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Abstract

A software package was written which will analyze an-

nular shaped laser wave-fronts. The polynomials used to

estimate the wave-front are based on the work of J.Y. Wang

and D.E. Silva in their paper "Wave-front Interpretation

with Zernike Polynomials." This involved generating a set

of orthogonal polynomials from the Zernike polynomials by

using the Gram-Schmidt orthogonalization process. The co-

efficients of the polynomials are determined by using the

orthogonality of the polynomials, instead of using the com-

mon least-squares method. The coefficients of the gener-

ated polynomials are converted to Zernike coefficients,

and both sets of coefficients are presented to the user.

By using the first moments of the wave-front's posi-

tion in the collection array, the software is able to de-

fine the basic parameters of the wave-front. These param-

eters are: center, outside radius, and the obscuration ra-

tio of the wave-front. With these parameters, the soft-

ware computes 6, then 11, then 22 coefficients to show the

stability of the coefficients. With well-defined circular

and annular wave-fronts, the program was consistantly able

to compute the coefficients with an RMS error of less than

0.050 waves.
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LASER WAVE-FRONT ANALYZER SOFTWARE I Ml ROVEMENT

I. Ir, troduct ion

The Laser Wave-front Analyzer (LAVA) at the Air Force

Weapons Lab (AFIVL) is used to measure the phase and inten-

sity of a High Energy Laser (tIEL) beam. The LWA uses the

phase and intensity data to calculate the coefficients of

Patterson's polynomials (Ref.4). The coefficients are used

to determine the various optical aberrations present in the

laser; the aberrations include: piston, tilt, defocus, and

coma. Once the aberrations are known, they can be used to

correct the laser's optical elements to maximize the far-

field intensity of the laser.

As stated earlier, the Patterson polynomials are cur-

rently being used to analyze the wave-front. This set of

polynomials is simple and is not the best set of polynomi-

als available. A better set would be the Zernike polynom-

ials modified for an annular wave-front. These polynomials

will be used to determine the coefficients which describe

the wave-front. Since the polynomials are defined over an

annular wave-front, the coefficients will better represent

t(i the optical aberrations.

i
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Problem

This thesis involves the generation of a FORTRAN pro-

gram which will find the coefficients to both Zernike poly-

nomials and a set of polynomials defined over an annular re-

gion. Since most 1J1EL's have annular wave-fronts, the Zernike

polynomials must be modified to remain orthogonal over the

wave-front (the Zernike polynomials are orthogonal with

circular wave-fronts). Orthogonality of the polynomials

will refer to the integral over the entire region of the

product of two polynomials. When the polynomials are the

same, the result is one and zero when they are not the same.

The coefficients should be available as rapidly as possible

after the collection of the data by the LWA.

Assumpt ions

Work has already been done to show that the Zernike

polynomials are not orthogonal when part of the beam is ob-

scured (annular) (Ref.6); therefore, this study will devel-

op the software required to evaluate wave-fronts. It is as-

sumed that the wave-fronts are annuli whose obscuration ra-

tio ranges from 0 to almost 1. The obscuration ratio is the

ratio of the inside radius to the outside radius. The soft-

ware will always try to fit the wave-front with the largest

possible annulus. The word wave-front will mean the phase

of the laser's outpuL at any instant in time. Thus with an

aberration-free system or the Zernike coefficients are all

192



A zero, the wave-front will be planar.

It is assumed that the accuracy of the results will

not have to exceed the accuracy of a 16-bit computer (four

significant digits to the right of the decimal point); how-

ever, the software was developed on a 60 bit computer.

Approach

The general procedure for modifying and finding the

coefficients to the Zernike polynomials has been presented

in Ref.6 . The basic procedure consists of the following

steps: (1) remove any invalid data points, (2) find the

center of the beam and determine the obscuration ratio,

(3) using the Gram-Schmidt orthogonalization method, com-

pute the modified Zernike polynomials, (4) solve for the

aberration coefficients, and (5) print the results. Each

of these steps will be presented in detail later.

Development

The basic operation of a LWA and the polynomials used

to analyze wave-fronts are presented in Chapter II. The

mechanical and software operation of the LWA is shown. In

Chapter III, the conversion of Zernike polynomials to a

set which are orthogonal over an annulus is presented.

Chapter IV deals with the development of the software.

The validation of the software is presented in Chapter V,

and the conclusions and recommendations are presented in

Chapter VI.
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II. Detailed Analysis

This chapter deals with the basic workings of a Laser

Wave-front Analyzer. Before explaining the mathematics re-

quired to analyze a wave-front, the basic operation of the

LWA will be discussed. The next two sections present an

overview of some of the methods used to analyze wave-fronts.

Included in the sections is an explanation of the limita-

tions of these methods.

LWA Operation

The LWA consists of two basic parts, a sliding refer-

ence interferometer to collect the data and a computer to

control and analyze the data. The inteferometer is design-

ed to work at two wavelength bands: 9.1ptm to 10.7pm and

3.2pm to 3.8pm (Ref.7:58). The LWA is capable of collect-

ing the phase gradient and intensity of the beam at each

point of a 32 by 32 array 100 times a second. The data is

collected by two cryogenically cooled 11g:Cd:Te detectors,

0! one for the X axis data and one for Y axis data. The phase

map is assembled later under software control.

The actual phase measurement is done by collecting the

difference in phase between a reference beam and the input

beam. The input beam is passed through the optical system

1 , shown in Figure 1, and is focused on two sets of apertures.

4
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Figure 1. Optical System iyout fzr LWA

One set is used to find X axis data, and the other Y axis

data, with each set consisting of two small circular aper-

tures. The apertures generate Airy diffraction patterns

and their proximity to each other generates interference

patterns similar to Young's double slit experiment. The

optical system focuses the interference pattern on a chop-

ping wheel, which is used to modulate the two beams. The

position of the interference pattern is proportional to

* the optical path difference of the wave-front at the two

apertures. Figure 2 shows examples of parallel and tilted

wave-fronts. The chopper in Figure 1 modulates the inter-

ference pattern into a sine wave. Since a tilted wave-

fronts interference pattern is shifted off-axis, its mod-

ulated signal will have a corresponding phase shift. In

order to measure the phase shift, a reference beam is pass-

ed through the same set of apertures and is focused on its

own detector, as shown in Figure 1. Since the modulated

5
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Figure 2. Delta Phase Measurement Procedure

reference beam's signal is constant with respect to time,

the phase difference between it and the input beam's sig-

nal is used to represent the optical path difference. The

LIVA is capable of detecting a phase difference as small as

X/200 (Ref.7:60). The phase difference is called delta

phase. The delta phase data is collected at each point in

the array by using two orthogonal pair of apertures, re-

sulting in X and Y axis delta phase maps. At the same time

the intensity of the wave-front is measured by using the DC

value of the modulated signal.

Due to the physical layout of the LIVA, the X and Y

delta phase is not collected at the same time. The X

delta phase is collected starting at row one and ending

with row 32. The Y delta phase starts at column 24, de-

creasing column-wise to one, then to column 32 down to col-

umn 25 (Ref.2:6). This collection method is alright as

6
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long as the wave-front does not change shape faster than

the sample period of 0.01 seconds; otherwise, the phase

measured at one pair of apertures may have changed by the

time the other pair of apertures is at the same point.

The delta phase and intensity data is digitized such

that the intensity is sent as an eight-bit word and the

two delta phases are sent as eleven-bit words, with one bit

used to signify valid data. This data is sent as two 16-

bit words every 10psecs to a high speed storage disk to

hold the data until it can be proces'sed. The next step in

the wave-front analysis is the reconstruction of the wave-

front. This is discussed in the next section.

LWA Software Operation

Once the data has been collected by the interferometer,

the computer portion of the LWA must first reconstruct the

wave-front from the delta phase data, and analyze the wave-

front. The analysis includes isometric and isocontour plots,

far-field intensity distribution, and polynomial coefficient

fitting. This thesis deals only with the coefficient fitting.

Before presenting the current polynomial fitting rou-

tine, the method used to reconstruct the wave-front will be

presented. The basic technique is to use a least-squares

technique with the delta phase. Figure 3 shows a diagram of

a basic 3 by 3 wave-front collection matrix. Each W.

point on the array corresponds to a specific value of the

7
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Figure 3. Simple Wave-front Collection Array

wave-front. The a.'s and b.'s correspond to the measur-
1 1

ed delta phase in the X and Y direction respectively.

At each point in the matrix the sum of the square of the

differences is computed. For example at the point Ws

the difference equation is

05 (WG-Ws-a 3 )2 + (Ws-W 4 -a 2  + (We-W 5-b 3 )2 + (W 5 -W 2 -b 2 )2

Each of the a. equations are differentiated with respect
1

to W. . All of the equations are presented in Appendix

A. For this example, the result is nine equations which

can be solved simultaneously. As a reference, one of the

points is set to zero. The resulting matrix equation is

A W = B (2.2.1)

where W is a column matrix on the actual. phase values of

the wave-front, B is formed from the measured delta phase,

and A is formed from the difference equations. In this

8
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and all other matrix equations, A represents a n by n

matrix, A represents a n by 1 column matrix, and A

represents a scalar. It has been shown by others (Ref.5)
that A in Equation (2.2.1) is Hermitian, irreducibly

diagonally dominant, and all diagonal entries are positive

real numbers.

The solution is slightly more involved than inverting

A and multiplying times B to get W . Some of the

points in the delta phase may be invalid because of the an-

nular region of the wave-front. The software computes B

by trying to find dominant rows and columns which circum-

scribe the annular region, Once the obscured region is

"boxed" in, the program works in toward the inside region

and outward to the outer radius as shown in Figure 4. This

is done to reduce the possible errors introduced by edge

effects.

The result of this routine is a reconstructed wave-

front which cai then be described in terms of various poly-

nomials. The software used now utilizes Patterson's poly-

nomials; more familiar to those in the field of optics are

the Zernike polynomials. The next two sections deal with

these polynomials.

Patterson Polynomials

The Patterson polynomials are a set of polynomials

that were developed at Perkin-Elmer Corporation. They are

9
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Figure 4. ave-front Construction from Delta Phase Data

basically a simpler set of the Zernike polynomials. Table

I shows a comparison of the first 23 Patterson and Zernike

polynomials. The most important point about the Patterson

polynomials is they are not orthogona.l over a unit circle;

thus, the coefficients of the polynomials will change as

more or fewer of the different polynomials are used in esti-

mating the wave-front. This is the phenomenon the users are

'1! faced with at this time. As they increase the number of co-

efficients being solved for, the previously found coeffi-

cients change; therefore, they do not know when.the coeffi-

cients are the actual coefficients.

