner productl terms of Lquations (3.4.3,4) become

Y% = (N°(r).R"(r)) (3.4.95)
20 0 2
and
Y? = (N%r),R%(1)). (3.4.6)
40 0 y

Using Equations (3.4.5,6) in Equations (3.4.3,4) yields

i

R (1) R°(r)-y°® N%(r) (3.4.7)
2 2 20 v
and

R°“(r) = R%(r)-v° N%r) (3.4.8)
4 i 40 0

Continuing with the modified Gram-Schimidt procedure gives

R?7(r)
N°(r) = —2 < (3.4.9)
ot (R27(x),R)7(r))*
2 2
with the inner product term becoming
1
Y2 = (R7(r),R27(r))" (3.4.10)
22 2 2
29
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With NO(r) computed, I\’°(r) can he found by
2 t

RO“7(r) = RET(r)=(K(r),RO7(r))R(r)
y [ z 4 2

with
YO = (NU(r),RO7(r))
42 2 4
and
RO;;(I‘)
N(r) = !
y

(RO~ (r),R°"“(r))?
4 4

The final inner product term is

y® = (R"(£),R°""(r))*®
4 4 3

The Yy terms can be generalized with

1
m _ f M Anll, .
Ynj me+j(1)Rl](1)rL11
B

where j=0,2,4,...,n-2 and

1
m m* .2 13
Yon = f(Nn (r)) rdr
8
where
m¥ = My m m o _omoam
Nn (r) = Rn(]) Ynn~2r‘n—2<1) NnmNm(l)
30
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(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)

(3.14.17)



From Equation: (3.4.15,1G), the entire set of y's can be
computed,

It appcars that all the vy  terms do is sinmplify the
equations, bul il Equation (3.4.13) is cxpanded in-terms
of hl(r)‘s from Equations (3.4.1-12), the resulting cqua-

tion is

.YO .YO .YO
NO(r) = b |RO(r)= 5008 ()= —S2(RO(r)- —22R%(r))| (3.4.18)
y Y Y Y 0 ¥ 2 Y 0 1
by 00 22 06 i

Solving Lquation (3.4.18) for R%°(r) in terms of v's and
A

Ng(r)'s gives

RY(r) =y} NI(r)+y? NO(r)iy? NO(r) (3.4.19)
4 4

Therelore each Zernike radial polynomial can be expressed
in terms of the new radial polynomiuls and vice versa. Tn

general Equation (3.4.19) becomes

m = Lo, om . m ..m
Rn(r) - YnmNm(l)F'nm+2(1)+”'+YnnNn(r) (3.2.20)

In a previous section the basic requirements of the
Zernike polynomials were oxpressced.  These requirements,

being slightly modifliced, should still be met. Thus

Nz(r) - N;m(r) (3.4.21)
1
Jrnconnryrar = o (3.4.22)
B
31
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"> BY -> EY .
A rW(R)N4 . (TINZ..(r) = 6. .. (3.4.23)
J[ (EIRZ  COINZ ;- (1) 3i

wherc
fl/w INEIES!
W(2) =\
0 otherwise

and NZJ(F) is the newly defined Zernike polynomial, using

the Ng(r)'s as the radial components., Eguation (3.4.21)

. . . m . mn .
is valid since Nn(r) is made up of Rn(r)'s which meet

i this requirement as shown in Equation (3.2.3). The next
. section deals with the mecting of the remaining require- ]
] ments.,

Orthogonnlity Tests

As pointed out in the previous scction, it is desir-
. . m
able for the new radial polynomials Nn(r) to have the
w s . . . m
y same qualities as the Zernike polynomials Rn(r) . In

particular the orthogonality of the radial polynomials are

. shown in Equations (3.2.3) and (3.4.22) for the Zernike
$f and the new radial polynomials respectively,
‘? As a test of the new radial terms, the first test will
{ be with the polynomials where m=n , thus Equation (3.4.22)
ﬁ becomess
( 1
by fNﬁ(r)N:::(r)rar L (3.5.1)
: 8
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But {from Bguation (3.4.20) the Ng(r)'s can be expressced

as
n Rg (r)
Nn(r) T Th
nn
where from Table 17T
n = RN
Rn(r) = r

Thus Iquation (3.5.1) bccomes

but

1 i
no_ n, .2 2
Yon = ﬁlll](l)) rdr
B

(3.5.3)

(3.5.1)

(3.5.5)

from Equations (3.4.16,17), Using Equations (3.5.3) and

(3.5.5) and integrating yields

Py
no_ |1-g’(nt1) | ®
Ynn 2(n+1)

(3.5.6)

Puitting Eguation (3.5.6) into Eqguation (3.5.4) and inte-

grating gives a result of one and not 1/2(n+l)

as de-

sired., Since the inner product coefficicnts are constants

once B is found, Lquation (3.4.1G) can be modified such

that
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ym 2(n+1)J/}N2 (r))%rdr (3.5.7)

i

nn

only when m=n . It will be shown that this is also true
for all values of m . To verify it for all cases of m

b

Equation (3.5.1) boecomes

1

m, M i _ &nn~
'/'Nn(l)Nn;(I‘)ldI' = é—(—ll’*‘l) (3.5.8)
B

wherc Ng(r) can be changed to the Zernike radial polyno-
mials from Equation (3.4.19). This results in Equation
(3.5.8) becoming

1
1N m m _
(Ym;> /~ R (r) YnmNn( r)- Ynm+° +2(r)—.., Ynn-2Nn- o(r)| rdr
n B

? 1
= 3 hi 1) (3.5.9)
Using Equation (3.5.7) as an initial guess for st ,
Equation (3.5.9) becomes
2
| N m m
~/r[ (r)- Yum n(r) Ynm42 miO(l) * nn 2 n- 2(r)] rdr
&
i
*
2(11+1)/(N$ (r))?rdr
B
? 1
= Tty (3.5.10)
34
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-trary, lhe serics becomes too unwieldy to determine the

Using Eguation (3.4.17), the two integrals cancel, giving
the proper results; thus, Equation (3.5.7) is valid for
all values of m<n

The final test is to see if kEquation (3.5.8) still

holds true when it is changed to
1

meyPepy 2 8ng
'/Nn(r)Nj(t) STaT (3.5.11)

where n#j . Since j can not equal n the Kronecker
delta (8nj) will be zero; therefore, Equation (3.5.11)
should be zero. This integral is very difficult to verify
using the general case, since each new radial polynomial
Ng(r) and N?(r) would have to be expanded similar to

Equation (3.4.19). Since m , n , and j are arbi-

point at which errors may have been introduced; therefore,
several test cases were developed using specific values
for m , n , and Jj . Since the process is still very
tedious, only a simple case and the final results will be
presented.
As a4 simple test case
1

/Ni(r)Ni(r)rdr 2o (3.5.12) 4
B J

will be tested. Fach of the polynomials can be expanded to




i w——

-~ e~y
P T B - e o e, o et M =

Wit

make Equation (3.5.12) become

1 0
1 0 s Yoon0 . 1 .0 2
?T—(R (r)- VV—R (r)) §v—R (r){rdr = 0 (3.5.13)
Bl 22 z 00 ° 0o °

From Table II and simplifying, this becomes

0

1

2 Y, ?

o2ri-(1+ th rdr = 0 (3.5.14)
B 00

Using Equations (3.4.15,16) and integrating yields %(B%-8%)
which docs not equal zero, Since the equation used to gen-
erate Ygo has already been verified, the only error can
come from the generation of Yzo . As a first éuess Equa-—~
tion (3.4.15) is changed to
1
yg‘j = 2(n+12/-N$+J.(r)R'::(r)rdr (3.5.15)
B

but this gives B%?-g" when used in lquation (3.5.12). The
next change made worked, making
m

1

— .M m, .

