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Abst ract

Namerical results are prcscintt d for the approximate

ime-averaged power density dissip ated 'm the surface of

highIy conductive infinite wedge (of 'ngie 900) near

,he \-cinity of the sharp edge. 'lho niticrical results

!0 7aoritial ized so one may readil obtain results for

trv: ng incident wave frequencies. The ang 1e of incidence

the incident radiation, (ncasurad with respect to

.e;,srface normal of the wedoo), is varied from =0

incidence) to 0= 9 (grazin, incidence). In

rt icuIlar , numeri cal results for TF anI M pol ari zat ion

o t;!esen t ed for inc ident wave lengt hs otC 3.8,/1 and

b . 1 A i It is assumed that the, power density absorbed

.it ,[Il-) is a I I converted to heat de i tv.

I,,accCpt thle Va lidit y 01 lit l'sillC- , Anil extensive

is mi.,,e ,, 01 arvbitrVary t1ea i ord r esse1 function

Sr,,t i SCI IIIsed ii ti 'e ct tla Iion i CSe;ec I, fo r the II LIO.i C d IC

S .c..LItinn,.. f,,2.teral electrt': cIIet ic ,iL eort'v is also

;>cised ind extended to the iise in sp, 'i fic ,eomctries.

!.e .cometries considered besides the wdge (thou1g1h ,ith

I,, nimerical results) are the parahol ic cylinder and

II i t e cone

In conclusion, the nLumeicr I restI I.; seem very promising

.. e t,; the success of verifying' thL, Iel -, I function sub-

!,it ine used in the calculations.

vji



INVESTICATION OF LASER HEATING

IN COMPONENTS WITH SHARP EDGES

I. Introduction

The number of lasers being used has rapidly increased

in the past few years due in a large part to the advent

of more sophisticated laser systems and the discovery of

new laser applications. The improvement in quality of

optical components in lasers has also increased. As a

esult, the cost of many of the high quality optical

components has risen.

Of particular interest to the Air Force Weapons

Laboratory (AFWL) at Kirtland Air Force Base, New Mexico,

is the investigation of the power dissipated per unit

area on the surfaces of highly conductive dielectrics in

the vicinity of sharp edges i en illiumin:ited b\ high

intensity radiation. The sharp edges arise from the use

of rectangular mirrors (having sharp edges) and of cone-

shaped mirrors used as waxicons and reflaxicons (see

Figures 3 and 4 in Chapter II). Of special interest to

A[VL is optical components having a conductivity' near

that of copper. The incident radiation of interest is

in the micron wavelength range (3.8/ A1 and 10.6/Am, to

oc exact). It is feared that the damage threshold of these
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opical components may be surpassed near the vicinity of

the sharp edges due to induced surface currents, thus

having the potential of damaging expensive optical components.

The main objective of this thesis is to calculate the

time-averaged power density dissipated on the surface of

a highly conductive 900 wedge imbedded in free space. It

is assumed that the power density dissipated represents

the heat density (in watts per square meter) produced in

the wedge from the incident field. The power density is

found by first assuming the wedge to be a perfect conductor

1,nC finding the surface current density induced on the

,et..e surface. An approximation is then made to find the

poiucr density using the skin depth for a highly conductive

linear medium and the surface current density from the

perfect conductor case. As such, the power density calcu-

tated represents only a first approximation. Numerical

'1a1,uat os, th ich are believed to h, t he f i r't made for

tIc geom ry and conditions mentioned above, are pre.ented.

In addition to the wedge, two other geometries considered

arc the cioe (representing waxicons) and the parabolic

cylinder !representing a flat surface with a rounded edge).

Numerical computations using the computer are difficult to

obtain fo , these two geometries, therefore, only the

background theory is presented.

2



This thesis consists of six chapters and four

appendices. The chapter immediately following this

introduction presents the basic theory necessary to solve

the wave equation for the three geometries specified in

the following chapter, Chapter III. Chapter IV establishes

criteria to verify computer routines to obtain the

numerical results for the wedge presented in Chapter V.

