OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC—=ETC F/6 9/2
DESIGN AND ANALYSIS OF UPDATE MECHANISMS OF A DATABASE COMPUTER--ETC(U)
JUN 80 D K HSIAO» M J MENON NUODIU-TS-C-0573
oSU—ClSRC-TR-BO-3

i Rt HoHe Teotimea) Library

JUL 111980

CORMPUTER K
(NFLRRIATIGI

CCIENCE
RESEARCH CENTER

t

THEOHIOSTATEUNN]] 2 02 150

e O BNy L i b e e Wt i

OSU-CISRC-TR-80-3

/ . e -

DESIGN AND ANALYSIS
OF UPDATE MECHANISMS OF
A DATABASE COMPUTER (DBC)

by

;10 David K.stiao &M, Jaishankar/Menon

IAPPROVED FOR PURL .~
. TI0H UNLIdla. ..

I
Work Pgrformed Under
Contract {N0O0Q14-75-¢-0573
Office of Naval Research

* For .
Computer and Information Science Research Center
. o The Ohio State University
s - Columbus, Ohio 43210 |-
' o / Junepsd980 !
] A

Y S5

e e RSN S SRR b S

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REFORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
0SU~CISRC~TR-80-3 AP0 7 508
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Design and Analysis of Update Mechanisms of a |__Technical Report

6. PERFORMING ORG. REPORT NUMBER

Database Computer (DBC)

7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(s)

-—

David K. Hsiao

M. Jaishankar Menon N00014-75-C-0573

{

!

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK {

AREA & WORK UNIT NUMBERS !

Office of Naval Research |

Information Systems Program ‘ 4115~A1 :
Washington, D. C. 20360 .
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE { ‘\

[Juge 9, 1980 |

13. NUMBER OF PAGES !

132

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 1S5. SECURITY CLASS. (of this report) . ,

o e

15a, DECLASSIFICATION/DOWNGRADBING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Scientific Officer DCC New York Ar
ONR BRO ONR 437 ! FOR PURLIG T
ACo ONR, Boston RISIRIBUTION mmmgé.nr
NRL 2627 ONR, Chicago
ONR 1021P ONR, Pasadena

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

e o - < o 5 S e A . Ak s =

Database computer, update mechanisms, track-size buffers, insert-in-parallel, i
blocking, analytical model, queueing analysis. ;

\ /-/'.7 N 4) PR tel
20._WBSTRACT (Continue reverae side If neceseary end identify by block number)

This report Bhows how the process of update is carried out in the datahase
computer (DBC) wlich is a specialized back-end database machine capable of mana-
ging data of J0**10) bytes in size. Since DBC might often have to be used in an
update-intensive environment (that is, an environment where many update, delete
and insert commands and only a few retrieve commands are issued), we have indi-
cated throughout this report, the kind of architectural enhancements which will
provide good performance in an update-intensive environment.)

Perhaps the most important enhancement that affects the performance of all —

DD , 538", 1473 .’,

SECURITY CLASSIFICATION OF THIS PAGE rWhen Data Entered) i

e e - e o eyt oo

ST N R T A S

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

the four types of requests in DBC (retrieve, delete, insert and update) is the
incorporation of a track-size buffer with each TIP. The advantages that accrue
as a result of the incorporation are clearly demonstrated in the various sec-
tions of the report., For example, the process of compaction, which originally
took 487 revolutions the disk device now only takes one revolution of the
disk device and one readd-through of the buffer. Similarly, it is shown how an
update request can be handled in two read-throughs of the sequential track-
size buffer, This is a substantial improvement over the 16 revolutions that
will be necessary to do an update without the use of track-size buffers. With
respect to insertion requests, an important enhancement is the addition of an
insert-in-parallel capacity. That is, records do not have to be inserted into
MM of DBC one record at a time. Rather, all the TIPs can be inserting records
at the same time.

We have also isolated and studied in this report the problem of clashing,
i.e., requests being blocked by an update which has not been completely execu-
ted. The execution of the blocked requests must be stayed until the blocking
update is executed completely.

Throughout the report, we have always substantiated our claims of per-
formance improvement by using an analytical model to come up with quantitative
figures of the data loop throughout. By using the model, we have also shown
how a database administrator (DBA) can control the throughput achievable in
DBC.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ABSTRACT .

1.

TABLE OF CONTENTS

e« o

BACKGROUND

1.1

DBC Data Model

DBC Architecture
Control Flow During Command Execution
Organization of This Report

THE MASS MEMORY ¢« ¢« ¢ « « « &

2.1
2.2
2.3

The MM Design Philosophy
Toward an Intelligent Mass Memory . .
The Organization of the MM

2.3.1 The Mass Memory Controller (MMC) . .

2.3.1.1 Interface Processor (IP) . e .
2.3.1.2 The Mass Memory Monitor (MMM) . .
2.3.1.3 The Hardware Organization of the

The Flow of Information in the MM
The Track Information Processors . . e e e .

2.5.1 The Three Components of a TIP . . .

INSERTION OF RECORDS IN DBC .. v.cvverveen

3.1

3.7

Motivation for the Proposed Elements
Insert-in-Parallel
Comparison of the Two Methods
Algorithm Executed by MMM
Determining the Track for Placement of Record

3.5.1 Clustering Descriptors and Logical Clusters
3.5.2 Data Structures Used in the Algorithm . .
3.5.3 The Algorithm « ¢« « ¢« « ¢« o « o &

Analytical Study of Data Loop Performance . .

3.6.1 The Model . . . ¢ . « ¢ ¢ ¢ o o o« o s ¢
3.6.2 The Results of the Study . . .

The Choice of Record Buffering Size for the TIPs

DELETION OF RECORDS « .« . e e . e

4.1

4.
4.
4

The Method Used in CASSM
The DBC Method . « . . « « « ¢« « « « « e
Further Improvements . . . v e e e e s . .
Elimination of Compaction Mode and Deletion Bit Maps

4,4.1 Calculations of Data Loop Throughput

UPDATING OF RECORDS

5.1
5.2

The Nature of Update Commands . . .
The Concept of Blocking

5.2.1 Update of Nonsecurity and Nonclustering Attributes
5.2.2 Updating Security and Clustering Attributes

Table of Contents Continued

5.2.3 Requests Being Blocked Perpetually by Updates. 79

5.3 The Classification of Updates . . . ¢ ¢ ¢ v ¢« ¢ 4 o « s o s o s o o & 80
5.4 A Scheme to Determine if Two Queries are Nonclashing 90
5.5 DBCCP ProcesSing .« « + « » « o« o o o o o o o o o s o o o o s o o« » o 93
5.5.1 Data Structures Needed for DBCCP Processing. . . « « + + « « & 94
5.5.2 The Handling of Retrieve and Delete Requests+ . 95
5.5.3 The Handling of Update Requests e e e e 99
5.5.4 DBCCP Processing on Completion of an Update Request B 102]

5.6 Command Execution in the Mass Memory (MM) + + » +» 101

5.6.1 Calculating the Number of Revolutions for an Update 101
5.6.2 A Modification . . . + &« ¢ ¢ v v b i v v e e e e e e e e e .. 102

5.7 The Handling of Various Request Classes . . . + « &« &« &« « « » +» « . . 104 ﬁ

o

5.7.1 Handling CLASS IV ReqUeStS + « + « o« o« o« o o o o » s o o » o« - 104]
5.7.2 Handling CLASS V, CLASS VI and CLASS VII Requests 109

6. SUMMARY OF ARCHITECTURAL ENHANCEMENTS . . . « & + ¢ ¢« v o o« o o o o o « o 112

6.1 Handling Retrieves & & & ¢« ¢ ¢ 4 & o o o o « o o s o s o & o 112
6.2 Handling Updates . . . ¢ &+ v v ¢ o & o « o o o s o o o s o« o » » « - 113
6.3 Handling Insertions & ¢« ¢ v & 4 v s o« o o o« s s o s s o . . 114
6.4 Handling Deletions . . . v & ¢ ¢« o o o & « o o o o o o o o o « &+ « o« 115
6.5 Execution Times of Various Orders « ¢« + ¢ 4 & o & « & « » « « 115
6.6 The Components of a@a TIP . . . v v ¢ + &« v o & o« + o o o« o s+ o o+ « « » 116

7. CONCLUDING REMARKS . ¢ & v ¢ 4 ¢ ¢ ¢ o o o o o o o o o o o o o o o o s o o+ 119

REFERENCES . & & & & v v o ¢t 4 o o o o o o o o o o o o o o o o s o o o o« o 121

APPENDIX 1

ABSTRACT

This report shows how the process of update 18 carried out in the data-
computer (DBC) which is a specialized back-end database machine capable of
managing data of 10%**10 bytes in size. Since DBC might often have to be
used in an update-intensive environment (that is, an enviromment where many
update, delete and insert commands and only a few retrieve commands are
issued), we have indicated throughout this report, the kind of architectural
enhancements which will provide good performance in an update-intensive
environment,

Perhaps the most important enhancement that affects the performance of
all the four types of requests in DBC (retrieve, delate, insert and update)
is the incorporation of a track-size buffer with each TIP. The advantages
that accrue as a result of the incorporation are clearly demonstrated in the
various sections of the report. For example, the process of compaction,
which originally took 487 revolutions of the disk device now only takes one
revolution of the disk device and one read-through of the buffer. Similarly,
it is shown how an update request can be handled in two read-throughs of the
sequential track-size buffer. This is a substantial improvement over the 16
revolutions that will be necessary to do an update without the use of track-
size buffers. With respect to insertion requests, an important enhancement
is the addition of an insert-in-parallel capacity. That is, records do not
have to be inserted into MM of DBC one record at a time. Rather, all the
TIPs can be inserting records at the same time.

We have also isolated and studied in this report the problem of clash-
ing, i.e., requests being blocked by an update which has not been completely
executed. The execution of the blocked requests must be stayed until the
bloiking update is executed completely.

Throughout the report, we have always substantiated our claims of
performance improvement by using an analytical model to come up with quan-
titative figures of the data loop throughput. By using the model, we have
also shown how a database administrator (DBA) can control the throughput
achievable in DBC.

1. BACKGROUND
The database computer (DBC) is a specialized back-end computer whish is

capable of managing data of 1010 bytes in size and supporting known data

models such as relational, network, hierarchical and attribute-based models.
All operations performed by DBC are concerned with one or more of the following
four aspects - searching and retrievaly security, clustering and updating.

A number of papers [1-6] are available that motivate the design of DBC and

discuss the search and retrieval aspects in some detail. A description of the l
security and clustering mechanisms of DBC and of the concepts that form the

basis for these mechanisms appears in [7]. 1In this report, we intend to demon-

strate how update is carried out in DBC and to make some suggestions on how
the performance of DBC may be improved in an environment which is update-

intensive. An update-intensive environment is one in which a large number of

the requests issued to the database are insert, delete and update commands.
That is, there are only a few retfieve commands issued to the database.
Fundamental to our discussion is an understanding of the built-in data model
and overall architecture of DBC and these are dealt with in the following

sub-sections.

1.1 DBC Data Model !
The smallest unit of data in DBC is a keyword which is an attribute-

value pair, where the attribute may represent the type, quality, or character-
istic of the value. Information is stored in and retrieved from DBC in terms
of records; a record is made up of a collection of keywords and a record body.
The record body consists of a (possibly empty) string of characters which are
not used for search purposes. For logical reasons, all the attributes in a

record are required to be distinct. An example of a record is shown below:

(<Relation, EMP>,<Job, MGR>,<Dept, TOY>,<Salary,30000>).

The record consists of four keywords. The value of the attribute Dept, for
instance, is TOY.

DBC recognizes several kinds of keywords: simple, security and clustering. lf
Simple keywords are intended for éearch and retrieval purposes. Security
keywords are used for access control. Clustering keywords are utilized for ij
placing records with a high probability of being retrieved together in close
proximity. A discussion of security and clustering keywords appears in [7] and

will not be reproduced here.

A keyword predicate, or simply predicate, is of the form (attribute,

relational operator, value). A relational operator can be one of [=, #,
>, >, <, <1. A keyword K is said to satisfy a predicate T if the attribute
of K is identical to the attribute in T and the relation specified by the

relational operator of T holds between the value of K and the value in T.

For example, the keyword <Salary,l50@@> satisfies the predicate (Salary > 104000).

A query conjunction, or simply conjunction, is a conjunction of predicates.

’

An example of a query conjunction is:
(Salary>25000) A (Dept=T0Y) A (Name = JAI).

We say that a record satisfies a query conjunction if the record contains

keywords that satisfy every predicate in the conjunction.
A query is a Boolean expression of predicates in the disjuactive normal
form. Thus, a query is a disjunction of query conjunctions. An example of

the types of queries that may be recognized by DBC is as follows:
((Dept=TOY) A (Salary<1@pP@g)) v ((Dept=BOOK) A (Salary>5@@dp)).

If the above query (consisting of two conjunctions) refers to a file of
employees of a department store, then it will be satisfied by records of
employees working either in the toy department and making less than $14,380,
or working in the book department and making more than $5@,8fp. We say that a

record satisfies a query, if the record satisfies at least one of the conjunc-

tions in the query. Thus, we can refer to a set of records that satisfy a

query. A query, as defined above, is used not only to retrieve, delete and
update the set of records that satisfy the query, but also to specify

protection requriements {7]}.

1.2 DBC Architecture

Figure 1 shows the schematic architecture of DBC. It consists of two

{
loops of memories and processors, namely the structure loop and the data loop.

The data loop is composed of two components: the mass memory (MM), and the
security filter processor (SFP). MM is the repository of the database and

is made of modified moving-head disks where all the tracks of a cylinder may
be read in parallel in a single disk revolution. This modification is termed

tracks-in~parallel-readout. 1In addition, the mass memory of DBC is content-

addressable. Given a cylinder number and a query conjunction, it is possible
to content-search the entire cylinder 'on the fly' for records that satisfy
the query conjunction. The MM is described in detail in Section 2 of this

report.

PR

et e s

ot b e

., " o AL A G pg e it S
et T e SO AMAMIGARRICES. iy . T b -

INFORMATION PATH
— — — CONTROL PATH

DBCCP: Data Base
Command -
Control

SM'P]‘_ —_— SM Processor

KXU: Keyword

Transform
f y STRUCTURE 7 } ::‘" '
SM: ructure
LOOP // KXU | Memory
/ SMIP: Structure
// Memory

~
~ /- Information
et Processor

DBCCP IXU: Index

Transiation
Unit

FROM HOST COMPUTER

-
TO HOST COMPUTER

MM: Mass
Memory
SFP: Security

Filter
Processor

SCu: Security
and
Clustering
Unit

PP: Post
Processor

Figure 1. The Architecture of DBC

4

The structure loop is composed of four components: the keyword trans-

formation unit (KXU), the structure memory (SM), the structure memory informa-

tion processor (SMIP) and the index translation unit (IXU). KXU converts

keywords into their internal representations. SM is primarily used to store,
retrieve and update the indices of the database. Indices are maintained in
SM as a directory. Each entry in the directory consists of a keyword or a

keyword descriptor followed by a set of indices. A kevword descriptor

is a conjunction of a less-than-or-equal-to predicate and a greater-than-or-

equal-to predicate, such that the same attribute appears in both predicates.

An example of a keyword descriptor is:

R S

((Salary) > 2,008) A (Salary < 1(,008)).

e

More simply, this is written as follows:

-
el

S i 4

(2,999 - Salarv < 10,p00).

Thus, a kevword descriptor is an attribute (Salary) and a range of values
($2,000 - $10,000) for that attribute. A keyword K satisfies a kevword
descriptor KD, if the attribute of vK is identical to the attribute KD and
the value of K lies within the range of values or KD. An index is a pair of
the form (cvlinder number, security atom number) [7]. The cvlinder number
indicates where in mass memorv records with kevwords satisfving the keyword
descriptor may be found and the security atom number indicates the access
privileges accorded to these records. Any kevword that appears as part of »
directory entrv or satisfies a keyword descriptor in SM is called a directorv
keyword. For example, securitv kevwords and clustering kevwords are auto- ﬂ
matically defined to be directorv kevwords and thev alwavs satisfv certain
keyword descriptors in SM. However, not all simple kevwords are directory
keywords. Non-directory kevwords are mainlv used bv MM and SFP for record
comparison and sorting purposes. SMIP is responsible for performing set
intersections on the indices retrieved bv SM, IXU is used to decode the
indices output by SMIP. These four components are designed to operate
concurrently in a pipeline fashion. The hardware organization, details and
design philosophy of these components are documented in [5].

The database command and control processor (DBCCP) regulates the operations
of both the structure and data loops and interfaces with the front-end host

computer. It processes all DBC commands received from the front-end host

computer, schedules their execution on the basis of the command type and

2

priority, and routes the response to the front~end host computer. Additionally,
it makes use of SFP to search the tables needed for the enforcement of

security and clustering of records [7].

1.3 Control Flow During Command Execution

Figure 2 shows how certain commands are executed in DBC. Basically,
these commands forwarded from the front-end host computer (in pre-determined
formats), are recognized by DBCCP as either access commands or preparatory
commands. Access commands are those that require DBC to access the mass
memory; preparatory commands precede and follow access commands and convey
important house-keeping information. Access commands go through a security
check. Having undergone security checks, access commands are translated
by DBCCP into orders that can be processed by the mass memory. During trans-
lation, an access command involving insertion activates the clustering
mechanism in DBCCP. This clustering mechanism determines the mass memorv
cylinder into which the record must be inse>*ed. Records retrieved
by the mass memory (as a result of the execution of orders and the supply of
cylinder numbers provided by DBCCP) are transmitted to the sorter. The sorter
allows groups of retrieved records to be sorted on the basis of some attri-
bute, or joined with other groups of records (a join being a relational

equality join) [8,9].

1.4 Organization of This Report

In Section 2, we shall give an overview of the architecture of MM. Sec-
tions 3, 4, and 5 are devoted to describing how the processes of insertion,
deletion and update are accomplished in DBC. More specificallv, we shall
describe the process of insertion of records in Section 3, while Section
4 will be devoted to a discussion of the process of deletion of records.

In Section 5, we discuss the method used in DBC to update records. In each
of the last three sections, we shall use an analytical model of the data loop
of DBC in order to evaluate the actual performance improvements achieved as
a result of certain suggested changes. Finally, in Section 6, we present an

integrated picture of DBC with all the changes that have been suggested in

previous sections.

Components of
the Structure Loop

k o T DBCCP

Insert CluStE?lng
Mechanism

|

| House-keeping —~— =

’ /Eommand~ \

I Preparatory ///l ! /
! Commands \ //
| Access \\ Non-Insert Commands /

Translate

|
|
i

l Commands

Orders
| Security '
Check |
‘ Records
| R
Sorted |
Records Sorter MM

FIGURE 2. Access Command Execution in the Data Loop

2. THE MASS MEMORY

Since it is the intention of this report to study the updating of
records stored in the mass memory (MM), an understanding of the organization
of MM is essential. MM mav conveniently be thought of as consisting of two
parts. The first part is the repository of the database. Tnhe second part
is the set of processors that are used to search, retrieve and update records
stored in the repository. We begin by describing the nature of the repository
of the database and also the reasons behind our choice of such a repository.
Later, we go on to talk about the architectual features of the processing
elements that are used to manipulate the database. The philosophy upon which
the design decisions regarding these processing elements is predicated is

not discussed in this section. That will be done in later sections.

2.1 The MM Design Philosophy

For our design of the first part of the MM, we have chosen the moving-
head disk as the storage medium. Our discussiou in favor of this technology
is based on the following reasons: First, moving-head disk technology is well
entrenched and is unlikely to be replaced in this century [10]. Second, the
cost per bit of this storage medium is about 5 millicents, providing an order
of magnitude reduction in the storage costs over fixed-head disks or their
electronic replacements. Third, it is possible to enhance the processing
rate of a conventional moving-head disk by activating all the read/write
heads available in the access mechanism. The achievement of this parallel
readout does not involve any technological breackthrough. Ampex Corp. has
modified one of their 9300 series 300) megabvte disks to offer the transfer
of up to 9 disk tracks in parallel [14]. 1In such a modification, the
information on the tracks of a cylinder can be searched 'on the fly' by

employing a set of processing elements, one for each track. Each of the

processing elements would be responsible for searching the information read i
from the corresponding track.

The above scheme provides content-addressability on a cylinder basis.

L e e 4

We can thus think of the moving-head disk as being partitioned into cylinders,

with content-addressability provided within each cylinder In our subse-

quent discussions, we shall refer to a partition of the MM as a cylinder or

a minimal access unit (MAU).

2.2 Toward an Intelligent Mass Memorv

We note that data manipulation requests sent to MM can be highly content-
oriented. Also, data manipulation requests identify the data to be manipulated
by means of queries. Since a query is a disjunction of conjunctions, MM
must ensure that a record in an MAU (whose MAU number is supplied by the struc-
ture loop) sati
it as a valid data item. This can be done easily if both the query and the
record are handled in their natural formats.

Since a record in a track is to be compared to a query conjunction 'on
the fly', an arbitrary arrangement of keywords within the record and an
arbitrary arrangement of keyword predicates within the query conjunction can

lead to processing delays of up to several revolutions of the disk. For

example, consider the following record and query conjunction arrangement:

RECORD: (<1,x>,<7,y>,<4,2>)
QUERY CONJUNCTION:(4 > z) A (7 =y) A (1 < x)

Here, 1, 4, and 7 are attribute identifiers and x, y, and z are actual values.
In the above situation, the first attribute identifier read by the processing
element is 1. Since the first attribute identifier in the query conjunction
is 4, the processing element has to wait until the last attribute-value pair
is read before making a comparison. After the comparison has been success-
fully completed, the processing element must compare the value of the second
attribute 7 in the query conjunction with the corresponding value in the
record. However, since the disk device is a uni-directional device, the
processing element must wait for one revolution before attempting to make

the comparison. It is easy to see that it requires three revolutions of the
disk device to process the above record against the given query conjunction.
Thus, back~tracking on a disk device can be expensive in terms of processing
time.

Alternatively, if the query conjunction is stored in a random access
memory accessed by the processing element, then for each attribute identifier
read by the read head, a full search of the query conjunction memory can be
made to determine if the corresponding identifier is present in the conjunction.
The main drawback of this scheme is that, as the query conjunction gets longer
and longer, it becomes more and more difficult to undertake a full search of
the query memory in the time taken to read an attribute identifier (typically

1.5 microseconds).

A solution to this problem lies in a carefully planned layout of the
record and the query conjunction. The attribute-value pairs in a record are
arranged in ascending order of the attribute identifiers. The predicates in
the querv conjunction are similarly arranged in ascending order of their
attribute identifiers. The query conjunction is stored in a sequentially
accessed memory called query memory. The processor reads a stream of keywords
belonging to a query conjunction from the query memory. The two streams are
compared in a bit-serial fashion. Whenever there is a match between the
attribute identifier in the conjunction and the attribute identifier in the
record, the values are compared to determine if the predicate is satisfied.

If the attribute identifier in the record is less than the attribute identifier
in the conjunction, then the processing element skips over the corresponding
value to the next attribute identifier. If the attribute identifier in the
record is greater than the attribute identifier in the conjunction, it is
concluded that the record does not satisfy the conjunction. The above logic

is repeated until all the predicates in the conjunction are satisfied or the

processing element concludes that the record does not satisfy the conjunction.

2.3 The Orgrnization of the MM

The overall organization of MM is shown in Figure 3. The database
resides in volumes mounted on moving-head disk drives. It is desirable to have
a one-to-one corresondence between the volumes and the drives: but this is
not essential if the volumes are transferable. However, with disk technologies
moving towards higher bit densities, mechanical tolerances will not allow
frequent interchange of volumes between disk drives [10]. DBC design is
independent of the above consideration. A volume is composed of 200-400
cylinders. Each cylinder consists of a se¢t of tracks (usuallv in the range
of 20-40); there is one track of a cylinder per disk surface., The access
mechanism consists of a movable set of read/write heads, one per disk surface.
The heads are moved in unison to access all the tracks of a cylinder. Data
transfer to/from a cylinder is achieved by activating all the read/write heads
concurrently. Although previous desings [11,12] have taken advantage of the
fact that the read and write heads on a track could be positioned a short
distance from each other, we do not favor such an arrangement. This is
because, at high track densities (1000 tracks per inch or higher), the required
mechanical tolerances for supporting separate read and write heads may well

deprive the disk technology of much of the cost effectiveness brought about

by the higher densities [13]. 1In our design, therefore, we assume the conventional

10

Track
(TIPS)

Information
Processors

Disk
Drive
Controllers

A

;/Amu/u ™ /.//U/hw //N/N// <= m,wmAf,/,/wwA‘,,ILV/um/

- & //h/// s} //

AN /,//////// 77 /,

g8
O
& &
=
t
¥
t o]
[:V]
9 —
p—— z b —— ——— — — — ——
O W
) oL |
=
} sng 0T
- w — |
1 L/ VA o V4 > 7 T > re - _ b
YP.\PZ X % f \”\.\.\\\ A = V- %\
ZERZERZ YR 7] e | _ >
Z e V R RO RS T z \\& g
..n.n:muuuuuwwwv | =
(]
w
=K g
| v
-~
- =
U
AMHD> M UM OHO _ °
m
J F
[}
N
bl
c
]
o0
o
S

»a

Y /AN /M// N

«DDC

N

Figure 3.