Ynj = 2(m+1)J/~hm+j(r)Rn(1)rdr (3.5.16)
B

This equation was found invalid when the test case using
Nz(r) and N:(r) wvas used. The final form of the equa-

tion is
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m
nj

- . m m, s ..
2(m+j+1) hm+j(r)Rn(1)1d1 (3.5.17)

"

This equation was verified using several test cases, which
are Ltoo tedious to present. With Equations (3.4.20), (3.5.
7), and (3.5.17), it is possible to generate all of the new
radial polynomials; thereby, using Ng(r) in place of Rg(r)
in the Zernike polynomials, a new set of orthogonal polynom-~
ials can be generated. Figurcs 7 to 11 show the inner pro-
duct coefficients with respcect to the obscuration ratio.

With the set of orthogonal polynomials, an annular wave-
front can now be more accuratcly expressed. The method on

analyzing the wave-front will be presented next.

Wave-front Analysis

As prescented by others (Ref.1:Se¢c.9.1,2), wave-fronts
can be represented as the summation of the Zernike polyno--

mials times their respective coefficients, or

oo

Z a4 (F) = ¢ (3.6.1)
j=1

where ¢ is the measured wave-front, and aj is the coeffi-
. > L3 s

cient to the Zernike polynomial (Zj(r)). Usually in optics

one is concerncd with the lower order Zernike polynomials;

therefore, Iquation (3.6.1) bucomes,
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N
Zajz,j(}f) « 4 (3.6.2)

Jj=1

As pointied out in the Jast chapter, ¢ is not a continuous
function, but is samplced at discrete points, Thus Equation
(3.6.2) can be further wpodified to

N

' > ~ 2

2 ajzj(li) =~ ¢(ri) (3.6.3)

j=1
where 1i=1,2,...,M , and M 1is the number of sampled
points. This equation can be written in the matrix form

.2 )
a(ra = ¢y (3.6.4)

1
where as before a is a N by 1 column matrix, Z(;i)
1"
isa 1 by N row matrix, and ¢(;j) is a scalar,
The most common method of solving for the coefficients
is to use a least-squares approach, This involves minimiz-
ing the sum of the squares of the difference between the

estimated and the measured wave-fronts, or

?
N

M
A = Z Z Zj(f-i)nj-q)(ri) (3.6.5)
im1

J=1

To find each cocfficient, the derivative of A is taken

with respect to cach uj and sct to zero.  Thus

13
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Mo N

A Ny (2 N (P e i (d - :
T, = /2 Quk(]i) % /Jj(ri)a;i g(li) = 0 (3.6.6)
i=1 i=1
or
M N M
Ei: Z (¥ z;‘ 7. (¢ a = :;ﬂ 2 (P ) (r 3.6.7
() 2 Bydag = g, By dery) (3.6.7)
i=1 =1 i=1

This cequation can be written in matrix form as
Z a =129 (3.G6.8)

and following mailrix inversion and mulliplication one gets
r

a = (22 (3.6.9)

" on 1"

The problem with this method for finding the coefficients
is the matrix ZTZ can be numerically unstable; therefore,
"on
the correct solution of the equation is difficult, but not
impossible to find (Ref.8:1514),
The mothod used in this thesis to find the coefficients
of the polynomials uses the orthogonality of the polynomials,

As before, the least-squares method is used giving
M

N ’ 2
> _: _ ": N
A= IE: ELJ bNZ (v -0 (ry) (3.6.10)
i=1] =1

where bi is the new polynomianl's cocofficient, Fquation

8

14
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(3.4.23) can be approximated in discrete form as

M

2‘ NZ (P ONA(T,) = &
A 'u(li SALE R

i1

(3.6.11)

uv

Taking the derivative ol Yguation (3.6.10) and setting it

equal to zero gives

M

N
3[\ — '>‘ 't N’ > “\ N\ > —
ET); = E Nzk(li)q’)(li) NZ‘k(ri)Er”jNZj(ri) = 0 (3.6.12)
i=1 j:"'l

Since NZk(;i) is a constant with respect to the summation
over j , it can be put inside thce second summation., Us-

ing Equation (3.6.11), the sum from Jj=1 to N is non-zero
only when j equals k ; thercfore, Equation (3.6.12) be-

comes

M
ZNZR(?i)q,(Y-i) (3.6.13)

i=1

2
!
=i

k

With this equation, the cocfficients can be found directly
with no matrix inversion. Notice the same is true for the
Zernike polynomials when the region is circular.

From this scction and the previous one it has been
shown that it is possiblce to construct a set of new poly-
nomials which are orthogonnal over an annular region, These

new polynomials can be used Lo find the coefficients to




deseribe an annular wave-{ront withovt cmploying the stand-

ard matrix irversion method. This makes the programing much

more reliable and faster, Since the new polynomials are
rived from the Zernike polynomials, the coefficients can
transposced into the correspending Zernike coefficients.,

This process will be explained in the next chapter which
deals with the process of developing software to utilize

results of this chapter.

16
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IV, DProgram Development

This chaptoer explains the development of software

which performs the anualysis of annular cave-front using

the theory presented in the last chapter., The software
consista of two major scctions, the definition of the re-
gion of analysis and the actual analysis of the wave-front.
This chaptler prescunts the main program and each of the maj-
or subroutines, with the subroutines being presented in the
order in which they are called. Each section will present
the bosic alpgorithm, a basic flowchart, and a description

of the algorithm as nccessary,

Main Program

The main program is the controlling program of most of
the subroutines. Tt does the actual analysis of the wave-
front and prints the results for the user. The basic al-
gorithm for this program is:

1. Read in first frame of data and call FAPER. FAPER

returns the computed radius, center, and obscuration

ratio. The operator is asked if he wants to change

any paramcter and the number of frames to be analyzed.

2. If not the first time through the routine, then
read in a new [rame of data.

3. Define region of analysis as given from paramecters
computed or cntered in step 1 by calling CONTUR,

4. Do steps 5 to 11 three times: once to compute 6 co-

efficients, then to compute 11 coceflicients, then to
compute 22 cocofficients,

17
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5. Zecro out all data arrays used in computation,

6. Using the obscuration ratio, cowpute the inner
product cocitficicnts by calling GAMSUB.

7. Compute X and Y starting positions and increments,
8. Using the region defined in step 7 and the param-
eters trom step 4, compute the new polynomial coeffi-
cients.

9., Convcert cocefficients from step 8 Lo Zernike coeffi-
cients.,

10. Gencerate two estimated wave-fronts from the Zernike
and ncew polynomial coefficicnts.

11. Compute RMS error and print results,
12. If not done with all framecs do to step 2.

13. Stop.

This algorithm is presented in flowechart form in Figure 12.
Since each subroutine is presentced later, only those steps
which do not rely on major subroutines are presented here,
The first step in the algorithm uses TPAPER to define
the wave-front, After this is done, the user is asked if
he wants to see the defined region and the computed param-
eter. These parumeters include the center of the annular
region, ithce outside radius, and the obscuration ratio. The
user is then asked if he wants to change any parameters if
he knows the actual values. This request is made to correct
any possible errors that FAPLER may have made. The reasons
for crror in FAPLR will be prescented latev, The program

will also ask the user how many frames he wants to have

48
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Flgure 12, Baslc Flowchart of Main Program




analyzed., With this data, the program is ready to start
the actual analysis,

After the first frame has been analyzed, a new frame
ig read. This froame of data is defined into regions of no
data, valid data, and the center of the annulus hy the
paramotoers determined from the first frame. This is done

by the subroutine CONTUR. Once the regions of the wave~

front are defined, the program starts to analyze the wave-

front. liach wave-Tront has 6, then 11, then 22, coeffi-

cients computed to verify that the number of coefficicnts
does not affect the values of the coelficients. Before
each new set of cocefficients is computed, the data arrays
are zecrocoed.

Using the obscuration ratio parameter, the subroutine
GAMSUB is called. This subroutine computes the inner pro-

} duct coefficients nceded to convert Zernike radial poly-

nomials to the ncw set of radial polynomials, The result-

ing lowcer triangular matrix GAMMA is inverted and placed

-

-
A e WFI e e aan

into INGAMMA for futlure use. Each array is used in the con-
version process depending on which radial polynomial is be-

ing converted to the other., With thesc arrays, the program

——— o -

can begin to analyze the phase data.

e

Since the phase array is not always filled, the range

of X and Y depend on the size of the radius, In other

ol
} . words, if the radius is only ten units in a 32 by 32 unit

50
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Figure 13, Possible Cartesian Coordinates of Phase Array
array, the position of the wave-front will change the X
and Y values of the four corners. This can be seen in
Figure 13.