The final chapter presents the conclusions that can be

drawn from Chapter V and recommendations for further

study in this area. The four appendices are in support

of the thesis.
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II. General Background Theory

The purpose of this chapter is to present the general

theory necessary to solve the wave equations for the specific

geometries discussed in the next chapter. This is accomplished

by first presenting Maxwell's equations describing the electric

and magnetic fields (1 and P) for all space and time. The

geometry is that of a perfect electric conductor imbedded in

free space and excited by a monochromatic, time-harmonic

electromagnetic wave. Once E and H! have been found, the

boundary conditions are used to find the induced surface

current density (J ) Finally, an approximation to

determine the time-averaged power density dissipated on the

surface of a good conductor is derived.

Maxwell's Equations and Boundary Conditions

In reference to Figure 1, the following are the assump-

tions to -e made: (1) Region I is assumed to be free space

with a conductivity 0 = 0 mhos/meter , a permittivity

E4 = 8.854 x 10-12 farad/meter, and a permeability

/AO = 411'x ]0- 7 henry/meter; (2) Region II is assumed to

be a perfect electric conductor with conductivity T = CO

a permittivity , and a permeability £ ; (3) the

source is assumed to be an infinite distance away from

; !.



Region II and emitting a monochromatic, time-harmonic electro-

magnetic (E-M) wave. The E-M wave is assumed to have eiWt

time dependence, where W is the radian frequency (in

rad ians/second) of the E-M wave. If the incident electric

field El (where the superscript i represents incident)

is polarized such that no component of Ei is tangential

to the conductor surface, then the incident E-M is said to

be transverse magnetic (TM). If the incident magnetic field

11 is polarized such that no component of H is tangential

to the conductor surface, then the incident E-M wave is said

to be transverse electric (TE). The TM case is considered

ii the derivations to follow, unless stated otherwise.

,saLAcE A

(7"= 0 A

iX
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Maxwell's equations for free space near the vicinity

cf the conductor (hence, neglecting the infinitely distant

source) may be written in terms of E and H as (Ref 1:37,38)

N7 Xt H =C (1)

V E: II(3)

V.E =

v 'F : 0 (4)

- iwt

Since E and H have e time dependence and

assuming that E and H can each be expressed as the

product of two functions such that one function is a

function of space only and the other is a function of time A

only, then iwl and -- = il By also using the

relation for free space only (Ref 1:38)

k = _=21r (5)

where k is known as the propagation constant,

is the inverse of the velocity of E-M waves in free space,

and X is the wavelength of the E-M wave in free space, then

Eqs (1) and (2) may be rewritten as

6 
4



T E(2'

By taking the curl of Eq (2') and substituting Eq (1')

for Vx H in terms of E , then

V~c~X E -kEO(6
is obtained. Using the vecotr identity (Ref 1:38)

VVxxA v7(VA)- 1 A
and recalling that I* E = 0 from Eq (3), then Eq (6)

becomes

z (7)

%here V is the Laplacian operator. In a similar fashion,

starting with Eq (1') leads to an equation the same as

Eq (7), except with E replaced by H . Equation (7)

J.s the complex vector wave equation that must be solved in

order to determine E Once E is found, the substitution

of E into Eq (2') determines H . This gives E and H

for Region I. Since Region II is a perfect conductor,



E f H = J 0 in Region II, where J represents the

current density (Ref 3:17).