_q/, 7TES 77 4\\ _ﬁﬁ

N

\

Volumes
1l

Database

NN

I N\}"""",
\\::*\\\s\//r ,/;;7
= obC,
i;/D/
/
DDC2

v \\\\\\\\\\\\\\\ i

[\\\\\\\\\\\\\\\\\\\ =

read/write mechanism. The implication of such a design is that MM can
either be read from or written into at a given time. Reading and writing
cannot be performed simultaneously.

Each MAU in the system is uniquely identified by a number known as its
MAU address. A disk volume contains a set of consecutively addressed MAUs.
The set of disk drives is partitioned into 8-16 drives for access and control

purposes. Each such group is controlled by a disk drive controller (DDC).

The DDCs are controlled by the mass memory controller (MMC). Data that are

retrieved from the disk volumes are routed to a set of track information

processors (TIPs) by a drive selector and by a track multiplexor/demultiplexor

(TMD). The drive selector is controlled by the MMC. The TIPs can request

the service of a bus called the IOBUS for transferring database information

to the MMC. The TOBUS is also used by the MMC to send control information and

data to the TIPs. i

MM operates in two basic modes - the normal mode and the compaction mode.

In the normal mode, orders sent by DBCCP are decoded by the MMC and are queued

according to the MAUs referenced by the orders. For each MAU for which a

queue of orders exist, MMC requests the appropriate DDC (if free) to position

the read/write heads to the cylinder corresponding to the MAU. When the MAU

is found, the MMC sends the orders one at a time to the TIPs. While the TIPs

are busy executing the orders, MMC can request the DDCs to position the read/

write mechanisms to the MAU(s) residing on other volumes for which there are

non-empty queues. Thus, the access time with respect to the MAU of one volume

is at least partly overlapped by useful work performed by the TIPs on the MAU]
of another volume. The information retrieved by the TIPs from the database
is sent to the SFP for further processing.

Records which are identified by a delete order under the normal mode are
tagged by the TIPs for later removal during the compaction mode. When DBCCP
orders MM to reclaim the space occupied by the records with deletion tags, MM |
enters the compaction mode. During the compaction mode, MAUs in which tagged
records exist are accessed, and data in each of the tracks is read into MMC by

the TIPs. MMC then writes back those records which are not tagged.

2.3.1 The Mass Memory Controller (MMC)
The mass memory controller is organized into two subcomponents: the 1

interface processor (IP) and the mass memory monitor (MMM). The IP is re- 1

sponsible for interfacing with DBCCP, for maintaining the database object

12

descriptor table (DODT), and for maintaining MM orders in the mass memory order

queues (MMOQ), and switching from normal to compaction mode. The mass memory
monitor is responsible for scheduling orders to be executed with the help of
the order queues (MMOQ), for issuing orders to the DDCs to position read/
write heads, for initiating TIPs to execute the orders on the contents of a

MAU and for keeping track of space availability in the MAUs.

2.3.1.1 Interface Processor (IP)

A. The Database Object Descriptor Table (DODT)
This table contains the database objects which are used as arguments of orders
issued by DBCCP. Each object is identified by a unique identification tag
assigned to it by DBCCP. A database object in this table could either be a

query conjunction, a record or a pointer. The keywords in a query or a

record are assumed to be sorted in ascending order of their attribute identifiers.
This sorting is done before the query or record is sent to DBC. Since database
objects are placed in the table only to be accessed later vhen the MM order is
scheduled to be executed, there must be a rapid mechanism to locate and retrieve
database objects from the table. The table is, therefore, organized in two

parts - an associative memorv (AM) and a random access memory (RAM). An

entry in the AM has two fields - an object identification tag and a pointer to
a location in the RAM. The RAM holds the database objects pointed to by the
AM. The AM can be searched on the basis of database object identifiers; the
response is the pointer to the RAM location where the corresponding database

object is stored. 1In Figure 4, the organization of the table is shown.

B. Order Queues (0Q)
Order queues, as the name implies, are used *to keep track of MM orders (sent bv
DBCCP) which are awaiting execution. There is one queue for everv MAU for
which one or more orders are awaiting execution. We shall often refer to all
the orders awaiting execution on a particular MAU as a set of orders on that
MAU. Two data structures are proposed in Ficure 5 to manage order queues.

The queue headers table (QHT) is used to carry information about the queues.

More specifically, each entry in the OQHT has three fields: the first field
has status information about the availabilitv of a MAU for processing. The
second field contains the MAU address and the third field points to the first
order to be executed on the MAU. The second data structure is called the
order table (OT), which contains the orders themselves. The format of an

order when it is received by MM is shown in Figure 6 and its format when it

is stored in the order table is shown in Figure 7.

13

Avail List Header

; Forward Link
" "Backward Link :

YkDatabase Object Identifier

Pointer to RAM
——

! -+

Associative
Memory (AM)

q

N

|
Random Access
Memory (RAM)
Contains Variable
Size Data Base Objects

Figure 4. Organization of the Database Object Descriptor
Table (DODT)

e R) . Ly el Gt Lot T RN o e

Queue Headers Table (QHT)

MAU Pointer into
Address Order Table
1 Byte 2 Bytes 2 Bytes

-, — - - . Sy

Order Table (OT)

6 Bytes per Order

e

.

.
-
~

= 0 Entry not in use
= 1 Entry i{s in use

= 0 This queue not processed yet
1 This queue is being processed

-
[}

/ — = 0 MAU not accessed yet
= 1 MAU accessed & ready for processing

MAU access order not issued yet
MAU access order issued

[}
- O

Figure 5. Order Queues

" # of orders awaiting execution for this MAU

14

————

MAU Database Order order # Database
Address Object # | Code rder Object
Variable Length
Figure 6. Format of a MM Order Sent by DBCCP

—Fixed Length—s

Database Order Order # Pointer to
Object # Code rder Next Order
Figure 7. Format of a MM Order Stored in the Order

Table (OT)

15

T

C. The IP Logic
IP executes Algorithm 1 (see Appendix 1) on receipt of an order from DBCCP.
The algorithm explains, in detail, how the IP places orders into the various

order queues.

2.3.1.2 The Mass Memory Monitor (MMM)

A. Mass Memory Deletion Table (MMDT)
The MMM maintains a deletion table to keep track of the MAUs in which there are
records tagged for deletion. This table is created during the normal mode of
operation and is used during the compaction mode to access the MAUs in which
compaction must be performed. There is one entry in the MMDT for each such
MAU. The first entry in the MMDT records the number of entries n that are

currently in use. This is followed by the addresses of n MAUs.

B. The MMM Logic
The mass memory monitor controls the DDCs via the control bus (CBUS) (see
Figure 3). The CBUS has an appropriate number of address lines by which
each of the DDCs can be addressed to the exclusion of the others. The CBUS
also carries status and control lines by which the MMM can control the DDCs
and communicate with them. The MMM also controls the track information pro-
cessors via the IOBUS. The IOBUS is operated in a master-slave mode with MMM
assuming the master role and the TIPs assuming the slave roles. The TOBUS
consists of bi-directional data lines over which data transfers between the
TIPs and the MMM can take place, and status, address and control lines which

enable the MMM to interrogate and activate the TIPs.

MMM executes two algorithms in the course of carrying out its functions
outlined earlier. 1In these algorithms, all dialogues with the DDCs are carried
over the CBUS and all dialogues with the TIPs are carried out over the TOBUS
(see Appendix 1). Algorithm A continuously monitors the OHT with a view to
keeping the TIPs and the disk drives busy. Algorithm B is responsible for the
detailed dialogues with the TIPs after Algorithm A has found a MAU that has
been accessed and is ready to be processed. Among other things, Algorithm B
answers interrupts from the TIPs when they have output to be sent out of MM or
when they have finished execution of an order. Once activated by Algorithm A,

Algorithm B executes concurrently with Algorithm A, until the pending orders

for the MAU have been executed by the TIPs.

TR

17

2.3.1.3 The Hardware Organization of the MMC

The organization of the MMC is shown in Figure 8. The internal data bus

(IDB) is the main data path inside the MMC. It connects all the table

memories with the mass memory order argument buffer (MMOAB) and the mass

memory data buffer (MMDB). The argument buffer is used to receive argument

data of a MM order from the communication bus before they are transferred

into the DODT. The data buffer is used primarily as a buffer between the
IOBUS on which the TIPs place the retrieved data and the post processor bus
PPBUS which transmits data to the SFP. The data buffer is also used during
compaction as a stager between the IOBUS and the internal data bus. The
interface processor (IP) logic is microcoded in ROM-1 and is executed by the
microsequencer MC-1. It 1 ponds to request signals from the DBCCP and controls
the transfer of data from and to the argument buffer. The MMM is implemented
with two microsequencers and two control ROMs. Microsequencer MC-2 is respon-
sible for executing Algorithm B of Appendix 1. It is responsible for control-
ling the activities of the TIPs, controlling the data transfers on the

IOBUS, and data transfers to and from the MMDB. MC-2 also receives interrupt
signals from the TIPs. The microsequencer MC-3 is responsible primarily for
scanning the order queues, initiating MC-2 and controlling the DDCs. Finally,
the bus arbiter is responsible for processing requests for control of and

access to the IDB and resolving contentions for the control of the IDB.

2.4 The Flow of Information in the MM

In this section, we describe how information is routed from/to the disk
volumes to/from the TIPs which process the information contained in the disk
volumes.

As mentioned earlier, there is a single set of TIPs in MM. The number of
TIPs in the set is equal to the number of tracks in a cylinder of a disk volume.
At any given instant of time, the TIPs could be processing information from
exactly one cylinder.

A set of disk drives is controlled by a disk drive controller (DDC).

The DDC can initiate data transfer operations on any one of the drives controlled
by it. DDC provides for a set of assembly/disassembly registers. There is

also a set of input/output registers which are multipléxed by DDC before sending
their contents to the drive selector. There is one pair of assembly/dis-

assembly and input/output registers for each track of a cylinder (see Figure

9). The width of these registers is known as the data unit. These registers

A ke e

Y

UUIISIE SRS . -

18

A7 To Disk Drive
/7 Controllers

[A AU R NMAARRAR R AL A RALA AL AR AR RSN

. g

o e adiia A

Argument
\ Buffer
\ (RAM) i
\ i |
\ 1
- i
From 1 MC-1 ; -
DBCCP T @ [
ROM 1 Order \ o i ;
Queue \ = 3
Table (RAM) \ !
Interface Processor :

AM ~ - .

Database Object
Descriptor Table

y =
RAM g
J
~ &
L =
Bus [
| _Arbiter | g
L]
fx
From/To for—r—r—o—— T > e e e <
SFP % AN SEP Bus — i ? &
) Dpata Path
——® Request Lines
— = =— % (Control Lines ‘
Figure 8. Organization of the Mass Memory Controller l

Disk Drive Coniroller Disk Drive

Combined Read/
Write Heads

1/0 Assembly
Registers Registers

AR,

32 Bits o) AR

AR3

Drive
Selector

32 Bit Lines

TIP,

From/ \'? ! y ng
To % L I 3
Disk == g :
Drive T
Controllers 0

AR

{ Figure 9. A Scheme to Route Information between Track Information
Processors and the Tracks

serve the following purpose: during a read operation, data bits from the

tracks are assembled into data units in the assembly registers: at the same time,
the previous data units are held in the input/output registers are multi-

plexed (by the track multiplexor/demultiplexor TMD2) into a serial stream of

data units and sent to the drive selector. During a write operation, the

reverse operations take place. That is, the sequential stream of bits received
from the drive selector are demultiplexed (by TMD1) and placed in the input/
output registers of Lhe DDC. At the same time, previous data units held in the

f assembly/disassembly registers are written onto the corresponding tracks.

During a read operation data units received by the drive selector from

i the appropriate DDC are allowed to pass through to t..e track multiplexor/de-
multiplexor (TMD2). The TMD (TMD2) then directs the data units to the appropriate

TIP. During 2 -rite operation, the data units from the TIPs are collected

by TMD2 and sent to the drive selector in a sequential stream. The drive
selector then routes the data units to the DDC selected by MMC. Thus, we note,
that not only is it possible to read out of all the tracks of a cvlinder in
parallel, it is also possible to write into them in parallel. We shall call

this capability the parallel-write-in capability.

2.5 The Track Information Processors

A track information processor (TIP)} is responsible for manipulating the
contents of a track belonging to a MAU. The number of TIPs is equal to the
number of tracks in a MAU and is usually in the range 20-40. The TIPs are
capable of searching the tracks (of an MAU) for records satisfving a user

query conjunction in one revolution of the rotating device.

2.5.1 The Three Componentsof a TIP

Each TIP has three sub-components - the disk drive interface processor

(DIP), the controller interface processor (CIP), and the buffers for the auery,

retrieved information (records), track header information and communications.
The DIP is responsible for receiving/transmitting data as demanded by TMD2 and
carrying out the orders sent to it. The CIP is responsible primarily for !
communicating with the mass memory controller over the IOBUS. Such communi-
cation involves acceptance of orders and database objects from the mass memory
controller and transfer of data retrieved by the DI to the post processor I
via the TOBUS.

The communicatien buffer and the buffer for the track header information l

are small random access memories. The query memory is a sequential access

memories. The query memory is a sequential access memory with a capacity

to store the largest single query conjunction that may be encountered by MM
(about 1 Kbytes). The record buffer is also a sequential access memorv.
This memory is divided in to n number of individually accessible segments. FEach
segment mav be rcad out ol or written into in a sequential manner. The moti-
vatio: for dividing the record buffer into segments is as follows: Whilc the
DIP is extracting information trom the track and placing it in one of the
segments, the CIP can be transmitting previously extracted information present
in one of the other scgments to MMC over the IOBUS.

The readout rate of the query memory and the transfer rate of the record
buffer should be high enough to keep up with the data transfer rate of the
disk device. The organization of a TIP is shown in Figure 10. The format
of the communication area between the CIP and the DIP is shown in Figure 11.
The format of a track as perceived by a TIP is shown in Figure 12. Each of the ’
TIPs utilizes a bit map to remember the positions of the records which were
found to satisfy a search criterion during the execution of a delete order. ;
Each record on the track is represented by a unique bit in the bit map. When
a record is to be deleted, the corresponding bit is turned on. This bit map ;
is stored at the beginning of a track. Before processing of a cylinder is to]
begin, the bit map in each of the tracks is read by the corresponding TIP.
In processing a retrieve or update order, this bit map is consulted to ensure
that no tagged records are retrieved. After the last order for an MAU has

been executed (i.e., after the execution of a set of orders), the bit map is

et

written back on the track. During the compaction mode of operation, this bit

map is used to distinguish between tagged and untagged records. Each track

O Ny T

is divided into a fixed number of sectors for the purpose of allocation. The

T
PR

first two sectors are used by the TIPs to store the bit map and other house-~

RaTA

keeping information.

The disk drive interface processor (DIP) is a bit-slice processor capable

of carrving out fast comparisons of attribute identifiers occurring in records

e T

stored on a track with those occurring in the query conjunction in a user ﬁ
request. It is also capable of comparing keyword values in the records with :
values associated with keyword predicates in the query conjunction of a user 3
request. This enables the drive interface processor to carry out range i

searches., The control unit of the DIP is microprogrammed to interpret the

orders sent to it by the MMC. ©

T P . W orp

R T R Ll ot

e i e h . e ey ’ T

-
-
22
Controller Disk Drive
Interface Interface
Processor (CIP) Processor (DIP)
Programmable - Programmable
Control Control
| I ,
' i M * T |
To/From I0BUS " NTNE n
—— HE : l
4) | [i! 16 X 16 Bit ' /-———)
N b1 , 3 Registers U
_Assembly %!! |4} (m Bit Data &
Disassembly R n Bit Control)
Registers R C To/From TMD
I 1
Lﬂ ALU
| I

U

6 Byte Communication

Area and 256 Byte Track
Header (RAM) \\\

i
B Query Buffer (about 1 Kbytes)
(Sequential Access)

Record Buffer(s)
(Sequential Access)

Figure 10. Organization of a Track Information Processor

23

01234567

of Bytes

Reserved MAU Address Transferred

\:Order Code
Successful Completion

Read Write Errors
Buffer Overflow
MAU Mismatch

Figure 11. Format of the Communication Area between the CIP and
the DIP

R o .

24

Ve Index Gap ~ Denotes beginning of track

Deletion
- Bit Map
/ 1>~-_.A_"’" ~
. 7 r .
Sector 1 ' Sector 2 . Sector 3 : : ' ' ' Sector n
e e o
Track Header
Track Format
1 1 r of sec # 0 R d ID‘Y
MAU | Track '# of |# of sec| # of ltogs '1 ecord D,
ADDR ' ADDR ' clusterslurity atom records‘available availabll ounte i rv
0 15 16 23 24 39 40 55 56 71 72 79 80 95 96 111 112
Format of the First Sector on Track
-~ Inter-Record Gap
1/‘/
e —y— : -
Record | Cluster Atom i No. of - Keywords Record
ID ID ! Name keywords . Body
NV I le 0 3132 47 48 . _ . _55

Record Header

Figure 12. Format of a Track as Perceived by a TIp

25

The controller interface processor (CIP) can be a commerciallv available

microprocessor capable of transferring information from the record buffer to

the MMC via the IOBUS.

3. INSERION OF RECORDS IN DBC

This section will be devoted to an explanation of the process of insertion
of records into the mass memory (MM) of DBC. Also, certain architectural
elements are proposed to respond more quickly to insertion requests. However,
the proposed elements are simple and do not require anv major technological
breakthrough. The advantages that will accrue as a result of the nroposal are
analvzed the last sub-section. These elements will become increasinglv
attractive in an update-intensive environment - an environment in which a verv
large proportion of the requests to DBC will consist of inserts, deletes, and

updates.

3.1 Motivation for the Proposed Elements

A simulation study [15] of DBC was conducted in order to determine the
potential bottlenecks to its smooth performance. It was discovered that the
data loop may not be able to match the throughput of the structure loop. The
study showed that the data loop should have a throughput of about 35 orders
per second in order to be compatible with the throughput of the structure loop.
However, it was discovered that the MM design allowed only for a throughput
of 20 orders per second. One of the suggestions made as a result of that studv
[15]) was that the data loop be speeded up. Later on, in this section, we shall

propose a means for improving the throughput of the data loop.

3.2 Insert-in-Parallel

Earlier, in Section 2, we had made the observation that our design of
MM allowed for a parallel transfer of data from the track information processors
(TIPs) to the tracks of the moving-head disks (besides allowing for the parallel
transfer in the opposite direction from the tracks to the TIPs which we have
termed tracks-in-parallel-readout). We propose to make use of this parallel-
write-in tacility to improve the processing speed of the data loop.

Let us recapitulate the process involved in inserting a record into the

MM of DBC. First, the database command and control processor (DBCCP) determines

the security atom and cluster that the record belongs to [7]. Next, it determines

the cylinder number (MAU) into which the record should be inserted. Firally,
the structure memory (SM) is accessed and one entry is made in it per directorv
keyword in the record. That is, for each directory keyword in the record, an
index entry indicating the securitv atom of the record and the cylinder in which

it is to be inserted is created in SM. The record is now presented to the data

-

N
|

-

e s N A AN A kA 15412 At oyttt £ [T T T e eSS eiba A R e
———— 4 e ’

27

loop which then proceeds to insert it into the MAU selected by DBCCP.

The mass memory monitor (MMM) determines the track withim the cylinder
into which the record is to be inserted by querving all the TIPs. We recall,
from Figure 12, that this information is available in the first sector of
each track. The record to be inserted is then sent form the MMM, via the IOBUS,
to be placed in the TIP buffer corresponding to the selected track (remember
that there is a one-to-one correspondence between tracks in a cylinder and the
TIPs). The MMM now issues the'insert-record' request to the selected TIP,
again using the IOBUS. The TIP does the insertion in one revolution of the
disk device. We note that during the course of this revolution, onlv one out
of all the TIPs (20-~40) is doing useful work. This is a utilization ratio of
between 1/20 and 1/40. 1In the following paragraphs, we ocutline a method for
improving the utilization of the TIPs.

There are two possible schemes to take advantage of the inherent parallelism
present in the MM architecture. These schemes are merely two different wavs
of implementing the same logical idea. We shall call them Scheme 1 and Scheme
2, respectively.

The basic idea is to insert many records in parallel, all in the same
revolution. How many records can be inserted in parallel in one disk revolu-
tion? Theoretically, as many records as can fit into one cylinder may be
inserted in one revolution of the disk device.

We now describe the first of the two schemes. The operation proceeds as
follows. First, as each record is presented for insertion to DBC, the cylinder
and the track within the cylinder into which it must be inserted is determined

by DBCCP. All records that are to be inserted into the same cylinder are
grouped toge;her and only one 'insert-records' request is issued for this
entire group of records. Vhen the mass memory monitor (MMM) comes around to
executing this order, each record is first placed in the huffer of the TIP
correspending to the track in which the record is to be inserted. This
communication between the MMM and the TIPs is conducted via the IOBUS. The
'{nsert-records' request is then broadcast to all the TIPs using the IOBUS.
AS many records per track may be inserted in a disk revolution as the size of
the TIP buffer will allow. If the TIP buffer is as big as the size of a

track, then an entire cylinder's worth of records may be inserted per disk

revolution.

28

The problem with the above method is that just before the TIPs begin to

execute the 'insert-records' request, the IOBUS will be congested by traffic

owing to the large number of records that must be sent to the TIPs for insertion.

This may cause a delay of one or more disk revolutions in addition to the disk
revolution needed to insert all the records. A way to avoid this delay is to
have direct connections from the MMM to each of the TIPs and to do away with
the IOBUS. Figure 13 illustrates the situation. An alternative scheme that
does not need these costly additional communication lines and yet avoids most
of the delay of Scheme 1 is proposed below.

Once again, DBCCP first determines, for each record to be inserted, the
cylinder and the track into which the record is to be inserted. However, no
grouping of records that are to be inserted into the same cylinder is done.
Instead, the DBCCP sends out these records for insertion, one at a time.

Each 'insert-record' order, as received by the MMM, has two arguments -~ the
record to be inserted and the cylinder and track in which it must be inserted.
When the MMM has to insert a record, it places the record in the buffer of the
TIP corresponding to the track chosen for inserting the record. This may be
done by the MMM when the TIPs are doing other useful work. For example, after
the MMM issues a 'delete-by-query' request, it waits for the TIPs to delete
those records that satisfy the given query. At the end of the deletion process,
the TIPs will interrupt the MMM. During the time that the TIPs are busy
performing the deletion (that is, for one revolution of the disk device),
microsequencer MC-2 of the MMM (see Section 2) is idle. This idle time of the
MMM may be fruitfully employed in order to place records for insertion into
TIP buffers. Similarly, the MMM is idle after it issues an update request
until the time it is interrupted by the TIPs (to indicate that the TIPs have
furnished processing the update request). However, the time between the
issuance of a 'retrieve-by-query' request to the TIPs by the MMM and the
receipt of an interrupt by the MMM from the TIPs (indicating that the TIPs
have completed processing the request) mav not be utilized to place records

in the TIP buffers because the retrieved records are being sent to the MMM

via the IOBUS.

After the record to be inserted has been placed in the appropriate TIP
buffer, the MMM continues the processing of other requests. The above logic
is repeated for every 'insert-record' request. That is, the MMM places the

record in the next available space in the TIP buffer corresponding to the track

chosen for insertion. After all the requests on a particular MAU have been

ORI P VT

29

Database
Volumes Track
. ‘ Processors
(l:);sl’(Dlliwe (TIPs)
ontrollers
\
DDC.}.‘ |
w\ 1 W
' ‘ (I
i
i N O\ o
\ R PP
|
5 v |
L] L] m‘ E. L] From
S s-d TMD MMC === oo
o=l
St E . : oi
o L irect
| 13 I Communication
. . | c . ! Lines to
V/;/)#g : TiPs
/i |
1 R .
o W/
T, =
¥)
N—7 U M)
TR oo]
|
' TIR ‘
VED G |
{
L S

Figure 13, A New Bus Structure for the Mass Memory

e iy

et e ey 5

30
completed (i.e., after the execution of a set of orders), one additional
revolution is used to insert the records present in the TIP buffers. We may
recall, from Section 2, that one additional revolution is required at the
end of each set of orders (i.e., after all the orders on a MAU have been
completed and before a set of orders on another MAU is chosen for execution)
in order to rewrite the bit map onto the beginning of each track in the cvlinder.
This same revolution of the disk device may be utilized to insert all the
records present in the TIP buffers. Thus, all the insert record requests

present in one set of orders can be executed without incurring a single extra

disk revolution. For example, if the average set of orders has ten insert

commands, then the proposed scheme will result in a saving of ten revolutions
of the disk device per set of orders. This will considerably improve the

performance and throughput of the data loop.

3.3 Comparison of the Two Methods

Scheme 2 has a disadvantage which is not present in Scheme 1 because it
demands that each TIP have two buffers. This is because the TIP buffers need
to be used during the execution of retrieve and update queries in order to
store records to be retrieved and sent to the security filter processor (SFP)
or to store records to be updated. Hence, an additional buffer will need to
be used to store the records for insertion since, in Scheme 2, many retrieve
and update requests may be executed in the time between the placement of a
record for insertion into a TIP buffer and the actual insertion of that record
onto the track. The size of the second buffer will depend upon such factors

as the number of '

insert-record' requests that are expected per set of orders,
the distribution of these requests among the tracks and the size of the records.
However, this buffer need be no larger than the size of a track. We may
recall that the TIP record buffer consists of a number of individuallv
accessible segments. A number of these segments mav be set aside for use as
the second buffer. For example, if the buffer consists of M segments,
Segments 1 through m mav be used as the second buffer to hold records for
insvertion., Segments m+1 through M will then be used bv the TIPs only
tor retrieval and update purposes. We have already mentioned the considerations
to be made hefore arriving at a decision for the value of m.

