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Abstract

Numerical results are presented for the approximate

time-averaged power density dissipated on the surface of

a highly conductive infinite wedee (of angle 90°) near

the vicinity of the sharp edge. ‘the numerical results
cre normalized so one may readily obtain results for
iryving incident wave frequencies. The angle of incidence
“1 the incident radiation, 6{ (measurad with respect to
cve sarface normal of the wedge), is varied from B‘,= 0°
.normal incidence) to 6‘»= 90° (grazinyg incidence}. In
irticular, numerical results for TE and TM polarization
are presented for incident wavelengths of 3.8/4m and
;r.Q/Am . It is assumed that the power density absorbed
.Jt!./ml) is all converted to heat density,
Peoaceept the validity ol the results, an extensive
coh o is omade onoon arbitrarvy (real) order Bessel function
dbhreatine ased 1 the egqnuation nevessare for the numerical
calcadations, teneral electromagncetic rhacory is also
iscassed and eatended to the use in specific geometries,
rhe goometries vonsidered besides the wedge (though with
v nawerical results) are the parabolic cylinder and
mlinite cone.
In conclusion, the numerical results scem very promising
Jeo te the success of verifying the Bessel function sub-

routine used in the calculations.,
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INVESTIGATION OF LASER HEATING
IN COMPONENTS WITH SHARP LEDGES

I. Introduction

The number of lasers being used has rapidly increased
in the past few years due in a large part to the advent
of more sophisticated laser systems and the discovery of
new laser applications. The improvement in quality of
optical components in lasers has also increased. As a
“esult, the cost of many of the high quality optical
~cmponents has risen,

Of particular interest to the Air Force Weapons
Laboratory (AFWL) at Kirtland Air Tlorce Base, New Mexico,
is the investigation of the power dissipated per unit
arca on the surfaces of highly conductive dielectrics in
the vicinity of sharp edges when illuminated by high
intensity radiation. The sharp cdges arvisce {from the use
of rectangular mirrors (having sharp cdges) and of cone-
shaped mirrors used as waxicons and reflaxicons (see
Figures 3 and 4 in Chapter 11). Of special interest to
AFWL is optical components having a conductivity near
that of copper. The incident radiation of interest is

in the micron wavelength range (S.S/Jm and 10.6/Am, to

be exact). It is feared that the damage threshold of these




optrical components may be surpasscd ncar the vicinity of

the sharp edges due to induced surface currents, thus
having the potential of damaging expensive optical components.
" The main objective of this thesis is to calculate the
time-averaged power density dissipated on the surface of
a highly conductive 90° wedge imbeddced in free space. It
is assumed that the power density dissipated represents
the heat density (in watts per square meter) produced in
the wedge from the incident field. The power density is
tound by first assuming the wedge to be a perfect conductor
ane finding the surface current density induced on the
atu,e surtface. An approximation is then made to find the
power density using the skin depth for a highly conductive
lincar medium and the surface current density from the
perfect conductor case. As such, the power density calcu-

tated represents only a first approximation, Numerical

N

caloulatiens, hﬁich arc believed to be the first made for

the geomctry and conditions mentionced above, are presented.
In addition to the wedge, two other geometries considered ;

are the cone (representing waxicons) and the parabolic v

cylinder {representing a flat surface with a rounded edge).

Numerical computations using the computer are difficult to

obtain for these two geometries, thercfore, only the

packground theory is presented.




This thesis consists of six chapters and four
appendices. The chapter immediately following this
introduction presents the basic theory necessary to solve
the wave equation for the three geometries specified in
the following chapter, Chapter IIT. Chapter IV establishes
criteria to verify computer routines to obtain the
numerical results for the wedge presented in Chapter V.

The final chapter presents the conclusions that can be
drawn from Chapter V and recommendations for further

study in this area. The four appendices are in support

of the thesis.
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ITI. General Background Theory

. The purpose of this chapter is to present the general
theory necessary to solve the wave equations for the specific
geometries discussed in the next chapter. This is accomplished
by first presenting Maxwell's equations describing the electric
and magnetic fields (F and B) for all space and time. The
geometry is that of a perfect electric conductor imbedded in
free space and excited by a monochromatic, time-harmonic
electvomagnetic wave. Once E and ﬁ have been found, the
boundary conditions are used to find the induced surface
current density (3;) . Finally, an approximation to
determine the time-averaged power density dissipated on the

surface of a good conductor is derived.

Maxwell's Equations and Boundary Conditions

In reference to Figure 1, the following are the assump-
tions to he made: (1) Region I is assumed to be free space
with a conductivity © = 0 mhos/meter , a permittivity

€, -12

P

be a perfect electric conductor with conductivity O = 09,

8.854 x 10

farad/meter, and a permeability

497 x 1077 henry/meter; (2) Region II is assumed to

a permittivity ‘/4 , and a permeability €& ; (3) the

source 1s assumed to be an infinite distance away from




Region II and emitting a monochromatic, time-harmonic electro-
magnetic (E-M) wave. The E-M wave is assumed to have ei“’t
time dependence, where (W) is the radian frequency {(in
radians/second) of the E-M wave. 1If the incident electric
field gi (where the superscript 1 represents incident)

is polarized such that no component of Ei is tangential

to the conductor surface, then the incident E-M is said to

be transverse magnetic (TM). If the incident magnetic field
is polarized such that no component of ﬁi is tangential
to the conductor surface, then the incident E-M wave is said

to be transverse electric (TE). The TM case is considered

in the derivations to follow, unless stated otherwise.
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Maxwell's equations for free space near the vicinity

cf the conductor (hence, neglecting the infinitely distant Pl

source) may be written in terms of E and # as (Ref 1:37,38)
—
VX}'“’-' ° 3¢ | (1)
-—
7 XE =2
2t

— ]
V'E=0 )
V- -H=0 4) |

Y ; E

Since £ and H have e™! tinme dependence and i

3 >
assuming that E -and H can each bc expressed as the
product of two functions such that one function is a
function of space only and the other is a function of time
>

¢

only, then %—‘:'= iwk and -?)Tt-= iwll . By also using the

i ot b el ey 7

rclation for free space only (Ref 1:38)

- 2T |
kK = W 59}10 = —->‘— (5) |
where k is known as the propagation constant, €°/l° .

is the inverse of the velocity of E-M waves in free space,

and >\ is the wavelength of the E-M wave in free space, then

Egs (1) and (2) may be rewritten as




L diite o

V)(ﬁ=il<§2_§ (1)
VxE - -k [E P

By taking the curl of Eq (2') and substituting Eq (1')

R > . &
for /x H in terms of E , then

vax-é‘kz?_"o ©

is obtained. Using the vecotr identity (Ref 1:38)

VxVXA = V(V'A)-VZA

and recalling that e+ E = 0 from Eq (3), then Eq (6)
becomes

12, 2f (7)
vE+kE =0
where ‘71 is the Laplacian operator. In a similar fashion,
starting with Eq (1') leads to an equation the same as
Eq (7), except with E replaced by H . Equation (7)
is the complex vector wave equation that must be solved in

a 2
order to determine E . Once E 1is found, the substitution

- . ] ) ) Y -
of E into Eq (2') determines H . This gives E and H

for Region I. Since Region II is a perfect conductor,

wiiiithe




- -
E=H-=

3 = 0 in Region II, where 3 represents the

current density (Ref 3:17).

To solve Eq (7) for all space, the boundary conditions
for the surface separating Region I from Region II must be
given. The boundary conditions, referring to Figure 1,

which must be imposed on the surface of the conductor are

(Ref 1:34)
-
ﬁxH=3'S (8)
>
AXxE = 0 (9)

where f denotes the unit vector normal to the conductor
-
surface and pointing into Region I, and Js denotes the
surface current density induced on the conductor surface
‘ .
by the H field.
: . A
Examination of Eq (9) shows that for any n |,
A 2 >
nxE = 0 . Thus, E must be equul to zero except
I . . A 2
when E 1is normal to the surface, in which case n x E would
necessarily be zero. Thus, there is no tangential component
- -
of E on the conductor surface. For JS not equal to
o
zero, Eq (8) implies that components of H normal to the
conductor surface are zero, but the tangential component

P
of H on the conductor surface induces a surface current

=3
density normal to both A and H .

T At st At A ot n s et o




Recalling that § and ﬁ are separable functions of
space and time, Eq (7) can be expressed as a differential
equation of only spatial coordinates, since the time
dependence will cancel out. For example, if € = gi(u,v,w)f(t)
wvhere El(u,v,w) is a vector dependent on spatial coordinates
u, v, and w, and f(t) 1is a scalar function of time t only,

then Eq (7) becomes
" BFY 2
£(t) VEl(u,v,w) + £(t)k°E  (u,v,w) = 0

For f(t) # 0 , the above equation becomes

‘Jlgi(u,v,w) + kzgi(u,v,w) = 0 (10)

Equation (10) has the form of a homogeneous, linear

rartial differential equation of order two. It is also

oy

assumed that u,‘v, and w are independent coordinates of a
general three-dimensicnal orthogonal coordinate system and

Ll(u,v,w) is such that

E;(u,v,w) = E_ (u)E (V)E (W) (11)

where El(u,v,w) is the scalar function of ﬁl(u,v,w) and
Ea(u) , Eb(v) , and Ec(w) are separate scalar functions
of only one variable. Substitution of Eq (11) into Eq (10)

then results in being able to express one side of the equation i




depending on only one variable, and the other side of the
equation depending on the other two variables. Thus, both
sides of the equation must be equal to a constant for any
u , v ,and w . The process is repeated until three
separate ordinary differential equations are obtained for
Ea(u) . Eb(v) , and Ec(w) . Solving the differential
equations for Ea(u) R Ev(v) , and Ec(w) and super-
position of the solutions in Eq (11) into Eq (10) yields
the general solution to El(u,v,w)

The method just described is called the method of
Separation of Variables (Ref 2:260). The coordinate
systems for the specific geometries discussed in the next
cliapter are such that Eq (7) can be solved by the method

of Separation of Variables.

Finite Conductivity Approximations and Scattering

As stated in the Introduction, the main objective of
this thesis is to find an approixmation to the time-averaged
power density dissipated on the surface of a wedge of high
conductivity. This is accomplished by using a parameter
known as the skin depth and the surface current density
produced on the surface of a perfect conductor as in Eq (8).
Because of these two approximations, the following deriva-
tions presented for the time-averaged power density loss is

just a first approximation to the actual value.

10
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In reterence to Figure 1, it is now assumed that the
conductor of Region II has a finite conductivity, O .
It is further assumed that Region II is a good conductor,
i.e., OD> WE . As stated in the Introduction, the
incident radiation of interest is in the micron wavelength
(10'6 meters) range, hence & will be on the order of 1014
radians per second. The permittivity € of a good conductor
is hard to measure, but is generally taken to be on the order
of €, for free space (Ref 1:6). Thus, for copper of
O = 5.8 x 10’ mhos per meter, the condition O D>WE is
well satisfied. It is also assumed that the conductor is
a linear isotropic medium.

For good conductors, the surface field amplitude is
attenuated by a factor of e”1 ( 0.368) after it has

penetrated a distance

)
/) >m

g = —2_ = — (12)
WHC 21
into *he conductor (Ref 1:53)., Tte symbol 3 is known as
the skin depth and )m is the wavelength of the E-M wave
in the conductor.
In reference to Figure 2, if a plane wave is incident

on the surface normal, then Snell's Law may be written in

the form (Ref 1:58)

11
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ki sin ei = kt 51n6t : (13)

where the subscripts i and t represent the fields in

tree space and the conductor, respectively.

Repion [

t ezl/”l'
7SI e LT
) / et)/ut

Region I

l\\et

Figure 2. 3Snell's Law

The wave number, k , is a complex number in general.

It Kk 1is then defined to be (Ref 1:48)
k = kR - i kI (14)
where kR , called the intrinsic phasc constant, is the

real part of k , and kI , called the intrinsic attenua-

ti1n constant, is the imaginary part of Kk

, then for a

JRVCPNIOPN S



[)
good conductor, k, = kI = (w/dO'/Z)/" (Ref 1:50). From

R
Eq (5) it is seen that for free space, kR = W /50/10'
and kI =0 . Eq (13) is now written as
sinBy . JWEM (141 (15)

sin ©; O'/U .\/Z.'

Since the permeability /u. of a linear medium is 3
approximately equal to /uo of free space (Ref 1:6) and i
noting (i + i)/F =_\/T' , then Snell's Law for a free

space - good conductor interface is approximated as

sin B, ~ (16)
sin 6;
Since for a good conductor O D>WE (for O of order 107,

¢t of order 1014

, and €, of order 10°1%), then Eq (16)
implies that the ratio of sin et to sin 9‘- will be

very small. For e‘. limited between 0 and ¥/2 radians,
e* must approximately equal zero for arbitrary 9‘-

Thus, the rapidly attenuated surface fields propagate very
nearly normal (with respect to the surface tangent) into the
conductor.

The surface current density in Eq (8) thus produces

a tangential electric field given by (Ref 3:18)

a A S
TxE §hx7, (17)

tan




where c: 1+t and is called the surface impedance of

cd

the conductor. The time-averaged power density dissipated

on the surface of the conductor (assuming that the conduction

>
current O'E‘is much greater than the displacement current

density E;E_g ——— which is satisfied by the good conductor
assumption of DD WE ) is then (Ref 1:53)
) a 2
= Re E x H*
loss
2
= IHOI Re c
2
I \Ho‘ (watts/mz) (18)
od
2 > S
where ‘Hol = H e H* evaluated at the conductor surface

and Re{-} means to take the real part only of the expres-
sion between the brackets.

