
A097 10B OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC-ETC F/G 9/2
DDESIGN AND ANALYSIS OF UPDATE MECHANISMS OF A DATABASE COMPUTER--ETC(U)

JUN 80 D K HSIAO, M i MENON N0001475-C-0573
IA4CLASSIFIED OSU-CISRC-TR-BO-3 NL

TECHNICAL REPORT SERIES

'} " '-+f' ,ie x t 11 I .- lo :'--,:: l Library

-: ~ ~ 4 JF. i.io8, .;.OL 1981t0

F 2 1TE1

I fIIFI qmI9FTJ[3I No
! ISCIE NoCE,
: HESRCI CEINoTER

'=°"° '°=81 2 0 2 15 0

/1 OSU-CISRC-TR-8O-3

-DESIGN AND-ANALYSIS
OF UPDATE MECHANISMS OF
A DATABASE COMPUTER (DBC),

by

David K. 'Hsiao 8 M. Jaishankar/Menon

Work P _q~for -Vade r
Contract NOOQ14-75-C-0573
Office ofNT Wal -Rerch

Computer and Information Science Research Center
The Ohio State University

CojtjwkvsW Ohio 43210 ~
/Juni. AbO

SECURITY CLASSIFICATION OF THIS PAGE ("on Dote Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER j2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

OSU-CISRC-TR-80-3 _______ _______

4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Design and Analysis of Update Mechanisms of a Technical Regort
Database Computer (DBC) 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 9. CONTRACT OR GRANT NUMBER(s)

David K. Hsiao N00014-75-C-0573
M. Jaishankar Menon

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Office of Naval Research
Information Systems Program 4115-Al
Washington, D. C. 20360

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

June 9. 1980
13. NUMBER OF PAGES

132
14. MONITORING AGENCY NAME & ADDRESS(l different from Controlling Office) IS. SECURITY CLASS. (of this report)

ISa, DECLASSI FICATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Scientific Officer DCC New York Are
ONR BRO ONR 437
ACO ONR, Boston 0 U2/0x L;51MKIM
NRL 2627 ONR, Chicago
ONR 1021P ONR. Pasadena

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary end identify by block number)

Database computer, update mechanisms, track-size buffers, insert-in-parallel,
blocking, analytical model, queueing analysis.

20 'ABSTRACT (Continue or/reverse side It necessary end Identif)A by block number)

"This report hows how the process of update is carried out in the database
computer (DBC) _ cy h is a specialized back-end database machine capable of mana-
ging data of ,0"** bytes in size. Since DBC might often have to be used in an
update-intensive environment (that is, an environment where many update, delete
and insert commands and only a few retrieve commands are issued), we have indi-
cated throughout this report, the kind of architectural enhancements which will
provide good performance in an update-intensive environment.

Perhaps the most important enhancement that affects the performance of all

DD IA,73 1473
SECURITY CLASSIFICATION OF THIS PAGE fWhen Date Entered)

&LII - JL_ _ ___e ll li
.

... ". .. . _ L ,: -: - -,,;::' 7i" iV - ...

SECURITY CLASSIFICATION OF THIS PAGE(Whn Data Entered)

the four types of requests in DBC (retrieve, delete, insert and update) is the
incorporation of a track-size buffer with each TIP. The advantages that accrue
as a result of the incorporation are clearly demonstrated in the various sec-
tions of the report. For example, the process of compaction, which originally
took 487 revolutions the disk device now only takes one revolution of the
disk device and one Led-through of the buffer. Similarly, it is shown how an
update request can be handled in two read-throughs of the sequential track-
size buffer. This is a substantial improvement over the 16 revolutions that
will be necessary to do an update without the use of track-size buffers. With
respect to insertion requests, an important enhancement is the addition of an
insert-in-parallel capacity. That is, records do not have to be inserted into
MM of DBC one record at a time. Rather, all the TIPs can be inserting records
at the same time.

We have also isolated and studied in this report the problem of clashing,
i.e., requests being blocked by an update which has not been completely execu-
ted. The execution of the blocked requests must be stayed until the blocking
update is executed completely.

Throughout the report, we have always substantiated our claims of per-
formance improvement by using an analytical model to come up with quantitative
figures of the data loop throughout. By using the model, we have also shown
how a database administrator (DBA) can control the throughput achievable in
DBC.

SECURITY CLASSIFICATION OF THIS PAGE(Wlhen Date Entered)

TABLE OF CONTENTS

ABSTRACTi

1. BACKGROUND 1

1.1 DBC Data Model
1.2 DBC Architecture 2
1.3 Control Flow During Command Execution. 5
1.4 Organization of This Report 5

2. THE MASS MEMORY 7

2.1 The MM Design Philosophy 7
2.2 Toward an Intelligent Mass Memory 8
2.3 The Organization of the MM 9

2.3.1 The Mass Memory Controller (MMC)i.11

2.3.1.1 Interface Processor (IP) 12

2.3.1.2 The Mass Memory Monitor (MMM) 16

2.3.1.3 The Hardware Organization of the MMC 17

2.4 The Flow of Information in the MM 17
2.5 The Track Information Processors 20

2.5.1 The Three Components of a TIP 20

3. INSERTION OF RECORDS IN DBC 26

3.1 Motivation for the Proposed Elements 26
3.2 Insert-in-Parallel 26
3.3 Comparison of the Two Methods 30
3.4 Algorithm Executed by MMM 31
3.5 Determining the Track for Placement of a Record 32

3.5.1 Clustering Descriptors and Logical Clusters 33
3.5.2 Data Structures Used in the Algorithm 38
3.5.3 The Algorithm 41

3.6 Analytical Study of Data Loop Performance 43

3.6.1 The Model 43

3.6.2 The Results of the Study 47

3.7 The Choice of Record Buffering Size for the TIPs 51

4. DELETION OF RECORDS 54

4.1 The Method Used in CASSM 54
4.2 The DBC Method 56
4.3 Further Improvements 60
4.4 Elimination of Compaction Mode and Deletion Bit Maps 63

4.4.1 Calculations of Data Loop Throughput 63

5. UPDATING OF RECORDS 68

5.1 The Nature of Update Commands 68
5.2 The Concept of Blocking 70

5.2.1 Update of Nonsecurity and Nonclustering Attributes . . . 73
5.2.2 Updating Security and Clustering Attributes 78

Table of Contents Continued

5.2.3 Requests Being Blocked Perpetually by Updates 79

5.3 The Classification of Updates 80
5.4 A Scheme to Determine if Two Queries are Nonclashing 90
5.5 DBCCP Processing 93

5.5.1 Data Structures Needed for DBCCP Processing 94

5.5.2 The Handling of Retrieve and Delete Requests 95
5.5.3 The Handling of Update Requests 99
5.5.4 DBCCP Processing on Completion of an Update Request 101

5.6 Command Execution in the Mass Memory (MM) 101

5.6.1 Calculating the Number of Revolutions for an Update 101
5.6.2 A Modification 102

5.7 The Handling of Various Request Classes 104

5.7.1 Handling CLASS IV Requests 104
5.7.2 Handling CLASS V, CLASS VI and CLASS VII Requests 109

6. SUMMARY OF ARCHITECTURAL ENHANCEMENTS 112

6.1 Handling Retrieves 112
6.2 Handling Updates 113
6.3 Handling Insertions 114
6.4 Handling Deletions 115
6.5 Execution Times of Various Orders 115
6.6 The Components of a TIP 116

7. CONCLUDING REMARKS 119

REFERENCES 121

APPENDIX 1

ABSTRACT

This report shows how the process of update is carried out in the data-

computer (DBC) which is a specialized back-end database machine capable of

managing data of 10**10 bytes in size. Since DBC might often have to be

used in an update-intensive environment (that is, an environment where many

update, delete and insert commands and only a few retrieve commands are

issued), we have indicated throughout this report, the kind of architectural

enhancements which will provide good performance in an update-intensive

environment.

Perhaps the most important enhancement that affects the performance of

all the four types of requests in DBC (retrieve, delete, insert and update)

is the incorporation of a track-size buffer with each TIP. The advantages

that accrue as a result of the incorporation are clearly demonstrated in the

various sections of the report. For example, the process of compaction,

which originally took 487 revolutions of the disk device now only takes one

revolution of the disk device and one read-through of the buffer. Similarly,

it is shown how an update request can be handled in two read-throughs of the

sequential track-size buffer. This is a substantial improvement over the 16

revolutions that will be necessary to do an update without the use of track-

size buffers. With respect to insertion requests, an important enhancement

is the addition of an insert-in-parallel capacity. That is, records do not

have to be inserted into MM of DBC one record at a time. Rather, all the

TIPs can be inserting records at the same time.

We have also isolated and studied in this report the problem of clash-

ing, i.e., requests being blocked by an update which has not been completely

executed. The execution of the blocked requests must be stayed until the

bloi:king update is executed completely.

Throughout the report, we have always substantiated our claims of
performance improvement by using an analytical model to come up with quan-

titative figures of the data loop throughput. By using the model, we have

also shown how a database administrator (DBA) can control the throughput

achievable in DBC.

i

1. BACKGROUND

The database computer (DBC) is a specialized back-end computer whish is

capable of managing data of 10 bytes in size and supporting known data

models such as relational, network, hierarchical and attribute-based models.

All operations performed by DBC are concerned with one or more of the following

four aspects - searching and retrieval# security, clustering and updating.

A number of papers [1-6] are available that motivate the design of DBC and

discuss the search and retrieval aspects in some detail. A description of the

security and clustering mechanisms of DBC and of the concepts that form the

basis for these mechanisms appears in [7]. In this report, we intend to demon-

strate how update is carried out in DBC and to make some suggestions on how

the performance of DBC may be improved in an environment which is update-

intensive. An update-intensive environment is one in which a large number of

the requests issued to the database are insert, delete and update commands.

That is, there are only a few retrieve commands issued to the database.

Fundamental to our discussion is an understanding of the built-in date model

and overall architecture of DBC and these are dealt with in the following

sub-sections.

1.1 DBC Data Model

The smallest unit of data in DBC is a keyword which is an attribute-

value pair, where the attribute may represent the type, quality, or character-

istic of the value. Information is stored in and retrieved from DBC in terms

of records; a record is made up of a collection of keywords and a record body.

The record body consists of a (possibly empty) string of characters which are

not used for search purposes. For logical reasons, all the attributes in a

record are required to be distinct. An example of a record is shown below:

(<Relation, EMP>,<Job, MGR>,<Dept, TOY>,<Salary,30000>).

The record consists of four keywords. The value of the attribute Dept, for

instance, is TOY.

DBC recognizes several kinds of keywords: simple, security and clustering.

Simple keywords are intended for search and retrieval purposes. Security

keywords are used for access control. Clustering keywords are utilized for

placing records with a high probability of being retrieved together in close

proximity. A discussion of security and clustering keywords appears in [71 and

will not be reproduced here.

2

A keyword predicate, or simply predicate, is of the form (attribute,

relational operator, value). A relational operator can be one of [=, #,

>, >, <, <1. A keyword K is said to satisfy a predicate T if the attribute

of K is identical to the attribute in T and the relation specified by the

relational operator of T holds between the value of K and the value in T.

For example, the keyword <Salary,15000> satisfies the predicate (Salary > 10000).

A query conjunction, or simply conjunction, is a conjunction of predicates.

An example of a query conjunction is:

(Salary>25000) A (Dept=TOY) A (Name = JAI).

We say that a record satisfies a query conjunction if the record contains

keywords that satisfy every predicate in the conjunction.

A query is a Boolean expression of predicates in the disjunctive normal

form. Thus, a query is a disjunction of query conjunctions. An example of

the types of queries that may be recognized by DBC is as follows:

((Dept=TOY) A (Salary<10000)) V ((Dept=BOOK) A (Salary>50000)).

If the above query (consisting of two conjunctions) refers to a file of

employees of a department store, then it will be satisfied by records of

employees working either in the toy department and making less than $10,000,

or working in the book department and making more than $50,000. We say that a

record satisfies a query, if the record satisfies at least one of the conjunc-

tions in the query. Thus, we can refer to a set of records that satisfy a

query. A query, as defined above, is used not only to retrieve, delete and

update the set of records that satisfy the query, but also to specify

protection requriements [7].

1.2 DBC Architecture

Figure I shows the schematic architecture of DBC. It consists of two

loops of memories and processors, namely the structure loop and the data loop.

The data loop is composed of two components: the mass memory (MM), and the

security filter processor (SFP). MM is the repository of the database and

is made of modified moving-head disks where all the tracks of a cylinder may

be read in parallel in a single disk revolution. This modification is termed

tracks-in-parallel-readout. In addition, the mass memory of DBC is content-

addressable. Given a cylinder number and a query conjunction, it is possible

to content-search the entire cylinder 'on the fly' for records that satisfy

the query conjunction. The MM is described in detail in Section 2 of this

report.

INFORMATION PATH

CONTROL PATH

DBCCP: Data Base
Command
Control

SSMIP SM Processor

KXU: Keyword
Transform

STRUCTURE /Unit
! LOOP zK U I SM: Structure

Memory
SMIP: Structure

Memory
Information

FROM HOST COMPUTER Processor
4 DBCCP 'Ixu: Index

TO HOST COMPUTER Translation
Unit

/ MM: Mass
/ \Memory

SFP: Security
Filter
Processor

SCU: Security
and

DATA Clustering
LOOP Unit

PP: Post
Processor

PP SCU M M
SFP

Figure 1. The Architecture of DBC

The structure loop is composed of four components: the keyord trans-

formation unit (KXU), the structure memory (SM), the structure memory informa-

tion processor (SMIP) and the index translation unit (IXU). KXU converts

keywords into their internal representations. SM is primarily used to store,

retrieve and update the indices of the database. Indices are maintained in

SM as a directory. Each entry in the directory consists of a keyword or a

keyword descriptor followed by a set of indices. A keyword descriptor

is a conjunction of a less-than-or-eaual-to predicate and a greater-than-or-

equal-to predicate, such that the same attribute appears in both predicates.

An example of a keyword descriptor is:

((Salary) > 2,000) A (Salary < 10,000)).

More simply, this is written as follows:

(2,000 _ Salarv < 10,000).

Thus, a keyword descriptor is an attribute (Salary) and a range of values

($2,000 - $10,000) for that attribute. A keyword K satisfies a keyword

descriptor KD, if the attribute of vK is identical to the attribute KM and

the value of K lies within the range of values or KD. An index is a pair oF

the form (cylinder number, security atom number) [7]. The cylinder number

indicates where in mass memory records with keywords satisfying the keyword

descriptor may be found and the security atom number indicates the access

privileges accorded to these records. Any keyword that appears as part of

directory entry or satisfies a keyword descriptor in SM is called a director

keyword. For example, security keywords and clustering keywords are auto-

matically defined to be directory keywords and they alwavs satisfy certain

keyword descriptors in SN. However, not all simple kevwords are directory

keywords. Non-directory keywords are mainly used by MM and SFP for record

comparison and sorting purposes. SMITP is responsible for performing set

intersections on the indices retrieved by SM. IXU is used to decode the

indices output by SMIP. These four components are designed to operate

concurrently in a pipeline fashion. The hardware organization, details and

design philosophy of these components are documented in [5].

The database conmand and control processor (DBCCP) regulates the operations

of both the structure and data loops and interfaces with the front-end host

computer. It processes all DBC commands received from the front-end host

computer, schedules their execution on the basis of the command type and

5

priority, and routes the response to the front-end host computer. Additionally,

it makes use of SFP to search the tables needed for the enforcement of

security and clustering of records [7].

1.3 Control Flow During Command Execution

Figure 2 shows how certain commands are executed in DBC. Basically,

these commands forwarded from the front-end host computer (in pre-determined

formats), are recognized by DBCCP as either access commands or preparatory

commands. Access commands are those that require DBC to access the mass

memory; preparatory commands precede and follow access commands and convey

important house-keeping information. Access commands go through a security

check. Having undergone security checks, access commands are translated

by DBCCP into orders that can be processed by the mass memory. During trans-

lation, an access command involving insertion activates the clustering

mechanism in DBCCP. This clustering mechanism determines the mass memory

cylinder into which the record must be inse-ted. Records retrieved

by the mass memory (as a result of the execution of orders and the supply of

cylinder numbers provided by DBCCP) are transmitted to the sorter. The sorter

allows groups of retrieved records to be sorted on the basis of some attri-

bute, or joined with other groups of records (a join being a relational

equality join) [8,9].

1.4 Organization of This Report

In Section 2, we shall give an overview of the architecture of MN. Sec-

tions 3, 4, and 5 are devoted to describing how the processes of insertion,

deletion and update are accomplished in DBC. More specifically, we shall

describe the process of insertion of records in Section 3, while Section

4 will be devoted to a discussion of the process of deletion of records.

In Section 5, we discuss the method used in DBC to update records. In each

of the last three sections, we shall use an analytical model of the data loop

of DBC in order to evaluate the actual performance improvements achieved as

a result of certain suggested changes. Finally, in Section 6, we present an

integrated picture of DBC with all the changes that have been suggested in

previous sections.

6

Components of
the Structure Loop

DBCCP

I r Clustering

House-keeping srt Mechanism
Command,,

N)Preparatory / Translate

Access Non-Insert Commands IS Commands' /

Orders

SRecords

I , ISreSorter MM

S SFP _j

FIGURE 2. Access Command Execution in the Data Loop

i~ T'7 ~ ~ - -- ____ _ -~- - -

7

2. THE MASS MEMORY

Since it is the intention of this report to study the updating of

records stored in the mass memory (MM), an understanding of the organization

of MM is essential. MM may conveniently be thought of as consisting of two

parts. The first part is the repository of the database. The second part

is the set of processors that are used to search, retrieve and update records

stored in the repository. We begin by describing the nature of the repository

of the database and also the reasons behind our choice of such a repository.

Later, we go on to talk about the architectual features of the processing

elements that are used to manipulate the database. The philosophy upon which

the design decisions regarding these processing elements is predicated is

not discussed in this section. That will be done in later sections.

2.1 The MM Design Philosophy

For our design of the first part of the MM, we have chosen the moving-

head disk as the storage medium. Our discussion in favor of this technology

is based on the following reasons: First, moving-head disk technology is well

entrenched and is unlikely to be replaced in this century [10]. Second, the

cost per bit of this storage medium is about 5 millicents, providing an order

of magnitude reduction in the storage costs over fixed-head disks or their

electronic replacements. Third, it is possible to enhance the processing

rate of a conventional moving-head disk by activating all the read/write

heads available in the access mechanism. The achievement of this parallel

readout does not involve any technological breackthrough. Ampex Corp. has

modified one of their 9300 series 300 megabyte disks to offer the transfer

of up to 9 disk tracks in Parallel [14]. In such a modification, the

information on the tracks of a cylinder can be searched 'on the fly' by

employing a set of processing elements, one for each track. Each of the

processing elements would be responsible for searching the information read

from the corresponding track.

The above scheme provides content-addressability on a cylinder basis.

We can thus think of the moving-head disk as being partitioned into cylinders,

with content-addressability provided within each cylinder In our subse-

quent discussions, we shall refer to a partition of the MM as a cylinder or

a minimal access unit (MAI).

. .. II I.I I I [

8

2.2 Toward an Intelligent Mass Memory

We note that data manipulation requests sent to MM can be highly content-

oriented. Also, data manipulation requests identify the data to be manipulated

by means of queries. Since a query is a disjunction of conjunctions, MM

must ensure that a record in an MAU (whose MAU number is supplied by the struc-

ture loop) sati

it as a valid data item. This can be done easily if both the query and the

record are handled in their natural formats.

Since a record in a track is to be compared to a query conjunction 'on

the fly', an arbitrary arrangement of keywords within the record and an

arbitrary arrangement of keyword predicates within the query conjunction can

lead to processing delays of up to several revolutions of the disk. For

example, consider the following record and query conjunction arrangement:

RECORD:(<I,x>,<7,y>,<4,z>)

QUERY CONJUNCTION:(4 > z) A (7 = y) A (I < x)

Here, 1, 4, and 7 are attribute identifiers and x, y, and z are actual values.

In the above situation, the first attribute identifier read by the processing

element is 1. Since the first attribute identifier in the query conjunction

is 4, the processing element has to wait until the last attribute-value pair

is read before making a comparison. After the comparison has been success-

fully completed, the processing element must compare the value of the second

attribute 7 in the query conjunction with the corresponding value in the

record. However, since the disk device is a uni-directional device, the

processing element must wait for one revolution before attempting to make

the comparison. It is easy to see that it requires three revolutions of the

disk device to process the above record against the given query conjunction.

Thus, back-tracking on a disk device can be expensive in terms of processing

time.

Alternatively, if the query conjunction is stored in a random access

memory accessed by the processing element, then for each attribute identifier

read by the read head, a full search of the query conjunction memory can be

made to determine if the corresponding identifier is present in the conjunction.

The main drawback of this scheme is that, as the query conjunction gets longer

and longer, it becomes more and more difficult to undertake a full search of

the query memory in the time taken to read an attribute identifier (typically

1.5 microseconds).

Mimi

9

A solution to this problem lies in a carefully planned layout of the

record and the query conjunction. The attribute-value pairs in a record are

arranged in ascending order of the attribute identifiers. The predicates in

the query conjunction are similarly arranged in ascending order of their

attribute identifiers. The query conjunction is stored in a sequentially

accessed memory called query memorj. The processor reads a stream of keywords

belonging to a query conjunction from the query memory. The two streams are

compared in a bit-serial fashion. Whenever there is a match between the

attribute identifier in the conjunction and the attribute identifier in the

record, the values are compared to determine if the predicate is satisfied.

If the attribute identifier in the record is less than the attribute identifier

in the conjunction, then the processing element skips over the corresponding

value to the next attribute identifier. If the attribute identifier in the

record is greater than the attribute identifier in the conjunction, it is

concluded that the record does not satisfy the conjunction. The above logic

is repeated until all the predicates in the conjunction are satisfied or the

processing element concludes that the record does not satisfy the conjunction.

2.3 The Orgrnization of the MM

The overall organization of MM is shown in Figure 3. The database

resides in volumes mounted on moving-head disk drives. It is desirable to have

a one-to-one corresondence between the volumes and the drives: but this is

not essential if the volumes are transferable. However, with disk technologies

moving towards higher bit densities, mechanical tolerances will not allow

frequent interchange of volumes between disk drives [l]. DBC design is

independent of the above consideration. A volume is composed of 200-400

cylinders. Each cylinder consists of a set of tracks (usually in the range

of 20-40); there is one track of a cylinder per disk surface. The access

mechanism consists of a movable set of read/write heads, one per disk surface.

The heads are moved in unison to access all the tracks of a cylinder. Data

transfer to/from a cylinder is achieved by activating all the read/write heads

concurrently. Although previous desings [11,12] have taken advantage of the

fact that the read and write heads on a track could be positioned a short

distance from each other, we do not favor such an arrangement. This is

because, at high track densities (1000 tracks per inch or higher), the required

mechanical tolerances for supporting separate read and write heads may well

deprive the disk technology of much of the cost effectiveness brought about

by the higher densities [131. In our design, therefore, we assume the conventional

10

Database
Volumes DikTrack

DriveInformation
ContrllersProcessors
Controllers(TIPS

TIP

\TI 2

D IP3

TMD R CA- -Fo
tr2e 1BC

Figur T. OraiainofteMs emrPT1

read/write mechanism. The implication of such a design is that MM can

either be read from or written into at a given time. Reading and writing

cannot be performed simultaneously.

Each MAU in the system is uniquely identified by a number known as its

MAU address. A disk volume contains a set of consecutively addressed MAUs.

The set of disk drives is partitioned into 8-16 drives for access and control

purposes. Each such group is controlled by a disk drive controller (DDC).

The DDCs are controlled by the mass memory controller (MMC). Data that are

retrieved from the disk volumes are routed to a set of track information

processors (TIPs) by a drive selector and by a track multiplexor/demultiplexor

(TMD). The drive selector is controlled by the MMC. The TIPs can request

the service of a bus called the IOBUS for transferring database information

to the MMC. The IOBUS is also used by the MMC to send control information and

data to the TIPs.

MM operates in two basic modes - the normal mode and the compaction mode.

In the normal mode, orders sent by DBCCP are decoded by the MMC and are queued

according to the MAUs referenced by the orders. For each MAU for which a

queue of orders exist, MMC requests the appropriate DDC (if free) to position

the read/write heads to the cylinder corresponding to the MAU. When the MAU

is found, the MMC sends the orders one at a time to the TIPs. While the TIPs

are busy executing the orders, MMC can request the DDCs to position the read/

write mechanisms to the MAU(s) residing on other volumes for which there are

non-empty queues. Thus, the access time with respect to the MAU of one volume

is at least partly overlapped by useful work performed by the TIPs on the MAU

of another volume. The information retrieved by the TIPs from the database

is sent to the SFP for further processing.