Besides using polynomials which are not orthogonal, the

current software assumes that the wave-front will fill the

32x32 collection array, and that it is also centered on the

same. Thus an off-center, small beam will introduce much

more error than the non-orthogonality of the Patterson poly-

nomials. Figure 5 shows this case. The Patterson polynomials

10
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Table I

Polynomial Comparison

Patterson (Ilef 4) Zernike (Ref 8)

P(M) 1 Z(1) 1

P(2) r cos 0 Z(2) 2 r cos 0

P(3) r sin 0 Z(3) 2 r sin 0

P(4) r2  Z(4) /g (2r2-i)

P(5) r2cos 20 Z(5) /5 r2 sin 26

P(G) r2sin 20 Z(6) 5 r 2 cos 26

P(7) r 3cos 0 Z(7) /5 (3r 3-2r)sinO

P(8) r3sin 0 Z(8) /5 (3r 3-2r)cos0

P(9) r 3cos 30 Z(9) /5 r 3sin 30

P(1O) r 3sin 30 Z(1O) /- r 3cos 30

P(1l) r 4  Z(11) /5 (6r4 -6r 2+1)

P(12) r4cos 20 Z(12) VTh (4r4-3r7)cos 20

P(13) r4 sin 20 Z(13) vT (4r 4 -3r 2 )sin 20

P(14) r4cos 40 Z(14) Irh r4cos 40

P(15) r4sin 40 Z(15) Y1- r4 sin 40

P(16) r5cos 0 Z(16) /1- (10rs-12r 3+3r)cosO

P(17) r5 sin 6 Z(17) /1' (10rs-12r 3+3r)sinO

I. P(18) r~cos 30 Z(18) 2 (5r5 -4r')cos 30

P(19) r5 sin 30 Z(19) /T- (5rs-4r 3 )sin 30

P(20) r5 cos 50 Z(20) M r5 cos 50

P(21) r 5 sin 50 Z(21) VT- r5sin 50

P(22) r 6  Z(22) /7 (20r6 -30r +12r 2 -1)

11
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A Radius and B Radius and
Center used Center of
in Analysis Actual Wave-

front

tB

Figure 5. Possible Error Condition for Input Beam

will give a wave-front which appears to be correct, via the

RMS error, but if the same coefficients were used to recon-

struct the actual wave-front with the proper coordinates for

the center and the true radius, the RMS error would be much

higher.

In conclusion, the Patterson polynomials are best suit-

ed to give oily a rough approximation of the wave-front when

it fills the array and is circular. As soon as the wave-

front becomes eithcr annular or does not properly fill the

collection array, the Patterson polynomials do not even

closely represent the aberrations in the wave-front.

Zernike Polynomials

The Zernike polynomials are the classical method used

in the field of optics to describe the aberrations present

in a wave-front described by a rotationally symmetric op-

tical system. As pointed out in the previous section,

1.2



these polynomials are orthogonal over a unit circle. Ap-

pendix B (p.105) gives the reader an idea of what the first

22 polynomials look like. As an example, Figure 6 shows

the results when the first five coefficients have the value

of 0.1 waves, where one wave equals one wave-length of the

• !wave-front.

The Zernike polynomials are well behaved when the wave-

front is circular. But when the wave-front becomes an an-

nulus, the Zernike polynomials are no longer orthogonal

over the annular region. Thus they are not well suited to

4 the analysis of most HEL beams. Even though the polynomials

* are not well suited, they are the most familiar to those in

4 optics; therefore, it is desirable to express the wave-

front in terms of Zernike coefficients. The next chapter

will present a method of converting the coefficients of the

newly described polynom:ials to the coefficients of Zernike

polynomials.

Summary

In this chapter the basic operation of the LWA has been

presented, along with the way the wave-front is analyzed.

The previous discussion has shown that neither the Zernike

or the Patterson polynomials are well suited to define the

output of most HEL's. The possible sources of error that re-

sult from the sampling and analysis have also been presented.

13
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The next chapter will present a method of generating a

set of polynomials which are orthogonal over an annulus.

Not only will they be orthogonal over any-sized annulus,

but the coefficients to the new set of polynomials can be

converted to Zernike coefficients.

1I
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III. Theoretical Developrent

As point(,d out in the last chapter, the Zernikle poly-

nomials are not orthogonal over a region defined by an an-

nulus. This chapter deals with the theory behind and the

development of a set of polynomials which are orthogonal

over an annula:' region with the basic Gram-Schmidt method

of orthogonalization being presented first. This will then

be applied to the Zernike polynomiials, which are defined in

more detail, to generate the new set of polynomials orthog-

onal over an annular domain Finally, the new polynomials

are tested to verify their orthogonality. This chapter is

based on the work of Wang and Silva (Ref 8).

Gram-Schmidt Orthogonalization

The Gram-Schmidt orthogonalization process is a method

in which a set of linearly independent vectors is combined

to form a new set of vectors which are orthogonal. In par-

ticular, this process will be applied to the Zernike poly-

nomials. This will be done in the next section; this sec-

tion deals with the specifics of the Gram-Schmidt orthogon-

alization process.U The basic theorem for the Gram-Schmidt orthogonaliza-

* tion process is to:

let the vectors Ul form a set of linearly in-
dependent e-;ct in a vector space V with inner product

16
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Thonf one canI construlc t ain orthogonal sot of

ve0.ct or1s x1 I,..... s'uchl that for each :i withiis
the set of vectors x1 x, '. . .,'x spans precisely the same
subspace 'Is does tile set of vectors Uj , U (lieOf. 3:
138).1

'fhle baLsic process involved to generate anl orthogonal scit is

to take thie f irst vector u1  and to normalize it, or

v 1 =ulII , X 1  (3.1.1)

whore (V V I) is the inner product of v.i and v. To

span tile same vector space, the second vector u 2  has a

multiple of X1 subtracted from it. or

V U2 - UII(3.1.2)

where oc is chosen such that x, and V2  are orthogonal.

To find a value for al the vector x, is multiplied

times both sides of Equation (3.1.2) and the inner product

is then taken to satisfy the orthogonality requirement of

xi and v2 giving

(X1 ,V 2 ) = (X1 , 112 ) -al1(X 1 , Xl) (3. 1. 3)

When two vectors are, orthogonal, their inner product is

zero. Another important point is thlat tihe inner product of
a normali.zed vector with itself is one. Since Equation (3.

1.1) is the process used to generate a normalized vector,

ndan d  n T imst be ortilogonial to sat isfy the theorem,

I' 17



Equation (3.1.3) becomes

(,= (x 1 ,u 2 ) (3.1.4)

Putting this result into Equation (3.1.2) gives

V2 U2 - (x1 ,u2 )xl ,x2 - vT (3.1.5)
(V2 ,v2)"

The third vector v 3 follows the same process, thus

V 3 = u 3 - a2X2 - 6lxl (3.1.6)

where a 2 and 6 are found such that V3 is orthogonal

A to x 1  and X2

As an example, just 6 will be solved for, but the

process is the same for a2 . Thus

(x 1 ,v 3 ) = (xI,u 3 ) - a 2 (xl,x2) - t3(x 1 ,x 2 ) (3.1.7)

where again (xl,u 3 ) must be zero to satisfy the theorem

V and (Xl,X2) is zero because they are two previously de-

fined orthogonal vectors. Equation (3.1.7) becomes

.01 = (xI,u 3 ) (3.1.8)

and in the same manner

a2 (X2,U 3 ) (3.1.9)

Using Equations (3.1.8,9) in Equationt (3.1.6) gives

V3 -3 (x 2 ,u 3 )x2 - (x,u 3 )x X3 - 1 (3.1.10)
(v1 8v )

18
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This process is continued until all of the desired x vec-

tors are produced (Ref. 3:1.38).

As point out earlier, the above process is the basic

means to produce a set of orthogonal vectors. It has been

found that this process can be numerically inaccurate (Ref.

3:141), and thus a modified Gram-Schmidt process has been

developed. In the original method, x, was computed from

Ill and u 2 ,...,u s were left alone, with each new x i

vector using only u i and not affecting the remaining vec-

tors ui+l,...,u s  In the modified Gram-Schmidt process,

besides computing x, from ul , (xl,ui)x I is subtact-

ed from u. to produce a new u. with i ranging from1 1

two to S to make u. orthogonal to x, (Ref.3:142).~1

Since ul is the same as Equation (3.1.5), u2  is normal-

ized to produce x2  . As before this vector is used such

that (x 2 ,u')x 2  is subtracted from u! to produce lu

* with i ranging from three to S to make u? orthogonal

to x2 as well as x, (Ref.3:142). This is continued un-

II til x has been generated.

The following example shows how the set {x 1 ,x 2 ,x 3 }

is generated from {ui,u 2 ,u 3 ) . As before

XUl

x= - ) (3.1.11)

but the remaining vectors are modified such that

u 2  1*2.- (X ,u 2 )X (.1.1 )

19



u 3 = U3 - (XI,U3)Xl 31.3

Again from Equation (3.1.5)

I

X2 =  U2 (3.1.14)
,U2 2

1

which is used to modify u3  giving

2 1 1

u 3  u3 - (X2,u 3 )X 2  (3.1.15)

and

2

x3 = , , (3.1.16)

Notice the difference between Equations (3.1.16) and (3.1.

10). In Equation (3.1.10) the inner product is taken with

an unmodified x2 and U 3 . Thus the modified Gram-

Schmidt process gives more accurate results over that of

the basic process. It is this modified Gram-Schmidt pro-

cess which is used to generate the new polynomials. Before

presenting the modification of the Zernike polynomials, the

basic formulation of the Zernike polynomials is presented.

Zernike Polynomials

The basic characteristics of the Zernike polynomialsA were discussed earlier, whereas this section deals with

their basic construction. Table I showed 22 of the Zernike

20
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polynomials. It can be seen that each polynomial consists

of the product of a radial and an angular term. Since the

new set of polynomials deals with annular regions, the poly-

nomials will be independent of any angular functions; there-

fore, it is desirable to separate these two terms.

The means of deriving the radial terms of the Zernike

polynomials has already been done by others (Ref.1:sec.9.2).

The basic process is described in Appendix C. Table II

shows the radial polynomials and all of the corresponding

Zernike polynomials. Each radial polynomial was produced

by

Rr (n-m)/2 (-1)s( 5 ); n- 2 s

s! [(n+m)/2 - s]![(n-in)/2 - s] (is=O [nm)2-T

where m and n are radial degree and azmuthal frequency

respectively. The following conditions must also be met

with m and n , such that mrn and n minus m is even.

*I The Zernike polynomials are generated by the following

set of equations:

Zeven j = [2(n+l)' R'(r) Cos me

Zn [ E1n+1) Rrn(r) sin mO (3.2.2)

= -(n+i)] Rn(r) m=0

A

, 22



where j is the mode-ordering number (Ref.8:1510). In

other words, if the second Zernike polynomia] is desired,

j is set to two. Besides the conditions on m and n

mentioncd earlier, the following properties of the Zernike

polynomials exist:

(1) The polynomials are invariant with respect to ro-
tation about the center of the unit circle.

(2) Rm(r) = R-m(r) (3.2.3)

(3) R m(r)Rm,(r)rdr -2nl (3.2.4)
j n n 2(n+1)
0

(4) d r(r)Z(r)Zj (r) =6 (3.2.5

44 w~he re

w(r) = -/7T for I" -r
,! forl"1<o

and

46ij Oit

The first ten Zernike polynomials have other names

which are familiar to those in the field of optics. Table

III lists these names with the corresponding Zernike poly-

nomial. With the definition of the Zernike polynomials

( which are orthogonal over an annular region; this is the

23
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1Table III

Aberration and Corresponding Zcrnike Polynomial

Z(i) Piston

Z(2) X Tilt

Z(3) Y Tilt

Z(4) Defocus

Z(5) 00 Astigmatism

Z(6) 450 Astigmatism

Z(7) Y Coma

Z(8) X Coma

Z(9) Y Clover

Z(90) X Clover

topic of the next section.

Generation of Orthogonal Polynomials

A -- In the previous section, the equations which define

the Zernike polynomials were presented, along with the

specific properties of the Zernike polynomials. In par-

ticular, Equation (3.2.5) deals with the orthogonality of

the Zernike polynomials and the region of space in which

they are valid. In the case of an annulus, the weighting

function W(r) can no longer have the domain of -1 to

1 but must have a domain of 0 - rji- l  , where 5 is the

obscuration ratio.