It is useful to use the concept of scattering in order
to find E everywhere so Eq (2') can be used to find ﬁ
for use in Eq (18). The scattered field can be thought of
as the field produced by the currents induced on the
conductor surface as in Eq (8); This scattered field (ﬁ;)
is thus equal to the difference between the field everywhere
with the conductor present (ﬁ) and the incident field with

the conductor absent (El) . This is written as (Refl:113)

14




5 = E - % (19)
Thus, by solving for ES and given Ei , E is found and
Eq‘(Z') then yields M . The solution for H is then used
in Eq (18) to give a first approximation of the time-averaged
power density dissipated on the highly conductive conductor
surface.

The necessary background theory has now been presented
to successfully derive the solutions to the specific geometries
presented in the next chapter. Sincé many of the sharp edges
occur in highly conductive plane (flat surface) mirrors (sce
Figure 3), the first geometry discussed in the pnext chapter
is that of an infinite wedge, which has two flat surfaces
meeting at a sharé edge. Since present technology is such
that perfectly sharp edges are not possible, but in fact the
edges are rounded, then the geometry of a parabolic-cylinder
is used to approximate flat conductor surfaces with rounded
corners. Finally, since waxicons (see Figure 3) are being
prcposed for use in the resonators of high power chemical
lasers, the cone is used to approximate such optical

components.

15
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I1I. Theory Extended to Specific Geometrics

The purpose of this chapter is to specialize the
theory in the last chapter for specific boundary conditions.
The boundary conditions lead to the choice of what coordinate
system is used. The first section considers the case of
scattering by an infinite, perfectly conducting wedge
illuminated by a parallel electric line source. The line
source is then moved to infinity so as to approximate plane
wive incidence. A first approximation is then made for
determining the time-averaged power density dissipated on
the surface of a2 highly cenductive wedge. As a special case
ot the wedge, the half-plane problem using the wedge solution
is compared to the classical solution for the half-plane
(sorn and Wolf's derivation is used; Ref 6:559-570). The
method of expanding the infinite wedge prcblem to one of a
tinite wedge 1is introduced.

Thie second section considers the wave equation for a
parabolic-cylindrical coordinate system. Representing a
bend with a rounded corner, the parabolic cylinder is
Jiscussed; in particular, the difficulty in obtaining
numerical results to the solution of the parabolic-cylindrical

wave equation is identified. Finally, the last section

cuonsiders the wave equation for spherical coordinates. A




brief discussion to the solution of the spherical wave !
eqiation for a cone boundary (cones have boundaries easily
expressed in spherical coordinates) is discussed.
The first section is the most thoroughly discussed
secrion, since the solutions derived are the basis for
the next chapter and for the numerical results presented

in Chapter V.

C 'indrical Coordinates and the Vedge

The wedge has surfaces that are conveniently expressed
in -ylindrical coordinates (see Figure 5b). The cylindrical
wa.¢ equation is introduced first, followed by scattering
by wedges. The cylindrical coordinate system used is

detrined in Figure 5a.

Cylindrical Wave Equation. The scalar version of

Eu {7) in cylindrical coordinates with the Laplacian
¢y ressed in cylindrical coordinates and ? replaced by

tt.. scalar function y’ is (Ref 1:198)

|9 f )0 nd 20
3% QZ(J)+— $* +32 tkr=0

Eq (20) is also known as the scalar llelmholtz equation in

cylindrical coordinates. If 79 is separable into the form

18
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Figure Sa. Cylindrical Coordinate Lystem

Figure 5b. Jedge as Special Case of Cylinder

Y(e ¢2)= V= R(e)D(#) 7 (2)-REZ v

and Eq (20) is assumed to have ' time dependence, the
method of Separation of Variables can be used. The well
known separable equations resulting from substitution of

Eq (21) into Eq (20) are

IZ ,\7 -0
d z* *

19
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+ n‘i) =0 (23)

e f5(e5)+ [ (ke -f]R-0

“Hcre ke in Eq (24) is defined by

(25)

Equations (22) and (23) are homqgeneous, linear
oiinary differential equations with constant coefficients.
iiv~¢ give rise to harmonic solutions (sines and cosines).
Ywiation (24) is Bessel's equation of order n and has
Be:sel function solutions (Ref 1:199). Equation (21) then

beeomes

¥ o.$.2) ~ B, (kph(ngih(k,2) (26)

whove h(n¢) and h(kzz) represent harmonic functions for
tih: solutions of Eqs (23) and (22), respectively. B U%e)
re;vesents a Bessel function solution to Eq (24) (see
Appendix A for the definitions of various Bessel functions).
From the principle of superposition, linear combinations of
Eq (26) are also solutions to Eq (20). The possible values
foo n , Kk , and kz are called eigenvalues and any

¢

two may be summed or integrated over, except k_ and kz

20
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since they are interrelated by Eq (25). Equation (26) is

specified in the discussion to follow.

Scattering by a Wedge., Consider the case of an electric

cur‘rent filament of current 1 (in amps) located parallel

to a perfectly conducting wedge, as shown in Figure 6.

The wedge has an angle 2e& and covers the space (in
cvlindrical coordinates e ¢ , 2 ) 2r- X & ¢£ X ,
(!$e<o<) » and — ooz 00 . The filament and wedge are
assumed to be imbedded in free space (0= 0, € =€ ’/“=/1.)
The wedge is assumed to be a linear, isotropic perfect
conductor (O=00) . The incident electric field can be
Jescribed as an outward-traveling cylindrical wave, hence

the Hankel function of the second kind and order n (n an
integer), denoted by HIEZ)(k ) , is used (provided eiwt

time-dependence is assumed) (Ref 1:201). The incident electric

A
Y

Current Filanent

x)
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fiedd is ?—polarized and given by (Ref 1:236)

i I D) (o,
E; = ~fwe, M (kz-¢1) (21)
A12
wrere ‘Q e I [e -l' —Zee’c-os(¢‘¢)] and is
evident from the geometry in Figure 6.

The addition theorem for Hankel functions is given

3 H®) T, (ko et o<e’

Hm a {"-“
o (‘(I? ?') n'Z“T(k )H(Z)(k ) in($- ¢)e>e’ (28)

. e Jn(keﬂ and J (ke) are Bessel functions of the

r s (Ref 11232) (

1 3t kind of integer order n . Equation (2B) substituted

into Eq (27) then gives the incident field as

Z H(Z)(ke J— (k ) n(g-#*)

/
; 1iooe 3 p<@
Ez = i{“ J’ ) (2)( inld ) (29)
kL ST T k) (kg e o
The total electric field everywhere, E, + is given
q (19) as
i s
Ez = E, + E, (30)

22




Anere Ei is given by Eq (29) ana E; is considered as

t2e field originating from the induced currents on the

surrace of the wedge and is called the scattered field

iRet 0:558). The scattered electric field is in the form

ot kg (29), but with the integer ovder n changed to real

order v and J_(kp) replaced by 13)(kp) . The order

v 1s determined (to follow later) by the boundary conditions

va the wedge surfaces. The scattered electric field Ei
then added to the incident electric field Ei to yield

tiv total field E, , as in Eq (30). Since the boundary

i

condition must have ES = Ez

. at the wedge surfaces, the

tal field wust also be Q—polarizcd (Ref 1:238). The

tuotal field is thus written as (Ref 1:238)

| z Qa, H:u( ke’) :]: (k(J)Sin[\!(‘f"dﬂSinElltf-aﬂJ p< e/
E,= { o)
%, a,J, (k) Hy (ke) sinlu(g=] sinfutg-4] po¢’

the boundary conditions that wmust be imposed on the

~wrtaces of the perfectly conducting wedge are

E, = 0 , f$=«
(32)
E, = 0 , $= 2W-o

it
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solving Eq (31) for the above boundary conditions implies -

sin [v(f=a)] g - (33a)

i
<o

[}
o
-8
N
2

\

R

lv(ﬁ-a)]

[77]
Pt
=

(33b)

Lguation (33a) is true for any v , but Eq (33b) is true

uls i v for

| vIr-ol-&) = 2v(fr-o«)

1]

mer (34)

wh.ie m is an integer, The value m = 0 (thus v = 0 )

is not allowed because EZ in Iq (31) becomes zero for any

( e, ¢) . The values of m equal to a negative integer are
al=v not allowed, since by the definition of Jv(ke } for

v uepgative (see Appendix A), “z in g (31) tends to
nlinity as Kk tends to zero. Thus, Iiq (34) gives the

«. cmvalues  vooof Eq (31) as
m 1, 2, 3 (35)
= ’ m = y - y v
2 (- )

The constants a, are determined by the nature of
tie source (Ref 1:239). In refcrence to Figure 7a, the current
f1lament is considered to be an impulse of currcent of strength

I ¢in amps). Figure 7b represents a vanishingly small

o
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. 2a surrounding the current filam-nt; small enough so that

tiic current filament can be considered as a current sheet
| <= e’) separating the regions fov e) e’ and e < e' .
\ppendix B provides the details which, by referring to

v1yure 7b, leads to the source current density as

2 o
y, = - ,Zav sin{vig-&k)]sin[v(g-K )] (36
Tasg §
iquation (36) is in the form of a Fourier sine series for
the current on e = e' . The Fourier sine series for an
’

impulse of current of strength 1 (in amps) at e = Q

aind ¢ = ¢' is given by (Ref 1:239)

I

cemparing Eq (36) with Eq (37) thus yiclds

WMo TT I

N U (38)

2(mr-)

Of special interest to this thesis is the case of
muochromatic plane-wave illumination. This is accomplished
oy letting the current filament recede to infinity, i.e.,
kP'__>o° . The incident electric tield in Eq (27) thus
by omes (using the large avgument approximation for H‘Ez)(x)

a Xx—poo pgiven in Appendix A) (Rei 1:240)

=6

e i
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l.quation (39) can thus be written in the form of a plane

wave as (Ref 1:240)

E‘; - & eikQCOS(S‘—ﬂ')
/ . -ikp’
where E_ =-_‘£_/‘i°_]_:. -—2—'- e ¢ (40)

+ / Tke'
Only the equation for e( e' neccd be considered in
L.y (31) to find the electric ficld E_ everywhere for
1\9'__;00. Using the asymptotic approximation for H\(rZ)(ke')
viven in Appendix A as (Ref 1:463)
. - 4

(ke') _ | e
ke’——)oo Nke’

(A-12)

¢4 (31) then becomes
£, === % éik(zaviv:[,(ke)sin["(""“‘)]s"‘r)"""‘ﬂ (a1)
Trl(e’ -

-1 k"-—bw

“ubstitution of a, given hy Lq (38) and Eo given by

q (40) into Eq (41) yiclds
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g, - 27E, 23V g (kpdsinfv(F-e) Isin(v(F-a)]  (42)
™=l v

where v is given by Eq (35). Equation (42) thus represents

the solution of the electric ficld for a monochromatic,

?-polarized plane wave incident on a perfectly conducting

wodge of angle 2o (see Figurc 6). The solution for the

magnetic field ﬁ is obtained by applying Maxwell's equation,

g (2'), to Eq (42), i.e.,
_-, 1 JE, oE A)
"X (? w ) sgz # (43)

L 3
the surface current density, J, , is obtained by substitu-

oot ¥

ting LEq (43) into

- -
H = J (10)

=9
»

2
3

o
coaponent of H in Eq (43) is the only term used since

A A
ror the top surface of the wedue, n = ayg . The

A ) -
dg X 3; = 0 . The surface magnetic ficld, denoted by H

1s thus given as

P 1 SE A
Ho o=+ [& 2 9F2) &
s ° ¢
LR SIS P

)}: i"v T, (kplsinptw] 8, 30

- (PR

v
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where, after differentiating liq (42) with respect to ¢ ,

the boundary condition ¢ = & wus imposed. The surface

->
current density, JS , is thus given by

where Hy - ;‘/}:{' (:j io){ kie)zivvl(ke)sin[v(f-«)] (45)
1f the wedge is a good conductor of finite conductivity
such that ¢ >>we€ , then Lq (18) of Chapter II is used
to obtain a first approximation to the time-averaged power
density dissipated on the surface of the wedge, provided
that the Leontovich Boundary Condition is satisfied (see
Appendix B}, It is assumed throughout the rest of this
thesis that the Leontovich Boundary Condition is satisfied.

Recalling Eqs (12) and (18)

o = (w/_%_)'/z (12)

G-issz -;%S_ 1H°\2 (18)

where \uolz = i *

o H is the dot product of H
(A s [

and its complex conjugate given by kEq (45), thus gives

the time-averaged power density loss on the top wedge

surface as




0= w3 (oo ) Z v Teinr-)

loss c 5/‘0 ke (ﬂ"’oq v

e YAy v, ko) sinV(#=] I (46)
v
The problem for the wedge just discussed is for the
IM case. The TE case is solved in a similar manner as the
IM case, using a magnetic current filament in place of the
electric one. For plane wave incidence, the result for the
magnetic field is given by (Ref 1:242)
mH,
= -V . ’
H, = ;evl 3, (kp)cos[v(g'~ & Ycos[v(B-e)]
1, v =0
where €y =
2, v >0 (47)
d m1T ] i
an vV = T m = 0 , 2
2(r-ot) S *
At the top wedge surface (F=0) , the resulting magnetic :
ticld on the surface, Hz , becomes :
S
“Zs = 1r- ZelJ (ke)coq[vm{ o) ] (48)

Substitution of Eq (48) into [iq (10) yields the induced

. -ly
surface current dcnsity Js as

30




'lf“o Z v o ¢,

s 2, % T-< & €, Jvl e)cos[v( -R)] (49)
lquations (12) and (18) are uscd with Eq (48) to obtain

a first approximation for the timc-averaged power density

dissipated on the top surface of the highly conductive

wedge, Of note is the differences in the TM case of Eq (44)
to the TE case of Eq (48). The TM case of Eq (44) has the
term ke in the denominator while the TE case of Eq (48)
does not. Equation (44) also varies with sin[v(d'—a()]
while Eq (48) varies with cos[v(¢-x)] . In addition,
i\ (48) has an additional v = 0 term and slightly differ-
¢nt constants,

The TE case is mentioned here only to present the
equations necessary to determine the time-averaged power
density loss due to TE illumination so as to compare to

the TM results presented in Chapter V.

