
kD-AO94 407 CALIFORNIA UNIV LOS ANGELES COGNITIVE SYSTEMS LAB 
F/0 5/10

.9 ON THE VALUE OF SYNTHETIC JUDGMENTS. REVISION. (U)

DEC 0 M BURNS, J PEARL N00014-78C-0372

UNCLASSIFIED UCLAEMGCSLG032-REV NL

I .Eo hhEEEIh



FEB 2 18

SCOGNITIVE SYSTEMS LABO0RATORYB

ON THE VALUE OF

SYNTHETIC JUDQMRNTS

*wve IInPA k
Did£~~vd tio pUlimitdag

AJUDZA f6ASL

SCHOOL OF ENGIEERIN ANM APPUE SCINCE 9 UNMfIV U@hAJLhUL

1, 8102



UCLA-ENG-CSL-8032
June 1980

Revision I, December 1980

ON THE VALUE OF SYNTHETIC JUDGMENTS

Michael Burns and Judea Pearl

Technical Report

Work performed at Cognitive Systems Laboratory

School of Engineering and Applied Science D T IC
University of California, Los Angeles

Professor Judea Pearl, Principal Investigator S ELECTESFEB 2 1981d

B

This work was supported in part by the

Engineering Psychology Programs, Office of Naval Research

Contract N00014-78-C-0372, Work Unit Number NR 197-049

Approved for Public Release; Distribution Unlimited.

Reproduction in whole or in part is permitted for

any purpose of the United States Government.

I



UNCLASSIFIED
SECURIT Y CLASSIFICA -TION OF THIS PAGE ( *%n D e. teIe reQRE D I S UC ON

4. TITLE (.nd S.brltI.)

S4ichoeo Ernginein Jdand!_ Aple Sihe ,.. 9-4

Los Angeles, California 90024
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research June 1980, revisedDe
800 N. Quincy Street 13. NUMBER OF P AGES
Arlington, Virginia 22217 '21 pages

14. MONITORING AGENCY NAME fr",ORESS(ll different from, ConI.troln Office) Is. SECURITY CLASS. (01 this -.PORI)

UNCLASSI FIED
ISDECL ASSI FICATION/ DOWNGRADING

I SCHEDULE

16. DISTRIBUTION STATEMENT (*I this Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of th. *bacrect .ntorodin Bleck 20. It diffleten from, Report)

I0. SUPPLEMENTARY NOTES

19. K C'v *OROS (CO'-Vln... nI ald- It -0. c... OVo ld""nF flY black R'.mbor)

Decomposition principle; causal schemata; Judgment validity; probabilistic
information processing.

20 AU~~7~n~h.~. ... /ec~do It nacda..1 and Identify by block rn~w-bOe

Decision-support technologies are founded on the paradigm that direct
judgments are less'rellable and less valid than synthetic inferences producedV from more '4fragmentary'r judgments. Moreover, certain types of fragments arenormally assumed to be more valid than others. In particular, judgments
about the likelihood of a certain state of affairs given a particular set
of data (diagnostic inferences) are routinely fabricated fromi judgments about
the likelihood of that data given various states of affairs (causal inferences),

DD 1473 oleoItIOF I? mo NeV e s OssotLETI UNCLASSIFIED4.N 010__ Lii 01"0 42 2 7 :fCL ASSIFICAIIOII OF TNIf P AGE (Wi... V.,. ff..



:7 771
UNCLASSIFIED

%LrU ITY rLA!,.rlC&TION OF TRIS PAGL(197--n r.- rnt-od)

and not vice versa. This study was designed to test the benefits of causal
synthesis schemes by Somparlng the validity of causal and diagnostic Judgments
against ground-trutt' standards
i rThe results demonstrate thafhe validity of causal and diagnostic

inferences are strikingly similar; direct diagnostic estimates of conditional
probabilities were found to be as accurate as their synthetic counterparts
deduced from causal judgments. The reverse is equally true. Moreover, these
accuracies were found to be roughly equal for each causal category tested.
Thus, if the validity of judgments produced by a given mode of reasoning is
a measure of whether it matches the format of human semantic memory, then
neither one of the causal or diagnostic schema is a more universal or more
natural format for encoding knowledge about common, everyday experiences.