24
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Since an annulus is i u(dependent ofr any angula.hr func-

tion, the ortIogeIia I i ziatio 011) j O('durP iieed only deal with

thehe Z(rnike polyn,,njials. Thus the

modiflied CG'van-Scliw idL proc(edNre. wil] only be performed on

the radial portion of the Zcrnike polynt-riial. Again re-

ferring to the aspect of an[,jliar indej,(lnciencc, each now

polynomial N (r) will on].y depend oni tl o0e radial poly-

nomials with the ,,,wree azMIut hi a] frequeney m , or N (r)
in

will depend on N (r) N m (r) N M r)m, l.42 ( r  . . Nn_2(r)

0
Starting with 110 (r) the modified Gram-Schmidt pro-

cedure yield;

.0 (r)
0 0

NO(r) 1 C0 (r) (3.3.1)
0 0

where

0 0

(R0 (r),R 0(r)) R 0(r)0 (r)rdr (3.3.2)

which comes from the definitiou of the inner product of two

continuous functions. Since 110 (r) has no lower order ra-

dial terms (nlO) , this is the final step for this new

polynomial. This is also true for every new polynomial

where ip equals n , since one of the conditions on m

and n with the Zernike radial polynomials required that

n must be greater or equal to n . Thus in general

25
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&

II.
(n ,(r))

N n (3.3.3)

where again in general

(11 (r) , RJ(r f1m ()J(Od (3.3.4)

and where in , n , j and k are integers and obey the

rules set forth in the previous section. Since Ni (r) is

already covercd in Equation (3.3.3), the next polynomial is

NO(r) In this case the vector space is RO(r) and
2 0

11 0(r) . NO(r) is found the same as that in Equation
2 0

(3.3.1) but RO(r) nust be modified to
2

0O 0 00

R2 (r) = R2 (r)-(N 0 (r),R2 (r))N0 (r) (3.3.5)

and therefore

R2 '(r)N () = _ _ (3.3.6)

2Again Equation (3.3.3) covers the case of N 2 (r) . Since
1 0

N 3 (r) is very similar to N2 (r) , the next new polynomial

to be developed will be NO(r) This polynomial will use

0 0 0
as its vector space 110(r) , U2 (r) ,and R4(r) . The

process starts just the same as with NO(r) with Equations
S(3.3.1,5,6). Tie next step is to modify Rl4 (r) with NO(r)

and then with N (r) thus

26
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R,0 (r) = l1(r)-(N0 (r),R(r))N 0 (r) (3.3.7)

when N0 (r) was computed inl Equation (3. 3. 1) and40 O 0 4 00

R 0, (.r 1?Ar -N ( )R (r))0r (3.3.8)
4 4 2 4

When NO(r) wvas computed in Equation (3.3.6). Finally
2

o ()=RC '(r)
N 0(r) 4 (3.3.9)

(R0A'(r),R:''(r))

This process is continued until all of the desired

Nm(r)'s have been found. Obviously if 22 polynomials are
n

to be used in thu wave-front analysis, the process of com-

putingr all of the integrals would be time-consuming. It

is possible to reduce this time factor by realizing that

once 6 is found, all of the inner product integrals can

be done at once. The next section deals with the genera-

tion of these integration terms.

Inner Product Coefficients

As mentioned in the previous section, the fastest way

to compute the new radial polynomials would be to compute

all of the inner product integrals at once. This process

would have to be done in an orderly fashion since each in-

tegral is dependent on the previous integral. For example

in Equation (3.3.9), the inner product terms are dependent

27
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on the results of the inner product integrals in Equations

(3.3.1,6). It would appear that each integral would have

to be computed beLore doing the next one. Mathematically

this is true, but since this system of dependent equations

will be put into a program, the problem can be solved in

a different way. First a set of variables which will ease

the computation of solving for the new radial polynomials

will be derived.

In Equation (3.3.1), if the inner product in the de-

nominator is changed to

0 .0Y 00 = (R°(r),R 0 (r)) 2  (3.4.1)

0 0

and by substituting Equation (3.4.1) in Equation (3.3.1)

one gets

R0 (r)

N (r) 0 - (3.4.2)
0 0

00

m
where ym is the inner product of N (r) and R'.(r) fornn n

j=m,m+2,...,n-2 , and the square root of the inner product

of Rm(r) and R.(r) when n=j . To clarify this, the
n 3

radial polynomial N0 (r) will be recomputed making use of

the y terms.

0 0
As before, N0 (r) uses the vector space {Rlo(r),R 2 (r),

0

R4(r)} . Thus using Equation (3.4.2) as a starting point,

the remaining two vectors must be modified yielding

28



R°0 (r) =RO(r)-(N°(r),R°(r))N0(r) (3.4.3)
2 2 0 2 0

and

R 0 (r) = R°(r)-(N(r),R'(r))N 0 (r) (3.4.4)4 4 0 4 0

The inner product terms of Equations (3.4.3,4) become

o = (N°(r).R (r)) (3.4.5)

20 0 2

and

0
Y = (N0 (r),R'(r)). (3.4.6)

40 4

Using Equations (3.4.5,6) in Equations (3.4.3,4) yields

R°'(r) = R0 (r)-y ° NO(r) (3.4.7)
2 2 20 U

and

RO'(r) = R°(r)-y ° N°(r) (3.4.8)
4 4 40 0

Continuing with the modified Gram-Schmidt procedure gives

R o'(r)
*N (r) 2 (3.4.9)

2(RO'(r),R
°2 ( r  ) 2

'I2 2

with the inner product term becoming

y (RO (r),l 0°(r))' (3.4.10)
2 2 2 2
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With No(r) coIpit ~d, N(c ) can 1,,. ioind by
2 4

(3.4.11)
4 4 z 4 2

w it h

y = (N(r),R1'(r)) (3.4.12)
42 2 

and

R '(r)
N°(r) = _ (3.4.13)

4
4 4

The final inner product term is

y = (]fl(i),1lO (r))- (3.4.14)
44 4 4

The y terms can be generalized with

1

ynf N'1m+. (r)R1n(r)rdr (3.4.15)

where j=0,2,4,.,n-2 and

Inn (3.4.16)

where

N~ (r~) = (rVY1 N ()\ --y" . (3.4.17)
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From EjuatJ.oji:; (3.4.15,10), the entire set o' y's can be

cOilpU ted.

It appeaV-, that al the y terms do is sitrplify the

equations, buL i[ [ quail ion (3.4.13) is expanded in terms

of " 1(r) 's Trom Equations (3.4. 1-12), the resulting equa-
n

tion is 0 ,0 ,0
N 0 (r) = 2I{, Y 0  ( 0 (r_(,4r -- rr (3.4.18)

4, 4 2022 0

Solving Equa.tion (3.4.18) for R° (r) in terms of y's and
4

ND1 ( r ) s gives

=(r) =yo N(r)+yo NO(r)-.yo N(r) (3.4.19)4 44 4 t2 2 40 0

Therefore each Zernike radial polynomial can be expressed

in terms of the new radial polynomials and vice versa. .n

general Equation (3.4.19) becomes

R m(r) = In m.- m .m m
n (lm = y r)+111, 2 (r)+ "  i. +yNN(r) (3.2.20)

In a previous section the bas;ic requirements of the

Zernike polynoini s] were e.Npressed. These requirements,

being sliht iy modi fied, should still be met. Thus

N (n r) = Nnm(r) (3.4.21.)n n

11r)N / T1(r).,dr 2(n+ ) (3.4.22)
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fdIV W() X,()NZ .(1% = (3.4.23)

whore

W( = othe r'wis ;e

and NZj(i - ) is the ne ,]y defined Zernike polynomial, using

the N (r)'s as the radial components. Equation (3.4.21)

is valid since Nm (r) is made up of ItM(r)'s which meet
11 n

this requirement as shown in Equation (3.2.3). The next

section deals with the meeting of the remaining require-

ments.

Orthogonal ity '1'oets

As po:inted out in the previous section, it is desir-

m,able for the ncew radial p~olynomia:ls N (r) to have the

same qualities as the Zernike polynomials Rm (r) . In
n

particular the orthogoinal.ity of the radial polynomials are

shown in Equations (3.2.3) and (3.4.22) for the Zernike

and thn new rad i al polynumials respectively.

As a test of the new radial term:,, the first test will

be with the polynomials where m=n , thus Equation (3.4.22)

become.s
1

! ~~1 6111r 1vt~n
"N N(r)N1(r)rdr " 2l (3.5..
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But from Equat ion (3.4 .20) the(, N ( r )'s can he expressed

n

N 11 (r) - I -(3.5.2)
n 11

Yn n

where from Table 11

n n
1n(r) r (3.5.3)

Thus Equation (3.5.1) becomes

( r) rrdr = (11 (3.5.4)

but

[ (or) )rdr] (3.5.5)

from Equations (3.4.16,1-7). Using Equations (3.5.3) and

(3.5.5) and integrating yields

in=l 2(n1Ci) (3.5.6)

Putting Equation (3.5.6) into Equation (3.5.4) and into-iJ grating gives a result of one and not 1/2(n+1) as de-

sired. Since the inner product coefficients arc- constants

*0 lice is found, Equation (3.4.16) can be modifiled such

( that

33



n(r))2rd (3.5.7)

only when m=n It will be shown that this is also true

for all values of in To verify it for all cases of m

Equation (3.5.1) becomes

f n m 6nn(

( r ) N 1, ( r ) r d r - 2(n+1) (3.5.8)

where Nm(r) can be changed to the Zernike radial polyno-
n

mials from Equation (3.4.19). This results in Equation

(3.5.8) becoming

--i2 I m m(r)m L (r).. m Nm rdrm r1 )- 1n1 n )- 111+2 M. 2 " nn-2- n-2" d

nrn

? 1
2(n+1) (3.5.9)

m
Using Equation (3.5.7) as an initial guess for Ynn

Equation (3.5.9) becomes

m n Nm(r)yIn m Nm ( d

f [ 1n 1 )(n+ m2 N,2(r)-. . nn 2 n 2 r)Jrr

2(1+1) f(NM*(r) ) 2 rdr

? 1
2(-+1) (3.5.10)
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Using Equation (3.4.17), the two integrals cancel, giving

the proper results; thus, Equation (3.5.7) is valid for

all values of mi-n .

The final test is to see if Equation (3.5.8) still

holds true when it is changed to

1

(m~N~. ? 6nijN r) ( ) -2 n ) (3.5.11)

where ntj . Since j can not equal n the Kroneckcr

delta (6nj) will be zero; therefore, Equation (3.5.11)

should be zero. This integral is very difficult to verify

using the general case, since each new radial polynomial

m III
N (r) and N (r) would have to be expanded similar to

Equation (3.4.19). Since III , n , and j are arbi-

trary, the series becomes too unwieldy to determine the

point at which errors may have been introduced; therefore,

several test cases were developed using specific values

for m n, and j. Since the process is still very

tedious, only a simple case and the final results will be

presented.

As a simple test case

1

N°(r)NO(r)rdr = 0 (3.5.12)

will be tested. Each of the polynomials can be expanded to

35
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make Equation (3.5.12) become

2 0
2 ) - (r " ? r rdr -0 (3.5.13)
2 2 0 0 0

From Table II and simplifying, this becomes

0

2-(1+ 20 rdr = 0 (3.5.14)
'~ 0L

Using Equations (3.4.15,16) and integrating yields 4

which does not equal zero. Since the equation used to gen-

erate y0  has already been verified, the on]y error can
00

come from the generation of y . As a first guess Equa-2 0

tion (3.4.15) is changed to

1
nj = 2 (n+l) Nm (r)Rum(r)rdr (3.5.15)

but this gives - when used in Equation (3.5.12). The

next change made worked, making

m 1

m = 2(m+l)fNm +(r)Rm(r)rdr (3.5.16)

This equation was found invalid when the test case using

N0 (r) and N°(r) was used. The final form of the equa-
4. 2

tion is
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I

Y 2(m+j+) N r )mRr( ')rdr (3.5.17)j m M+j 1

This equation was verified using several test cases, which

are too tedious to present. With Equations (3.4.20), (3.5.