Half-Plane. For o{= 0 , the wedge in Figure 6

reduces to the classical half-plance problem, The half-
plane perfect conductor ccvers the space: 0 £ x {eoo, 3
y =0 , and -00<z< 0D ; see Figure 8.

It is assumed, in reference to Tigure 8, that a
monochromatic plane wave {the clectric field 'z‘-polarized)
is incident at an angle ¢’ on a perfectly conducting

half-plane imbedded in free space. The incident electric
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Jigure 8. Perfectly conducting half-plane illuminated
by z-polarized E and -polarized H.

field is given by Eq (40). The total electric field every-

where is then given by Eq (42) with &= 0 . The eigen-

values v given in Eq (35) reduce to

\% - ’ I &
ﬂ.—-u ! ’ ’ rece

1he total electric field is then written as

(s =
- Ve oy i m@ s md@
E, = 25, :L;n ™, GeresingBresinBE) D)

Specializing Eq (45) for o = 0 wives the induced

surface current density as

, ,""_“___J'
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35 - J, é‘z = -Hes {a‘z (52)
. E & om . .
where Hes = ’/-% (T;-);‘ | /z.m. I% (kc)sm(%é)

An alternative solution for the half-plane is treated
thoroughly by Born and Wolf (Ref 6:559-584). The method
involves using dual integral equations for the E and H
fields, of which dual is meant that a single unknown function
satisfies different equations for two distinct ranges of
parameter (Ref 6:564-565)., The final result is Sommerfeld's
cyuation (Ref 6:569)

. - e,ﬂ'/‘l’ Eo e;kec.os(¢‘¢'? F(a|)_eil:ecos(¢‘¢?|_-(°z)

i
where F(a) =.E [—%—C(j%—-\a)]-i %-5@/?01)]

and a, = — /2_'(() cos (—ﬁ—;ﬁ)

o /Zk(; cos (_’{_*2‘2‘:) (53)
where C(J?r?a) and S(.f%—'q) are the l'resnel cosine and

sine integrals, respectively, and defined as (Ref 5:300)
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3(x

X
/s'm %tz) dt (54)

bguation (53) is valid for the incident field 13; given

bv LEq (40). (Born and Wolf used ﬂi = exp[-ike cos (¢ -¢Y)])

and for Eo normalized to equal one.
By using Maxwell's equation, FEq (2') again, and the
boundary condition Eq (8) to get the surface current density,

then

>
o>

J = J_a = - a.,

/\+
-uke .Fs‘n(z

—Zsm¢F e [% Z(Q)H(S(“)-i)]

where H

R cos (92
a = [2 (55)
s

In the next chapter, a truncated version of Eq (52)
is compared numerically on the computer against Eq (55) so
as to give a clue on the reliability of the truncation and
Beswel function subroutine. To get an indication of the

rcliability of the numecrical rcsults presented in Chapter V

ainu based on LEq (46) for the wedge, a comparison of




- ak

B ak
T, e JS of Eq (52) is compared against Js . J5 of

b4 (55). For future reference in Chapter IV, these

cyuations are denoted by

—‘2 - --

\J \ = J. . J* (52')
for 35 given by Eq (52) and

J o« J (55")

\‘- |2 3 -k
S BW S S

for 35 given in Eq (55).

As an additional check on the recliability of a computer
routine for the truncation of Iiq (45) (since computers can't
compute infinite sums), the casc of o= 90° 1is examined.
I'iis is simply the case of a plane wave in free space
incident on the surface (the entirc ? - ? plane with x = 0)

of a perfect conductor (see Figure 9).

y

og:?Oo Pecfectly

& Conducting
- T T ETTEvoTume X

X = 90°

Free 3Space

S

Figure 9. Perfectly comdiicting hnl-volume

3




For o = 90°, Eq (35) for v reduces to

= mi = = (1,2,3 56
v = ACED . = m . m = 32,3,0.0) (56)
of= 3 ‘
and Eq (45) for o(=1'r/2 reduces to :
(7.4
e E(15) £ T
€s Mo ms!

Using cartesian coordinates, the classical solution to

this problem is (Ref 16:473, 531)

—

€& 2 z o
O = Vs E, cos” 6, (58)

where 9; is the angle of incidence with respect to the

surface normal ( 6; = ¢' -r) . Comparison of Eq (58)

with Eq (57) implies H(’ = lly (cvident from Figure 9 is
S S

A . . A . T .
that ag is in the ay direction on the conductor surface).,

A trunvated version of Eq (57) is comparced numerically to |

lq (58) in the next chapter.

Ixtension to Three Dimensions. Now consider the wedge

in Figure 10 that covers the space: 0% e ¢ oo,
2Im- o £ ds « , zls z €z, . It has the same geometry

as the wedge in Figure 6, cxcept that now the wedge is

tinite along the Zz-axis . Thus, a three-dimensional wave




equation must be solved instead of the simpler two-dimensional
wave equation for the case of non-varying geometry with
respect to the z-axis. However, by applying a Fourier
transformation with respect to the =z-axis, the three-dimen-
sional wave equation can be reduced to a two-dimensional wave

cquation,

Figure 10. Three-dimensional wedge

As an ecxample of this, if Y(e,¢,z) is a solution to

the three-dimensional wave cquation

Ve t- oo,
then ?(e,ﬁ,w) = fy(e,;{,z) c'i“:dz is a solution to

the two-dimensional wave cquation




vy + K =0

, L 2 s L
where V‘ s k% - w (Ref 1:243). When the two-dimensional

wave equation above is solved for ‘? , then )” may be

solved using the inversion (Ref 1:243)
o
1 iwz
y/(e’f)z) = —2-1,?- ((Jlﬁ)w)e dw (59)
- 00

Purabolic Cylinder

Since technology has not advanced yet to the stage of
F preducing perfectly sharp edges, the parabolic cylinder is
useful to approximate a rounded corner. The two-dimensional
parabolic-cylindrical coordinate system is shown in Figure 11.
The 2-axis is perpendicular to the planc of the paper. The
transformation from rectangular coordinates (x,y,z) to
curabolic-cylindrical coordinates (u,v,z) is given in Figure 11.
The wave equation that must be solved, Eq (7), in parabolic-

¢vlindrical coordinates is (Ref 7:282)

" cz(u:-wz) (yy : y) + —' ""L %" (60)

du? dve

-

whlre yﬁu,v,z) = 70 replaces the vector E . Assuming

1 '/ N :
fiu,v,z) s separable, i.c.,

38
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Piure 11, Parabolic cylinder at v = v, .

Yiu,v,2) = UV(V)Z(2) (61)

then the method of Separation of Variables vields the three

Jitferential equations (sce Appendix B for details)

A +l<:Z = 0 (62)

d z*

JZ? +(2v+1-u2)U=O )

du




R R Ty e e e v T e

5}{ +[-(zv+1)-—v2]V= 0

(64)

Equation (62) is the harmonic cquation discussed
carlier, leading to linear combinations of cosines and
sines, These solutions are houndecd for —e0< z £ 0O ,

tquation (62) has as a general solution (Ref 7:294)

2
sw - A€ H, (Jk.c'w)
+Bekzcu/zH_v_(,i [""'kzc u) (65)

vhere kz is given in Appendix B and Hy(.) is called
the Hermite function of degree VY and defined in
Appendix A,

The solution to Eq (65) must be bounded for u
approaching + co . Using the asymptotic expansions for
llv(ix) and H—-v—l (ix) given in Appendix A thus forces
Lin LBy (65) to equal zero and 3  to cqual non-negative
integers, Thus, the condition of finite U(u) forces
.y (65) to become

ke u/2
U(u) = Ae . Hn( ke U) , n = (0,1,2,3,...)
(65')
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With the restriction of Y =n = (0,1,2,3,...}) ,

¢ (64) has the general solution (Ref 7:294)

Vi) - Pe.k‘cvz/aHn(i\/k:?v)
+Qe-k;c.vz/2 H_n_l (-\/EC_.’V) (66)

~-inyg the asymptotic expansions for Hn(ix) and
X n_l(x) given in Appendix A and the fact that V(v)
st be bounded, yields

-kcvi/a

\lv) = Qe '”-n-l( klc V) , NI = (0,1,2,3-..)

(66")

fhe surface of the conductor (sce Figure 11) is at

AR The boundary condition that must be satisfied
1~ then
Y/; N . v £ v, (67

Using supcrposition of the solutions to Eqs (62),
{e3), and (64), setting z = 0 for thc two-dimensional
sroblem, and combining the constant A in Eq (65') with
the constant Q in Eq (66') to make Qm n, then Eq (67)

’

torces

L1

e A e =

> T R NP DU SR =




0o oo
v Z Z(zm,n “n(ﬁ:?u)”-m-l( kz.C vo) (68)

m=0 n=o

St 1= necessary to find the coefficionts Qm,n for each

and o that satisty Iig (08) in order to complete the
<olution to Eq (60}, The boundary condition of g (67)
iorces the conditiens of Lq (08)., Finding solutions to
Q:n,n on a computer presents a more Jifficult prohlem
chan that of Ea (45).

~oherical Coordinates and the Cone

In this section, the spherical waive equation is solved

A the solution for the boundary conditions of a perfectly
comducting cone arce briefly discussed.  The spherical

voordinate system to be used. with coordinates (r,6,¢) ,

i3 Jdefined in Figure 12.

r 2 7
o 2
P B

x>

N — i

e

figure 12, Spheri. l Ceordlina e Sycten
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Spherical Wave Equation. The scalar Helmholtz equation

n spherical coordinates is given by (Ref 1:264)

1

_ 23)") 1 3 /o 37)
0= = 7w+ r-s—'é 30 (5835
i + ‘( y (69}

2 oin2o a¢z

Assuming )V(r,0,¢) is separable, i.c.

}"(r,e,ﬁ = )V= R(1IB()E(F)- RO (691) "

thien the method of Separation of Variables yields the three

titferential equations (Ref 1:265)

| :
i‘ia +md =0 (70)
d (2B 4 [frt - nrt]R=0 o
61870 1"

Equation ¢(70) is the harmonic cquation seen in the

}‘ snln-e Je(sme Je) [n(ml

Si
previous two sections. Its solutions are denotcd by h(n|¢)
iquation (71) is closely related to Bessel's equation as

in Ly (24) of the first section. It has solutions that

are called spherical Bessel functions. Denoting the

ordinary Besscel functions by Bn(kr) aind hn(kr) for

L3




the spherical Bessel functions, the relation between the

w0 is given by (Rcf 1:265)

Ul _
bn(kx-) = ZF Bn+‘;z_(}\r)

.quation (72) is related to Legendre's cquation and gives
.ise to associated Legendre solutions (see Appendix A),
conoted by Lrﬁ(cos ©) (Ref 1:265).

The solution to V’ in Eq (69) is therefore written

15 a linear combination of
Wir,0,8) = hmg)b (kr)l](cos ) (73)

Cone. Figure 13a represents a finite perfectly
cuenducting cone imbedded in free space and Figure 13b
coepresents an infinite perfectly cenducting cone imbedded
... tfree space.  Both cones have conductor surfaces easily

coressed In o spherical coerdinates.

Rogers, schindler, and Schultz (Ref 8:67-80) have
-tained numerical results from a computer for the case
.1 a monochromatic plane wave (clectric field Q-polarized)
invident head on the tip of the conce in Figure 13a
t, vopagating in the -2 direction). The boundary conditions

4t must be satisfied include (Ref 8:70)
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1
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ae 1. (a) Pinite cone illuminuate! by plare wave
Jl
(b) Infinite corne llumirat:: uy ring source

= 0, 6-=6, and r<gb

and finite energy at the edge of the cone (r—sb
6-—>08,).
aarrington (Ref 1:303-300) cxamines the casce

A
anifoerm ¢-directed ring source illuminating an

of a

infinite

cone as in Figure 13b. The boundary conditions that must

o satistied include (Ref 1:303)
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and that the energy remain bounded (finite). The boundary
conditions for the cone in both cases require that (Ref 1:

304 and Ref 8:72)

d R(_cose) =0 (74)
d6 8=6,

“here Pv(cos @) 1is called the associated Legendre

function of the first kind of order v (see Appendix A

for a definition). The important point here is that the

vhysical boundaries of the cone gecometry force the condition

in £q (74) to be true. Numerical calculations are difficult

to obtain for E because of the problem of obtaining the

cigenvalues v and the eigenfunctions Pv(cose) in

'y (74) (Ref 1:305 and Ref 8:77).
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IV. Verification of Routines

Introduction

The purpose of this chapter is to verify a Bessel
function computer subroutine able to fulfill the require-
ments of the criteria established in the following

sections. Equation (46) is the key cquation in support

of the main objective of this thesis. [t involves fractional
order Bessel functions of the first kind. Though many
reliable computer subroutines are available for integer

crder Bessel functions and spherical (order of odd multiples
of one-half) Bessel functions of the first kind, not many

are available to calculate fractional order Bessel functions.
i.quation (46) involves an infinite summation. Since com-
puters can only compute finite sums, it is necessary to
truncate Eq (46) in such a way that the terms truncated off
4o insignificant compared to the finite sum. For higher
drguments of the Bessel function {on the order of one
iundred), orders greater than the argument are needed before
the value of the Bessel functions fall off appreciably.
Therefore, it is also necessary to find a computer subroutine
that calculates high order (and fractional) Bessel functions
of the first kind. The availability of reliable computer

subroutines of this kind is still further reduced. The
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necessity of finding such a subroutine is thus of the
utmost importance.