Using the radius and center, the program must deter-~
minc the X and Y increment and the initial values XO
and YO ., The analysis starts in quadrant II of the coor-
dinate system, and scans from -X to X , Y to -~-Y end-

ing in quadrant IV . X0 and YO are found, such that

1-X
X0 = Radius (4.1.1)
and
. Y-
YO0 = {adius (4.1.2)

where X and Y are the center coordinates of the wave-

front given in terms of increments in the 32 by 32 array.
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Thu:s the poiat (1,1) in the array corresponds to the point

(=-XO,Y0) in Caccesian coordinates,  The incroement valuces

for N and Y arce simply found by taking the reciprocal

of the radius ol the wave-{ront.,

The Lirst step in Lhe analysis is to compute the co-
cfficients to the new scot of polynomials,  As pointed out
in the tast chaprer, cach new radial polynomial is made up

of a Jincar conbination of Zernike radial polynomials,  This

can he exprossod in matrix form as

Wz = R

where y  is o squarce, lowcer triangular matrix, NZ

new scl ol radial polyaomials, and I is the Zernike radial
polynomials, It was pointed out that either of the radial
polynominls are used with the angular dependence to construct
the total polynomial; therefore, the program computes the an-
gular data and multipliess it times cither radial polynomial

to generate the total polynomial, Thus 1o compute the new

polynomial, the following matrix c¢quation is used,

=1
N7z =Cy R

where € dis a diagonal array of angular constants.,

example the equation can be expressed as

(4.1.3)

is the

(4.1.4)

As an




» Pome o, L e T . N v e
. .

% _ - — - ar ]
NZp (1) T 0 0 0 /77, 0 0 0 Ry(r)
NZ, (r) 0 2cos0 O 0 0 1/v1}, 0 0 Ro(r)
NZ3 (1) ) 0 0 2sin0d O 0 0 1/vj, 0 Ri(r)
NzZo(r)f o 0 0 V3| |-vi,/vi, O 0 1/v3,||Ru(x)

where the firast four new polynomials are desired.

To aciually compute the coefficients, the program will
scan the phase array. As soon as the radial value on the
point in the scan is less than onc, x“+y“=1 , the Zernike
radial polynomials R and the angular constants C are com-
puted and the matrix multiplication indicated in Equation
(4.1.4) is performed. Using Equation (3.6.13), the coeffi-
cient for each polynomial is computed. Oncc the entire phase
array is scanncd, the coefficients are found by dividing the
summation by the total number of points used in determing

) the coefficient, This process can be expressed as

‘ M
* _ 1 =+ =+

| b = & D NZ(R)6(E) (4.1.5)
> i=1
M . »
s where, as before, bk is the coefficient to the new poly-
)

nomial NZk(?i) , and M is the number of valid data points.

T —

A valid data point is one which is inside thce annulus or unit

circle, and is a phase measurement. Thus, using Equation

(4.1.4) and (4.1.5), the new polynomial coefficients are de-

-
[N S

a3, "2 SRS

termined. The next step is to convert these coefficients to
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Zernike polynomial coefficients,

The Zernike cocoflicients can be casily found by first
converting the new polynomial coefficients to cocefficients
of the new radial polynomials., Next the radial coefficients
arc converted to Zernike radial coefficicents and linally to
Zernike polynomial coefficients. This process can be ex-

pressed as

a = CyC'b (4.1.6)

where b is the new polynomial coefficients, and a is

the Zernike polynomial coefficients, As before, the process
is done Dbe scanning through the array and calculating the
values of C and Qfl at each valid point. Each coeffi-
cient is kept as a running number of valid points at the end

of the scan., Equation (4,1.6) can be expressed as
M
1 . -1,
"k T W 25: Ck(li)ykck (ri)bk (4.1.7)
i=1

With the two sets of coefficients, the next step is to com-
pute the estimated wave-fronts.

Reconstructing the estimated wave-{front is basically
the opposite of finding the cocfficients., The only differ-
ence is that the two wave-fronts can be found at the same

time. The matrix equations are

¢, = a CR (4.1.8)

— ol N -
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and
-1
¢n = B_C_[[ B (4.1.9)

where ¢Z and ¢nz are the wave-fronts found with Zernike
and new polynomial coefficients respectively., The wave-
fronts are formed by scanning through the 32 by 32 array and
at each valid point, the matrix Equations (4.1.8,9) arc eval-
uated. Thus after the scan, there arc two cstimated wave-
fronts.

Once the estimated wave-fronts arce constructed, the Koot
Mean Square (BRMS) error is calculated. This error is found
by calling the subroutine RMSERR., Its operation is explain-
ed later, Once the RNS error is found, the main program will
print out the cocfficients of both polynomials and the RMS
error from their respective estimated wave-fronts, The pro-
gram will then ecither return to compute the next set of co-
efficients, or start a new frame of data.

In summary, the main program does the actual analysis
of the wave-{ront. It also asks for any input parameters
and calls various subroutines to prepare the frame for an-
alysis. Appendix D contains detailed flowcharts of this
routine and all the subroutines, The next section deals
with the subroutine which computes the inner product coeffi-

cients,

(924
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GANSUL

The cubroutine GANSUL is a4 routine which computes the

inner product coclficioents, 'Yi?'i . This routine has threce
parametovs in ils calling statement: the array to hold the
inner product coctftiicients, the obscuration ratio, and the
number of cooflicionts,

As pointed out in the last chapter, the actual inncve
product terms arve dependent on each other,  To make the

program run faster and nore accurately, cach of the integrals

in Equations (3.5.7,17) werce done by hand., This resulis in

a serics of dependent equations with a dependency on lower
order tcrmss and the obscuration ratic, £ ., Since the in-
tegrations where done by hand, each integral doces not have
to be done by some numerical method, i.e. Simpson's rule or
the trapezoidal method. This greatly reduces the time since

only one pass through the routine is required instcad of

X integrating cach term. The error is reduced by anot approx-
imating a term which is used in the approximation of another
v
[ &‘ term.
;f Since this subroutine is just a series of cquations, T
? the algorvithm will not be presented. GAMSUB's flowchart is
i presentod in appendix D, and the entire matrix it generates
- is in appendix E, Before GAMSUB can run, the obscuration
\',
jf ratio must be Tound., It is found in the subroutine FAPER

which is presented in the next section,




rAER

The cubroutine FPAPYR returns the center, outside ra-
dius, and ihe obscuraiion ratio, It also deflines the value
for no duta present.  This subrouline is the most important
one since any crrors can affcecct where the main program
“thinke'" Lhe vove-{ront is positioned. The main purposce of
this subroutine is to dcecfince the tyvpe of wave--Tront, i.e,
annular or circular, and then find the parametcers,

Since most of the analysis will be with annular wave-
fronts, TFAPLR will assume an annular wave-front is present,
The algorithm for this subroutine is:

1. Select the value to be uscd as no data (BAD) as the

value which is prcsent at any three corners of the col-

lection arvrvay,

2. If the point (16,16) in the array contains a value
of BAD, go to step b,

3. If not, starting at (16,16), spiral outward until
a point with a value of BAD is found or the radial
distance {from (16,16) is grcater than 5.75.

4, VWhen a BAD point is found, set ncw center to coor-
dinntes of this point, 1f the distance was greater
than 5.75, then keep the center at (16,16).

5. By c¢alling EDGE, find the vertical and horizontal
radii of the inside radius of the annulus, If EDGE
returns an errov condition, the wave-front is non-annu-
lar; therefore go to step 6. lepeat until the radii
stabilizce or ten iterations have been donce.

6. FYrom the center found in step 4, find the smallest
outside radius.

7. IT the region wiss defined as non-annular, define
the wave={ront by calling CONTUR, and find the largest
outside radius which will it inside the wave-Ilront.
Pass this value and the conter coordinates to VALID to




fiud the floating-point valucs of the radius and cen-
{or.