7), and (3.5.17), it is possible to generate all of the new

radial polynomials; thereby, using N n(r) in place of Rm(r)

in the Zernike polynomials, a new set of orthogonal polynom-

ials can be generated. Figures 7 to 11 show the inner pro-

duct coefficients with respect to the obscuration ratio.

With the set of orthogonal polynomials, an annular wave-

front can now be more accurately expressed. The method on

analyzing the wave-front will be presented next.

Wave-front Analysis

As presented by others (Ref.1:Sec.9.1,2), wave-fronts

can be represented as the summation of the Zernike polyno--

mials times their respective coefficients, or

j=1

where ¢ is the measured wave-front, ind a. is the coeffi-

cient to the Zernike polynomial (Z(r)). Usually in optics
one is concerned with the lower order Zernike polynomials;

therefore, Equation (3.6.I.) becomes,
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a.t

N
a. (I ' 4 (3.6.2)

j=1

As pointed out in the last chapter, @ is not a continuous

function, but is sampledI at discrete points. Thus Equation

(3.6.2) can be ur ther inodi.fied to

N

EaZ ( d =(i (3.6.3)(7-

where i=I,2,... ,M , and M is the number of sampled

points. This equation can be written in the matrix form

4 -P ')_a ( i (3.6.4)

where as before a is a N by 1 column matrix, Z(ri)
,11

is a 1 by N row matrix, and ¢(W) is a scalar.

The most. common method o[ solving for the coefficients

is to use a least-squares approach. This involves minimiz-

ing the sum of the squares of the difference between the

estimated and the measured wave-fronts, or

A E Zj(h)aj-(ri)J (3.6.5)
i.=1 Lj=1

To find each coefficient, the derivative of A is taken

with 'e.;pect to each a and set to zero. Thus
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Li N

2A 0 (3.6.6)

3 z )" ,( i (3.6.7)
i~~i j=l 1

This equavtion can bce written in marxfor-il as

z T Z -- T$ (3.6.8)

and fol lowJ-g matrix inversion and mu] Uiplicalion one gets

a = (Z Z) - zr T (3.6.9)
II if II

The problem with this method for finding the coefficients
zT

is the trix Z can be numnerical_y unstable; therefore,
It If

the correct ,;olution of the equation is difficult, but not

impossible to find (Ref.S:1514).

The method used in this thesis to find the coefficients

of the polynomials uses the orthogonality of the polynomials.

As before, the leant-squares method is used gi\,jnig

A b NZ~ (3.6.10)

where . is the new polynomi,1 coefficient. Equati on
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(3.4.23) can be approxNmtt(, d i1 dJ:3cr e to foril as

M
"'N~i1~ (3.6.1.1)

Id NZ 1(r i)Z V( r i )  uv

i--- 1.

Tak:nii,. the derivativ or EqUtatjon (3.6.10) and setting it

equal to zero gives

m N
NZ, Z',(ri-N kri T i,.NZ J = 0 (3.6.12)

i= k Zj--1

Since NZk(ri) is a constant with respect to the summation

over j , it can be put inside the second summation. Us-

ing Equation (3.6.11), the sum from jr-l to N is non-zero

only when j equals k ; therefore, Equation (3.6.12) be-

comes

~M

b NZ(")(, (3.6.13)
i=1

, With this equation, the coefficients can be found directly

with no matrix inversion. Notice the same is true for the

SZern ike polynomials when the region i s circular.

From this section and the previous one it has been

shown that it is possible to construct a set of new poly-

S: nomials which are orthogonal over an annular region. These

new polynomiaO.l can be used to find the coo ficjients to

45
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(1c..flib an alfln~ffu lal. ' WVC,-11'i)fl t \V1 t.hoi't emlfl~oy ing t he stand-

ard mat r ix li>vO r,;ion method. TPhis makes- thte prograuiing much

MOVe rel.i ZA10 0 amd f tr Since the new polynomialxs are (Ide-

rived from t hO Zeri'nke pol ynomi als, the coefficients can be

t rans'-pwosd in to tho. correspe di ng Zernike coeffi ci ents.

T1'i i pi'occss; will I).?e xplained in the floNt ch~.iptcr which

deals with thec proccss; of de"Vel opin g softwvare to utilize the

resul t.s of this chapter.
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IV. Prog,,ram Develo pjment

This chaptor expliain.,, the development of softwrare

which performs the analy.s is of annul ar cave-front using

the theory preseinted in the last chal)tor. The software

cons i< st of two nmajor secti ons, the definition of the re-

gion of anal.ysis and the actual analysis of the wav-front.

This chapter preseuts the main program and each of the Imaj-

or subrout:nes, with the subroutinos leing presented in the

order in which they are call-ed. Each section will present

the b:,sic algorithm, a basic flowchart, and a description

of the algorithm as necessary.

Main Prograu

The main prog-ram is the controlling program of most of

the subroutines. It does the actual analysis of the wave-

front and prints the results for the user. The basic al-

gorithm for this program is:

1. Read in first frame of data and call FAPER. FAPER
returns the computed radius, ceonter, and obseuration
ratio. The operator is asked if he wants to change
any parameter and the number of frames to be analyzed.

2. If not the first 'time through the routine, then
read in a now frame of data.

3. D)efine region of analysis as given from parameters
compu ted or entered in slop 1 by calling CONTUR.

4. Do stops 5 to 1.1 three times: once to computo 6 co-
officion ts, then to compute 11. coof.'ieonts, then to
compute 22 coofficients.
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5. Zero out all- data arrays used in computation.

G. Using the ob:scuration ratio, compute the inner
product coeff.ic:ienus by calling GASUI3.

7. Comlipute X and Y starting positions and increments.

8. Usijng- the region defined in step 7 and the param-
eters [rom step 1, compute the new polynomial coeffi-
cients.

9. Convert coeff:icients from step 8 to Zernike coeffi-
cients.

10. Generate two estimated wave- fronts from the Zernike

and new polynomial coefficients.

11. Compute RMS error and print results.

12. If not done with all frames do to step 2.

13. Stop.

This algorithm is presented in flowchart form in Figure 12.

Since each subroutine is presented later, only those steps

which do not rely on major subroutines are presented here.

The first step in the algorithm uses FAPER to define

the wave-front. After this is done, the user is asked if

he wants to see the defined region and the computed param-

eter. These parameters include the center of the annular

region, the outside radius, and the obscuration ratio. The

user is then asked if he wants to change any parameters if

he knows the actual values. This request is made to correct

any possible errors that FAPER may have made. The reasons

for error in FIAIERI wJ11 be presented later. The program

wi] also ask the user how many frnmes he wants to have
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analyzed. With th i.t; data, tihe program is ready to start

the actu2fl anl ly.;

Aftcr the Ii '. I. frame hs:. been analyzed, a new frame

is reaid. This f v me of dat a is defineod into regions of no

data, vali d data, and the center of the annulus by the

Sprame t('r:; d terminnod from the first frame. This is done

by thk2 ubroutine CONTUR. Once the regions of the wave-

front are defined, the program starts to analyze the wave-

front. Each wave-front has 6, then 11, then 22, coeffi-

cients computed to verify that the number of coefficients

does not affect the values of the coefficients. Before

each new set of coefficients is computed, the data arrays

are zeroed.

Using the obscuration ratio parameter, the subroutine

GAMSUB is called. This subroutine computes the inner pro-

duct coefficients needed to convert Zernike radial poly-

nomials to the new set of radial polynomials. The result-

ing lower triangular matrix GAMMA is inverted and placed

into INGAMMA for future use. Each array is used in the con-

version process depending on which radial polynomial is be-

ing converted to the other. With the-c arrays, the program

can begin to analyze the phaLse data.

Since the phase array is not always filled, the range

of X and Y depend on the size of the radius. In other

words, if the radius is only ten units in a 32 by 32 unit
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Figure 13. Possible Cartesian Coordinates of Phase Array

array, the position of the wave-front will change the X

and Y values of the four corners. This can be seen in

Figure 13.

Using the radius and center, the program must deter-

mine the X and Y increment and the initial values XO

and YO The analysis starts in quadrant II of the coor-

dinate system, and scans from -X to X , Y to -Y end-

ing in quadrant IV XO and YO are found, such that

O XO - (4.1.1)
Radius

and

O Y-1 (4.1.2)
Radius

where X and Y are the center coordinates of the wave-
.4

,* front given in terms of increments in the 32 by 32 array.
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Thus: the 1)(iilt, (1,1) iii (ie1 arraiy corric ijndfi to th( p o int

( -No , VO) ill U:ti ai- r iit s The .11icvron t va] nes

fl. N an1( 1 aire H si Vil Io iill byI ~ t. LWiii g 1tihe rec iprJocaLl

of, th- 'I i ()I* 1.11c w \e-Ir nI

Tin, IilF:; :1 (p ill t hoai a 1 y -ii s to Conmput e tihe Co-

otI t'i~i i;to t.he 'vaio' Jpo1 ylilliJais. Ais pointed out

ill to' a ;L c In: p er' eaIch 110w radiai pOityioilla 1 is na)"de uip

Of '4 lineif CO!y1ilnationl Or Zern ile raia~l poi ynomi-a s. This

can heexw ~ s in ma:'ivx form as

XNZ IIE (4.1.3)

wi2ey: is a sq4uaro', lowecr tr i angular matrix, NZ is tile

jie stof, ra.i iip an o anidI is the Zernilic rd~dial

pol yloil a s. It was poi nted out that either of the radi al

pOl yni iial.' '1- ar sdwith tile anglgU1ar dependlence to construct

thle tot a]I pol yniii.i ail ; therefore , thie prograim computes thle an-

gui ar data and nuilLiplier; it times either radial polynomial

to genlerate the tot al pol ynomial . Thus to compute thle new

polynomiail, the followi jng matrix eqpuation is used,

N Z =CY. R (4.1.4)

wvhere C is a diagonal array of anguljiar constants. As an

example the equiation canl be expruesse d as
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NZ( 1 0 0 0 1/-Y 0 0 0 0 1I, (r)

NZ 2 (r) 0 2cosO 0 0 0 1/y 0 0 112 (r)

NZ3 (r) 0 0 2sinO 0 0 0 1/yl 1  0 113 (r)

_NZ,; (r) 0 0 0 2' 0 /Y2 2  0 0 1-/Y 2  R(r)

where the first four new polynomials are desired.

To actually compute the coefficients, the program will

scan the phase array. As soon as the radial value on the

point in the scan is less than one, V7- y_<1 , the Zernike

radial polynomials R and the angu]ar constants C are com-

puted and the matrix multiplication indicated in Equation

(4.1.4) is performed. Using Equation (3.6.13), the coeffi-

cient for each polynomial is computed. Once the entire phase

array is scanned, the coefficients are found by dividing the

summation by the total number of points used in determing

the coefficient. This process can be expressed as

M

b- NZrk( )'(i )  (4.1.5)
k M i

zi-i

where, as before, b is the coefficient to the new poly-k

nomial NZk(ri) , and M is the number of valid data points.

A valid data point is one which is inside the annulus or unit

circle, and is a phase meas;urement. Thus, using Equation

(4.1.4) and (4.1.5), the new polynomial coefficients are de-

termined. The next step is to convert the.se coefficients to
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Zern ike pol ynomialI coo f i ients.