These finding imply that one should approach the 'divide and conquer'
ritual with caution; not every division leads to a conquest, even when the
atoms are cast in causal phrasings. Dogmatic decompositions performed at
the expense of conceptual simplicity may lead to inferences of lower quality
than those of direct, unaided judgments.

It I V:;t t

Avail,b ility.- i(b'itY Codes
;Avail and/or

Dist Special

UNCLASSIFI~n
LJOL0j

~I 'u t L*II, .T O. IMIPO!'.~ . .~.d



..

On the Value of Synthetic Judgments

The objective of this study is to investigate empirically the conditions

under which synthetic conclusions produced from 'fragmentary' judgments are

more valid than direct, unaided inferences. We define 'validity' as the

proximity between an assertion and the actual experience upon which it is

based. The implicit assumption that synthetic conclusions are more valid than

their direct counterparts is the basis for advocating the usefulness of all

decision aiding technologies. Quoting Slovic, Flschhoff, and Lichtenstein

(1977):

Most of these decision aids rely on the principle of divide and

conquer. This "decomposition" approach is a constructive response to

the problem of cognitive overload. The decision aid fractionates the

total problem into a series of structurally related parts, and the

decision maker is asked to make subjective assessments for only the

smallest components. Such assessments are presumably simpler and more

manageable than assessing more global entities. Research showing that

decomposition improves judgment has been reported by Armstrong, Denniston

& Gordon (1975), Gettys et al. (1973), and by [Edwards, Phillips, Hays,

and Goodman (1968)].

vi Critics of the decomposition approach would argue that many of the

aids require assessments of quantities the decision maker has never

thought about, and that these apparently simple assessments may be

psychologically more complex than the original decision. In some

situations, people may really know what they want to do better than

they know how to assess the inputs required for the decision aid

. p. 17-18).



A closer look at decision aiding techniques reveals that the structuring

procedures used fall into two categories: cascading and inversion. Cascading

entails the chaining of a sequence of local judgments to produce the global

inference. Inversion involves converting the direction of certain relations

to a format more compatible with the decision maker's conceptualization of the

environment. A typical example of cascading would involve inferring the

consequence of a long sequence of actions. That is normally done by separately

considering the effect of each individual action in the chain. Similarly, the

aggregation of pieces of evidence in a multi-stage inferencing task would be an

instance of cascading. For example, in the practice of decision analysis, the

quality of actions are invariably inferred from judgments about the desirability

of the actions' consequences cascaded by judgments about the likelihood of those

consequences. Decision analysts never accept direct judgments about preferences

on actions.

The most prevalent example of inversion is the insistance of decision

analysts that information connecting evidential data with the hypothesis be cast

in causal phrasings. Judgments about the likelihood of a certain hypothesis

given a particular set of data (diagnostic inferences) are routinely fabricated

from judgments about the likelihood of that data given various states of affairs

(causal inferences), and not vice versa (Edwards et al., 1968; Howard, 1968;

Raiffa, 1969; Tribus, 1969).

The experiments of Armstrong, Denniston, and Gordon (1975) and Gettys,

Michel, and Steiger (1973) were directed toward verifying the benefit of

cascading inferences. Armstrong et al. had subjects answer almanac-type

questions; they tried to estimate some quantity (e.g., the number of pounds

of tobacco processed in the U.S. in 1972) about which they had little or

no a priori knowledge. Some subjects attempted to answer the overall 'global'3 2



question, while others were instructed how to break the problem down Into

smaller subproblems. They found that decomposing the global problem into

subproblems was helpful, especially on those problems where the subject knew

practically nothing beforehand. Gettys et al. have tested the validity of

likelihood estimates in the context of multi-staged hierarchical inference

tasks. They compared posterior odds mentally assessed by subjects with the

posterior odds calculated from Bayes' theorem and based on the actual histo-

grams displayed to the subjects. Oddly enough, in their first experiment,

which involved relations among height, scores, gender, and majors of students,

direct mental assessments proved almost as accurate as those computed from the

optimum model. Only in their second experiment involving a version of the urn

problem did superiority of synthetic judgments surface. The results of the

Armstrong et al. and Gettys et al. studies suggest that synthetic cascading

inferences may indeed be a useful device in some instances. However, the

question of how fine a division to employ should be approached with caution.