Records which are identified by a delete order under the normal mode are

tagged by the TIPs for later removal during the compaction mode. When DBCCP

orders MM to reclaim the space occupied by the records with deletion tags, MM

enters the compaction mode. During the compaction mode, MAUs in which tagged

records exist are accessed, and data in each of the tracks is read into MMC by

the TIPs. MMC then writes back those records which are not tagged.

2.3.1 The Mass Memory Controller (MMC)

The mass memory controller is organized into two subcomponents: the

interface processor (IP) and the mass memory monitor (MMM). The IP is re-

sponsible for interfacing with DBCCP, for maintaining the database object

12

descriptor table (DODT), and for maintaining MN orders in the mass memory order

queues (MMOQ), and switching from normal to compaction mode. The mass memory

monitor is responsible for scheduling orders to be executed with the help of

the order queues (MNOQ), for issuing orders to the DDCs to position read/

write heads, for initiating TIPs to execute the orders on the contents of a

MAU and for keeping track of space availability in the MAUs.

2.3.1.1 Interface Processor (IP)

A. The Database Object Descriptor Table (DODT)

This table contains the database objects which are used as arguments of orders

issued by DBCCP. Each object is identified by a unique identification tag

assigned to it by DBCCP. A database object in this table could either be a

query conjunction, a record or a pointer. The keywords in a query or a

record are assumed to be sorted in ascending order of their attribute identifiers.

This sorting is done before the query or record is sent to DBC. Since database

objects are placed in the table only to be accessed later ,hen the MM order is

scheduled to be executed, there must be a rapid mechanism to locate and retrieve

database objects from the table. The table is, therefore, organized in two

parts - an associative memory (AM) and a random access memory (RAM). An

entry in the AM has two fields - an object identification tag ani a pointer to

a location in the RAM. The RAM holds the database objects pointed to by the

AM. The AM can be searched on the basis of database object identifiers; the

response is the pointer to the RAM location where the corresponding database

object is stored. In Figure 4, the organization of the table is shown.

B. Order Queues (OQ)

Order queues, as the name implies, are used to keep track of Mf orders (sent bv

DBCCP) which are awaiting execution. There is one queue for every MAU for

which one or more orders are awaiting execution. We shall often refer to all

the orders awaiting execution on a particular MAU as a set of orders on that

MAU. Two data structures are proposed in Fi, ure 5 to manage order queues.

The queue headers table (QHT) is used to carry information about the queues.

More specifically, each entry in the QHT has three fields: the first field

has status information about the availabilitv of a MAU for processing. The

second field contains the MAU address and the third field points to the first j
order to be executed on the MAU. The second data structure is called the

order table (OT), which contains the orders themselves. The format of an

order when it Is received by MM is shown in Figure 6 and its format when it

is stored in the order table is shown in Figure 7.

13

Avail List Header

Forward Link

Backward Link

Database Object Identifier

Pointer to RAM

Associative
Memory (AM)

Random Access
Memory (RAM)

Contains Variable
Size Data Base Objects

Figure 4. Organization of the Database Object Descriptor
Table (DODT)

14 J

Queue Headers Table (QHT) Order Table (OT)

MAU Pointer into
Address Order Table

1 Byte 2 Bytes 2 Bytes 6 Bytes per Order

/ -

7 \ ~# of orders awaiting execution for this MAU

0 Entry not in use
=1 Entry Ls in use

= 0 This queue not processed yet

= 1 This queue is being processed

0 MAU not accessed yet

1 MAU accessed & ready for processing

= 0 MAU access order not issued yet
= 1 MAU access order issued

Figure 5. Order Queues

Im

15

MAU Database Order OdrDatabase
Address Object * Code Odr#Object

Variable Length

Figure 6. Format of a MM Order Sent by DBCCP

__________________________ Fixed Length-..

Database Order OdrPointer to
object * Code Odr*Next Order

Figure 7. Format of a MM Order stored in the Order
Table COT)

16

C. The IP Logic

IP executes Algorithm 1 (see Appendix 1) on receipt of an order from DBCCP.

The algorithm explains, in detail, how the IP places orders into the various

order queues.

2.3.1.2 The Mass Memory Monitor (MMM)

A. Mass Memory Deletion Table (MMDT)

The MMM maintains a deletion table to keep track of the MAUs in which there are

records tagged for deletion. This table is created during the normal mode of

operation and is used during the compaction mode to access the MAUs in which

compaction must be performed. There is one entry in the MMDT for each such

MAU. The first entry in the MMDT records the number of entries n that are

currently in use. This is followed by the addresses of n MAUs.

B. The MM Logic

The mass memory monitor controls the DDCs via the control bus (CBUS) (see

Figure 3). The CBUS has an appropriate number of address lines by which

each of the DDCs can be addressed to the exclusion of the others. The CBUS

also carries status and control lines by which the MMM can control the DDCs

and communicate with them. The MMM also controls the track information pro-

cessors via the IOBUS. The IOBUS is operated in a master-slave mode with M

assuming the master role and the TIPs assuming the slave roles. The IOBUS

consists of bi-directional data lines over which data transfers between the

TIPs and the MMM can take place, and status, address and control lines which

enable the MMM to interrogate and activate the TIPs.

MMM executes two algorithms in the course of carrying out its functions

outlined earlier. In these algorithms, all dialogues with the DDCs are carried

over the CBUS and all dialogues with the TIPs are carried out over the TOBUS

(see Appendix 1). Algorithm A continuously monitors the OUT with a view to

keeping the TIPs and the disk drives busy. Algorithm B is responsible for the

detailed dialogues with the TIPs after Algorithm A has found a MAU that has

been accessed and is ready to be processed. Among other things, Algorithm B

answers interrupts from the TIPs when they have output to be sent out of MM or

when they have finished execution of an order. Once activated by Algorithm A,

Algorithm B executes concurrently with Algorithm A, until the pending orders

for the MAU have been executed by the TIPs.

I

h . - - : _ _ __"_ _ _ _ _ _ _ __.. _ _. . H_ _.. _... '. .. "..

17

2.3.1.3 The Hardware Organization of the MMC

The organization of the MMC is shown in Figure 8. The internal data bus

(IDB) is the main data path inside the MMC. It connects all the table

memories with the mass memory order argument buffer (MMOAB) and the mass

memory data buffer (MDB). The argument buffer is used to receive argument

data of a MM order from the communication bus before they are transferred

into the DODT. The data buffer is used primarily as a buffer between the

IOBUS on which the TIPs place the retrieved data and the post processor bus

PPBUS which transmits data to the SFP. The data buffer is also used during

compaction as a stager between the IOBUS and the internal data bus. The

interface processor (IP) logic is microcoded in ROM-1 and is executed by the

microsequencer MC-1. It i ponds to request signals from the DBCCP and controls

the transfer of data from and to the argument buffer. The 11MM is implemented

with two microsequencers and two control ROMs. Microsequencer MC-2 is respon-

sible for executing Algorithm B of Appendix 1. It is responsible for control-

ling the activities of the TIPs, controlling the data transfers on the

IOBUS, and data transfers to and from the MMDB. MC-2 also receives interrupt

signals from the TIPs. The microsequencer MC-3 is responsible primarily for

scanning the order queues, initiating MC-2 and controlling the DDCs. Finally,

the bus arbiter is responsible for processing requests for control of and

access to the IDB and resolving contentions for the control of the IDB.

2.4 The Flow of Information in the MM

In this section, we describe how information is routed from/to the disk

volumes to/from the TIPs which process the information contained in the disk

volumes.

As mentioned earlier, there is a single set of TIPs in MM. The number of

TIPs in the set is equal to the number of tracks in a cylinder of a disk volume.

At any given instant of time, the TIPs could be processing information from

exactly one cylinder.

A set of disk drives is controlled by a disk drive controller (DDC).

The DDC can initiate data transfer operations on any one of the drives controlled

by it. DDC provides for a set of assembly/disassembly registers. There is

also a set of input/output registers which are multiplexed by DDC before sending

their contents to the drive selector. There is one pair of assembly/dis-

assembly and input/output registers for each track of a cylinder (see Figure

9). The width of these registers is known as the data unit. These registers

18

..VTo Disk Drive

Fromoler

Antrgacenoeso

Descripto Tableo

Fro Frm F

~ RequetQLine

InterfControlcLines

Fiue8AraMaino teMs eoyCnrle

Dataase bjec

Disk Drive Controller Disk(Drive

1/0 Assembly Combined Read/

T3

Tn-4

rocesor and E Track

20

serve the following purpose: during a read operation, data bits from the

tracks are assembled into data units in the assembly registers: at the same time,

the previous data units are held in the input/output registers are multi-

plexed (by the track multiplexor/demultiplexor TMD2) into a serial stream of

data units and sent to the drive selector. During a write operation, the

reverse operations take place. That is, the sequential stream of bits received

from the drive selector are demultiplexed (by TMDl) and placed in the input/

output registers of the DDC. At the same time, previous data units held in the

assembly/disassembly registers are written onto the corresponding tracks.

During a read operation data units received by the drive selector from

the appropriate DDC are allowed to pass through to t ,e track multiplexor/de-

multiplexor (TMD2). The TMD (TMD2) then directs the data units to the appropriate

TIP. During a -rite operation, the data units from the TIPs are collected

by TMD2 and sent to the drive selector in a sequential stream. The drive

selector then routes the data units to the DDC selected by M.C. Thus, we note,

that not only is it possible to read out of all the tracks of a cylinder in

parallel, it is also possible to write into them in parallel. We shall call

this capability the parallel-write-in capability.

2.5 The Track Information Processors

A track information processor (TIP) is responsible for manipulating the

contents of a track belonging to a MAU. The number of TIPs is equal to the

number of tracks in a MAU and is usually in the range 20-40. The TIPs are

capable of searching the tracks (of an MAU) for records satisfying a user

query conjunction in one revolution of the rotating device.

2.5.1 The Three Components of a TIP

Each TIP has three sub-components - the disk drive interface processor

(DIP), the controller interface processor (CIP), and the buffers for the query,

retrieved information (records), track header information and communications.

The DIP is responsible for receiving/transmitting data as demanded by TMD2 and

carrying out the orders sent to it. The CIP is responsible primarily for

communicating with the mass memory controller over the IOBUS. Such communi-

cation involves acceptance of orders and database objects from the mass memory

controller and transfer of data retrieved by the DIP to the post processor I
via the IOBUS.

The communication buffer and the buffer for the track header informationJ

are small random access memories. The query memory is a sequential access

" - k i l i III II I I lll II I I I| I II I I" II

21

memories. The query memory is a sequential access memory with a capacity

to store the largest single query conjunction that may be encountered by MN

(about I Kbytes). The record buffer is also a sequential access memory.

This memory is divinled in to ri number of individually accessible segments. Each

segment may be rtad out oI or written into in a sequential manner. The moti-

vatioi, for dividinv! the record buffer into segments is as follows: Ahilc tht-

PIP is cxtracting information from the track and placing it in one of the

*4egments, the CIP can be transmitting previously extracted information present

in tint of the other segments to MMC over the IOBUS.

The readout raL of the query memory and the transfer rate of the record

buffer should be high enough to keep up with the data transfer rate of the

disk device. The organization of a TIP is shown in Figure 10. The format

of the communication area between the CIP and the DIP is shown in Figure 11.

The format of a track as perceived by a TIP is shown in Figure 12. Each of the

TIPs utilizes a bit map to remember the positions of the records which were

found to satisfy a search criterion during the execution of a delete order.

Each record on the track is represented by a unique bit in the bit map. When

a record is to be deleted, the corresponding bit is turned on. This bit map

is stored at the beginning of a track. Before processing of a cylinder is to

begin, the bit map in each of the tracks is read by the corresponding TIP.

In processing a retrieve or update order, this bit map is consulted to ensure

that no tagged records are retrieved. After the last order for an MAU has

been executed (i.e., after the execution of a set of orders), the bit map is

written back on the track. During the compaction mode of operation, this bit

map is used to distinguish between tagged and untagged records. Each track

is divided into a fixed number of sectors for the purpose of allocation. The

first two sectors are used by the TIPs to store the bit map and other house-

keeping information.

The disk drive interface processor (DIP) is a bit-slice processor capable

of carrying out fast comparisons of attribute identifiers occurring in records

stored on a track with those occurring in the query conjunction in a user

request. It is also capable of comparing keyword values in the records with

values associated with keyword predicates in the query conjunction of a user

request. This enables the drive interface processor to carry out range

searches. The control unit of the DIP is microprogrammed to interpret the

orders sent to it by the MMC.

22

Controller Disk Drive
Interface Interface

Processor (CIP) Processor (DIP)

Programmable I 4 Programmable
Control JControl

I~ if
To/From IOBUSg

16 X 16 Bit /
Assembly I RegistersAssembly(m Bit Data &

DisassemblyToFmTNRgistrse y : fn Bit Control)Registers T/rmT

ALU

I

T

16 Bit Memory Bus

6 Byte Communication
Area and 256 Byte Track
Header (RAM) _

Query Buffer (about 1 Kbytes)
(Sequential Access)

Record Buffer(s)
(Sequential Access)

Figure 10. Organization of a Track Information Processor

Ag

23

0 1 23 456 7

Reered MA AdrssofBytes1 ii1 1 111 Resrved J ~ ddres f Transf erred

Order Code
Successful Completion
Read Write Errors
IBuffer Overflow
MAU Mismatch

Figure 11. Format of the Communication Area between the CIP and
the DIP

24

Index Gap - Denotes beginning of track.7-

I* Deletion

Bit Map

.Sector 1 Sector 2 Sector 3 ' Sector n

Track Header

Track Format

1# of sec Oor I
MAU Track # of # of sec- # of tofse I of ecor DedADDRator recrdstors bytes neADDR ADDR 'clusters urity aton recordslavailable availablR

0 15 16 23 24 39 40 55 56 71 72 79 80 95 96 111 112

Format of the First Sector on Track

Inter-Record Gap

Record Cluster Atom No. of Keywords Record
ID ID Name keywords Body

15l7 4B __......_53

Record Header

Figure 12. Format of a Track as Perceived by a TIP

25

The controller interface processor (CIP) can be a commerciallv available

microprocessor capable of transferring information from the record buffer to

the MMC via the IOBUS.

M6

26

3. INSERION OF RECORDS IN DBC

This section will be devoted to an explanation of the Process of Insertion

of records into the mass memory (MM) of DBC. Also, certain architectural

elements are proposed to respond more quickly to insertion requests. However,

the proposed elements are simple and do not require anv major technological

breakthrough. The advantages that will accrue as a result of the proposal are

analyzed the last sub-section. These elements will become increasingly

attractive in an update-intensive environment - an environment in which a very

large proportion of the requests to DBC will consist of inserts, deletes, and

updates.

3.1 Motivation for the Proposed Elements

A simulation study [15] of DBC was conducted in order to determine the

potential bottlenecks to its smooth performance. It was discovered that the

data loop may not be able to match the throughput of the structure loop. The

study showed that the data loop should have a throughput of about 35 orders

per second in order to be compatible with the throughput of the structure loop.

However, it was discovered that the MM design allowed only for a throughput

of 20 orders per second. One of the suggestions made as a result of that study

[151 was that the data loop be speeded up. Later on, in this section, we shall

propose a means for improving the throughput of the data loop.

3.2 Insert-in-Parallel

Earlier, in Section 2, we had made the observation that our design of

MM allowed for a parallel transfer of data from the track information processors

(TIPs) to the tracks of the moving-head disks (besides allowing for the parallel

transfer in the opposite direction from the tracks to the TIPs which we have

termed tracks-in-parallel-readout). We propose to make use of this parallel-

write-in tacility to improve the processing speed of the data loop.

Let us recapitulate the process involved in inserting a record into the

MM of DBC. First, the database command and control processor (DBCCP) determines

the security atom and cluster that the record belongs to [7]. Next, it determines

the cylinder number (MAU) into which the record should be inserted. Finally,

the structure memory (SM) is accessed and one entry is made in it per directorv

keyword in the record. That is, for each directory keyword in the record, an

Index entry indicating the security atom of the re,'ord and the cylinder in which

it is to be Inserted is created in SM. The record is now presented to the data

27

loop which then proceeds to insert it into the MAU selected by DBCCP.

The mass memory monitor (MMM) determines the track within the cylinder

into which the record is to be inserted by querying all the TIPs. We recall,

from Figure 12, that this information is available in the first sector of

each track. The record to be inserted is then sent form the MMM, via the IOBUS,

to be placed in the TIP buffer corresponding to the selected track (remember

that there is a one-to-one correspondence between tracks in a cylinder and the

TIPs). The MMM now issues the'insert-record' request to the selected TIP,

again using the IOBUS. The TIP does the insertion in one revolution of the

disk device. We note that during the course of this revolution, only one out

of all the TIPs (20-40) is doing useful work. This is a utilization ratio of

between 1/20 and 1/40. In the following paragraphs, we outline a method for

improving the utilization of the TIPs.

There are two possible schemes to take advantage of the inherent Darallelism

present in the MM architecture. These schemes are merely two different ways

of implementing the same logical idea. We shall call them Scheme I and Scheme

2, respectively.

The basic idea is to insert many records in parallel, all in the same

revolution. How many records can be inserted in parallel in one disk revolu-

tion? Theoretically, as many records as can fit into one cylinder may be

inserted in one revolution of the disk device.

We now describe the first of the two schemes. The operation proceeds as

follows. First, as each record is presented for insertion to DBC, the cylinder

and the track within the cylinder into which it must be inserted is determined

by DBCCP. All records that are to be inserted into the same cylinder are

grouped together and only one 'insert-records' request is issued for this

entire group of records. Ihen the mass memory monitor (MIN) comes around to

executing this order, each record is first placed in the huffer of the TIP

corresponding to the track in which the record is to be inserted. This

communication between the MM and the TIPs is conducted via the IOBUS. The

'insert-records' request is then broadcast to all the TIPs using the IOBUS.

AS many records per track may be inserted in a disk revolution as the size of

the TIP buffer will allow. If the TIP buffer is as big as the size of a

track, then an entire cylinder's worth of records may be inserted per disk

revolution.

28

The problem with the above method is that Just before the TIPs begin to

execute the 'insert-records' reauest, the IOBUS will be congested by traffic

owing to the large number of records that must be sent to the TIPs for insertion.

This may cause a delay of one or more disk revolutions in addition to the disk

revolution needed to insert all the records. A way to avoid this delay is to

have direct connections from the MM to each of the TIPs and to do away with

the IOBUS. Figure 13 illustrates the situation. An alternative scheme that

does not need these costly additional communication lines and yet avoids most

of the delay of Scheme 1 is proposed below.

Once again, DBCCP first determines, for each record to be inserted, the

cylinder and the track into which the record is to be inserted. However, no

grouping of records that are to be inserted into the same cylinder is done.

Instead, the DBCCP sends out these records for insertion, one at a time.

Each 'insert-record' order, as received by the MhM, has two arguments - the

record to be inserted and the cylinder and track in which it must be inserted.

When the MMM has to insert a record, it places the record in the buffer of the

TIP corresponding to the track chosen for inserting the record. This may be

done by the MMM when the TIPs are doing other useful work. For example, after

the MMM issues a 'delete-by-query' request, it waits for the TIPs to delete

those records that satisfy the given query. At the end of the deletion process,

the TIPs will interrupt the MV. During the time that the TIPs are busy

performing the deletion (that is, for one revolution of the disk device),

microsequencer MC-2 of the MMM (see Section 2) is idle. This idle time of the

MMM may be fruitfully employed in order to place records for insertion into

TIP buffers. Similarly, the MM is idle after it issues an update request

until the time it is interrupted by the TIPs (to indicate that the TIPs have

furnished processing the update request). However, the time between the

issuance of a 'retrieve-by-query' request to the TIPs by the 4MM and the

receipt of an interrupt by the MMM from the TIPs (indicating that the TIPs

have completed processing the request) may not be utilized to place records

in the TIP buffers because the retrieved records are being sent to the MMM

via the IOBUS.

After the record to be inserted has been placed in the appropriate TIP

buffer, the MMM continues the processing of other requests. The above logic

is repeated for every 'insert-record' request. That is, the MMh places the

record in the next available space in the TIP buffer corresponding to the track

chosen for insertion. After all the requests on a particular MAU have been

I

.~~~I .IIEI

29

Dot abase
Volumes Track

Processors

Fro

ComnNto

F~ue 3 ANw u Srctr frth as emr

D t

30

completed (i.e., after the execution of a set of orders), one additional

revolution is used to insert the records present in the TIP buffers. We may

recall, from Section 2, that one additional revolution is required at the

end of each set of orders (i.e., after all the orders on a MAU have been

completed and before a set of orders on another MAU is chosen for execution)

in order to rewrite the bit map onto the beginning of each track in the cylinder.

This same revolution of the disk device may be utilized to insert all the

records present in the TIP buffers. Thus, all the insert record requests

present in one set of orders can be executed without incurring a single extra

disk revolution. For example, if the average set of orders has ten insert

commands, then the proposed scheme will result in a saving of ten revolutions

of the disk device per set of orders. This will considerably improve the

performance and throughput of the data loop.

3.3 Comparison of the Two Methods

Scheme 2 has a disadvantage which is not present in Scheme I because it

demands that each TIP have two buffers. This is because the TIP buffers need

to be used during the execution of retrieve and update queries in order to

store records to be retrieved and sent to the security filter processor (SFP)

or to store records to be updated. Hence, an additional buffer will need to

be used to store the records for insertion since, in Scheme 2, many retrieve

and update requests may be executed in the time between the placement of a

record for insertion into a TIP buffer and the actual insertion of that record

onto the track. The size of the second buffer will depend upon such factors

as the number of 'insert-record' requests that are expected per set of orders.

the distribution of these requests among the tracks and the size of the records.

However, this buffer need be no larger than the size of a track. We may

recall that the TIP record buffer consists of a number of individuallv

accessible segments. A number of these segments may he set aside for use as

the second buffer. For example, if the buffer consists of M segments,

Segments I through m may be used as the second buffer to hold records for

in.vrtion. Segments m+l through M will then be used bv the TIPs only

for retrieval and update purposes. We have already mentioned the considerations

to be made before arriving at a decision for the value of m.

The two methods differ onlv in the way in which the records are placed

in the TI buffers. qcheme I waits tintil both the MH?" and the TIPs are idle

befoire placing the records in the bifftr.. Scheme 2 can utilize, moments when

the TI I's are busv and the MINIM is i d Ie . Si T Ce ti t rans fe r of rec (rd s from the

MMM to the TIP buffers does not require the part iripation of the TIPs, this 1

31

latter scheme is entirely feasible. However, at this point, we would like to

add a note of caution. Consider what happens when a file is being loaded into

the MM of DBC. It is possible that a large number of 'insert-record' requests

occur in a sequence, one after the other. Scheme 2 takes advantage of the

presence of requests other than 'insert-record' requests in order to overlap

useful TIP processing time on these other requests with MMM processing time on

'insert-record' requests. However, if a large number of 'insert-record'

requests occur in sequence, this overlap may not be attainable to the extent

desired. In the worst case, when all the requests in a particular set of

orders are 'insert-record' requests, Scheme 2 will take as long as Scheme 1 to

execute.

3.4 Algorithm Executed by MMM

The algorithm that will be executed by the MMM in order to process a set

of orders on a MAU on which a seek has already taken place is described below.

It is a modification of Algorithm B of Appendix 1. The algorithm is the one

that will be employed if Scheme 2 is implemented.

ALGORITHM B MODIFIED: To initiate the execution of orders by the TIPs and to
accept data retrieved by the TIPs.

Input Arguments: 1. The number of N of orders pending execution.
2. The address of the first order in the order table (OT).

Step 1: [Initialize] p=l. FLAG=0.
Step 2: Pick up the pth. order from the OT. If the order code indicates

an insert-record order, go to Step 6. If the order code indicates
a delete-record order, then go to Step 5. If the order code indicates
an update order, then go to Step 7. If the order code indicates a
compaction order, then go to Step 15.

Step 3: [Retrieve] Broadcast the order to all the TIPs and go to Step 14.
Step 4: [Here we try to utilize MMM idle time to place records for insertion

into TIP buffers] If FLAG=0, then continue execution of Algorithm
C (which places records for insertion into TIP buffers) until TIP
interrupt occurs. If FLAG=l, then wait until TIP interrupt occurs.
When the interrupt occurs, go to Step 8.

Step 5: (Delete] Broadcast the order to all the TIPs. Turn on DELETE flag.
Go to Step 4.

Step 6: (Insert] Check the mark bit to see if the order has been taken care of
by Algorithm C. If so, then go to Step 13. Else, place the record
to be inserted into the buffer of the TIP corresponding to the
track chosen for insertion. Go to Step 13.

Step 7: [Update] Broadcast the order to all the TIPs. Turn on the
UPDATE flag. Go to Step 4.

INTERRUPT ENTRY
Step 8: If the UPDATE flag is on, go to Step 9. If the DELETE flag is on,

then go to Step 11.