The two methods differ onlv in the wav in which the records are placed
in the TIP buffers. Scheme | waits until both the MMM and the TIPs are idle
a

hefore placing the records in the buffers. Scheme I can utilize moments when

the TIPs are busv and the MMM is idle. Since the transfer of records from the

MMM to the TIP buffers does not require the participation of the TIPs, this

T ool - ' - AN L) ORI

31

latter scheme is entirely feasible. However, at this point, we would like to
add a note of caution. Consider what happens when a file is being loaded into
the MM of DBC. It is possible that a large number of 'insert-record' requests
occur in a sequence, one after the other. Scheme 2 takes advantage of the
presence of requests other than 'insert-record' requests in order to overlap
useful TIP processing time on these other requests with MMM processing time on
'insert-record' requests. However, if a large number of ‘insert-record’
requests occur in sequence, this overlap may not be attainable to the extent
desired. In the worst case, when all the requests in a particular set of
orders are 'insert-record' requests, Scheme 2 will take as long as Scheme 1 to

execute.

3.4 Algorithm Executed by MMM

The algorithm that will be executed by the MMM in order to process a set
of orders on a MAU on which a seek has already taken place is described below.
It is a modification of Algorithm B of Appendix 1. The algorithm is the one

that will be employed if Scheme 2 is implemented.

ALGORITHM B MODIFIED: To initiate the execution of orders by the TIPs and to
accept data retrieved by the TIPs.

Input Arguments: 1., The number of N of orders pending execution.
2. The address of the first order in the order table (OT).

Step 1: [Initialize] p=1. FLAG=0.
Step 2: Pick up the pth. order from the OT. If the order code indicates
an insert-record order, go to Step 6. If the order code indicates
a delete~record order, then go to Step 5. If the order code indicates
an update order, then go to Step 7. If the order code indicates a
compaction order, then go to Step 15. 1
Step 3: [Retrieve] Broadcast the order to all the TIPs and go to Step 1l4.
Step 4: [Herewe try to utilize MMM idle time to place records for insertion
into TIP buffers] TIf FLAG=@, then continue execution of Algorithm
C (which places records for insertion into TIP buffers) until TIP
interrupt occurs. If FLAG=1, then wait until TIP interrupt occurs.
When the interrupt occurs, go to Step 8.

Step 5: [Delete] Broadcast the order to all the TIPs., Turn on DELETE flag. 3
Go to Step 4. k
Step 6: {Insert] Check the mark bit to see if the order has been taken care of

by Algorithm C. TIf so, then go to Step 13. Else, place the record
to be inserted into the buffer of the TIP corresponding to the
track chosen for insertion. Go to Step 13.

Step 7: [Update] Broadcast the order to all the TIPs. Turn on the
UPDATE flag. Go to Step 4.

INTERRUPT ENTRY
Step 8: If the UPDATE flag is on, go to Step 9. 1If the DELETE flag is on,
then go to Step 11. 1

32

Step 9: [This part of the algorithm will be described in Section 5.] 1

Step 11: [Check if there was any deletion.] Turn off the DFLETION flag. If
the TIPs indicate that some records were tagged for deletion, then
go to Step 12, else go to Step 13.

Step 12: Store the MAU address in the mass memory deletion table (MMDT).

Step 13: Delete the order from the OT. p=p+l. If p>N, then request the
TIPs to write back all deletion tags and to insert all the records
in their buffers into the tracks, set IDLE flag on and halt; else
go to Step 2.

Step 1l4: [Receive retrieved records] If the TIPs have records to be output,
then receive them and send them to the SFP. Go to Step 13.

Step 15: [Compaction] The algorithm for compaction will be discussed in the
next section.

i i ol

ALGORITHM C: This algorithm is executed by the MMM whenever it is waiting
for a TIP interrupt. The interrupt causes the abandonment of the execution of
this algorithm. The point of interrupt is remembered, and the algorithm is
resumed at a later time by the MMM when it is idle waiting for a TIP interrupt.

Step 1: q=q+l. If g>N, then set FLAG=1 and terminate.

Step 2: Look at the qth order in the OT. If it is an 'insert-record' order,
then set the mark bit corresponding to this order and go to Step 3.
Else, go to Step 1.

Step 3: Place the record to be inserted into the buffer of the TIP corres-
ponding to the track chosen for insertion. Go to Step 1.

3.5 Determining the Track for Placement of a Record

In this sub-section, we shall demonstrate that it is indeed possible tor
DBCCP to determine, for each record submitted for placement, the cylinder ard
the track within that cylinder in which the record must be stored. Howewver,
before we explain the method adopted in DBC to determine the cylinder and racw
for insertion of a record, the concept of clustering must be well understood.
Accordingly, the first sub-section below describes the concepts behind the
strategies emploved in DBC to place data elements that have a high probability
of being retrieved and updated together, in close proximitv of one another.
Certain data structures used by the algorithm are then presented, followed by
the algorithm itself.

We would like to mention, in passing, that the determination of the track
for insertion may be done by the TIPs since information regarding space
availability is part of the track header information in each track (Figure 12).
However, we must keep in mind the results of the simulation studv [15].

That is, the throughput of the data loop is lesser than that of the structure
foop. Thus, whenever a piece of work can be performed either in the data loop
or the structure loop, we shall choose to do it in the structure loop in order

to close up the difference in throughput rates of the two loops,

:
|
I
|

33
3.5.1 Clustering Descriptors and Logical Clusters

A file is associated with a single primary clustering attribute and any

number of secondary clustering attributes. The latter attributes are specified

in an order of importance. The importance of a secondary clustering attribute
is defined to be its relative position in the above list. Thus, we can talk
of one secondary clustering attribute as being more important than another
secondary clustering attribute for clustering purposes.

At the time of file creation, the file creator also specifies a set of

clustering descriptors. These descriptors may be of one of three types:

Type A: The descriptor is a conjunction of a less-than-or-equal-to
predicate and a greater-than-or-equal-to-predicate, such that the
same attribute appears in both predicates. An example of a type-A

descriptor is as follows:
((Salary>2p@@) A (Salary<1Pp@p)).
More simply, this is written as follows:
(200¥@<Salary<1¢pe@) .

Thus, the file creator merely specifies an attribute (i.e., Salary)
and a range of values (2009 - 10@80M) for that attribute.
Type B: The descriptor is an equality predicate. An example of a type-B

descriptor is:
(Position=PROFESSOR).

Type C: The descriptor consists of only an attribute name. Let us assume
that there are n different keywords K1, K2, ..., Kn, in the records
of this file, with this attribute. Then, this type-C descriptor is
really equivalent to n type-B descriptors Bl, B2, ..., Bn, where
Bi is the equality predicate satisfied by Ki. In fact, this type-C
Jescriptor will cause n different type-B descriptors to be formed.
These o pe~B descriptors formed from a type-C descriptor are known
as tvpe-C sub-descriptors.

The attribute that appears in a clustering descriptor must be either the

primary clustering attribute or one of the secondary clustering attributes. A

clustering descriptor is a primary (secondary) clustering descriptor if

the corresponding attribute is a primary (secondary) clustering attribute.

34

A primary (secondary) clustering keyword is a keyword of a record such

that one of the following holds:

(a) The attribute of the keyword is specified in a type-A primary

(secondary) clustering descriptor and the value is within the range of that
descriptor.

(b) The attribute and value of the keyword match those specified in a

e a e A s A s b s

type-B primary (secondary) clustering descriptor.

(c) The attribute of the keyword is specified in a type-C primary

(secondary) clustering descriptor. .
In all these cases, the primary (secondary) clustering keyword is said to

be derived or derivable from the corresponding primary (secondary) clustering

descriptor. Each primary clustering descriptor is associated with a maximum
space requirement (in terms of number of cylinders) which indicates the estimated

amount of storage required in the mass memory for all records having keywords

SR VP VREPURRUNF PV PV

derived from this descriptor. The importance of a secondary clustering

kevword is defined to be the same as the importance of the corresponding
secondary clustering attribute of the kevword.

Each (primary clustering descriptor, secondary clustering descriptor)
pair defines a cluster of records. Each record in this cluster must satisfy Lol

two conditions.

(1) The primary clustering keyword of the record should be derivable

from the primary clustering descriptor of the cluster.

DU T R

(2) The most important secondarv clustering keyword of the record should
be derivable from the secondary clustering descriptor of the cluster.

A record for insertion must have a primary clustering keyword; otherwise,
the record will be rejected by DBC. 1If a record has no secondary clustering
keyword, then a null secondary clustering keyword derivable from a null
secondary clustering descriptor is assumed. The null secondarv clustering
keyvword has least importance.

We illustrate these concepts by means of an example developed in Figures

l4a, 14b, l4c and 14d. Figure l4a shows a file consisting of six records, where

each record has four attributes. As can be seen from the figure, the user has
specified the primary clustering attribute to be Job and the secondarv clustering !
attributes in order of importance to be Salary and Department Number. In I
Figures 14b and l4c, the primary and secondary clustering descriptors of the

file have been shown. Finally, in Figure 14d, we illustrate the various l

clusters formed for the file and their composition both in terms of primary

PRIMARY CLUSTERING ATTRIBUTE: JOB
SECONDARY CLUSTERING ATTRIBUTES IN ORDER OF
IMPORTANCE: SALARY, DAPARTMENT-NUMBER

RECORD | e J0B SALARY | DEPARTMENT-MUYBER
1 | HAYES MANAGER 1500 100
2, NAYAK ENGINEER 2000 100
3 BOONE TECHNICIAN 4000 200
4, WHITE MANAGER 1200 700
5, KLINE ENGINEER 2500 200
b, PRICE ENGINEER 2500 200

Figure l4a. The Six Records of a File, and its Primary and

Secondary Clustering Attributes

35

N <

DESCRIPTOR 1D, DESCRIPTOR TYPE
PY1, JOB = MANAGER
PY2, JOB = ENGINEER
PY3, JOB = TECHNICIAN

Figure 14b. Primary Clustering Descriptors of
File F

DESCRIPTOR 1B, DESCRIPTOR TYPE
SECI, 1000 < SALARY < 2000 A
SE@, 2001 < SALARY < 3000 A
SEC3, DEPT, NUMBER = 100 B
SECY, DEPT, NUMBER = 200 B

Figure l4c. Secondary Clustering Descriptors of
File F

B e, sk b o ikl " A Y,

USTER PR RECORDS_IN
l%h"lBER IESCA%%R CLUSTER

1 PYl SECL Rl, Rd4

2 PY2 SEC1 R

3 PY3 SECH R3

4 PY2 @ RS, 6

Figure 14d. The Clusters of File F and their Composition

. e i i o ot

o i ' k ,~» e i R o e L AR Ll o T A
S — -

38
and secondary clustering descriptors, and in terms of the records that make up the
clusters. For example, the record Rl belongs to the cluster 1, which is defined
by the primary clustering descriptor PY1l and the secondary clustering descriptor
SECl. To see why this is so, let us look at the keywords of Rl1. Rl contains
the keyword <Job, MANAGER> and this is obviously derivable from the primary
clustering descriptor PY1l, i.e., (Job=MANAGER). Also, Rl contains the keyword
<Salary, 150> and this is derivable from the secondary clustering descriptor,
SEC1, (i.e., 1PPP<Salary<2@@@) since, 15@p lies between 1PPP and 20PP. It also
contains the keyword <Department Number, 1f>, which is derivable from another
secondary clustering descriptor, SEC3. However, for clustering purposes, we
only consider the primary clustering descriptor PYl and the secondary clustering
descriptor SECl of Rl from which the primary clustering keyword of the record
(i.e., <Job, MANAGER>) and the most important secondary clustering keyword
of the record (i.e., <Salary, 1500>) are derivable. Hence, Rl belongs to the

cluster defined by PY1 and SECI.

3.5.2 Data Structures Used in the Algorithm
A. The Track Space Table (TST)

The track space table (TST) is used by DBCCP to determine, for each record
for insertion, the cylinder and track into which it must be inserted. A logical
view of this table is shown in Figure 15.

There is one such table for every file known to DBC. There are as many
entries in the TST as there are cylinders allocated to the file. We mav
recall [7], that a file is allocated a certain number of cylinders and that a

cylinder only contains records of a single file. Each entry consists of N+l

fields, where N is the number of tracks in a cylinder (N is in the range 20 - 40).

The first field contains a cylinder number. The i-th field (2<i<N+1) contains
the number of bytes available for allocation in track i-1 of the cylinder

contained in Field 1.

B. The Cluster Identifier Definition Table (CIDT)

There is one such table for every file known to DBC. Each entry in the
table is a quadruple as shown in Figure 16. The first field contains a cluster
identifier. The second and third fields contain the identity of the primary
clustering descriptor and the secondary clustering descriptor, respectiveiy,
that make up this cluster. The fourth field contains the cylinder number of

a cylinder that contains at least one record belonging to this cluster.

-

L S

RPN

Space Space Space
Cylinder Available Avaiiable Available
Number in in in

Track | Track 2 Track N

N is the number of tracks in a cylinder.

Figure 15. The Track Space Table (TST)

D

PRIMARY
CLUSTERING
DESCFI? 11) PTOR

SECONDARY

CLUSTERING
DESCT]IJPTOR

CYLINDER
NUMBER

Figure 16.

The Cluster Identifier Definition Table (CIDT)

41

C. The Primary Clustering Descriptor Table (PCDT)

The logical view of one such table is shown in Figure 17. There is one
primary clustering descriptor table (PCDT) for each file known to DBC. There
is an entry in the PCDT for each primary clustering descriptor and each entry
consists of five fields as shown in the figure. The first field contains
the identifier of the attribute in the primary clustering descriptor. In case
the descriptor is of type-A, then the second and third fields contain the upper
and lower limits, respectively, of the range that defines the descriptor. TIf
the primary clustering descriptor of sub~descriptor is of type-B or type-C,
then the second field is null and the third field stores the value of the
descriptor or sub-descriptor. The fourth field contains the identifier assigned
to the descriptor by DBC. The fifth field contains the maximum space requirement
for the clustering descriptor. This maximum space requirement is the estimated

number of cylinders needed for storing all records whose primary clustering

3.5.3 The Algorithm

t keywords are derivable from the clustering descriptor.
; There are two inputs to this algorithm. These are the primary clustering
r

descriptor LIST[1] and the secondary clustering descriptor LIST[2] from which

the primary clustering keyword and the most important secondary clustering
keyword, respectively, of the record are derived. For an explanation of how i
i

E LIST[1] and LIST[2] are obtained, the reader is referred to [7].

ALGORITHM: To select a cylinder and a track within that cylinder into which
a given record may be inserted.

j' Step 1: Set FLAG=1. Search the CIDT of the file to which the record belongs, :
looking for all entries whose second field contains LIST[1] and
whose third field contains LIST[2]. Extract the fourth field from
all such entries and put them in a set CYL. If CYL contains no
elements, then go to Step 7. Else, go to Step 2.

Step 2: For every member of CYL, do Step 3.

Step 3: Search the TST of the file to which the record belongs, looking for
an entry whose first field matches the element of CYL. Place the
entire matching entry (which is an N+1 tuple) into a set h.

Step 4: Let the 1-th member of h be denoted by <Ci, T1li, T2i, ..., TNi>.

For each member of h, find the largest element among the entries Tli,
...y, TNi. Denote the maximum in the i th element of h by T(ki)i.

! [That is, let it be the entry in the (ki+l)-th field.] Let Tmax

| be the maximum among all T(ki)i. [In choosing maxima, if more than

[one exist, choose one arbitrarily.] Let Tmax=T(kj)j. [That is,

let it be the entry in the (kj+1)-th field of the j-th member of h.]

it i

PRRORS

TR | |G| R |

Figure 17. The Primary Clustering Descriptor Table (PCDT)

i i S - v e i = i g S i o i o .. y—— 4 z

413

Step 5: Compare Tmax with the length of the record (lr) to be imserted. Tf

Tmax>1lr, then chanpe the TST entry from <Cj, T1j, T2§, ..., T(kj)i,
..s TNj> to <Cj, T1j, T2j, ..., T(kj)j-1lr, ..., TNj> and insert the

record in track kj of cylinder j and terminate. If Tmax<lr and
Flag=1, then go to Step 6. If Tmax<lr and FLAG=2, then go to Step
7. If Tmax<lr and FLAG=3, then terminate with a negative signal.

Step 6: Search the CINT, looking for all entries whose second field contains
LIST[1). Extract the fourth field from all such entries and put
them together in a set CYL. Compare the number of unique elements
in CYL (|CYL|) with the estimated number of cylinders br needed for
storing all records whose primary clustering kevword is derivable
from the primary clustering descriptor in LIST [1]. This number
mav be found from the fifth field of the entry in the PCDT, whose
fourth field matches LIST[1]. If |CYL|<br, then go to Step 7.
Else, set FLAG=2 and go to Step 2.

Step 7: Set FLAG=3. Put all the entries in the TST into a set h. Go to
Step 4.

3.6 Analytical Study of Data Loop Performance

In this final sub~section, we propose to conduct a study into the perfor-

mance of the data loop, in order to show, in concrete terms, the throughput

improvement that will be caused by the proposed design. We begin by describ-

ing the model used for the analvtical study.

3.6.1 The Model
In Figure 18, we have shown the model used for analysis of the data
loop. User requests, which have been pre-processed by the structure loop or

which do not require pre-processing, are placed in one of the m disk drive

g

controller (DDC) queues. There is one such queue per disk drive controller,
(Note that each of the disk drive controller queues really consists of p*q 4
cylinder queues, where p is the number (8-16) of disks under the control of a
disk drive controller, and q is the number (200-400) of cylinders per disk
drive.)

Certain simplifying assumptions are now made in order to make the solution 1
tractable. First, for a given disk drive, we assume that a DDC cannot issue

more than one seek at a time. That is, a DDC issues a second seek only after

ikl

the set of orders on the cylinder referred to in the first seek have been
executed by the TIPs. Also, we assume an exponentially distributed arrival

rate of orders from the structure memory (SM). Additionally, it is hoped

that these orders are going to be evenly distributed among the various cylinders
in the MM, Finally, we assume that the mass memory monitor (MMM) adopts a

round-robin policy in dealing with requests. That is, it begins by interro~-

gating the first DDC to see if it has any completed seek. If so, it initiates

|
44 }
!
NODE /
CD}DC *
ueues Server for
l°" ll Executing
L N Seek Orders
on DDC,
, Server for
I.,, I! Executing
Seek Orders NODE 2
on DDC,
_ Server for
. "'IIL* Processing
. Execute Orders
on the TiPs
Server for

’_ _ I , | Executing
Seek Orders
on DDC_

Figure 18. The Model Used for the Analytical Study

45

execution of the set of orders for the cylinder on which the seek is complete.
Else, it looks at the second DDC, and so on.
We note that the model adopted is a two-node network model, where the
first node consists of m exponential servers (m is the number of DDCs) and
the second node has one exponential server. The problem is complicated by the
fact that the i-th server in the first node is blocked [16] from initiating a
second seek on a particular cvlinder until the server in the second stage
can process the set of orders on the cvlinder for which the i-th server has
completed a seek. The following paragraphs outline the method emploved to
overcome this complication that exists between the two nodes of the network
model.
Let us assume that an order from the DBCCP arrives everv n milliseconds.
With m DDCs, and a uniform distribution of requests among the cvlinders, this ;
means that an order is placed in one of the DDC queues, one every m*n milli- ?
seconds. Assuming p disks to be under the control of a DDC and q cvlinders 3
per disk, an order is placed in one of the cylinder queues, one everv m*n*p*q ‘
milliseconds. Let us also assume that a seek is not issued on a cylinder
until at least k orders exist for execution in the cyvlinder queue of that
cylinder (this is a design decision). The time taken before a queue has k
orders is k*m*n*p*q milliseconds. But, in k*m*n*p*q milliseconds, all p*q
cylinders of a DDC have k orders waiting for execution (since the orders will
be evenly distributed among the cvlinders). Thus, seek orders are generated
for each of the m servers in the first node at an average rate of (k¥m*n*p*q)/(p*q) =
k*m*n milliseconds. This is the inter-arrival rate of orders at each of the m
servers in the first node. Assuming a Poisson arrival distribution, we have,
as the arrival distribution, the following formual:
‘ 1

P(t) = R * 0‘Kﬁh A
kmn]

Let us now proceed to calculate the time taken bv the server in the

second node to process a request consisting of k orders Let
pl = percentige of retrieve requests
tl = time taken to execute a retrieve reaquest bv the TIPs ;
p2 = percentage of update requests i
t2 = time taken to execute an update request
pl = percentage of delete requests
t3 = time taken to execute a delete request

p4 = percentage of insert requests
t4d = time taken to execute an insert request

Let T(k) = time taken to execute a set of k orders (bv the TIPs). Then,
T(k) = k * [pl*tl + p2*%t2 + p3*t3 + pba*t4]

The average time taken to execute a set of orders Tav, depends upon L, the
average size of a set of orders. This will be greater than k (the number of
orders needed per set of orders before a seek is initiated) since, during the
time between the initiation of a seek on a cylinder and the execution of the
set of orders on that cvlinder, more orders on that cvlinder could have arrived.
In the next paragraph, we shall try to calculate L.

Let us first adopt the following notation. We shall number the DDCs as
DpbCl, DDC2, ..., DDCm. Also, we donate the j-th disk drive of DDCi as Dij.
Recall that the TIP scheduling policy is round-robin. That is, a set of orders
on some cvlinder of D11 is first executed. Mext, a set of orders on some
cvlinder of D12 is executed and, st the same time, DDC1l initiates a seek on
some cylinder of D1l. The TIPs now execute a set of orders on a cylinder of
D13, then a set of orders on a cvlinder of D4, and so on. Thus, we see, that
between the initiation of a seek on a cylinder of a particular disk drive and
the execution of a set of orders on that cylinder, the time elapsed is exactly
equal to the time spent by the TIPs in executing one set of orders from each
of the other disk drives. (Assuming that at ieast one seek has been completed
on each of the other disk drives. This is a valid assumption, if 1 is large
enough that the time taken by the TIPs in executing a set of orders of size L
is greater than the average seek time of the disk mechanism,)

Time taken bv the TIPs to execute mp-1 orders each of average size L

(mp-1) * L * [pl*tl + p2*t2 + p3*t3 + pb*t4)
(mp-1) * Tav

In this time, the size of the cylinder queues have grown from k to L. But,
new arrivals to a cylinder queue come with an inter-arrival rate of m¥*n*p*q

milliseconds. Thus,
(L-k)*m*n*p*q = (mp-1) * L * [pl*tl + p2*t2 + p3*t3 + p4*t4].

This gives us

k*m* n*p*q

m*n*pkxq - (mp-1) * [pl*tl + p2*t2 + p3*t3 + pa*t4]

and

Tav = L * [plktl + p2%t2 + p3xt3 + pb*td]

47

Tav is the average time taken bv the server in the second node to execute a
set of orders. Assuming an exponentiallv distributed service time, we have the
following distribution for the server in the second node.

t

Pserver2(t) = L e—Tav
Tav

We are now in a position to calculate the average time taken by a server
in the first node. 1t is obvious, from the discussion of the previcus paragraph,
that each DDC issues p seeks in a time equal to the average time taken by the
TIPs to execute mp sets of orders. Thus, the average service rate of servers
in the first node is m*Tav. Again, assuming an exponential distribution, fthe
distribution of the service time for a server in the first node is:

t

1 -m*Tav
Pserverl(t) = ATav

The model is now as shown in Figure 19, It is a network of two nodes, the
first node consisting of m servers with exponentially distributed service
times and exponential arrival rates, and the second node consisting of a sing'e
server with an exponentially distributed service time. All the distributions

are known, and the solution to the above problem is well known.

3.6.2 The Results of the Study
The problem is now borken up into two parts as shown in Figures 20a and

20b. Each part consists of an M/M/1 queue [17]. ©Note that the second part
consists of a single server with an average arrival rate which is m times the
average arrival rate of the first part. We will now trv to find out the condi-
tions under which the queues will be steadv, i.e., the queues do not build up
indefinitely. We know that, in each queue, the ratio of the average arrival
rate to the average service rate must be less than one for stabilityv [17].
From Figure 20a,

(m*Tav)/ (k*m*n) < 1

i.e., (Tav)/(k*n) < 1

From Figure 20b, we have, for stabilitv
(Tav)/(k*n) < 1

Thus, we derive the same condition for stability from both parts of the model,

lending strength to its validitv.

e e

>
[1]
>
[
L]
f
>
3
i

[
kmn

|
e “Hn maLau[Pt,+Pt + Pt P 1]

|
Ho L*[P t,+P, t,4+P1,4P t,]

Figure 19. The Two-Node Network of Exponential Servers l 3

49
A i
A Hm
N W e
! !
AT

= = =
Fom maLa[P, t, +P,1,+P 1, +P, 1] mxTav

Figure 20a. The First Part of Figure 19

Ho

m |
>‘o- ﬁmn * k—l'-l-
] |
=2
24Psts+P 1] Tav

-
o L [P 1, +P,t

Figure 20b.