To solve Eq (7) for all space, the boundary conditions

for the surface separating Region I from Region II must be

given. The boundary conditions, referring to Figure 1,

which must be imposed on the surface of the conductor are

(Ref 1:34)

A JU
n x H = s (8)

A A
n x E = 0 (9)

A
where n denotes the unit vector normal to the conductor

surface and pointing into Region I, and J denotes thes

surface current density induced on the conductor surface

by the H field.
d A

Exam)iation of Eq (9) shows that for any n

A An x E = 0 Thus, E must be equal to zero except

* A
when E is normal to the surface, in which case n x E would

necessarily be zero. Thus, there is no tangential component

of E on the conductor surface. For J not equal to

zero, Eq (8) implies that components of H normal to the

conductor surface are zero, but the tangential component

of H on the conductor surface induces a surface current

Adensity normal to both n and H.

8



Recalling that E and H are separable functions of

space and time, Eq (7) can be expressed as a differential

equation of only spatial coordinates, since the time

dependence will cancel out. For example, if E = El(U,V,W)f(t)

where E(U,V,W) is a vector dependent on spatial coordinates

u, v, and w, and f(t) is a scalar function of time t only,

then Eq (7) becomes

f(t) VE 1 (u,v,w) + f (t)k 2l (U,V,W) = 0

For f(t) # 0 , the above equation becomes

E E1(u,v,w) + k E1 (u,v,w) = 0 (10)

Equation (10) has the form of a homogeneous, linear

rartial differential equation of order two. It is also

assumed that u,'v, and w are independent coordinates of a

general three-dimensi-'nal orthogonal coordinate system and

LI(u,v,w) is such that

E1 (u,v,w) = Ea (u)Eb(v)Ec(W) (11)

where E1 (u,v,w) is the scalar function of E (uv,w) and

E.a (u) , Eb(v) , and Ec (w) are separate scalar functions

of only one variable. Substitution of Eq (11) into Eq (10)

then results in being able to express one side of the equation

9



depending on only one variable, and the other side of the

equation depending on the other two variables. Thus, both

sides of the equation must be equal to a constant for any

u ,, v , and w . The process is repeated until three

separate ordinary differential equations are obtained for

Ea (u) , Eb(v) , and Ec(w) . Solving the differential

equations for Ea (u) , E v(v) , and Ec (w) and super-

position of the solutions in Eq (11) into Eq (10) yields

the general solution to El(UV,W)  .

The method just described is called the method of

Separation of Variables (Ref 2:260). The coordinate

systems for the specific geometries discussed in the next

chapter are such that Eq (7) can be solved by the method

of Separation of Variables.

Finite Conductivity Approximations and Scattering

As stated in the Introduction, the main objective of

this thesis is to find an approixmation to the time-averaged

power density dissipated on the surface of a wedge of high

conductivity. This is accomplished by using a parameter

known as the skin depth and the surface current density

produced on the surface of a perfect conductor as in Eq (8).

Because of these two approximations, the following deriva-

tions presented for the time-averaged power density loss is

just a first approximation to the actual value.

10



In reference to Figure 1, it is now assumed that the

conductor of Region II has a finite conductivity, T.

It is further assumed that Region II is a good conductor,

i.e.., or>> . As stated in the Introduction, the

incident radiation of interest is in the micron wavelength

(10-6 meters) range, hence W will be on the order of 1014

iadians per second. The permittivity E of a good conductor

is hard to measure, but is generally taken to be on the order

of C, for free space (Ref 1:6). Thus, for copper of

O" = 5.8 x 107 mhos per meter, the condition O' WC is

%,ell satisfied. It is also assumed that the conductor is

a linear isotropic medium.

For good conductors, the surface field amplitude is

attenuated by a factor of e" -1 0.368) after it has

penetrated a distance

.,or - .I (12)

into *he conductor (Ref 1:53). TI'e symbol is known as
the skin depth and kM is the wavelength of the E-M wave

in the conductor.

In reference to Figure 2, if a plane wave is incident

on the surface normal, then Snell's Law may be written in

the form (Ref 1:58)

11



ki sinG. kt sin9t (13)

%,he.re the subscripts i and t represent the fields in

free space and the conductor, respectively.