32

Step 9: [This part of the algorithm will be described in Section 5.]
Step 11: [Check if there was any deletion.] Turn off the DELETION flag. If

the TIPs indicate that some records were tagged for deletion, then
go to Step 12, else go to Step 13.

Step 12: Store the MAU address in the mass memory deletion table (t-l)T).
Step 13: Delete the order from the OT. p=p+l. If p>N, then request the

TiPs to write back all deletion tags and to insert all the records
in their buffers into the tracks, set IDLE flag on and halt; else
go to Step 2.

Step 14: [Receive retrieved records] If the TIPs have records to be output,
then receive them and send them to the SFP. Go to Step 13.

Step 15: [Compaction] The algorithm for compaction will be discussed in the
next section.

ALGORITHM C: This algorithm is executed by the MNM whenever it is waiting
for a TIP interrupt. The interrupt causes the abandonment of the execution of
this algorithm. The point of interrupt is remembered, and the algorithm is
resumed at a later time by the Ml[M when it is idle waiting for a TIP interrupt.

Step 1: q=q+l. If q>N, then set FLAG=l and terminate.
Step 2: Look at the qth order in the OT. If it is an 'insert-record' order,

then set the mark bit corresponding to this order and go to Step 3.
Else, go to Step 1.

Step 3: Place the record to be inserted into the buffer of the TIP corres-
ponding to the track chosen for insertion. Go to Step 1.

3.5 Determining the Track for Placement of a Record

In this sub-section, we shall demonstrate that it is indeed possibic f,,r

DBCCP to determine, for each record submitted for placement, the cylinder ir,

the track within that cylinder in which the record must be stored. Howcvt.Vr,

before we explain the method adopted in DBC to determine the cylinder and rli.

for insertion of a record, the concept of clustering must be well understoed.

Accordingly, the first sub-section below describes the concepts behind the

strategies employed in DBC to place data elements that have a high probability

of being retrieved and updated together, in close proximity of one another.

Certain data structures used by the algorithm are then presented, followed b%,

the algorithm itself.

We would like to mention, in passing, that the determination of the trimck

for insertion may be done by the TIPs since information regarding space

availability is part of the track header information in each track (Figure 12).

However, we must keep in mind the results of the simulation study 1151.

That is, the throughput of the data loop is lesser than that of the structure,

loop. Thus, whenever a piece of work can be performed either in the data loop J
or the structure loop, we shall choose to do it in the structure loop in order

to close up the difference in throughput rates of the two loops.

!

33

3.5.1 Clustering Descriptors and Logical Clusters

A file is associated with a single primary clustering attribute and any

number of secondary clustering attributes. The latter attributes are specified

in an order of importance. The importance of a secondary clustering attribute

is defined to be its relative position in the above list. Thus, we can talk

of one secondary clustering attribute as being more important than another

secondary clustering attribute for clustering purposes.

At the time of file creation, the file creator also specifies a set of

clustering descriptors. These descriptors may be of one of three types:

Type A: The descriptor is a conjunction of a less-than-or-equal-to

predicate and a greater-than-or-equal-to-predicate, such that the

same attribute appears in both predicates. An example of a type-A

descriptor is as follows:

((Salary>2000) A (Salary<10000)).

More simply, this is written as follows:

(2000<Salary<10000).

Thus, the file creator merely specifies an attribute (i.e., Salary)

and a range of values (2000 - 10000) for that attribute.

Type B: The descriptor is an equality predicate. An example of a type-B

descriptor is:

(Position=PROFESSOR).

Type C: The descriptor consists of only an attribute name. Let us assume

that there are n different keywords KI, K2, ..., Kn, in the records

of this file, with this attribute. Then, this type-C descriptor is

really equivalent to n type-B descriptors Bl, B2, Bn, where

3i is the equality predicate satisfied by Ki. In fact, this type-C

descriptor will cause n different type-B descriptors to be formed.

These pe-B descriptors formed from a type-C descriptor are known

as type-C sub-descriptors.

The attribute that appears in a clustering descriptor must be either the

primary clustering attribute or one of the secondary clustering attributes. A

clustering descriptor is a £rimarx (secondary) clustering descriptor if

the corresponding attribute is a primary (secondary) clustering attribute.

34

A primary (secondary) clustering keyword is a keyword of a record such

that one of the following holds:

(a) The attribute of the keyword is specified in a type-A primary

(secondary) clustering descriptor and the value is within the range of that

descriptor.

(b) The attribute and value of the keyword match those specified in a

type-B primary (secondary) clustering descriptor.

(c) The attribute of the keyword is specified in a type-C primary

(secondary) clustering descriptor.

In all these cases, the primary (secondary) clustering keyword is said to

be derived or derivable from the corresponding primary (secondary) clustering

descriptor. Each primary clustering descriptor is associated with a maximum

space requirement (in terms of number of cylinders) which indicates the estimated

amount of storage required in the mass memory for all records having keywords

derived from this descriptor. The importance of a secondary clustering

keyword is defined to be the same as the importance of the corresponding

secondary clustering attribute of the keyword.

Each (primary clustering descriptor, secondary clustering descriptor)

pair defines a cluster of records. Each record in this cluster must satisfy

two conditions.

(1) The primary clustering keyword of the record should be derivable

from the primary clustering descriptor of the cluster.

(2) The most important secondary clustering keyword of the record should

be derivable from the secondary clustering descriptor of the cluster.

A record for insertion must have a primary clustering keyword; otherwise,

the record will be rejected by DBC. If a record has no secondary clustering

keyword, then a null secondary clustering keyword derivable from a null

secondary clustering descriptor is assumed. The null secondary clustering

keyword has least importance.

We illustrate these concepts by means of an example developed in Figures

14a, 14b, l/c and 14d. Figure 14a shows a file consisting of six records, wihere

each record has four attributes. As can be seen from the figure, the user has

specified the primary clustering attribute to be Job and the secondary clustering

attributes in order of importance to be Salary and Department Number. In

Figures 14b and 14c, the primary and secondary clustering descriptors of the

file have been shown. Finally, in Figure 14d, we illustrate the various j
clusters formed for the file and their composition both in terms of primary

- t. -- - -

35

PRIMARY CLUSTERING ATTRIBUTE: JOB
SECONDARY CLUSTERING ATTRIBUTES IN ORDER OF

IMPORTANCE: SALARY, D)PPARIIENT-NIFIER

RECORD N.V O AAY DPRhN-~IE
NO. NAEJBSLR EATETN R

1. HAYES MAP(ER 1500 100
2, NAYAK ENGINEER 2000 100
3. BOCkJE TECHNICIANJ 4000 200

4. WHdITE M(IN[VER 1200 700

5. KLINE ENGINEER 2500 200
6, PRICE ENGINEER 2500 200

Figure 14a. The Six Records of a File, and its Primary and
Secondary Clustering Attributes

36

DESCRIPTOR ID. DESCRIPTOR TYPE

PYl. JOB = MANGER B

PY2, JOB = ENGINEER B

PY3, JOB = TECHNICIAN B

Figure 14b. Primary Clustering Descriptors of
File F

DESCRIPTOR ID, DESCRIPTOR TYPE

SECL 1000 < SALARY <2000 A

SEC2, 2001 < SALARYM < 300 A

SEC3, DEPT, NU1RBER= 100 B

SEC4, DEPT. NUIJ = 200 B

Figure 14c. Secondary Clustering Descriptors of
File F

DESCIFR REWTRN

1 PY1 SECI RI, R4
2 PY2 SECI
3 PY3 SEC4 R3
4 PY2 SEC2 P5, R6

Figure 14d. The Clusters of File F and their Composition

. - , , . , ., .--., .

38

and secondary clustering descriptors, and in terms of the records that make up the

clusters. For example, the record R1 belongs to the cluster 1, which is defined

by the primary clustering descriptor PYl and the secondary clustering descriptor

SECI. To see why this is so, let us look at the keywords of R1. RI contains

the keyword <Job, MANAGER> and this is obviously derivable from the primary

clustering descriptor PYI, i.e., (Job=MANAGER). Also, Rl contains the keyword

<Salary, 1500> and this is derivable from the secondary clustering descriptor,

SECI, (i.e., 1000<Salary<2000) since, 1500 lies between 1000 and 2000. It also

contains the keyword <Department Number, 100>, which is derivable from another

secondary clustering descriptor, SEC3. However, for clustering purposes, we

only consider the primary clustering descriptor PYI and the secondary clustering

descriptor SECl of Rl from which the primary clustering keyword of the record

(i.e., <Job, MANAGER>) and the most important secondary clustering keyword

of the record (i.e., <Salary, 1500>) are derivable. Hence, Rl belongs to the

cluster defined by PYI and SECI.

3.5.2 Data Structures Used in the Algorithm

A. The Track Space Table (TST)

The track space table (TST) is used by DBCCP to determine, for each record

for insertion, the cylinder and track into which it must be inserted. A logical

view of this table is shown in Figure 15.

There is one such table for every file known to DBC. There are as many

entries in the TST as there are cylinders allocated to the file. We mav

recall [7], that a file is allocated a certain number of cylinders and that a

cylinder only contains records of a single file. Each entry consists of N+l

fields, where N is the number of tracks in a cylinder (N is in the range 20 - 40).

The first field contains a cylinder number. The i-th field (2<i<N+l) contains

the number of bytes available for allocation in track i-i of the cylinder

contained in Field 1.

B. The Cluster Identifier Definition Table (CIDT)

There is one such table for every file known to DBC. Each entry in the

table is a quadruple as shown in Figure 16. The first field contains a cluster

identifier. The second and third fields contain the identity of the primary

clustering descriptor and the secondary clustering descriptor, respectiveiy,

that make up this cluster. The fourth field contains the cylinder number of

a cylinder that contains at least one record belonging to this cluster.

I

39

Space Space Space
Cylinder Available Available Available
Number in in in

Track I Track 2 Track N

S

N is the number of tracks in a cylinder.

Figure 15. The Track Space Table (TST)

40

PRIMtARY SECONDARY
TR CLUSTERING CLUSTERING CYLINDER

CDDESCRIPTOR DESCRIPTOR NLMBER
ID ID

Figure 16. The Cluster Identifier Definition Table (CIDT)

41

C. The Primary Clustering Descriptor Table (PCDT)

The logical view of one such table is shown in Figure 17. There is one

primary clustering descriptor table (PCDT) for each file known to DBC. There

is an entry in the PCDT for each primary clustering descriptor and each entry

consists of five fields as shown in the figure. The first field contains

the identifier of the attribute in the primary clustering descriptor. In case

the descriptor is of type-A, then the second and third fields contain the upper

and lower limits, respectively, of the range that defines the descriptor. If

the primary clustering descriptor of sub-descriptor is of type-B or type-C,

then the second field is null and the third field stores the value of the

descriptor or sub-descriptor. The fourth field contains the identifier assigned

to the descriptor by DBC. The fifth field contains the maximum space requirement

for the clustering descriptor. This maximum space requirement is the estimated

number of cylinders needed for storing all records whose primary clustering

keywords are derivable from the clustering descriptor.

3.5.3 The Algorithm

There are two inputs to this algorithm. These are the primary clustering

descriptor LIST[l] and the secondary clustering descriptor LIST[2] from which

the primary clustering keyword and the most important secondary clustering

keyword, respectively, of the record are derived. For an explanation of how

LIST[l] and LIST[2] are obtained, the reader is referred to [7].

ALGORITHM: To select a cylinder and a track within that cylinder into which
a given record may be inserted.

Step 1: Set FLAG=l. Search the CIDT of the file to which the record belongs,
looking for all entries whose second field contains LIST[l] and
whose third field contains LIST[2]. Extract the fourth field from
all such entries and put them in a set CYL. If CYL contains no
elements, then go to Step 7. Else, go to Step 2.

Step 2: For every member of CYL, do Step 3.
Step 3: Search the TST of the file to which the record belongs, looking for

an entry whose first field matches the element of CYL. Place the
entire matching entry (which is an N+l tuple) into a set h.

Step 4: Let the i-tb member of h be denoted by <Ci, Tli, T2i, ..., TNi>.
For each member of h, find the largest element among the entries Tli,
..., TNI. Denote the maximum in the I th element of h by T(ki)i.
[That is, let it be the entry in the (ki+l)-th field.] Let Tmax
be the maximum among all T(ki)i. [In choosing maxima, if more than
one exist, choose one arbitrarily.] Let Tmax=T(kj)j. [That is,
let it be the entry in the (kj+l)-th field of the j-th member of h.]

42

IN
I scrpOR T l T

Figure 17. The Primary Clustering Descriptor Table (PCDT)

43

Step 5: Compare Tmax with the length of the record (ir) to be inserted. Tf
Tmax>lr, then change the TST entry from <Cj, TIj, T2j, ..., T(kj)j,

TNj> to <Cj, Tlj, T2j, ... , T(kj)j-lr, ... , TNj> and insert the
record in track kj of cylinder i and terminate. If Tmax<lr and
Flag=l, then go to Step 6. If Tmax<lr and FLAG=2, then go to Step
7. If Tmax<lr and FLAG=3, then terminate with a negative signal.

Step 6: Search the CIDT, looking for all entries whose second field contains
LIST[I]. Extract the fourth field from all such entries and put
them together in a set CYL. Compare the number of unique elements
in CYL (ICYLI) with the estimated number of cylinders br needed for
storing all records whose primary clustering keyword is derivable
from the primary clustering descriptor in LIST [1]. This number
may be found from the fifth field of the entry in the PCDT, whose
fourth field matches LIST[I]. If ICYLI<br, then go to Step 7.
Else, set FLAG=2 and go to Step 2.

Step 7: Set FLAG=3. Put all the entries in the TST into a set h. Go to
Step 4.

3.6 Analytical Study of Data Loop Performance

In this final sub-section, we propose to conduct a study into the perfor-

mance of the data loop, in order to show, in concrete terms, the throughput

improvement that will be caused by the proposed design. We begin by describ-

ing the model used for the analytical study.

3.6.1 The Model

In Figure 18, we have shown the model used for analysis of the data

loop. User requests, which have been pre-processed by the structure loop or

which do not require pre-processing, are placed in one of the m disk drive

controller (DDC) queues. There is one such queue per disk drive controller.

(Note that each of the disk drive controller queues really consists of p*q

cylinder queues, where p is the number (8-16) of disks under the control of a

disk drive controller, and q is the number (200-400) of cylinders per disk

drive.)

Certain simplifying assumptions are now made in order to make the solution

tractable. First, for a given disk drive, we assume that a DDC cannot issue

more than one seek at a time. That is, a DDC issues a second seek only after

the set of orders on the cylinder referred to in the first seek have been

executed by the TIPs. Also, we assume an exponentially distributed arrival

rate of orders from the structure memory (SM). Additionally, it is hoped

that these orders are going to be evenly distributed among the various cylinders

in the MM. Finally, we assume that the mass memory monitor (MMM) adopts a

round-robin policy in dealing with requests. That is, it begins by interro-

gating the first DDC to see if it has any completed seek. If so, it initiates

NODE

Oueus Server for

i''" I]Executing

Seek Orders
on DDC t

Server for

J''' J JExecuting
_Seek Orders NODE 2

on DC2 Server for

II Processing
• • ,, Execute Orders

on the TiPs

SServer for

I'''l IExecuting
Seek Orders

on DDC m

Figure 18. The Model Used for the Analytical Study

45

execution of the set of orders for the cylinder on which the seek is complete.

Else, it looks at the second DDC, and so on.

We note that the model adopted is a two-node network model, where the

first node consists of m exponential servers (m is the number of DDCs) and

the second node has one exponential server. The problem is complicated by the

fact that the i-th server in the first node is blocked [161 from initiating a

second seek on a particular cylinder until the server in the second stage

can process the set of orders on the cylinder for which the i-th server has

completed a seek. The following paragraphs outline the method employed to

overcome this complication that exists between the two nodes of the network

model.

Let us assume that an order from the DBCCP arrives every n milliseconds.

With m DDCs, and a uniform distribution of requests among the cylinders, this

means that an order is placed in one of the DDC queues, one every m*n milli-

seconds. Assuming p disks to be tinder the control of a DDC and q cylinders

per disk, an order is placed in one of the cylinder queues, one every m*n*p*q

milliseconds. Let us also assume that a seek is not issued on a cylinder

until at least k orders exist for execution in the cylinder queue of that

cylinder (this is a design decision). The time taken before a queue has k

orders is k*m*n*p*q milliseconds. But, in k*m*n*p*q milliseconds, all p*q

cylinders of a DDC have k orders waiting for execution (since the orders will

be evenly distributed among the cylinders). Thus, seek orders are generated

for each of the m servers in the first node at an average rate of (k*m*n*p*q)/(p*q)

k*m*n milliseconds. This is the inter-arrival rate of orders at each of the m

servers in the first node. Assuming a Poisson arrival distribution, we have,

as the arrival distribution, the following formual:
-t

P(t) e-kmn
kmn

Let us now proceed to calctul ate the time taken by the server in the

second node to process a request consisting of k orders Let

p1 = percent;ge ,f retrieve reqiests
tl = time taken to execute a retrieve request by the TIPs
p2 = percentage of update reqtests
t2 = time taken to execute an update request
p3 = percentage of delete requests
t3 = time taken to execute a delete request
p4 = percentage of Insert requests
t4 = time taken to execute an insert request

46

Let T(k) = time taken to execute a set of k orders (by the TIPs). Then,

T(k) = k * [pl*tl + p2*t2 + p3*t3 + p4*t4]

The average time taken to execute a set of orders Tav, deoends upon L, the

average size of a set of orders. This will be greater than k (the number of

orders needed per set of orders before a seek is initiated) since, during the

time between the initiation of a seek on a cylinder and the execution of the

set of orders on that cvlinder, more orders on that cylinder could have arrived.

In the next paragraph, we shall try to calculate L.

Let us first adopt the following notation. We shall number the DDCs as

DDCl, DDC2, ..., DDCm. Also, we donate the j-th disk drive of DDCi as Dij.

Recall that the TIP scheduling policy is round-robin. That is, a set of orders

on some cylinder of Dll is first executed. Next, a set of orders on some

cylinder of D12 is executed and, st the same time, DDCl initiates a seek on

some cylinder of DII. The TIPs now execute a set of orders on a cylinder of

D13, then a set of orders on a cylinder of D14, and so on. Thus, we see, that

between the initiation of a seek on a cylinder of a particular disk drive and

the execution of a set of orders on that cylinder, the time elapsed is exactly

equal to the time spent by the TIPs in executing one set of orders from each

of the other disk drives. (Assuming that at least one seek has been completed

on each of the other disk drives. This is a valid assumption, if L is large

enough that the time taken by the TIPs in executing a set of orders of size L

is greater than the average seek time of the disk mechanism.)

Time taken by the TIPs to execute mp-I orders each of average size L

= (mp-i) * L * fpl*tl + p2*t2 + p3*t3 + p4*t4]
= (mp-l) * Tav

In this time, the size of the cylinder queues have grown from k to L. But,

new arrivals to a cylinder queue come with an inter-arrival rate of m*n*D*q

milliseconds. Thus,

(L-k)*m*n*p*q = (mp-l) * L * [pl*tl + p2*t2 + p3*t3 + p4*t4].

This gives us

L = k*m*n*p*q

m*n*p*q - (mp-l) * [pl*tl + p2*t2 + p3*t3 + p4*t4]

and

Tav = L * [pl*tl + p2*t2 + p3*t3 + r4*t4] j

47

Tav is the average time taken by the server in the second node to execute a

set of orders. Assumine an exponentially distributed service time, we have the

following distribution for the server in the second node.

t
1 -Tav

Pserver2(t) - e
Tav

We are now in a position to calculate the average time taken by a server

in the first node. It is obvious, from the discussion of the previous paragraph,

that each DDC issues p seeks in a time equal to the average time taken by the

TIPs to execute mp sets of orders. Thus, the average service rate of servers

in the first node is m*Tav. Again, assuming an exponential distribution, the

distribution of the service time for a server in the first node is:

t
1 -*m'Tav

Pserverl(t) -m*Tav e

The model is now as shown in Figure 19, It is a network of two nodes, Lhe

first node consisting of m servers with exponentially distributed service

times and exponential arrival rates, and the second node consisting of a single

server with an exponentially distributed service time. All the distributions

are known, and the solution to the above problem is well known.

3.6.2 The Results of the Study

The problem is now borken up into two parts as shown in Figures 20a and

20b. Each part consists of an M/M/I queue [171. Note that the second part

consists of a single server with an average arrival rate which is m times the

average arrival rate of the first part. We will now try to find out the condi-

tions under which the queues will be steady, i.e., the queues do not build up

indefinitely. We know that, in each queue, the ratio of the average arrival

rate to the average service rate must be less than one for stability [171.

From Figure 20a,

(m*Tav)/(k*m*n) < LI

i.e., (Tav)/(k*n) < I

From Figure 20b, we have, for stability

(Tav)/(k*n) < 1

Thus, we derive the same condition for stability from both parts of the model,

lending strength to its validity.

48

NODEI

4

0 LL*P, t I+ P2 t2+P3 t 3+94 t4]

Figure 19. The Two-Node Network of Exponential Serversj

J1-a- - - -.

49

kmn

*L * 2 rn*L* p t +P t +p t +P t] m*Tov

Figure 20a. The First Part of Figure 19

A I - I
L* [p t) +P2 t2+P3 t 3+p4 t4J Toy

Figure 20b. The Second Part of Figure 19

50

A. Calculations for Data Loop Without Insert-in-Parallel

We make these calculations based on the following values for the various

parameters.

pl=p2=p3=p4=0.25

tl=t3=t4=20 milliseconds
t2=40 milliseconds
q=30 0

D=1O

M=10
k= 10

So, Pl*tl + p2*t2 + p3*t3 + p4*t4 = 25 milliseconds.

Using L = (k*m*n*p*q)/(m*n*P*q - (mp-l)*[pl*tl + p2*t2 + p3*t3 + p4*t4]) we get,

L = (3*(l0**5)*n)/(3*(10**4)*n-2475). So, Tav = (75*(10**5)*n)/(3*(l0**4)*n-2475).

We need, Tav(k*n) < 1; i.e., (75*(l0**4))/(3*(l0**4)*n-2475) < 1. This tells

us that n > 25 milliseconds. We note that the calculations are much simplified

by letting k=L. (That is, we will henceforth use T(k)/(k*n) < 1 rather than

Tav/(k*n) < 1.) Then, (10*25)/(10*n) < 1. Therefore, n > 25 milliseconds.

This tells us that, without the proposed design, the data loop cannot

accept requests at a rate greater than one every 25 milliseconds. Note that

changing the value of k causes no improvement in data loop performance. For

example, with k=20, we have, (20*25)/(20*n) < 1. This again gives us n > 25

milliseconds.

In the above calculations, we ignored the fact that one extra revolution

is needed per set ol orders in order to rewrite the bit map. Using this fact,

let us redo our calculations.

T(k)=k*[pl*tl + p2*t2 + p3*t3 + p4*t4] + 20=k*25+20

Therefore, T(k)/(k*n) < 1 implies n > 25 + 20/k. Although the throughput

rate achievable is dependent on k, the best achievable throughput is still

one that supports an inter-arrival rate of one request every 25 milliseconds.

R. Calculations for Data Loop with the Insert-in-Parallel

Once again, let

pl=p2=p3=p4=0.25
tl=t3=20 milliseconds
t2=40 milliseconds
t4=20/(number of insert record requests per set of orders) milli-
seconds. That is, it takes 20 milliseconds to execute all 'insert-
record' orders.
q=300

p= 10

k= 101
-pV lO -

51

Once again, to simplify the calculations, let k=L. Then, T(k) = L*(pl*tl +

p2*t2 + p3*t3) + 20. That is, T(k) = 220 milliseconds. Applying the condition

that T(k)/(k*n) < 1, we get n > 22 milliseconds. Hence, requests may be

allowed from the structure memory at a rate of up to one every 22 milliseocnds

rather than one every 25 milliseconds (as was the case without the proposed

design).

Consider what happens when we make k=L=20. Now we arrive at the condition

n > 21 milliseconds. That is, a request arrival rate of one every 21 milli-

seconds can now be handled. Let us now consider the limiting case when k is

made very large. We have, T(k)/(k*n) < 1. That is (k*20 + 20)/(k*n) < 1.

Since k*20 - 20, this is equal to (k*20)/(k*n) < 1. This gives us n > 20

milliseconds. Hence, in the limiting case, the performance of the data loop

may be made good enough to handle inter-arrival rates as low as one every 20

milliseconds.

Finally, in Figures 21a and 21b, we show the results of our study in

graphical form. These graphs plot the inter-arrival rates that can be handled

by the data loop against k (the minimum number of orders that must exist on a

cylinder before a seek is initiated on it. This is a design decision.).