Whereas the child who is learning arithmetic normally views multiplication

as a sequence of additional operations, such a view may be detrimental to the

more advanced student. Similarly, the pianist ought not to view his movements

as being composed of individual muscular activations, but rather as a pattern of

global entities such as scales, chords, arpegios, and the like. In the same

vein, one may argue that as the decision maker becomes more familiar with the

task environment he may achieve a state where unaided global inferences become

more valid than their synthetic counterparts.

This paper focuses on the issue of causal/diagnostic inversion. The impetus

for the hypothesis that causal judgments are more natural than diagnostic judg-

ments may come from the fact that in statistical applications P(datalhypothesis)

typically is obtained directly from a so-called statistical model, like the
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assumption that a set of observations is normally distributed within given

parameters (Edwards et al., 1968). This asymmetry also underlies the celebrated

urn model. However, it is not at all clear whether any bias in favor of causal

schema exists in cases where a parametric statistical model is not obvious and

where both P(datalhypothesis) and P(hypothesisldata) are inferred by accessing

semantic memory about everyday experiences.

Tversky and Kahneman (1977) indeed detected what they called 'causal biases'

in decision making. They showed that subjects perceive causal information to

have a greater impact than diagnostic information of equal informativeness.

Further, if some information has both causal and diagnostic implications, then

subjects' judgments are 'dominated' by the causal rather than the diagnostic

relationship. Granted that causal reasoning is more emphasized in ordinary

inference tasks, the question of the conditions under which the causal mode

of reasoning will lead to more valid inferences still remains.

Aside from its psychological interest, this question has also acquired

technological import. One application has already been alluded to, that of

guiding the procedures used by decision analysts in eliciting likelihood esti-

mates. The second application concerns organization of knowledge-based computer

expert systems (Feigenbaum, 1977). In this latter application judgments from

experts are encoded in the form of heuristic rules which are later combined to

yield expert-like conclusions; explanations, and interpretations. The appro-

priate format for these fragmentary judgments is still subject to debate. Some

knowledge-based system (e.g., Shortliffe's MYCIN, 1976) insist on diagnostic

1inputs. Others (e.g., Ben-Bassat's MEDAS, 1980) require the more traditional

causal judgments. The issue is whether experts, such as physicians, find it

more comfortable to estimate the likelihood of diseases given a set of symptoms

or to evaluate the likelihood that a given disease be accompanied by a certain

4



set of symptoms. Comfort aside, which form of input yields more valid thera-

peutical recommendati ons?

The experiment reported in this paper was designed to shed light on some

of these issues. The problem of testing judgment validity, which has long

been exacerbated by the lack of suitable criteria for measuring the quality of

judgments about real-life experiences, was circumvented by 'creating' our own

ground-truth data.

'44
(7
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Method

Subjects

One hundred-seven undergraduate engineering students and 58 graduate

students from various departments at UCLA participated in this study. The

undergraduates, who were enrolled in one of two upper level undergraduate

engineering classes, served in the experiment as part of an in-class lecture.

The graduate students were recruited via advertisements posted around the

campus and in the campus newspaper, and they were paid according to the

accuracy of their judgments.