Fiue .Secil 

k =kR i 14

e nt Region I

Figure 2. Snell's Law

The wave number, k ,is a complex number in general.

Ii' h is then defined to be (Ref 1:48)

k k kR  i k I1 (14)

wxee k R  ,called the intrinsic phase constant, is the

rL.,l part of k , and k1  , called the intrinsic attenua-

t, n constant, is the imaginaryv part of k , then for a

LA1.



good conductor, kR = kI  (wa/2) (Ref 1:50). From

Eq (5) it is seen that for free space, kR =

and kI  0 . Eq (13) is now written as

sin_ et____1 1 (15)

sinG 9j/ V , pj')
Since the permeability / of a linear medium is

approximately equal to I1dO of free space (Ref 1:6) and

noting (i + i)/41" =41' , then Snell's Law for a free

space - good conductor interface is approximated as

1 n et w e (16)

sin 6'
Since for a good conductor 0L>>W. (for a of order 107,

W4) of order 1014, and 6, of order 10-12), then Eq (16)

implies that the ratio of sin to sinaO will be

very small. For e. limited between 0 and T'/2 radians,

e must approximately equal zero for arbitrary 19.6t

Thus, the rapidly attenuated surface fields propagate very

nearly normal (with respect to the surface tangent) into the

conductor.

The surface current density in Eq (8) thus produces

a tangential electric field given by (Ref 3:18)

A A (A7)
n x Etan = nx

13



where C= L and is called the surface impedance of

the conductor. The time-averaged power density dissipated

on the surface of the conductor (assuming that the conduction

current YE is much greater than the displacement current

density - which is satisfied by the good conductor

assumption of >WE) is then (Ref 1:53)

6~ =Re t Ex H*1

Ho Re I}

IH°  (watts/ ) 18)

where = H * H* evaluated at the conductor surface

and Re I. I means to take the real part only of the expres-

sion between the brackets.

It is useful to use the concept of scattering in order

to find h everywhere so Eq (2') can be used to find H

for use in Eq (18). The scattered field can be thought of

as the field produced by the currents induced on the

conductor surface as in Eq (8). This scattered field (E.)

is thus equal to the difference between the field everywhere

with the conductor present (i) and the incident field with

the conductor absent (E) This is written as (Refl:113)

14



E E E (19)

Thus, by solving for Bs and given , E is found and

Eq (2') then yields 11 The solution for H is then used

in Eq (18) to give a first approximation of the time-averaged

power density dissipated on the highly conductive conductor

surface.

The necessary background theory has now been presented

to successfully derive the solutions to the specific geometries

presented in the next chapter. Since many of the sharp edges

occur in highly conductive plane (flat surface) mirrors (see

Figure 3), the first geometry discussed in the next chapter

is that of an infinite wedge, which has two flat surfaces

meeting at a sharp edge. Since present technology is such

that perfectly sharp edges are not possible, but in fact the

edges are rounded, then the geometry of a parabolic-cylinder

is used to approximate flat conductor surfaces uith rounded

corners. Finally, since waxicons (see Figure 4) are being

prcposed for use in the resonators of high power chemical

lasers, the cone is used to approximate such optical

components.

15
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III. Theory Extended to Specific Geometries

The purpose of this chapter is to specialize the

theory in the last chapter for specific boundary conditions.

The boundary conditions lead to the choice of what coordinate

system is used. The first section considers the case of

scattering by an infinite, perfectly conducting wedge

illuminated by a parallel electric line source. The line

source is then moved to infinity so as to approximate plane

;,.sve incidence. A first approximation is then made for

.Ldtermining the time-averaged power density dissipated on

the surface of a highly conductive wedge. As a special case

o- the wedge, the half-plane problem using the wedge solution

is compared to the classical solution for the half-plane

( orn and Wolf's derivation is used; Ref 6:559-570). The

m ethod of exparding the infinite wedge problem to one of a

finite wedge is introduced.