8. Tf the region is annular, usce CONTUR Lo define the
region,  VALTD 1 called to findg the smallest inside
radius Jor the annulus which will circumscribe the PAD
data.  The inside roadius and the smwellost outside radi-
us s used to define the largest possible oulside radius,

O. 1M1l the c¢haracter array with final symbols,

10, Rleturn Lo calling routine.

The basic flowclhart for this subroutine is shown in Tigure
14,

The {irst tvwo steps ol the algorithm are very siraight
forward., Thoe determining of the value of no data is crucial
to the entire progszom's operation,  This and othoer subroutines
use this value as o test to determine whether to use a point
in the analysis of the wave-front., I1 is also used to de--
fine the central region of the annulus,  The next step is to
find, and if possible, define the inner radius of the annu-
lus,

When the LWA is run, the inpul wave~front i

o

5 usually cen-
tered on {bhe collectiion array; therefore, this subroutine will
start looking at (he center for the annulus, If a valid data
point is present at the center (16,16), then the subroutine
will spiral cutward to try to find the central region. Iig-
ure 15 shows the shape and divection of the gpiral at the
largest extent of the search,

If the data at any point along the search js invalid,

the program will acssume it has found the edge of the inside

P ) .-
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Figure 15, Spiral Scarch DPattern of FAPER

region of the annulus, Invalid means that the point has a
value of BAD. 7Thce maximum radius of 5.70 for the search
was chosen as an optimum valuce from several test cases,
The entire scarch process is busced on the assumption that
the operator of the LWA has aligned the system to fill the
array. Il an invalid point is found in the search, this
point is tentatively seol as the new center of the annulus.
The next step is Lo Tind the approximate center of
the annular region.  Assuming the wave-front is annular,
the subrouvt ine EDGE is called to 'ind the horizontal and
vertical rvadii from the center in all four directions,
Ussing the averages of the tvo horizontal and two vertical
radii, a new ceonter s oconmputed and hGE is called again.,

This proces: is repested until cither the radii do not

GO




e~ e -,
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chanee or ten ilerations are performed.  The Timit of ten
iterations is to prevenf the possibility of the integoer
centoer oscillating around the actual center. I EDGE runs
into the limitlx ol the array, then FAPER will assume the
spivral scarch fouand the oulside cdpge of a c¢ircular wave-
front, 1T thi:s happened, the conter is reset to (16,16).
At this point the program "knows" cither the approximate
location of the center of the annulus or that the wave-
front is non-annular.

In cither type of wave-Tront, the next step is to find

.
the smadllest hovizontal and vertierl radii from the center.
With this radius, in the case of an annulus, VALID is
called to find the center and the smallesl radius which
covers the inside region of the annulus., When the wave-
front is non-annular, the radius is used to find the larg-
est radius,  VALID is agnin called to look for the center
and the Jargeslt cirele which will fit in the region,

If the wave-front is non-annular, then FAPER returns
the results of VALID to the calling routine. Otherwisce
FAPER will search for the outuside radius of the annulus.,
This is done by using the [loating-point values of the
centoer found by VALID, This radius and the inside radius
arc used to compute the obseuration ratio, BETA.  BETA, the
cenler, and the outside radius are then returned to the

calling routine,

- - - . ~ e »J Cose ) ‘- .




In summary, FAPUR is the controlling routine to deline
the type and parameters of the wave-front, This routine is
called 1o show Lhe operator what it "thinks" the wave-front
looks Tike, With this information, the operator can acceptl
or rcject its results; thereby reducing the likelihood of

error, The next section deals wilh the subroutine VALID.

VALTD
The subroutine VALID's main purpose is to compute the

floating-point vualue of the center and the radius of the
i wave-front. As pointed out in the previous section, VALID
. has two possiblce modes of opcration: [ind the center and
outside radius of a non-annular wave-{front, or find the cen-
ter and inside radius of an annular wave-front. The basic
algorithm is:

1. Using the flag passcd to it, go to step 3 if a
non-annular wave-Iiront.

2. Define the region of search to the center + the
cstimated radius plus one. Go to step 4.

3. Define the seuarch area as the entire array.
4, Scarch the defined region for either valid or in-

valid points depending on whether the wave-front is
non-annular or annular,

5. Keep a running total of the number of points found,
and the values of the vertical and horizontal indices
if looking for the center.,

6. Divide the sums of the vertical and horizontal in-
dices by the total number of points, to get the true
center of the region,

7. Using the ncew center and the estimated radius,
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repeat the scarch,  IT annular region, count the num-
ber of invalid points, decreasing the radius of scarch
by 0.25,. As soon as the new count changes from the
provious count, use the last value of the radius as
the smallest radius,  If non-annular, increase the
radius until an invalid point is found «nd usce previous
radius as the largest radius.,

8. In non-annular, return ithe new ceniter and the radius
to the calling routinc,

9. If annular, Fill character array SER with the sym-
: bol for the central region of the annulus and return
1 the calling routine,
A flowchart of this rouline is shown in Figure 106,
As indicated in the algorithm, and the previous sec-
_i tion, VALID is passed the integer cstimate of the center
and radius from the calling routine. It uses thesce values
¢ to tiry to find the floatiog-point values of the same, To ;
avoid confusion, the algorithm will be split into the two

cases of aunulnr and non-znnular analysis. In the casc of

: an annular wave-front, VALID will use the integer radius
}
;1 to circumscribe the inside region of the annulus with the
i search region., On ithe first pass through, VALID will com-
’ y pute the first moments of the X and Y values of the co-

ordinates of the invalid data points. The momenis arc found
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Flgure 16. Basic Flowchart for VALID
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and N

1
YC = % Z V.Y (4.4.2)

where
{1 when the data is invalid

0 otherwisc

NT ig the numboer of invalid points in the search area, and

N is the number of points in the entire search area. XC

and YC in these equations are the floating-point values
.i of the center. Once the center is found, the search is re-
peated and the smallest radius is found which will include

all of the invalid data points (NT). The radius is changed 1

in steps of 0.25. This decrement was selected because the
use of a floating-point radius and center in a discrete
array gives a reasonable decrement without sacrificing
accuracy. Oace the radius is found, VALID fills the char-
acter array SER with the symbol "#" +to represent the cen- 1
ter of the annulus. VALID then returns its results to the
calling routine,

In the case of a non-annulur r gion, VALID defines the
search area as the entire data array. It then follows the |
same procedurc as before. VALID first finds the center by

using the first moments as in LEguations (4.4.1,2) but

v, = 1 when the data is valid
i 0 otherwise
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Figurc 17. Brror Caused by VALID's Mcans of Finding Center

Using the computed center and the estimated outside radius,
VALID will scarch the array, If an invalid point is fonnd
in the radius of search, the radius is decrecased by 0.25.
This repeated until no invalid points are found; thus, the 1
smallest radius is found which circunscribes the valid data.,
The radius and ceuter are then returned to the calling
routine,

Since VALID uscs the Iirst moment to find the center,
errors cun be introduced. Figure 17 shows one such example
where the input beam is a scinicirele, This is a case where
user intoervention is importunt. The uscer can rescet the cen-
ter and radius paramelers to best fit the wave-front. VALID
works best with wave-fronts which are circularly
symmetrice.,  The further the wave-Ifront is from being symme-

tric, the greater the poussibility of error.
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The subroutine VALID is used Lo find the floating-
point valuces of the center and radius, from integer guesses.
It workss best with wave-fronts which are symmetric, VALID

can give crroncous data; thercfore, the main program will

check with the user before continuing.

EDGE

The subrontine IEDGI is called by FAPER to estimate the
center of the annulus., EDGE has two modes of operation:
vertical or horizontal scan. The mode is selcected by a
flag which is passed to LEDGE, The algorithm for LDGLE is:
. 1. Starting at coordinates given by calling routine,

search left or down until a valid point is found,
Save the distance.