A thorough literature check has revealed no numerical
results for the time-averaged power density loss dissipated
on the surface of a conducting wedge near the vicinity of
its edge. Thus, there isn't any data to check the results
of a truncation of Eq (46) against. The next chapter
presents numerical results for a truncated version of
q (46). In order to accept these results as valid,
alternative checks must be made. One method involves
verifying the Bessel function subroutine for the range of
argument and order established in the criteria of the next
section, Another method involves the half-plane problem
discussed in the previous chapter. Equation (46), for
the wedge, and Eq (52'), for the half-plane, are very
similar in nature. Bth equations involve an infinite
sum containing a Bessel function of the first kind of
iacreasing order (fractional and/or intcger). They are
dlso both multiplied by [(,l:-i')order + (order) . sin
forder . constant)] , where the word "order" represents
the value of the order. The order is the increasing index
of the summation. A finite summation version of Eq (52')
fcr the half-plane is compared against the classical
solution (from Born and Wolf) of Eq (55'). Thus, because

»Y the similarity in naturc of Iqs (46) and (52'), it is

LA




hoped that the results of Eq (46) presented in the next

chapter can be accepted as valid.

Criteria and Results for Verifving Bessel Function Subroutine

This section provides support to verify a Bessel
function subroutine that produces Besscl functions of the
first kind, given by JV+N(k€ } , for use in Eqs (45)
and (46), where V¥ 1is the fractional part of the order and
N is the integer part of the order.

The argument of the Bessel function is ke , Where
N is the wavenumber given by Eq (5) in Chapter II, and
e is the radial distance from thc edge to the point of
intcrest. Since the main objective of this thesis is to
find the time-averaged power density dissipated on the
surface of a highly conducting infinite wedge (of angle
90°) near the vicinity of the edge, it is necessary to
extablish the range of ke . Atomic distances (radius
ot atoms, bond lengths betwecen atoms making up a molecule,
vte.) range around the order of onc angstrom (IR = 10-10
meters), The radius of a copper ion (+1) is 0.963, for
example (Ref 4:F-171)., Since the incident radiation of
interest is a monochromatic plane-wave in the micron
wavelength range, a value of ke = (.001 represents a
point e 0.000159 wavelengths (of the incident radiation)

{from the edge. For a CO2 laser of )\= 10.6 microns ,
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e is then equal to approximately 16.QR away from the
elge, which is closer to the edge than what present
tcchnology can probably make for a sharp corner of a plane, |
flqt mirror. Increasing ke by a factor of 10S (ke = 100)
gives the point e & 15.9 wavelengths away from the edge,
or @169 microns = 0.169 mm for A= 10.6 microns. Thus,
by choosing the range 0.001 £ k(;S 1000 , an adequate range
15 provided for investigating the power density dissipated
on the surface of a highly conductive infinite wedge near
tihe vicinity of the edge. The Bessel function subroutine
must be verified, therefore, for a range of argument
0.001 & kes 100 (Note: Another very important reason for
choosing the upper bound of ke = 100 1is that the Bessel
function subroutine requires a large amount of computer
memory and time when computing large orders for arguments
sreater than 100 or so. Appendix C describes the basic
theory behind the Bessel function subroutine used).
llquations (45) and (46) for thc wedge involve an
intinite summation, Since the computer can only evaluate
finite summations, an approximation of Eqs (45) and (46)
m:st be made by truncating thc infinite summation. The
truncated-off terms must be small cnough so as to be
insignificant if all of them were added to the finite
summation approximation., Recalling that the Bessel

fimction of concern involves an order having an integer
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part, N , and a fractional part, 3 , it is necessary

to truncate the summation at somec maximum integer order,

N . The condition chosen on N is such that for
max max

any integer M greater than qu\' , the absolute value
10

of J,,m(ke) must be less than 10077, i.e.

For TN (k(»).

where 0.001 § ke$ 100 ke real
0V <1 iy real
N = (0,1,2,3,...,N ) (75)
then for any integer M > Noax
=10
k 10
\J‘,+M ( e )l <
- ) -10 . )
The condition for \JV+M(}‘(’ )| L 10 is chosen

tor reasons discussed in Appendix B. The above conditions,
g (75), are truce for all the criteria presented in this
chapter.

The criteria can now be established to determine the
validity of the Bessel function subroutine for the range

of argument and order given in Eq (75).

1

ot s
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Criterion (IV-1). For the range of argument and

order given in Eq (75), then require

J;*N(ke\,sug - I’*N(ke)‘STD
j;+u(kP)\STD

where the value of Jv+h3(ke ) calculated by the sub-

< 10°°

routine is denoted by Jv+M (ke)lsuB and the value
of Jv&N (ke )} given by accepted, published values is

denoted by 3\ (kp) |STD

The value of 10'5 relative error was chosen rather

arbitrarily since it is difficult to predict what the
computer round-off error and addition of absolute error, ]
due to the summation ir Eqs (45) and (46), will come out
s, Round-off error is defincd as the error taking into
account the truncation of an infinite summation and the
:nherent error due to rounding off the values of terms
other than the Bessel function in lqs (45) and (46). The }
round-off error, if a problem, will become evident in the
hulf-plane check in the next scction.

As a check to see how the absolute crror of the Bessel
tunction subroutine adds up in a summation, use is made

of the following relations (Ref 5:301, 361)

C(‘}%;(_') = oc_os(%ta)o(t = NZ j;mi(x) (76a)

=0
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o('( Zy)= J sin(Ft¥)dt = > J;.m(;z_) (76b)

o

=
1)
o

1-Te+ 25 Ty o
vhere C_(-\/‘iz:;) and J(‘/%?) are commonly known as

the Fresnel cosine and sine integrals, respectively.
for computational reasons discussed earlier, the infinite

sums in Eqs (76a), (76b), and (77) must be truncated to

Nax where N is defined as in Eq (75). Even though
kqgs (76a), (76b), and (77) involve only the summation of
bessel functions of integer order or of integer plus one-
nall order while Eqs (45) and (46) involve the summation

ot Bessel functions of any fractional order, Eqs (76a),

i "ob), and (77) provide both a worst case and best case 1

tor x 210 . For x <10 , the accuracy will depend
o computer memory requested (sce Appendix C). The Bessel ,
function routine, for x 210 , Provides better accuracy |
tfor fractional orders approaching one-half than for

fractional orders approaching zero or one (see Appendix C).

As a result, Eqs (76a) and (76b) provide the best case for

checking for accuracy and Eq (77) provides the worst case,
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Criterion (IV-2a). For the range of argument and

order given in Eq (75), then require
N

EWER) - 2 3,40

C (& xe)

where C(,/%—ke) denotes accepted, published values of

the Fresnel cosine integral and the summation is the

-3

< 10

truncated version of Eq (76a). Nmax in this case is

equal to the even value of 2N where the summation is

t runcated.

Criterion (IV-2b). For the range of argument and

order given in Eq (75), then require

Nunax

S6B) - BT | o
St/Zk)

where J(.‘/,,-Zr- k() denotes accepted, published values

of the Fresnel sine integral and the summation is the

truncated version of Eq (76b). Nmax in this case is

equal to the odd value of 2N+1 where the summation is

truncated,




Criterion (IV-3). For the range of argument and

order given in Eq (75), then require

NMAX

1= [T (k) + 23::. Jou (kf’)” <10°

wvhere the expression in the squarc brackets is the
truncated version of Eq (77). Nmux in this case 1is
¢cqual to the even value of 2N wherce the summation is
truncated.

As in Criterion (IV-1), the relative error for the

most recently presented criteria was chosen rather
trbitrarily since it is hard to predict if the round-off
error will be a problem. The next section (involving
the half-plane) offers a better indicator on how

(1n)significant the round-off error is.

Results. The following tables arc results of computer

runs to test the criteria presented so far in this chapter,
“nly a few of the hundreds of valucs tested are presented
in these tables (additional tables arc in Appendix D).
Ihe range of order and argument, however, is limited by
the non-availability of published tables to compare
against (see Appendix D).

Table (IV-1) is in reference to Criterion (IV-1)

{two additional tables are in Appendix D), The column
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labeled Relative Error gives the absolutc value of the

vrror given in Criterion (IV-1). As cvidenced by
Fable (IV-1), the maximum reclative error between the
~ubroutine value and the accepted valuc is less than

10-6. The additional tables presented in Appendix D

ils0 have maximum relative ervors less than 10-6. All
the values produced by the subroutine that were checked
with accepted values met Criterion (IV-1).

Table (IV-2a) is in reference to Criterion (IV-2a).
iables for Criterion (IV-2b) and Criterion (IV-3) are
prescented in Appendix D. The column labeled Relative
tvror gives the absolute value of the error given in
Uriterion (IV-2a). As evidenced by Table (IV-2a), the
maximum relative error between the subroutine value and
the accepted value is less than ]0'3. The additional
tables presented in Appendix D also have maximum relative

«rrorvs less than 10_3. A1l the values produced by the

~ubroutine that were checked with accepted values nmct

tyiterion (IV-i).




TABLE (IV-1a)

Bessel Function Subroutine Check

Against Published Staqdur§i for J§+N(k?)

Range: 0.01 £ k € 100
N = (0,1,2,...,100)
v = 1/2
JN+i(k(’ ) J“""'Z(ke ) Relative
Le N Subroutine Standard* Error
0 .0797871199 .0797871263 8.02(-8)
. 1 .2659588395(-3) .2659588606(-3) 7.93(-8)
vt 2 .5319191988(-6) .5319192411(-6) 7.95(-8)
12 .1009230707(-37) .1009230776(-37) 6.84(-8)
0 .1783380682 . 1783380824 7.96(-8)
05 1 .2972796639(-2) .2972796874(-2) 7.91(-8)
: 2 .2973009005(-4) .2973009240(-4) 7.90(-8)
12 .55092972289(-29) . 55092976611 (-29) 6.75(-8)
0 .2518929203 .2518929403 7.94(-8)
0.1 1 .8402033633(-2) .8402034300(-2) 3.96(-8) 1
: 2 .1680887056(-3) .1680887190(-3) 7.97(-8)
12 .3190882666(-25) .3190882824(-25) 4.95(-8) )
0 .5409737469 .5409737899 7.95(-8) ?
0. 1 .9170169233(-1) LO170169960(-1) 7.93(-8)
7 2 .9236407085(-2) L9230407820(-2) 7.96(-8)
i2 .1734224713(-16) .1734224842(-16) 7,34(-8)
0 .6713966538 L.07130067071 7.94(-8)
1.0 1 .2402978200 .2402978391 7.96(-8)
: 2 .4949680629(-1) .4949081022(-1) 7.94(-8)
12 .9907033371(-13) .9907034182(-13) 8 19(-8)
16 0 -.1372637248 -.1372637358 8.01(-8)
! 10 .1630073534 . 1630073664 7.98(-8)
0 -,2960583121(-1) -.2960583189(-1) 2,30(-8)
50 10 -.8484972142(-1) -.8484972002(-1) 5.89(-9)
100 .5749161075(-21) .5749101043(-21) 5.57(-9)
0 -.4040213234(-1) - A010213272(-1 9.41(-9)
1ep 10 -.1561124543(-2) -.1561123855(-2% 4.41(-7)
100 .8681364822(-1) .8081304620(-1) 2.33(-8)
(ke 8) o o T
\ot.: The number in parenthesis is the poviyr of 10 by which the

preceding number must be multiplied.
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TABLE (IV-2a)

Fresnel Cosine Integral Check

of Subroutine Versus Published Standards

Range: 0.0014137 &£ ke‘s 100.53096
N o= (0,2,7,...,8 )
Y = 1/2
*(U)-Subroutine  é(U) Relative
kp =T y?
' e 2 (see Eq (76a) Standard* Error
03 .0014137 .0300000 .03360000 0.0
04 .0025133 .0400000 .0400000 0.0
(b .0056549 .0599997 .0599998 1.67(-6)
.08 .0100531 .0799986 .0799992 7.50(-6)
0.1 .015708 .0999959 .0999975 1.62(-5)
0.2 .0628319 .1998684 .1999211 2.64(-4)
0.5 .3926991 .4923317 .4923442 2.54(-5)
1.0 1.5707963 .7798923 .7798934 1.41(-6)
1.5 3.5342917 .4452353 .4452612 5.81(-5)
2.0 6.2831853 .4882271 .4882534 5.39(-5)
2.5 9.817477 .4574086 .4574130 5.62(-6)
3.0 14.137167 .6056911 6057208 4.90(-5)
3.5 19.242255 .5325688 .5325724 6.76(-6)
1.0 25.132741 .4984154 .4984260 2.13(-5)
4.5 31.808626 5260180 .5260259 1.50(-5)
5.0 39.269908 .5636193 .5636312 2.10(-5)
6.0 56.548668 .4995256 .4995315 1.24(-5)
0.5 66.366145 .4815931 .4816035 2.21(-5)
7.0 76.96902 .5454600 .5454671 1.35(-5)
7.5 88.357293 .5160098 .5160183 1.70(-5)
8.0 100.53096 .4997858 .4998022 3.33(-5)
*(Ret 5)
“ote: The number in parenthesis is the power of 10 by which

the preceding number must be multiplied.
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Conclusions. Even though it is impossible to check

for every possible value of ke , ¥ , and N due to
the infinite number of values ke , ¥ , and N may be
(though limited in range), the results just presented for
the values of argument and order chosen all satisfy the
criteria of this section. The values of argument and order
were chosen so as to best exhibit the behavior (error-wise)
of the subroutine for varied ranges of argument and order
(and also on the availability of published standards). The
final criterion that must be met is for the half-plane,

presented in the next section.