The second section considers the wave equation for a

parabolic-cylindrical coordinate system. Representing a

bend uith a rounded corner, the parabolic cylinder is

discussed; in particular, the difficulty in obtaining

numrerical results to the solution of the parabolic-cylindrical

wave equation is identified. Finally, the last section

considers the wave equation for spherical coordinates. A

17
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brief discussion to the solution of the spherical wave

eq .,ation for a cone boundary (cones have boundaries easily

e:xipressed in spherical coordinates) is discussed.

The first section is the most thoroughly discussed

sc tion, since the solutions derived are the basis for

thc next chapter and for the numerical results presented

ii; C'hapter V.

C.I indrical Coordinates and the Wedge

The wedge has surfaces that are conveniently expressed

if) .:ylindrical coordinates (see Figure Sb). The cylindrical

:, - equation is introduced first, followed by scattering

h, ..edges. The cylindrical coordinate system used is

dt.-.ined in Figure Sa.

Cylindrical Wave Equation. The scalar version of

Eq '7) in cylindrical coordinates with the Laplacian

tx, :essed in cylindrical coordinates and replaced by

ti.. scalar function is (Ref 1:198)

_ _ (20)

Eq (20) is also known as the scalar Ielmholtz equation in

cyNv1ndrical coordinates. If is separable into the form

18



Figure 5a. Cylindrical Coordi.: ate System

-- - - - -

Figure 5b. Wedge as Special Case of Cylinder

Y'ej z) R W R (21)

alid Eq (20) is assumed to have e time dependence, the

method of Separation of Variables can be used. The well

known separable equations resulting from substitution of

Eq (21) into Eq (20) are

1IZ (22)

dz1

19



jZ~, 4fl2 =Q(23)

+(e~R EkeKaR (24)

.,,':re k in Eq (24) is defined by

k2  = 2  + k2  (25)e z

Equations (22) and (23) are homogeneous, linear

oi,,inary differential equations with constant coefficients.

, give rise to harmonic solutions (sines and cosines).

,.ation (24) is Bessel's equation of order n and has

Be:-sel function solutions (Ref 1:199). Equation (21) then

bL ome s

,z) n (o B C)h(n#)h(kzZ) (26)

kI-i'e h(no) and h(k zz) represent harmonic functions for

tCi. solutions of Eqs (23) and (22), respectively. Bn (kee)

re;,:esents a Bessel function solution to Eq (24) (see

Appendix A for the definitions of various Bessel functions).

From, the principle of superposition, linear combinations of

Eq (26) are also solutions to Eq (20). The possible values

fo. n , kc , and kz  are called eigenvalues and any

two may be summed or integrated over, except k and k

20



since they are interrelated by Eq (25). Equation (26) is

specified in the discussion to follow.

Scattering by a V-,'ed ,e. Consider the case of an electric

current filament of current I (in amps) located parallel

to a perfectly conducting wedge, as shown in Figure 6.

The wedge has an angle 2o( and covers the space (in

cylindrical coordinates e' $ , z ): 2If-

(Ie< , and -o <z<o . The filament and wedge are

assumed to be imbedded in free space (0r= 0, E =Eop -- )

'Ihe wedge is assumed to be a linear, isotropic perfect

conductor (a=0o) . The incident electric field can be

described as an outward-traveling cylindrical wave, hence

the Hankel function of the second kind and order n (n an

integer), denoted by Hn(k ) , is used (provided ei¢otn

time-dependence is assumed) (Ref 1:201). The incident electric

A

-A.,,



A
id is z-polarized and given by (Ref 1:236)

(0F0 (Z) (k I(27)

-v•.ere -- 2 and is

ex.Kdent from the geometry in Figure 6.