Materials

The undergraduates participated in the first phase of the study. Their

task was to answer 24 yes/no questions concerning their activities and beliefs;

the answers provided the data base (ground truth) for the estimation phase which

followed. The questions were of two types: 'X questions' and 'Y questions',

equal in number and randomly ordered on the questionnaire. Each X query

questioned a condition, activity, or belief considered by the experimenters

to be a causal agent for a condition, activity, or belief specified in one Y

query. For example, since the color of a person's eyes is perceived to be

influenced by that person's parents, not vice versa, X may represent the event

of a mother having blue eyes and Y may denote the condition of her daughter hav-

ing blue eyes. Four categories of causal relations were employed: (1) genetic

causality, where a genetic condition specified by the X question serves as a

cause of the condition designated by the Y question; (2) training causality,

where the X condition provides training for the Y activity; (3) habit-forming

causality, where the X condition serves as a habit-forming agent for the

behavior specified by the Y condition, and finally; (4) self-interest causal-

ity, where the X question defines a particular self-interest that leads to

the belief unveiled by the Y question. Table I shows the four causal categories

6



and the corresponding X and Y questions for each category.

Insert Table 1 about here

The data compiled from the undergraduates' responses served as the estimation

targets in the second phase of the experiment. In this phase, the graduate

students' task was to estimate the proportion of undergraduates responding in

particular ways on the questionnaire. For a given X-Y relation, each graduate

student was instructed to estimate either a causal triplet or a diagnostic

triplet. When estimating the causal triplet, the estimator first considered

P(X) (e.g., the proportion of undergraduates who said their mother had blue

eyes), then P(YIX) (e.g., the proportion of those undergraduates who said

their mother had blue eyes and also said they themselves have blue eyes), and then

P(YIX) (e.g., the proportion of those undergraduates who said their mother did

not have blue eyes, but said they themselves have blue eyes). In assessing a

diagnostic triplet, the student first estimated P(Y) (e.g., the proportion of

undergraduates who said they have blue eyes), then P(XIY) (e.g., the proportion

of those undergraduates who said they have blue eyes, and also said their

mother had blue eyes), then P(XIT) (e.g., the proportion of those undergraduates

who said they do not have blue eyes, but said their mother had blue eyes). Note

that the three components of each triplet represent statistically independent

quantities and, moreover, that every component can be deduced from the three

members of the opposing triplet via Bayes' theorem.

Procedure

The undergraduates answered the questionnaire during a regularly scheduled

class meeting. The graduate students were assembled in groups ranging in size

from 4 to 15 persons. Before they began the task, the graduate students were

'1 7



told about the nature of the estimations they would be making, and about

the 'p21, sie' which was dependent on the proximity of their estimates to the

actual proportions computed from the undergraduates' responses. Half of the

graduate students estimated causal triplets for odd-numbered X-Y relations and

diagnostic triplets for even-numbered relations. For the other half of the

subjects, this pattern was reversed.

Each graduate student estimated one triplet for each of the 12 relations,

thus making a total of 36 probability estimates. The estimators were given as

much time as needed to contemplate the estimates required. Most of the students

took between 20 and 30 minutes to complete the task.

Results and Discussion

The task of evaluating judgment validity requires a choice of a validity

criterion. A variety of criteria has been proposed and utilized for measuring

the degree of disparity between a given actual proportion P a and an estimate

Pe of that proportion (Pearl, 1977). We have examined both the quadratic error:

Q = (Pe Pa)2  (1)

and the logarithmic error:

L = Pa log Pa/Pe + (l-Pa) log (-Pa)/(l-Pe)

Both gave rise to practically identical patterns, so this paper will present

data based on the quadratic error only.

For each query we took , the arithmetic mean of the quadratic errors

across subjects, as a measure of inaccuracy of the corresponding estimate.

These mean quadratic errors, along with the actual proportions and mean esti-

mates, are shown in Table 2. These estimates are called direct estimates to

distinguish them from synthetic estimates, which will be discussed later.

8
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Insert Table 2 about here

Table 2 reflects a slight trend for the mean estimates to regress toward

the .50 probability level in relation to the actual probability. That is, in

65% of the cases, the proportions were actually 'more extreme' (closer to .00

or 1.00) than their associated estimates. This effect is more apparent in

Figure 1, which displays the relationship between the actual proportions

(along the horizontal axis) and their associated estimates (along the vertical

axis).