2. Starting at the same coordinates, scarch right or
up until a valid point is found., Save the distance.

3. If the secarch in any dirccetion hits the ovtside
boundary of the data array, then set corror flag and
reiturn, Otherwise return left/right or up/down dis-
tances to calling routine,

The basic flowchart for this algorithm appears in Figure 18,
, As pointed out in the scction on FAPER, EDGE is called
3; at the most ten timess to try to find the best guess for the
center of the annulus. The dislance returncd is also used

in the determination of the inside radius. The next scctions

deal with subroutines which arce used in the analysis of the

wave-Iront.
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4RAD

The subroutine ZRAD is used to gencerate the valucs of
the Zernike radial polynomials at a specific X , Y
coordinate. Iquations (4.1.4,5) show that to [ind the co-
cflficients to new polynomials, the new polynomials must be
computed at ecach X , Y point. ZRAD is a very simple
subroutine, as shown in the algorithm. The algorithm is:

1. Using the X,Y values and the number of terms

nceded, compute the Zernike radial polynomial terms

Rg(x,y).

2, Fill a colunn matrix with the desired number of
terms,

ZRAD uses the radial polynomials presentied in Table 11,

As an cxanple when six coefficients are needed, ZHAD will
produce a column muatrix consisting of {RZ(X,Y),Ri(X,Y),
R:(X,Y),RE(N,Y),H:(X,Y),H;(X,Y)} . The repetition of

some of the terps comes from Equation (3.2.2), The index
of the matrix I corresponds to j in Fquation (3.2.2).
The entire matrix generated by ZRAD is presented in appoen-
dix E. Thus ZRAD is a simple but ncecessary routine for the

generation of cither Zernike or new polynomials.,

The subroutine ZANG is similar to ZRAD.  ZANG compules
the angular dependence of the Zernilke polynomials for a
specific X,Y coordinate, Instcead of producing a column

matrix, ZANG makes o square diagonal matrix,  The matrix
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is shown in Appendix I, The index jnto the array,  (3,J)
wvhere j=1  to the number of cocefficicents, is the mode-
order j in kquation (3.2.2). ZANG simply computes the
constant and sine/cosine portion of the Zernike polynom-
ials,  ZANG and 7ZRAD are sceparate from cach other to allow
easy conversions ol new polynomial coefficients to Zernike

coeflicients as sinown in Fguation (4.1.6),

CONTUR

The subroutine CONTUR is usced to fill a character array
with synmbols. CONTUR uses the center coordinates and the
inside radius of the annulus to £ill {1he array SLR with:
"o when the dat: point is valid, "*" when no data is

present, and Y#"'  for the center of the annulus.

CONTUR is a simple pregram which scans the phase data,
putting in the proper symbol, When the scan gets inside the
central region of the annulus, the "#" is used regardless
of the value of the data point,

CONTUR is the last subroutine which is used in the an-

alysis of the data. The next sections deal with either data

manipulation or the output of results,

RUSLI
The subroutine RMSERR finds the normalized RMS error

between two arrays.  The basic cquation used is
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LRROR

where Ai is the input wave-ironl array, ]3]. is the

cstimated wvave-Tront, and N i« the total number of points
sed in cowmputing the estimated wave-front, To find the
nunmiber of points, REMSERR uses the "A"  in the character
array. This symbol was placed in the array by FAPER to
tell!l the remaining routines wheore valid data for analysis
can be found. Thus whencever a  "A" is found, RMSERR then
' adds another term to the summation. The normalization al-
lows a better compariscen between obscurcd wave-fronts and

non-obscured wave-ironts,

Minor Subroutines

The minor subroutines include SERPRNT, INVERT, MULT,
ARPR1, and ARPR2., The subroucine SERPRENT is called when-
ever the character array SIER is printed. SERPRNT also

prints out the paramcters used in the analysis of 1he wave-

front. The purameters are: the center, radius, and obscur-
ation ratio,.
INVERT and MULT are two matrix routines. INVERT in-
i verts a lower trianguluav, squave matrix, It is INVERT
which inverts the inner product coefficient array and the

‘ angular constant array. MULT multiplies a square matrix

* times a column matrix, MULT is used to do the matrix
-

N4
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muttiplication in Eguations (4.1.6,8,9).

ARPRI ond ARPRZ sre usced to debug the routines.,  ARPR1
prints out o colunn matrix and ARPRZ a square matrix, They
are not called by any voutine, but are left for the uscr to

use il he decides to make any modifications.

Conclusions

This chapter has presented the main routines and all of
its subroutines with caclh routine being cexplained to show
how the theovy of the lasi chapter was utilized. It was
shown how the routines are able to analyze both annular and
non-annular wave-fronts, Appendix D contains detailed flow-
charts of all of the routines, and Appendisx ¥ contains a
listing of the entire program. The software has been writ-
ten such that 1s does notl rely on any system subroutines
other than a square roolt routine, which reduces the possibil-
ity that a spcceial routine is not aveilable., The next chap-
ter deals with the validation and verification of ithe rou-

tines presented in this chapter,
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V. Validation

The previouvs chapters presentoed the reasons Tor devel-
oping o new sofeware paciage, the theory behind the develop-
ment, ond the actusl software,  This chapter deals with the
validotion of the software.  The validation process is broli-
en up into Lthree sccetions,  The fiprst section tests the
orthozouatlity ot the new polynomials as the obscuratlion
ratio chanpges,  The next «cction verifics the software's
abiltity to analyxne non-annular wave-fronts., The {inul scc-
tion coals with annvlar wave-fronts,  Thus all of the as-

rects of the soffwave will have becon tested and verifioed,

Orthogenality Verification

The major aspoecet of this thesis is the generation of
an orthogonel scit of polvnowmia’ ., The polynomials must be
orthopronal over an annular wave-front, This scetion veri-
ficxs that suceh a ot has been generaced,  Since both the
Zernike and new polynomials usce the same angular functions,
only the radial portions are tested, as shown in Equations
(3.2.4) anli (3.1.28).

The actuast test consisted of performing the integrals
in Bquations (3.2.1) and (3.4.22) wiith the computer. The
integrals were approximated by using Simpuson's rule.  The

vrepion of intoegration was divided into 3000 steps for the
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initial dintegration, This was doubled until the difference
between iterations was less than 0001, To show a compuri-
son between the Zernike and new radial polynomials, the
first dntegration had Himits of 0.0 to 0,9990990099, The
upper limit wost not 1,0 becausce the routine GAMSUB would
try to compute some indelinite terms.

Tha test integrated all the possible combinations of
Zernike radial polynomianls and all the possible combinations
of the new radial polynomials, After cach integration, the
lower limit would incrense by 0,05 until the limits of in-
tegration were 0,905 (o 0,00009900, Tigure 19 is a plot of
the now-zero terms of the orthogonallicy condition., All of
the torms where the Kronecker delta is suprosed te be zero
oscillated around zero. The value of these terms were very
dependent on the nusber of steps in the integration approx-
imation; thercfore, only the cases \‘vhore the Kronecker
delta is one were plotted. Figurce 19 clearly shows that
the volucs of the new radial polynomials remained constant
regardlaoss of the integretion limits,

To verify the cases where the Krenecker delta is zero,
the intepgrations were done by hand using & variable as the
lower limit. All of the integrals verified the orthogonal-
ity condition,

This test verified the inner product cocoffliciconts,

the program GAMSUR, and the theory prescented in Chapter 111,
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With these results, the analysis of wave-fronts can be

verifioed.

Non—-annular Verification

To test the softwore's ability to analyze wave-fronis,
two types of wave-fronls werce used, One set consisted of
gencrated wave-~-{fronts, and the olher oncs were aclual wave-
frorts suppliced by AI'WlL. Both sceils were non-annular wave-
fronts., By using non-annular wave-fronts, the program's
ability to Jjust analywve wave-fronts was tested, With non-
annular wave-f{ronts, the obscuration ratio is zero which
results in the two scots of polynomials being identical.