The addition theorem for Hankel functions is given

tj (Ref 1&232) " ,

H(- 2 1)")1 ;l -J

-e Jn(ke') and Jn(ke) are Bessel functions of the

!"rit kind of integer order n . Equation (28) substituted

.i,.lo Eq (27) then gives the incident field as

S k Z(29)
- -- qIc J(ke) Hn (ke)e!" ,

The total electric field everywhere, Ez I is given

by Lq (19) as

i s
Ez =E Z  Ez  (30)

22



_.F.ere E is given by lEq (29) ano 1. is considered as

i',e field originating from the induced currents on the

-,urface of the wedge and is called the scattered field

ikcf 0:158). The scattered electric field is in the form

ot !:I (29), but with the integer order n changed to real

order x- and Jn(ke) replaced by I( 2 ) (ke) . The order

is determined (to follow later) by the boundary conditions

, the i% dge surfaces. The scattered electric field Fs

z
then added to the incident electric field E to yield

z

total field Ez  , as in Eq (30). Since the boundary

'.. ,it ion must have E~ s= Ei at the wedge surfaces, the, ditonmus hae z  z

I, field must also be z-polarized (Ref 1:238). The

total field is thus written as (Ref 1:238)

VV

E. (31)

Ih(, bound-.ary conditions that wi!:t he imlpoSic on the

-Ltt1,ces of the perfectly conduct ing wedge are

F = 0 , =o
Ez  0

(32)

Ez = 0 , = 2-1'-

23



.wlLving Eq (31) for the above boundary conditions implies

sin Iv(O-ol) = 0 , -= (33a)

sin [v(-o)i = 0 , = o (33b)

1qtuation (33a) is true for any x , but Eq (33b) is true

ol; % for

v(21"-O-o() = 2v(f- ) o mIT (34)

i. .. e m is an integer. The value m = 0 (thus v = 0 )

is not allowed because F z in Eq (31) becomes zero for any

(e, 0) . The values of m equal to a negative integer are

al o not allowed, since by the definition of Jv(ke ) for
iegative (see Appendix A), E Z  in Fq (31) tends to

iIi iinity as k tends to zero. 'Hlls, I:q (34) gives the

. t ILties v of '1q (31) as

v = 00 m = 1, 2,3, (35)

The constants av are determined by the nature of

the source (Ref 1:239). In reference to Figure 7a, the current

filament is considered to be an imlijlse of current of strength

I in amps). Figure 71) represeLnt-, a vianishingly small

.z
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,. .'a surrounding the current filamnt; small enough so that

t:i current filament can be considcred as a current sheet

, = e') separating the regions for e > e' and e <

\ipendix B provides the details which, by referring to

iure 7b, leadsto the source current density as

"l z =I a v  sin-- )] (36)

i.quation (36) is in the form of a Fourier sine series for

tie current on Q = e". The Fourier sine series for an

i~pulse of current of strength I (in amps) at 9 = e
,~ is given by (Ref 1:239)

lzI sin[v($'-()]sin[v(g-a)] (37)

'.,,,pariiniz Eq (36) with IEq (37) thus yields

V (/T It38)

Of special interest to this t liesis is the case of

in, ochromatic plane-wave illumination. This is accomplished

:, letting the current filament recede to infinity, i.e.,

k e".--+c . The incident electric field in Eq (27) thus

h.. ,nies (using the large argument approximation for 11(2) X)
V

x--oo given in Appendix A) (lRcI 1:240)

,.6
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lIuation (39) can thus be written in the form of a plane

have as (Ref 1:240)

t E eiker-° s O(41
z 0

where E0=- W I'- (40)

Only the equation for < e/ need be considered in

,Lj (31) to find the electric field E, everywhere for

e---oo. Using the asymptotic approximation for H (2 )(ke')

.liven in Appendix A as (Ref 1:463)

,t. I e iv  (e '

(31) then becomes

so' (41)

tlihstitution of av given by 1.(1 38) and E° given by

( (40) into Eq (41) yields



z ParE. ziv Jv(kf)sinIN($O( )]sin [v(-)] (42)