The ZrO-Ilike coo IJjiiCerit Scanf be easV'ilyT found by first

converting the noew pol]ynomial[ coefrficients to coefficients

o:[ the new , radial polynomnials. Nxtthe radial coefficients

are converted to Zorniko-I radial coeffi cients and finally t~o

Zer-nike polynomial coeff~i ents. This process can be ex-

pressed1 as

a yC'b (4.1.6)

where b is the new polynomial coefficients, and .1 is

the Zernikc polynomial coefficients. As before,, the process

is done be scanning through the array and calculating the

values of C and C at each valid point. Each coeffi-

cient is kept as a running number of valid points at the end

of the scan. Equation (4, 1.6) can be expressed as

C1 (ri)YkC r~9J (4.1.7)

i=1

With the two sets of coefficients, the next step is to com-

pute the estimated wave-fronts.

Reconstructing the estimated wave-front is basically

the opposi.te of finding tlw coe-fficients. The only differ-

* onec is that the twc) wave-fronts can be found at the same

time. The mna rix equations are

a C 11 (4.1.8)
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and

=nZ bC_' (4.1.9)

where z and nz are the wavc-fronits found with Zern ie

and new polynomtial coefficieots respectively. The wave-
fronts nre formed by scanning through the 32 by 32 array and

at each valid point, the matrix Equations (4.1.8,9) are eval-

uated. Thus after the scan, there are two estimated wave-

fronts.

Once the estimated wave-fronts are constructed, the Root

Mean Square (RMS) error is calculated. This error is found

by calling the subroutine RM.1SERR. Its operation is explain-

ed later. Once the .ThS error is found, the main program will

print out the coefficients of both polynomials and the )IMS

error from their respective estimated wave-fronts. The pro-

gram will then either return to compute the next set of co-

efficients, or start a new frame of data.

In summary, the main program does the actual analysis

of the wave-front. It also asks for any input parameters

and calls various subroutines to prepare the frame for an-

alysis. Appendix D contains detailed flowcharts of this

routine and all the subroutines. The next section deals

with the subroutine which computes the inner product coeffi-

cients.
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Th* i:l)'ou t in,, ('1 S i, ai i-'( i 1 v.hih 1 Cowput(ii V t he

jflnlir v() d w-I co'l I' i cle nt . TI, 1. roIII i no0 ha I hroc

pai ram- ' cv i it i enz 1 1 i ii LaII te o I, t' ;t rray t Ito10I(d t hie

jn e 1)101 l'o iJ t. cool~ i Ic i c t!, t, e obh (U11-Iic O i nt o , anld the)~

nuinh i of' c;ool 1' .i c n I a .

A.,3 p03 ntc.(d out, in the> lm at chuptery Uih acltual innci

produc Vi:er~ ar-c depe icii e onl each other . To make t.he

programtr run faSte!r and~ m1oreC aCCUrately , 0elh of the integras

in iEqunioiiS (3.5. 7, 17) were don- by hand. T1hi s resuil ts in

a seric- of depondlent equations, with a dependency on lowe-(r

order terms mid the obscuration ratio, .Since the in-

tegrat ions where clone by hiand, each integral (IoeS; not have

to be (lone by some numeri cal method, i . e. Si upson's rule or

the trapezo..dial met hod. This greatly, reduces the timei since

only one pas throughl 1 he routine is requiredlista of

inte-ra Li g each teri. 'fh(' error i.H i'educed by not appirox-

imat ing aI term v h ich i s used in the approximi t i on of anlot her

term.

SinIce this SUblrout inc is just a series of equn t ions,

the algo,-(rithm wvill not be presented. GAMSUB3' s flowehuart, is

presentedc in ippendix D , and, the en Lire mttri x it generates

is in aippenli x E. Be fore (AMS1U-13 can run, the obseu~ir.tion

ratio mu:;t be found. It is foundl in the ,--mhroultinc FAPERl

WI ( 11 is eel e in theC 1INe.t. .C011.
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'Phe .';uPvkminu ia ePl lf ret u rn,. the centeor, outs.i do ra -

di us,, and l l('beuaI i on rai. It als;o clefines the val no

fo" no d a , vlset Thi:is slul1o ut ine i s the( most important

021 UJc 5]z(22ainI errors, (,-,in affe : ct Nvlieric thle ma iin programi

Lii iks' tw . e- ro Li.- positioned. The main purpose of

-Uhis' ;Ubi-ou t inc is *to dcfine the t vpe of wvav-fIront , i e.

annum or circular, and then find the parimeters.

Since mos) t of the1 anajlys.1i s wvill- be wvith annular- wave-

fron ts , FAPER villIasm an annular wave-front is present.

The al gor ithinl for this subroutine. is:

1. Select the value to be usecd as no data. (BIAD) as the
value which is presenit at any three corners of the col-
lecti (la altly

2. If the point (13, 16) in the array contains a value
of BAT), go to step 5.

3. If' not, starting at (16,16), spiral outwvard until
a oitwih alule of BAD is found or the radial

distance Irtom (16, 16) i s greater than 5.75.

4 . VIhein a BAI) point is found, set niew center to cooi'-
dinntes of this point. 1t' the dlistance was greater
than 5.75, then keep the cen Ler at (16, 1).

5. J33 calling EDGE)(, find the vertieal and hiori zontal
radii of the, insido radis of the annul us.IfDE
returns an error conditi on, the wave-front is non-annu-
lar ; there fore go to step (G. Pepeat until the radii
stabilize or ten iterations, have been done.

6. From the center found in step 4 , find the smnal lest
outside raditus.

7. If the region wa:; (Vfi ned as non-innular, definle
the wave- ronL h y cal 1 .1 ag CONTUlI, mnd find the 1i argest
outsid(e ra;dius wh I li1 Jv i jFt A nsi (j10 tle waveN(-f ront .
Pnss this valune andl the cli ter Coordinates to VTALID) to
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f md I h I d1i l- i h Hw ii 'OlUIC ()I* lie r, Id i I and .C ce -

.IF thf~ e v ioil i f- 11110 U.[ or, lui( CO" TIU to de ie 11 1he
regi Jon. V/ Ill i L s 0;41 1 .1(1 d t o f .J II u tlI I( s In Il ", u 1 os id e

U-L iLS 01' t 1(2 ItH Iiii] I 11: V1 I jcli I I w i . C i- iIc!u 111 1 hOe t I Ie 1 "'! )
d1o1t I . 11 Th j11 i ( 1: (1e ui d tl ii eat I!!ow;1ut a du I-a d i-
w, a - u so ci t o deo' Il 'L li e1ar I ])o t po1. hi c oil taidhe raidills

9. Flli the (iharaet2V aIrrlyv 'it Lh final sy~jnlio1s.

10. ReturnL1 Lu(II ,1 to 1al ng out i ne.

The baiis ic f I owe liar L 0o1, thbi ;ub rol (Jnc J- s hown i n F . gi ii(e

1<1.

Tle fi rst two s(ep of the algorithm are vecr y st raig ht

f orwar d. Thc deCctev'mIn1Ifg ULth value of nio da-ta is,: crucial

to thoenct ire prwea S op0 Pa 100 [ ml1i 2id ot(1 et hO1sul1oul-i nes

usC t lii a \'a 1 e as a tet to det ermine whether to use a point

in the umalysi.,, of' the Nvavo-front . It. i-s a] so ulsed to de-

fine the cent ral rug -ionl of the anio.The next step is -to

f ind, and if'ps hie define the inuner radius of the ainni-

When thle LWA2 is r un , thr iput wave-iron t is usuall-y cell-

t ered onl the colIctL inI ar)', V ; thr Fore' 0-, thiS subrout inie wvill-

stairt 1oo1;jn, nt og I: h centecr fer .' . ie ann i uls. If a val id dat a

bpoin11t is Fre, et. :1t t, lie col!r 16 , 16i then the subrout ine

wil ap i rcal (,u tward t o t ry to f inid the cen tral region. l'i g-

ure 15 7lic),ws the shlape ind direction of thle spi i-al at the

kiai'gost(eot o(ft ilie -'m-h

If the datf I t anly po0iii( LJ]Ongf the searchi is invalid,

thipl ial i oane it ha round the edgeo of' the ilnsA do
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criter (16,16)

I x Polts on
Arx~ly

, Lx--, ,

Fjuire 15. Spiral Search Pattern of FAPER

region of the annulus. Invall. d means that the point has a

value of I32IAD. The maximum radius of 5.75 for the search

was chosen as anl optimum value from several test cases.

The entire search process is based on the assumption that

the opera.)i of the L],A has aligned the system to fill the

array. If an inva]id point is found in the search, this

point is tcnitativel y set as the new center of the annulus.

fThe nexi stlep J.,; to Fi'nd the approximate center of

the anl a vi rogion. A-suliniij n the' wav- Iront is annular,

the suLhr'o1fI i(? LiDG; .- ; cal I1,!d to l'ind the hiorizontal and

vOrAiC:1u 1ldi [ fi t ccFrt thr .i n all I four directions.

[!s a |," lie I it\' , 'Vm '2 (11 tie !xl( 1 ] II'4'II a n uid twO vertical

l V.11i.i, nm flow 'nte i:; 'hl1t'O a d II1)(' is Called again.

TI'hi ; p o'tc , i-; r ~p:e , 1' ' , 1111t i 1 t i ]ll" 11 i , ' adLi do not
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chIi:1,c oi Len i t v at ioI IL! iir per f'orrntd. Th I init of ton

i I.( eIt I olI .s is to ) r ;(' lf LI wi poss i b:i I i ty of the intleger

(('flt. m i O .c a t inI , ar min d the ac fun.1 cen te'. I1' ,D!GE runs

i1nto t.I10 1iI i t.s 0 r thl I ,'.r ,L d th 0 11 APER wi as .3u1 the

Ii t- t 5 alic Ltld t (112.IJid : C(I 'o( of ci circular wave-

fron t. I f t hi: happened, f lhe cell ter is reso; to (16,16).

At thi:; po.int the progr:im "'kn owi'' eithor the approximate

locati on of the conter of the annulus or tha.(, the wave-

front is non.-:znnular,

In either type of wavo-front, the next step is to find

the sli n]lest. horiz ontal anl d vortic.:.1 radii from the center.

With tli s radiu:;, in the case of an annulus, VALID is

calc ld to find Lhc contur and the SimallestL radius which

covors the insido region or' the annu]Lus. Whein the wave-

fron;t, i Sno-annular, the ra:dius is used to rind the Iarg-

es t i-a di us. VALID1) is ag:i in cal].ed to look for the center

and the ] lrges U. circl , whi.ch wi l .1 fit in the region.

I t .he \vav-i'ont i:; non-annular, then FAIER returns

the v,:milt .; of, VAT.11) to Hic cal .in routine. Otherwiso

FA lR will 'arech for tle ovtsI,.de radius o.f the allnuI.us.

'his is (1io1W b tll g t [(loat il nt val].ties of the

center found by VALID. This radius; and the inside radius

are use-wcd to coItput(' thie 0 ocdLtLration ratio, BETA. BETA, the

cecnter, and the outsido radius are then returned to the

cai i 3 i rout. in11.

61

.. . . .I . . . . . . . .. " l -I I. . .



In suimm:13rY, "APER i:, the controlling routine to define

the type and pi ameters or the wave-front. This routine is

called to show the operator what it "thinks" the wave-front

look, I Ike. Wi!th this Jnforma.tion, the operator can accept

or rejcct its results; thereby reducing the ]ikelihood of

error. The next. section dcals with the subroutine VALID.