Figure 21a plots the results of the calculations of the previous paragraphs

(i.e., for a distribution where each of the four kinds of requests --

insert, delete, update and retrieve -- has a 25% chance of occurring in a set

of orders). The maximum achievable advantage that accrues as a result of the

suggested design is 20%. Figure 21b considers a distribution where 50% of

the requests are of the insert kind. The maximum achievable improvement in

this case is 42.86%.

3.7 The Choice of Record Buffering Size for the TIPs

We see, therefore, that the incorporation of the insert-in-parallel

facility can bring us quite dramatic improvements depending upon the distribu-

tion of requests. On the basis of the expected distribution of requests, the

DBC designer may draw curves similar to those in Figure 21 and thus choose a

value of k which gives reasonably good performance. The expected distribution

of requests and the value of k that is chosen, will determine the size of the

second buffer that is used to store records for insertion. For example,

with a distribution where 50% of the requests are 'insert-record' requests, and

with k=50, we expect 25 'insert-record' requests per set of orders. Assuming

that there are 25 tracks per cylinder, and an even distribution of the 'insert-

record' requests across the tracks of the cylinder, each TIP only needs to

have a second buffer large enough to hold one record.

/M

52

50 1 I

40 percentage of delete requests=25/o

C percentage of retrieve requests=25%
0 cpercentage of update requests=25%(30

0 percentage of insert requests=25%

__ 0 without insert- in- parallel

>)__ with insert-in-parallel

20

10. -

I I I I

0 10 20 30 40 50

k
minimum number of orders per cylinder

queue before a seek is initiated on that
cylinder

Figure 21a. Graph Showing Results of Study W hen Percentage

of Insert Requests is 25%

1'

53

50I

percentage of delete requestsl 6.67/.
40- percentage of retrieve requests=16. 6 7%

percentage of update requests=16.6 7 /.
&O percentage of insert requests:50/.

30
0

C0>., C without insert-in- orailel

20-

10-

0o 10 20 30 40 50

k
minimum number of orders per cylinder

queue before a seek is initiated on that
cylinder

Figure 21b. Graph Showing Results of Study When Percentage

of Insert Requests is 50%

4. DELETION OF RECORDS

In this section, we shall examine the method used in DB1 to dcle-t,-

records that are stored in the mass memory of DBC. We shall he , in l v dt.s r 1.in;

certain hardware methods that have been suggested in some other datais.t

machines [11], and hv explaining why we do not wish to use these metlds; in !.

La ter, we shall examine the deletion method employed in)BC and pros ;c is

improvement of the method. Fin ally, we shall use the model doveloped in tL

previous section to substn tiate our claims of performance improvemk-nt -I thc

proposed method.

4. 1 The Method Used in CASSM

We describe here, the method [11,181 used in CASM fcontext-addrea;ed

segmented sequential memory) for doing deletions. A del te command issued

1y a user of CASSM does not cause any actilal deletion of record'. Ifoweyc r

records that qualify for deletion are maked as having been delettd, and the 2--

marked records are ignored by subsequcent commands. The task of repacking

these variable-length holes Icft in memory as a result of deletions is done

lat er by gairbhage collection hardware.

A rcgister ItVI, 1181 is the basic hardware used in garbage- cl ler'tion. Al o.

. e para toe read a tid wri te heads art needed for each t rack . AS tIe , cad hlal I i, I

iip data, it is fed into one end of a shi ft register RVI, wi1 icLI shi fts I tIlhl

same hit raite ali, tlie trnirk readout rate. A tap is provided for th,, , t

VI., :t :nI tiples , I W from the input, where W is the bIasic l wo sir'(, ,

maclI inc. When storage is not he fn co ectud (Figure 22a), tho w,'ri I

uses t lie cent re t -p (,f PVI, aI.; its input. When g:arbige is hio c , I

(:lgIurc 'b), the inpu it-i the write he;id moves one, tap two two -i :,

1,1 1,ach time aI word marked for carb;ige rollect ion is t-n(clitt r.d .

Ili ; c eliminates that word from the sinuenie in memory. It m. 1.,

t hat t lie 11ilie r of w ords tta t may be .. arbagi- -oI er t ed per re.-- i i.,7

to thc 1111mber) f words that can fit into oni e liti Iof re 2 it t' o f -

illIt [0111$' Cl'tI g!I to col ic t al wordh- ri-rr ,d f(oh V r d t i o ,i, n i t j .

')L' (-0I lo t ed in subsiqi'iu lt rove lit ions.

to abla I1 no.: make a few ob 'ervt iells ;lbollt thiis i IioU 1 'I

ie , t aIlater time, s emi (of ti(' differences betwe'n it .i1- 1 , K

a eml v d in MIPW. IFirst, the above me thod imp li-s t lii ti,l of .t .

d ;I ,ritt- h;ati per tr;ic k. Se-ond, we note tli;lt thcrt Ili ta i'l I:

ccc- mark bit per wcrd. If a record spuinilci n words i to),0 :,hite.; I

do. I -t iri, (taici of the n words Of the rec(Ord must bW uriukL, d It I 1 -I I

rR

RVL

R w

RVL

Figure 22. V,-ri.ihli l .h Shift Register Used for
Dt,, e t i (t v 4,rds i n CASS1

I

56

is, one mark bit per word rather than one mark bit per record is necessary

(in fact, CASSM uses three mark bits per word).

4.2 The DBC Method

We have already stated, in Section 2, why we do not favor using two heads

per track. This means, of course, that CASSM's method of garbage collection

cannot be used in DBC. The method that is used in DBC to delete records is

now described.

We recall, from Section 2, that each track has a bit map stored in the

first sector of the track. Each record on a track is represented by a bit in

this bit map. The bit is set to 'I' if the corresponding record has to be

deleted. Before processing of a cylinder is to begin, the bit map in each of

the tracks is read by the corresponding track information processor (TIP) into

the RAM portion of its buffer. A delete command is accompanied by a query that

specifies the records that are to be deleted. Records that satisfy the query

are marked as having been deleted by setting the bit corresponding to this

record. This may be done 'on-the-fly', since the bit map is stored in a

RAM which may be quickly accessed. The following is the algorithm executed

by the TIPs in order to process a 'delete-by-query' order.

ALGORITHM: This is executed by the TIPs in order to process a 'delete-by-
query' order.

INPUT: The query that specifies the records that are to be deleted.
TIME TAKEN: As many revolutions as there are conjunctions in the query.

Step 1: Let N be the number of conjunctions in the given query. 1=1.
Step 2: Store the I-th conjunction in the query in the query memory of the

TIPs. RECORDNUM=l.
Step 3: If end of track is encountered, then go to Step 4. Else, start

reading the bits of record number RECORDNUM from the track and com-
paring it with the query conjunction stored in the query memory of
the TIP. If the record satisfies the conjunction and, hence, quali-
fies for deletion, set bit RECORDNUM in bit map to '1'. Go to

Step 5.
Step 4: 1=1+I. If I > N, then terminate. Else, go to Step 2.
Slon 5: Wlen end of record is encountered on track, set RECORDNUM = RECORDNUM + I

and go to Step 3.

later retrieve, delete and update commands will ignore records that have their

corresponding bit in the bit map set.

Up to this point, there is no essential difference between the CASSM

method and the DBC method. Both methods mark records that are meant for

deletion. In DBC, only one bit needs to be marked per record to be deleted, and

this hit is st(red in a RAM and is not part of the record. In CASSM, many bits

57

need to be marked per record to be deleted, and these bits are part of the

record itself and are not stored separately.

The difference in the two methods comes about in the compaction (garbage

collection) step. DBC enters the compaction mode during periods of light load -

when there is a low utilization of system resources. In the compaction mode,

MAUs in which tagged (marked) records exist (recall that the mass memory

deletion table (MMDT) keeps a list of MAUs that have records tagged for deletion)

are accessed, and data in each of the tracks is read into the mass memory

controller (MMC) by the TIPs. The MMC then writes back those records which are

not tagged. An algorithmic description of the process of compacting records

in a MU is given below.

ALGORITHM: To compact a MAU.

INPUT: The MAU to be compacted.

Step 1: Access the MAU M to be compacted.
Step 2: Request the TIPs to read all tagged records.
Step 3: As the TIPs transmit tagged records over the IOBUS, create a struc-

ture memory deletion table (SMDT), a veiw of which is shown in
Figure 23. Each entry in this table has two fields. The first field
contains a directory keyword, and the second field contains a set
of pairs, where each pair is of the form (cylinder number, security
atom number). Since this table is temporary and may be deleted at the
end of the compaction mode, it may be created in the database object
descriptor table (DODT). The SMDT is formed as follows. For each
tagged record that is received by the MMC, do the following. For
each directory keyword DKi in the record, look to see if there is an
entry in the SMDT with DKi in Field 1. If no such entry exists, then
create a new entry with DKi in Field 1, and the pair (M,S) in Field
2. [M is the cylinder being compacted and S is the security atom
number of the record being examined (the security atom to which a
record belongs is part of the information present in a record)]. If
such an entry exists, then search the corresponding set of pairs in
Field 2 of this entry to see if a pair of the form (M,S) exists.
If such a pair exists, then do nothing. Else, add the pair (M,S)
to the set of pairs in Field 2 of the corresponding entry. Now
discard the record. [In the SMDT, we are putting those SM entries
which point to records marked for deletion. Since the records have
been deleted, these entries (which point to the deleted records)
must also be deleted from the SM].

Step 4: Request the TIPs to read the untagged records. [Since the memory
available to the mass memory monitor (MMM) is smaller than the MAU
capacity, the MMM will divide the TIPs into sections which are
processed sequentially. Thus, if say 80K bytes are available to the
MMM and the MAU capacity is 320K bytes, then the TIPs are divided
into four sections. TIPs in the same section are requested to read
their tracks concurrently during the compaction process. Steps 4
through 7 are repeated for each section].

Step 5: As the records from the TIPs come in, store them in the record
storage.

Step 6: For each record in the record storage, do the following. For each
directory keyword DKi in the record, look to see if there is an

DiretoryA st ofpais. Ech air s o thef5r

Keyword (cylinder number, security atom number)

Figure 23. The Structure Memorv Deletion
Table (SMDT)

59

entry in the SMDT with DKi in Field 1. If no such entry exists, then
do nothing. If such an entry exists, then search the corresponding
set of pairs in Field 2 of this entry to see if a pair of the form
(M,S) exists. M is the cylinder being compacted, and S is the security
atom number of the record being examined. If such a pair exists,
delete the pair from Field 2 of the SMDT. Else, do nothing. [In
this step, we look at those entries in the SM which point to the
untagged (undeleted) records. We wish to delete, from the SM, all
entries that point to deleted records. However, some entries in the
SM may point to both deleted and undeleted records. We wish to
retain these entries in the SN, since, otherwise, pointers to
undeleted records will be lost. Hence, any entry in the SMDT which
points to an undeleted record is removed from it.]

Step 7: Write the records in the record storage back into the tracks via
the TIPs.

Step 8: Pass the SMDT table to the database command and control processor
(DBCCP). DBCCP then accesses the structure memory (SM) and deletes
the relevant index terms from it.

We will now estimate the time taken to compact a MAU. First, all the

tagged records are read and processed. Since the reading of one record (by

the TIPs) occurs at the same time as the processing of another record (by the

MMC), one revolution of the disk device will suffice for this. Next, the

untagged records are read, processed and written back, a section at a time.

Once again, the time to read and process a section is one revolution. However,

the time taken to write back a section is very large (without insert-in-

parallel) since writing back has to be done a record at a time. Assuming

80K bytes per section and 1K byte records, it takes 80 revolutions to write

back a section! If the TIPs are divided into r sections, the time taken to

compact a MAU is

I + r*(l+80) = l+81r revolutions.

Typical values of r range from 3 to 6, so that the time of compaction ranges

from 244 revolutions to 487 revolutions.

However, with insert-in-parallel, onlv one revolution is needed to write

back a section. Thus, the time taken to compact a MAU is

I + r*(l+l) = 1 + 2r revolutions.

Once again, letting r range from 3 to 6, we see that the time of compaction

ranges from 7 to 13 revolutions. This is an improvement of about 97/. Ie

thus see that allowing for insert-in-parallel tremendously improves the per-

formance of DBC during the compaction mode of operations.

60

4.3 Further Improvements

Before we examine if it will he possible to further improve the time

taken to compact a MAU, let us examine the reasons for choosing to implement

the process of compaction in the manner described in the last sub-section. If

we were to provide a track-size buffer with each TIP, then compaction may be

done in the TIPs itself without having to move records to and from the MIMC. This

will enable us to do compaction more quickly than possible now. However, our

original reasons for not having track-size buffers with each TIP was because

these buffers would be underutilized during the retrieval operation. We would

now like to reexamine our motives for not choosing to have track-size buffers

for each TIP.

First of all, with memory technology making rapid advances, under-

utilization of memory is no longer as important as it used to be. Secondly,

we are now trying to design DBC to operate in an update-intensive environment

where there are many requests for deletion. Therefore, we would like to enhance

DBC performance during the compaction phase even if it means underutilization

of memory. That is, we are willing to pay the price of underutilization in an

update-intensive environment but not inan update-free environment. Finally,

in an update-intensive environment, the underutilization of TIP buffers will

not be a problem, since, the precentage of retrieval requests is expected to

be very low. The remaining Portion of this section will be devoted to showing

how the performance of DBC may be improved, during the compaction phase, bc

using track-size buffers with each TIP. In the next section, we will show that

track-size buffers will be needed to improve the performance of lB(duriiw

execution of update cormands. Thus, we see that the buffers will he under-

utilized only during execution of retrieval commands, and in an update-

intensive environment, there are expected to be very few retrievnls.. For

all the above reasons, we advocnte the use of track-sire buffers with cach

TIrP.

A new method of compaction is now proposed for DBC that itili zcs th,

track-size buffer. A description of this method follows. ur in , t i ' ko mp;a-

t ion mode, the TIPs read records in their respective tracks and p1 ant, .1I

untagged records In one buffer (say Buffer A) and all tagged records in anotlh)r

buffer (sav Buffer B). [Earlier, we had indicated the need for t',o dil ferent

buf fers. Buffer A Is the buffer that is used during the execution of retriev''

.rnd update commands and Is the size of a track as we have postulated ablove.

BuIffer B is the buffer that is used to hold records for insertion. In Se'ct io11

61

3, we had shown how to estimate the size of this buffer depending on various

factors such as average cylinder queue size and the percentage of insert

reouests.] This reading of both tagged and untagged records may be done in

one revolution of the disk device. Recall, that a TIP consists of a disk

interface processor (DIP) and a control interface processor (CIP). In the first

revolution, as the DIP is reading the tagged and untagged records, the CIP is

processing the tagged records in Buffer B. In the second revolution, the DIP

writes back all the untagged records in Buffer A, even as the CIP processes

the untagged records in Buffer A. Since each buffer consists of individually

accessible segments, the CIP can process those segments of Buffer A which

have been written back by the DIP. We will now describe the nature of the pro-

cessing done by the CIPs, during the two revolutions, in an algorithmic fashion.

It will be noted that each TIP needs an additional RAM to do this processing.

This RAM will store two tables, the tagged deletion table (TDT) and the

untagged deletion table (UDT). Both these tables are similar to the structure

memory deletion table (SMDT) which was described in the previous sub-section

(see Figure 23).

ALGORITHM: Executed by the CIP during the first revolution of the compaction
phase.

Step 1: 1 = 0.
Step 2: I = I + 1. Read the I-th tagged record in Buffer B. If there is no

such record in Buffer B, then terminate.
Step 3: For each directory keyword DKi in the record, look to see if there is

an entry in the TDT with DKi in Field 1. If no such entry exists,
then create a new entry with DKi in Field 1, and the pair (M,S)
in Field 2. IM is the cylinder being compacted, and S is the security
atom number of the record being examined.1 If such an entry exists,
then search the corresponding set of pairs in Field 2 of this entry
to see if a pail of the form (M,S" exists. If such a pair exists,
then do nothing. Else, add the pair (M,S) to the set of pairs in
Field 2 of the corresponding entry. Go to Step 2.

In the first revolution, the DIP reads all tagged records into Buffer B and

all untagged records into Buffer A. In the same revolution, the CIP builds

up, in the TDT, a list of SM entries which point to deleted records. Naturally,

we shall remove these entries from the SM as long as they do not also point

to undeleted records. In revolution two, the CIP executes the same algorithm

as above except that it processes the records in Buffer A (rather than those

in Buffer B), and that it utilizes the untagged deletion table (UDT) and not

the tagged deletion table (TDT). That is, the CIP builds up, in the UDT, a

list of SM entries which point to undeleted records. This same revolution is

utilized by the DIP to write back all undeleted records.

I

62

Thus, at the end of two revolutions, all the untagged records have been

written back on to the track and each TIP has created two tables, the TDT and

the UDT. These tables are now sent to the MNC, which then processes these

tables, in the third revolution, to form the structure memory deletion table

(SMDT) as follows.

ALClRITHM: Executed bv the MMC to form the structure memory deletion table (SNDT).

INPUTS: One TDT and one UDT per TIP.

Step I: FLAG=O. Concatenate all the TDTs into a single TDT. Let there be
N entries in t'e newly created TDT. Set I=l.

Step 2: If FI.AC=O, then examine the I-th entry in the TDT. Else, examine the
I-th entry in the UDT. If the I-th entry is null, then go to Step 4.
If the 1-th entry is nonnull, let it be of the form 'value, S, where
S is ,i set of pairs. Look through entries 3+1 to N, looking for
entries which have the same value in Field I as the I-th entry has.
Put these entries into a set 0. For each entry in set 0, do Step 3.

Step 3: Let the entry be of the form <value, R>, where R is a set of nairs.
Delete this entry (i.e., make it a null entry') from the TDT (delete
this entry from the UDT if FLAG = 1) and change the I-th entry
of the TDT (chance the I-th entrv of the CDT if FLAG = 1) to
--value, S U R-.

Step 4: =T+. if I - N & FLAG=O, then go to Step 5. If I 'M & -FLAG=l,
then "o to Step 6. Else, go to Step 2.

Step 5: FlA(;=. Concatenate all the DTs in to a single Ui)T. Let there be
M entries in the UDT. Set T=1 and go to Step 2.

Step 6: Remove all null entries from the TDT and the UDT. [At this point,
we have merged al I the entries in the TDTs into a single TDT and all
the entries Ln the UDTs into a single CDT.]

Step 7: For each entry in the UDT, do the following. Let the UDT entry be
<value, X>. Search the TIlT looking for an entry with the same
value in Field 1 as the entry in the UDT. Let this he the entry
<value, Y>. Recall that X and Y are sets of pairs Delete the UDT
entry, and change the TDT entrv to <value, Y-Y>. [Recall, that we
do not want to delete all the entries present in the TDT from the SM.
This is because some of these entries mav also point to undeleted
records. In this step, we remove all entries in the TDT which are
also present in The UDT. Since entries in the TDT point to dIleted
records and entries in the UIT point to undeleted records, it follows
that entries common to both the TDT and the UDT point to both deleted
and undeleted records. Hence, we are keeping, in the TIT, only thosu
ent-ries; which point sole1; to deleted records. These entries must
be removed from the SM. I

StiS 8: The resutlltin , TI) is called the structttre memory deletion table

(SMDT) . Tis SMDIT is now sent to I)BCCP so that the corresponding
index terms mayi% h, de letl d rem the stru('tire memory.

N trt' tha t, inl t:o above nlethl(I(of compaction, the TI's and the CRI's do not

ha, VC h(' sent to t he MMC a SeCt inn at a t i me. Thi s is because the size of

lose t mble i muih siaM Ier than the siz i of all the unt aicd records in a

hll, I. ii'. * t .' 1)t i00i, comlp;act i on p11oc 0s now t akes ;approx\matelv' three

. fi i i)tr- ' ' I 'fc tlLs 1 'llred the pr 'Ii ; oi) compact fro1 I- m a max! i OliTmT

i i 1' T' 0, I ll thItli l 0 I- i rev(lit ti

63

4.4 Elimination of Compaction Mode and Deletion Bit Maps

The careful reader would of course have realized that garbage collection

would be unnecessary if records were of fixed length. This is because insertions

may then be done in slots left vacant by deletions, since all records, being

of fixed length, would fit into these empty slots. However, when records are

of variable length, one record may not fit into the slot left vacant by the

deletion of another record and, hence, compaction is necessary. Actually, it

is not necessary that all records be of fixed length in order to avoid the

overhead of garbage collection. It is only necessary that all records in a

file be of fixed length. This is because a cylinder only contains records from

a single file. Since most of the files encountered in the real world have

fixed-length records, no compaction will be necessary in most of the cases.

In DBC, we will compact only those MAUs which contain variable-length records.

Notice, that changes to the index terms in structure memory (SM) can be

made only after the process of compaction has created the SMDT. Let us see how

this will affect the execution of requests that are issued after a delete

command, but before the necessary changes (caused by the delete request) have

been made to the index terms in SM. Basically, the problem is the existence

in SM of index terms that ought not to be there. This could cause some deleted

index terms to be retrieved from SM in response to a query. Since index terms

consist of (cylinder number, security atom) pairs, this may lead to extra

accesses to cylinders (i.e., cylinders in which no record that can satisfy the

given query exist). The impact of this can, of course, be reduced by doing

compaction more often.

A logical time to do compaction on a cylinder would be at the end of

execution of a set of orders on that cylinder. We would like to get some

quantitative figures on the drop in throughput rate of the data loop as a result

of doing compaction at the end of a set of orders. We shall use the model

developed in Section 3 to come up with some quantitative results.

4.4.1 Calculations of Data Loop Throughput

Let,

pl=p2=p3=p4=0.25 (i.e., an even distribution of requests)
tl=t3=20 milliseconds.
t2=40 milliseconds.
q=300
p=lO
m=10
k=L=10

64

If we do not compact at the end of a set of orders,

T(k) = k*(pl*tl + p2*t2 + p3*t3) + 20 milliseonds.

- 220 milliseconds

If we do compact at the end of a set of orders,

T(k) = k*(pl*tl + p2*t2 + p3*t3) + 80 milliseconds.

= 280 milliseocnds

This is becuase three additional revolutions are needed for compaction.

Applying the condition T(k)/(k*n) < I, we get n > 22 milliseconds without

compaction at the end of every set of orders, and n > 28 milliseconds with

compaction at the end of every set of orders. However, as k gets very large,

the limiting condition, in both cases, is n > 20 milliseconds. That is, we

may compensate for the extra time spent in compacting at the end of a set of

orders by increasingk (the minimum number of requests that must be present on

a cylinder queue before a seek may be issued on that cylinder). Figure 24

is a graph of k versus the maximum inter-arrival rate that the data loop can

sustain. We note that effects of compaction on the throughput rate are

minimal when k is made very large. Thus, by making k fairly large and compacting

at the end of every set of orders, we can minimize the number of unnecessary

cylinders that might have to be searched owing to the presence of an index

term that ought to have been deleted.

Let us examine some of the implications of doing compaction at the end of

every set of orders. First, this means that DBC no longer needs to switch

to the compaction mode in order to do compaction. That is, compaction is done,

in the normal mode itself, by incurring three extra revolutions at the end of

a set of orders. This, as the graphs show, will not affect the throughput rate

on the data loop if a large enough value of k (the minimum number of orders

that must exist on a cylinder before a seek is initiated on it) is chosen.

Second, we have shown that the process of compaction builds up a SMDT which

contains all entries in the SM which must be deleted. Postponing the process

of compaction until the DBC encounters periods of light load would cause a

por response to many requests. This is because the presence of indices in the

SM which ought to have been deleted would cause the access of cylinders which

do not contains records that satisfy the query in the request. Thus, many

unnecessary seeks would be carried out in DBC This is avoided bv doing the

compaction as often as possible. Finally, we note that it is no longer necessary

t, ;tore the bit map on the track itself. The bit map only needs to be in the

PAM ;ossociated with each TIP. Whuen compact ion is not done at the end of every

5 5

40 percentage of delete requests=25%
percentage of retrieve requests=25%

Co. percentage of update requests=25%0
0 porcentage of insert requests=25%

.30

*- 0 with compaction at theL -I._0!0) -¢ ihu end of a set of orders

0-0 .'

without cornnaction
C; r 20-
En

10-

0I0 20 30 40 50

k
minimum number of orders per cylinder

queue before a seek is initiated on that
cylinder

Figure 24a. Graph Showing Results of Study When Percentage
of Insert Requests is 25%

50

40-percentage of delete requests=16.67%/
z percentage of retrieve requests=16.67%/

percentage of update requests=16.67%/
0oa percentage of insert requests=5O0 /

~0

0

02

0.0 without compaction

0 10 20 30 40 50
k

minimum number of orders per cylinder
queue before a Seek is initiated on that

cylinder

Figure 24b. Graph Showing Results of Study When Percentage
of Insert Requests is 50%

67

set of orders, it is necessary to copy the bit map from the RAM onto the track

in order to remember the positions of deleted records. However, when compac-

tion is done at the end of a set of orders, all the deleted records have been

removed and, hence, it is unnecessary to remember the positions of deleted

records. This implies that more space is available to store records in each

track.

i

68

5. UPDATING OF RECORDS

In this section, we shall take a look at the process of updating records

stored in DBC. We shall begin by describing the exact nature of the update

requests. That is, the kinds of update that are allowed in DBC are clearly

specified. These allowed updates are then classified into various categories

depending upon whether the part of the record that is updated is a simple

keyword, a directory keyword, a clustering keyword or a security kevword.