The gencrated wave-I{ronts came from a program which
had input paramelcers consisting of the number of coeffi-
cients, their values, the center coordinates, and the
radius. These wave-fronts verified the operation of the
subroutines FAPER, and VALID., These subroutines are the
ones which determined the type, center, and radius of the
wave-Tront. Yith the ability to set the coefficients to
specific values, the orthogonality of the polynomials could
also be tested. Iigure 3 in Chapter II. was generated us-
ing this routine,

In every case, FAPLR and VALID werec able to find the
center and radius of the wave-fronts., This was duc to the
uniformity of the generated wave-fronts., Figure 20 shows

the output when the sccond coefficient of the generated

76




t
'
s
. «
:
' I
3
¥ b
| R Q
.
‘d e . 42
Ly L J [
b_ [ %] °
. Q 4 €3 o O
F [ 2] [ ’_‘
» kL
A E “ (3 o
™ e o= ~ '
L»...\éus;:)gg-_ ©
&t [ ‘(3 l!‘ '.':: q; é b
e & o 4 B 3 = o
- e oD e [
g atg - @ e =
SHEgTsg
TR EEER o
LTI Ei o
g‘-n e
e ® & 8 T () &8 9
5 a @
s » @ ¢ O 2O O - - 1
F = j 5] Py
3 (8] ::
o -
: E0065 69 53 00 65 60 64 7. D3 L0 68 35 48 24 16 83 B 15 46 36 07 59 14 64 14 50 24 28 v 48 08 “ o % " 8
. : 3 4
€103 50 53 61 1 02 66 UF 92 08 14 B8 A0 OF 08 5T 93 59 09 1 50 0O BE A8 52 48 52 83 2 3¢ O 08 & IR o 3
v ‘ )y ™)
CIC S LB I A FE DO CAE 0 00 20 € € € € € € € € 034328 P $9 4 €2 €2 0 08 0 0§ Lo O oae L
- 2 BICIE MO LI AR AN LEDI B € € € € € € € € € € C CHMIIIdEs ot e b hERVIE « ﬁ
(o]
- COIEIRICIBIMBIONEE € € € C C €€ CCCCCCCCCPorteinoerasssd (2] =Y =
, RIMEIANLIIMIIC CCCCCECCCCCCCCCC CHITLIIImmps - ﬁ s
; CAEIEIOHIIN C L CCCCECECCEECCTCCCCCLiftaamornd a n & 2
> »
CHAGNEMMA CT L CCCCTCCCCCCELECCCCCiTIIBIMMN 8 & N Q o
- ~ @
N VHRFEIECECECCCEEECCCECCCCCCC Crokode Cw wo %0 =
- »
- CAMIEININ CCECCCCECECCCCECCCCCCCCLtammn el - - o t
‘ ¢ CIEINMMIE CECECLECCCELELECCCELLECCCCCCCL e LA S o
g Cit 5Pt € € € € CC CCCCCCEECCCCCECCCCCK Crerson N 5
g WO CCCCCECLLCCCECECCeEeCcCeCeeCHm ; CI
: & AT CEC CCCCCLCLEECEELCLLCECCCCCL T Coate -2 3 Y 9 %
< ~¢
; . AP C CCCEECCCCLLCCLCCLCCCCCCCCK CPem wdy e 19 2
i . 3 (34
o Pl € CCCEECCEEECECCLCCCCCCCCCC MM ¥ - n e o
: é LMK ELCCECCCCCCECECCCCCCCELECECCCCHM » ﬁ a
! CDEE CCECCCCCCeCCCCCCCCECCeECCCqeCmm E O
v % TR CLCCCCTECCCEELEECCCLLCCLEECLCCCCrame ! 8 Y 8
. o TOWREEEEEEEcEeEeiteCeccececceccnm ”é a = =
« e
: B NN eeeeaadCeteeecceeeceinm e o ¢ o .
. S .
P 3 € AN C L CC e EeeeCCCCCECCCCCC Cricese ¥ ~ E &3 o
‘ P X A@NHKMMOCCCCT T CECEC Condenans 8 29 o
g' ¥ ORNIIRN € CCCCECCCECCECeCCCCaCCC ALivapm s o
) iy WM € CCCCeCeECCleeCeCCCCCCCraresaim - o § H &
LY
) -2 e sr M CCCedCEeCCCCCCCCC (peacapsoem A& o ; a
I 34 Lol
V- - MM NMECCCCCEEeCCeCCCdCCNNITHMRNG (21 w1l ) e
; H .
WM MR IR C €€ CCCCCCCCCCK € Cotretdeedesens £ - & oo
? WO LI I M MM IS DE € € € €€ €< € €O e N N )
i VT OIOE PGP PN M I IS € € € € € € € C 00800 00 54 1o 06 I D650 00 00 E =
X390 %0 06 3% 06 53 G 60 <0 06 09 50 1 00 56 06 D 10 b0 14 4 58 00 ¢ 06 80 M 18 18 14 06 0 o §
. »
¥ LR L ER XN X R X R N N RN A R Y Yy RN YN RSN N Y ) A?ﬁ
-
: "M TNOCOMNO AT TINWON D AP VNG ™V - ..3
: et et et et et vt T et (WU I (AN I A CY Y - .
" -
' > KRN0 t 4 N

77




62083~
amz

iEpIL®
(€2

-
[

.

§5230°-
CI2)H

LEPIS®
(C3IH

QuOIJ~SABl P3BISUSH UM 8Ien3Jos Jo gndano °1g aandtd

6ECo3’~
(3 N

BEOLS -
(3 N

FELLZOY 81 $AT0d M THL ONISN ¥ONYI Su¥ L
PELLZD 81 8AT04 ININYIZ 3L TNISA HONNI Suy 3L
g2518° gsclye £6103°~ 8ce30°-  oz2enc- e00Id - €8sl5°
(3132 {inz (sn1z (s1)2 (ri1Z (EDZ fenz
€5313%-  E30as eccert-  elsco sac2ee geoese eeceo’
(L2 (512 (312 (b 32 (£ 12 (z 12 12 «
)
$IN312T42300 THINYI2 ¢
S3570° 2020" eBICo -  60802°-  €8200°-  £8085°- 80662°
(21N (ZTIN (SN (SN (FTH (€U (2LIR
C2ecoc- ca023e 02253° - 635250 essee’ ceasse proery
(L (3 34 (5 N (v (€ N (2w o1 N
$INITOT4I200 AN
€2y58° OF €AT0d AIN 3HL LHISH LOUYI SuY ML
S2y10° B2 SAICA ZUINYTZ IAL THISA MOLNE Si¥ 3KL
Goiniee @307t 82023°-  Cootae IRITEY cecise Preees
iz sz it 32 (v 12 (2 s2 (2 2 012
SLN3IST4T0 TAINYIZ
COBLS - €EO3 33589°=  0555° €3003° Teses’ pevyes
(Lo (8 N (3 I8 v (& W 2 W NI
SLZI0244330 AR
o0 ’ . T e TRITIYT trLaZITT sl




e -

LR T T

- — o~

wave-lront was set at 0.5, the radius at 14.0, and the cen-
ter at 16.5,16.5, TFigurce 21 is the results of solving for
11 and 22 coefflficicents., These two figures show the standard
output of Lho program written for this thesis,

As the number of coefficients increased, the RMS cerror
increased from the introduction of extrancous coefficients,
These coefficients come about by the approximation of contin-
uous functions over u discrete region., As shown in TFigures
20 and 21, the RMS cerror changes from 0,000033 to 0,027794
waves. This lTour order of magnitude difference appears to
be significant error; howcver, dividing by the wave length,
the RMS error ranges [rom 0,00031% te 0.26%. Thus even
though there is a lurge change, the deviation from the true
wave-front is small. TFigures 22-26 show the results of the
analysis of a generated wave-front, The RMS error for
thesc plots was 0,026 waves. The differcnce plots in Fig-
urces 25 and 26 are the difference between the actual wave-
front and tbe respective estimated wave-front,

After running over 30 test cases, the RMS error never
excceded 0,050 waves when preset coefficients were within
the range of the computed coefficients., For example when
only the elcventh coefficient was set at 0.25, the RMS cr-
ror was 0,24 waves when the first six cocefficients were
found. The RMS crror dropped to 0.024 waves when solving

for 11 coefficients. Thus with gencerated non-annular
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wave--Lronts

the softwore is capable of accurately finding

)
the coofficionts with a minimal ammount of error.