The Second Part of Figure 19

50
A. Calculations for Data Loop Without Insert-in-Parallel
We make these calculations based on the following values for the various
parameters.
pl=p2=p3=p4=0.25
tl=t3=t4=20 milliseconds
t2=40 milliseconds
q=300
p=10C
m=10
k=10
So, pl*tl + p2%t2 + p3*t3 + pbé*t4 = 25 milliseconds.
Using L = (k*m*n*p#*q)/(m*n*p*q - (mp-1)*[pl*tl + p2%t2 + p3*t3 + p4&*ts]) we get,
L = (3%(10**5)%n)/(3*(10**4)*n-2475). So, Tav = (75%(10**5)*n)/ (3% (10%*4)*n~2475).
We need, Tav(k*n) < 1; i.e., (75%(10%%4))/(3%(10%*4)*%n-2475) < 1. This tells
us that n > 25 milliseconds. We note that the calculations are much simplified
bv letting k=L. (That is, we will henceforth use T(k)/(k*n) < 1 rather than
Tav/(k*n) < 1.) Then, (10%*25)/(10%n) < 1. Therefore, n > 25 milliseconds.
This tells us that, without the proposed design, the data loop cannot
accept requests at a rate greater than one every 25 milliseconds. Note that
changing the value of k causes no improvement in data loop performance. For
examnle, with k=20, we have, (20%25)/(20*n) < 1. This again gives us n > 25
milliseconds.
In the above calculations, we ignored the fact that one extra revolution
is needed per set of orders in order to rewrite the bit map. Using this fact,

let us redo our caiculations.
T(K)=k*{pl*tl + p2*t2 + p3*t3 + pb*t4] + 20=k*25+20

Therefore, T(k)/(k*n) < 1 implies n > 25 + 20/k. Although the throughnut
rate achievable is dependent on k, the best achievable throughput is still

one that supports an inter-arrival rate of one request everv 25 milliseconds.

B. Calculations for Data Loop with the Insert-in-Parallel

Once again, let

pl=p2=p3=p4=0.25

t1=t3=20 milliseconds

t2=40 milliseconds

t4=20/(number of insert record requests per set of orders) milli-
seconds. That is, it takes 20 milliseconds to execute all 'insert-
record' orders.

q=300

p=10 e

m=10

k=10 I

51

Once again, to simplify the calculations, let k=L. Then, T(k) = L*(pl*tl +
p2*t2 + p3*t3) 4+ 20. That is, T(k) = 220 milliseconds. Applying the condition
that T(k)/(k*n) < 1, we get n > 22 milliseconds. Hence, requests may be
allowed from the structure memory at a rate of up to one every 22 milliseocnds
rather than one every 25 milliseconds (as was the case without the proposed
design).

Consider what happens when we make k=L=20. Now we arrive at the condition
n > 21 milliseconds. That is, a recuest arrival rate of one every 21 milli-
seconds can now be handled. Let us now consider the limiting case when k is
made very large. We have, T(k)/(k*n) < 1. That is (k*20 + 20)/(k*n) < 1.
Since k*20 >> 20, this is equal to (k*20)/(k*n) < 1. This gives us n > 20
milliseconds. Hence, in the limiting case, the performance of the data loop
may be made good enough to handle inter-arrival rates as low as one every 20
milliseconds.

Finally, in Figures 2la and 21b, we show the results of our study in
graphical form. These graphs plot the inter-arrival rates that can be handled
by the data loop against k (the minimum number of orders that must exist on a
cylinder before a seek is initiated on it. This is a design decision.).
Figure 2la plots the results of the calculations of the previous paragraphs
(i.e., for a distribution where each of the four kinds of requests —-
insert, delete, update and retrieve -- has a 257 chance of occurring in a set
of orders). The maximum achievable advantage that accrues as a result of the
suggested design is 20%, TFigure 21b considers a distribution where 50% of
the requests are of the insert kind. The maximum achievable improvement in

this case is 42.867.

3.7 The Choice of Record Buffering Size for the TIPs

We see, therefore, that the incorporation of the insert-in-parallel
facility can bring us quite dramatic improvements depending upon the distribu-
tion of requests. On the basis of the expected distribution of requests, the
DBC designer may draw curves similar to those in Figure 21 and thus choose a
value of k which gives reasonably good performance. The expected distribution
of requests and the value of k that is chosen, will determine the size of the
second buffer that is used to store records for insertion. For example,
with a distribution where 50% of the requests are 'insert-record' requests, and
with k=50, we expect 25 'insert-record' requests per set of orders. Assuming
that there are 25 tracks per cylinder, and an even distribution of the 'insert-

record' requests across the tracks of the cvlinder, each TIP only needs to

have a second buffer large enough to hold one record.

(n)

inter-arrival rate that can
be handled by data loop

(milliseconds)

52

50 T T = T
40 coro,
percentage of delete requests=25%
percentage of retrieve requests=25%
percentage of update requests=25%
percentage of insert requesis=25%
30 -
without insert-in-paraliel
with insert-in-parallel
20} -
10 -
| L 1 1 1
0] 10 20 30 40 50

k
minimum number of orders per cylinder
queue before a seek is initiated on that
cylinder

Figure 2la. Graph Showing Results of Study When Percentage i

of Insert Requests is 257%

e =

(n)
inter-arrival rate of requests that can

tmm e e et

be handied by data loop

(milliseconds)

+ ka4 251 i . hind L T R I e | e et B

53
50ﬁF T T T T
40 percentage of delete requests=i6.67% __
percentage of retrieve requests=16.67%
percentage of update requesis=16.67%
percentage of insert requests=50%
30 N
without insert-in-parallel
201 1
with ingert-in-parollel
Iof :
' i ke 1. 1
o) 10 20 30 40 50
k

minimum number of orders per cylinder
queue before a seek is initiated on that
cylinder

Figure 21b. Graph Showing Results of Study When Percentage
of Insert Requests is 50%

4. DELETION OF RECORDS

In this section, we shall examine the method used in DBC to delete
records that are stored in the mass memory of DBC. We shall bepin by describing
certain hardware methods that have been suggested in some other database
machines {11], and bv explaining whv we do not wish to use these methods in Dio,
LLater, we shall examine the deletion method emploved in DBC and provose an
improvement of the method. Finallv, we shall use the model developed in the
previous section to substantiate our claims of performance improvement of the

1 proposed method.

4.1 The Method Used in CASSM

We describe here, the method [11,18] used in CASSM (context-addressed

segmented sequential memory) for doing deletions. A delete command issued

by a user of CASSM does not cause anv actual deletion of records. However,
records that gqualify for deletion are maked as having been deleted, and thesce
marked records are ignored bv subscvaquent commands. The task of repacking
these variable-length holes left in memorv as a result of deletions is done
later by garbage collection hardware.

A repister LWL [18] is the basic hardware used in garbage collection. Also,
separate read and write heads are needed for each track. As the read head picke
up data, it is fed into one end of a shift repister RVL which shifts at the
same bit rate ac the track readout rate. A tap is provided for the cutont o
RVL at multiples of W from the input, where W is the basic word sizc ot tic
machine. When storage {s not being collected (Figure 22a), the write by
uses the centre tap of MVL as its input. When garbage is being collod o
(Flgurce 2'b), the input of the write head moves one tap toward the et
RVL cach time a word marked for garbage collection is encountered oo oot
This eliminates that word from the scauence in memorv., Tt mav beocosi -
that the number of words that mav be parbaye collected per revolation o
teo the number of words that can fit into one halt of register W8T 00 T
not lony enough to collect all words marked for deldaetion on oo tra s,
bee collected in subscequent revolutions.

We o shall now make a few obscervations about this wothod in oo 0
sizey, At a later time, some of the differences between it anedl the ot
is emploved in DBC., First, the above method implice the use of o e
and o write head per track. Second, we note that there has o beoat 0
one mark bit per word. 1f a record spanning n owords is to bhe rarke.

delvtion, cach of the n words of the record must be marked for deleoooo

v
A .) I‘
—— T T TR mam—

55

4
1

RVL

RVL

Variable lenpth Shift Repister Used for

Deletion ot

[
ro

Figure

Records in CASSM

b e = & =

56
is, one mark bit per word rather than one mark bit per record is necessary

(in fact, CASSM uses three mark bits per word).

4.2 The DBC Method

We have already stated, in Section 2, why we do not favor using two heads
per track. This means, of course, that CASSM's method of garbage collection
cannot be used in DBC. The method that is used in DBC to delete records is
now described.

We recall, from Section 2, that each track has a bit map stored in the
first sector of the track. Each record on a track is represented by a bit in
this bit map. The bit is set to 'l' if the corresponding record has to be
deleted. Before processing of a cylinder is to begin, the bit map in each of
the tracks is read by the corresponding track information processor (TIP) into
the RAM portion of its buffer. A delete command is accompanied by a query that
specifies the records that are to be deleted. Records that satisfy the query
are marked as having been deleted by setting the bit corresponding to this
record. This may be done 'on-the-fly', since the bit map is stored in a
RAM which mav be quickly accessed. The following is the algorithm executed
by the TIPs in order to process a 'delete-by-query' order.

ALGORITHM: This is executed by the TIPs in order to process a 'delete-by-
query’ order.

INPUT: The query that specifies the records that are to be deleted.

TIME TAKEN: As many revolutions as there are conjunctions in the query.

Step 1: Let N be the number of conjunctions in the given query. I=1.

Step 2: Store the I-th conjunction in the query in the query memory of the
TIPs. RECORDNUM=1.

Step 3: If end of track is encountered, then go to Step 4. Else, start

reading the bits of record number RECORDNUM from the track and com-
paring it with the querv conjunction stored in the query memory of

the TIP. If the record satisfies the conjunction and, hence, quali-

fies for deletion, set bit RECORDNUM in bit map to '1'. Go to

Step 5.

I=I+1. 1If T > N, then terminate. Else, go to Step 2.

When end of record is encountered on track, set RECORDNUM = RECORDNIM + 1
and go to Step 3.

&

Step
S oo

wn

lLater retrieve, delete and update commands will ignore records that have their
corresponding bit in the bit map set.

Up to this point, there is no essential difference between the CASSM
method and the DBC method. Both methods mark records that are meant for

delction. 1In DBC, only one bit needs to be marked per record to be deleted, and

this bit is stcred in a RAM and is not part of the record. In CASSM, many bits

57
need to be marked per record to be deleted, and these bits are part of the
record itself and are not stored separately.

The difference in the two methods comes about in the compaction (garbage
collection) step. DBC enters the compaction mode during periods of light load -
when there is a low utilization of system resources. In the compaction mode,
MAUs in which tagged (marked) records exist (recall that the mass memory
deletion table (MMDT) keeps a list of MAUs that have records tagged for deletion)
are accessed, and data in each of the tracks is read into the mass memory
controller (MMC) by the TIPs. The MMC then writes back those records which are
not tagged. An algorithmic description of the process of compacting records

in a MAU is given below.

ALGORITHM: To compact a MAU.

INPUT: The MAU to be compacted.

Step 1: Access the MAU M to be compacted.

Step 2: Request the TIPs to read all tagged records.

Step 3: As the TIPs transmit tagged records over the IOBUS, create a struc-

ture memory deletion table (SMDT), a veiw of which is shown in

Figure 23. Each entry in this table has two fields. The first field
contains a directory keyword, and the second field contains a set

of pairs, where each pair is of the form (cylinder number, security
atom number). Since this table is temporary and may be deleted at the
end of the compaction mode, it may be created in the database object
descriptor table (DODT). The SMDT is formed as follows. For each
tagged record that is received by the MMC, do the following. For
each directory keyword DKi in the record, look to see if there is an
entry in the SMDT with DKi in Field 1. If no such entry exists, then
create a new entry with DKi in Field 1, and the pair (M,S) in Field
2. [M is the cylinder being compacted and S is the security atom
number of the record being examined (the security atom to which a
record belongs is part of the information present in a record)]. 1If
such an entry exists, then search the corresponding set of pairs in
Field 2 of this entry to see if a pair of the form (M,S) exists.

If such a pair exists, then do nothing. Else, add the pair (M,S)

to the set of pairs in Field 2 of the corresponding entry. Now
discard the record. [In the SMDT, we are putting those SM entries
which point to records marked for deletion. Since the records have
been deleted, these entries (which point to the deleted records)

must also be deleted from the SM].

Step 4: Request the TTPs to read the untagged records. [Since the memory
available to the mass memory monitor (MMM) is smaller than the MAU
capacity, the MMM will divide the TIPs into sections which are
processed sequentially. Thus, if say 80K bytes are available to the
MMM and the MAU capacity is 320K bytes, then the TIPs are divided
into four sections. TIPs in the same section are requested to read
their tracks concurrently during the compaction process. Steps 4
through 7 are repeated for each section].

Step 5: As the records from the TIPs come in, store them in the record
storage.

Step 6: For each record in the record storage, do the following. For each
directory keyword DKi in the record, look to see if there is an

58

R

Directory| A set of pairs. Each pair is of the form

Keyword | (cylinder number, security atom number)

Figure 23. The Structure Memory Deletion
Table (SMDT)

3
3

59

entry in the SMDT with DKi in Field 1. T1f no such entry exists, then

do nothing. If such an entrv exists, then scarch the corresponding
set of pairs in Field 2 of this entry to see if a pair of the form

(M,S) exists. M is the cylinder being compacted, and S is the security

atom number of the record being examined. If such a pair exists,
delete the pair from Field 2 of the SMDT. Else, do nothing. [In
this step, we look at those entries in the SM which point to the
untagged (undeleted) records. We wish to delete, from the SM, all
entries that point to deleted records. However, some entries in the
SM may point to both deleted and undeleted records. We wish to
retain these entries in the SM, since, otherwise, pointers to
undeleted records will be lost. Hence, anv entrv in the SMDT which
points to an undeleted record is removed from it.]

Step 7: Write the records in the record storage back into the tracks via
the TIPs.

Step 8: Pass the SMDT table to the database command and control processor
(DBCCP). DBCCP then accesses the structure memory (SM) and deletes
the relevant index terms from it.

We will now estimate the time taken to compact a MAU. First, all the
tagged records are read and processed. Since the reading of one record (bv
the TIPs) occurs at the same time as the processing of another record (byv the
MMC), one revolution of the disk device will suffice for this. Next, the
untagged records are read, processed and written back, a section at a time.
Once again, the time to read and process a section is one revolution. However,
the time taken to write back & section is very large (without insert-in-
parallel) since writing back has to be done a record at a time. Assuming
80K bytes per section and 1K byte records, it takes 80 revolutions to write
back a section! 1If the TIPs are divided into r sections, the time taken to

compact a MAU is
1 + r*(14+80) = 1481r revolutions.

Typical values of r range from 3 to 6, so that the time of compaction ranges
from 244 revolutions to 487 revolutions.
However, with insert-in-parallel, onlv one revolution is needed to write

back a section. Thus, the time taken to compact a MAU is
1 4+ r*(1+1) = 1 + 2r revolutions.

Once again, letting r range from 3 to 6, we see that the time of compaction
ranges from 7 to 13 revolutions. This is an improvement of about 97%. e
thus see that allowing for insert-in-parallel tremendouslv improves the per-

formance of DBC during the compaction mode of operations.

K

60

4.3 Further Improvements

Before we examine if it will be possible to further improve the time
taken to compact a MAU, let us examine the reasons for choosing to implement
the process of compaction in the manner described in the last sub-section. If
we were to provide a track-size buffer with each TIP, then compaction mav be
done in the TIPs itself without having to move records to and from the MMC. This
will enable us to do compaction more quickly than possible now. However, our
original reasons for not having track-size puffers with each TIP was because
these buffers would be underutilized during the retrieval operation. We would
now like to reexamine our motives for not choosing to have track-size buffers
for each TIP.

First of all, with memory technology making rapid advances, under-

atilization of memory is no longer as important as it used to be. Secondly,

we are now trving to design DBC to operate in an update-intensive environment

where there are many requests for deletion. Therefore, we would like to enhance i
DBC performance during the compaction phase even if it means underutilization
of memory. That is, we are willing to pav the price of underutilization in an
update-intensive environment but not inan update-free environment. Finally,
in an update-intensive environment, the underutilization of TIP buffers will
not be a problem, since, the precentage of retrieval requests is expected to ?
be verv low. The remaining portion of this section will be devoted to showing
how the performance of DBC may be improved, during the compaction phase, bv
using track-size buffers with each TIP. In the next section, we will show that
track-size buffers will be needed to improve the performance of DBC during
execution of update commands. Thus, we see that the buffers will be under-
utilized only during execution of retrieval cormands, and in an update-
intensive environment, there are expected to be very few retricvals. For

all the above reasons, we advocate the use of track-size buffers with cach

TIP.

A new method of compaction is now proposed for DBC that uatilizes the 1
track-size buffer. A description of this method follows. During the compac-
tion mode, the TIPs read records in their respective tracks and place atl
untagged records in one buffer (sayv Buffer A) and all tagged records in another
buffer (sav Buffer B). [Farlier, we had indicated the need for two dirferent
buffers. Buffer A is the buffer that is used during the execution of retrieve !

.nd update commands and 1s the size of a track as we have postulated above,

Buf fer B is the buffer that is used to hold records for insertion. In Scction

61
3, we had shown how to estimate the size of this buffer depending on various
factors such as average cylinder queue size and the percentage of insert
requests.] This reading of both tagged and untagged records may be done in
one revolution of the disk device. Recall, that a TIP consists of a disk
interface processor (DIP) and a control interface processor (CIP). 1In the first
revolution, as the DIP is reading the tagged and untagged records, the CIP is
processing the tagged records in Buffer B. 1In the second revolution, the DIP
writes back all the untagged records in Buffer A, even as the CIP processes
the untagged records in Buffer A. Since each buffer consists of individually
accessible segments, the CIP can process those segments of Buffer A which
have been written back by the DIP. We will now describe the nature of the pro-
cessing done by the CIPs, during the two revolutions, in an algorithmic fashion.
It will be noted that each TIP needs an additional RAM to do this processing.
This RAM will store two tables, the tagged deletion table (TDT) and the
untagged deletion table (UDT). Both these tables are similar to the structure
memory deletion table (SMDT) which was described in the previous sub-section
(see Figure 23).
ALGORITHM: Executed by the CIP during the first revolution of the compaction
phase.

Step 1: I =0.

Step 2: I =1+ 1. Read the I-th tagged record in Buffer B. If there is no
such record in Buffer B, then terminate.

Step 3: For each directory keyword DKi in the record, look to see if there is
an entry in the TDT with DKi in Field 1. If no such entryv exists,
then create a new entrv with DKi in Field 1, and the pair (M,S)
in Field 2. |M is the cylinder being compacted, and S is the security
atom number of the record being examined.] If such an entrv exists,
then search the corresponding set of pairs in Field 2 of this entry
to see if a pair of the form (M,8" exists. If such a pair exists,
then do nothing. Else, add the pair (M,S) to the set of pairs in
Field 2 of the corresponding entrv. Go to Step 2.

In the first revolution, the DIP reads all tagged records into Buffer B and

all untagged records into Buffer A. 1In the same revolution, the CIP builds

up, in the TDT, a list of SM entries which point to deleted records. Naturallv,
we shall remove these entries from the SM as long as they do not also point

to undeleted records. In revolution two, the CIP executes the same algorithm
as above except that it processes the records in Buffer A (rather than those

in Buffer B), and that it utilizes the untagped deletion table (UDT) and not

the tagged deletion table (TDT). That is, the CIP builds up, in the UDT, a

list of SM entries which point to undeleted records. This same revolution is

utilized by the DIP to write back all undeleted records.

62
Thus, at the end of two revolutions, all the untagged records have been
written back on to the track and each TIP has created two tables, the TDT and
the UDT, These tables are now sent to the MMC, which then processes these
tables, in the third revolution, to form the structure memorv deletion table

(SMDT) as follows.

ALGORITHM: Executed bv the MMC to form the structure memorv deletion table (SMDT).
INPUTS: One TNDT and one UDT per TIP.

Step 1: FLAG=0. Concatenate all the TDTs into a single TDT. Let there be
N entrics in the newlv created TDT. Set I=1.
Tf FLAG=0, then examine the T-th entrv in the TDT. FElse, c¢xamine the
I-th entry in the UDT. TIf the I-th entry is null, then go to Step 4.
If the I-th entrv is nonnull, let it be of the form <value, S», wherc
S is a set of pairs. Look through entries I+]1 to N, looking for
entries which have the same value in Field 1 as the T-th entrv has.
Put these entries into a set Q. For each entrv in set 0, do Step 3.
Step 3¢ Let the entrv be of the form <value, R>, where R is a set of pairs.
Delete this entrv (i.e., make it a null entryv) ifrom the TDT (delete
this entrv from the UDT if FLAG = 1) and change the I-th entryv
of the TDT (change the I-th entrv of the UDT if FLAG = 1) to
“value, S U R>.
Step 4: I=T+1. If T » N & FLAG=0, then go to Step 5. TIf T » M & FLAG=1,
then go to Step 6. Else, go to Step 2.

o

Step

Step 5: FLAG=1. Concatenate all the UDTs in to a single UDT. Let there he
M entries in the UDT. Set T=1 and go to Step 2.
Step b: lemove all null entries from the TDT and the UDT. [At this point,

we have merged all the entries in the TDTs into a single TDT and all
the entrics in the UDTs into a single UDT.]

Step 7: For each entrv in the UDT, do the following. Let the UDT entrv be
<value, X> Search the TDT looking for an entrv with the same
value in Field 1 as the entry in the UDT. Let this be the entrv
<value, Y>. Recall that X and Y are sets of pairs Delete the UDT
entry, and change the TDT entrv to <value, Y-¥>. [Recall, that we
do not want to delete all the entries present in the TDT from the SM.
This is because some of these entries mayv also point to undeleted
records. Tn this step, we remove all entries in the TDT which are
also present in ¢he UDT. Since entries in the TDT peint to deleted
records and entries in the UDT point to undeleted records, it follows
that entries common to both the TDT and the UDT point to both deleted
and undeleted records. Hence, we are keeping, in the TDT, onlyv those
entries which point solelv to deleted records. These entries must
be removed from the SM. |

Sten R The resulting TDT is called the structure memorv deletion table
(SMDT)Y. This SMDT is now sent to DBCCP so that the corresponding
index terms mav he deleted from the structure memorv,

Note that, in the above method of compaction, the TDTs and the UDTs de not
have to be sent to the MMC a section at a time., This is because the size of
these tables s much smaller than the size of all the untagped rcecords in a
track. Thos, the entire compaction process now takes approxcmatelv three

'

re-volations, have thas r-need the process of compaction from a maximum

ot AT yevalnidens . te o minimum of 3 revolutions.

R

PPN

63

4.4 Elimination of Compaction Mode and Deletion Bit Maps

The careful reader would of course have realized that garbage collection

would be unnecessary if records were of fixed length. This is because insertions

may then be done in slots left vacant by deletions, since all records, being

of fixed length, would fit into these empty slots. However, when records are
of variable length, one record may not fit into the slot left vacant by the
deletion of another record and, hence, compaction is necessary. Actually, it
is not necessary that all records be of fixed length in order to avoid the
overhead of garbage collection. It is only necessary that all records in a
file be of fixed length. This is because a cylinder only contains records from
a single file. Since most of the files encountered in the real world have
fixed-length records, no compaction will be necessary in most of the cases.

In DBC, we will compact only those MAUs which contain variable-length records.

Notice, that changes to the index terms in structure memorv (SM) can be
made only after the process of compaction has created the SMDT. lLet us see how
this will affect the execution of requests that are issued after a delete
command, but before the necessary changes (caused by the delete request) have
been made to the index terms in SM. Basically, the problem is the existence
in SM of index terms that ought not to be there. This could cause some deleted
index terms to be retrieved from SM in response to a query. Since index terms
consist of (cylinder number, security atom) pairs, this may lead to extra
accesses to cylinders (i.e., cylinders in which no record that can satisfy the
given query exist). The impact of this can, of course, be reduced by doing
compaction more often.

A logical time to do compaction on a cylinder would be at the end of
execution of a set of orders on that cylinder. We would like to get some
quantitative fipures on the drop in throughput rate of the data loop as a result
of doing compaction at the end of a set of orders. We shall use the model

developed in Section 3 to come up with some quantitative results.

4.4,1 Calculations of Data Loop Throughput
Let,

pl=p2=p3=p4=0.25 (i.e., an even distribution of requests)
t1=t3=20 milliseconds.

t2=40 milliseconds.

q=300

p=10

m=10

k=L=10

I1f we do not compact at the end of a set of orders, .n

T(k) = k*{(pl*tl + p2*t2 + p3*t3) + 20 milliseonds.

= 220 milliseconds

1f we do compact at the end of a set of orders,
T(k) = k*(pl*tl + p2*t2 + p3*t3) + 80 milliseconds.

= 280 milliseocnds
This is becuase three additional revolutions are needed for compaction.
Applying the condition T(k)/(k*n) < 1, we get n > 22 milliseconds without
compaction at the end of every set of orders, and n > 28 milliseconds with
compaction at the end of every set of orders., However, as k gets very large,
the limiting condition, in both cases, is n > 20 milliseconds. That is, we
may compensate for the extra time spent in compacting at the end of a set of
orders by increasingk (the minimum number of requests that must be present on
a cylinder queue before a seek may be issued on that cylinder). Figure 24
is a graph of k versus the maximum inter-arrival rate that the data loop can
sustain. We note that effects of compaction on the throughput rate are
minimal when k is made very large. Thus, by making k fairlyv large and compacting
at the end of every set of orders, we can minimize the number of unnecessary
cylinders that might have to be searched owing to the presence of an index
term that ought to have been deleted.