This is because these different categories of update need different amounts

of processing by DBC. The processing of update requests is then described

assuming that the size of Buffer A (see Section 4) is less than track-size

the performance of the data loop without track-size buffers is compared to its

performance when track-size buffers are used. Finally, a proposal is made for

the purpose of improving the data loop performance to a greater degree.

5.1 The Nature of Update Commands

In DBC, the format of an update command is as shown below.

UPDATE QUERY MODIFIER

That is, the command consists of three parts. The first nart specifies the

command name. The second part is a query. All records that satisfy this

query must be updated. Optionally, the second part may contain 'ALL' to

indicate that all records in DBC are to be updated. The modifier part speci-

fies the kind of modification that needs to be done on the records that satisfy

the query. We have already indicated, In Section 2, the exact nature of a

query which will not be reproduced here. Instead, we shall concentrate on

the nature of the modifier. The modifier is essentially of the form

<attribute, newval = f(oldval)>

That is, it is a pair. The first part of the pair snecifies an attribute which

is present In the keywords of the records that are to be modified. This

attribute is called the attribute to be modified and the pair <attribute,

oldval> is the keyword to be modified. The second part of the pair specifies

I i

I

69

tfie v,liti th.at t i itt i 'hit -i mu t Like (neuwval) in the updated records as a

tun it jim (t t t i ".i I lic thit it had befIore the update (o ldva]) . We note that

both newva I ind (I I (Iva I i C I it e -lIs , or reserved words of I)BC . Examples of

types of mod i Iiv rs a I I owed in D)h(are indicated below.

1. -Name, ncwva I = HSIA(V.

Here, the new value that is to be taken by the Name attribute is 'HSIAo'.

This is the constant function, since it is not a function that depends on the

old value of the Name attribute.

2. <Salary, newval = oldval+5000>.

Here, the salary of employees (as identified by the query part) will be

increased by $5000.

3. <Salary, newrval = oldval*l10/lO0>.

Here, all employees (identified by the query part) are given a 10% raise.

In DBC, we may also allow the modifier part of the update command to be

of the following form.

<attributel, newvall=f(<attribute2, oldval2>)>.

That is, the new value (newval) that an attribute (attributel) is to take is

a function of the old value (oldva]2) of another attribute (attribute2) in

the records that are to be updated (as identified by the query part). The

attribute to be modified, in this case, is attributel. The pair <attributel,

oldvall> is the keyword to be modified. We shall refer to attribute 2 as the

base attribute of modification. Once again, newvall and oldval2 are literals.

An example of a modifier that fits the above format is

<Monthsal, newvall - <Yearsal, oldval2>/12>.

This modifier causes the monthly salary earned by employees in records

identified by the query part to be a twelfth of the yearly salary earned by

these employees. The attribute to be modified is Monthsal and the base

attribute of modification is Yearsal.

Hencforth, we shall say that the modifier in an update command can be of

one of the following three types.

TYPE 0: <attribute, newval-constant>

TYPE I: <attribute, newval-f(oldval)>

TYPE TI: <attributel, newvall=f(<attribute2, oldval2>)>

We note that DBC update command allows only for the update of a single

ttribute's value. If many attribute values have to be updated, many DBC update

commands will be needed.

70

5.2 _The Concept of Blocking

Before classifving updates into various categories, let us explain, bv

means of an example, some of the problems associated with record updating.

let us imagine a particular database with many records. One of the attributes

that appears in some of these records is, say, Salary. A view of the struc-

ture memory (SM) content is shown in Figure 25. Each entry in the SM, as

we recall, is a kevword or kevword descriptor followed by a set of indices.

Each index is a (cylinder number, security atom number) pair. The first SM

entry in Fi.,,ure 25 indicates that records containing the keyword --Salarv, 75>

are present in Cylinders 2 and 3, and that these records belong to Security

Atom number 2. The second entry in Figure 25 indicates that records containing

the kevword -Salary, 50> are stored in Cvlinders I and 4, and that thev

belong to Security Atom number 1.' Consider, now, that the following two

requests are issued to DBC, one after the other.

(1) UPIATE ALL <Salarv, newval=oldval+25>

(2) RE TRIEVE (Salarv=75)

The first command is an update command. It increments the Sal:irv of all

records by $25. After execution of this command, all records that or-inallv

contained the kevword <Salarv, 75> will contain the keyword <Salary, 100>.

Similarl', all records that contained the kevword <Salary, 50> will contain the

kcvword -Sailary, 75)-. After the records in the mass memory are properlv updated,

the structLire memory must also be updated. This is depicted in Figure -6.

Consider what happens if the second request, i.e., the retrieve request, is

exec ited before SM is finished with the update. In other words, the records in

MMl are properlv updated and the entries in SM have not vet been modified. lhe

second request requires the retrieval of all records that satisfy the cuerv

(Salary = 75), i.e., all records that contain the kevword .'Salarv, 75-.

Since the update process is not yet completed, SM may still indicate that such

re' ords are present in Cylinders 2 and 3 (see Figure 25 again). The mass memorV

will now execute this request by accessing each of these cylinders, in turn,

looking for records that contain the kevword -Salary, 75>. However, due to the

earlier update command executed by DBC, only records that contain the kevword

'Salary, 100> are present in Cylinders 2 and 3. Thus, the MM will not be

able to retrieve a single record with the keyword <Salary, 75>. We know, ef

*S>ee note In Figure 25.

II

71

S M Entries

<Salary, 75> (2,2),(3,2)

<Salary, 50> (I, I),(4,I)

-(Normally, each SM entry may cover a range of values, say,
75:_.Salary<lO00. Very seldom do we utilize SM for storing
indices of discrete attribute values. For the simplicity of
this illustration, we use discrete attribute values.

Figure 25. A View of the Structure Memory (SM), before Execution of

the Update Command

7.,

SM Entries

< Solary,lO0> (2,2),(3,2)

<Salary, 75> (,),(4,1)

?0) A i -iILl'S uticieor.(M ~ e-i a el

II
*!

I
!

I
! i,,,zr 3. *\ '\i .t the, Struc:tulre M emory (SM) after it has been

M,,l i -i*, t, C Itt elct the Chlangesq (aus ed hby the U'pdate, I

Ii
I

73

course, that records which contain the keyword <Salary, 75> are present in

Cylinders 1 and 4.

There are two distinct problems owing to the execution of the next

command before the completion of the update command.

(1) It has caused the accessing and searcb of cylinders which do

not contain records that satisfy the second request.

(2) It did not access and search cylinders which did contain

records satisfying the request.

Both problems lead to a decrease in recall (i.e., the number of retrieved

records that satisfy the user query vs. the total number of records in the

database that satisfy the query). For DBC, we require total recall. Pence,

we must ensure the following. Following an update request that modifies a

directory keyword, we must block the execution of all subsequent requests

that may be affected by the update request until the structure memory has

been modified to reflect the changes in the MM caused by the update request.

We shall define thar we mean yy requests that may be affected by an update

request in the following sub-sections.

5.2.1 Update of Nonsecurity and Nonclustering Attributes

Consider a specific update request in which the attribute to be modified

is part of a directory keyword, but is neither a security attribute nor a

clustering attribute.

UPDATE nUFRY MODIFIER

Let the attribute to be modified be attributel. Any susequent retrieve

(or delete) request issued will use a query to specify the records to be

retrieved (or deleted). If any of the subsequent requests contains a quer,

that uses attributel, then this retrieve (or delete) request may be affected

by the update. More specifically, a subsequent retrieve (or delete) command

will be affected by the update only if the query used in the retrieve (or

delete) command contains attributel and the set of records that satisfy this

query overlaps with the set of records that satisfy nlURRY. We are therefore

required to determine whether the set of records that satisfy one query will

overlap with the set of records that satisfy another query. Unfortunately,

it is not always possible to tell, given two queries, whether the records

that satisfy one query will overlap with the records that satisfy another

query prior to any record retrieval. However, there are ways to tell, given

JILI
7 Z.

two qute r !us, that the set of records that sat is fv one qute rv wi I I0 noe Irv-i I iii

w i th the set of records that satisfy the other query. For examp Iec. i t is easy

t o see, t hat re cords thla t s;at isf Y the q uery, (SalIary < 50) will no t overlIap v-i t It

reco rds t ha t satr i s f v thle o uerv (SalIary > 50) . However, given the query Slr

501) ind lte ote rv (Name =HS I A) , there is no wax' to tel I, wi thou t an aictualI

cxMimimno ion of oal Ithe records in the database, whether the set ofreos

hat sot i sfv one2 querv willI overlap with the set of records that satisfx the-

itlier qur, . c. , thr isn hoo e ig i f there exists at least ont-

record that sot is fies ho th queries.

Ve sial l refer to two queries such that the set of records that soit is;f%

onte p erv overlaps with the set of records that sat isfv the other oiucry 1-

i-lasliin ! queries. If two queries - re clashing, all the attributes in c i ti-c

qur are calle2d cilashinE attributes. (On the other hand, (Sal arv -50) aind

(So 1arv- 51)) are noneclashing nueries and Salary is the none] ashi ng at tri hot>.

.eobserve that two queries are ionc] ashinq if at least one of the ott r ibites

Ii ei titer querv is nonr lashing. TFhus , ((Name=IISTAfl) . (Sal arc'> 75)) aInd (N.arme~l

1151 Aw) Lk (Soaary 75)) are nonc lashing queries even though the two p ~r ic-s nay i 1,

clash int on1 the attribute Name. If we cannot make certain that two queries. jii-

nonmahig we sayi that t hey mayv be clashing.

given two o cr ios , we will1 t rv to determine in M1W if the\- are

lef in ite] x none lashing on onf or more attribuites. .A n to do this will he

c israted in stilisequitet paragraiphs. If it cannot he defini telv determined

that two oneries aire none lash inL on some oItribtite , we cone lodte that thek.

two queries max' he ci ashn lotin all attributes in the two queries.

Cotns idter thle folIlowing examplIe and lot the utpda te lie llTDAT? 1 and sult-

se:lOtrequests lie RETk I I-:Vg. W-e have

II PI1)ATE (attriuteh -30) a it t r ibu)11tcI, TIewv: Il I = 01d VIll

RlTRI EVI (at tr Ibttel >50)

-n ni (lte qjuer (attrihutel -50) and the query (attrihittil nitiifoum ltsin -

in1 lie -itt r it ;- t tribtite I, we mii gt wrongi v 'Oucll ile thait th lit cc irds that

-;. Lkf', one' query wil 11 ot over lap , th the records that solt isI \ t ('titer

(fit ccV. IHowver, this is not truie. 'Ibis is becaii-e ilti th igpditt thle

ry t i t-gjuist ims deeretuseth OhIL va Ihte of oitt r 1 bite I i n soiti o I t i ecords

(1;1 ti ha ;ulit 1 . Thus, thiese recordls wl i it-l or i c inalII v luau i \,; tue (or oitt r i biut cI

ar-tr lionm 501 milgt now have a volute for ot [ribute Iclss th in)(1. Ito-, thle

75

second request cou I d re for to some records that we re updated hv the earl ier

request and hence may be affec ted by IUDATF I. For a second request to he

unaffected b an earlier update request, it is not enough to see if the queriLS

in the two queries are nonclashing on ,n at tittribute other than attrihutci (i.fe.

the attribute to be modified in the update request). We can conclude that a

retrieve (delete or update) request issued subsequent to an update is unaffected

by the undate only if either the query in the request does not contain the

attribute to be mdified or the query in the request is nonc],,shing with the

query in the update on an attrilbute other than the attribute to be modified.

Insertion requests issued subsequent to an update are not affected by

the update.

14e are now in a position to give a complete and formal definition of

what we mean by 'may be affected'. A recuest issued subsequent to lP)AT1TI

[UPDATE QUERYL <ATTIRBUTE1, NE.WVALCCONSTANT>] or [UPI)ATE 0lERY I -ATTRI BITE],

NE .UVALI=f (O Ll)VAIl), I>] or (IPDATE F0UERYl -ATTRIBUTE] , NEEVA1, I = f(ATT, I BI'TE,

OLDVAL2>) I, where ATTRI BUTEI is not a security or c I us tern r at t ri butt, may

be afFected by UPDATEI if one of the following is true.

(I) It is a retrieve request and the query used in the request contains

ATTRTBUTE1 and may be clashing with OUERY1 on all attributes in the two queris

other than ATTRIBUTE1.

(2) It is a delete request and the query used in the request contains

ATTRIBUTEI and may be clashing withl PUERY1 on all attributes in the two queries

other than ATTRIBUTE1.

(3) It is an update request of the form UPDATE QUEPV MODIFIER and U)lERY)

may be clashing with QUERY onl all attributes in the two queries other (han

ATTRIBUTE1 and ATTRIBUTEI is part of QUERY2.

Al I requests that may be af fected by a prior update command arc catil ld hI oc dc

requests. The prior update command which causes other reque ats to he blocked

s called the blocking request.

Let us eXpltain the definition of the previous paragraph by moans , c

examp,.,. (nsider the following update request.

1. U*PDATE ((Salary ,SO) A (Name=HSA)) Salary, ncwvaiI=ld\,I'v l+)..

f,(t Iil -;nme that the fol I owing set of requests was issued suibsequent to thL

i,,n- a the update reouest above.

Rs LI I LVI' (Name I", A)

(hi fIlL FI IV (N I IS I AW

) 1 fFIT 1. (:a ar V7)

(d R11 1~~i F LVI ', Sa 1 a reK

(c 1) DL LU, TE (Sliare SD) A (Nmu#I ISIAD)

(F lilDAT- (Namc=1II'iAO) Ifep t , niewxa VI=nIdvai I

(I I'PDATE, (Naime= HS I AH) LaI arv , neiwa I =C) diva 1 *2

h0 UP'lDATEl (Nanwe]-IS !AO) LSalIare, newva I =oId va I*2-

([TD ATE (Sa lare> S) -Sal are, nevv~ail<Reilt , oldveal- ->

(J UPDATE (N ame=D T11,1AO) 'Rent , newval I<!Salarv, 01 deall 2

V"t uis now consl"ider I eaIc of the requests (a) through (j) inl turn, aind

"I .I it 1h of the ma hI a-qII I f t CC ted heC th IIUrI Ca- te' re2qust(sh owI in1 (1) . .e notk

ilist , isl tis - upda'te L ls (Sa I aIrv -,50) A\- (inameISlIAO)) i s heupdalte q-r

-mld 55]i Ia re is te -It t r ih11 Lc to mo()d ifie d.

t 'Ih is is :s; ret I-iev reques~ct wi th the quiery (Name=HS IAl .T',is

011iv (100 not cou-t ai the at tri hute, to he modlfif l he- undat , iui

i .". La lar1), nee. iu) Spite of the faetI' that the(eseire hn=1 .

m:v!L ilsll'ii with Lte uere ((Name=S 1 D; IA (i\--)) on the,

iitri huti- , th i rcim est is uniaffected he the upt-date reque.-L

' Ii 1-eS (Ie's Li >;.:II iso(ill t teeted he the iipda t e req uest hee a usLe Ple i-e

ncDLAi) dee>;s iot e(uitain the at trihute Salary.

) i reit is a de I' e equs id i t i s :Ieeconnau 1 i ed hv t. i ,

q!:iore (Slr=7 hilit ohviuiile eunltajuls the aIttrihuilte Lin-':r.

-o 1m v0 h ii e(a e 5 a he c I aIsh 11) liwi ti t he (I tere ((Sa 1 Is1

(Nm~ I l) in h e Nam atil t t r i h t il nc We e ,Il iun t d(ie tel-m11il ci t 11i

it is, iou ss i iu iie the Nani- attricit) leue this rI-quIest. mae1

1li I I- iI;r, w1 rqis .s :i ret iie euhis t andol ; it Iit. I t !ar i ed he I ;

Si 0 he q 1w re L I ;I r- %, mae; I e I as ii, Wi h t Ilk' f! ue I-e

;iI ir'. %-V)) -. (N;)nieIISTAnl 1) the Name ait t rihute (tte I :ict t hilt

tli I I re none lashliiip! oul the alar ' attLr iiii(I jS i[illi ilt lil t SI nc

Ii I l V i S tile, ;it t ri liitc to he mod i f ied ill t ie(iiplmit e re Ic is tw~

lh-i((, tlIti is req tw-st m;iv ho at ffei ted hv t lie twiiste rtIL'uit.

lIii is i l e let Ie requeics t wh i liii is- si om Ie I il i((I)V I l ie i lit e

I:r-v Vl (DfN;eiie#-fS I At) f (1 il tee t Ioe ii tii s x -u iust IJ

77

Salary attribute, it is nonclashing with the query ((Salarv-50) A

(Name=HSIAO)) on the Name attribute. Hence, this request will he

unaffected by the update request.

(f) This is an update request with query (Name=HSAO) and a modifier of

TYPE I, where the attribute to be modified is Dept. Ve note that

(Name=Hsiao) may be clashing with ((Name=HSTAO) A1 (Salarv50)) on the

Name attribute. However, Salary is not part of the query (Name=HSIAO).

Therefore, this update request is not affected by the update request.

(g) This is an update request with C[uery (Name=HSlAO) and a modifier

of TYPE 1, where the attribute to he modified is Salary. The query

(Name-HSlAO) may be clashing with ((Name=HSIAO) A (Salary>5n)) on the

Name attribute. However, Salary is not part of the query (Name=HSIAO).

Hence, this update is not affected by the update request.

(h) This is an update request with query (Name HSIAO) and a modifier of

TYPE I, where the attribute to be modified is Salary. However, since

(Name H{SIAO) is nonclashing with ((Name=HSIAO) A (Salary>50)) on the

Name attribute, this request will be unaffected by the update request.

(i) This is an update request with query (Salary>50) and a modifier of

TYPE I, where the attribute to he modified is Salary, and the base

attribute of modification is Rent. First, the query (Salarv50)

may be clashing with the query ((Salarv>50) A (Name=HSIAO)) on the

Name attribute. Second, the attribute Salary is part of the query

(Salary-S0). Hence, this request may be affected bv the update request.

(j) This is an update request with query (Name=HSIAO) and a modifier of

TYPE I, where the attribute to be modified is Rent. , and the base

attribute of modification is Salary. Even though the query

(Name=HSIAO) may he clashing with the query ((Salarv"5 0) A (Nine=HSlAOt))

Salary is not part (H the query (Name=HSlAO). Hence, this request is

not affected by the update request.

We conclude, from the examples above, that the execution of requests c, d'

and i must be staved until the structure memory is fullv undated to reflect

the c'hanpTe. caused by the undate request. That is, requests c, d, and i are

blocked bv the update request.

78

).2 . 2 Updating Security and Clustering At trihutes

Up to this point, we had considered the requests blocked byv an ea;r] io.r

update request, where the attrihute to be modi fied in the earl ier uipdate v.as,-

not a s.cuiri t\ or a cl us tering attribute. In order to il I ustrate how thc,

situation is different if the attribute to be modi fied is either a sucuri tv

orI aI Clustering attribute, we resort to an t Xample.

let us consider that the foillowing two renuests are issued one after the.

other .

I . I)TATE (Name=HSiAO)) <Salary, ncwval=,1ldval+25-2

2 . R TU riNme=HS FAO)

The f irst request is an update request , where (let uIS assume) the aittribute

to fle modifiled is a security attribute. in DBC, we handle uiodate requests thait

modi FY a sccuritv or clustering attribute in the fol lowing wav'. The rec-ords

wh ichi sat isf'v the associated querv are first deleted from the mass memorv.

Then, each deleted record is updated, and the database command and control

processor (P0CCP) determines the new security atom to which the record

belong s, or the new cv Ii nde r into which it must b- inserted (ori hothI). F io i v,

each del'eted record is reinserted inte DBC. Now, if the retrieve reque(-st

sho)wn above is al1l1owed to be executed be fore the earl ier update completes, 00

recortd iil h e retrieved becau~se the update would have caused the dele tion eof

"I I relevant records. Hence, the execiution of the retrieve request must be

staved unt ii the earl ier update comp letes. That is, the update blocks the

retrieve request since the ret rieve request may be affected by the updatc

r eq ties t . We doefine this concept below.

A requles t issued subsequent to UPD)ATEl U.PDATE (OUE Y 1 AilTl T TF I

'NMVAI. I =CONSTANT 1or [UPDATEC QUERY I --AlTT BU ITF] , NEWVAI 1= f (ilLO)VAI1 o r

I UP DATF flI'URY 1 ATTO [I'TU1 , EVI <OR UE LP'AI.2) I , wheire

7"i'lf I fj17' ' 1 i s a1 see2nI r i t v or c us tori ng at t ri u to, max' he if(feet ed byv UPITIII

f- the re-ques-t is a (d01etce, retrieve or tipdate request, anti the entiry used in

t reriues t mayv be (laish i ng wi th fll!175Y on al I iatt r ihute(s in the two quer its

(thltr thajn ATTOIUTTRI

The (let trmiiiu;ut ion of neiw securi tv aIt omIs aud CIUtSt Crs d111 to ne'W se tv

;Ind 1 c l-tcrim ngat t r l hit to, is we I I documen ted in f 71 . We sh il I not repeait itI

79

5.2.3 Requests Being Blocked Perpetually by Updates

Until now, we had indicated the kinds of requests that are blocked because

of a prior update request. We now consider a slightly different problem.

Consider that a delete (retrieve, update) request Di has been blocked by an

update request Ui that was incomplete at the time Di was issued. After Ui

completes, we might assume that Di may now be scheduled for execution. However,

this may not alwavs be the case. This is because, in the time between the

blocking of Di and the completion of Ui, another update request Uj (which is

not blocked by Pi) may have started execution and may be incomplete at the time

Ui is complete. Now, if Uij also blocks Di, Di cannot be executed until Uj

also completes. It is not very hard to think of an example to illustrate the

situation. Consider that the following three requests are issued one after the

other.

1. UPDATE ((Salarv>50) A (Name=MENON)) <Salary, newval=oldval+25"

2. RETRIEVE ((Salary>75) A (Dept=20))

1. UPDATE (Name=MENON) <Dent, newval=oldval+20>

Let us assume that the first update request is not blocked by any prior

update request. Hence, it is scheduled for execution. The retrieve request,

however, is blocked by the update request because the query associated with

the retrieve request contains the attribute Salary (which is the attribute to

be modified in the update request) and may be clashing with the query associated

with the update request on the attributes Name and Dept (i.e., all attributes

except Salary). Therefore, execution of the retrieve request is stayed until

the update completes. The second update renuest is not blocl'ed by the first unlate

request because it does not contain the attribute salary. Hence, it is mmed iatelv

scheduled for execution. Therefore, by the time the first update request

completes, the second update request may be at some stage of execution. The

second update request also blocks the retrieve request because the query

a:sociated with the retrieve request contains the attribute Dept (which is the

attribute to be modified in the second update request) and the query associated

with the retrieve request may be clashing with the query associated with the

second update request on the attributes Name and Salary. Thus, the retrieve

request must be stayed until the second update request is also completed.

There are two ways to handle the above problem. The first method is to

delay the execution of the blocked retrieve (delete, update) renuests until no

more blocking updates exist. That is, in the above example, execute the

retrieve request only after both the update rquests have completed execution.

80

In the second method, the second update request is not executed until the earlier

retrieve request has been scheduled for execution. That is, in effect, the

second update request is blocked by the earlier retrieve request. Either of the

two aforementioned methods may be used in DBC. We will, henceforth, assume that

the first method is the one being employed, but there is no reason why the

second method may not be employed.

5.1 The Classification of Updates

Let us now briefly recapitulate the process of update in DBC. The

database command and control processor (DBCCP) first accesses the SM to retrieV-

index terms. These index terms are then intersected in the structure memory

interface processor (SMIP). Finally, DBCCP is presented with a set of cylinder

numbers that contain the records that will satisfy the query in the update

request. The relt ant records are then retrieved and update. Based on the

udpates made, the SM is also updated. Execution of all subsequent requests

that may he affected by this update must he stayed until the final updating of

the SM is done.

Naturally, the question may be raised as to whether it would not be

possible to update the index terms in the SM before the actual execution of

the command in the mass memory. That is, is it not possible to update the S-1

even as index terms (needed to satisfy the query part of the update request) are

being retrieved from it? In the following paragraph, we will illustrate,

with an example, why it is not always possible to do this.