The sceond test of the =oftware with non—-annular wave-
Ironts involved data providod by APWVL.  The dala consists
ol 20 scqguential frames of vwave-{roni, The lirst frame is
circular and contered in the collection array. As time
progressced a knife-edge was inserted in the wave-{ront
blocking off the positive X data points., The knife-cdge
entered at the top of quadrant I and moved in a -Y direction
until the wave-front became a semi-circle at about the
twelfth (rome of data. The knife-cdge was then extracted
in the oprosite divection vntil by the twentiecth frame the
vave-Tront is nearly circular, The RMS error from six co-

re

efficients is plotted in Figure 27, This plot also has the

percentage of the wave-Tfront which was obscured by the knife-

edge.,  This figure shows thoe correspondence between the RIS
cerror and the ammount of wave-front present. In this par-
ticular set of data, the wave-front has a large ammount of
45% Astigmotism (Yernike polynomial 6)., As the +X data was
obsgcurcd, the cocflficient pgot larger. It was this coeffi-
cient which caused the RMS error Lo increase. Figures 28
to 33 show Lhe frume being onalyzed, the estimated wave-
front, and the diffcrence between the two, Figures 28 to
30 corrcespond to frame once in Figure 27 and Figures 31 to

33 correspond to frame twelve din Fipure 27, Only the
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WAVE-FRONT FROM RUN 801. FRAME 261
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Figure 28, Frame 1, Non-annular Wave-froht
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Fisuré 29, Frame 1, Non-annular Wave-front Estimate
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Zernike are shown since the two polynomials are the same.
The pceaks around the perimeter of the difference plots
come about by the fitting of circular regions to arbitrary
regions., The peaks arc not included in the RMS error cal-
culations,

This scction has dealt with the analysis of non-annu-
lar wave-froni. It has been shown that the accuracy of the
results is very dependent on the percentage of wave-front

the software is able to utilize.

Annular Verification

This scction deals with the programs ability to ana-
lyze annular wave-fronts. This arca will again be split
into two types of data: generated and actual. In the case
of gencrated wave-fronts, the same routine is used which
generated the non~annular wave-fronts. The only difference
is the obscuration ratio is an input parameter; therefore,
any sizce of annular wave-front can be¢ generated., Using
these gencrated wave-fronts, the program was able to find
and determine the basic parameters of the wave-front in all
cases, even wave-fronts which were not centered. The only
time the software made a mistake was when the wave-front
filled only one quarter of the array and was not centered.
In ithis position, FAPER found the outside edge first and
assumcd the wave-front was non-annular. Since the oper-

ator can corroect problems like this, the paramcters were
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changed and the program was able to find the coefficients
accurately.

The software was able to find the values of the co-~
efficients with the same degree of accuracy as that of
non-annular wave-fronts. The closer the obscuration ratio
was to the actual value, the closer the RMS error of the
two sets of polynomials, TFor example, when a non-annular
wave-front was analyzed as an annular one, the RMS error of
the new polynomials were about twice that of the Zernike
polynomials, As the obscuration ratio decreased, the RMS
error of the new polynomials would approach the RMS error
of the Zernike polynomials., Thus the best results were ob-
tained when the actual and estimated obscuration ratios
matched. The same results were seen when the input wave-
front was annulary, The RMS error of the new polynomials;
however, when the obscuration ratio exceeded about 0.6 this
was not always the case. In this regime the program had
difficulty computing the coefficients of the polynomials,
Just as the RMS error increased in the non-annular wave-
front when it was obscured with a knife-edge, the same
happened with the RMS error as the obscuration ratio in-
creased above 0.6,

It must be explained that the Zernike coefficients are
not obtained f{rom analyzing the wave--front, but from con-
(;' verting the new polynomial coefficients to Zernike coeffi-

cients, If the Zernike coefficients were used, the

24
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1 wave~-Tfront would always have to be assumed to be non-an-

nular. If the Zernike polynomials were usced on an annular

wave-front, their lack of orthogonality would result in

————

severe cross-coupling. Thercforce even though either set
may give a slightly better result in the RMS error, the
main point is the wave-front was analyzed with an orthog-

onal set of polynomials,.

[

When actual annular wave-fronts from ATFWL were ana-
alyzed, the biggest problem was entering the proper par-
ameters. The wave-front used was off-center and part of

.‘ the beam was obscured. TFigure 34 shows the annular wave-
‘ front. This was very difficult to get good results from,

since the software would only use a small portion of the

RO SR G

wave-front, The best results were obtained when the out-
. side radius was increased to include all of the points of
the array. When the radius was increased from 9.25 to 17.0

and the obscuration ratio was changed accordingly, the RMS

- —— - -

error dropped from 2.88 to 1,07 waves. This error was fur-
5 ther reduced when the center was moved to the approximate

‘ center of the data, and the obscuration ratio was dropped

'

:i from 0.67 to 0.15 waves. This change resulted in the RMS

L error dropping to 0.31 waves or 2,92%.

Thus the software is able to analyze annular wave-

fronts as designed. It is able to find the coefficients
of the new polynomials and convert them to the correspond-
(h ing Zernike cocefficients, The next chapter presents the

recommendations and conclusions of this thesis,
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VI. Conclusions and Reccommendations

This thesis has presented a method of analyving annu-
lar wave-fronts. Starting with a briefl description of the
problem in Chapter I, the second chapter presented some in-
sight into how a LWA works. Next the Pattierson and Zernike
polynomials were comparcd and their respective faults were
presented. Chapter III gave the reader the theory behind
the construction of an orthogonal set of polynomials, fin-
ishing with a means of converting Zernike polynomials to a
new set of orthogonal polynomials and vice versa. Chapter
IV presented the development of the software necessary to
analyzc annular wave-fronts, and Chapter V verified the
software's operation.

In summary, the LWA software package developed here is
able to find the coefficients of up to and including the
first 22 Zernike polynomials. The wave-front being analyzed
can range in shape from circular to an annulus with an ob-
scuration ratio of over 0,95, The best results were ob-
tained when the obscuration ratio did not exceed 0.60, The
software performed best when the true center, obscuration
ratio, and outside radius werc known. With thesc parameters
coupled with the total wave-front area present, the result-

ing RMS error was consistently less than 0.040 waves,
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Thig study has met all of its goals which were:

(1) using an orthogonal =sct of polynomials, f{ind the coeffi-
cients describing the wave-tront, (2) these coefficicents
must not change as the number of coefficients changes,

(3) find the coefrlicicents as fast as possible, On a CDC
6600 the software was, on the average, able to find G,
then 11, then 22 coefficients of one frame of data in 20
seconds of CPU time. Wilh these results in mind, the next

section considers possible improvements to the softwoere,

Recommendations

The current software assumes thce wave--front is either
circular or annular. One way to improve the software would
be to have the software define the region and then generate
a set of polynomials which are orthogonal over the defined
region. This would allow the software to use all of the
valid data points. This could be further modified by weight-
ing the phasc data values by the intensity at each point.,

In so doing, those phase values whose corresponding inten-
sity is very small would have less importance than those
with large intensity; thercby giving less emphasis to phase

data the system was just able to detect.
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Appendix A

Wave-Tront Construction from Delta Phase Data

Wy, Ry,

bO b2 bq
3.2 {13

Tv,. Ws We

b, by bs

W2 w2y,

Figurc 35. Simple Wave-front Collection Array

The process of finding the wave-front from the delta
phase measurements involves using the least-squares tech-
nique. Figure 35 shows a simple collection array made up
of nine points., The ai's and bi's are the X and Y
delta phase measurcments respectively. The least~-squares
method of finding the wave-front involves minimizing the
square of the differcence between the estimated phase value
at each point (Wi) and the measured phase difference (ai or
bi)’ For the simple array in Figure 35, the following

equations result:

o1 = (Wa=Wy=09)? + (Wyu=W,-by)* (A.1)




! s ) , . \ .

; Oz = (Wa-Wy=a,)° + (W3-Wy-a,;)* + (Ws~W,=-b;)
§ (A.2)
!

o3 = (Wi3-Wz-a,)% + (We-W3-by)? (A.3)

)

!