Criterion and Results for Verifying the Half-Plane

The purpose of this section is to verify the use of a
truncated version of Eqs (52) and (52') for the half-plane.
By the similarity of Eqs (52) and (52') to Eqs (45) and

(i6) for the wedge, it is presumed that if the half-plane

version can be verified, then the calculations for the highly

conducting infinite wedge. prescnted in the next chapter,
should have about the same order of percent error as the
half{-plane,

The solutions of Born and Wolf for the half-plane (see
Chapter II1I) are used as the standard on which truncated
versions of Eqs (52) and (52') are compared for relative

crror determination.
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Criterion (IV-4)., Use is made of Eqs (55) and (55')

R aAt e e

from Chapter III (Born and Wolf's classical half-plane

solution), i.e.

PP P

e et e} o bt

(4 -;(ke-%) . 2 " #f
L where H?s Eo //—‘-;-;ﬁ: e . )/.\-:é- sin (T)

-esn)Fef-taniliod)
- 2T cos (£)

2 u (55)
1m

and where u

[+
fl

-l? - oy
\J\ T S (55')
BIY BW BW

and the truncated version of Eqs (52) and (52')

"lal

where Hy = F( )th/am‘];é k(’\

.sm(’l‘z’-‘ )] (78)
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1he case of the infinite half-volume (given by Eqgs (87)

1l (58) of Chapter III) is given by a table in Appendix D,

fere Bq (57) is truncated in a similar manner as Eq (78).
q q

s lertfectly
Lpace Conducting
ial f-plane
6: - 70"" &
L
“icure 1. Half-plano seowetry fur Criterion

(1V-14)




where the range of argument and order are given in Eq (75).
Nlrax in this case, however, is equal to the integer portion

of m/2 where the summation is truncated. It is then

|Z

required that

A
13:

be less than 0.01 for excellent results and less than 0.0S

!

for good results. Again, as before, the choices for 0.01
and 0.05 are completely arbitrary. The choice normally
Jepends on the accuracy needed for a particular application
or experiment.
- - 3 13 ’ .

The range of jincident radiation angle, ¢ , is chosen
so as to coincide with the range of angles of incidence,
measured with respect to the surface normal, of the wedge

presented in the next chapter.

Results. The following tabhles are results of computer
runs to test Criterion (IV-4). The angle of incidence is
now described by 9,- where e; is measured with respect to

the surface normal (see Figure 14). Table (IV-4a) is for
o

93= 45" . Additional tables for ©; are given in

0 {normal incidence) and Table (1V-4b) is for

Appendix D. Without affecting the relative error, the

quantity fg Eo is normalized to equal one.




TABLE

(IV-4)

Half-Plane Check of Subroutine

Versus Born and Wolf's Solutions

Angle of Incidence:
Distance from Edge: 0.001 & keg 100

8= 0

3;-3: ‘I-S 3: Relative
ke Subroutinei Born and Wolft Error
.001 .3445668154 (3) .3445668614 (3) 1.63(-7)
.002 .1780327007 (3) .1780327274 (3) 1.50(-7)
.003 .1217155868 (3) .1217156048 (3) 1.48(-7)
.004 .9324531437(2) .9324532796 (2) 1.46(-7)
.005 .7600434579(2) .7600435669(2) 1.44(-7)
.006 .6441669591 (2) .6441670484 (2) 1.39(-7)
.007 .5607918191 (2) .5607918942 (2) 1.34(-7)
.008 .4978420458(2) .4978421095(2) 1.28(-7)
.009 .4485782759(2) .4485783299(2) 1.20(-7)
01 .4089399381(2) .4089399834 (2) 1.11(-7)
.03 .1113554737(2) .1113547673(2) 6.34(-6)

0.1 .7004508694 (1) 7004651448 (1) 6.24(-5)
0.5 .3581315193(1) .3581192719(1) 3.41(-5)
1.0 .3425171544 (1) .3425149724 (1) 6.37(-6)
5.0 .4064911798 (1) 4004741893 (1) 4.17(-9)
1o .4032786222(1) 4032755312 (1) 7.66(-6)
20 .3988001132(1) .3987946918 (1) 1.36(-5)
30 .4004305739(1) .4001269284 (1) 1.01(-5)
10 .3999589141 (1) .3900588194 (1) 2.37(-7)
50 .3998500232 (1) .3998500575 (1) 8.57(-8)
60 .4002128775(1) .4002128661(1) 2.83(-8)
70 .3998080504 (1) .3998080486 (1) 4.54(-9)
80 .4001249244 (1) .4001249246(1) 6.53(-10)
a9 .3999562725 (1) .3099562692 (1) 8.24(-9)
100 .3999732579(1) L3049732559(1) 5.19(-9)

‘_;_ti Nuwnber in parenthesis is the power of 10 by which the number

must be multiplied.

t+ Maalized for




TABLE (IV-4h)

Half-Plane Check of Subroutine

Versus Born and Wolf's Solutions

Angle of Incidence:
Distance from Edge: 0.001 £ kes 100

8, = 45°

h I.) Relative

h Subf'ouiinet Rorn anSWolﬁ Error
.001 .5672064751(3) .5072065603(3) 1.50(-7
.002 .2886873766 (3) .2886874211(3) 1.54(-7)
.003 .1951000809(3) .1951001107 (3) 1.53(-7)
.004 .1480164777 (3) .1480165002 (3) 1.52(-7)
.005 .1196182206 (3) .1196182386(3) 1.51(-7)
.006 .1005984697 (3) .1005984848 (3) 1.50(-7)
.007 .8695610556 (2) .8695611858(2) 1.50(-7)
.008 .7668500398(2) .7668501540(2) 1.49(-7)
L009 .6866782750(2) .6866783768(2) 1.48(-7)
01 .6223260214(2) L6223261132(2) 1.48(-7)
.05 .1471591210(2) .1471591248(2) 2.58(-8)
i1 .8339781086 (1) .8339773058(1) 9.62(-7)
0.5 .2816598597(1) .2816001727(1) 2.12(-8)
1.0 .2068285593(1) .2068281692(1) 2.37(-6)
5.0 .1784461110(1) .1784323115(1) 7.73(-5)
10 .2019055026(1) L2019047014(1) 1.46(-06)
20 .1995248743(1) L1995224135(1) 1.23(-5)
i .1999774545(1) L19899747669 (1) 1.34(-5)
oI .2002617145(1) .2002596108 (1) 1.05(-5)
50 .1996340769(1) .1996326280(1) 7.25(-6)
60 .2004134840(1) . 2004125591 (1) 4.61(-6)
70 .1995775856(1) .1095723727(1) 2.61(-5)
80 .2004112916(1) .2004083762(1) 1.45(-5)
90 .1996154167(1) .1996138054 (1) 8.07(-6)
100 .2003493654 (1) .2003429850(1) 3.18(-5)

+ Normalized for ’5’ E =1,

Note:

,“’ [o}

number must be multiplied.
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Conclusicns. All of the results obtained were excellent

(€ .01 relative error in accordance with Criterion (IV-4)).

In addition to the tables shown in this chapter and Appendix D,
checks were made for varying Q; Ly 0.1 radians (0% @, € % )
with the same results of "excellent.'" The results for the

infinite halt-volume, given in Appendix D, also came out as

Prag

excellent. |
Since Eqs (45) and (46) for the infinite wedge are similar

in nature to Eqs (52) and (52') for the half-plane, then great

promise is given to the success of a similar truncation working

on the wedge equations.
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/. Numerical Results for ledpe and Analysis

"rig chapter gives numerical recults, presented in the
srm of graphs and tables, for the time-averaged power density
;s iven by Eq (46) and by lxy (42) into =g (18). The wedge

be considered is shown in Figure 15. It occupies the
race ( given in cylindrical coordinatesc ) &+ 0% e( (= T
K AN ¢$1T/ 4 ,-pp<z<® . The wedze 1s further assumed

©> be of fTinite conductivity O (O >>WE ) and imbedded in

v
>

B e R

Tigure 15, ‘edge geomet:, cornsl ivr:d for calculations

e eiaa e s ieeiees




For computational reasons, the infinite summations

-iven in kqs (46) and (49) are truncated in the manner of
're half-plane case verified in Chuapter IV. The range of
ayrles of the incident monochromatic plarie wave is chosen
°< N e . o e e s w2 .
0€£6,€£70 (where O is measured au chown in rigure 15).
.t.1s range 1is chosen because it pruvides the worst case
. . . , . : -
.nighor power density loss) for the top wedge surface (¢- ;" )
.war the vicinity of the edge. Thus, the range of inciuent
...2les for the incident radiation cover: normal incidence
o . . . o .
9‘=O ) to grazing incidence (§;=90 ). The range of distance
cooum the wedge edge times the propagation constant k is
001 & Ke £ 100.
2
} . . . €.
“rne following graphs yileld the normali:zed (\-_—'—' = 1)
0'5/‘0
“ime-averagred power density loss (in watts per cquare meter)
. Loth T and ™M polarization of the incident field. [Lulti-
i Jica'icn of the normalized power density lozs by e,so,/a-s/uo
a rive.. O, 5 v and Zy thus yields a rirst approxicaticn
t: wat' . per square reter ubsorbea Ly e wedfFe rea.
ity ot the edye.  ne coniiti v O22WE L5 wosule.
tisiied. The graphs ave of two types: (1) normuliccia power
sensity loss versus ke for various values of 6 5 (2) nor-
: nzlized power density loss versus 6‘ for various values of r.(; .
Ttie tubles give the power density loss in terms of an

atcorption coefficient. The alsorption coefficient, (3 » ic

"¢ ratio cf absorbed power density to the incident power

.sity (irradiance); i.e. (3 :&IO“/IO , where @ is given

less




as in Eq (18) and I, is the irradiance (in watts per square
reter) and equal to ,{%Eg . J3ince the graphs yield loss 7
if the normalized power density is multiplied by €, 85/0'5/4.

@

s

then

s _ (e° an/a'g/uo)(?u"m
[ - ;€~4u° Eo

€° A r} o
/._. {79)
/Uo 6zonn

~nere @riorm is the normalized power density luss ( as in

D

.,.

= H

trhe graphs). The results are for both TEZ and TH polarization
sf incident field wavelengths of 3.8/um and 10.6/um and
.« e conductivity of O = 5.8 x 107 mhos/meter. The column
laneled e‘lmax gives the value of ©; such that @ is maxi-
wum at a given value of ke . The column lateled Q(P:)
: ives the distance from the wedge edge in angstrems. 1This
calue depends on the incident field wavelength ( k = 2/ A).
'he graphs and tables are now presented., Analysis ul

results follows the graphs ant tables.
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Absorptiay Coefficient for lledge

Kbt b lap g5 275l A

TABLE (V-1)

Incident Wavelength: A= 3.8 um

For

G o

14523 at

+

'3 € .2

Q} - ¢ Jomum .Lo
loss Ho

i @ = 0.94672 at 9:6.6414745”1\ (k'e

e » 100 A,
= 100.0 K (kp - 0.0l6ana @ = 45.4

Skin Depth: ®= 7.k
) ) TE ™
¢ e 6o @f Bl @1.
0.001 6.0479 | 0.0 0.01107 45.0° | 0.94672
0.005 30.239 0.0’} 0.01132 45.0° | 0.32390
0.01 60.479 0.0| 0.01155 45.0° | 0.20418
0.05 302.39 0.0°] 0.01269 36.9° | 0.07149
0.1 604.79 0.0°] 0.01365 25.4° | 0.04672
0.5 3023.9 0.0°| 0.01696 8.2° ] 0.02283
1.0 6ol'+7'.9 0.0°| 0.01746 0.0° | 0.02140
5.0 30239. 16.8°] 0.03491 0.0° | 0.02498
10.0 60479. 48.3°| 0.04583 0.0° | 0.02479
£2.0 302394. 74.1°]0.03539 0.0° | 0.02460
100.0 604789, 77.0%1 0.073388 0.0° | 0.02460
‘2 @ 5 0.05110 at @ <24192. A (kp = 4.0) and ) =22.5°

0.001) and 6.-|mi 45,

[%

maXx




TABLE (V-2)

Absorption Coefficient for iledge
Incident Wavelengtht A,=10.6 um
F Skin Depth: 2 =124.3 A
) TE ™ 4
ke Q(A) Golm (5" 6;!»,“,‘ (57 |
.~ 0.001 16.870 0.0| 0.00663 45.0° | 0.56686 '
0.005 84.352 0.0| 0,00678 45.0° | 0.19394 ‘
0.01 168.70 0.d| 0.00691 45.0° | 0.12226
0.05 843.52 0.0 0.00760 36.9° | 0.04280
0.1 1687.0 0.d] 0.00818 25.4 | 0.,02798
0.5 8435.2 0.0] 0.01016 8.2° | 0.01367
1.0 16870. 0.0 0.01046 0.0° | 0.01281
5.0 84352. 16.8| 0.02090 0.0 | 0.01494
10.0 168704, 48.3] 0.0274h 0.0° | 0.01455
50,0 | B43521. 7u.1‘4 0.02119 0.0° | 0.01473
100.0 |1687042. 77.0] 0.02029 0.0’ | 0.01473
i B = 0.03060 at o= 67482, 11 (kp = 4.0) and e,'mfzz.5°
M (B = 0.56686 ata €516.87o A (kp = 0.001) and e;|m=ll+5.
For P) 100 A ,
Quz 0.17273 at p= 100. & (kp = 0.006) and 8] = us.cf

L 15 Qowz
8, 65
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Jeveral observations are evident from the graphs just

.resented. Figure 16 through and including Figure 19 are
are for the incident field having TV polarization (the elec-
~ric field z-polarized). Figure 20 through and including
“igure 23 are for the incident field having TE polarization
. the magnetic field g-polarized).