Let us examine some of the implications of doing compaction at the end of

every set of orders. First, this means that DBC no longer needs to switch
to the compaction mode in order to do compaction. That is, compaction is done,
in the normal mode itself, bv incurring three extra revolutions at the end of
a set of orders. This, as the graphs show, will not affect the throughput rate
on the data loop if a large enough value of k (the minimum number of orders
that must exist on a cylinder before a seek is initiated on it) is chosen.
Second, we have shown that the process of compaction builds up a SMDT which
contains all entries In the SM which must be deleted. Postponing the process
of compaction until the DBC encounters periods of light load would cause a
poor response to many requests. This is because the presence of indices in the
SM which ought to have been deleted would cause the access of cvlinders which
do not contalns records that satisfy the querv in the request. Thus, many
unnecessary seeks would be carried out in DBC This is avoided bv doing the
compaction as often as possible. Finally, we note that it is no longer necessarv
to store the bit map on the track itself. The bit map onlv needs to be in the

RAM associated with each TIP, When compaction is not done at the end of every

65
i
|
]
f
5(9{ —T ! T - |
‘f
!
!
40 percentage of delete requests=25% 7
c percentage of retrieve requests=25%
o 8. percentage of update requests=25%
: o porcentage of insert requests=25%
O P
c O Wm
-6 T 30 . *
oo & . .
/-\'06 - 8 with compaction at the
c end of t of orde
V%ng nd of o set of orders
v » S——
E %! — without compaction
s c E 20F =]
0 =
[G =
20
ca
i ‘O o —
| | 1 | 1
0 10 20 30 40 50

minimum number of orders per cylinder
queue before a seek is initiated on that
cylinder

Figure 24a. Graph Showing Results of Study When Percentage
of Insert Requests is 25%

i o

(n)
inter-arrival rate of requests that can

be handled by data loop

(milliseconds)

50

40

30

Hh

I

percentage of delete requests=16.67%

percentage of retrieve requests=16.67%
percentage of update requests=16.67%
percentage of insert requests=50%

with compaction at the —
nd of a set of orders

without compaction

1 | il

10

minimum number of orders per cylinder
queue before a seek is initiated on that

Figure 24b,

20 30 40 50
k

cylinder

Graph Showing Results of Study When Percentage
of Insert Requests is 50% '

ekt i = TR o -
T ...__~_..11

67

set of orders, it is necessary to copy the bit map from the RAM onto the track
in order to remember the positions of deleted records. However, when compac-

tion is done at the end of a set of orders, all the deleted records have been

removed and, hence, it is unnecessary to remember the positions of deleted

records. This implies that more space is available to store records in each

track.

68
5. UPDATING OF RECORDS

In this section, we shall take a look at the process of updating records
stored in DBC. We shall begin by describing the exact nature of the update
requests. That is, the kinds of update that are allowed in DBC are clearlv
specified. These allowed updates are then classified into various categories
depending upon whether the part of the record that is updated is a simple
keyword, a directory keyword, a clustering keyword or a security kevword.
This is because these different categories of update need different amounts
of processing by DBC. The processing of update requests is then described
assuming that the size of Buffer A (see Sectioné4) is less than track-size
the performance of the data loop without track-size buffers is compared to its
performance when track-size buffers are used. Finally, a proposal is made for

the purpose of improving the data loop performance to a greater degree.

5.1 The Nature of Update Commands

In DBC, the format of an update command is as shown below.
UPDATE OUERY MODIFIFR

That is, the command consists of three parts. The first nart specifies the
command name. The second part is a query. All records that satisfy this

query must be updated. Optionally, the second part may contain 'ALL' to
indicate that all records in DBC are to be updated. The modifier part speci-
fies the kind of modification that needs to be done on the records that satisfv
the query. We have already indicated, in Section 2, the exact nature of a
query which will not be reproduced here. 1Instead, we shall concentrate on

the nature of the modifier. The modifier is essentiallv of the form
<attribute, newval = f(oldval)>

That is, it is a pair. The first part of the pair smecifies an attribute which

is present in the keywords of the records that are to be modified. This

— ——— . e ———

oldval> is the keyword to be modified. The second part of the pair specifies

© s abe i

69

the value that this attribute must take (newval) in the updated records as a
function ot the value that it had before the update (oldval). We note that

both newval and oldval are literals, or reserved words of DBC. Examples of

tvpes of moditiers allowed in DBC are indicated below.

1. <Name, newval = HSIAO™,

Here, the new value that is to be taken by the Name attribute is 'HSTIAO'.
This is the constant function, since it is not a function that depends on the
old value of the Name attribute.
2. <Salarv, newval = oldval+5000>,

Here, the salarv of employees (as identified by the query part) will be
increased by $5000.
3. <Salary, newval = 0ldval*110/100>.

Here, all emplovees (identified by the query part) are given a 10% raise.

In DBC, we may also allow the modifier part of the update command to be

of the following form.
<attributel, newvall=f(<attribute2, oldval2>)>,.

That is, the new value {(newval) that an attribute (attributel) is to take is
a function of the old value (oldval2) of another attribute (attribute?) in

the records that are to be updated (as identified by the query part). The

attribute to be modified, in this case, is attributel. The pair <attributel,

oldvall> is the keyword to be modified. We shall refer to attribute 2 as the
base attribute of modification. Once again, newvall and oldval2 are literals.

An example of a modifier that fits the above format is
<Monthsal, newvall = <Yearsal, oldval2>/12>.

This modifier causes the monthly salary earned by employees in records
identified by the query part to be a twelfth of the yearly salary earned by
these employees. The attribute to be modified is Monthsal and the base
attribute of modification is Yearsal.
Hencforth, we shall say that the modifier in an update command can be of

one of the following three types.

TYPE O: <attribute, newval=constant>

TYPE I: <attribute, newval-f(oldval)>

TYPE T1: <attributel, newvall=f(<attribute2, oldval2>)>

We note that DBC update command allows only for the update of a single

«ttribute's value. If many attribute values have to be updaﬁed, many DBC update

commands will be needed.

NI

70

()
to

The Concept of Blocking

Before classifving updates into various categories, let us explain, by
means of an example, some of the problems associated with record updating.

Let us imagine a particular database with many records. One of the attributes

that appears in some of these records is, sav, Salarv. A view of the struc-

ture memory (SM) content is shown in Figure 25. Each entrv in the SM, as

]
we recall, is a kevword or kevword descriptor followed by a set of indices.
Fach index is a (cylinder number, security atom number) pair. The first SM
entrv in Firure 25 indicates that records containing the keyword <Salarv, 75> 4

are present in Cylinders 2 and 3, and that these records belong to Security
Atom number 2. The second entrv in Figure 25 indicates that records containing
the kevword <Salary, 50> are stored in Cvlinders 1 and 4, and that thev

belong to Securitv Atom number 1.* Consider, now, that the following two

requests are issued to DBC, one after the other.

(1) UPDATE ALL <Salarv, newval=oldval+25>
(2) RETRIEVE (Salarv=75}

The first command is an updare command. It increments the Salarv of all

records bv 825, After execution of this command, all records that originallv

contained the kevword <Salarv, 75> will contain the kevword <Salarv, 100>,

| et e et

Similarlv, all records that contained the kevword <Salary, 50> will contain the
kevword ~Salarv, 75-, After the records in the mass memorv are properlv updated,
the structure memorv must also be updated. This is depicted in Fipure 26.
Consider what happens if the second request, i.e., the retrieve request, is
executed before SM is finished with the update., In other words, the records in
MM are properlv updated and the entries in SM have not vet been modified. The
second request requires the retrieval of all records that satisfyv the auery

(Salary = 75), i.e., all records that contain the kevword -Salarv, 75-.

Since the update process 1is not yet completed, SM mav still indicate that such
records are present in Cvlinders 2 and 3 (see Figure 25 again). The mass memory
will now execute this request by accessing each of these cvlinders, in turn,

looking for records that contain the kevword -Salarv, 75>. However, due to the

earlier update command executed bv DBC, only records that contain the kevword

“Salarv, 100> are present in Cylinders 2 and 3. Thus, the MM will not be

able to retrieve a single record with the kevword <Salary, 75>. We know, of

%See note in Figure 25.)

SM Entries %

<Salary, 75>

<Salary, 50>

(2,2),(3,2)

(t, ,(4,NH

% Normally, each SM entry may cover a range of values, say,
75<Salary<i000. Very seldom do we utilize SM for storing
indices of discrete attribute values. For the simplicity of

this illustration, we use discrete attribute values.

Figure 25. A View of the Structure Memory (SM), before Execution of
the Update Command

71

il

P}

SM Entries

<Salary,I00>

<Salary, 75>

(2,2),(3,2)

(, 1,4,

Fivure 26, N View ot

the Structure Memorv (SM) after it has been

Modificd to Refleect the Changes Caused by the Update

73
course, that records which contain the keyword <Salary, 75> are present in
Cylinders 1 and 4.

There are two distinct problems owing to the execution of the next
command before the completion of the update command.
(1) 1t has caused the accessing and search of cvlinders which do
not contain records that satisfy the second request.
(2) 1t did not access and search cylinders which did contain
records satisfying the request.
Both problems lead to a decrease in recall (i.e., the number of retrieved
records that satisfy the user query vs, the total number of records in the
database that satisfy the query). TFor DBC, we require total recall. Fence,
we must ensure the following. TFollowing an update request that modifies a
directory keyword, we must block the execution of all subsequent requests
that may be affected by the update reaquest until the structure memorv has
been modified to reflect the changes in the MM caused by the update reauest.
We shall define thar we mean by requests that may be affected bv an update

request in the following sub-sections.

5.2.1 Update of Nonsecurity and Nonclustering Attributes
Consider a specific update request in which the attribute to be modified
is part of a directory keyword, but is neither a security attribute nor a

clustering attribute.
UPDATE OUERY MODIFIER

Let the attribute to be modified be attributel. Anv susequent retrieve

(or delete) request issued will use a query to specify the records to be
retrieved (or deleted). 1If any of the subsequent requests contains a querv
that uses attributel, then this retrieve (or delete) request may be affected
by the update. More specifically, a subsequent retrieve (or delete) command
will be affected by the update only if the query used in the retrieve (or
delete) command contains attributel and the set of records that satisfy this
query overlaps with the set of records that satisfy NUFRY. We are therefore
required to determine whether the set of records that satisfv one querv will
overlap with the set of records that satisfy another query. Unfortunatelvw,
it is not always possible to tell, given two queries, whether the records
that satisfy one query will overlap with the records that satisfv another

query prior to any record retrieval. However, there are wavs to tell, given

- e s——y

T4

two queries, that the set of records that satisfy one query will not overlan

with the set of records that satisfv the other query. For example. it is easy

to see that records that satisfv the query (Salarv < 50) will not overlap with
records that satisfv the query (Salary > 50). However, given the querv (Salar. =
50) and the query (Name = HS1AO), there is no wav to tell, without an actual
cxamination of ail the records In the database, whether the set of records

that satisty one query will overlap with the set of records that satisfv the

St A A o bAoAk

other querv, i.e., there is no wav of telling if there exists at least one
record that satisfies both queries.

We shall refer to two queries such that the set of records that satisfy
one query overlaps with the set of records that satisfv the other querv as
clashing queries. 1f two queries are clashing, all the attributes in either
querv are called clashing attributes. On the other hand, (falarv-50) and
(Salary~50) are nonclashing aueries and Salary is the nonclashing attributc.

Ye observe that two querices are nonclashing if at least one of the attributes

in cither queryv is nonclashing. Thus, ((Name=HSTAO) & (Salarv=75)) and (Name=
HSTAO) & (Salary-75)) are nonclashing queries even though the two queries mav by
clashing on the attribute Name. T{ we cannot make certain that two queries are i
nonclashing, we sav that they may be clashing.

Given two queries, we will trv to determine in DBC if thev are
definitelv nonclashing on one or more attributes. A means to do this will be
elaborated in subsequent paragraphs. 1f it cannot he definitelv determined
that two queries are nonclashing on some attribute, we conclude that the
two queries mav be clashing on all attributes in the two queries.

Consider the following example and let the update be UPDATED and sub-
sequent requests be RETRIFEVE., We have

UPDATE (attributel»>0) <attributel, newvall=oldvall-=25
RETRIEVE (attributel=<50)
Since the querv (attributel50) and the querv (attributel 90 are nonclashing
on the attribute attributel, we might wrongly conclude that the records that

satisty one query will not overlap - oth the records that satisfv the other

queryv. However, this is not true. This is because during the update the
first reguest has decreased the value of attributel in some of the records

in the databas. Thus, these records which originally had a value for attributel

sreater than 50 might now have a value for attributel less than 50,0 Henee, the

75

second request could refer to some records that were updated bv the carlier
request and heace may be affected by U'PDATF1. For a second request to bhe
unaffected by an earlier update request, it is not enough to see if the querics
in the two queries are nonclashing on an attribute other than attributel (i.e.,
the attribute to be modified in the update request). We can conclude that a
retrieve (delete or update) request issued subsequent to an update is unaffected
bv the undate onlv if either the querv in the request does not coutain the
4 attribute to be mndified or the querv in the request is nonclashing with the
querv in the update on an attribute other than the attribute to be modified.
Insertion requests issued subseaquent to an update are not affected bv

the update.

We are now in a position to give a complete and formal definition of
what we mean bv 'mav he affected'. A request issued subsequent to UPDATI]
{UPDATE QUERY1 <ATTIRBUTEID, NEWVAL=CONSTANT>] or [UPDATE OUERY!l <ATTRIBITED,
NEWVALI=f (OLDVAL1)>] or [UPDATE OUERY1l <ATTRIBUTE]l, NEWVALI=f{(-ATTRIBI'TE2,
OLDVALZ>)>1, where ATTRIBUTED is not a securitv or clustering attribute, may
be affected by UPDATEL if one of the following is true.

(I) It is a retrieve request and the querv used in the request contains
ATTRIBUTEl and may be clashing with OUERY] on all attributes in the two queries
other than ATTRIBUTFEL.

(2) It is a delete request and the query used in the request contains
ATTRIBUTE1 and may be clashing with GUFRY! on all attributes in the two querics
other than ATTRIBUTEL.

(3) 1t is an update request of the form UPDATE OUERY MODIFTER and OUERY?
mav be clashing with QUERYI on all attributes in the two queries other than
ATTRIBUTE]l and ATTRIBUTEL is part of QUERY2.

All requests that mav be affected by a prior update command are called hlocked

requests. The prior update command which causes other renyests to be blocked

is called the blocking request.
Let us explain the definition of the previous paragraph by means of some
examples, Consider the following update request.

1. UPDATE ((Salarv>50) A (Name=HSTAO)) “Salarv, newval=oldval+sa -,

Let us aasume that the following set of requests was issued subsequent to the

issnance ot the update recuest above.

(n) RETRIEVE (Name=HSTAO)

(b) RETRIEVE (Namce#HSTAO)

(¢) DUELETE (Salarv=75)

(d) RETRIFVE (Salarv<23)

(¢) DILLETE (Salarv -50) A (Name#HSITAO)

(1) UPDATE (Name=HSTAOQ) -Dept, newval=oldval#2-

(v) UPDATE (Name=HSTAO) “Salarv, newval=oldval®2:

(h) UPDATE (Namc#HSTAD) -Salarv, newval=nldval#*2:

(i) UPDATE (Salarv>50) -“Salarv, newvall=<Rent, oldvall >

(i) UPDATE (Name=HSTAO) -Rent, newvall=<Salarv, oldvall >

Let us now consider cach of the requests (a) through (§) in turn, and
see o which of them mav be affected by the undate request shown in (1), We note
that, in this update recuest, ((Salarv=50) A (Aame=HSTAM)) is the update guery
and Salary is the attribece to be modified.
() This is a retrieve request with the querv (Name=HSTAO) . This
guerv does not contain the attribute to he modificd by update reauest,
foeoy Salarve Hence, in spite of the fact that the qguery ClamesHsTAO)
mav be colashing with the cuery ((Name=HSTAO) » (Salarv:30)) on the
Name attribute, this rearest is unaffected by the update request.

(b) This reauest is alse n ffected by the updiate request hecause query
(Name#EHSTANY) does not contain the attribute Salarv.

o) This reqrnest is a delete request and it is acceompaniced byt
auery (Salarv=74) which obviousty contains the attribute Salary.
Also, the auery (Salarv=75) mav be clashing with the auerv ((Salare S0
(Name=HSTAO)Y) on the Name attribute {«ince we cannot determine that
it is aonctashiong on the Name attribute) . Hence, this request mav
he atected by the undate request.

(71) This reaquest o= a retricvve veauest and it is accompanicd by the
query fSalarv 2h) which obviousty contains the attribante Salarv.
Also, the query (Salarv-25%) mav be clashine with the cuery
((salarv-50) & (Name=HSTA0)) on the Name attribute (the tact that
thew are nonelashing on the Salarv attribute is unimportant since
“alarv is the attribute to he modified in the update reaues=t)
Henee, this request mav be affected bv the update request.,

vy This is o delete request which is accompanicd by the guery

COnalare -5 o (Name#HSTAM)Y . Fven thoush this azery contains the

D e A St S

H
}

AP

()

(g)

(h)

(i)

77
Salary attribute, it is nonclashing with the query ((Salarv-50) A
(Name=HSTAO)) on the Name attribute. Hence, this request will be
unaffected by the update request.
This is an update request with querv (Name=HSTAO) and a modificr of
TYPE I, where the attribute to bhe modified is Dept. We note that
(Name=Hsiao) mav be clashing with ((Name=HSTAO) A (Salarv>50)) on the
Name attribute. However, Salary is not part of the querv {(Name=HSIAOQ).
Therefore, this update request is not affected by the undate request.
This is an update request with query (Name=HSIAO) and a modifier
of TYPE I, where the attribute to be modified is Salary. The query
{(Name=HSTAO) may be clashing with ((Name=HSIAD) A (Salary>50)) on the
Name attribute. However, Salarv is not part of the querv (Name=HSIAO).
Hence, this update is not affected by the update request.
This is an update request with query (Name#HSTAO) and a modifier of
TYPE I, where the attribute to be modified is Salary. However, since
(Name#HSTAQ) is nonclashing with ((Name=HSIAO) A (Salary>50)) on the
Name attribute, this request will be unaffected bv the update request.
This is an undate request with query (Salarv>50) and a modifier of
TYPE IT, where the attribute to be modified is Salary, and the base
attribute of modification is Rent. First, the querv (Salarv>50)
may be c¢lashing with the querv ((Salarv>50) A (Name=HSIAO)) on the
Name attribute. Second, the attribute Salary is part of the querv
(Salary>50). Hence, this request mav be affected bv the update request.
This is an update request with query (Name=HSIAO) and a modifier of
TYPE 1T, where the attribute to be modified is Rent., and the base
attribute of modification is Salary. Even though the query
(Name=HSTAOQ) mav be clashing with the querv ((Salarv>50) A (Nane=HSTAO)),
Salary is not part of the query (Name=HSTAQ). Hence, this request is

not affected bv the update request.

We conclude, from the examples above, that the executjion of requests ¢, d,

and 1 must be staved until the structure memorv is fullv updated to reflect

the chanyes caused bv the undate request. That is, requests ¢, d, and 1 are

blocked by the update request.

78

5.2.2 Updating Securitv and Clustering Attributes

Up to this point, we had considered the requests blocked by an earlicer
update request, where the attribute to be modified in the carlier update was
not a scecuritv or a clustering attribute, In order to illustrate how the
situation is different if the attribute to be modified is either a sccurity
or a clustering attribute, we resort to an example.

l.et us consider that the following two reauests are issued one after the

other,
1. UPDATE (Name=HSIAO)) <Salarv, newval=oldval+25-
2. RETRTEVE (Name=HSTAOQ)

The first request is an update request, where (let us assume) the attribute
to be modified is a securitv attribute. TIn DBC, we handle update requests that
modifv a security or clustering attribute in the following wav. The records
which satisfyv the associated query are first deleted from the mass memory.
Then, each deleted record is updated, and the database command and control
processor (DBCCP) determines the new securitv atom to which the record
belongs, or the new cvlinder into which it must bz inserted (or both). Finallv,
cach deleted record is reinserted into DBC. Now, if the retrieve request
shown ahove is allowed to be executed before the earlier update completes, no
record will be retrieved because the update would have caused the deletion of
all relevant records. Hence, the execution of the retrieve request must be
staved until the ecarlier update completes. That is, the update blocks the
retrieve request since the retrieve request mav be affected by the update
request. We define this concept below.

A request issuced subsequent to UPDATED [UPDATE OUERY1 ~ATTRTBUTEL,
NEWVALT=CONSTANT] or [UPDATE OUERY1 <ATTRTBUTE1, NEWVALI={(OLDVALI}>] or
[UPDATE OUERY1 ~ATTRIBUTED, NEWVALI=f (<ATTRIBUTE2, OLDVAL2:)-], where
ATTRIBUTED is a securitv or clustering attribute, mav be affected by UPDATE]
it the request is a delete, retrieve or update request, and the auery used in
the reauest mav be clashing with OUFRYD on all attributes in the two queries
other than ATTRTRUTEL.

The determination of new securitv atoms and clusters due to new sceuarity

and clustering attributes, is welldocumented in [7]. We shall not repeat it

here.

79

5.2.3 Requests Being Blocked Perpetually by Updates
Until now, we had indicated the kinds of requests that are blocked because

of a prior update request. We now consider a slightly different problem.
Consider that a delete (retrieve, update) request Di has been blocked by an
update request Ui that was incomplete at the time Di was issued, After Ui
completes, we might assume that Di may now be scheduled for execution. However,
this may not alwavs be the case. This is because, in the time between the
blocking of Di and the completion of Ui, another update request Uj (which is
not blocked by Ui) mav have started execution and may be incomplete at the time
Ui is complete. Now, if Uj also blocks Di, Di cannot be executed until Uj
also completes. Tt is not very hard to think of an example to illustrate the
situation. Consider that the following three requests are issued one after the
other,

1. UPDATE ((Salarv>50) A (Name=MENON)) <Salary, newval=oldval+25:

2. RETRIEVE ((Salary>75) A (Dept=20))

3. UPDATE (Name=MENON) <Dept, newval=oldval+20>

Let us assume that the first update request is not blocked bv any prior
update request. Hence, it is scheduled for execution. The retrieve request,
however, is blocked by the update request because the query associated with
the retrieve request contains the attribute Salary (which is the attribute to
be modified in the update request) and may be clashing with the query associated
with the update request on the attributes Name and Dept {(i.e., all attributes
except Salary). Therefore, execution of the retrieve request is staved until
the update completes. The second update reauest is not hlocked by the first undate
request because it does not contain the attribute salary. UFHence, it is immediate’~
scheduled for execution., Therefore, by the time the first update request
completes, the second update request may be at some stage of execution. The
second update request also blocks the retrieve request because the query
associated with the retrieve request contains the attribute Dept (which is the
attribute to be modified in the second update request) and the querv associated
with the retrieve request may be clashing with the querv associated with the
second update request on the attributes Name and Salarv. Thus, the retrieve
request must be stayed until the second update reaquest is also completed,

There are two wavs to handle the above problem. The first method is to
delav the execution of the bhlocked retrieve (delete, update) reauests until no

more blocking updates exist. That is, in the above example, execute the

retrieve request only after both the update rquests have completed execution.

e e

R

80

In the second method, the second update request is not executed until the earlier
retrieve request has been scheduled for execution., That is, in effect, the
second update request is blocked by the earlier retrieve request. Either of the
two aforementioned methods may be used in DBC. We will, henceforth, assume that
the first method is the one being emploved, but there is no reason whv the

second method mayv not he emploved.

5.3 The Classification of Updates

Let us now brieflv recapitulate the process of update in DBC. The
database command and control processor (DBCCP) first accesses the SM to retrieve
index terms. These index terms are then intersected in the structure mwemory
interface processor (SMIP). Finally, DBCCP is presented with a set of cylinder
numbers that contain the records that will satisfy the query in the update
request. The rele ant records are then retrieved and update. Based on the
udpates made, the SM is also updated. Execution of all subsequent requests
that mayv be affected by this update must be staved until the final updating of
the SM is done.

Naturallv, the question mav be raised as to whether it would not be
possible to update the index terms in the SM before the actual execution of
the command in the mass memory. That is, is it not possible to update the SM
cven as index terms (needed to satisfv the query part of the update request) are
peing retrieved from it? In the following paragraph, we will illustrate,
with an example, why it is not always possible to do this.

Consider, once again, the SM as shown in Figure 25. From the SM, we can
see that records containing the kevword <Salarv, 75> are present in Cvlinders
2 and 3, and records containing the kevword -<Salarv, 50> are present in Cviinders
I and 4. Let us assume that each cvlinder can hold onlv two records. In
Figure 27, we have shown the two records in each of the Cvlinders 1, 2, 3. and
4. TFach record, as can be seen, has two kevwords (cattribute, valuc> pairs).

Consider that the following update request is now issued.
UPDATE ((Salarv>50) A (Name=HSTAO)) -Salarv, newval=oldval+25-

After the exectuion of the above update command, the databasc now looks as shown
in Figure 28. The unwarv reader might assume, bv looking at the update request
Alone, that the SM should now look as shown in Figure 26, However, it can be
casilyv verified, by looking at the actual records, that the SM should look as
shown in Figure 29 (we will assume that the valie of the Salarv attribute

determines the security atom that a record belongs to). To take another

Cylinder
Record

Record

Cvlinder
Record

Record

Cylinder
Record

Record

Cylinder
Record

Record

1

1:

23

Figure 27.