E Oy = (W“—W]—bo)z + (\‘17-~W.,—b1)2 + (Ws—Wu-a.z)z

& (A.4)
o5 = (We=Ws-a3)? + (Ws-Wy-az2)? + (Ws~Wp-b,)?

+ (Wg-VWs-b3) (A.5)
g O = (We-Ws=bu)® + (We-Ws-a3)? + (We-We-bs)?

; (A.6)

!

| 07 = (Wy=-Wy-b;)% + (Wg-W,-a,)% . (A.7)

i

. g = (Wg-Wy-a,) + (Wg-Wy-as) +(Wg-Ws-bs)

' (A.B)
f 09 = (Wa-Wg—-as) + (Wg—WG-—bs) (A.g)
M
} Thus to minimize the sum of the square of the differences,
\ the derivative of Equations (A.1-9) is with respect to the
i, phasc value al each point, or aoi/awi . Each derivative
h is set equal to zero. Doing this to Equations (A.1-9) and

simplifying yields:

S 2W1—W2-W;. = '-{l.o—bo (A.IO)
ot
jﬂ ( W2 -W,-W,y-Ws = ap-a,~b, (A.11)
i
b 102
4
4 L




i. 2W, =Wz ~We = a,-Db,
3W,-W,; =W, =W, = bg-b,;-a,
AW -V, ~Wy -Wg=Wg = agp-az+b,-b;,
3We-W;~Ws~Wy = a,+b,—~bs
! 2W,-W,~Wy = b-a,

3Wg-Ws-Wo~-Wy = ay+bjy-as

[}

2Wo~-We~We as+bs

Putting Lquations (A.10-18) into matrix form yields

— -

e e A e —

"2-1 0-1 0 0 0 O 0 Pw: —ay-b,
-1 3-1 0-1 0 0 0 O W2 ag-a;-by
. 0-1 2 0 0-1 0 O O W; a;-by
* -1 0 0 3-1 0-1 0 of [w, bo-b,-a,
. 0-1 0-1 4-1 0-1 0 Wsl = laz-a;tby-by
i 0O 0-1 0-1 3 0 0 -~1 We az+by-bs
{ o 0o 0-1 0 O 2 -1 0 \ P b -ay,
; 0O 0 0 0-1 0-1 3 -1 We ay+bi-—-as
i‘ | 0 0 0 0 0-1 0-1 % *Wz | as+bs n
h This matrix can be expressed as AW = B ., To find the
values of the phase at each point, the matrix A is in-

verted and multiplied times B . The matrix A 1is

(. Hermitian, irreducibly diagonally dominant, and all of the
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diagronal entries are positive real numbers (Ref.5) regard-
less of the order of the array. Usually one of the points
in the phase array is sct to zero as a starting point,
Following the procedure outlined above, the LWA performs
the same operation on a 32 by 32 collection array to con-

struct the wave-front used by the software in this thesis,
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Appendix B

Plots of the First 22 Zernike Polynomials

The next 22 pages show the reader what the first 22
terms of the Zernike polynomials look like individually.
i As pointed out in Table 1I, the first ten polynomials
are familiar to those in the field of optics. Each plot
is the result of setting the corresponding coefficient to

a value of 0.1 wave.
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Appendix C

Zernike Potynomial Development.
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Appendix C

Zoernilkie Polynomial bevelopment

The basic iheory behind the development of the Zernike
polviuomials comaes from the works presented by Born and Wolf
1 (Ref.1;Appendix VII)., The basic idea presented by Born and
} Woll was to find a set of polynomials which are invariant
with respect to rotation. In gencral one wishes the fol-

lowing condition to he met

3
S 7k 4 7 v : N 7 o=
ff V_R(x, ¥V (%, y)dxdy = A L8 (C.1)
' X'Z""\;}:l
where Voois the general polynomial, the '"*''  denotes com-
1
plex conjugate, & is the Kronechker delta, and A is a %
Z normalization constant (Ref.1:7G7). The rotational invar- 1
’t;‘- iance is expressed as
.f}
% V(x,y) = G(0)V(x",y") (c.2)
P
x!
2 where
i
X = x cos 0 + y sin ©
' (C.3)
y° = x sin 0 + y sin 0
!
? and G(0) is continuous with a period of 2w and G(O)=1.
!
"? G must also satisfy the condition of
} .
}
!




®
et

iy, " S

G(0,)G(02) = G(03+02) (C.1)

since the rotation through one angle, then the next angle
is the same as the rotation through the sum of both anpgles,

A simple solution for a ifunction to represcnt G(8) is

Geo) = et1f (C.5)
wherce 1 is an integer. Putting Equation (C.5) into Lqua-
tion (C.2) and sctting x"=r and y~ =0

, and using Kqua-

tion (C.3) yiclds

V(r cosC,r sind ) = R(r)e110 (C.6)

wvhere R(r) is strictly a function of r . Born and Wolf
then show how if V is a polynomial of degree n then R
must have the same degrece n but with a power of r not

less than 1 , Thus, "the set of the Zernike circle poly-

nominls is distinguished from all other such sets by the

property that it contains a polynomial for each pair of

permissible valves of n (degree) and 1 (angular dependence).

(Ref.1:7G8)(Their emphasis) Thus V can be expressed as

Vi(r cos0,r sing) = n]]l(r)e“B (C.7)

From Equation (C.1,7), Rz(r) must satisfy the relation

Tovnl (ryrdry = o}
Rn(l)Hn,(1)1dr dnénn’ (C.8)
0

131

. - - -— - L e »-/ ".," \-o. N N -




e —— e gy p——

e ——

-
T

a3 % 4

whoere
1
A
a ] = __I.l.
“n 2%

With this result, the basic form of the Zernile polynomial
is expressoed,
Born and Wolf{ then find an explicii expression for

m -
Rn(r) as

m, .y . ,m/2 !
Rn(x) = 1 Qn_m(t) (C.9)

2

where t=x and Qn_m(t) is a polynomial in t of de-
grce %(n-m). Sin002 Q must still satisfy the condition

of R, Q must satisfy Equation (C.8) or

lla

n Kk (C.10)

m - —
3 tQ(t)Q -(t)dt = a
0

where k=i(n-m) and k’=3(n"-m) . DBorn and Wolf then
cquate Q with the Jacobi polynomials. Through substitu-
tion and normalization procedures, the final form of the

Radial polynomial is

2 -
3(n-m) ( X n-2s
m, . _ s n-s)! r
O D D rer e trerce s S CRED
s=0

Thus, using the explicit exprossion for R in Egquation (C.
11) and expanding the angular function G into sinc and

cosine terms, the scet of Zernike polynomials can be found.
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Appendix D

Flowcharts of Sciftware

Contained in this appendix arc flowcharts of all of
the routines in the software used in the analysis of an-
nular wave-fronts. The flowcharts appecar in the follow-
ing order: Main program, GAMSUB, FAPFR, VALID, EDGE, ZRAL,
ZANG, CONTUR, RMSERR, SERDPRNT, INVERT, MULT, ARPR1, and
ARPR2. The explanation of these routines appears in
Chapter IV, and the listiung of the program is in Appendix
E. TFigure 36 defines all of the symbols used in the flow-
charts. The first appearance of a variable will be de-
fined in the upper left hand corner of the page it first

appears oin.
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Li. Robert C, Sudduth was born on April 30, 1954 in

Toledo, Ohio. He graduated from Brookfield Central High

School in Brookfield, Wisconsin in 1972, He enlisted in
the United States Air Force that fall and became a Weapons

Control Systems Mechanic on F-106A/B's at Tyndall AFB,

Florida. In August 1976 Lt. Sudduth rcceived an AFROTC
scholarship to attend Purdue University, from which he
graduatcd with the degree of Bachelor of Science in Elec-
trical Engin~cering in December 1978, At the same time he
i . received his commission, and was a Distinguished AFROTC
Graduate., In June 1979, Lt. Sudduth entered AFIT, He

-f is a member of Eta Kappa Nu and Tau Beta Pi,

; : Permanent address: 1225 Indianwood Dr.

' Brookficld, WI 53005
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