VALID

Tho subroutine VALIDl's main purpose is to compute the

floating-point value of the center and the radius of the

wave-front. As pointed out in the previous section, VALID

has two possible modes of operation: find the center and

outside radius of a non-annular wave-front, or find the cen-

ter and insIde radius of an annular wave-front. The basic

algorithm is:

1. Using the flag passed to it, go to stop 3 if a
non-annular wave-iront.

2. Define the region of search to the center + the
estimated radius plus one. Go to step 4.

3. Define the search area as the entire array.

4. Search the defined region for either valid or in-valid points depending on whether the wave-front is

non-annular or annul ar.

5. Keep a. running total of the number of points found,
and the values of the vertical and horizontal indices
if looking for the center.

6. Divide the sums of the vertical and horizontal in-
dicos. by the. total number of points, to get the true
center of the region.

7. Using the new center and the estimated radius,
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rop)Cat t he search. If annul ar region1 count the nui-
ber of' A aval i d points, dccreas4ing the radi us of search
by N 0 . 25 .As soon as; tho neCw count ehamiig es from the
previJ.i coiln U, USC the I as t value of the radi us as
the small ,,les ais If non-annuilar, increase the
radius until, anl invilid point is f[ound ,nd use previous
radius as the la-rges;t radiu.

8. In non-iiiiiiii ar , ret ,urn. the new ceniLer and the radius
to the Call inug routl-. I.

9. 1 f anin1ar , Nil 1 chan c ter array SER with the sym-
bol for the centra re -1gion of the annulus and return

t e c alln rou In.

A fliowehart of' this rout ine is shown in Figure 16.

As indicatccl in the al.gorithm, and the previous sec-

tion, VALID is passed thec integeor estimate of the ceniter

and radius from thec call.)i g routine. It uses these values

to tr-y to find [Hie fln ngpo Uvlues or the Salle. 'lo

avo-id conifusion, the alg~orithjm will be split into the two

cases of arjnu i sin and non-unnular ana lysis . In the casc of

an annular wave- front , VALID wil 1 1 se the integer radius

to ci rcamscribe the insidlE region of the annulus with th e

search region. Onl the f irst pass through, VALID will corn-

pute the first moments ofI the X and Y values of the co-

ordinate-s of the invalid data, points. The moments are. found

by using the fol lowing equiations

Nc (4.4.1)
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and N

YC v.Y (4.4.2)
i-~l

where

{ whenii the data is invalid

i =  0 otherwise

NT is the numbcer of invalid points iii the search area, and

N is the number of p)ointS in the entire search area. XC

and YC in these equations are the floating-point values

of the center. Once the center is found, the search is re-

peated and the smallest radius is found which will include

all of the invalid data points (NT). The radius is changed

in steps of 0.25. This decrement was selected because the

use of a floating-point radius and center in a discrete

array gives a reasonable decrement without sacrificing

accurlacy. Oce the radius is found, VALID fills the char-

acter array SER with the symbol "#" to represent the cen-

ter of the annulus. VALID then returns its results to the

calling routine.

In the case of a non-annular r gion, VAIID defines the

search area as the entire data array. It then follows the

same pi-ocedure as before. VALTI) first finds the center by

k using the first moments as in Equations (4.4.1,2) but

:I on when the data is val id
1 = 0 ot herwise
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usri, th erent.( ro I se imo, t ant I ih ute cy ree th cen-
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'rue subrout ie VALID is u.(2(1 to fi nd thie floatin"-,r

point valucr, of the center and radius, from integer guesses.

It worhks best with wave-fronts whijch are symmetric. VALID

can give erroneous data.; t herefore, -the main prog-ram will

check wi t1h the user befo-re continuin1g.

ED1)GE

The subrou~tine EDGE is called by FAPELR to estimate the

center of the annulus. EDGE has two modes of operation1:

vert:Wcai or horizontal scan. The mode is selected bY a

fl1ag, which is passed1 to EDGE. The algorithm for EDGE is:

1. Starting at coordinates given by calling routine,
search left or doxvn until a valid point. is found.
Save the ditstanco;.

2. Start ing at the same coor-dinates, search right or
uip unt il1 a valid point is found. Save Lhe distaince.

3. If the 4earch in any direct ion hits the outside
boundary of' the data array, then set error flazg and
return. Ot. herwim_.;e, return iTc t/ri ght or- up/down di s-
tances to caillingl routine.

The b~as;ic flowc,(hart for this al gor ithim appears in Figure 1S.

As pointed out in the section on FA1PEI1, EDGE is called

at the most ten t. imes to try to Find the best guess for- the

center of the annul us. The distance returned is also used

in th~e de terrainalti on of theo ins idc radius. The next sections

deal With Iisubroutines whi li are usefd in the analysis of the

V wave-front.
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ZI{AI

The subrojit mec, ZIIAD is used to geonerate the value oi

the Zeriko ra(1 a'] polynomi als at a specific X ,Y

coord inate. Equat.ions (4-1.4 ,5) show that to find the co-

o Ificients to new pci ynomi.i als, the new polynomials mlust be

Computed at each X ,Y point. ZRAD is a very simple

subroutine, as shown in tile algori thin. The algorithm is:

1. Using the X, Y values and the number of terms
needed , compute, the Zern ike radi;.1 polynomial. terms
R M (X,YI).

2. Pill a col ur-n matrix with the desi-red number of
terms:-.

ZRAD uses tlr radial polynomfi als prescinted in Tble0 HI.

As an cxamiplo when ,;ix coeflj ci ecnt si ave. needed, ZRAD will

produce a col umn mir ix con!si 2ting of {1o(XY) ,i (XY)'

I{'(,Y)B0 (,Y)i((,Y)li 2 XY) .The repetition of
1 2 2 2

some o f the, Ierzvis comies from E"quat.ion ( 3. 2.2) . Thec index

ofit th mai RI corresponds to jiFuat ion (3.2.2).

Tihc entire ne:trix generated by Z11AI is presented i n appen-

d ix E . IhsZRAI) is a siinplo but necesstry routine for the

geonert ion of£ eithecr Zemnike or new pci ynomi alIs.

ZANG;

d ThVe subroutine ZANG i~s si milam to ZRAI.). ZANG computes

.4 the angu I a dependence of the Zcm ji.] pol ynomi als for a

speciflic X ,Y ccor(1 in a 'e . ln.S t cad o r pr( )duc in g a (c01umn

ma;trix, ZANG; 11a:keS aI s..illare (i a gna matA'i X The matrix
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is shown in Append lIx E. The index ilo the arr,y, (jJ)

where, j:I to 1.1 1' imber of coel ff .i i. , t0 , is the mod e-

order .j in Equ t iion (3.2.2). ZANG sixmply comvputes the

constant[ :1n1d ;ilL/coine portion of* the Zernil]. po]ynom-

i aIs. ZANG an'11, /1 are eparate from each ot her to -allow

easy conversion.s; eV new polynomial coefficients, to Zernik,

coeflticieNits as shown in Equation (4.1.6).

CONTUR

The subroutine CONTUR i'; used to fill a character array

with symbols. CONTIU"1 uses lie center coordinates and the
inside radius of the annulus to fill the array SER with:

" ''when the data point is valid, "*" when no data is

present, and "#" for the center of the annulus.

CONTUR is a simple prc,:rim which scans the phase data,

putting in the proper symbol. When the scan gets inside the

central region oi the amulus, the "p" is used regardless

of the value ol the data point.

CONT UR is the last subroutine which is used in the an-

alysis of the data. The next sections deal with either data

manipula tion or the output of results.

The sil)'miotin, JIMSEI{lR f inds the normal ized RMS error

k betw.en two arrays. The? b.;ic (lU t ion used i s
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wierce A is t1he illj",t "avc- 'ufwltI array , 13.*i the

est iiiautd c YV-rf ;I 'and N 1::tie tot.,l number of' points

U.sed in co0lL)uLifg tiuc st ima't~cd .;vcv-frolt. Tpo :find the

number C)f pc):h-lt.,s, 1VML'1IIJ1{ use,, t "i A"' in the chara, cter

array. This ;ym;bo]Iva- placed in the array by FA1PLVL" to

tel]1 the 3-enminlflg rout ine; w,,here valid data for analysis

can be found. Thus w he ncver a ''A'' is found, RMSERffl then

adds another term Wo the summation. Trie normaliza-tion al-

lows a better compari scn between obscured waefronlts and

floI-obse-ui.od w ;- retz

Minor Subrout ines

The minor subrouti1 ns inolJude SEPLPRNT, INVERT, -,ULT,

ARPi , and Ai{T'112. The subrou Line SE,'1RNT is called when-

ever the character arraiy SER is printed. SERPENT also

priniits out the parameters used in the a nalysis of the wave-

f ron t . Tihe I~trameteors are: the center, radius, and obscur-

ation ratio.

INVERT anad MUUl' are two matrix routines. INVERT in-

verts a lower trianigular , square matrix. It is INVEMT

wh ich inivertUs U lie ji ilr prodiuctU coeff-icaien array and the

hanigular constant arraly. MULT mulitipli.i a sqIuare m,-trix

timeics a Coluamn matri x . MIJLT is used to do tlhe matrix
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mtu I I, Ii !ic't n in ]jt Li e . (o 1 1. G ,8,9).

AhIll :,iid A1lI';2 are usqed to debug the routines . ARPRl

pr i 11f a, out. ,u (-)e l un n tlri x and Ald 112 a square matrix:. They

mi'e not cal.,1d by any routinc, but are loft for the user to
use Al l h, do e'.:des to nmtkc any moL.i f icatons

Colic-] i.:- i on a

This ch ,pt or has presented the main routines and all of

its subrouiies with eachcI routine being cXplained t o show

how the theoriy of the last chapter was utilized. It was

shown how the routines are able to analyze both annu.1ar and

non-annular wave--frout 8. Appendix D contains detailed flow-

charts of all of the routines, and Apendix- F contains a

listing,; of the entire program. The softwre has been writ-

ten such that i a does not rely on any system s broutines

other than a square root routine, which reduces the possibil-

ity that a spocial routine is not avai.lable. The next chap-

ter deals with the validation and verification of the rou-

tines, presented in thi, chapter.

7
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V VtI i ha" t i (I

11w p )rex\ i AhJ: ch1 1)t,( ' p c ;(I 0'(1 the Fol~lL~- r do\,'] -

op iil; . 10V01 W C1 (h:it till) 111c P Ow II] hcj1(1 the de(2V0] p-

eIII'IIt , an11d i !w !I n s It )FLwi re . Thi " chlapter deal s v.i1t It t hw

va 1 I df 1ol o f 1,11 sCOttwa r. The V~t I i dat Li onl ircs ,;re:

Oil111 up into t1l*(ve sCct ivo'. The fi)- r t, sout LLnl tes t., Lhe

ortlIgcliaii L 01w le nov J)(A1 Nnami a Is .' the seraIio

ntie hngs TI]Q ne-xt S0(ct1 01 Q1iii the so ftwal-o s

abil ity to anlab-yse non1--:ninui 1ar wavc*1(-irorit1 LS The finul sec-

Iolln e- dsi wi WI t ano Iar wave- Irout I . Th 11a 1 of the as-

p'ets W' the So FIw;) re wiI I jinx'' bee'n lt(t d nd1 veri r4

0 . t t 1 -I (I I I o -I al- )i n

TI a ma jor o'ao e f t. hiS Hiesi Js 818.8th 'enerat ionl of

anl er-Lhin!'-onnl s(,( ol p01 ylliI" .1 Tie pol ynomal s mTus-t be

Ortlo0o'oml o ver aln :mnnuII-1I wav-frontL. This secti on ye-

Tic 11es t ha Il ;cll a setf has bee genera-ed . Since both the

7,enliik aond lw pe.IoI i:,I.0 ; uz -so the sa.me angular funct.ioens,

oni t h racial port-ion.(15-are tested, as shown ill Equat ions

(3.2.'d) antI' (3.0.1 )

The 'IAtel Lost cons .Aed (iiC)] pes borning the integrals

inl Eqi;tt-i oni: (3. 2 .-1) and (:1. '1 .22) Wi;I . w compulter. The

~il uegra110" ;(( Ij1lpro()iIll:ht(d by sin~ iPj~~I' rut e . Tho

vo;Jgl )I' r t( L oll daiohvid(e(d iC)I~ "00() steps for the
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ini I i aiI ii Lt,>,I'a t i on. 'Phi kvwas doiihied until thc difPferene

bet v.eI'11 it(Ir: i o )I i %V,'W 1 (-4 tha11n] 0. M1. ro show ai conipari-

soil l) voc t V~f .he '/0rna ( : Is i(I niew 2.:1in a olylnmia] , thle

first l er~.if a i MiA; Of 0.0 to 0. 9991)9 )99. The

UprII iI I. vaa ot 1.0 hocausc the rou1tine GAMSUB woul d

try to coipliLe -o <0l10o il(I'i i te tcram.