Insert Figure 1 about here

By and large, one cannot detect a marked difference in accuracy between

causal estimates (i.e., Pe(YIX) and Pe(Y11)) and their diagnostic counterparts

(i.e.*, Pe(XjY) and Pe(XIY)). In Figure 1, for example, where accuracy is

reflected by proximity to the diagonal line, the two families of estimates

appear equally dispersed. However, such a comparison is not entirely reliable.

Since the values of the actual proportions Pa(Y[X) are generally smaller

than those of Pa(XIY), a direct comparison between their estimates may not

reflect true differences in validity. An estimation error in the neighborhood

of P = .50 is far less severe than an error of equal magnitude near the extremes

(.00 and 1.00). On four of the X-Y relations the actual proportions Pa(YIX)
andPa

and P (XIY) are fairly close to one another (within .15). In all four cases

Pe(YIX) is at least slightly more accurate than P (XIY), lending some support

to the hypothesis that causal reasoning leads to better inference-making than

diagnostic reasoning. However, if the same procedure is employed with the

'1 9
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P e(Y17) estimate (invoking causal reasoning) and the Pe(XIY) estimate (based on

diagnostic reasoning), only three of the seven comparisons show an advantage

for Pe(YlX). Since the difference between causal and diagnostic reasoning

in these 11 comparisons is generally of small magnitude, there is not a

noticeable advantage for the former, as had been anticipated.

Another way to circumvent the 'apples versus oranges' difficulty is to

synthesize causal and diagnostic estimates that can be compared on equal

ground. To do this we aggregated subjects' estimates by Bayes' theorem to

calculate synthetic estimates according to the following equations:

Ps(X) = Pe(XIY) Pe(Y) + Pe (XIY) [1-Pe(Y)] (2)

P s(Y)= Pe(YIX) Pe(X) + Pe (YIX) [l-Pe X) (3)

P e(XIY) P e(Y)

Ps(Y)X) - -- (4)

P (Xly) = Pe(YIX) Pe(X)s Y (Y)

p [I-P e(XIY)] P e(Y)= Yy (6)
[1-P e(XIY)] Pe (Y) + [l-Pe(XI-)] [1-Pe(Y)]

P (XIY) [I-Pe(YIX)] Pe (X)
[l-Pe(Y(X)] Pe(X) + [I-Pe(YJX)] [-Pe(X)]

&

Note that the synthetic estimates in (2), (4), and (6) should be regarded as

Adiagnostic since they are deduced from diagnostic inputs. Similarly, the

estimates constructed by formulas (3), (5), and (7) are causal.

Furthermore, the synthetic estimates are more reflective of the transforma-

tions employed by common Decision Analysis procedures. For example, formula (5)

10



represents the celebrated transformation from prior to posterior which was

pioneered (posthumously) by Reverend Bayes in 1761 as a means to infer the

"probability of causes". It has since become almost a ritual to assume that

this transformation automatically produces more valid judgments than the direct

estimate Pe(XIY).

Table 3 shows the mean quadratic error, q, for both the direct estimate

and the synthetic estimate for each of the four conditional probabilities.

The direct estimates for P(YIX) and P(YIX) involve causal reasoning and the

direct estimates for P(XIY) and P(XI-) involve diagnostic reasoning, while

this relationship reverses when the synthetic estimates are considered.

Insert Table 3 about here

Also shown is an indicator called the normalized error difference which gives

a measure of the significance of the difference between the direct estimate and

the synthetic estimate. It was computed by the following formula:

normalized error difference * vr (qdiagnostic - Qcausal )  (8)/2 2
'/0asa + diagnostic

where diagnostic and causal stand for the mean quadratic error across subjects

for either the direct or synthetic estimates, as appropriate, and 2 represents

the variance of those quadratic errors. One property of this normalized error

difference is rather obvious: Its value is made increasingly positive when the

validity of the causal estimate becomes significantly greater than that of the

diagnostic estimate, and negative when the reverse is true. Clearly, since the

same actual proportion applies to both the direct estimate and the synthetic

estimate for a particular probability, the 'apples versus oranges' problem is

eliminated.
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Across all estimates, there are nine instances where the normalized error

difference is significant at the .05 level according to a standard two-tailed

t-distribution. In six of these cases, it is the causal estimate that is

better than the diagnostic, which leaves three cases in which the diagnostic

is better. Thus, there is little evidence in these data for the superiority

of causal reasoning over diagnostic reasoning. In fact, only one of the

problems (musical instrument) shows a positive normalized error difference for

all four conditional probabilities, while one other problem (typing) has a

negative normalized error difference for all four conditionals.