Figure 16 plots @Ncrmversus ke for the range of

H 5.001 & kes 0.01. The five curves are for different values

of € as indicated on the graph. It is evident that the

saximum values of &N“Mfor each 6;= constant curve occur

closest to the edge at ke = 0.0p1. The maximum value of
curs for 6= 45’ and k€ = 0.001. It is also evident that

s s g . :
rhe minimum values of Gﬂo,moccur for 6,-= ¢ (normal incidence)

and  ©;= 95’ (grazing incidence). Figure 18, which plots @orm

Lo rSUD 6; for different values of k(: (0.001€ k()S 0.01),

shows that for each ke = constant curve, Nor is maximum
L]

i I ,o » . o
o 6= 45 and minimum at 6;: 0 and 6;: 90° . All of the

curves are uonlinear. This is to be expected for TM polar-

‘zation, since for 0.= 450(\‘;edge angle = 2X = 90%), tihe
-V
surface current parallel to the edge will increase as e 3

as the edge is approached (Ref 31 19).
In direct contrast to the TN case for the range 0.001

< keé 0,01, is the TE case for the same range of ke .

a—

Figure 23 plots Gbmrmversus k€ (0.001¢ ka0.0l). For

e; = 0" and 6; = 22.5°, @ increases linearly with ke

ofm

FIRRTTW NI

At e Bl wion

e b




Yor 9|.= 67.5°and 6;: 9o°. @N"m decreases linearly with kf: .

ror 6 = '45’. G?)"messentially remains constant for increas-
ing ke . The value of @N"Mis also much smaller (by around
20'to 80 times) than ésmmfor the TN case, as in Figure 16.

This is to be expected, however, because Gi,omin the TM case

is proportional to (k(: )"2 while @N"min the TE case is not.
Thus, very small values of ke in the TN case (ke<< 1)

dramatically increases Gi’"m. As evidenced from Figures

o -]
20 and 23 for the range 0.001Skp< 0.01 and 0% 6;<90 ,

——

GM . doesn't change as dramatically for the TE case as for
ofyn

tine TN case in Figures 16 and 18.

figure 17 shows that @N“mdecreases rapidly from
}.e< 0.5 to kQ> 0.5, and after the ‘overshoot' present around

1<kQ<5 damps out, @N remains essentially constant for

—

¥p> 10, This constant value for @ decreases with in-
e NO(‘M

orm

creasing e-‘. This is to be expected since the reflectance,

which is proportional to the reflected field flux over the

‘nelagent fleld fluxy ineresces with increasing angle of incidence.

#lgures 21 and 22 plot @HMM versus ke (0.5¢ ke$ 100)
ror various values of ©; for Ti polarization. In direct
contrast to the TM case for thls range of k e G’N“Mdoes not
damp out rapidly and approach a constant. Figure 21 shows

o =
that for ©,= 0" and 6= 45 , @Normoscillates like a sinusoidal

function times a decaying exponential function. Figure 22

80
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o
shows similar behavior for 6 = 22.5°, 67.5°, and 90 . The
snaximuwr values of & occur for 6;= 22.5° and kp 25, The

Norm e

rinimum values of @meoccur for 6= 90 . Figures 21 and

2> for the TE case appear to oscillate about é,orwgqual to
Tour (except for ©; = 90°), whereas in the TM case, &J“m
Jecreases with 6; for kQ> 1 . This is to be expected because
the reflectance in the T case changes less dramatically for
increasing ©; (until ©; approaches 90° ) than for the TE
case (Ref 9: 80-89).
*igure 19 plots @mmversus 6: for various values of

“ P (0.1€k <€ 100). In relation to Figure 18, the values of
@Nomis greatly reduced. Also, except for k€=0.1. the
various k (:- constant curves tend to lose the bell shape
zvident in the curves for ke$0.01 in Figure 18. For k¢ > 10,
tre curves are nearly the same (as evidenced by the ke =10
surve being almost the same as the ke = 100 curve in Figure
»4). Thiu irend was evident from the data obtained for any

lue of k@ in this range. The TE case is again much different
ot bt s range of ke . The various curves for 0.1 &
.f()SlOO in ¥igure 20 do not share a common shape as the curves

in Firure 19 for the TM case do. The highest values of @N"m
appear on the ke = 10 curve.

Figures 16 and 19 can be compared to similar plots for
th.e half-plane (see Figures 24 and 25 in Appendix D). From

- «ch a comparison, it is evident that for the range of ke

,
<
[y




closest to the edge (0.0016ke$ 0.01), the induced current

ir. the half-plane is considerably higher than for the 90°
w-dge. This is expected since for the half-plane, the surface
current parallel to the edge in reases as Q_Vzas the edge is
anpproached. For the wedge, the surface current increases as

-y
() 3(Ref 3: 19). For distances further from the edge, however,

&
la

orm for the wedge are on the order of @Normfor the half-
ne. This indicates that the wedge reduces to the half- f
..lane prrotlem for ke far enough away from the edge. This is »
.>ae for both the TE and TV cases.
Tablez (V-1) and (V-2) specialize the results for mater-
1 parameters @, € , and/l and incident wavelength, A,.
.ne ukin depth, § » is determined as in Eq (12). As given
it. Eq (79), the tables give the maximum absorption of incident
lux (Nattu/met,erz) for a given distance from the wedge edge,
e y and 8; l'max' Thus, the tables are¢ in answer to the main
o lective or this thesis described in Chapter 1.
.able (7-1) is for the incldent field wavelength equal
3 um. Jith a conductivity O assumed to be equal to
';\'107 ri.os/meter , the skin depth S is thus equal to

vl 2 (ee Eq (15) ). The maximum absorption of incident

£i.1d flux is for a maximum value of (3 . For TE incident
. [
r>larizaticen, G occurs for a distance ()2 24192, A from
| max °
: tro: edge and 9;] = 22.5 . The amount of time-averaged power

max

2it, absorbed is thus equal to approximately five percent




BN £t ol

of the incident field flux (in watts per square meter). Thus,

for an incident field flux (TE polarized, 6;=22.5", Xo= 3.8 um)
L of 109 watts cm2, the copper wedge would have to be able to
| zbgorb 5 x 104 watts/cm? » otherwise it might be damaged a

distance 2.Uflwr. away from the edge. For an incident field

of wavelength 10.6,um , Table (V-2) reveals the most absorp-
tion takes place at €z6.7/um and 6,= 22.5° ( (3 = 0.03).

Triese percentages are a percent or two higher than for copper

ey

«T any geometrical shape for the 3.8/um to 10.6/um range

vl incident field wavelength (Ref 9: 88).

The TV case is much different. Tables (V-1) and (V-2)
Lhow (3 as high as 0.94672. This means that almost 95 per-

cent of the incident field flux is absorbed at ke = 0,001
wrd ;= 0" . The (3 calculated is only a first approxi-
nation, however., It is based on the assumption that the
vi-dge 1s a linear, isotropic medium. For ke = 0.001 , the
itotunce frouw the edge is only about 16.5 If for )°= 10.6/1:;’.
1 6.0 A tor >\° = 3.8lum. Since copper has a radius of

atout one angstrom, the linear assuuption surely breaks down

at K() = 0,001. This problem is not evident in the TE case

Lecauce @ x occurs for a distance from the edge thousands
ma

ot copper atoms away, hence accepting linearity of the medium

a.; a valid assumption. It i now assumed that the linear ﬁ




(4
assumption be valid for @32 100 & . The value of 100 A is
arvitrary, but necessary in order to establish a valid inter-
vretation of the results. Thus, for @% 100 A , kp must be

sreater than 0,006 for A, = 10.6 pMm  and kp must be greater

than,0165 for X, = 3.8 Mm . As evidenced from Figures 16
and 17, the maximum G} will thus occur at k( = 0.006 (e ~

TR RV UV

100 £) at M= 10.6 um and 6; = 45, and at ke = .0165(p=

g = .= hc° = 13,
100 4 ) at A= 3.8 um and 6;= 455 For Q=3 8 um , @3"“
iv  about 0.14, which is much more than for TE polar-

max

ization., For )°= 10.6 pm , however , the value of @m“
impiies that more than 17 percent of the incident flux is

wwsorbed. Fer very large values of incident flux, damage to

the wedge surface 100 R from the edge would be more likely
for the TM case than for the TE case.

The analysis given above for the graphs and tables are
villy a first approximation. The assumptions made included
Licating the wedge medium as linear and isotropic, using the
.urface current density for a perfect counductor (=), and
vie urlin depth approximation. It i ulso assumed that all of
the power density absorbed is convertitle to heat (in watts
pur sgquare meter). Another assumption made is that the in-
finite wedge solution can be used to approximate a finite
wedge near the vicinity of the edye. Of note here is that for

ke large (greater that 10) , the c¢ffects of the edge on the

iiaduced surface current is dramatically reduced for either

el S aa it a

.. or T polarization.
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71, Conclusions and Recommendations

e tusic theory to solve the wave equation for given

comerries hlas been investirated in this report. This theory

~as teen applied to solve for the time-averaged power density
‘issivated on the surface of ¢ highly conductive 9d’infinite
edge illuminated by a monochromatic plane wave. By multi-
iyirn;; the normalized results by a constant depending on tne
~.aterial purameters of the wedge (0, € Q/A ) and the incident
ave’ o fresuency, numerical results are derived for a conduct-

7 mhos/meter and incident

~.rface of O = 5.8 x 10
v agths of )o= 3.8/Am and )°= 10.6/1m . Though the
dge used in the calculation is assumed infinite in extent,
e wifect. of the edge on the induced surface current is ceen
o bte dremitically reduced just a few wavelengths away from
Lie eae.
.nis - tuuy has shown that for the electric field ¢f a
aeoromziice plane wuve polarized parallel to the sharp e . -
a tighly conductive 90°wedgo. a high percentage ( 17 per-
coent) of the incident flux can be aboorted 100 Z away from
Lne clge., Though many assumptions are made to arrive at this
resul¢, it has been shown that it is a good first approxima-
ticn. Therefore, this study providen a keener insight into

ti.e arount of incident flux atsorbed Ly a highly conductive

- .edge rear the vieinity of the edyse for both TE and Ti

Sla: szaticog and various angsles of incitdence,




.ince the results are only a first approximation, it

recommernded that more factors be taker into account for
bre -ccurate results. These include thermal conductivity of

.o wenige ¢35 well as applylng Fourier transform techniques

s a Tinite wedge. More study into finding the difference
Saoituis of the surface currents induced on the surface
1 “inite conductive wedge as opposed to one of infinite
*ivit,, 13 also recommended.
.15 -tudy also opens the door to the need for better
fur.ctior. routines to calculate high fractional order
¢ Lish azument Bessel functions of the first kind, as
ced Uy the shortcomings of the Beussel funetion subroutine
ivsew. ced in Appendix C.
7t is rinally recomrended that ﬁore study be given to
:lvirn; for the eigenvalues and eigenfunctions for the type
rroulem encountered with the cone and parabolic cylinder.
wig 7 imvortent becauce of the inerease in use of such con.-

ol "o eaXieons and rodlaxicond.
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APPENDIX A

Definition of Certain Functions

The purpose of this Appendix is to lend support to various
references made within this thesis to the definitions of certain

functions.

Bessel Functions (Ref 1:460-464)

Bessel's equation of order V is

X %(x 3{&) s x2-vhy = o (A-1)

Solutions to Eq (A-1) include

2ms+v
2 (-1)"(x)
= -2
e mz T Cme)L (2 A
m am=-Vv
(1) x) (A-3)

mo m! (m-v)‘ ()2

where Jv(x) and J_V(x) are Bessel functions of the first
kind of order v and -v , respectively. Bessel's function
of the second kind of order v 1is also a solution to Eq (A-1)

and is given by

T.(x)cos (vir) = T, (X)

(A-4)
g (v1r)

N, (x) =

a9




Hankel functions of the first and second kind of order v

are also solutions to Eq (A-1) and defined as

Hél)(x) J,(x) + i N (x) (A-5)

(2)
H, “7(x)

Jv(k) - i N (x) (A-6)

respectively.
Asymptotic approximations for Eqs (A-2) and (A-4) for

x=>) are given by

Vv
I —s & ("\ (A-7)
x-» 0 v! rd
NN
N, (X} - - ( (A-8)
X-»0 T X

provided Re gv} > 0 . For large arguments (Xe—3o9) , the

leading terms in the asymptotic expansion are given by

2 LLGRYZ i ¢
J( ot - — W sapme——. A—g
W52 cosleT- g (9
N (x)——> =2 <in (x-I XE) (A-10)
Vi ks T S Y 2

nrovided lphase (x)\ <: W . Equations (A-9) and (A-10) into
Eqs (A-5) and (A-6) thus yield

90




(A-11)

(A-12)

Asscciated nggndre Functions (Ref 7:164, 193)

The associated Legendre equation is

2
2
(1 - z2) j’; 2z :([: + [v(\/ﬂ)— T:"—zz]mo (A-13)

for arbitrary % and m = (0,1,2,3,...) . Solutions to
Lq {A-132) include

™ d (z)
Adz"

where D?(z) is called the associated Legendre function of the

2

p;“(z) = (z (A-14)

first kind. Rv(z) is a solution to Eq (A-14) for m = 0 and

called Legendre's function of the first kind. It is given
o0 k | k
e - 3 Ll (1-2)
- 2
g k=0 (m‘.) (”-m)‘- e

_ sin (v) i (k"i‘v)!(kﬂ’»(l-z)k (A-15)

L ¥ (ml}> \2

as

e i YA




where N is the closest integer to )} such that N V¥V .

o A s T e

Hermite Functions (Ref 7:260, 284, 294)

*he differential equation

sz v
— 2 — (A-16)
'“-—G( zz 2 —[z + 2vv = O

has Hermite functions for solutions. Hermite's function of

degree is given by

i
g I )y Y )
R A T2 37

- N

2 ) (A-17)
r-

where @(Nf‘;z) is known as the confluent hypergeometric
funcrion. It is given by

% (), Z¥ |
v 4 X' = k& i
2l¥;2) é) (), kl

for Iz\ < 00

and ¥# (0,-1,-2,-3,...) (A-18)

For large values of argument (z-——p»00) | then




"o s (22) (19

-%(v+i)ﬂi

H UD)e——2 e (22

y> (a20)

For ) equal to an integer n , then the asymptotic expressions

are approximated by

H (iz) ——> it (2z)" (A-21)
Z~>00
H 1 (2) e (22) "7} (A-22)

2—> oo




APPENDIX B

Miscellaneous Support of Thesis

The purpose of this Appendix is to lend support to

various references made within this thesis.