'Ph P Lint. e ate ll! the pc05 ; ihie comini at tons of

Zer 1herad 1 1 pul.yloi,I,- ] and nll tl)i, p)ossible combinations

of the new a d a polynlomialS_ . After each integration , the

lower I i mit wouild incrcease by 0. 05 111t1i] thC I iMits Of ill-

tegra t mol were 0. 95 -to 0. 999919999. Figure 19 is a plot of

the non--zero ersof the orthogonal i. L conditPion . All of

the terms.- wheIren the Kronocker dr'lta, i,_ siipposc to be zero

osem 11 at e(l arou ad zero. Thec value of' these;c termis were very

depenienit on th li number of steps in the intograt ion apprcx-

ltfl8 P onl thiere'fo~re, Only tile cIse wlilere the Ki.onecker

deli a is one( wolO- plotted. FJ -u)'C 19 clearlyN shOwNs that

the v esof, tie nlew rad.ial 1)01ynoin ial s renmalned constant

regarl3d I e'S of' L13 0 tter .o t

To verify the eases4 where the Krnecekar delta is zero,

& ~~tile :iiie oswere done by hiand u ga vniible as the

lower I iiit . All of the jin tegra is verified the orthogonal-

kj i~ty Coll (I it ioil

S ~Th is testA vet' if iecl the inner. proaducet coeffi'Acieants,

the p)roj g r:im (IMBI I B ,in H ioh theory pri'esan P d iln Chiapter ilIl,
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W . tII th t eu] It, S 11 o a 1al v.:i.< of eave-- fron ts can be

vc.1 i , i o d.

Non--anlar Veifi ca.t ion

To test the softwuie's abi]it y to analyze wave-fronts,

two tye.- of ve--ii were uised1 . One set consisted of

generated wa.e--fronts, tnd the other onc.; were actual wave-

fronts supplied by A]'II,-. Both iots were non-annular wave-

fronts. By usin, non.--niul, r wave-fronts, the program'.

ability to just an:.Ayze wave-fronts was tested. With non-

annular wave-fronts, the obscuration ratio is zero which

results in the two sets of polynomials being identical.

The generated wave-fronts came from a program which

had input parateters consisting of the number of coeffi-

cients, their values, the center coordinates, and the

radius. These wave-fronts verified the operation of the

subroutines PAPE'll, and VALID. These subroutines are the

ones which determined the type, center, and radius of the

wave-front. With the ability to set the coefficients to

specific values, the orthogonality of the polynomials could

alio be tested. Figure 3 in Chapter II. was generated us-

in, this routine.

In every case, FAPERl and VALID were able to fi nd the

center and radius of the wave-fronts. This was due to the

u n i Feormi ty of the generated wave-fronts. Figure 20 shows

the ou tJ)UU \\'on 1.h second coef f cielnt of the generated
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ar-front vas; set at 0.5, the raLdius at 14.0, and the cen-

ter at 16.5,10.5, Fi.gu:e 21. is the result." of solving for

11 and 22 coo V 'ici-onts. These two figures show the standard

Output of Lh_ program \'i itten for this thesis.

As the nimiher ol coefficients increased, the RMS error

increased from the in t.roduction of* extraneous coef-f-icients.

These coeC'fficinLts come about by the approximation of contin-

uou:s funct.ionts over a discrete region. As shown in Figures

20 and 21, the RMS error changes from 0.000033 to 0.027794

waves. This four order of magnitude difference appears to

be Significant error; however, dividing by the wave length,

the RAS error ranges from 0.00031% to 0.2G ' . Thus even

though there is a large chantre, the deviation from the true

wave-front is small. Figures 22-26 show the results of the

analysis o:f a generated wave-front. The RMS error for

these plots was 0.026 waves. The difference plots in Fig-

ures 25 and 2G are the difference between the actual wave-

front and the respective estimated wave-front.

After running over 30 test cases, the RMS error never

exceeded 0.050 waves when preset coefficients were within

the range of the computed coefficients. For example when

only the eleventh coefficient was set at 0.25, the R.S er-

ror was 0.24 waves when the first six coefficients were

q found. The RMS error dropped to 0.024 waves when solving

for 11 cofJci ci nts . Thus wi th generated non-annular
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~V~-1.(Ie Ls he th(-) seftv i Is (Sipa) i. o.f accurate]I y fijndi ng

the Coe f I i c.I I eI 'x "vt I a I in imalI arunut o f error.

Thiesci k's[ of v.i th ot~ u th nun-annular wave-

I ~ ~ ~ ~ ~ (- byn tA, 1 iV\.l.c~ r k b The ini aa cols i. st s

of 20 Su!InLialfames of ~ c- rn T1efi irs frame is

iru rand cen W-cre(d iii thec c'ullIeel ioen arra y. A s t im e

prOgresC-:-;ed a kn .i Ae.-edoti in a 521 d the N'"Ive-t ront

bl0c k i g off the pes it ive X data 1pvcJInLs . The:, E~n:i fe-edge

enteredl at the top of quaidrant I and mnoved in a -Y direction

until. the wave-front b~ecarna ai ie 'trl t about tile

twelfth fra)me of d.Ata. The knife-edge v as then e.xtractedi

in the oppos i,'tu di rect ion unt1-il byV the twentieth frame thle

wa!Ive- front i.- nonri: crcu ar The oM rror frrom si4x c--

Sr ficiecn , is plot ted ill Fi- aure 2'7. This plot also has the

percentage_ of the wvave-front Nvhjeh was obscured by the kn ife-

edga . Th is £ igure shows the eerres.poncdeiicc between the EMS

error and( the aniriunt of v a-e-front present . Inl this pa-r-

ti.cui ar set o:[ data, the ave -front b'as a large aiouto

450 As t igm: t is ( Zerno ke poli ynorin G~) . As the +X data wa.Is

obscured , the coe flficient pgut larger. It was this coeffi-

dient wh icli caun sod t he RMS criroi' to -inercase. Figures 28

to 33 showm thec frame be inrg analyzed, the estiivtcd wave-

k4 fron t, anid the clift.c ren cc between the two . Fig-ures 28 to

30 Corrc.spiond to fraime one(, in Figurre 27 and Fi gures 31 to

33 correspond Lo frame twlvev( in Fil pure 27. Only the
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-. Zernike are shown since the two polynomials are the same.

The poaks around the perimeter of the difference plots

come about by the fitting of circular regions to arbitrary

regions. The peaks are not included in the RMS error cal-

culations.

This section has dealt with the analysis of non-annu-

lar wave-front. It has been shown that the accuracy of the

results is very dependent on the percentage of wave-front

the software is able to utilize.

Annular Verification

This section deals with the progrrams ability to ana-

lyze annular wave-fronts. This area will again be split

into two types of data: generated and actual. In the case

of generated wave-fronts, the same routine is used which

generated the non-annular wave-fronts. The only difference

is the obscuration ratio is an input parameter; therefore,

tjany size of annular wave-front can be generated. Using

these generated wave-fronts, the program was able to find

and determine the basic parameters of the wave-front in all

cases, even wave-fronts which were not centered. The only

time the software made a mistake was when the wave-front

filled only one quarter of the array and was not centered.

In this position, FAPER found the outside edge first and

assumed the wave-front was non-annular. Since the oper-

( ator can correct problems like this, the parameters were

93

a l .- -- -. - -,



changed and the program was able to find the coefficients

accurately.

The software was able to find the values of the co-

efficients with the same degree of accuracy as that of

non-annular wave-fronts. The closer the obscuration ratio

was to the actual value, the closer the RMS error of the

two sets of polynomials. For example, when a non-annular

wave-front was analyzed as an annular one, the RMS error of

the new polynomials were about twice that of the Zernike

polynomials. As the obscuration ratio decreased, the RMS

error of the new polynomials would approach the RS error

of the Zernike polynomials. Thus the best results were ob-

tained when the actual and estimated obscuration ratios

matched. The same results were seen when the input wave-

front was annular. The RMS error of the new polynomials;

however, when the obscuration ratio exceeded about 0.6 this

was not always the case. In this regime the program had

difficulty computing the coefficients of the polynomials.

Just as the RMS error increased in the non-annular wave-

front when it was obscured with a knife-edge, the same

happened with the RMS error as the obscuration ratio in-

creased above 0.6.

It must be explained that the Zernike coefficients are

not obtained from analyzing the wavc-front, but from con-

c. verting the new polynomial coefficients to Zernike coeffi-

cients. If the Zernike coefficients were used, the
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I, wave-front would always have to be assumed to be non-an-

nular. If the Zernike polynomials were used on an annular

wave-front, their lack of orthogonality would result in

severe cross-coupling. Therefore even though either set

may give a slightly better result in the RMS error, the

main point is the wave-front was analyzed with an orthog-

onal set of polynomials.

When actual annular wave-fronts from AFWL were ana-

alyzed, the biggest problem was entering the proper par-

ameters. The wave-front used was off-center and part of

the beam was obscured. Figure 34 shows the annular wave-

front. This was very difficult to get good results from,

since the software would only use a small portion of the

wave-front. The best results were obtained when the out-

side radius was increased to include all of the points of

the array. When the radius was increased from 9.25 to 17.0

and the obscuration ratio was changed accordingly, the RMS

error dropped from 2.88 to 1.07 waves. This error was fur-

ther reduced when the center was moved to the approximate

center of the data, and the obscuration ratio was dropped

from 0.67 to 0.15 waves. This change resulted in the RMS

error dropping to 0.31 waves or 2.92%.

Thus the software is able to analyze annular wave-

fronts as designed. It is able to find the coefficients

of the new polynomials and convert them to the correspond-

ing Zernike coefficients. The next chapter presents the

recommendations and conclusions of this thesis.
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VI. Conclusions and Recommendations

This thesis has presented a method of analyzing annu-

lar wave-fronts. Starting with a brief description of the

problem in Chapter I, the second chapter presented some in-

sight into how a LWA works. Next the Patterson and Zernike

polynomials were compared and their respective faults were

presented. Chapter III gave the reader the theory behind

the construction of an orthogonal set of polynomials, fin-

ishing with a means of converting Zernike polynomials to a

new set of orthogonal polynomials and vice versa. Chapter

IV presented the development of the software necessary to

analyze annular wave-fronts, and Chapter V verified the

software's operation.