Consider, once again, the SM as shown in Figure 25. From the SM, we can

see that records containing the keyword <Salary, 75> are present in Cvlinders

2 and 3, and records containing the keyword <Salary, 50> are present in Lxilinders

I .nd 4. Let us assume that each cylinder can hold only two records. In

Figure 27, we have shown the two records in each of the Cylinders 1, 2, 3, and

4. Each record, as can be seen, has two keywords (<attribute. vailuc> paiirs)

Consider that the following update request is now issued.

UPDATE ((Salarv>SO) A (Name=HSTAO)) -Salarv, newva =oldva l+25

After the exectuion of the above update command, the database now looks as shown

in Figure 28. The unwary reader might assume, by looking at the update request

a1lme, that the SM should now look as shown in Figure 26. lewover, it can e

enIv verified, by looking at the actual records, that the SI should look is

sh,,wn in tipure 29 (we wi 11 assume that the vtl e of the Salary attribute

(-te.rm ine; the securi tv atom that a record belongs to) . To take another

-' . . _ . - p p_..

81

Cylinder 1

Record 1: (<Salary, 50> , <Name, HSIAO>)

Record 2: (<Salary, 50> , <Name, MENON>)

Cylinder 2

Record 1: (<Salary, 75> , <Name, HSIAO>)

Rccord 2: (<Salary, 75> , <Name, MENON>)

Cylinder 3

Record 1: (<Salary, 75> , <Name, ANNE>)

Record 2: (<Salary, 75> , <Name, JOHN>)

Cylinder 4

Record 1: (<Salary, 50> , <Name, ANNE>)

Record 2: (<Salary, 50> , <Name, JOHN>)

Figure 27. A View of the Database before the Update Command

82

Cylinder I

Record 1: (<Salary, 75> , <Name, HSIAO>)

Record 2: (<Salary, 50> , <Name, MENON>)

Cylinder 2

Record 1: (<Salary, 100> , <Name, HSIAO>)

Record 2: (<Salary, 75> , <Namc, >IENON>)

Cylinder 3

Record 1: (,Salary, 75> , <Name, ANNE>)

Record 2: (<Salarv, 75> ,<Name, JOHN>)

Cylinder 4

Record 1: (-Salarv, 50> ,<Name, ANNE>)

Record 2: (<Salary, 50> ,<Name, JOHN>)

Figure 28. A View of the Database after the Update Command

[UPD)ATE ((Salary>-50) A (Name=HSIA0))

<Salary, newval=oldval+25>1

- - .. 1----- -- 1.- -

Keyword Set of indices

<Salury, 50> (1, 1), (4,1)

" Solar y,75 > (1,2),(2,2),(3,2)

< Solar y,1O > (2,3)

(UPDATE ((Salary - 50) t. (Name HSTAO)) <Salary, newval =oldval+25>1

Figure 29. A View of the SM after it has been Updated Following the Command

84

example, consider that instead of the above update request, the following

update request is issued.

UPDATE ((Salary>50) A (Name=ANNE)) <Salary, newval=oldval+25>

After the execution of the above request, the database will now look as shown

in Figure 30. Also, the SM should be correctly updated to that shown in

Figure 31. In both the examples shown above, the update commands themselves

could give us no clue as to what the state of the SM should be after execution

of the update commands. Only an actual examination of the records could provide

us with this information. Thus, it is impossible to update SM on the basis of

the syntax of the update commands alone.

There are, however, certain special circumstances tinder which we can guess

at the new state of SM without actually executing the commands. These situations

are listed below.

(1) If the attribute to be modified is not part of a directory keyword.

In this case, no change is necessary to SM.

(2) If the attribute to be modified is part of a directory keyword, and

it is not a security or a clustering attribute, and the query part

of the update request contains 'ALL,', and tile modifier is of TYPE 0

(<A, newval = constant>), or TYPE I (-A, newval = t(oldval)>). In

this case, SM is updated as follows. Let the attribute to be modified

be A. Then, look through the SM and find all kevwords of the form

,A, Vi>. Let there be n such kevwords, <A, Vl>, <A, \'2>,.

<A, Vn>. If the modifier is of TYPE 0, then replace all these

keywords by the keyword <A, constant> (Figure 32a illustrates what

we mean). If the modifier is of TYPE I, then modify these kevwords

in SM to <A, f(Vl)>, <A, f(V2)><A, f(Vn)> (Figure 32b illus-

trates what we mean).

(3) If the attribute A to be modified is part of a directory attribute,

and it is not a clustering or a security attribute, and the query

part of the update request consists of a single predicate using the

attribute t, and the modifier is of TYPE 0, say A, newval=constant

or TYPE I, say <A, newval = f(oldval)>. In this case, SM is updated

as follows. Look through SM and find all kevwords of the form 'A, Vi-

which satisfy the query conjunction in the query pairt of the update

request. Let there be m such kevwords -A, \',, <A, 2. <A, \'m-.

If the modifier is of TYPE I, then modify these kevwords in SM Lo

85

Cylinder I

Record 1: (<Salary, 50> , <Name, HSIAO>)

Record 2: (<Salary, 50> , <Name, MENON>)

Cylinder 2

Record 1: (<Salary, 75> , <Name, HSIAO>)

Record 2: (<Salary, 75> , <Name, MENON>)

Cylinder 3

Record 1: (<Salary, 100> , <Name, ANNE>)

Record 2: (<Salary, 75> , <Name, JOHN>)

Cylinder 4

Record 1: (<Salary, 75> , <Name, ANNE>)

Record 2: (<Salary, 50> , <Name, JOHN>)

Figure 30. A View of the Database after the Update Command

[UPDATE ((Salary,50) A (Name=ANNE))
<Salary, newval=oldval+25>]

IV.

Keyword Set of indices

<Salary, 50> (1,1), (4,1)

< Sala ry, 75> (2,2),(3,2), (4,2)

<Salary, 00> (3,3)

[UPDATE ((Salary - 50) . (Name = Anno)) <Salarv, nwv al=oldval+25)I

Figure 31. A View of the SIM after it has been Updated Following the (rMM~nid

85

Cylinder 1

Record 1: (<Salary, 50> , <Name, HSIAO>)

Record 2: (<Salary, 50> , <Name, MENON>)

Cylinder 2

Record 1: (<Salary, 75> , <Name, HSIAO>)

Record 2: (<Salary, 75> , <Name, MENON>)

Cylinder 3

Record 1: (<Salary, 100> , <Name, ANNE>)

Record 2: (<Salary, 75> , <Name, JOHN>)

Cylinder 4

Record 1: (<Salary, 75> , <Name, ANNE>)

Record 2: (<Salary, 50> , <Name, JOHN>)

Figure 30. A View of the Database after the Update Command

(UPDATE ((Salary,50) A (Name=ANNE))
<Salary, newval=oldval+25>]

Keyword Set of indices

<Salary, 50> (1,1), (4,1)

< SolarY, 75> (2,2),(3,2) (4,2)

<Salary,10O> (3,3)

[tIALE ((.; iarv -,50) (Nnrno = vn) S1rv lwvIo1JvIl+,-)

I"igr 31 A V iew ()f the SMI after i t I Ia.s beenl hlpdat td Iol l IOX i 11 i t I), ' Comrnjn11d

Keyword Set of indices

<A,20> (I,2),(5,1)

<A,30> (6,3),(2,6)

< A, 40> (1,9)

Before

Keyword Set of indices

<A, 75> (I, 2),(5,1),(6,3),(2,8), (I,9)

Af ter

Figure 32a. A View of the SM before and after the Update Commani

[1PDATE ALL, <A, newval = 75-,1

Aoq- B 09 4 10 I STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC--ETC F/B 9/2
DESIGN AND ANALYSIS OF UPDATE MECHANISMS OF A DATABASE COMPUTER-ETC(U)
JUN 80 D K HSIAO. M J MENON NOI014-75-C-073

NLASSIFIED OSU(ISRC-TR-80-3 NL

Smmmmmmmmim

mmumnmmmmmummmn

uuuum

88

Keyword Set of indices

<A,20>(I),5)

<A, 30> (4,3),(2,8)

<A, 40> (1,9)

Before

Keyword Set of indices

<A,40> 0,2), (5,1)

<A, 60> (4,3),(2,8)

<A, 80> (1,9)

Af ter
Figure 32b. A View of the SH before and after the Update Command

[UPDATE ALL <A, newval =oldval X 2>1I

89

<A, f(Vl)>, <A, f(V2)>, ... , <A, f(Vm)>. If the modifier is of

TYPE 0, then replace all these keywords by the keyword <A, constant>.

We shall call the above types of update commands as CLASS I, CLASS II, and CLASS

III updates, respectively.

We would like to emphasize, at this point, that many update commands are

likely to fall into one of the three classes listed above. We feel that, mostly,

nondirectory keywords will be updated. Also, even if directory keywords are

updated, they are not likely to be security or clustering keywords. This is

because, changing a security keyword in a record is likely to change the

security atom to which the record belongs. This, in turn, will cause a change

in the protection requirement of that record. It is very unlikely, indeed, that

a database administrator would want to change the security privileges accorded

to a record frequently. Hence, it is very unlikely that an updated attribute

is a security attribute. Similarly, changing a clustering keyword of a record

could change the cluster that the record belongs to. A cluster contains all

records that a user is likely to retrieve together. Therefore, it is very

unlikely that a database creator would want to move a record from one cluster

to another on a frequent basis. Hence, it is very unlikely that an updated

attribute is a clustering attribute. The extra processing involved in order to

process an update command which involves the update of a security or clustering

attribute should now be clear. If the attribute to be modified is a clustering

attribute, then a new cluster has to be calculated for each of the records

updated. If a record belongs to a new cluster, then it could possibly mean

that the record needs to be placed in a different cylinder. This, of course,

involves some overhead. Similarly, if the attribute to be modified is a

security attribute, then a new security atom has to be calculated for each

record. Once again, this involves some overhead.

We are now in a position to classify the remaining types of updates.

CLASS IV: An update command which does not belong to CLASS I, CLASS II, or

CLASS III, and in which the attribute to be modified is part of a

directory keyword, but is not a security or clustering attribute.

CLASS V: An update command in which the attribute to be modified is a security

attribute but not a clustering attribute.

CLASS VI: An update command in which the attribute to be modified is a

clustering attribute but not a security attribute.

CLASS VII: An update command in which the attribute to be modified is both

a security and a clustering attribute.

90

5.4 A Scheme to Determine if Two Queries are Nonclashing,

We recall, from our earlier discussion in this section, that the execution

of delete, retrieve and update commands must be stayed until the changes

caused by a prior update command are reflected in the SM, if these commands

are blocked by the earlier update command. To determine if a delete, retrieve

or update command may be affected by an earlier update command, one has to

determine whether the query of the subsequent delete, retrieve or update

command may be clashing with the query of the immediate update command. In

this sub-section, we shall propose a hardware scheme to determine if two query

conjunctions may be clashing.

The clash determination unit (CDU) is shown in Figure 33. Essentially,

it consists of a processor (the query processor (QP)) and two sequential

access memories -- SM I and SM II. The sequential memories hold, respectively,

the two query conjunctions to be compared. Thus, each sequential memory

needs to be no larger than the largest single query conjunction that will be

encountered by DBC. This is estimated to be in the neighborhood of 1 Kbytes.

CDU utilizes the fact that the predicates in a query conjunction are arranged

in ascending order of their attribute identifiers. Each predicate is an

<attribute identifier, operator, value> triple. CDU begins to read a sequential

stream of bits from both SM I and SM II and to make a bit-serial comparison.

Whenever there is a match between the attribute identifier in SM I and the

attribute identifier in SM II, the operator and value in SM I are compared

with the operator and value in SM II to determine if the query conjunctions are

nonclashing on this attribute (See Table I). If the attribute identifier in

one of the sequenital memories is larger than the attribute identifier in the

other sequenital memory, then the QP skips over the operator and value of the

smaller attribute identifier to the next attribute identifier. The above logic

is repeated until the conjunctions are found to be nonclashing on some attri-

bute, or it is concluded that the query conjunctions may be clashing on all

attributes.

The algorithm executed by the query processor (QP) is presented formally

below. It is microcoded in ROM-l and executed by microsequencer MC-1 (see

Figure 33).

ALGORITHM CLASH: Executed by the OP to determine if two query conjunctions are

nonclashing or whether they may be clashing.

INPUTS: (1) The first query conjunction in SM I and the number of predicates
(M) in it. I

(2) The second query conjunction in SM II and the number of
predicates (N) in it.

91

Clash Determination Unit (CDU)

____ ___ ____ ___ ___ ___ ___ ____ ___ ___Query

Output to S -Conjunction
DBCCP IBit (I Kbytes) From

-~ M C -lIPath
Commands From L.....J wP4th Sequential access DBICCP

DBICCP I i Query

fthSMI! ,- Conjunction
Query Processor (OP) (I Kbytes) From

Sequential access DBCCP

NOTE: The output is a single bit. A TI indicates the query
conjunctions maybe clashing. A '0' indicates that the
conjunctions are nonclashing.

Figure 33. A View of the Clash Determination Unit (CDU)

0j

92

01 02 V2

I ==Vl

2 > <VI
3 > <Vl

4 = < >VI
5 < __ >Vl

6 < <VI
7 < < onyvolue

8 < < anyvalue

9 < > <(VI-I)

10 < > <(V-I)
II < 5 VI

12 < < anyvalue

13 < < anyvalue

14 < > <(Vl-I)

15 < > <VI
16 > >VI
17 > > anyvalue
18 > > anyvalue

19 > < >(VI+I)

20 > < >(VI+I)
21 > >Vl

22 > > nyvalue
23 > > anyvalue

24 > < ?(VI+I)

25 > < >V

I
TABLE T. The Set of Conditions Used by the Clash Determination Unit

I
93

Step 1: I-. J=1.
Step 2: Al=I-th attribute identifier from SM I. A2=J-th attribute identifier

from SM II. If Al=A2, then go to Step 5. If Al<A2, then go to
Step 3. If Al>A2, then go to Step 4.

Step 3: I=I+1. If I>M, then return FLAG=l and terminate. Else, go to Step 2.
Step 4: J=J+l. If J>N, then return FLAG=l and terminate Else, go to Step 2.
Step 5: [Recall that a query conjunction is a conjunction of predicates,

where each predicate is a triple of the form (attribute identifier,
operator, value)]. 01 = I-th operator from SM I. 02 = J-th operator
from SM II. Vl = I-th value from SM I. V2 = J-th value from SM II.
Check if any of the 25 conditions listed in Table I hold between 01,
02, Vl and V2. If so, then I=1+1, J=J+l, and go to Step 2. Else,
set FLAG=0 and terminate. [If any of the conditions listed in Table
I hold, we conclude that the query conjunctions may be clashing on
this particular attribute].

[Note: The result of this algorithm is returned in a variable called FLAG.

FLAG=0 indicates that the query conjunctions are nonclashing. FLAG=I indicates

that the query conjunctions may be clashing.]

Earlier, we had indicated that it would be necessary to decide if two

queries were nonclashing or if they may be clashing. The CDU only determines

if two query conjunctions are nonclashing or may be clashing. In order to make

use of this facility, and for other reasons [1-6], we do the following in DBC.

Each delete (retrieve, update) command is split up into m delete (retrieve,

update) commands, where m is the number of conjunctions in the query associated

with the delete (retrieve, update) command. Thus, the command

DELETE (Name = HSIAO) V (Salary > 50)

is split up into two commands as follows.

DELETE (Name=HSIAO)

DELETE (Salary>50)

Now, all delete, update and retrieve commands utilize only query conjunctions.

All our earlier discussion on commands with queries is equally applicable to

commands with query conjunctions, since a query conjunction is also a query.

Thus, we have reduced the problem of trying to determine if two queries are

nonclashing (or may be clahsing) to the problem of trying to determine if two

query conjunctions are nonclashing (or may be clahsing). The CDU may be readily

utilized to serve the above purpose.

5.5 DBCCP Processing

In this sub-section, we will consider the kinds of processing done by

DBCCP in order to execute any given request issued by a user. A description

94

of some of the data structures that will have to be used by DBCCP in order to

do the processing is also presented. Since the processing needed for delete

and retrieve commands is different from the processing needed for update

commands, we shall describe these in different sub-sections.

5.5.1 Data structures Needed for DBCCP Processing

DBCCP will need the use of two tables to process the various kinds of

requests issued to it. We will describe each in turn.

A. Incomplete Updates Table (IUT)

There is only one such table in DBC. Each entry in IUT is an update

command on which execution has been started but not completed. That is, none

of the update commands in this table were blocked by any other update command

and hence were scheduled for execution. Each of the update commands in IUT

will be in one of the following stages of execution.

(1) An order has been issued to the SM to retrieve index terms corres--

ponding to the command, but the intersected index terms have still

not been obtained by DBCCP.

(2) The intersected index terms corresponding to the command have been

obtained by DBCCP, and orders have been issued to the mass memory

(MM) to begin execution. However, the MM has not yet finished

executing the orders.

Basically, none of the updates in IUT are blocked or complete. An update

is completed only when the SM has been modified to reflect the changes caused

by the update. Each entry in IUT consists of three fields. Field 2 will

store the modifier part of the update command. Field 3 will contain a unique

number, called an update number, that is issued to each update command by DBC.
Field 1 needs more explanation. Recall that update commands issued to DBC

are split up into ur separate update commands, where m is the number of conjunc-

tions in the query associated with the original update command. Each newly

created update command has an associated query conjunction. Field 1 stores

the query conjunction associated with the update command minus the predicate

(if it exists) containing the attribute to be modified. An example should

serve to calrify the situation. If the update command is UPDATE ((Salary>50) A ,

(Name=HSIAO)) <Salary, newval=oldval+25>, then Field 1 will store the conjunc-

tion (Name=HSIAO). The predicate (Salary>50) Is removed from the conjunction "

since Salary is the attribute to be modified. Note that the removal of the

predicate containing the attribute to be modified from the query conjunction I

95

could cause the query conjunction to become null. In this case, a null value is

stored in Field 1. A logical view of IUT is shown in Figure 34. Any retrieve,

delete or update request received by DBC may be affected by one or more of the

updates in IUT and hence may be blocked until the update(s) are removed from IUT

after its (their) completion.

B. The Blocked Requests Table (BRT)

There is one such table in DBC. Each entry in the blocked renuests table

(BRT) contains a request which is blocked owing to one or more updates in TUT.

These requests may be delete, retrieve or update requests. Each entry in RRT

consists of two fields. Field 1 will contain the actual request itself (in its

entirety). Field 2 will contain a list of update numbers corresponding to

updates which cause this request to be blocked. A logical view of such a table

is shown in Figure 35. It indicates that the delete request

DELETE (Salary> 50)

is blocked by updates with update numbers 1, 5 and 12. All these three updates

must be completed before the delete request can be scheduled for execution.

5.5.2 The Handling of Retrieve and Delete Requests

When a retrieve (or delete) request is received by DBCCP, it is first

split up into m retrieve (or delete) commands, where m is the number of con-

junctions in the query associated with the retrieve (or delete) command. The

following is done for each of the m commands, DI, D2, ..., Dm, thus generated.

We shall explain the process for command Di which has the query conjunction ni

associated with it. Each entry in IUT is accessed in turn. If the attribute,

then ODU is invoked to determine if 01 clashes with the conjunction in Field 1

of the entry. Else, a check is made to see if the attribute to be modified

in Field 2 of the entry is part of the conjunction Qi. If it is not, then

we conclude that the update cor esponding to the entry does not block request

Di. If the attribute to be modified in Field 2 of the entry is Part of the

query conjunction Qi, then CDU is invoked to determine if ni clashes with the

conjunction in Field I of the entry. If the conjunction in Field 1 Is null,

we may conclude, without invoking CDU, that Qi clashes with this null entry.

In this way, each entry in IUT is accessed and the update numbers of all

updates that block the request Di are determined. If no update that blocks

the request Di is found, then Di is scheduled for execution. Otherwise, a

new entry is made in BRT with the request Di in Field 1 of the entry, and a

list of update numbers of all blocking updates in Field 2 of the entry.

96

Query Conjunction Modifier Update

___ ___ ___ ___ __ ___ ___ ___ ___ ___ Number

(Solaory>50) <Salory,newval I

oldval/2>

L 4
Figue 3. ALogcal iewof he ncomlet Upate

Tal (IT

97

List ofReq uest Update Numbers

[Delete (Salary > 50)] 1,5,12

Figure 35. A View of the Blocked Requests Table (BRT)

i

- *= " ~ ~ a" L ' ' -' "
°

" . . 4 o , _ m1

98

Each time an update request issued to DBC completes execution, BRT is

accessed, and the update number corresponding to the just completed update

request is removed from all lists (in the second fields of BRT) in which it

is a member. If any of the second fields in BRT is thus caused to become an

empty list, the corresponding request Di in Field 1 is examined again to see

if any new update request (which was issued subsequent to Di) in IUT is

causing Di to be blocked. If not, Di is scheduled for execution and the

entry corresponding to Di is removed from the BRT. However, if Di is being

blocked by some new updates in the TIUT, then Field 2 of the entry corres-

ponding to Di in BRT is filled with a list of update numbers of all blocking

updates.

Thus, a retrieve or delete request, received by DBCCP, is scheduled for

execution immediately if no incomplete update caused its blockage. Otherwise,

the execution of the retireve or delete request is stayed until such times

no blocking updates remain. The process is described algorithmically below.

ALGORITHM DELRET: Executed by DBCCP on receipt of a delete or retireve request.

Step 1: Split the request (in the manner indicated in an earlier sub-section)
into m separate requests, where m is the number of query conjunctions
in the query associated with the req. t. Each newly created
command has an associated query conjunc.:tion. Let the newly created
commands be Dl, D2, .., Dm and let the associated query conjunctions
be QI, 02. ... , Qm. Set i=l. In Steps 2 through 6, we process the

i-th command.
Step 2: [Let there be N entries in the IUT.] Set j=1. Set L-null list.
Step 3: Access the j-th entry in the IUT. Let the attribute to be modified

in Field 2 of the j-th entry be AT. If AT is a security or clustering
attribute, then go to Step 4. Else, check to see if AT is part of the
query conjunction Qi. If not, then go to Step 5. Else, go to Step
4.

Step 4: Place Oi in SM I of CDU. Place the conjunction in Field 1 of the j-th
entry of the IUT in SM II of CDU. Invoke Algorithm CLASH to determine
if the two query conjunctions are nonclashing. [If the conjunction
in Field 1 is null, we conclude, without invoking the CDU, that the
two query conjunctions may be clashing.] If the query conjunctions
may be clashing, then add the update number in Field 3 of the 1-th
entry in the IUT to L and go to Step 5. If the two query conjunctions
are nonclashing, then go to Step 5. [Note that in L we are building
up a list of update numbers of blocking updates.]

Step 5: j=j+l. If j<=N, then go to Step 3. If J>N, then check to see if
L is equal to the null list. If it is, then go to Step 6. If L
is nonnull, then create a new entry in the BRT with Di in Field I
and 1 in Field 2. Go to Step 7.

Step 6: Schedule the execution of request Di and go to Step 7.
Step 7: i=i+l. If i>m, then terminate. Else, go to Step 2.

99

5.5.3 The Handling of Update Requests

When an update commani is received by DBCCP, it is first split up into

m update commands, where m is the number of conjunctions in the query associated

with the update request. The following is done for each of the m commands,

Ul, U2, ..., Um, thus generated. We shall explain the process for command

Ui which has associated with it the conjunction Qi.

The update request Ui is handled essentially in two stages. The processing

done by DBCCP in the first stage is similar to the processing done by DBCCP to

handle a retrieve or a delete reauest. Each entry in IUT is accessed and a

check is made to see if the attribute to be modified in Field 2 of the entry is

a security or clustering attribute. If so, then CDU is invoked to determine

if Qi clashes with the conjunction in Field 1 of the entry. Else, a check is

made to see if the attribute to be modified in Field 2 of the entry is part

of the conjunction Qi. If not, we conclude that the update corresponding to the

entry does not block Ui. Otherwise, CDU is invoked to determine if Qi clashes

with the conjunction in Field 1 of the entry. If the conjunction in Field 1

is null, we conclude, without invoking CDU, that Qi clashes with the conjunction

in Field 1.

In this way, each entry in IUT is accessed and the update numbers of all

updates that block the request Ui are determined. If no update that blocks

the request is found, the processing enters the second stage and this will be

described later. Otherwise, a new entry is made in the blocked renuest table

(BRT) with the request Ui in Field 1 of the entry, and a list of update numbers

of all blocking updates in Field 2 of the entry. Ui will be scheduled for

execution only after all the blocking updates in Field 2 of the BRT entry

have completed and no more blocking updates exist in IUT (see Algorithm

COMPLETE in the next sub-section).