(«Salary,

(<Salary,

(«Salary,

(«<Salary,

(<Salary,

(<Salary,

(«<Salary,

(<Salary,

50>

50>

75>

75>

50>

50>

<Name,

<Name,

<Name,

<Name,

<Name,

<Name,

<Name,

<Name,

HSTAO>)

MENON>)

HSTAO>)

MENON>)

ANNE>)

JOHN>)

ANNE>)

JOHN>)

A View of the Database before the Update Command

81

Cvlinder 1
Record 1: (<Salary, 75> , <Name, HSIAO>)

Record 2: (<Salary, 50> , <Name, MENON>)

Cylinder 2
Record 1: (<Salary, 100> , <Name, HSTAO>)

Record 2: (<Salary, 75> , <Name, MENON>)

Cylinder 3
Record 1: (<Salary, 75> , <Name, ANNE:»)

Record 2: («<Salary, 75» , <Name, .JOHN>)

Cvlinder 4
Record 1: (<Salary, 50> , <Name, ANNE>)

Record 2: (<Salaryv, 50> , <Name, JOHN>)

Figure 28. A View of the Database after the Update Command

[UPDATE ((Salary=50) A (Name=HSIAO))

<Salary, newval=oldval+25>]

83

Keyword Set of indices
<Salary, 50> (f,0),(4,n
< Salary,75> (1,2),(2,2),(3,2)
< Salary,|00> (2,3)

[UPDATE ((Salary > 50) 1 (Name = HSIAO)) <Salary, newval = oldval+25>]

Figure 29. A View of the SM after it has been Updated Following the Command

example, consider that instead of the above update request, the following

update request is issued.
UPDATE ((Salary>50) A (Name=ANNE)) <Salary, newval=oldval+25>

After the execution of the above request, the database will now look as shown

in Figure 30. Also, the SM should be correctly updated to that shown in

Figure 31. 1In both the examples shown above, the update commands themselves
could give us no clue as to what the state of the SM should be after execution
of the update commands. Only an actual examination of the records could provide
us with this information. Thus, it is impossible to update SM on the basis of
the syntax of the update commands alone.

There are, however, certain special circumstances under which we can guess
at the new state of SM without actually executing the commands., These situations
are listed below.

(1) 1If the attribute to be modified is not part of a directorv kevword.

In this case, no change is necessary to SM.

(2) 1If the attribute to be modified is part of a directory kevword, and
it is not a security or a clustering attribute, and the query part
of the undate request contains 'ALL', and the modifier is of TYPE O
(<A, newval = constant>), or TYPE I (~A, newval = f(oldval)>). In
this case, SM is updated as follows. Let the attribute to be modified
be A. Then, look through the SM and find all kevwords of the form
<A, Vi>. Let there be n such kevwords, <A, VI>, <A, V2>, ...,
<A, Vn>. 1If the modifier is of TYPE 0, then replace all these
keywords by the keyword <A, constant> (Figure 32a illustrates what
we mean). If the modifier is of TYPE I, then modifv these kevwords
in SM to <A, f(V1)>, <A, f(V2)>, ..., <A, f(¥n)> (Figure 32b illus-
trates what we mean).

(3) 1If the attribute A to be modified is part of a directorv attribute,

and it is not a clustering or a security attribute, and the querv

part of the update request consists of a single predicate using the
attribute /, and the modifier is of TYPE 0, sav < A, newval=constant >
or TYPE 1, say <A, newval = f(oldval)>. 1In this case, SM is updated
as follows. Look through SM and find all kevwords of the form <A, Vi~
which satisfy the query conjunction in the querv part of the update

request. Let there be m such kevwords A, V1>, <A, V2-, ..., <A, Um>,

If the modifier is of TYPE 1, then modifv these kevwords in SM (o

Cylinder 1

Record 1:

Record 2:

Cylinder 2
Record 1:

Record 2:

Cylinder 3
Record 1:

Record 2:

Cylinder 4
Record 1:

Record 2:

Figure 30.

(<Salary,

(<Salary,

(<Salary,

(<Salary,

(<Salary,

(<Salary,

(<Salary,

(<Salary,

{UPDATE

50>

50>

75>

75>

<Name, HSIAO>)

<Name, MENON>)

<Name, HSIAO>)

<Name, MENON>)

100> , <Name, ANNE>)

75> , <Name, JOHN>)

75> , <Name, ANNE>)

50> , <Name, JOHN>)

A View of the Database

((Salary>50) A (Name=ANNE))

<Salary, newval=oldval+25>]

after the Update Command

85

Keyword

Set of indices

<Salary, 50>

<Salary, 75>

<Salary,100>

(1, n,04,n

(2,2),(3,2),(4,2)

(3,3)

Figure 31.

[UPDATE ((Salary =

(Name = Anne))

A View of the SM after it has been Updated Following the Command

<Salarv, ncwval=oldval+25)]

85

Cylinder 1
Record 1: (<Salary, 50> , <Name, HSIAO>)

Record 2: (<Salary, 50> , <Name, MENON>)

Cylinder 2
Record 1: (<Salary, 75> , <Name, HSIAO>)

Record 2: («<Salary, 75> , <Name, MENON>)

Cylinder 3

Record 1: (<Salary, 100> , <Name, ANNE>)

Record 2: (<Salary, 75> , <Name, JOHN>)

Cylinder 4

Record 1: (<Salary, 75> , <Name, ANNE>)

Record 2: (<Salary, 50> , <Name, JOHN>)

Figure 30. A View of the Database after the Update Command

{UPDATE ((Salary>50) A (Name=ANNE))
<Salary, newval=oldval+25>]

e e —— h—a =

' Keyword Set of indices

<Salary, 50> (L,1n,04,0

<Salary, 75> (2,2),(3,2),(4,2)

<Salary,|00> (3,3)

[UPDATE ((Salarv -~ 50) * (Name = Anne)) <Salarv, newval=oldval+25)]

Figure 31. A View of the SM after it has been U'pdated Following the Command

Keyworgd Set of indices
L <A,20> (1,2),(5,1)
f <A,30> (6,3),(2,6)
<A, 40> (1,9)
Before
Keyword Set of indices
<A, 75> (1,2),(5,1),(6,3),(2,8),(1,9)
Atfter

Figure 32a. A View of the SM before and after the Update Comman.

[UPDATE ALL <A, newval = 75-]

"AO9% 408 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC--ETC F/6 9/2
DESIGN AND ANALYSIS OF UPDATE MECHANISMS OF A DATABASE COMPUTER--ETC(U)
JUN 80 D K HSIAO» M J MENON Nooou--,s.c_o-_;n
UNCLASSIFIED osu—cxsnc-TR-eo-s

B
a9 2
ARt

Keyword Set of indices
<A,20> (1,2),(5,1
<A,30> (4,3),(2,8)
<A, 40> (1,9)
Before
Keyword Set of indices
<A,40> (1,2),(5,1)
<A,60> (4,3),(2,8)
<A,80> (1,9

Figure 32b.

[UPDATE

ALL

After

A View of the SM before and after the Update Command

<A, newval = oldval X 2>]

88

~ o ———

89
<A, f(V1)>, <A, £(V2)>, ..., <A, f(Vm)>. If the modifier is of
TYPE 0, then replace all these keywords by the keyword <A, constant>.

We shall call the above types of update commands as CLASS I, CLASS II, and CLASS

III updates, respectively.

We would like to emphasize, at this point, that many update commands are
likely to fall into one of the three classes listed above. We feel that, mostly,
nondirectory keywords will be updated. Also, even if directory keywords are
updated, they are not likely to be security or clustering keywords. This is
because, changing a security keyword in a record is likely to change the
security atom to which the record belongs. This, in turn, will cause a change
in the protection requirement of that record. It is very unlikely, indeed, that
a database administrator would want to change the security privileges accorded
to a record frequently. Hence, it is very unlikely that an updated attribute
is a security attribute. Similarly, changing a clustering keyword of a record
could change the cluster that the record belongs to. A cluster contains all
records that a user is likely to retrieve together. Therefore, it is very
unlikely that a database creator would want to move a record from one cluster
to another on a frequent basis. Hence, it is very unlikely that an updated
attribute is a clustering attribute. The extra processing involved in order to
process an update command which involves the update of a security or clustering
attribute should now be clear. If the attribute to be modified is a clustering
attribute, then a new cluster has to be calculated for each of the records
updated. If a record belongs to a new cluster, then it could possibly mean
that the record needs to be placed in a different cylinder. This, of course,
involves some overhead. Similarly, if the attribute to be modified is a
security attribute, then a new security atom has to be calculated for each
record. Once again, this involves some overhead.

We are now in a position to classify the remaining types of updates.

CLASS IV: An update command which does not belong to CLASS I, CLASS II, or
CLASS III, and in which the attribute to be modified is part of a
directory keyword, but is not a security or clustering attribute.

CLASS V: An update command in which the attribute to be modified is a security
attribute but not a clustering attribute.

CLASS VI: An update command in which the attribute to be modified is a
clustering attribute but not a security attribute.

CLASS VII: An update command in which the attribute to be modified is both

a security and a clustering attribute.

N i i e - EADL 4 Mediaibveltuboaiais: oo
L ias ik i) ST -

90

5.4 A Scheme to Determine if Two Queries are Nonclashing

We recall, from our earlier discussion in this section, that the execution
of delete, retrieve and update commands must be stayed until the changes
caused by a prior update command are reflected in the SM, if these commands
are blocked by the earlier update command. To determine if a delete, retrieve
or update command may be affected by an earlier update command, one has to
determine whether the query of the subsequent delete, retrieve or update
command may be clashing with the query of the immediate update command. In
this sub-section, we shall propose a hardware scheme to determine if two query

conjunctions may be clashing.

The clash determination unit (CDU) is shown in Figure 33. Essentially,

it consists of a prorcessor (the query processor (QP)) and two sequential

access memories -— SM I and SM II. The sequential memories hold, respectively,
the two query conjunctions to be compared. Thus, each sequential memory

needs to be no larger than the largest single query conjunction that will be

encountered by DBC. This is estimated to be in the neighborhood of 1 Kbytes.
CDU utilizes the fact that the predicates in a query conjunction are arranged

in ascending order of their attribute identifiers. Each predicate is an
<attribute identifier, operator, value> triple. CDU begins to read a sequential
stream of bits from both SM I and SM II and to make a bit-serial comparison.
Whenever there is a match between the attribute identifier in SM I and the
attribute identifier in SM II, the operator and value in SM I are compared

with the operator and value in SM II to determine if the query conjunctions are
nonclashing on this attribute (See Table I). If the attribute identifier in

one of the sequenital memories is larger than the attribute identifier in the j
other sequenital memory, then the QP skips over the operator and value of the
smaller attribute identifier to the next attribute identifier. The above logic
is repeated until the conjunctions are found to be nonclashing on some attri-

bute, or it 1s concluded that the query conjunctions may be clashing on all h
attributes.

The algorithm executed by the query processor (QP) is presented formally

below. 1t is microcoded in ROM-1 and executed by microsequencer MC-1 (see

Figure 33).

ALGORITHM CLASH: Executed by the QP to determine if two querv conjunctions are
nonclashing or whether they may be clashing.

INPUTS: (1) The first query conjunction in SM I and the number of predicates
M) 1in 1t.]

(2) The second query conjunction in SM II and the number of
predicates (N) in 1it.]

91
Clash Determination Unit (CDU)
Query
Output to SMI Conjunction
¢DBCCP MC-1 lﬂa'i," (1 Kbytes)) From
Commands From Sequential access DBCCP
DBCCP
LBt Query
ROM-I Path Conjunction
SMI1 d From
Query Processor (QP) () Kbytes) N
Sequential access DBCCP

NOTE: The output is o single bit. A '| indicates the query
conjunctions maybe clashing. A 0 indicates that the
conjunctions are nonclashing.

Figure 33. A View of the Clash Determination Unit (CDU)

92

ol 02 V2 ,_
g
| = = =V E
2 = > <Vi g
3 = 2 < Vi |
4 = < >V
5 = < >VI
6 < = <vi
7 < < anyvalue
8 < < anyvalue
9 < > <(VI-1)
I0 < 2 <(Vi-1) 3
I < = <Vi
12 < < anyvalue T
13 < < anyvalue
14 < > <(VI-1N
15 < 2 < Vi
16 > = >VI |
|7 > anyvalue
I8 > 2 anyvalue
19 > < >(VI+) i—
20 > < 2(Vi+l) é
2] > - >V (
22 2 > anyvalue '
23 2 2 anyvalue
24 2 < 2(VI+1)
25 2 < 2Vi I

TABLE 1. The Set of Conditions Used by the Clash Determination Unit

93
Step 1: I=1, J=1.
Step 2: Al=I-th attribute identifier from SM I. A2=J-th attribute identifier
from SM II. If Al=A2, then go to Step 5. If Al<A2, then go to
Step 3. If Al1>A2, then go to Step 4.
Step 3: I=1+1. 1If I>M, then return FLAG=1 and terminate. Else, go to Step 2.
Step 4: J=J+1, 1If J>N, then return FLAG=1l and terminate Else, go to Step 2.
Step 5: [Recall that a query conjunction is a conjunction of predicates,
where each predicate is a triple of the form (attribute identifier,
operator, value)]. 01 = I-th operator from SM I. 02 = J-th operater
from SM II. V1 = I-th value from SM I. V2 = J-th value from SM II.
Check 1f any of the 25 conditions listed in Table I hold between 01,
02, V1 and V2. If so, ¢hen I=I+1, J=J+1, and go to Step 2. Else,
set FLAG=0 and terminate. [If any of the conditions listed in Table
I hold, we conclude that the query conjunctions may be clashing on
this particular attribute].
{Note: The result of this algorithm is returned in a variable called FLAG.
FLAG=0 indicates that the query conjunctions are nonclashing. FLAG=1 indicates
that the query conjunctions may be clashing.]

Earlier, we had indicated that it would be necessary to decide if two
queries were nonclashing or if they may be clashing, The CDU only determines
if two query conjunctions are nonclashing or may be clashing. In order to make
use of this facility, and for other reasons [1-6], we do the following in DBC.
Each delete (retrieve, update) command is split up into m delete (retrieve,
update) commands, where m is the number of conjunctions in the query associated
with the delete (retrieve, update) command, Thus, the command

DELETE (Name = HSIAO) v (Salary > 50)
is split up into two commands as follows.

DELETE (Name=HSIAO)
DELETE (Salary>50)

Now, all delete, update and retrieve commands utilize only query conjunctions.
All our earlier discussion on commands with queries is equally applicable to
commands with query conjunctions, since a query conjunction is also a query.
Thus, we have reduced the problem of trying to determine if two queries are
nonclashing (or may be clahsing) to the problem of trving to determine if two
query conjunctions are nonclashing (or may be clahsing). The CDU may be readily

utilized to serve the above purpose.

5.5 DBCCP Processing

In this sub-section, we will consider the kinds of processing done by

DBCCP in order to execute any given request issuved by a user. A description

C g ez e———

PERTVRETRE VS S

94

of some of the data structures that will have to be used by DBCCP in order to
do the processing is also presented. Since the processing needed for delete
and retrieve commands is different from the processing needed for update

commands, we shall describe these in different sub-sections.

5.5.1 Data structures Needed for DBCCP Processing
DBCCP will need the use of two tables to process the various kinds of

requests issued to it. We will describe each in turn.

A. Incomplete Updates Table (IUT)

There is only one such table in DBC. Each entry in IUT is an update
command on which execution has been started but not completed. That is, none
of the update commands in this table were blocked by any other update command
and hence were scheduled for execution. Fach of the update commands in IUT
will be in one of the following stages of execution.

(1) An order has been issued to the SM to retrieve index terms corres-
ponding to the command, but the intersected index terms have still
not been obtained by DBCCP,

(2) The intersected index terms corresponding to the command have been
obtained by DBCCP, and orders have been issued to the mass memory
(MM) to begin execution. MHowever, the MM has not yet finished

executing the orders.

Basically, none of the updates in IUT are blocked or complete. An update
is completed only when the SM has been modified to reflect the changes caused
by the update. Each entry in IUT consists of three fields. Field 2 will
store the modifier part of the update command. Field 3 will contain a unique

number, called an update number, that is issued to each update command by DRC.

Field 1 needs more explanation. Recall that update commands issued to DBC

are split up into m separate update commands, where m is the number of conjunc-
tions in the query associated with the original update command. Each newly
created update command has an associated query conjunction. Field 1 stores

the query conjunction associated with the update command minus the predicate
(if 1t exists) containing the attribute to be modified. An example should
serve to calrify the situation. If the update command is UPDATE ((Salarvy>50) A
(Name=HSTIAO)) <Salary, newval=oldval+25>, then Field 1 will store the conjunc-
tion (Name=HSIAO). The predicate (Salary>50) is removed from the coniunction
since Salary is the attribute to be modified. Note that the removal of the

predicate containing the attribute to be modified from the query conjunction

B e onmaoid

i
4

95

could cause the query conjunction to become null. 1In this case, a null value is
stored in Field 1. A logical view of IUT is shown in Figure 34, Any retrieve,
delete or update request received by DBC may be affected by one or more of the
updates in IUT and hence may be blocked until the update(s) are removed from IUT

after its (their) completion.

B. The Blocked Requests Table (BRT)
There is one such table in DBC. Each entry in the blocked renuests table

(BRT) contains a request which is blocked owing to one or more updates in IUT.
These requests may be delete, retrieve or update requests. Fach entry in RRT I
consists of two fields. Field 1 will contain the actual request itself (in its

entirety). Field 2 will contain a list of update numbers corresponding to ;
updates vhich cause this request to be blocked. A logical view of such a table

is shown in Figure 35. It indicates that the delete request

DELETE (Salary> 50)

is blocked by updates with update numbers 1, 5 and 12. All these three updates

must be completed before the delete request can be scheduled for execution.

5.5.2 The Handling of Retrieve and Delete Requests
When a retrieve (or delete) request is received by DBCCP, it is first

split up into m retrieve (or delete) commands, where m is the number of con-
junctions in the query associated with the retrieve (or delete) command. The ﬂ
following is done for each of the m commands, D1, D2, ..., Dm, thus generated.
We shall explain the process for command Di which has the query conjunction Ni
associated with it. Each entry in IUT is accessed in turn. If the attribute,
then ODU 1s invoked to determine if Qi clashes with the conjunction in Field 1 :
of the entry. Else, a check is made to see 1f the attribute to be modified

in Field 2 of the entry is part of the conjunction Qi. If it is not, then

we conclude that the update cor esponding to the entry does not block request
Di. TIf the attribute to be modified in Field 2 of the entrv is part of the

query conjunction 0i, then CDU 1is invoked to determine if Ni clashes with the
conjunction in Field 1 of the entry. If the conjunction in Field 1 is null,]

we may conclude, without invoking CDU, that Qi clashes with this null entrv.

In this way, each entry in IUT is accessed and the update numbers of all
updates that block the request Di are determined. If no update that blocks
the request Di is found, then Di is scheduled for execution. Otherwise, a
new entry is made in BRT with the request D1 in Field 1 of the entry, and a
list of update numbers of all blocking updates in Field 2 of the entrv.

e AN

Query Conjunction

Modifier

Update
Number

(Salary>50)

<Salary,newval=
oldval/2>

Figure 34. A Logical View of the Incomplete Updates
Table (IUT)

96

e R s A g Do e ¢ et b sk S e -

97

List of
Request &
Update Numbers
[Detete (satary > 50)] 1,5, 12

Figure 35. A View of the Blocked Requests Table (BRT)

AR skl oy e ey Lt B e e e NI AL e L S T AR AR N i s Rt 1 ot AR O - A T

98

Each time an update request issued to DBC completes execution, BRT is
accessed, and the update number corresponding to the just completed update
request is removed from all lists (in the second fields of BRT) in which it
is a member. If any of the second fields in BRT is thus caused to become an
empty list, the corresponding request Di in Field 1 is examined again to see
if any new update request (which was issued subsequent to Di) in IUT is
causing Di to be blocked. 1If not, Di is scheduled for execution and the
entry corresponding to Di is removed from the BRT. However, if Di is being
blocked by some new updates in the TUT, then Field 2 of the entry corres-
ponding to Di in BRT is filled with a list of update numbers of all blocking
updates.

Thus, a retrieve or delete request, received by DBCCP, is scheduled for
execution immediately if no incomplete update caused its blockage. Otherwise,
the execution of the retireve or delete request is stayed until such times

no blocking updates remain. The process 1s described algorithmically below.

ALGORITHM DELRET: Executed by DBCCP on receipt of a delete or retireve request.

Step 1: Split the request (in the manner indicated in an earlier sub-section)
into m separate requests, where m is the number of query conjunctions
in the query associated with the req.¢st, Fach newly created
command has an associated query conjun:tion. Let the newly created
commands be D1, D2, .., Dm and let the associated query conjunctions
be Q1, 02, ..., Qm. Set i=1l. In Steps 2 through 6, we process the
i-th command.

Step 2: [Let there be N entries in the IUT.] Set j=1. Set L-null list.

Step 3: Access the j-th entry in the IUT. Let the attribute to be modified
in Field 2 of the j-th entry be AT. If AT is a security or clustering
attribute, then go to Step 4. Else, check to see if AT is part of the i
query conjunction Qi. 1If not, then go to Step 5. Else, go to Step
4.

Step 4: Place 0i in SM I of CDU. Place the conjunction in Field 1 of the j-th
entry of the IUT in SM II of CDU. Invoke Algorithm CLASH to determine
if the two query conjunctions are nonclashing. [If the conjunction ;
in Field 1 {s null, we conclude, without invoking the CDU, that the :
two query conjunctions mav be clashing.] If the query conjunctions
may be clashing, then add the update number in Field 3 of the j-th .
entry in the IUT to L and go to Step 5. If the two query conjunctions i
are nonclashing, then go to Step 5. [Note that in L we are building '
up a list of update numbers of blocking updates.]

Step 5: j=3j+1. 1f j<=N, then go to Step 3. If j>N, then chkeck to see if
L is equal to the null 1list. TIf it is, then go to Step 6. If L
is nonnull, then create a new entry in the BRT with Di in Field 1
and L in Field 2. Go to Step 7.

Step 6: Schedule the execution of request Di and go to Step 7.

Step 7: i=1+1, 1If i>m, then terminate. Else, go to Step 2.

99

5.5.3 The Handling of Update Requests
! When an update command is received by DBCCP, it is first split up into
l m update commands, where m is the number of conjunctions in the query associated
with the update request. The following is done for each of the m commands,
Ui, U2, ..., Um, thus generated. We shall explain the process for command
Ui which has associated with it the conjunction Qi.
The update request Ui is handled essentially in two stages. The processing
done by DBCCP in the first stage is similar to the processing done by DBCCP to j

handle a retrieve or a delete request. Each entry in IUT is accessed and a

check is made to see if the attribute to be modified in Field 2 of the entry is ;

a security or clustering attribute. If so, then CDU is invoked to determine

if Qi clashes with the conjunction in Field 1 of the entry. Else, a check is
made to see if the attribute to be modified in Field 2 of the entry is part
of the conjunction Qi. 1If not, we conclude that the update corresponding to the
entry does not block Ui. Otherwise, CDU is invoked to determine if Qi clashes
with the conjunction in Field 1 of the entry. 1If the conjunction in Field 1
is null, we conclude, without invoking CDU, that i clashes with the conjunction
in Field 1.

In this way, each entry in IUT is accessed and the update numbers of all
updates that block the request Ui are determined. If no update that blocks
the request is found, the processing enters the second stage and this will be
described later. Otherwise, a new entry is made in the blocked reauest table

(BRT) with the request Ui in Field 1 of the entry, and a list of update numbers

of all blocking updates in Field 2 of the entry. Ui will be scheduled for {

k execution only after all the blocking updates in Field 2 of the BRT entry
have completed and no more blocking updates exist in IUT (see Algorithm
COMPLETE 1in the next sub-sgsection).

When an update request Ui has no updates blocking it, DBCCP enters the
second stage of execution. In this stage, the request Ui is scheduled for
execution. First, DBCCP tries to determine the class to which the update
request Ui belongs. If it belongs to one of CLASS T, CLASS II, or CLASS III, 'i
then request Ui is not entered into IUT. This is because the SM can be updated
even before Ui is executed, and. hence, Ui will not block any subsequent
request. If Ui does not belong to any of these three classes, then it is entered

into IUT since it could, potentially, block subsequent requests to DBC. The

entry in IUT is as follows. Field 1 will contain Qi minus the predicate (if

and Field

ALGORITHM
[STAGE 1]
Step 1:

o

Step
Step

(VS

Step 4:

Step 5:

{STAGE TI]
Step 6:

Step 7:
Step 8:

Step 9:

it exists) containing the attribute to be modified.

100

3 contains an update number which is a unique number given to update

request Ui by DBCCP. The entire process is shown algorithmically below.

UPDATE: Executed by DBCCP on receipt of an update request.

L]
Split the request (in the manner indicated in an earlier sub-section)
into m update requests, where m is the number of query conjunctions
in the query associated with the request. Each newly created
command has an associated query conjunction. Let the newly created
commands be Ul, U2, ..., Um and let the associated query conjunctions
be Q1, Q2, ..., Qm. Set i=1. 1In Steps 2 through 8, we process the
i-th command.
[Let there be N entries in the IUT.] Set j=l. Set L=null list,
Access the j~-th entry in the IUT, Let the attribute to be modified
in Field 2 of the j-th entry be Al. Check to see 1f Al is a security
or clustering attribute or is part of the query conjunction Qi.
If not, then go to Step 5. Else, go to Step 4.
Place Qi in SM I of the CDU. Place the conjunction in Field 1 of the
j-th entry of the IUT in SM II of the CDUl. Invoke Algorithm CLASH
to determine if the two query conjunctions are nonclashing. [If
the conjunction in Field 1 of the j-th entry is null, we conclude,
without invoking the CDU, that the query conjunctions may be clashing.
If the query conjunctions may be clahsing, then add the npdate number
in Field 3 of the j-th entry in the IUT to L and go to Step 5.
[In L, we are building up a list of blocking updates.]
3=j+1. TIf J<=N, then go to Step 3. 1If j>N, then check to see if
L is equal to the null list. TIf it is, then go to Step 6. If L is
nonnull, then create a new entry in the BRT with Ui in Field 1 and L
in Field 2. Go to Step 9.