1%lere v is given by Eq (35). Equintion (42) thus represents

the solution of the electric field for a monochromatic,

s.-polarized plane wave incident on a perfectly conducting

todge of angle 2 oC (see Figure 6). The solution for the

magnetic field H is obtained by applying Maxwell's equation,

I.q (2'), to Eq (42), i.e.,

H= Ot EZA)O (43)

he surface current density, I , is obtained by substitu-

ting Eq (43) into

A -b ft

n x H = Js (10)

A A Ai-or the top surface of the wed.e, 1n = a . The ae

,,),)I)oneiit of IH in lIq (43) is tho on iv term used since

AA
V 0 ao = 0 . The surface mgnotic field, denoted by H S

is thus given as

F* j(2Eo' L)'04 (44)
v 2F

fed



%%here, after differentiating Eq (42) with respect to $
the boundary condition =( was imposed. The surface

current density, Js , is thus given by

-~ A A
J = J a = -I as z z z

ldv= H ~~I V~k~nvf (45)
h r e Is = !

If the wedge is a good conductor of finite conductivity

such that (o>>ce , then Eq (18) of Chapter II is used

to obtain a first approximation to the time-averaged power

,-asity dissipated on the surface of the wedge, provided

that the Leontovich Boundary Condition is satisfied (see

Xppendix B). It is assumed throughout the rest of this

thesis that the Leontovich Boundary Condition is satisfied.

Recalling Eqs (12) and (18)

2 '(12

1 1c 
(18)

where ifIf I is the dot product of I

and its complex conjugate given by Eq (45), thus gives

the time-averaged power density loss on the top wedge

>,lrface as
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1 cs, siga aneiccrrn ila~enin paceof th

los

7:( I*VJ-( (46)
V

The problem for the wedge just discussed is for the

IM case. The TE case is solved iin a similar manner as the

INI case, using a magnetic current filament in place of the

electric one. For plane wave incidence, the result for the

magnetic field is given by (Ref 1:242)

Ilz rI. F ,iv(kf)cos[v( '- c )]cos[v(o-oc)]

i, V =

where GV=

2, v > 0 (47)

mIr
and V = M 1 = 0, 1, 2,

('Tr- o

At t he top wedge surface (MI--o(j) , the resulting magnetic

fiuld on the surface, If , becomes

If z = r H.- E V v iv (k ) c os [lv ( - )](48)
11 = - (48)V

Substitution of Eq (48) into Eq (10) yields the induced

stnrface current density J as

30



J H a a E, ) ijv(ke)cos v(o-) (49)

Fquations (12) and (18) are used with Eq (48) to obtain

a first approximation for the time-averaged power density

dissipated on the top surface of the highly conductive

wedge. Of note is the differences in the TM case of Eq (44)

to the TE case of Eq (48). The TM case of Eq (44) has the

term ke  in the denominator while the TE case of Eq (48)

does not. Equation (44) also varies with sin[v(o'-a()]

uhile Eq (48) varies with cos[v(0'-oc)] . In addition,

!,, (48) has an additional v = 0 terni and slightly differ-

cnt constants.

The TE case is mentioned here only to present the

equations necessary to determine the time-averaged power

density loss due to TE illumination so as to compare to

the TM results presented in Chapter V.

Hialf-Plane. For o( = 0 , the wedge in Figure 6

induCes to the classical half-plane problem. The half-

plane perfect conductor covers the space: 0 4 x < g,

y = 0 , and -oo<z<oo ; see Figure 8.