Derivation of Source Current Density

The details leading to the derivation of Eq (36) is
presented in this section. In reference to Figure 7a in
Chapter III, the current filament is considered to be an
impulse of current of strength I (in amps). Figure 7b
repres=nts a vanishingly small area surrounding the current
filamert; small enough so that the current filament can be
considered as a current sheet (e = e’ ) separating the
regions for p>e’ and €<e' .

Apriying Ampére's circuital law (Ref 1:33)

- It t
g-dl = T (B-1)
“Closed Path

where i' is the total current on the surface of the boundary

enclosed by the path shown in Figurelh, then (Ref 1:34)
N -h - -~
R ox [ - HII] - 7, (B-2)

is obtained for the surface current density. It is noted

A
that n = Q% and EI is the magnetic field on the Region I

94
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side of the surface boundary and ﬁ}l is the magnetic field

--
on the Region II side of the surface boundary. Both HI

. o £ . 4 . A .
and H;; must be ﬁ-polarlzed because Js is Z-polarized
and A = 2 . Taking the Region I side of the boundary to

¢
be located at e = e'+ and the Region II side of the boundary

tc be located at e = ec- , then the scalar surface boundary

eguation is written as

J, = Blpl+) - Hg(pM) (B-3)

2

where Hd(eﬂb) represents the surface magnetic field in
Region T and Hﬂ(eﬂ-) represents the surface magnetic field

in Region II. Recalling Eq (27)

VxE = -iw/a,ﬁ (B-4)

. A 3 A - - -
an< since H at the surface is ;ﬁ’Polarlzed and E is

?—polarized, Eq (2') is then written in scalar form as

26y

ap

Substitution of Eq (31) for Ez into the above equation

(B-5)

= 'JM&/‘, ”ﬁ

yields




( - %o Z Qa, H:Z)(kel):j;'(ke)sin [V(¢'-°<)]sin[y(¢-e()], 0< e’

H/’: \
‘ ) . .
ek 9 o, Tolke!) H%e)sinrstsinbts ] | p>”
e (B-6)
, 3T, (ke) (2y7
where j,(kc) denotes -, and H ) (k() denotes
,(2)( \ }e v
%:iL_ﬁQ e Applying Eq (B-3) to Eq (B-6), with e’+

-3
for ege’ and e’- for e( e' and then setting

e = e’ , yields for the source

i = - a'-};? P avs;n[v(¢'-°‘)]sin[\’( ¢-°<)]
30 )~ Ml )Tle)]

Using the relations (Ref 1:402)

H\Ez)(x) J,(x) - 1N (x)

(B-8)

(2)” ’ s N
Hv (x) Jv(x) i Nv(x)
where the primes denote the first derivative with respect
to the variable x and Nv(x) is the Bessel function of the
second Lind of order v , and then by applying the Wronskian

of Bess:l's equation given by (Ref 1:403)
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TN = N0 T ) = = (59

implies that

T, kg0 g~ e 0ke) 3. (k)
= T, (k) k)i T (ke)Nv(ke)
— T (ke') Tulke’) + i Nulke' )3, 1%")
= i [3, (g ING(ke’) = Ny (ko) Ty (k' )]

_-2;-— (B-10)
rke

Substitating this result into the expression for Jz yields

Zav Sln[\/(?‘ d)]sm[v(f/-o()_-] (B-11)

-
ane @

3 ’Tu&ab

Leontov.ch Boundary Condition (Ref 3:18)

As iong as the radius of curvaturc of a good conductor
is much larger than the skin depth, the conductor boundary
may be Jdescribed by an impedance boundary condition, where
cs of Eq (17) is the surface impedance. Since the wedge
has a flat top surface and the point of observation isn't
on the ¢.lge singularity, the above stated Leontovich Boundary

Conlitien is applicable.




Parabolic Cylinder

The purpose of this section is to derive Eqs (62),

(63), and (64). Recalling FEqs (60) and (01),

1 iy

cz(uawz) Ju?

}&(u,v,z) = U) Viv)Z (Z) (61)

+ dv?

2 2
+ 25 +kf=0 ©»

then the method of Separation of Variables can be used.
Substitution of Eq (61) into LEq (60), dividing through by
f’# 0 , and rearranging yields

2
1 (19U 1 #V PA

1
E(u+v?) u + v av? +k —2- EX:a

(B-12)

The right side of Eq (B-12) is a function in 2z only, while
the left side is a function in u and v . Therefore, in
order for the above equation to be true for any u, v ,

and 2z , both sides must be equal to a constant. Denoting

this constant by k: implies

T 7 32 T

Substitution of Eq (B-13) into the previous equation, multiplying

through by cz(u2 + vz) , and rearranging yields

1 #Z _
kz (B-13)
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3
:
]
3

2
z(zkz e _ 13V 28 )2
Uw=e=-—77T32-C ‘IQV(B-M)
Vv oav?

The right side of Eq (B-14) is a function in v only, and

the left side 1s a function in u only. Therefore, both

sides must be equal to a constant in order for the above
equation to be true for any u and v . Denoting this

constant by %/4+ 1 , the left side of the above equation

becomes

\t—-
[
N
|
+
~
nN
-~
TN
|
o e
<
N
1)

2 M +1 (B-15)

and the right side becomes

\‘j;f" Y. +C2(2 2)

Since Eqs (B-13), (B-15), and (B-16) are functions in

-(2/,(4-1) (B-16)

oniy one variable, the partial derivatives are written as
ordinary derivatives. Also, by multiplying Eqs (B-13),
(B-15), and (B-16) through by Z , U , and V , respectively,

and rearranging yields




2
dV 4.[(c. ko)2v2 (2u +.l)]V= o (B-18)

dvt

where kg is defined by
e (8-19)

A substitution of variables is now performed so as to

put Eqs (B-19) and (B-20) into the form

A2 (¢ . g ¢
611:2) ¥ [ W) - -»{T]f@ (3-20)

which has parabolic cylinder functions as solutions for

and where the variable f' and parameter 7)) are, in general,
rea! or complex (Ref 7:284).
Exemining Eq (B-17) first, the following substitution

of variables are made:
Let @, =.,/2_ikpc, u (B-21)
2 '
Then (5 - 2 lkpc ua

Using the chain rule, then 7™ = = = 'k C
: du = Tu TV R

i L =i( 2ik c

L) o d°

. . A AN . 2 o

St ekdha <k i takae
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Making the above substltut\ons into Eq (B-17) yields
2
Z'kcdu(”'k": [ @ - (2/«+1]U o

Dividing the above equation by hlch (# 0) and defining

1 _ _[e2m+d
V'f'-é' = -—ZA‘—E:Z') (B-22)

results in

) 1,

In a similar fashion, Eq (B-18) becomes

d* V(w/zTFJE' [x?- " )]V(y’%‘f;?)’-o (520

where the substitution of wvariable

Y =qf2ik,c V ®-2s)

was made along with Eq (B-22).

Using the substitutions

6=V
X:-\/?V (B-26)
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into Egqs (B-23) and (B-24) thus results in

2
U4 vt -)U =0

al“V

(63)

+ [-(2v+l)-v2] V=0 (64)

Criteria Choice o
er e of Nmax

The purpose of this section is to justify the choice made

for Nmax in Eq (75).

By examining Bessel function tables, it is seen that the

lcading terms of ar array of Jv+n(x) (0 £ v<Ll
2

n= 0,1,2,...) have an absolute value greater than 10 °,
It is also known that Jv+n(x) is a decreasing function \
for Y+ n Dx (Ref 5:365, 368). Thus, by choosing to

truncate Eq (45) where the larger ordered Bessel functions
have an absolute value less than 10'10, results in the |
truncated-cif terms (summed together) being less than one

percent of the leading terms.
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APPENDIX C

Theory of Bessel Function Subroutine

The nurpose of this Appendix is to briefly describe
tho theory behind the Bessel function subroutine used in
this thesis,

The subroutine to calculate %+n(x) where 0£ V< 1

and n = (0,1,2,...) (¥, x real) is a UNIVAC routine

(kef 10)., It is divided into three regions of the argument;

(1) x <10 , (2) 10<€ x€50 , and (3) x> SO

(1) x €10 (Ref 11:102-108). For a function F that

O ‘“,C)'S

Fo) +E ) = 2 R0

-V-

then let

Ewn (x) = o J.wn(’() + 6 Nvm(x)

for M>» N . Defining

Foamn (x) =0
F M(x) = Q (a is any real constant) (C-2)
v4

it ¢can be shown that for

|
{
}
!
i



ﬂ&N‘—'—’ F (’()Q_’O(Iv+n(’<)

Y¢h
(C-3)
ro'n >)-;- and using the addition theorem
L/2
nznzo ¢"‘ Fv+2m(x) =
wiore

§ = (B)T(1+9) .
¢ ) (v+2m)(v+m—1)

" m(vizm-2) (c-4) |

-uhstitation of Eq (C-2) into Eq (C-1) yields an array of F
values 1rom Fy(x) to F‘”MH(x) . It is desired to have
DS -% so g (C-1) can be used to recur backward without
~v=s oi accuracy. Then Eq (C-4) is used to find ¢ , and i
C. in ty (€=3) yields J (x) . The accuracy will depend

y+n
. how lirge M is chosen,

(21 105 x £50 (Ref 12:18-26). J,(x) can be described

L = (B s o

w . ore t = 1/x and
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B, t) | 1+ azt2+aqt4+acf‘+...

t

(C-6)

b4+ 8)E] = 1+ l’ztz*' bqtq* bt

the rcutine truncates at th ). For lV’ S 1 , Eqs (C-5)

«nd (C-0) yield eight figure accuracy in J_(x) for x> 8

thuaticn (C-6) is also most rapidly convergent for 9 close
p 3

tc one--alf (i.e., most accurate for Y-» s and least

svcurate for Yy-» 0 and Yy-» 4 ). Lq (C-3) is then used

RO

t. recur down, thus producing an array of va(x) .
fquation (C-3) is then used to find o¢ from Jv(x)
~abstitution of @/ into the FV*n(x) array then produces a

iyen®) array  (n = 0,1,2,...,N)

(3 x > 50. The same method (phase-amplitude) is used

o1 x >S50 as in 10€ x £ 50 . However, since computer
time and memory are limited (especially for students), it is
somewhat more difficult to get M DD x/2 necessary for

backward recursion. Hence, J,(x) and Jv+1(x) calculated

wsing Egs (C-5) and (C-6) are used in Eq (C-1) to recur

forward. This method gives poor accuracy for large orders

because for /,4)) x/2 J/‘(x) & (x/2 )'“ .
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Modifications. The ranrge x > 50 proved to be unaccept-

able for producing accurate values of Jy+n(x) for large

n (n>»x) . Therefore, it was decided to recur backward

for fhe extended range 108x <100 . This proved to be

very successful. Another modification attempted involved
caisulating ay, and b12 in Eq (C-6). This had very little

¢ifect on improving the routine.

This Bessel function subroutine is available by contacting:
Major Glenn R. Doughty
Air Force Institute of Technology
Department of Physics
Wright-Patterson AFB OH 45433
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APPENDIX D

Additional Numerical Results

fhi: appendix provides space for additional figures not
placed in the main text. The non-availability of Bessel
tunction tables for large order and argument limited the
ranges of argument and order that could be verified. For
¢:ample, Reference 13 only provided tables for fractional
crders limited to £1/2 , *1/3 , & 2/3 , and 2 3/4

aud onlv for N =0 ., Reference 14, on the other hand,

wos limited to N & 135 and argument < 100 , with

t.d4ctional order equal to zero.