Aside from comparing causal and diagnostic estimates, Table 3 also enables

us to compare the validities of direct versus synthetic estimates. A suspicion

that the latter may be more valid than the former could be based on the argument

that each synthetic estimate combines tne output of three knowledge sources. If

these were independent mental processes in the sense that the estimator providing

them would consult different data or invoke different procedures for their pro-

duction, then one would be justified in hypothesizing superiority for synthetic

estimates over their direct counterparts. Comparing the data, one finds that in

five of the nine significant cases, synthetic estimates are better than their

direct counterparts.

Table 4 shows the mean quadratic errors for direct estimates and synthetic

estimates with questions grouped according to the type of causality implied in the

X-Y relations. These were obtained by averaging the quadratic errors over the X-Y

relations with each causal category. In general, genetic relations induce slightly

more accurate estimates than training and habit-forming relations, while self-

interest relations induce the worst estimates of all. This pattern is true for

both direct estimates and synthetic estimates. For each causality category the

synthetic estimates are more valid than the direct estimates of P(XIY), and less

412



valid for P(YIX). In each case, the more valid estimates are those based on

causal reasoning, which lends support to the conjecture that causal reasoning is

more naturally invoked in interpreting comnon observations. However, when

considering the other four columns (P(X), P(Y), P(YIX), P(XIW)), the pattern

of results no longer reflects causal superiority.

Insert Table 4 about here

Conclusions

Admittedly, having ourselves adhered to the belief that causal reasoning

is a more natural mode of Inference-making, we were somewhat surprised that the

results do not show a stronger validity differential in this direction. Taking

Table 3, for example, the overall mean of the normalized error difference is

equal to .25, which clearly does not support the hypothesis of general causal

superiority. In the few X-Y relations where significant validity differentials

were detected, there was not a sizable bias favoring the causal mode. Thus, if

the validity of judgments produced by a given mode of reasoning is a measure

of whether that mode matches the format of human semantic memory, then neither

the causal nor diagnostic schema is a more universal or more natural format

for encoding knowledge about common, everyday experiences. It appears that

semantic memory contains both causal schema and diagnostic schema. Which is

invoked for a particular observational relation may depend on the nature of

the relation, the anticipated mode of usage, and the level of training or

4familiarity of the observer.
These findings imply that one should approach the 'divide and conquer'

ritual with caution; not every division leads to a conquest, even when the

resultant atoms are cast in causal phrasings. Forced transformations from

114 1



diagnostic to causal judgments performed at the expense of conceptual simplicity

may lead to inferences of lower quality than direct, 'holistic' judgments.

:I
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Table I

X Questions Y Questions

Genetic Causality

1. Mother has blue eyes. Student has blue eyes.

2. At least 1 of student's parents Student is left-handed.
is left-handed.

3. Student is a male over 5'9N. Student played on high school
basketball team.

Training Causality

4. Student took musical lessons as Student currently plays a musical
a child. instrument.

5. Student ran or jogged regularly Student currently runs or jogs
in high school. regularly.

6. Student took typing in high school. Student types 24O words/min now.

Habit-forming Causality

7. Student attended church regularly Student attends church regularly
in high school. now.

8. Student is currently married. Student is wearing a wedding ring.

9. Student's father was 'handy' Student changes his own oil in his
around home. car.

Self-Interest Causality

10. Student finds it financially Student favors UCLA increasing
difficult to complete his college financial aid at expense of larger
studies. classes.

11. Student's family finds medical Student favors nationalized medical
expenses to constitute a substan- care plan.
tial burden.

12. Student closely follows UCLA Student favors UCLA building
football. on-campus football stadium.

!'1
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