When an update request Ui has no updates blocking it, DBCCP enters the

second stage of execution. In this stage, the request Ui is scheduled for

execution. First, DBCCP tries to determine the class to which the update

request Ui belongs. If it belongs to one of CLASS I, CLASS II, or CLASS II,

then request Ui is not entered into IUT. This is because the SM can be updated

even before Ui is executed, and, hence, Ui will not block any subsequent

request. If Ui does not belong to any of these three classes, then it is entered

into IUT since it could, potentially, block subsequent requests to DBC. The

entry in IUT is as follows. Field 1 will contain Q1 minus the predicate (if

100

it exists) containing the attribute to be modified. Field 2 contains the modifier

and Field 3 contains an update number which is a unique number given to update

request Ui by DBCCP. The entire process is shown algorithmically below.

ALGORITHM UPDATE: Executed by DBCCP on receipt of an update request.
[STAGE 1]

Step 1: Split the request (in the manner indicated in an earlier sub-section)
into m update requests, where m is the number of query conjunctions
in the query associated with the request. Each newly created
command has an associated query conjunction. Let the newly created
commands be Ul, U2, ..., Um and let the associated query conjunctions
be Q1, Q2, ..., Qm. Set i=l. In Steps 2 through 8, we process the
i-th command.

Step 2: [Let there be N entries in the IUT.] Set j~l. Set L=null list.
Step 3: Access the j-th entry in the IUT. Let the attribute to be modified

in Field 2 of the j-th entry be Al. Check to see if Al is a security
or clustering attribute or is part of the query conjunction Oi.
If not, then go to Step 5. Else, go to Step 4.

Step 4: Place Qi in SM I of the CDU. Place the conjunction in Field I of the
j-th entry of the TUT in SM II of the CDII. Invoke Algorithm CLASH
to determine if the two query conjunctions are nonclashing. [If
the conjunction in Field 1 of the j-th entry is null, we conclude,
without invoking the CDU, that the query conjunctions may be clashing.]

If the query conjunctions may be clahsing, then add the npdate number
in Field 3 of the j-th entry in the IUT to L and go to Step 5.
[In L, we are building up a list of blocking updates.]

Step 5: j=j+l. If J<=N, then go to Step 3. If j>N, then check to see if
L is equal to the null list. If it is, then go to Step 6. If L is
nonnull, then create a new entry in the BRT with Ui in Field 1 and 1.
in Field 2. Go to Step 9.

[STAGE II]

Step 6: Let A=attribute to be modified in Ui. If A is not part of a directorv
keyowrd, then go to Step 7. (Ui is a CLASS I request, and no change
is needed-lin the SM). Else, if A is not a security or clustering
attribute and Qi='ALL', then mark the request as belonging to CLASS II
and go to Step 7. Else, if A is not a security or clustering attri-
bute and Oi is a single predicate using A, then mark the request as
belonging to CLASS III and go to Step 7. Else, if A is not a security
or a clustering attribute, then mark the request as belonging to
CLASS IV and go to Step 8. Else, if A is a security but not a
clustering attribute, then mark the reuqest as belonging to CLASS V
and go to Step 8. Else, if A is a clustering but not a security
attribute, then mark the request as belonging to CLASS VI and go to
Step 8. Else, mark the reuqest as belonging to CLASS VII and go to

Step 8. I
Step 7: Schedule the request for execution, and go to Step 9.
Step 8: Make an entry in the IUT as follows. Field I will contain Qi

minus the predicate (if it exists) containing attribute A. Field 2 I
will contain the modifier part of Ul. Field 3 will contain the update
number assigned to request Ui. Go to Step 7.

Step 9: i=i+]. If l>m, then temrinntp. Else, pn to Step 2. j

m

101

5.5.4 DBCCP Processing on Completion of an Update Request

We now describe the algorithm that will be executed by DBCCP when it is

notified by MMC that an update request has been completely executed by MM.

ALGORITHM COMPLETE: Executed by DBCCP when notified of the completion of an
update request by MMC.

INPUTS: (1) The update number (UN) of the completed request.
(2) A set of index terms that must be modifiee in SM.

Step 1: Search through the IUT and remove the entry which contains UN in
Field 3.

Step 2: Request the SM to make the necessary modifications indicAted by the
second input.

Step 3: For each entry in the BRT, do Steps 4 and 5.
Step 4: Check if UN is one of the numbers in the list in Field 2 of the entry.

If so, then delete UN from the list in Field 2. If the removal of
UN from the list in Field 2 causes the list to become null, then go
to Step 5. Else, do nothing.

Step 5: [If possible, schedule the request in Field 1 of the entry for
exectuion.] If it is a delete or retrieve request, then invoke
Algorithm DELRET. If it is an update request, then invoke
Algorithm UPDATE.

Step 6: Terminate.

5.6 Command Execution in the Mass Memory (MM)

In this sub-section, we would like to describe the actual execution of the

update request in MM after they have been scheduled for execution by DBCCP. We

will begin by assuming that TIPs have small buffers attached to them. Later,

we shall show the improvement in performance that can be obtained by having

track-size buffers with each TIP. Finally, we shall propose a way of further

improving the throughput of DBC. By referring back to the analytical model

developed in Section 2, we shall arrive at some quantitative figures for the

data loop throughput.

5.6.1 Calculating the Number of Revolutions for an Update

Let us assume that each TIP has a buffer that is only big enough to hold

one record. Therefore, onlv one record can be stored and updated in one

revolution of the disk device. Essentially, the process of update is as follows.

In the first revolution, the first record (in each track) that satisfies the

given query conjunction is stored in the corresponding TIP buffer. Each TIP

then updates the record in its buffer. In the second revolution, the updated

record is written back onto the track and the second record that satisfies the

query conjunction is read out into the TIP buffers from each track. Tn this way,

if n records have to be updated in a track, the corresponding TIP will take n+l

revolutions to do the update. Consider a typical example, where the size of a

' I
102

track is 30 Kbvtes, and the average size of a record is 200 bytes. This means,

that there are about 150 records in a track. Assuming that 10% of the records

in a track will be updated, we see that the process of updating will take 16

revolutions.

Consider, instead, that each TIP has a track-size buffer associated with

it. In the first revolution, all records that satisfy the cuery conjunction

associated with the update command are read into the buffers by the TIPs. In

the second revolution, all the records are updated by the TIPs. The third

revolution may then be used to write back all the updated records into the TIP

buffers. Thus, only three revolutions are needed to perform an update.

Actually, we can do a bit better than this. Since each TIP really consists of

a disk interface processor (DIP) and a control interface processor (CIP), the

first revolution may be utilized for both reading and updating of records. That

is, even as the DIP is reading a record and Placing it in the buffer, the CIP

is updating a previously read record in tht- buffer. However, since a record

cannot, probably, be updated as fast s it , n h. read off the tracks, we will

assume that the process of update still takes thrce revolutions to execute.

5.6.2 A Modification

We will now suggest a modification to the ahove method of doing updates

in order to get some additional improvement. The method we use takes only

two revolutions per update, instead of three. A set of orders on a particular

cylinder is executed as follows. The first revolution is devoted to reading

all the records into the track-size buffer associated with each TIP. Sub-

sequent orders (that are within this set of orders) will not read the records

from the track. Instead, they will read the records from the track-size buffer.

We recall that this track-size buffer is a sequential memory. Let us refer

to the sequential reading of all the records in the buffer, from end to end, as

a readthrough of the buffer. If the shift rate of the seauential memory is

greater than the readout rate of the track device, requests will he handled

quicker than before because the time taken to read through the entire track-

size buffer (one readthrough) is less than the time taken to read an entire

track of information off the disk (one revolution).

Remember, that each of the TIPs utilizes a bit map to remember the positions

of the records which have been deleted. In order to handle update requests, we

shall utilize another bit map to remember the positions of the records which

were found to satisfy the query conjunction associated with the update request.

Thus, each record in the buffer has two bits associated with it. The first bit

i iA

103

is the delete bit, and the setting of this bit indicates that the corresponding

record has to be deleted. The second bit is the update bit, and its use will

be indicated in the following paragraph.

The execution of an update request proceeds as follows. The DIP begins

to read the records from the buffer and it sets the update bits of all records

that satisfy the query conjunction associated with the update request. CIP also

reads the records in the buffer and updates those records whose update bits

have been set. DIP and CIP operate in a pipeline fashion, that is, even as

DIP is reading a record and checking it for satisfaction with the query conjunc-

tion, CIP is updating a record that has been previously read from the buffer

by the DIP. The algorithms executed by the CIP and the DIP are indicated below.

ALGORITHM DIP: Executed by the DIP in response to an update request.

INPUTS: (1) The records in the track-size buffer.
(2) The query conjunction part of the request stored in the query

buffer.

Step 1: For each undeleted record in the buffer, do Step 2.
Step 2: Check to see if the record satisfies the query conjunction in the

query buffer (by sequential reading of the record from the track-
size buffer and of the query conjunction from the query buffer).
If so, then set the corresponding update bit. Indicate to the CIP
that it has finished processing the record.

Step 3: Terminate.

ALGORITHM CIP: Executed by the CIP in response to an update request.

INPUTS: (1) The records in the buffer.
(2) The modifier part of the update request.

Step 1: For each undeleted record in the buffer, do Steps 2 and 3.
Step 2: Wait until the DIP Indicates (via the communication area) that it. has

finished processinpthe segment to which the record belongs.
Step 3: Check the update bit corresponding to the record. If it has been

set, then update the record using the modifier part of the update
request and then reset the update bit. If the update bit has not
been set, then do nothing.

Step 4: Terminate.

It is difficult to apprcximate the time taken to perform an update, since the

time taken to update a record depends upon the complexity of the update (e.g.,

whether it involves a mtltiplication or an addition) and the number of records

that must be updated. However, it is felt that an update request can be

completed in two revolutions of the disk device. One additional revolution

will, of course, be needed at the end of a set of orders in order to write

back ali the records from the buffer onto the track. The writing back of all

the records in the buffer may be done in the same revolution that is used to

insert records into the track (see Section 4 on compaction).

104

Finally, we make use of the analytical model developed in Section 2 in J
order to make a quantitative estimate of the performance improvements obtained

as a result of the suggested change. Figures 36a and 36b show the results,

in graphical form, of a comparison study of throughput rates with and without

the suggested changes. The improvements (especially in the case where 50% of

the requests are update requests), as can be seen, are quite gratifying.

5.7 The Handling of the Various Request Classes

We have already classified the update reouests into seven different classes.

Also, in an earlier sub-section, we have indicated how DBCCP determines the

class to which a given update request belongs. By the time the update request

is received for execution by MM, the class of the request is indicated in the

request itself. Algorithm CIP and Algorithm DIP, which were presented in the

previous sub-section, are the algorithms executed by M in response to update

requests that belong to one of CLASS I, CLASS II or CLASS III. That is, there

is no difference in the manner in which CLASS I, CLASS II or CLASS III requests

are handled by MM (these requests are handled differently by the DBCCP and

they require different kinds of updates in the SM). However, if the request

belongs to CLASS IV, CLASS V, CLASS VI or CLASS VII, MN will have to execute

a different set of algorithms. We shall consider each class in turn.

5.7.1 Handling CLASS IV Requests

We recall that a CLASS IV update request is one which does not belong to

CLASSI, CLASS II or CLASS III, and in which the attribute to he modified is

part of a directory keyword, but is not a security or a clustering attribute.

In this case, we need to modify SM after M completes its update part. This

means that the entry corresponding to the old value of the attribute to be

modified must be deleted from the SM and an entry corresponding to the new

value of that attribute must be inserted into the SM. This, in turn, means

that TIPs have to keep track of the keywrods that were modified in the records

in MM. In order to do this, TIPs use the following tables.

(1) The tagged deletion table (TDT).

(2) The untagged deletion table (UDT).

(3) The structure memory insertion table (SMIT).

We have already described TDT and UDT in Section 4. SMIT is similar to the

other two tables and is shown in Figure 37. As can be seen, each entry in it

consists of two fields. The first field contains a directory keyword. The

second field contains a set of pairs, where each pair is of the form (cylinder

number, security atom number). Entries in SMIT must later be inserted into SM.

moll

120

100

80 percentage of delete requests=25%
percentage of retrieve requests:25/.
percentage of update requests=25/.

0 06 percentage of insert requestsz25%

00W

~CE

6025-0k
00

20 ~~~with trck-size buffer adol n

write back at the end of a set of orders
n =(20+ 80/k)

I I I'
0 10 20 30 40 50

k
minimum number of orders per cylinder

queue before a seek is initiated on that
cylinder

Figure 36a. Graph Showing Results of Study when Percentage
of Update Requests is 25%

106

220

200

I8O

a 160

0

0-

C7 0 percentage of update roquets-O%

~.0percentage of iner reduestsx16,67%
S0

SE

.- eI

woth IraCk-IC buffer and only one

."It bach 01 the eriC o at 0 ta oroe's

20- (In eo80 3 * SOt.

0 10 20 30 40 50
k

minimum number of orders per cylinder
queue before a seek is initialed on that

cylinder

Figure 36b. Graph Showing Results of Study when Percentage
of Update Requests is 50%

A1

107

Directory A set of pairs. Each pair is
__________________Iof the form (cylinder number,

Keyword security atom number)

Figure 37. The Structure Memory Insertion Table (SMIT)

108

We are now in a postion to indicate the algorithms executed by CTP and

DIP to handle update requests of CLASS IV. DIP executes exactly the sane

algorithm as it does to handle CLASS I, CLASS II and CLASS III reouests, and

which we have earlier called Algorithm DIP. CIP, however, executes a different

algorithm.

ALOORITHM CIP IV: Executed by CIP in response to an update request of CTLAS! TV.

INPUTS: (1) The records in the secuential buffer.
(2) The modifier part of the update renuest.
(3) The TDT and SMIT in the RAM buffer.

Step 1: For each undeleted record in the buffer, do Steps 2 throuqh 5.
Step 2: Wait until the DIP indicates (via tne communication area) that it

has finished processing the segment to which the record belonps.
Step 3: Check the update bit Corresponding to the record. If it has not

been set, then do nothing. Else, go to Step 4.
Sten 4: Find the keyword, in the record, corresponding to the attribute to

be modified. Let the attribute to be modified be Al, and let the
keyword corresponding to this attribute be <Al, Vi>. Also let the
record belong to Security Atom S, and let the record belonq to
Cylinder M. Search through the TDT, looking for an entry with the
kevword <Al, Vl> in Field 1. If no such entry exists, create a new
entry with the keyword <Al, V1> in Field 1, and the pair (M,S) in
Field 2. If such an entry exists, look through the list in the second
field of the entrv to see if the pair (M,S) is part of the list. If
not , add the pair (M,S) to the list in Field 2. Oo to Step 5. [Here,
we are putting the SM entry corresponding to the old value of
attribute Al into the TDT, since this entrv mav have to be deleted
from the S1.]

Step 5: Perform the necessary update using the modifier part of the update
command. Let the new value of the attribute to be modified (Al) be
V2. Then, the new keyword corresponding to the attritbute Al is
<Al, V2> . Search through the SMIT, looking for an entry with the
keyword <Al, V2> inField 1. If no such entry exists create a nev
entry with the keyword <Al, V2> in Field 1, and the pair (M,) In
Field 2. If such an entry exists, look through the list in the second
field of entry to see if the pair (M,S) is part of the list. If not,
add the pair (M,S) to the list in Field 2. Reset the update bit
corresponding to this record. [In this step, we are putting an ertrv
corresponding to the new value of attribute Al into the SMIT. This
entry may later have to be inserted into the SM. Nothice that this
new enrty may later have to be inserted into the SM. Notice that
this new entry will not have to be inserted into the SM if a later
update causes further modification of attribute Al in this record.1
Reset the update bit.

Step 6: Terminate.

Thus, we see that the execution of update requests belonging to C(LASq TV

will cause entries to be made in TvT and SMIT. Earlier in Section 4, we had

shown how the process of compaction causes entries to he made In TDT and UTT.

Thus, at the end of a set of orders, each TIP has three tables to he transferred j
to the mass memory controller (MMC). These are TDT, UDT and SMIT. In Section

4, we had also indicated the algorithm that will be executed by ?*C In order 1

109

to form the structure memory deletion table (SMDT) from TDT and UDT. Here, we

shall indicate the MMC algorithm to form SMIT.

ALGORITHM SMIT: Executed by MMC to form the structure memory insertion table
(SMIT).

INPUTS: One SMIT per TIP.

Step 1: Concatenate all the SMITs into a single SMIT. Let there be N entries

in the newly formed SMIT. For each entry in the newly created SMIT,
do Steps 2 and 3.

Step 2: [Assume that we are processing the I-th entry in SMIT.] Let the entry
be of the form <K,S>, where S is a set of pairs and K is a directory
keyword. Look through every entry below this entry (i.e., entries
I+1 through N) and see if any of these entries below it have the
value K in Field 1. Put all these entries, below the I-th entry,
with value K in Field 1, into a set 0. For each entry in set Q,
do Step 3.

Step 3: Let the entry be of the form <K, R>, where R is a set of pairs.
Delete this entry from the SMIT and change the I-th entry in the
SMIT to <K, S U R>.

Step 4: Terminate.

Thus, at the end of the execution of a set of orders, MMC obtains a SMDT

and a SMIT. MMC sends these tables to DBCCP, which then instructs SM to first

insert the index terms in SMIT and then delete the index terms in SMDT.

5.7.2 Handling CLASS V, CLASS VI and CLASS VII Requests

A CLASS V update request is one in which the attribute to be modified is

a security attribute but is not a clustering attribute. A CLASS VI update

request is one in which the attribute to be modified is a clustering attribute

but is not a secuirty attribute. A CLASS VII update request is one in which the

attribute to be modified is both a security and a clustering attribute. The

TIPS execute the same algorithm to handle an update request in one of these

three classes.

DIP executes the same algorithm as it does to handle CLASS I, CLASS IT,

CLASS III and CLASS IV requests (which we have earlier called Algorithm DIP).

CIP, however, executes a different algorithm.

ALGORITHM CIP V: Executed by the CIP in response to an update request of

CLASS V, CLASS VI or CLASS VII.

INPUTS: (1) The records in the sequential memory.

(2) The modifier part of the update request.
(3) The TDT in the RAM buffer.

Step 1: For each undeleted record in the buffer, do Steps 2 through 5.

Step 2: Wait until the DIP indicates (via the communication area) that it
has finished processing the segment to which the record belongs.

Step 3: Check the update bit corresponding to the record. If it has not been
set, then do nothing. Else, go to Step 4.

110

Step 4: Find the keyword, in the record, corresponding to the attribute
to be modified. Let the attrbute to be modified be Al, and let the
keyword corresponding to Al be <Al, VI> . Also, let the record belong
to Security Atom S and Cylinder M. Search through the TDT, looking
for an entry with the keyword <Al, Vl> in Field 1. If no such entry
exists, create a new entry with the keyword <Al, VI> in Field 1,
and the pair (M,S) in Field 2. If such an entry exists, look through
the list in the second field of the entry to see if the pair (M,S)
is part of the list. If not add the pair (M,S) to the list in
Field 2. Go to Step 5. [Here, we are putting into the TDT, the
SM entry corresponding to the old value of attribute Al, since, this
entry may have to be deleted form the SM.]

Step 5: Perform the necessary update using the modifier part of the update
command. Set the delete bit corresponding to this record. Send
the record over to the MMC. [Setting the delete bit will caus the
removal of all those entries in the SM which point to this record.
This removal will happen during the process of compaction.] Reset
the update bit.

Step 6: Terminate. j
Essentially, CIP updates the records that satisfy the query. I then

marks these records as having been deleted and sends these records over to WC j
which in turn sends them over to DBCCP. For each record that is received by

it, DBCCP does the following.

(1) If the update request is of CLASS V, it determines a new security

atom for the record.

(2) If the update request is of CLASS VI, if determines a new cluster

and cylinder for insertion.

(3) If the update request is of CLASS VII, it determines a new security

atom, a new cluster and a new cylinder for insertion.

Then, it issues an insert command with that record as argument. The insert

command will, of course, cause many new index terms to be created in the SM

(one for each direct-ry keyword in the record). The old index terms associated

with the record will oe removed by the process of compaction which takes place
at the end of a set of orders.

The flow of seven classes of update commands in DBC is depicted in Figure

38. In this figure, we also name the algorithms needed for the execution of

each class. Attached to the left of the algorithms named are the tables nec-

essary for supporting the running of the algorithm. Attached to the right of

algorithms named are the hardware components required for running the algorithm j
and utilizing the tables. This figure gives an overall structure of the infor-

mation, algorithms and components needed for update.

I

Update Requasl

AlI oes then U telI i

CL-IS -Lass n CLSS M CLASS iV :Lass V CLAS VI LASS YTI

Chlq

& '4. "uIA.A II I n4 . ~ UU~II ~ I 1" O~I!',O&

,a ,1 . E ? IDIT I.1.u 1.4

i , A 03 *

A ad AACU.IQ A cUaisl f

Im I

.. date upat IA-C)II ,..n

In I

Figure 38. The Command Flow of Seven Classes of Update

112

6. SUMMARY OF ARCHITECTURAL ENHANCEMENTS

In the preceding sections, we considered each of the processes of insertion

deletion and update in isolation. In this section, we propose to present an

integrated picture of DBC with all the enhancements that have been suggested

in the previous sections.

A set of orders on a particular MAU is handled in DBC as follows. In the

first revolution of the disk device, TIPs will read all the records into the

track-size buffers which are associated with each TIP. In the subsequent

revolutions, retrieve, delete, insert and update commands are executed as

described in the following sub-sections.

6.1 Handling Retrieves

If the request is a retrieve request, DIP will begin to search the records

in the buffer, from end to end, to find those that satis y the query conjunction

in the given request. DIP will set the update bits corresponding to all

qualitying records. Simulataneously, CIP also begins to search the records

in the buffer. Whenever CIP encounters a record whose update bit has been

set, it transmits the record from the buffer to MMC and then resets the update

bit corresponding to the record. CIP and DIP can operate in a pipeline fashion,

since the buffer consists of many individually accessible segments. Therefore,

when DIP is looking to see if a particular record in a segment qualifies for

retrieval, CIP can be sending another record (in another segment which DIP

has finished processing) to MMC. The algorithms are presented formally below.

ALGORITHM DIPRETRIEVE: Executed by DIP in response to a retrieve request.

INPUTS: (1) The records in the track-size buffer.
(2) The query conjunction stored in the query buffer.

Step 1: For each undeleted record in the buffer, do Step 2.
Step 2: Check to see if the record satisfies the query conjunction in the query

buffer (by sequential reading of the record from the track-size
buffer and of the query conjunction from the query buffer). If so,
then set the corresponding update bit. Indicate to CIP that it has
finished processing the record.

Step 3: Terminate.

ALGORITHnM CIPRETRIEVE: Executed by CIP in response to a retrieve request.

INPUTS: (1) The records in the buffer.
(2) The update bit map in the RAN.

Step 1: For each undeleted record in the buffer, do Steps 2 and 3.
Step 2: Wait until the DIP indicates (via the communication area) that

it has finished processing the segment to which the record beion,:s.
Step 3: Check the update bit corresponding to the record. If it has been set,

then send the record over to MC and then reset the update bit. If
the update bit has not been set, then do nothing. --

Step 4: Terminate.

113

The time taken to execute the retrieve request is almost equal to the time

taken to read through the sequential track-size buffer from end to end (we have

earlier called this one readthrough). Since we feel that the shift rate of the

sequential buffer will be greater than the readout rate from the tracks, a

retrieve can be executed in less than the time taken for one revolution on a

disk device. This method of doing retrieval has another advantage over the

retrieval method previously proposed for DBC (where the records were read

directly off the tracks and compared to a query conjunction 'on the fly').

This may be explained by taking a closer look at the previous method.

In the previous method, records that satisfy the query coniunctioy are

read off the tracks and stored in a sequentially accessed buffer. During the

time that a DIP is comparing a record's keywords with the predicates of a query

conjunction, the part of the record which has moved past the read head is

stored in the buffer in case of a successful comparison. Now, if the compari-

son fails in the middle of a record, then the part of the record already

stored in the buffer must be discarded. This is done by sequenitallv moving

the buffer memory to restore it to its position at the time the record first

appeared at the read head. The buffer is essentially unavailable for input

during the recovery process. The nonavailability of the buffer can force

the DIP to postpone the processing of a record by one revolution. Thus, in

many cases, more than one revolution of the disk device will be necessary to

execute a retrieve request. This problem does not exist in the new method for

doing retrieves.

6.2 Handling Updates

If the request happens to be an update request, DIP will begin to search

the records in the buffer, from end to end, to find those that satisfy the

query conjunction in the given request. DIP will set the update bits corres-

ponding to all records that qualify for update. Simultaneously, CIP also

begins to search the records in the buffer. Whenever CIP encounters a record

whose update bit has been set, it updates the record and then resets the update

bit corresponding to the record. Once again, CIP and DIP operate in a pipeline

fashion -- that is, even as DIP is reading a record and checking it for

satisfaction with the querv conjunction, CIP is updating a record that has

been previously read from the buffer by DIP. We estimate the time taken to

perform an update as approximately LWo readthrouhs. This Lompares very

114

favorably with the time of three or more revolutions which are necessary in the

old method of doing updates (where the records were read off the tracks and not

from the buffer). In the old method, one or more revolutions are needed to

retrieve all relevant records into the buffer, another revolution is needed to

perform the update, and a third revolution is needed to write back the updated

records. The algorithms executed by CIP and DIP have been presented in detail

in Section 5.