Let A=attribute to be modified in Ui. TIf A is not part of a directorv
keyowrd, then go to Step 7. (Ui is a CLASS I request, and no change
is needed.!in the SM). Flse, if A is not a security or clustering
attribute and Qi="ALL', then mark the request as belonging to CLASS T1I
and go to Step 7. Else, if A is not a security or clustering attri-
bute and 01 is a single predicate using A, then mark the request as
belonging to CLASS III and go to Step 7. Else, if A is not a security
or a clustering attribute, then mark the request as belonging to

CLASS IV and go to Step 8. Else, if A is a security but not a
clustering attribute, then mark the reugest as belonging to CLASS V
and go to Step 8. Else, if A is a clustering but not a security
attribute, then mark the request as belonging to CLASS VI and go to
Step 8. Else, mark the reugest as belonging to CLASS VII and go to
Step 8.

Schedule the request for execution, and go to Step 9.

Make an entry in the IUT as follows. Field 1 will contain Qi

minus the predicate (if it exists) containing attribute A. Field 2
will contain the modifier part of Ui. Field 3 will contain the update
number assigned to request Ui. Go to Step 7.

i=i+1. TIf i>m, then temrinate. Flse, gn to Step 2.

Field 2 contains the modifier

PR PR

TP YO IR

101

5.5.4 DBCCP Processing on Completion of an Update Request
We now describe the algorithm that will be executed by DBCCP when it is
notified by MMC that an update request has been completely executed by MM.

ALGORITHM COMPLETE: Executed by DBCCP when notified of the completion of an
update request by MMC.

INPUTS: (1) The update number (UN) of the completed request.
(2) A set of index terms that must be modified in SM.

Step 1: Search through the IUT and remove the entry which contains UN in
Field 3.
Step 2: Request the SM to make the necessary modifications indicated by the

second input.

Step 3: For each entry in the BRT, do Steps 4 and 5.

Step 4: Check if UN is one of the numbers in the list in Field 2 of the entry.
If so, then delete UN from the list in Field 2, 1If the removal of
UN from the list in Field 2 causes the list to become null, then go
to Step 5. Else, do nothing.

Step 5: [If possible, schedule the request in Field 1 of the entrv for
exectuion.] If it is a delete or retrieve request, then invoke
Algorithm DELRET. If it is an update request, then invoke
Algorithm UPDATE,

Step 6: Terminate.

5.6 Command Execution in the Mass Memory (MM)

In this sub-section, we would like to describe the actual execution of the

update request in MM after they have been scheduled for execution by DBCCP. We
will begin by assuming that TIPs have small buffers attached to them. Later,
we shall show the improvement in performance that can be obtained by having
track-size buffers with each TIP. Finally, we shall propose a way of further
improving the throughput of DBC. By referring back to the analytical model

developed in Section 2, we shall arrive at some quantitative figures for the

data loop throughput.

5.6.1 Calculating the Number of Revolutions for an Update
Let us assume that each TIP has a buffer that is onlv big enough to hold

one record. Therefore, onlv one record can be stored and updated in one

revolution of the disk device. Essentially, the process of update is as follows.

In the first revolution, the first record (in each track) that satisfies the
given query conjunction is stored in the corresponding TIP buffer. Each TIP
then updates the record in its buffer. 1In the second revolution, the updated

record is written back onto the track and the second record that satisfies the

query conjunction is read out into the TIP buffers from each track. In this way,

if n records have to be updated in a track, the corresponding TIP will take n+l

revolutions to do the update. Consider a typical example, where the size of a

e o

P i it e M Sl bm .

e AR -

g £ b

102

track is 30 Kbvtes, and the average size of a record is 200 bytes. This means,
that there are about 150 records in a track. Assuming that 107 of the records
in a track will be updated, we see that the process of updating will take 16
revolutions.

Consider, instead, that each TIP has a track-size buffer associated with
it., In the first revolution, all records that satisfv the query conjunction
associated with the update command are read into the buffers bv the TIPs. In
the second revolution, all the records are updated by the TIPs. The third
revolution may then be used to write back all the updated records into the TTP
buffers. Thus, onlv three revolutions are¢ needed to perform an update.
Actually, we can do a bit better than this. Since each TIP reallv consists of
a disk interface processor (DIP) and a contreol interface processor (CIP), the
first revolution may be utilized for both reading and updating of records. That
is, even as the DIP is reading a record and placing it in the buffer, the CIP
is updating a previouslv read record in the buffer. However, since a record

cannot, probablv, be updated as fast as it can be read off the tracks. we will

assume that the process of update still takes three revolutions to execute.

5.6.2 A Modification

We will now suggest a modification to the above method of doing updates
in order to get some additional improvement. The method we use takes only
two revolutions per update, instead of three. A set of orders on a particular
cylinder is executed as follows. The first revolution is devoted to reading
all the records into the track-size buffer associated with each TIP. Sub-
sequent orders (that are within this set of orders) will not read the records
from the track. Instead, thev will read the records from the track-size buffer.
We recall that this track-size buffer is a sequential memorv. Let us refer
to the sequential reading of all the records in the buffer, from end to end, as
a readthrough of the buffer. If the shift rate of the seauential memorv is
greater than the readout rate of the track device, requests will be handled
quicker than before because the time taken to read through the entire track-
size buffer (one readthrough) is less than the time taken to read an entire
track of information off the disk (one revolution).

Remember, that each of the TIPs utilizes a bit map to remember the positions
of the records which have been deleted. 1In order to handle update requests, we
shall utilize another bit map to remember the positions of the records which

were found to satisfv the querv conjunction associated with the update request.

Thus, each record in the buffer has two bits associated with it. The first bhit

103

is the delete bit, and the setting of this bit indicates that the corresponding
record has to be deleted. The second bit is the update bit, and its use will
be indicated in the following paragraph.

The execution of an update request proceeds as follows. The DIP begins
to read the records from the buffer and it sets the update bits of all records
that satisfy the query conjunction associated with the update request. CIP also
reads the records in the buffer and updates those records whose update bits
have been set. DIP and CIP operate in a pipeline fashion, that is, even as
DIP is reading a record and checking it for satisfaction with the query conjunc-
tion, CIP is updating a record that has been previously read from the buffer

by the DIP. The algorithms executed by the CIP and the DIP are indicated below.

ALGORITHM DIP: Executed by the DIP in response to an update request.

INPUTS: (1) The records in the track-size buffer.
(2) The query conjunction part of the request stored in the query

buffer.
Step 1: For each undeleted record in the buffer, do Step 2.
Step 2: Check to see if the record satisfies the querv conjunction in the

query buffer (by sequential reading of the record from the track-
size buffer and of the query conjunction from the query buffer).
If so, then set the corresponding update bit. Indicate to the CIP
that it has finished processing the record.

Step 3: Terminate.

ALGORITHM CIP: FExecuted by the CIP in response to an update request.

INPUTS: (1) The records in the buffer. '
(2) The modifier part of the update request. :

Step 1: For each undeleted record in the buffer, do Steps 2 and 3. ;
Step 2: Wait until the DIP indicates (via the communication area) that it has
finished processing the segment to which the record belongs.

Step 3: Check the update bit corresponding to the record. 1If it has been
set, then update the record using the modifier part of the update
request and then reset the update bit. TIf the update bit has not
been set, ther do nothing.

Step 4: Terminate.

It is difficult to apprcximate the time taken to perform an update, since the

time taken to update a record depends upon the complexity of the update (e.p.,

whether it involves a multiplication or an addition) and the number of records

that must be updated. kowever, it is felt that an update request can be
completed in two revolutions of the disk device. One additional revolution
will, of course, be needed at the end of a set of orders in order to write
back all the records from the buffer onto the track. The writing back of all

the records in the buffer may be done in the same revolution that is used to

insert records into the track (see Section 4 on compaction).

104

Finally, we make use of the analytical model developed in Section 2 in
order to make a quantitative estimate of the performance improvements obtained
as a result of the suggested change. Figures 36a and 36b show the results,
in graphical form, of a comparison study of throughput rates with and without
the suggested changes. The improvements (especially in the case where 507 of

the requests are update requests), as can be seen, are quite gratifying.

5.7 The Handling of the Various Request Classes

We have already classified the update reauests into seven different classes.
Also, in an earlier sub-section, we have indicated how DBCCP determines the

class to which a given update request belongs. By the time the update request

is received for execution by MM, the class of the request is indicated in the
request itself. Algorithm CIP and Algorithm DIP, which were presented in the
previous sub-section, are the algorithms executed by MM in response to update -

requests that belong to one of CLASS I, CLASS IT or CLASS III. That is, there 1

is no difference in the manner in which CLASS I, CLASS II or CLASS III requests
are handled by MM (these requests are handled differently by the DBCCP and

they require different kinds of updates in the SM). However, if the request
belongs to CLASS IV, CLASS V, CLASS VI or CLASS VII, MM will have to execute

a different set of algorithms. We shall consider each class in turn.

5.7.1 Handling CLASS IV Requests

We recall that a CLASS IV update request is one which does not belong to
CLASS I, CLASS II or CLASS II1I, and in which the attribute to be modified is
part of a directory kevword, but is not a security or a clustering attribute.
In this case, we need to modify SM after MM completes its update part. This
means that the entry corresponding to the old value of the attribute to be
modified must be deleted from the SM and an entry corresponding to the new
value of that attribute must be inserted into the SM. This, in turn, means
that TIPs have to keep track of the keywrods that were modified in the records
in MM. 1In order to do this, TIPs use the following tables.

(1) The tagged deletion table (TDT).

(2) The untagged deletion table (UDT).

(3) The structure memory insertion table (SMIT).
We have already described TDT and UDT in Section 4. SMIT is similar to the
other two tables and is shown in Figure 37. As can be seen, each entry in it
consists of two fields. The first field contains a directory keyword. The
second field contains a set of pairg, where each pair is of the form (cylinder

number, security atom number). Entries in SMIT must later be inserted into SM. :

o0
@)

(n)

inter-arrival rate of requests that can

(milliseconds)
D
@]

be handled by data loop

without track-size buffer
pd (n=90 +60/k)

percentage of delete requests=25%)
percentage of retrieve requests=25%
percentage of update requests=25%
percentage of insert requests=25%

with track-size buffer
(n =ﬁ+ 60/k)

with track-size buffer and only one
write back at the end of a set of orders
n=z=(20+80/k)

| ! 1

1
10 20 30 40 50
k

minimum number of orders per cylinder
queue before o seek is initiated on that
cylinder

Figure 36a. Graph Showing Results of Study when Percentage
of Update Requests is 257

{n)

inter-arrival rate of requests that can

be handled by dota loop
{miliseconds)

Figure 36b.

106

220 T T T T

200 -

180 F— —
800 3 g0

160 | =

percentage of delete roquasts=i6 67%
100 percentage of retrieve requestssi6.67% —

percentoge of update requeste=50%
percentage of insert requestsz16.67%
80+ -

60 —

1th trock-size butter

aol- / (nz(10/2+60/x}

\w-vn traca-size duffer gnd only one
write Doch O the eno of ¢ set of orders
(n=80/3+80/k)

20 1
1
|

i d b i] '
0 10 20 30 40 50

mimmurm number of orders per cylinder
queue before o seek is initialed on that
cylinder

Graph Showing Results of Study when Percentape '
of Update Requests is 507

_ L Kalkhsrn -y A T
B e et = i .

107

* Directory A set of pairs. Each pair is
of the form (cylinder number,
Keyword security atom number)

Figure 37. The Structure Memory Insertion Table (SMIT)

108

Je are now in a postion to indicate the algorithms executed bv CIP and
DIP to handle update reaquests of CLASS IV, DIP executes exactly the same
alporithm as it does to handle CLASS I, CLASS II and CLASS ITI requests, and
which we have earlier called Algorithm DIP, CIP, however, executes a different

algorithm.

ALGORITHM CIP IV: Fxecuted by CIP in response to an update request of CILASS TV,

INPUTS: (1) The records in the seaquential buffer,
(2) The modifier part of the update reauest.
(3) The TDT and SMIT in the RAM buffer.

Step 1: For each undeleted record in the buffer, do Stens 2 throurh 5.

Step 2: Wait until the DIP indicates (via tne communication area) that it
has finished processing the segment to which the record belonss.

Step 3: Check the update bit Corresponding to the record. If it has not
been set, then do nothing. FElse, go to Step 4.

Step 4: Find the keyword, in the record, corresponding to the attribute to
be modified. Let the attribute to be modified be Al, and let the
keyword corresponding to this attribute he <Al, V1>, Also let the
record belong to Securitv Atom S, and let the record belone to
Cvlinder M. Search through the TDT, loocking for an entrv with the
kevword <Al, V1> in Field 1. If no such entrv exists, create a new
entry with the keyword <Al, V1> in Field1, and the pair (M,S) in
Field 2. 1If such an entrv exists, look through the list in the second
field of the entrv to see if the pair (M,S) is part of the list. TIf
not , add the pair (M,f) to the list in Field 2. %o to Sten 5. [Here,
we are putting the SM entry corresponding to the old value of
attribute Al into the TDT, since this entrv mav have to be deleted
from the SM.]

Step 5: Perform the necessarvy update using the modifier part of the unrdate
command. Let the new value of the attribute to be modified (Al) be
V2, Then, the nev keyword corresponding to the attritute Al is
<Al, V2> , Search through the SMIT, looking for an entrv with the
keyword <Al, V2> 1inField 1. 1If no such entrv exists create a new
entry with the keyword <Al, V2> in Field 1, and the pair (M,f) in
Field 2. If such an entry exists, look through the list in the se¢cond
field of entry to see if the pair (M,S) is part of the list. If nrot,
add the pair (M,S) to the 1list in Field 2. Reset the update hit
corresponding to this record. [In this step, we are putting an ertrv
corresponding to the new value of attribute Al into the SMIT. This
entry may later have to be inserted into the SM, Nothice that this
new enrty may later have to be inserted into the SM., Notice that
this new entry will not have to be inserted into the SM if a later
update causes further modification of attribute Al in this record.]
Reset the update bit.

Step 6: Terminate.

Thus, we see that the execution of update requests belonging to CLASS TV
will cause entries to be made in TUT and SMIT. Farlier in Section 4, we had
shown haw the process of compaction causes entries to be made in TDT and UDNT,
Thus, at the end of a set of orders, each TIP has three tables tc be transferred

to the mass memory controller (MMC). These are TDT, UDT and SMIT. Tn Section

4, we had also indicated the algorithm that will be executed by MMC in order

T PP

109

to form the structure memory deletion table (SMDT) from TDT and UDT. Here, we

shall indicate the MMC algorithm to form SMIT.

ALGORITHM SMIT: Executed by MMC to form the structure memory insertion table
(SMIT).

INPUTS: One SMIT per TIP.

Step 1: Concatenate all the SMITs into a single SMIT. Let there be N entries
in the newly formed SMIT. For each entry in the newly created SMIT,
do Steps 2 and 3.

Step 2: (Assume that we are processing the I-th entry in SMIT.] Let the entry
be of the form <K,S>, where S is a set of pairs and K is a directory
keyword. Look through every entry below this entry (i.e., entries
I+1 through N) and see it any of these entries below it have the
value K in Field 1. Put all these entries, below the I-th entry,
with value K in Field 1, into a set 0. For each entry in set Q,
do Step 3.

Step 3: Let the entry be of the form <K, R>, where R is a set of pairs.
Delete this entry from the SMIT and change the I-th entry in the
SMIT to <K, S U R>.

Step 4: Terminate.

Thus, at the end of the execution of a set of orders, MMC obtains a SMDT
and a SMIT. MMC sends these tables to DBCCP, which then instructs SM to first

insert the index terms in SMIT and then delete the index terms in SMDT.

5.7.2 Handling CLASS V, CLASS VI and CLASS VI1 Requests

A CLASS V update request is one in which the attribute to be modified is
a security attribute but is not a clustering attribute. A CLASS VI update
request is one in which the attribute to be modified is a clustering attribute
but is not a secuirty attribute. A CLASS VII update request is one in which the
attribute to be modified is both a security and a clustering attribute. The
TIPS execute the same algorithm to handle an update request in one of these
three classes.

DIP executes the same algorithm as it does to handle CLASS I, CLASS IT,
CLASS III and CLASS IV requests (which we have earlier called Algorithm DIP).
CIP, however, executes a different algorithm.

ALGORITHM CIP V: Executed by the CIP in response to an update request of
CLASS V, CLASS VI or CLASS VII.

INPUTS: (1) The records in the sequential memory.
(2) The modifier part of the update request.
(3) The TDT in the RAM buffer.

Step 1: For each undeleted record in the buffer, do Steps 2 through 5.

Step 2: Wait until the DIP indicates (via the communication area) that it
has finished processing the segment to which the record belongs.

Step 3: Check the update bit corresponding to the record. If it has not been
set, then do nothing. Else, go to Step 4.

[

Find the keyword, in the récord, corresponding to the attribute
to be modified. Let the attrbute to be modified be Al, and let the

keyword corresponding to Al be <Al, V1> ., Also, let the record belong

to Security Atom S and Cylinder M. Search through the TDT, looking
for an entry with the keyword <Al, V1> in Field 1. If no such entrv
exists, create a new entry with the keyword <Al, V1> in Field 1,
and the pair (M,S) in Field 2. TIf such an entry exists, look through
the list in the second field of the entry to see if the pair (M,S)
is part of the list. If not add the pair (M,S) to the 1list in
Field 2. Go to Step 5. ([Here, we are putting into the TDT, the
SM entrv corresponding to the old value of attribute Al, since, this
entry may have to be deleted form the SM.]

Step 5: Perform the necessary update using the modifier part of the update
command. Set the delete bit corresponding to this record. Send
the record over to the MMC, [Setting the delete bit will caus the
removal of all those entries in the SM which point to this record.
This removal will happen during the process of compaction.] Reset
the update bit.

Step 6: Terminate.

Essentially, CIP updates the records that satisfy the query. I then
marks these records as having been deleted and sends these records over to MMC
which in turn sends them over to DBCCP. For each record that is received by
it, DBCCP does the following.

(1) If the update request is of CLASS V, it determines a new securitv

atom for the record.

(2) 1If the update request 1s of CLASS VI, if determines a new cluster

and cylinder for insertion.

(3) If the update request is of CLASS VII, it determines a new security

atom, a new cluster and a new cylinder for insertion.
Then, it issues an insert command with that record as argument. The insert
command will, of course, cause many new index terms to be created in the SM
(one for each directnry keyword in the record). The old index terms associated
with the record will ve removed by the process of compaction which takes place
at the end of a set of orders.

The flow of seven classes of update commands in DBC is depicted in Figure
38. 1In this flgure, we also name the algorithms needed for the execution of
each class. Attached to the left of the algorithms named are the tables nec-
essary for supporting the running of the algorithm, Attached to the right of
algorithms named are the hardware components required for running the algorithm
and utilizing the tables. This flgure glves an overall structure of the infor-

mation, algorithms and components needed for update.

D s

Update Request
.

i
: 1 . ;
CLA‘SS H sLassn SLASS 1 CLass IV Lassy cLass 1 cLass 'm
Shange L‘ﬂ Change Change l_‘?
ndes LT) agex i Enter Satar fosdes Sater ﬁc- Enter osllr
terms 0 terms in it 1YT wnto UT 1o tUT nrte WJT
M SM uq— 3‘ <r B
| i ' ’ | i
\ ?
, » r , r |
| {
H H : ! ! i
Algorstam -a?! Algarithm | 2i» Alqoritnm | 3.» Algoritnm 1?' Algorithm | 3R Aigoritam | 3ie Algorithm _3?'
e op pIL e op DiP e
| ; ! | !
v 1 i 1 ' t !
: l | i ! !
. i | .
= ko
Algor.tam Algarithm L o Aigorithm _3-1! AlqQarithm » Algoritam g Algorithm | Tp Algorithm g
cr [o e ap e 13V ep v | | cey sipy
: 5 ; E2
(' ! i |
[. . ! ! !
I ' I ! |
' : -
. : 3 N
| | ! vodare || Carcutare Calculate s catgaare ’”&'
4 1 ’ noem new » plsgueny
' terms 1n | tw sacunty P
! } M tem nd iynnder
x | & ‘
! i
' t t '
| ; L
i
Updats O Jodate Update
{ nden Ao ndes '-’O_ nder —ﬁ
| i rerms ' terms 0 terme .n
I | SM ™]
, ! | .
' | |
!
|
| :
] Qingert O Aenserr O Reinsert
) w o wu
recorals) racordis) recorals)
| .
1 | | nte MM nto MM inte MW
| | !
1 | ' +
i !

Figure 38.

updare Camopieteo

The Command Flow of Seven Classes of Update

111

et B TmAt

* et

3
|

A,

i O MG - ke o e

112

6. SUMMARY OF ARCHITECTURAL ENHANCEMENTS

In the preceding sections, we considered each of the processes of insertion
deletion and update in isolation. In this section, we propose to present an
integrated picture of DBC with all the enhancements that have been suggested
in the previous sections.

A set of orders on a particular MAU is handled in DBC as follows. 1In the
first revolution of the disk device, TIPs will read all the records into the
track-size buffers which are associated with each TIP. 1In the subsequent
revolutions, retrieve, delete, insert and update commands are executed as

described in the following sub~sections.

6.1 Handling Retrieves

If the request is a retrieve request, DIP will begin to search the records
in the buffer, from end to end, to find those that satis y the query conjunction
in the given request. DIP will set the update bits corresponding to all
qualitying records. Simulataneouslv, CIP also begins to search the records
in the buffer. Whenever CIP encounters a record whose update bit has been
set, it transmits the record from the buffer to MMC and then resets the update
bit corresponding to the record. CIP and DIP can operate in a pipeline fashion,
since the buffer consists of many individually accessible segments. Therefore,
when DIP is looking to see if a particular record in a segment qualifies for
retrieval, CIP can be sending another record (in another segment which DIP

has finished processing) to MMC. The algorithms are presented formally below.

ALGORITHM DIPRETRIEVE: Executed by DIP in response to a retrieve request.

INPUTS: (1) The records in the track-size buffer.
(2) The querv conjunction stored in the query buffer.

Step 1: For each undeleted record in the buffer, do Step 2.

Step 2: Check to see if the record satisfies the querv conjunction in the querv
buffer (by sequential reading of the record from the track-size
buffer and of the query conjunction from the querv buffer). If so,
then set the corresponding update bit. Indicate to CIP that it has
finished processing the record.

Step 3: Terminate.

ALGORITHM CTPRETRIEVE: Executed by CIP in response to a retrieve request.

INPUTS: (1) The records in the buffer.
(2) The update bit map in the RAM.
Step 1: For each undeleted record in the buffer, do Steps 2 and 1.
Step 2: Wait until the DIP indicates (via the communication area) that
it has finished processing the segment to which the record belonus.)
Step 3: Check the update bit corresponding to the record. TIf it has been set, .
then send the record over to MMC and then reset the update bit. If
the update bit has not been set, then do nothing. ~-

Step 4: Terminate.

L 1)

113

The time taken to execute the retrieve request is almost equal to the time
taken to read through the sequential track-size buffer from end to end (we have
earlier called this one readthrough). Since we feel that the shift rate of the
sequential buffer will be greater than the readout rate from the tracks, a
retrieve can be executed in less than the time taken for one revolution on a
disk device. This method of doing retrieval has another advantage over the
retrieval method previously proposed for DBC (where the records were read
directly off the tracks and compared to a query conjunction 'on the fly').

This may be explained by taking a closer look at the previous method.

In the previous method, records that satisfy the query conjunctiiy are
read off the tracks and stored in a sequentially accessed buffer. D?{ing the
time that a DIP is comparing a record's keywords with the predicates of a query
conjunction, the part of the record which has moved past the read head is
stored in the buffer in case of a successful comparison. Now, if the compari-
son fails in the middle of a record, then the part of the record alreadv
stored in the buffer must be discarded. This is done bv sequenitally moving
the buffer memory to restore it to its position at the time the record first
appeared at the read head. The buffer is essentially unavailable for input
during the recovery process. The nonavailability of the buffer can force
the DIP to postpone the processing of a record by one revolution. Thus, in
many cases, more than one revolution of the disk device will be necessary to

execute a retrieve request. This problem does nct exist in the new method for

-

doing retrieves.

6.2 Handling Updates

If the request happens to be an update request, DIP will begin to search
the records in the buffer, from end to end, to find those that satisfy the
query conjunction in the given request. DIP will set the update bits corres-
ponding to all records that qualify for update. Simultaneously, CIP also
begins to search the records in the buffer. Whenever CIP encounters a record
whose update bit has been set, it updates the record and then resets the update
bit corresponding to the record. Once again, CIP and DIP operate in a pipeline
fashion -- that is, even as DIP is reading a record and checking it for
satisfaction with the querv conjunction, CIP is updating a record that has

been previously read from the buffer by DIP, We estimate the time taken to

perform an update as approximately two readthrougiis. This compares very

114

favorably with the time of three or more revolutions which are necessary in the
old method of doing updates (where the records were read off the tracks and not
from the buffer). In the old method, one or more revolutions are needed to

retrieve all relevant records into the buffer, another revolution is needed to
perform the update, and a third revolution is needed to write back the updated
records. The algorithms executed by CIP and DIP have been presented in detail

in Section 5.