J e reeiarandd - < ciatdonies et Lo i -

TABLE (IV-1b)

Bessel Function Subroutine Check
Against Published Standards for Jv+N(k()

Range: 0.001 € kp< 100

N = (0,1,2,...,100)
' Y=0.0
) . ‘JN (k?? Iy (kp) Relative
e ' Subroutine Standard* Error
.60 0 .9999997500 .9999997500 0.0
onp L .0004999999 .0004999999 0.0
SE 2 .012499990(-5) .012499990(-5) 0.0
3 .0000020833(-5) .0000020833(-5) 0.0
0 .9999750002 9999750002 0.0
01 1 .0049999375 0049999375 0.0
e 2 .0000124999 .0000124999 0.0
3 .0020833203(-5) .0020833203(-5) 0.0
0 .7651976866 .7651976866 0.0
1.0 5 .2497577302 (-3) .2497577302(-3) 0.0
- 10 .2630615124 (-9) .2630615124 (-9) 0.0
20 .3873503009 (-24) .3873503009 (-24) 0.0
0  -.1775967713 -.1775967713 0.0
5 0 5 .2611405461 .2611405461 0.0
- i0 .1467802647 (-2) 1467802647 (-2) 0.0
20 .2770330052(-10) .2770330052 (-10) 0.0
0 -.2459357645 -.2459357645 0.0
" 10 .2074861066 .2074861066 0.0
! 20 .1151336925(-4) .1151336925(-4) 0.0
30 .1551096078 (-11) .1551096078 (-11) 0.0
0 .5581232812(-1) .5581232767(-1) 8.06(-9)
" 20 -.1167043523 -.1167043528 4.28(-9)
J 50 .1214090214 .1214090219 4.12(-9)
100 .1115927365(-20) .1115927368 (-20) 2.69(-9)
0 .1998585061(-1) .1998585030(-1) 1.55(-8)
100 20 .6221745833(-1) .6221745850(-1) 2.73(-9)
50  -.3869834004(-1) -.3869833973(-1) 8.01(-9)
190 .9636667398 (-1) .9636667330(-1) 7.06(-9)

* For Re= 0.001 and 0.01 (Ref 14); For all other kp (Ret 5)

\otc: The number in parenthesis is the power of 10 by which the
jreceding number must be multiplied.
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TABLE (IV-1c)

Bessel Function Subroutine Check ;
Against Published Standards for Jv-rN(kf’) I

oA o o 7

Range: 0.001 £ ke <100

N=20
v=1/4
X J1/4(].<() J1/4 (ke) Relative
P Subrout ine Standard* Error
.001 .1649761767 .1649762131 2.21(-7)
.005 .2466957406 .2466957951 2.21(-7)

0.01 .2933679292 .2933679941 2.21(-7)

0.05 .4384768320 .4384769287 2.21(-7)

0.1 .5206577608 .5206578756 2,21(-7)

0.5 .7416564065 .7416565702 2.21(-7)

1.0 .7522311674 .7522313333 2.21(-7)

5.0 -.2809720038 -.2808720658 2.21(-7) ]
10 -.2063937413 -.2063937869 2.21(-7) .
20 .1782983389 .1782983385 2.24(-9) ‘
30 -.1246044299 -.1246044300 8.03(-10)

10 .5491175188 (-1) ,5491175240(-1) 9.47(-9)
50 .1410606328 (-1) .1410606269(-1) 4,18(-8)
00 - 6642673498 (-1) - 6642673430 (-1) 8.88(-9)
70 .9125954031(-1) .9125953997(-1) 3.73(-9)
RO -.8570889767(-1) -.8570889765(-1) 2,33(-10)
90 .5511011408 (-1) .5511011439(-1) 4.72(-9)
10 -.1107092717(-1) -.1107092760(-1) 3.88(-8)

* (Ref 13)

Ncte: The mummber in parenthesis is the power of 10 by which the
preceding number must be multiplied.




of Subroutine Versus Published Standards

TABLE (IV-2b)

Fresnel Sine Integral Check

Range: 0.0014137€ ko £100.53096
N = (1,3,5,...,Nmax)
v = 1/2 -

) (U)-Subroutine (0) Relative
U ke =-Ell (see Eq(76b)) Standard* Error

.03 .0014137 .0000141 .0000141 0.0

.04 .0025133 .0000335 .0000335 0.0

.06 .0056549 .0001131 .0001131 0.0

.09 .0100531 .0002681 .0002681 0.0

0.1 .015709 .0005236 .0005236 0.0
0.2 .0628319 .0041871 .0041876 1.19(-4)
0.5 .3926991 .0647320 .0647324 6.18(-6)
1.0 1.5707963 .4382590 .4382591 2.28(-8)
1.5 3.5342917 .6975009 .6975050 5.88(-6)
2.0 6.2831853 .3434101 .3434157 1.62(-5)
2.5 9.817477 .6191806 .6191818 1.62(-6)
3.0 14.137167 .4963041 .4963130 1.79(-5)
3.5 19.242255 .4152469 .4152480 2.65(-6)
4.0 25.132741 .4205120 .4205158 9.04(-6)
1.5 31.808626 .4342700 .4342730 6.91(-6)
5.0 39.269908 .4991865 .4991914 5.82(-6)
6.0 56.548668 .4469581 .4469608 6.04(-6)
6.5 66.366145 .5453716 .5453764 8.80(-6)
7.0 76.96902 .4997014 .4997048 6.80(-6)
7.5 88.357293 .4606970 .4607012 9.12(-6)
8.0 100.53096 .4602057 .4602142 1.91(-5)

* (Ref 5)

Note: The number in parenthesis is the powcr of 10 by which

the preceding number must be multiplied.




e padiideny

TABLE (IV-3)
Bessel Summation Check of Routine for Eq (77)

Range: 0.001= ke <100

N = (0,1,2,...,N )
Y= 0
Bessel Sum Relative
Max
ke lﬁ-’Jo(ke)+2 E'JZN(R ) Error
.001 .99999975 2.50(-10)
.002 1.00000000 0.0
.003 1.00000000 0.0
.004 1.00000000 0.0
.005 1.00000000 0.0
.006 1.00000000 0.0
.007 1.00000000 0.0
.008 1.00000000 0.0
.009 1.00000000 0.0
0% 1.00000000 0.0 -
.05 .99999997 3.00(-10) P
0.1 1.00000000 0.0 1
0.5 1.00000000 0.0 ;
1.0 1.00000000 0.0 ;
5.0 1.00000000 0.0 !
10 1.00000000 0.0 ;
20 1.00000000 0.0
30 1.00000001 1.00(-10)
40 1.00000000 0.0
50 1.00000000 0.0
60 1.00000000 0.0
70 1.00000000 0.0
80 1.00000000 0.0
90 1.00000000 0.0
100 1.00000000 0.0 ;
. - t
l' Note: The number in parenthesis is the power of 10 by which the preceding x

! number must be multiplied.
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TABLE (IV-4c)

Half-Plane Check of Subroutine
Versus Born and Wolf's Solutions

Angle of Incidence: e, = 22.5°

Distance from Ldge:

0.001 < kg <100

3;032 5;'3: Relative
}\e Subroutine Rorn and Wolf Error
.001 .4684029211 (3) .4684029950(3) 1.57(¢-7)
.002 .2403209447 (3) .2403209813(3) 1.52(-7)
.003 .1634162387(3) .1634162633(3) 1.50(-7)
. 004 .1246239813(3) .1246239998 (3) 1.49(-7)
.005 .1011752171(3) .1011752320(3) 1.47(-7)
.006 .8544027553(2) .8544028804 (2) 1.46(-7)
.007 .7413464357(2) .7413465434 (2) 1.45(-7)
.08 .6560952897 (2) .6560953843(2) 1.44(-7)
.009 .5894561983(2) .5894562825(2) 1.43(-7)
.01 .5358948389(2) .5358949148(2) 1.42¢.7)
.05 .1366385829(2) .1366384225(2) 1.17(-6)
0.1 .8189107747 (1) .8189002466 (1) 1.29(-5)
0.5 .3467604171 (1) .3467593408 (1) 3.10(-6)
1.0 .2963554436(1) .2963273169(1) 9.49(-5)
5.0 .3469644246 (1) .3469617950(1) 7.58(-6)
10 .3388221165(1) .3388136336(1) 2.50(-9)
20 .3404785885(1) .3404084726(1) 2.94(-5)
30 .3409823380(1) .34097063835(1) 1.75(-%)
40 .3412019465(1) .34119900066 (1) 8.44(-6)
50 .3413174576 (1) .3413084812(1) 2.63(-9)
60 .3413853061 (1) .3413817358(1) 1.05(-5)
70 .3414279933(1) .3414280489(1) 1.63(-7)
80 .3414559925(1) .3414500236(1) 9.11(-8)
90 .3413747647 (1) .3414747812(1) 4.87(-8)
100 .3414873892(1) .3414873964 (1) 2.13(-8)
* Normalized for & E - 1.
Note: The number in parenthesis is the power of 10 by which the

preceding number must be multiplied.
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TABLE (IV-4d)

Half-Plane Check of Subroutine

o ———

Versus Born and VWolf's Solutions

Angle of Incidence: 6; = 67.5
Distance from Edge: 10.001 £ k(:s 100

-t B

3T J g% Relative
k S S. S °S
¢ Subroutine Born and Wolf Error i
. 001 .6259299676 (3) .6259300619 (3) 1.51(-7) 1
.002 .3158128663(3) .3158129157 (3) 1.56(-7)
.003 .2120104401 (3) .2120104731 (3) 1.56(-7) 1
.004 .1599423065(3) .159942331(3) 1.55(-7) <
.£05 .1286161098 (3) .1286161297(3) 1.55(-7) 3
.006 .1076814883(3) .1076815049(3) 1.54(-7) ;
.007 .9269540169(2) .9269541590(2) 1.53(-7) !
.008 .8143313033 (2) .8143314274(2) 1.52(-7) ;
.009 .7265710850 (2) .7265710602 (2) 1.51(-7) |
.01 .6562384447 (2) .6562385430(2) 1.50(-7) .
.05 .1429570778 (2) .1429570995(2) 1.51(-6) :
0.1 .7620296496 (1) .7620297497 (1) 1.31(-7) |
0.5 .1995471355(1) .1995466379 (1) 2.49(-6) <
1.0 .1219722187(1) .1219690885(1) 2.57(-5)
5.0 .5581411230 .5581361479 8.91(-6)
10 .5005723246 .5005719124 1.02(-6)
20 .5259130666 .5258607850 9.94(-5)
30 .5671748589 .5671596962 2.67(-5)
40 .5943320126 .5942380397 '6.68(-6)
50 .6039451152 . 6039073894 6.25(-5)
60 .6004248186 .6004162077 1.43(-5)
70 .5909307243 .5909287139 3,40(-6)
80 .5820611890 .5820490309 2.09(-5) ,
90 .5777673975 5.777645033 5.01(-6) ;
100 .5787210245 .5787067379 2.47(-5) '

" 1 ® =
Normalized for /Fz. Eo 1.

Note: The number in parenthesis is the power of 10 by which the
preceding number must be multiplied.
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TABLE (IV-4e)

Half-Plane Check of Subroutine
Versus Born and Wol{'s Solutions

Angle of Incidence: = 090
Distance from Edge: 0.001 k 100

73 J -7 Relative
s"s s s

L:e Subroutine Born and Violf Error
.001 .6366196711(3) .6366197723(3) 1.59(-7)
.002 .3183098356 (3) .3183098861(3) 1.59(-7)
.003 .2122065570(3) .2122065908 (3) 1.59(-7)
.004 .1591549178 (3) .1591549431(3) 1.59(-7)
.00 .1273239342(3) .1273239545(3) 1.59(-7)
.006 .1061032786(3) .1061032954 (3) 1.59(-7)

, 007 .9094566739(2) .9094568175 (2) 1.59(-7)
LG8 .7957745888 (2) .7957747153(2) 1.59(-7)
L009 .7073551900(2) .7073553025(2) 1.59(-7)
.01 .6366196710ﬁ2) .6366197722(2) 1.59(-7)
.05 .1273239342(2) .1273239544 (2) 1.59(-7)
0.1 .6366196711 (1) 6366197721 (1) 1.62(-7)
0.5 .1273239338(1) .1273239544 (1) 1.57(-7)
1.0 .6366195720 .6366197718 1.61(-7)
5.0 .1273239336 .1273239542 1.57(-7)
10 .6366196710(-1) .6366197709(-1) 1.69(-8)
20 .3183098905(-1) .3183098851(-1) 5.47(-9)
30 .2122065911(-1) .2122065899(-1) 1.57(-9)
40 .1591549421 (-1) .1591549423(-1) 1.27(-8)
50 .1273239554(~1) .1273239538 (~1) 7.04(-9)
60 .1061032940(-1) .1061032948 (-1) 2.27(-8)
70 .0904568326(-2) .9094568120(-2) 1.48(-8)
80 .7957747219(-2) .7857747102(~2) 1.47(-8)
90 .7073552970(-2) .7073552977(-2) 9.42(-10)
100 .6366197815(-2) .6366197677 (-2) 2.17(-8)

' \/ 3 :_ =
Normalized for .‘/ ﬁ.—!’ E 1. '
Note: The number in parenthesis is the power of 10 by which the preceding

mumber must be multiplied.
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TABRLE (IV-4f)

Half-Volume Check of Subroutine

Versus Eq (58)

° (]
Range of incidence angles: 0$8;$90
Distance from Edge: 0.00l ¢ k(’ g 100
* Subroutine Relative
; l{€ Value Eq (58) Error
.0 0.001 | 3.999999000 4.0 2.5(=7)
2. 0.001 3.414213208 3.414213562 1.04(-7)
5.0 0.001 .} 2.000000499 2.0 2.5(-7)
7.5 0.001 0.5857867902 0.5857864376 | 6.0(-7)
%0.0 | 80.0 6.757530467(-19) 0.0 6.76(-19)

*
Yalue of ke where the maximum relatlive error occurs.

:w¢lative error here is defined simply as the difference
tetween the Subroutine and Eq (58) because one cannot
divide by zero.
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In conclusion, the numerical results seem very promising due !
to the success of verifying the Bessel function subroutine used in ?
the calculations.
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