6.3 Handling Insertions

As we recall, from Section 3, TIPs do not do any processing on encountering

an insert record request. MMC places the record into the buffer of the TIP

corresponding to the track for insertion, even as the TIPs continue their

processing of other requests. One revolution is needed, however, to write

these records onto the tracks.

The old method of doing insertions, as proposed in Section 3, required the

use of two buffers. The first buffer (Buffer B) was used to store records for

insertion. The second buffer (Buffer A) was used during the execution of

retrieve and update queries in order to store records to be retrieved and sent

to the post processor (PP) or to store records to be updated. The old method

of doing insertions had one other disadvantage which we shall explain bv means

of an example. Consider that the following two requests are issued, one after

the other, to the same cylinder. The first request is an 'insert-record'

request with record RI as argument. The next request is a 'retrieve' request

which is accompanied by query conjunction Qi. Let us assume that record RI

satisfies query conjunction Qi. Therefore, the retrieve request should cause

the retrieval of record RI along with the other records on the track that

satisfy Qi. However, since the retrieve request only looks at records in the

track and not at records in Buffer B, R1 will not be retrieved.

In the new method of doing insertions, only one buffer is needed with each

TIP. This buffer is the size of a track and contains all the records in the

track. As records come in for insertion, they are placed in the buffer after

the last record in it. A retrieve request will cause DIP to search the buffer

for records that qualify for retrieval. Since the buffer also contains all the

records that were inserted by 'insert-record' requests that preceded this

retrieve request, any record inserted by a prior insert request which qualifies

for retrieval will be retrieved. Thus, the disadvantage of the old method has

been eliminated.

t

115

6.4 Handling Deletions

Each deletion request takes one readthrough to execute. DIP will search

the records in the buffer, from end to end, to find those that satisfy the

query conjunction in the given request. It will also set the delete bits of

all records that qualify for deletion. CIP does no work in performing the

delete.

Additionally, we need to do compaction at the end of every set of orders.

Earlier, in Section 4, we had shown how to do this in three revolutions. In the

first revolution, DIP reads all the untagged records into one buffer and all

the tagged records into another buffer. The same revolution is utilized by the

CIP to process all the tagged records and form a tagged deletion table (TDT).

In the second revolution, DIP writes back all the untagged records while CIP

processes the untagged records and forms an untagged deletion table (UDT).

Finally, in the third revolution, MMC processes both TDT and UDT to form the

structure memory deletion table (SMDT) and it also forms the structure memory

insertion table (SMIT).

We shall now propose a scheme for compaction that takes only one read-

through and one revolution and which needs only a single buffer. Recall

that all the tagged and untagged records are already in the track-size buffer.

In the first readthrough, DIP processes all the tagged records and forms a

TDT while CIP processes the untagged records to form a UDT. In the second

revolution, all the untagged records in the buffer (this includes the records

for insertion) are written onto the track by DIP, while MMC creates SMDT and

SMIT. This will, of course, further improve the throughput of the data loop

of DBC.

6.5 Execution Times of Various Orders

To summarize, TIPs take one readthrough to execute a retrieve request, one

readthrough to execute a delete request, two readthroughs to execute an update

request, and no time at all to execute an insert request. Also, one revolution

is needed at the beginning of a set of orders to read the records into the track-

size buffer, and a revolution and a readthrough are needed at the end of a set

of orders to compact and write back the records from the buffer onto the track.

Let us estimate the time taken to execute a set of orders given the following

parameters.

k-number of orders in the set
pl-percentage of retreive requests
p2-percentage of update requests
p3-percentage of delete requests

116

p4=percentage of insert requests
r=time for one revolution of the disk device
rt=time for one readthrough of the sequential buffer
T(k)=time to execute a set of orders of length k

Therefore,

T(k)=k*[pl*rt + p2*2*rt + p3*rt] + r + r + rt

=k*rt*[pl + 2*p2 + p3] + 2*r + rt

The value of k (the minimum number of orders that must exist on a cylinder

before a seek is initiated on it) is a design choice. We shall explain how

the designer (often called a database administrator or DBA) might arrive at a

suitable value for k. First of all, he must have an idea of the kind of

environment that DBC will operate in. For example, he must know if the environ-

ment is update-intensive or not. In terms of the parameters of the previous

paragraph, the designer must know, or be able to guess, the values of p1, p2 and

p3. Also, he must know the shift-rate of the sequential track-size buffer and

the readout rate of the disks of MM. That is, he must know r and rt. There-

fore, the only unknown in the equation

T(k)=k*rt*fpl + 2*p2 + p3] + 2*r + rt

is k. We recall, from Section 3, that for stability of the data loop the

inequality T(k)/(k*n) < 1 must be true. By putting T(k)/(k*n) = 1, we will

arrive at the minimum inter-arrival rate (n) that can be sustained by the

data loop in terms of k. That is, the designer has an equation between n and

k. Depending upon the value of n that he wishes to have (that is, depending on

the throughput rate that he wishes DBC to have), the designer can arrive at

a value for k.

6.6 The Components of a TIP

Each TIP consists of the following sub-components.

,') The disk interface processor (DIP).

(2) The controller interface processor (CIP).

(3) The sequentially accessed query buffer.

(4) The sequentially accessed track-size buffer for the records

(5) A RAM for the delete bit map.

(6) A RAM for the update bit map.

(7) A RAM for the communication area between CIP and DIP.

(8) A RAM to store TDT.

(9) A RA to store UDT.

(10) A RAM to store SMIT.

117

The actions performed by CIP and DIP have been explained throughout

this report. Primarily, DIP is responsible for reading information in the

track-size buffer and for receiving/transmitting data to the tracks of the

disk. The main responsibility of CIP is for communicating with the mass

memory controller (MMC) over IOBUS. Such communication involves the acceptance

of orders and database objects from MMC and transfer of data (retrieved by

DIP) and of various tables (created by DIP and CIP) to MMC.

The query memory is a sequential access memory with a capacity to store

the largest single query conjunction that may be encountered by MM (about 1

Kbytes). The track-size buffer is also a sequential access memory. This

memory is divided into a number of individually accessible segments. Each

segment may be read out of or written into in a sequential manner. The

motivation for dividing the record buffer into segments is as follows:

while DIP is extracting information from the track and placing it in one of

the segments, CIP can be transmitting previously extracted information present

in one of the other segments to MMC.

Each TIP utilizes two bit maps, the delete bit map and the update bit map,

which are small random access memories. Each record on the track has a unique

delete bit and a unique update bit. Assuming that the size of a track is 30

Kbytes and that the average size of a record is 200 bytes, we see that the number

of records per track is about 150. Thus, each bit map has 150 bits in it.

Before processing of a cylinder is to begin, all the bits in the two bit maps

are reset. The delete bit is used in the execution of a delete request. When

a record is to be deleted, the corresponding bit in the delete bit map is

turned on. Subsequent retrieve and update commands will ignore those records

that have their corresponding delete bits set. The update bit is used during

the execution of update and retrieve requests. When a record is to be udated

or retrieved, the corresponding update bit is turned on by DIP to indicate to

CIP that the record must be retrieved or updated.

The communication area buffer is also a small random access memory. It

contains one bit for each segment in the track-size buffer. If the bit corres-

ponding to a segment is set, then it is an indication to CIP that DIP has

finished processing that particular segment. This enables CIP and DIP to

operate in a pipeline fashion.

Finally, each TIP has random access memories to store TDT, UDT, and the

SMIT. A view of the organization of a TTP is shown in Figure 39.

118

Conroller Interface Disk Interface Processor
Processor (CIP) (D IP)

Programmed Programmed
Control Control T/ro

To/from the Trocx

1OBUS Multo~exor/

Dlemuitipiexor
Registers Registers

Update Delete Cmui Query Track-
Bit Maop sit Mapct o Buffer size

(R (RAM) (R R M RM) TA (AM) (Sequent-all (Sequentia'

I Kbytes 3TK-bytes

Figure 39. Organization of a Track Information Processor (TIP)

119

7. CONCLUDING REMARKS

Earlier reports have indicated how DBC handles search and retrieve

requests. In this report, we have shown how the process of update is carried

out in DBC. Since DBC might often have to be used in an update-intensive

environment (that is, an environment where many update, delete and insert

commands and only a few retrive commnanda are issued), we have indicated, throuch-

out this report, the kind of architectural enhancements which will nrovide pood

performance in an update-intensive environment.

Perhaps the most important enhancement that affects the performance of -Il

four types of requests in DBC (retrieve, delete, insert and update) is the

incorporation of a track-size buffer with each TIP. A set of orders on a

particular cylinder is handled as follows in DBC. In the first revolution of

the disk device, the TIPs will read all the records into these track-size

buffers. Subsequent retrieve, insert, delete and update commands are executed

by reading the records from this buffer rather than off the tracks.

The most important enhancement for insertion requests, is the addition

of the insert-in-parallel capacity. That is, records do not have to be inserted

into MM of DBC one record at a time. Rather, all the TIPs can he inserting

records at the same time.

With respect to deletion, we have shown how to speed up the process of

compaction dramatically. In fact, this process which originally took 487

revolutions of the disk device, now takes only one revolution of the disk

device and one readthrough of the buffer. This performance improvement is

achieved by using a track-size buffer with each TIP, thus avoiding the need to

transfer records to and from MMC.

With respect to updates, we have shown how an update request can be handled

in two readthroughs of the sequential track-size buffer. This is a substantial

improvement over the 16 revolutions that will be necessary to do an update

without the use of track-size buffers. Also, the concept of clashing has been

introduced. That is, all those requests which will be blocked by an earlier

update, which has not been completely executed, are clearly Identified. The

execution of the blocked requests must be stayed until the blocking update

is executed completely.

Throughout the report, we have always substantiated our claims of performance

improvement by using an analytical model to come up with some quantative

120

figures of the data loop throughput. The analytical model used is a two node

network model, where the first node consists of as many servers as there are

disk drive controllers, each with exponentially distributed service times and

exponential arrival rates, and the second node consists of a single server

with an exponentially distributed service time. By using this model, we have

also shown how a data base administrator (DBA) can control the throughput

achieved in DBC.

Li

A. --

121

REFERENCES

[11 Banerjee, J. and Hsi3o, D. K., "Perforance Evaluation of a Database Computer
in Supporting Relational Databases," Proceedings of the Fourth International
Conference on Very Large Data Bases, Berlin, Federal Republic of Germany,
September 1978, pp. 319-329; and Banerjee, J and Hsiao, D. K., "The Use
of a Database Machine for Supporting Relational Databases," Fourth Workshop
on Computer Architecture for Non-numeric Processing, Syracuse, New York,
August 1978, pp. 91-98; also available in Banerjee, J. and Hsiao, D. K.,
"DBC Software Requirements for Supporting Relational Databases," Technical
Report OSU-CISRC-TR-77-7, The Ohio State University, Columbus, Ohio,
November 1977.

[21 Banerjee, J. and Hsiao, D. K., "A Methodology for Supporting Existing
CODASYL Databases with New Database Machines," Proceedings of ACM '78
Conference, December 1978; also available in Banerjee, J., Hsiao, D. K.,
and Kerr, D. S., "DBC Software Requeirements for Supporting Network
Databases," Technical Report OSU-CISRC-TR-77-4, The Ohio State University,
Columbus, Ohio, June 1977.

[3] Banerjee, J., Hsiao, D. K., and Ng, F. K., "Data Network - A Computer
Network of General-Purpose Front-End Computers and Special-Purpose
Back-End Database Machines," Proceedings of International Symposium on
Computer Network Protocols, (Danthine, A., Editor), Liege, Belgium,
February 1978, pp. D6-1to D6-12; also available in Hsiao, D. K., Kerr,
D. S., and Ng, F. K., "nRC Software Requirements for Supporting Hier-
archical Databases," Technical 7Zeport OSU-CISRC-TR-77-1, The Ohio State
University, Columbus, Ohio, April 1977.

[41 Banerjee, J. and Hsiao, D. K., "Concepts and Capabilities of a Database
Computer," ACM Transactions on Database Systems, Vol. 3, No. 4, December
1978, pp. 347-384. Also available in Baum, R. I., Hsiao, D. K. and
Kannan, K., "The Architecture of a Database Computer -- Part I: Concepts
and Capabilities," Technical Report OSU-CISRC-TR-76-1, The Ohio State
University, Columbus, Ohio, September 1976.

[5] Kannan, K., Hsiao, D. K. and Kerr, D. S., "A Microprogrammed Keyword Trans-
formation Unit for a Database Computer," Proceedings of the Tenth Annual
.'orkshon on Micropropramminp, October 1977, Niagara Falls, New York,
pp. 71-79; and Hsiao, D. K., Kannan, K., and Kerr, D. S., "Structure
Memory Designs for a Database Computer," Proceedings of ACM 77 Conference,
October 1977. Seattle, Washington, pp. 343-350; also available in Hsiao,
D. K. and Kannan, K., "The Architecture of a Database Computer -- Part II:
The Design of the Structure Memory and its Related Processors," Technical
Report OSU-CISRC-TR-76-2, The Ohio State University, Columbus, Ohio,
October 1976.

[6] Kannan, K., "The Deisgn of a Mass Memory for a Database Computer,"
Proceedings of the Fifth Annual Symposium on Computer Architecture, April
1978, Palo Alto, California, pp. 44-50! also available tn Hsiao, D. K.
and Kannan, K., "The Architecture of a Database Computer -- Part III:
The Design of the Mass Memory and its Related Processors," Technical Report
OSU-CISRC-TR-76-3, The Ohio State University, Columbus, Ohio, December 1976.

122

[7] Banerjee, J., Hsiao, D. K., and Menon, J. M., "The Clustering and Securitv
Mechanisms of a Database Computer (DBC), "Technical Report OSU-CISRC-TR-7O-2,
The Ohio btate University, Columbus, Ohio, April 1979.

[8] Banerjee, J. and Hsiao, D. K., "Parallel Bitonic Record Sort - An
Effective Algorithm for the Realization of a Post Processor," Technical
Report OSU-CISRC-TR-79-1, The Ohio State University, Columbus, Ohio
April 1979.

[9] Hsiao, D. K. and Menon, J. M., "The Post Processing Functions of a
Database Computer," Technical Report OSU-CISRC-TR-79-6, The Ohio State
University, Columbus, Ohio, July 1979.

[10] Bremer, J. W., "Hardware Technology in the Year 2001," Computer, Vol.
9, No.12, December 1976, pp.31-36.

[11] Copeland, G. P., Llpovski, G. J. and Su, S. Y. W., "The Architecture of
CASSM: A Cellular System for Non-Numeric Processing," Proceedings of the
First Annual Symposium on Computer Architecture, December 1973, pp. 121-
128.

f12] Ozkarahan, F. A., Schuster, S. A., and Smith, K. C., "RAP - An Associative
Processor for Database Management," Proceedings of AFIPS, National Computer
Conference, Vol. 44, 1975, pp. 379-387.

[13] Hoagland, A. S., "Magnetic Recorditig Storage," IEEE Transactions on
Computers, Vol. C-25, No. 12, December 1976, pp. 1283-128Q.

[14] Ampex Corp., PTD-930x Parallel Transfer Drive, Product Description
3308829-01, October 1978.

[15] Hsiao, D. K., Kannan, K., "Simulation Studies of the Database Computer,"
Technical Report OSU-CISRC-TR-78-1, The Ohio State University, Columbus,
Ohio, February 1978.

[161 Chandy, K. M. and Sauer, C. H., "Approximate Methods for Analyzing Queueing
Network Models of Computer Systems," Computing Surveys, Vol. 10, No. 3,
September 1978, pp 281-317.

[17] Kleinrock, L., Queueing Systems I, John Wiley, New York, 1975.

[18] Su, S. Y. W. and Emam, A., "CASDAL: CASSIO's Data Language," ACM Trans-
actions on Database Systems, Vol. 3, No. 1, March 1978, pp. 57-91.

I
i

APPENDIX 1

The algorithm presented below is executed by the IP on receipt of an order

from the DBCCP.

ALGORITHM 1: To process an MM order from the DBCCP

INPUTS: Input MM order from the DBCCP in the format shown in Figure 6 and
the database object used as argument of the order.

Step 1: Use the database object identifier to search the DODT. If the object
is already in the DODT, then increment the usage count and go to Step

4.
Step 2: Allocate space for the database object in the DODT. If no space is

available, then reject the order and terminate.

Step 3: Place the (sorted) object in the DODT in the block allocated in

Step 2. Set usage count to 1.
Step 4: Check the QHT to determine if there is a queue for the MAU referenced

by the argument order. If there is a queue, then check .f the MAU
is being processed currently. If so, go to Step 7. If there is no

queue then also go to Step 7.
Step 5: [Order may be added to the queue.] Check if there is a free entry

in the OT. If not, go to Step 6. Else, enter the order into the OT
and link it to the queue for the MAU. Terminate.

Step 6: [No space in OT.1 Reject the order: reduce-the usage count of the
database object in the DODT. If the usage count is zero, then
release space occupied by the object. Terminate.

Step 7: [New queue to be created.] Scan QHT for a vacant entry. If no
vacant entry is found, go to Step 6. Else, call the entry number 'p'.

Step 8: Place the MAU address referred to by the argument order in the
appropriate field of OHT[p] (see Figure 5). Clear the status bits
of QHT[p]. Co to Step 5.

This algorithm is executed by the MMM. It continuously monitors the QHT

with a view to keeping the TIPs and the disk drives busy.

ALGORITHM A: To scan the order queues continuously.

Input Argument: QHT

Step 1: [Initialize] p=O.
Step 2: p=p+l. If p > N, then p=l. [N is the number of entries in the QHT.1
Step 3: If QHT[p, 3]='O', then go to Step 2; else, go to Step 4.
Step 4: If QHT[p,01='O', then go to Step 5; else, go to Step 7.
Step 5: [Initiate access to MAU.1 MAUADDR=QHT[p, 8-232]. Decode MAUADDR

into disk drive controller number d, drive number k and cylinder
number c.

Step 6: Interrogate disk drive controller number d, to determine if the drive
k Is free. If it is free, then issue a cylinder seek on drive k for

cylinder c and set QHT[p, 0] to '1'. Go to Step 2.
Step 7: If QHT[p, 1]='0', then go to Step 8; else, go to Step 10.

Step 8: [Check if seek is complete.] MAUADDR = QHT[p, 8-23.1 Decode MAUADDR
4n- A,,1'e c-fr-Iler nu-±-r d, drive nunber k and cylinder number c.

Step 9: Inerrogate drive controller d to determine if seek on drive k has
been completed. If so, then set QHT[p, 11 '1' and go to Step 10z

else, go to Step 2.

A-2

Step 10: [Initiate processing if necessary.] If QHT[p, 2] = '0', then go to
Step 11; else, go to Step 2.

Step 11: Interrogate if IDLE flag is on to determine if the TIPs are idle. If
so, then go to Step 12: else, go to Step 2.

Step 12: [TIPs are idle.] Invoke Algorithm B with the following arguments:
number of MAU orders given by QHT[p, 4-7], address of the first order
stored in the OT for the MAU and given by QHT[p, 24-39]. Go to
Step 2.

In Steps 4 through 6, we try to initiate cylinder seeks for MAUs which have

not been accessed so far. In Steps 7 through 9, we check on seeks already

issued during a previous scan. In Steps 10 through 12, we try to initiate the

TIPs by invoking Algorithm B.

Algorithm B is also executed by the 141IM. It is responsible for the

detailed dialogues with the TIPs after Algorithm A has found a MAU that has

been accessed and is ready to be processed.

ALGORITHM B: To initiate the execution of orders by the TIPs and to accept
dcta retrieved by the TIPs.

Input Arguments: 1. The number N of orders pending execution.
2. The address of the first order in the order table (OT).

Step i: (Initialize] p=l. FLAG=O.
Step 2: Pick up the p-th order from the OT. If the order code indicates an

insert-record order, go to Step 6. If the other code indicates a
delete-record order, then go to Step 5. If the order code indicates
an update order, then go to Step 7. If the order code indicates
a compaction order, then go to Step 15.

Step 3: [Retrieve] Broadcast the order to all the TIPs and go to Step 14.
Step 4: Wait until TIP interrupt occurs. When the interrupt occurs, go

to Step 8.
Step 5: [Delete] Broadcast the order to all the TIPs. Turn on DELETE flag.

Go to Step 4.
Step 6: [Insert] Broadcase the order "find available space in the track" to

all TIPs over the IOBUS. Turn on INSERTION flag. Go to Step 4.
Step 7: [Update] Broadcast the order to all the TIPs. Turn on the UPDATE

flag. Go to Step 4.

INTERRUPT ENTRY

Step 8: If the UPDATE flag is on, go to Step 9. If the INSERTION flag is on,
then go to Step 10. If the DELETE flag is on, then go to Step 11:
else, go to Step 14.

Step 9: [This part of the algorithm is described in Section 5.]
Step 10: Turn off the INSERTION flag. Read, from each TIP, the amont of

space available. Choose the track with the largest amount of space
available and issue the insert-record request to the TIP corresponding
to that track. Also, place the record to be inserted into the
buffer of the TIP corresponding to the track chosen for insertion.
Go to Step 4.

Step 11: [Check if there was any deletion.] Turn off the DELETION flag. If
the TIPs indicate that some records were tagged for deletion, then go
to Step 12, else go to Step 13.

L

A-3

Step 12: Store the MAU address in the mass memory deletion table (MMDT).
Step 13: Delete the order from the OT. p=p+l. If p>N, then request the TIPs

to write back all deletion tags, set IDLE flag on and halt: else go
to Step 2.

Step 14: [Receive retrieved records] If the TIPs have records to be output,
then receive them and send them to the SFP. Go to Step 13.

Step 15: [Compaction] Request the TIPs to read all tagged records.
Step 16: As the TIPs transmit tagged records over the IOBUS, create a structure

memory deletion table (SNDT), a view of which is shown in Figure 23.
Each entry in this table has two fields. The first field contains
a directory keyword, and the second field contains a set of pairs,
where each pair is of the form (cylinder number, security atom number).
Since this table is temporary and may be deleted at the end of the
compaction mode, it may be created in the database object descriptor
table (DODT). The SIDT is formed as follows. For each tagged
record that is received by the MMC, do the following. For each
directory keyword DKi in the record, look to see if there is an
entry in the S1.fT with DKi in Field 1. If no such entry exists,
then create a new entry with DKi in Field 1, and the pair (M,S) in
Field 2. [M is the cylinder being compacted and S is the security
atom number of the record being examined (the seucrity atom to which
a record belongs is part of the information present in a record)].
If such an entry exists, then search the corresponding set of pairs
in Field 2 of this entry to see if a pair of the form (M,S) exists.
If such a pair exists, then do nothing. Else, add the pair (M,S) to
the set of pairs in Field 2 of the corresponding entry. Now discard
the record. [In the SMDT, we are putting those SM entries which
point to records marked for deletion. Since the records have been
deleted, these entries (which point to the deleted records) must also
be deleted from the SM.]

Step 17: Request the TIPs to read the untagged records. [Since the memory
available to the mass memory monitor (MMI) is smaller than the MAU
capacity, the MMM will divide the TIPs into secitons which are
processed sequentially. Thus, if say 80K bytes are available to the
MIIM and the MAU capacity is 320K bytes, then the TIPs are divided
into four sections. TIPs in the same section are requested to
read their tracks concurrently during the compaction process. Steps
18 through 20 are repeated for each section].

Step 18: As the records from the TIPs come in, store them in the record storage.
Step 19: For each record in the record storage, do the following. For each

directory keyword DKi in the record, look to see if there is an
entry in the SMDT with DKi in Field 1. If no such entry exists, then
do nothing. If such an entry exists, then search the corresponding
set of pairs in Field 2 of this entry to see if a pair of the form
(M,S) exists. M is the cylinder being compacted, and S is the
security atom number of the record being examined. If such a pair
exists, delete the pair from Field 2 of the SMDT. Else, do nothing.
[In this step, we look at those entries in the SM which point to the
untagged (undeleted) records. We wish to delete, from the SM, all
entries that point to oeleted records. However, some entries in the
SM may point to both deleted and undeleted records. We wish to retain
these entries in the SM, since otherwise, pointers to undeleted
records will be lost. Hence, any entry in the SMDT which points to an
undeleted record is removed from it.]

A-4

Step 20: Write the records in the record storage back into the tracks via the
TIPs.

Step 21: Pass the SMDT table to the database command and control processor

(DBCCP). (DBCCP then accesses the structure memory (SM) and deletes
the relevant index terms from it.) Terminate.

I

,DATE

ILMIE f

I