6.3 Handling Insertions

As we recall, from Section 3, TIPs do not do any processing on encountering
an insert record request. MMC places the record into the buffer of the TIP
corresponding to the track for insertion, even as the TIPs continue their
processing of other requests. One revolution is needed, however, to write
these records onto the tracks.

The old method of doing insertions, as proposed in Section 3, required the
use of two buffers. The first buffer (Buffer B) was used to store records for
insertion. The second buffer (Buffer A) was used during the execution of
retrieve and update queries in order to store records to be retrieved and sent
to the post processor (PP) or to store records to be updated. The old method
of doing insertions had one other disadvantage which we shall explain by means
of an example. Consider that the following two requests are issued, one after
the other, to the same cvlinder. The first request is an 'insert-record'’
request with record Rl as argument. The next request is a 'retrieve' request
which is accompanied by query conjunction Qi. Let us assume that record Rl
satisfies querv conjunction Qi. Therefore, the retrieve request should cause
the retrieval of record Rl along with the other records on the track that
satisfy Ni. However, since the retrieve request only looks at records in the
track and not at records in Buffer B, Rl will not be retrieved.

In the new method of doing insertions, only one buffer is needed with each
TIP. This buffer is the size of a track and contains all the records in the
track. As records come in for insertion, thev are placed in the buffer after
the last record in it. A retrieve request will cause DIP to search the buffer

for records that qualifv for retrieval. Since the buffer also contains all the

records that were inserted by 'insert~record' requests that preceded this

retrieve request, any record inserted by a prior insert request which qualifies
for retrieval will be retrieved. Thus, the disadvantage of the old method has

been eliminated.

dsiani

R et R

115

6.4 Handling Deletions

Each deletion request takes one readthrough to execute. DIP will search
the records in the buffer, from end to end, to find those that satisfy the
query conjunction in the given request. It will also set the delete bits of
all records that qualifv for deletion. CIP does no work in performing the
delete.

Additionally, we need to do compaction at the end of every set of orders.
Earlier, in Section 4, we had shown how to do this in three revolutions. In the
first revolution, DIP reads all the untagged records into one buffer and all
the tagged records into another buffer. The same revolution is utilized by the
CIP to process all the tagped records and form a tagged deletion table (TDT).
In the second revolution, DIP writes back all the untagged records while CIP
processes the untagged records and forms an untagged deletion table (UDT).
Finally, in the third revolution, MMC processes both TDT and UDT to form the
structure memory deletion table (SMDT) and it also forms the structure memory
insertion table (SMIT).

We shall now propose a scheme for compaction that takes only one read-
through and one revolution and which needs only a single buffer. Recall
that all the tagged and untagged records are already in the track-size buffer.
In the first readthrough, DIP processes all the tagged records and forms a
TDT while CIP processes the untagged records to form a UDT. In the second
revolution, all the untagged records in the buffer (this includes the records
for insertion) are written onto the track by DIP, while MMC creates SMDT and
SMIT. This will, of course, further improve the throughput of the data loop
of DBC.

6.5 Execution Times of Various Orders

To summarize, TIPs take one readthrough to execute a retrieve request, one
readthrough to execute a delete request, two readthroughs to execute an update
request, and no time at all to execute an insert request. Also, one revolution
15 needed at the beginning of a set of orders to read the records into the track-
size buffer, and a revolution and a readthrough are needed at the end of a set
of orders to compact and write back the records from the buffer onto the track.
Let us estimate the time taken to execute a set of orders given the following

parameters.

k=number of orders in the set
pl=percentage of retreive requests
p2=percentage of update requests
p3=percentage of delete requests

EES PP

116

pb4=percentage of insert requests

r=time for one revolution of the disk device

rt=time for one readthrough of the sequential buffer
T(k)=time to execute a set of orders of length k

Therefore,

T(k)=k*[pl*rt + p2*2*%rt + p3*rt] + r + r + rt
=k*rt*{pl + 2%p2 + p3] + 2*%r + rt

The value of k (the minimum number of orders that must exist on a cylinder
before a seek is initiated on it) is a design choice. We shall explain how
the designer (often called a database administrator or DBA) might arrive at a
suitable value for k. First of all, he must have an idea of the kind of
environment that DBC will operate in. For example, he must know if the environ-
ment is update-intensive or not. In terms of the parameters of the previous
paragraph, the designer must know, or be able to guess, the values of pl, p2 and
p3. Also, he must know the shift-rate of the sequential track-size buffer and
the readout rate of the disks of MM. That is, he must know r and rt. There-

fore, the only unknown in the equation
T(k)=k*rt*{pl + 2#%p2 + p3] + 2%r + rt

is k. We recall, from Section 3, that for stability of the data loop the
inequality T(k)/(k*n) < 1 must be true. By putting T(k)/(k*n) = 1, we will
arrive at the minimum inter-arrival rate (n) that can be sustained by the

data loop in terms of k. That is, the designer has an equation between n and
k. Depending upon the value of n that he wishes to have (that is, depending on
the throughput rate that he wishes DBC to have), the designer can arrive at

a value for k.

6.6 The Components of a TIP

Each TIP consists of the following sub-components.
{1) The disk interface processor (DIP).
(2) The controller interface processor (CIP).
(3) The sequentially accessed query buffer.
(4) The sequentially accessed track-size buffer for the records
(5) A RAM for the delete bit map.
(6) A RAM for the update bit map.
(7) A RAM for the communication area between CIP and DIP,.
(8) A RAM to store TDT.
(9) A RAM to store UDT.
(10) A RAM to store SMIT,

M ¥ ST . T B o . o ¥ o e g S s B [Ny Y ST

-
]
i

.

117

The actions performed by CIP and DIP have been explained throughout

this report. Primarily, DIP is responsible for reading information in the
track-size buffer and for receiving/transmitting data to the tracks of the
disk. The main responsibility of CIP is for communicating with the mass

memory controller (MMC) over IOBUS. Such communication involves the acceptance
of orders and database objects from MMC and transfer of data (retrieved by

DIP) and of various tables (created by DIP and CIP) to MMC.

The query memory is a sequential access memory with a capacity to store
the largest single query conjunction that may be encountered by MM (about 1
Kbytes). The track-size buffer is also a sequential access memory. This
memory is divided into a number of individually accessible segments. Each
segment may be read out of or written into in a sequential manner. The
motivation for dividing the record buffer into segments is as follows:
while DIP is extracting information from the track and placing it in one of
the segments, CIP can be transmitting previouslv extracted information present
in one of the other segments to MMC.

Each TIP utilizes two bit maps, the delete bit map and the update bit map,
which are small random access memories. Each record on the track has a unique
delete bit and a unique update bit. Assuming that the size of a track is 30
Kbytes and that the averaée size of a record is 200 bytes, we see that the number
of records per track is about 150. Thus, each bit map has 150 bits in it.
Before processing of a cylinder is to begin, all the bits in the two bit maps
are reset. The delete bit is used in the execution of a delete request. When
a record is to be deleted, the corresponding bit in the delete bit map is
turned on. Subsequent retrieve and update commands will ignore those records
that have their corresponding delete bits set. The update bit is used during
the execution of update and retrieve requests. When a record is to be udated
or retrieved, the corresponding update bit is turned on by DIP to indicate to
CIP that the record must be retrieved or updated.

The communication area buffer is also a small random access memory. It
contains one bit for each segment in the track-size buffer. If the bit corres-
ponding to a segment is set, then it is an indication to CIP that DIP has
finished processing that particular segment. This enables CIP and DIP to

operate in a pipeline fashion.

Finally, each TIP has random access memories to store TDT, UDT, and the
SMIT. A view of the organization of a TIP is shown in Figure 39.

. caoraimiiisiiinia i e

118
Conroller Interface Disk Interface Processor
Processor (CIP)
Programmed Programmed
Control Control
: : To/from

To/from@ " : ®1he Track
10BUS Muitipiexor/
Demuitiplexor

Registers Registers

Memory Bus

:&\\\\Y@\\\ Y ;9

N

Update Delete TOT uoT SMIT Communi-] Query Track-
Bit Map Bit Map cation Buffer size
Area Buffer
{RAM) (RAM) (RAM) (RAM) (RAM) (RAM) (sequentiail| l{sequential)]
150 Bits i50 Bits I Kbytes 30 Kbytes

Figure 39. Organization of a Track Information Processor (TIP)

119

7. CONCLUDING REMARKS

Earlier reports have indicated how DBC handles search and retrieve

requests. In this report, we have shown how the process of update is carri.d

out in DBC. Since DBC might often have to be used in an update-intensive
environment (that is, an environment where many update, delete and 1insert

commands and only a few retrive commnands are issued), we have indicated, throush-
out this report, the kind of architectural enhancements which will provide sood
performance in an update-intensive environment.

Perhaps the most important enhancement that affects the performance of n11
four types of requests in DBC (retrieve, delete, insert and update) is the
incorporation of a track-size buffer with each TIP. A set of orders on a
particular cvlinder is handled as follows in DRC. 1In the first revolution of
the disk device, the TIPs will read all the records into these track-size
buffers. Subsequent retrieve, insert, delete and update commands are executed
by reading the records from this buffer rather than off the tracks.

The most important enhancement for insertion requests, is the addition
of the insert-in-parallel capacity. That is, records do not have to be inserted
into MM of DBC ore record at a time. Rather, all the TIPs can he inserting
records at the same time.

With respect to deletion, we have shown how to speed up the process of
compaction dramatically. 1In fact, this process which originally took 487
revolutions of the disk device, now takes only one revolution of the disk
device and one readthrough of the buffer. This performance improvement is
achieved by using a track-size buffer with each TIP, thus avoiding the need to
transfer records to and from MMC.

With respect to updates, we have shown how an update request can be handled
in two readthroughs of the sequential track-size buffer. This is a substantial
improvement over the 16 revolutions that will be necessary to do an update
without the use of track-size buffers. Also, the concept of clashing has been
introduced. That is, all those requests which will be blocked by an earlier
update, which has not been completely executed, are clearly identified. The
execution of the blocked requests must be stayed until the blocking update
is executed completely.

Throughout the report, we have always substantiated our claims of performance

improvement by using an analytical model to come up with some quantative

120

figures of the data loop throughput. The analytical model used is a two node

network model, where the first node consists of as many servers as there are TE
disk drive controllers, each with exponentially distributed service times and i‘,
exponential arrival rates, and the second node consists of a single server --
with an exponentially distributed service time. By using this model, we have i;d

also shown how a data base administrator (DBA) can control the throughput e

achieved in DBC. D

£
L X]

REFERENCES

[11 Banerjee, J. and Hsiao, D. K., "Perforance Evaluation of a Database Computer
in Supporting Relational Databases,'" Proceedings of the Fourth International
Conference on Very Large Data Bases, Berlin, Federal Republic of Germany,
September 1978, pp. 319-329; and Banerjee, J and Hsiao, D. K., '"The Use
of a Database Machine for Supporting Relational Databases,' Fourth Workshop
on Computer Architecture for Non-numeric Processing, Syracuse, New York,
August 1978, pp. 91~-98; also available in Banerjee, J. and Hsiao, D. K.,
"DBC Software Requirements for Supporting Relational Databases,' Technical
Report OSU-CISRC-TE-77-7, The Ohio State University, Columbus, Ohio,
November 1977.

[2] Banerjee, J. and Hsiao, D. K., "A Methodology for Supporting Existing
CODASYL Databases with New Database Machines,'" Proceedings of ACM '78
Conference, December 1978; also available in Banerjee, J., Hsiao, D. K.,
and Kerr, D. S., "DBC Software Requeirements for Supporting Network
Databases,' Technical Report OSU-CISRC-TR-77-4, The Ohio State University,
Columbus, Ohio, June 1977.

[3] Banerjee, J., Hsiao, D. K., and Ng, F. K., "Data Network - A Computer
Network of General-Purpose Front-End Computers and Special-Purpose
Back-End Database Machines,'" Proceedings of International Symposium on
Computer Network Protocols, (Danthine, A., Editor), Liege, Belgium,
February 1978, pp. D6-1to D6-12; also available in Hsiao, D. K., Kerr,
D. S., and Ng, F. K., "DNRC Software Requirements for Supporting Hier-
archical Databases," Technical Report QSU-CISRC-TR-77-1, The Ohio State
University, Columbus, Ohio, April 1977.

[4] Banerjee, J. and Hsiao, D. K., "Concepts and Capabilities of a Database
Computer," ACM Transactions on Database Systems, Vol. 3, No. 4, December
1978, pp. 347-384. Also available in Baum, R. I., Hsiao, D. K. and
Kannan, K., "The Architecture of a Database Computer -- Part I: Concepts
and Capabilities," Technical Report OSU-CISRC-TR-76-1, The Ohio State
University, Columbus, Ohio, September 1976.

{5] Kannan, K., Hsiao, D. K. and Kerr, D. S., "A Microprogrammed Keyword Trans-
formation Unit for a Database Computer," Proceedings of the Tenth Annual
Workshnp on Microprogramming, October 1977, Niagara Falls, New York,
pp. 71-79; and Hsiao, D. K., Kannan, K., and Kerr, D. S., "Structure
Memory Designs for a Database Computer,'" Proceedings of ACM 77 Conference,
October 1977, Seattle, Washington, pp. 343-350; also available in Hsiao,

D. K. and Kannan, K., "The Architecture of a Database Computer -- Part II:
The Design of the Structure Memory and its Related Processors," Technical
Report OSU-CISRC-TR-76-2, The Ohio State University, Columbus, Ohio,
October 1976.

[6] Kannan, K., "The Deisgn of a Mass Memory for a Database Computer,"
Proceedings of the Fifth Annual Symposium on Computer Architecture, April
1978, Palo Alto, California, pp. 44-50: also available in Hsiao, D. K.
and Kannan, K., "The Architecture of a Database Computer -- Part I1I:

The Design of the Mass Memory and its Related Processors,' Technical Report
OSU-CISRC-TR-76-3, The Ohio State Universitv, Columbus, Ohio, December 1976.

~r e

(7]

(8]

(91

[10]

[11]

[12]

(13]

(14]

(15}

[16]

(17}

[18]

e o i Gage R

122

Banerjee, J., Hsiao, D. K., and Menon, J. M,, "The Clustering and Securitv
Mechanisms of a Database Computer (DBC), 'Technical Report OSU~CISRC-TR-79-2,
The Ohio state University, Columbus, Ohio, April 1979,

Banerjee, J. and Hsiao, D. K., "Parallel Bitonic Record Sort - An
Effective Algorithm for the Realization of a Post Processor,' Technical
Report OSU-CISRC-TR-79-1, The Ohio State University, Columbus, Ohio
April 1979.

Hsiao, D. K. and Menon, J. M., "The Post Processing Functions of a
Database Computer," Technical Report OSU-CISRC-TR-79-6, The Ohio State
University, Columbus, Ohio, July 1979.

Bremer, J. W., "Hardware Technology in the Year 2001," Computer, Vol.
9, No.12, December 1976, pp.31-36.

Copeland, G. P., Lipovski, G. J. and Su, S. Y. W., "The Architecture of
CASSM: A Cellular System for Non-Numeric Processing,' Proceedings of the
First Annual Symposium on Computer Architecture, December 1973, pp. 121-

128.

Ozkarahan, F. A., Schuster, S. A., and Smith, K. C., "RAP - An Associative
Processor for Database Management,' Proceedings of AFIPS, National Computer

Conference, Vol. 44, 1975, pp. 379-387.

Hoagland, A. S., "Magnetic Recordiug Storage,' IEEF Transactions on
Computers, Vol. C-25, No. 12, December 1976, pp. 1283-1289,.

Ampex Corp., PTD-930x Parallel Transfer Drive, Product Description
3308829~01, October 1978.

Hsiao, D. K., Kannan, K., "Simulation Studies of the Database Computer,"
Technical Report OSU-CISRC~TR-78-1, The Ohio State University, Columbus,
Ohio, February 1978.

Chandy, K. M. and Sauer, C. H., "Approximate Methods for Analyzing Queueing
Network Models of Computer Systems,' Computing Surveys, Vol. 10, No. 3,
September 1978, pp 281-317.

Kleinrock, L., Queueing Svystems I, John Wiley, New York, 1975,

Su, S. Y. W. and Emam, A., '"CASDAL: CASSM's Data Language,”" ACM Trans-
actions on Database Systems, Vol. 3, No. 1, March 1978, pp. 57-91.

e

i e gy Phneri 9 O ARSIV L g i oo

APPENDIX 1

The algorithm presented below is executed by the IP on receipt of an order

from the DBCCP.

ALGORITHM 1: To process an MM order from the DBCCP
INPUTS:

Step

Step

Step

Step

Step

Step

Step

Step

1:

2:

3:

4

Input MM order from the DBCCP in the format shown in Figure 6 and
the database object used as argument of the order.

Use the database object identifier to search the DODT. If the object
is already in the DODT, then increment the usage count and go to Step
4,

Allocate space for the database object in the DODT. 1If no space is
available, then reject the order and terminate.

Place the (sorted) object in the DODT in the block allocated in

Step 2. Set usage count to 1.

Check the QHT tco determine if there is a queue for the MAU referenced
by the argument order. 1If there is a queue, then check .f the MAU

is being processed currently. If so, go to Step 7. 1If there is no
queue then also go to Step 7.

[Order may be added to the queue.] Check if there is a free entry

in the OT. 1If not, go to Step 6. Else, enter the order into the OT
and link it to the queue for the MAU. Terminate.

[No space in OT.] Reject the order: reduce-the usage count of the
database object in the DODT. If the usage count is zero, then
release space occupied by the object. Terminate.

[New queue to be created.] Scan QHT for a vacant entry. If no
vacant entry is found, go to Step 6. Else, call the entry number 'p'
Place the MAU address referred to by the argument order ir the
appropriate field of OHT[p] (see Figure 5). Clear the status bits
of QHT[p]. Go to Step 5.

This algorithm is executed by the MMM. It continuously monitors the QHT

with a view to keeping the TIPs and the disk drives busy.

ALGORITHM A: To scan the order queues continuously.

Input Argument: QHT

Step
Step
Step
Step
Step

Step

Step

Step

Step

1:
2:
3:
4
5:

[Initialize] p=0.

p=p+1. If p > N, then p=1. [N is the number of entries in the QHT.]
If QHTlp, 31='0"', then go to Step 2; else, go to Step 4.

If QHT[p,0)}="0", then go to Step 5; else, go to Step 7.

[Initiate access to MAU.) MAUADDR=QHT[p, 8-232]. Decode MAUADDR

into disk drive controller number d, drive number k and cylinder
number c.

Interrogate disk drive controller number d, to determine if the drive
k is free. 1If it is free, then issue a cylinder seek on drive k for
cylinder ¢ and set OHT[p, 0] to 'l'. Go to Step 2.

If QHT[p, 1]="'0', then go to Step 8:; else, go to Step 10.

[Check if seek is complete.] MAUADDR = QHT[p, 8-23.] Decode MAUADDR

Inerrogate drive controller d to determine if seek on drive k has
been completed. If so, then set QHT[p, 1] = '1' and go to Step 10;
else, go to Step 2.

3 Al bl -

R A DA I 1 xiem OO

A-2

Step 10: [Initiate processing if necessary.] If QHT[p, 2] = '0', then go to
Step 11; else, go to Step 2.

Step 11: Interrogate if IDLE flag is on to determine if the TIPs are idle. If
so, then go to Step 12: else, go to Step 2.

Step 12: [TIPs are idle.] Invoke Algorithm B with the following arguments:
number of MAU orders given by QHT[p, 4-7], address of the first order
stored in the OT for the MAU and given by QHT[p, 24-39]. Go to
Step 2.

In Steps 4 through 6, we try to initiate cylinder seeks for MAUs which have
not been accessed so far. In Steps 7 through 9, we check on seeks already
issued during a previous scan. In Steps 10 through 12, we try to initiate the
TIPs bv invoking Algorithm B.

Algorithm B is also executed by the MMM. It is responsible for the
detailed dialogues with the TIPs after Algorithm A has found a MAU that has
been accessed and is ready to be processed.

ALGORITHM B: To initiate the execution of orders by the TIPs and to accept

dita retrieved by the TIPs.

Input Arguments: 1. The number N of orders pending execution.
2. The address of the first order in the order table (OT).

Step 1: (Initialize] p=1. FLAG=0.

Step 2: Pick up the p-th order from the OT. If the order code indicates an
insert-record order, go to Step 6. If the other code indicates a
delete~record order, then go to Step 5. If the order code indicates
an update order, then go to Step 7. If the order code indicates
a compaction order, then go to Step 15.

Step 3: [Retrieve] Broadcast the order to all the TIPs and go to Step l4.

Step 4: Wait until TIP interrupt occurs. When the interrupt occurs, go
to Step 8.

Step 5: [Delete] Broadcast the order to all the TIPs. Turn on DELETE flag.
Go to Step 4.

Step 6: [Insert] Broadcase the order "find available space in the track' to
all TIPs over the IOBUS. Turn on INSERTION flag. Go to Step 4.

Step 7: [Update] Broadcast the order to all the TIPs. Turn on the UPDATE

flag. Go to Step 6.
INTERRUPT ENTRY

Step 8: If the UPDATE flag is on, go to Step 9, If the INSERTION flag is on,
then go to Step 10. If the DELETE flag is on, then go to Step 11;
else, go to Step 14.

Step 9: [This part of the algorithm is described in Section 5.]

Step 10: Turn off the INSERTION flag. Read, from each TIP, the amont of
space available. Choose the track with the largest amount of space
available and issue the insert-record request to the TIP corresponding
to that track. Also, place the record to be inserted into the
buffer of the TIP corresponding to the track chosen for insertionm.
Go to Step 4.

Step 11: [Check if there was any deletion.] Turn off the DELETION flag. If
the TIPs indlicate that some records were tagged for deletion, then go
to Step 12, else go to Step 13.

TR

" ol e B o SN s S | LSRR 1 P s S Y St e M SN AT 2 sl Foinali) SN
A e A ey s -

A-3

Step 12: Store the MAU address in the mass memory deletion table (MMDT).

Step 13: Delete the order from the OT. p=p+l. If p>N, then request the TIPs
to write back all deletion tags, set IDLE flag on and halt: else go
to Step 2.

Step 1l4: [Receive retrieved records] If the TIPs have records to be output,
then receive them and send them to the SFP. Go to Step 13.

Step 15: [Compaction] Request the TIPs to read all tagged records.

Step 16: As the TIPs transmit tagged records over the IOBUS, create a structure
memory deletion table (SMDT), a view of which is shown in Figure 23.
Each entry in this table has two fields. The first field contains
a directory keyword, and the second field contains a set of pairs,
where each pair is of the form (cylinder number, security atom number).
Since this table is temporary and may be deleted at the end of the
compaction mode, it may be created in the database object descriptor
table (DODT). The SMDT is formed as follows. For each tagged
record that is received by the MMC, do the following. For each
directory keyword DKi in the record, look to see if there is an
entry in the SMDT with DKi in Field 1. If no such entry exists,
then create a new entry with DKi in Field 1, and the pair (M,S) in
Field 2. |[M is the cylinder being compacted and S is the securitv
atom number of the record being examined (the seucrity atom to which
a record belongs is part of the information present in a record)].

If such an entry exists, then search the corresponding set of pairs
in Field 2 of this entry to see if a pair of the form (M,S) exists.
If such a pair exists, then do nothing. Else, add the pair (M,S) to
the set of pairs in Field 2 of the corresponding entrv. Now discard
the record. [In the SMDT, we are putting those SM entries which
point to records marked for deletion. Since the records have been
deleted, these entries (which point to the deleted records) must also
be deleted from the SM.]

Step 17: Request the TIPs to read the untagged records. [Since the memory
available to the mass memory monitor (MMM) is smaller than the MAU .
capacity, the MMM will divide the TIPs into secitons which are :
processed sequentially. Thus, if say 80K bytes are available to the
MMM and the MAU capacity is 320K bytes, then the TIPs are divided
into four sections. TIPs in the same section are requested to
read their tracks concurrently during the compaction process. Steps
18 tnrough 20 are repeated for each section].

Step 18: As the records from the TIPs come in, store them in the record storage.

Step 19: For each record in the record storage, do the following. For each
directory keyword DKi in the record, look to see if there is an
entry in the SMDT with DKi in Field 1. If no such entry exists, then
do nothing. If such an entrv exists, then search the corresponding
set of pairs in Field 2 of this entry to see if a pair of the form
(M,S) exists. M is the cvlinder being compacted, and S is the
security atom number of the record being examined. 1If such a pair
exists, delete the pair from Field 2 of the SMDT. Else, do nothing.
[In this step, we look at those entries in the SM which point to the
untagged (undeleted) records. We wish to delete, from the SM, all i
entries that point to ueleted records. However, some entries in the
SM may point to both deleted and undeleted records. We wish to retain
these entries in the SM, since otherwise, pointers to undeleted
records will be lost. Hence, any entry in the SMDT which points to an
undeleted record is removed from it.]

i At 58 g AR

PR SR VR S5

RV S e)

L ae—

e

Step 20:

Step 21:

A-4

Write the records in the record storage back into the tracks via the
T1Ps.

Pass the SMDT table to the database command and control processor
(DBCCP). (DBCCP then accesses the structure memorv (SM) and deletes
the relevant index terms from it.) Terminate.

e

P