In sunmary, the LWA software package developed here is

able to find the coefficients of up to and including the

first 22 Zernike polynomials. The wave-front being analyzed

can range in shape from circular to an annulus with an ob-

scuration ratio of over 0.95. The best results were ob-

tained when the obscuration ratio did not exceed 0.60. The

software performed best when the true center, obscuration

ratio, and outside radius were known. With these parameters

I coupled with the total wave-front area present, the result-

ing RMS error was consi.stently loss than 0.040 waves.
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This study has mell of ts goals which w

(1) usinig an or t~logoital. set of pol ynomials , find the coeffi-

clents- descri bing thle waiv-front, (2) these coefficients

must not. change as the number Of COt. gofils hich wre

(3) find the cooeicen t~s as fast as possible. On a CDC

6600 the sotw-are %,,as, on the average, able to find 6,

then 11, then 22 coefficients of one frame of data in 20

seconds of CPU time. With these results in mind, the next

sect ion considers possible improveii-ints to the software.

Re commnad at ionF-:;

The current software assumes the wave-front is either

circular or annular. One way to improve the sof-tware would

be to have the software define the region and then generate

a set of polynomials which are orthogonal over the defined

region. This would allow the software to use all of the

valid data points. This could be further modified by weight-

ing the phase data values by the intensity at each point.

In so doing, thotre phase values whose corresponding inten-

sity is very smal. would have less importance than those

k with large intensity; thereby giving less emphasis to phase

data the system was just able to detect.
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Appejdi.x A

Wave-['ront Construction from Delta Phase Data

Iv -a1P --Iw2  a2 1Wbo Ib2 Ib4

a a
4 --- -- 15. -3- -W

bi a4 a W

Figure 35. Simple Wavc-front Collection Array

The process of finding the wave-front from the delta

phase measurements involves using the least-squares tech-

nique. Figure 35 shows a simple collection array made up

2 of nine points. The a.'s and b.'s are the X and Y

4 delta phase measurements respectively. The least-squares

method of finding the wave-front involves minimizing the

square of the difference between the estimated phase value

at each point (Wi) and the measured phase difference (ai or

bi). For the simple array in Figure 35, the following

equationq result:

1= (W2-W-ao)2 + (W--bo)- (A.1)

101

.4



02 (W2 -W-l-ao) 2 + (W3-W2 -al) 2 + (W(-W2-b)2

(A. 2)

03 = (W 3 -WV2 -al )2 + (W 6 -W 3 -b 4 )2 (A.3)

04, = (W4,-W-bo )2 + (W7 --W4,-bj )2 + (W5-W, 4-a 2 )2

(A.4)

05 = (W6 -W 5-a 3 ) 2 + (WS-W4-a2) 2 + (WS-W 2 -b 2 ) 2

+ (We-V 5-b 3 ) (A.5)

06 = (W 6-W 3 --b4 )2 + (W 6 -W 5 -a 3 )2 + (Wg-W 6 -bs )2

(A.6)

07 = (W7 -W4-bl)' + (W8-W7-a )2 (A.7)

06 = (WS-W 7 -a4,) + (W9-W 7-as) +(W8 -W5-b 3 )
(A.8)

i09 = (W-WE-a 5 ) + (W9 -W6 .- b 5 ) (A.9)

Thus to minimize the sum of the square of the differences,

the derivative of Equations (A.1-9) is with respect to the

phase value at each point, or aoi/ . Each derivative

is set equal to zero. Doing this to Equations (A.1-9) and

simplifying yields:

2W,-W 2-W4 
= -ao-bo (A.10)

3W2 -W 1 -W 3 -W 5 
= ao-al-b 2  (A.11)
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2W.j-W 2 -WG = a6 -b4 (A.12)

3W4 -IV I-WV-W7 -- bo-b,.a (A. 13)

4 IV S-V; -'V4 -WV -14 = I 2 -a 3 +bz -b 3  (A. 14)

3W6 WI3 -Ws-WIW = a 3+b4-bs (A.15)

2W7 -Wk-Wo = bl-a 4  (A.16)

3W6 -W5 -W7 -W9 
= a4+b 3-a5  (A.17)

2W9 -W--W8 
= a5+b5  (A.18)

Putting Equations (A.10-18) into matrix form yields

2 -1 0 -1 0 0 0 0 0 W, -ao-bo

-1 3 -1 0 -1 0 0 0 0 W2  ao-aj-b2

0 -1 2 0 0 -1 0 0 0 W 3  a,-b,

-1 0 0 3 -i 0 -1 0 0 W4 b0-b1 -a2

0 -1 0 -1 4 -1 0 -1 0 W5 = a2 -a 3+b 2-b 3

0 0 -1 0 -1 3 0 0 -1 W 6  a3 +b4-b 5

0 0 0 -1 0 0 2 -1 0 IV7 bI-a-4

0 0 0 0 -1 0 -1 3 -1 W8  a4+b 3 -as

0 0 0 0 0-1 0 -1 2 W9  as+b 5  .

This matrix can be expressed as A = B . To find the

values of the phase at each point, the matrix A is in-

verted and multiplied times B . The matrix A is

Hermitian, irreducibly diagonally dominant, and all of the

103
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4% dialgonal entries are positive real numbers (Ref.5) regard-

less of the ordr of the array. Usually one of the points

in the phase atray is set to zero as a starting point.

Following the: procedure outlined above, the LWA performs

the same operation on a 32 by 32 collection array to con-

struct the wave-front used by the software in this thesis.
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Appendix B

Plots of the First 22

Zernike Polynomials
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Appendix 13

Plots of the First 22 Zernike Polynomials

The next 22 pages show the reader what the first 22

terms of the Zernike polynomials look like individually.

As pointed out in Table II, the first ten polynomials

are familiar to those in the field of optics. Each plot

is the result of setting the corresponding coefficient to

a value of 0.1 wave.
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App e dix C

The basic i.heory behind the clc\'e] opment. of the Zernike

polynoi.mi.al , emoi(:; from the work s prvseicted by Born and Wolf

(Ref.1.;Apcnd:ix VII). The basic idca pr'es:en1Led by Born and

Viel wa:s to find a set of polynomial s which are invariant

with rospect: to rotation. In general one wishes the fol-

loving condit.ion to be met

f a*(x,Y)V1)(xy)d>:(y Ab 6  (C. 1)

where V is the goneral, polynomial, the "*" denotes Coln-

plex conjugate, 6 is the Kronecler delta, and A is a

normializaition connstant (Ref.1:707). The rotational invar-

iance is expresseod as

V(x,y) (0)V(x',y') (C.2)

where

X, = x co s 0 + y sill 0
(C.3)

y' = x sin 0 + y sin 0

and G(0) is continuous with a period of 2Tr and G(O)-.

G inu.;t also sat.i.sfy the condition of
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G(0 1 )(i(0 2 ) G(01+02) (C.4)

since the rotation thvough one angle, then the next ang]e

is the same as the rotat.ion through the sum of both angles.

A simple solution fo)' a funiction to repres;cnt G(O) i s

G(O) = e (C.5)

where 1 is, an integ;r. Putting Equation (C.5) into E(qun-

tion (C.2) and ::settinp .x'=r and y =O , and using Equa-

tion (C.3) yields

V(r cosO,r sinO ) = 1(r)e i l o  (C.6)

where R(r) is strictly a function of r Born and Wolf

then show how if V is a polynomial of degree n then R

must- have the s:me degree n but with a power of r not

less than 1 . Thus, "the set of the Zernike circle poly-

nomians is distinguished from all other such sets by the

property that it contains a polynomial for ench pair of

permissibl_ vnltles or n (degroe) and I (angular dependence)"

(Ref.l:7O8)(Theiir empliasis) Thus V can be expressed as

VI(r cosO,r sinO) = RI(r)e (C.7)
n 1 11

Prom Equation (C.1,7), 1n (r) must satisfy the relation

R (r)fl (r)rdr a 6 (C.8)] n 1 1(C13
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1. A
A1

With this result, th( bsi( Iku)rm (of 1,I, Ze.rnil.( polynomial

is ex) r e;;(I.

Born and Wol - then find "ti e:pLici L (?xp"c,:;11 for

Rm(r) as

eR(t) i a Qnm(tl (C. 9)

2

where t =r and Q n-m ( t ) is a polynomiial in t of de-

gree (n-). Since 2 Q must still satisfy the condition

of R, Q must satisfy Equation (C.8) or

SItQkjt)Q .(t)dt = an 6k (C.10)

0

where k= (n-m) and k'=_(n'-m) Born and Wolf then

equate Q with the Jacobi polynomials. Through substitu-

tion and normalization procedures, the final form of the

Radial polynomial is

m (n-m) n-2s_ _C

n E . (n+m-s ) n m
S=0

Thus, using the exl)icit exI)1r'5ssion for n ili Equiation (C.

0 11) and e/xpanding he angular function C into sino and

mO. ine teris, tio sct of Zernike polynomi.als can be found.
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Appendix D

Flox~charts or Software-
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Appndix D

1,l(w('h rt aor Sc i'tware

Contained in th is appendix are flowchart s, of all of

the routines in the -software used in the anal]ysis of an-

nular wave-fronts. The flowcharts appear in the follow-

ing order: Main program, GAMSUB, FAPER, VALID, EDGE, ZIIAD,

ZANG, CONTUR, RMSERR, SERPDNT, INVEIRT, MULT, AfPRIf, and

ARPR2. The explanation of these routines appears in

Chapter IV, and the listing of the program is in Appendix

E. Figure 36 defines all of the symbols used in the flow-

charts. The first appearance of a variable will be de-

fined in the upper left hand corner of the page it first

appears on.
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Start, Stop, feturn

Decision

Input/Output

-Manual Input

Do Loop Preparation

QConnector
10

Process

Subroutine Call and Variobles

printed Djouent

Offpagc Connector

Figure 36. Flowchcrt Symbol Dcifnitions
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Appcnclix E

M.,jor ArraY v Gencratod by the Softwn re

This. :ajppendlx ;oltain.s. the arnray (-ene rated by the

software. The ar'x~;are shown when1:1 softwvare IlS Solv-

ing for all 22 coe-,f'icienrts4.
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'A softwa- re package was written which will analyze annular shap-
ed li-;er wavc-fronts. The polynomials; used to ostimate the wave-
-fro~nt. are based on thle wr 0 * ag ndDF iv n their
piper t tWefront I nterpretn -. ion with Zernik Polynomi al s * Th is
involved generating a set of orthol1 .onal polynomial s from the
Zernlikv pol1ynomials by using- the Grarn-Schmnidt orthogoinl i7ation

process. The coe fficients8 of the pol ynomin Is are determined by
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us jis -; the or tlI ogon l I. t- ofV the po 1yniv~Ia s , in steaid of usin 1r t he
c(1COI'.ii1 eat 5IUa iL h()r 'Ph' coeff i c-in t of) the' generated
poiyf1om ix ar'e Conve rs cd 0o vi'.Jrnike Coefficients , and both sets
of coefici en i-F, arc piu,;en 1ted to theC USer.

B3y u.sing the U ir1,: tI!TL of' the wavu- front I s posit ion in
the coll3ecti2on trraty , thet sot tv:: re is ab] o to detfine tho basic
parztcrsc ol the wave-f Iron t. TIhese pararn!tcrs are-: center,
outside radius , and tlI.e obscuration ratio of the wave-front,
Wi th thics parmeters i, 1: Ii- sol t-wa Pc_ compim te.s 6, then 11, thenj
22 coefficients to show: the staN ility of tiie coefficients. With
we3i-cfined c'ircular and annular wave-fronts, the program was
conSiStaritly ab) e to compute the coeffici ou1ts with an Ill.-S errorI
of less thani 0,050 lvavoe,;.
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