It is assumed, in reference to Figure 8, that a

monochromatic plane wave (the electric field z-polarized)

is incident at an angle / on a perfectly conducting

hlalf-plane imbedded in free space. The incident electric

31
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Hal f -pl ane

.'igure 8. Perfectly conducting half-plane illuminated

by z-polarized E and -polarized H.

fild is given by Eq (40). The total electric field every-

'ierc is then given by Eq (42) with o( = 0 . The eigen-

SI lues v given in Eq (35) reduce to

rom (1, 2, 3,...) ( 0)

IihO total electric field is then wuittcn as

. = 2 Eo i m  (k ).sin(-)'sin( ) (51)

Specializing Eq (45) for o( = 0 vivcs the induced

surface current density as

3



A A
J = Jz az =-H C a z  (52)

An alternative solution for the half-plane is treated

thoroughly by Born and Wolf (Ref 6:559-584). The method

involves using dual integral equations for the E and H

fields, of which dual is meant that a single unknown function

:atisfies different equations for two distinct ranges of

parameter (Ref 6:564-565). The final result is Sommerfeld's

.,tiation (Ref 6:569)
= '" ;tkec'°s( " $') kcS ! )

L - F Eo F(a,) F(i.C(

where F(a)k)i

and a1  -Cos&)

a2 = P-( 4'" (53)

W,,cre (Jl') and y fW" ) are the , resnel cosine and

since integrals, respectively, and defined as (Ref 5:300)
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CO( t dt

3(x f sin (q t)dt (54)

l:,uation (53) is valid for the incident field Eiz given

bhv Eq (40). (Born and Wolf used 1z = exp[-ikC cos

an,.i for E normalized to equal one.

By using Maxwell's equation, Fq (2') again, and the

boundary condition Eq (8) to get the surface current density,

t ilen

A A
J Ja -i a,

SBW z e

ho~o He(ilr'. *E. . -k ,,r sin]!

-2. sin 01 "&. [-t(Q) ,
and u = cos(o7,Z)

a =j u (S5)

In the next chapter, a truncated version of Eq (52)

is compared numerically on the computer against Eq (5S) so

as to give a clue on the reliability of the truncation and

Bessel function subroutine. To get an indication of the

r'Lliability of the numerical results presented in Chapter V

aii,, based on Eq (46) for the wedge, a comparison of

.34,



J sJ of Eq (52) is compared against J s e of

lq, (55). For future reference in Chapter IV, these

qtat ions are denoted by

, = J j j* (52')

for Js given by Eq (52) and

= J J (55')IBWs s

for J given in Eq (55).

As an additional check on the reliability of a computer

routine for the truncation of I] (45) (since computers can't

compute infinite sums), the case of o( = 900 is examined.

ITis is simply the case of a plane wave in free space

A A
incident on the surface (the entire y z plane with x = 0)

of a perfect conductor (see Figure 9).

S k::30 0 l',rfectly

Co:rducting A

- - a -volU1Ue -- X
Free Space

Iigure 9. Perfectly conit- ti., ' i.WI .- volumO

3(
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For 0( = 900, Eq (35) for v reduces to

v = I =m , m = (1 2,3,...) (56)

2

and Eq (45) for o( = lr/2 reduces to

H f~ /L0 *1(ke) Sin[ TYs

Using cartesian coordinates, the classical solution to

tnis problem is (Ref 16:473, 531)

XWO " (S8)

There 0. is the angle of incidence with respect to the

surface normal ( V = -ir) Comparison of Eq (58)

with Eq (57) implies H = II (evident from Figure 9 is
A

tlat a is in the ay direct ion on the conductor sutrface).

.A trunc1,:a teCd ver s ion o f E q ( 5 7) i s c Om plari-,l n umecr ic allIy t o

I Ll (58) in the next chapter.

Extension to Three Dimensions. Now consider the wedge

in Figure 10 that covers the space: 0< e < 0 ,

2 IT - C '4 € '< a. z 1 < z 4 z 2 , It ha the same geometry

as the wedge in Figure 6, except that 11, the Wedge is

finite along the z-axis Thus. A three-dimensional tave



equation must be solved instead of the simpler two-dimensional

wave equation for the case of non-varying geometry with

respect to the z-axis. llowever, by applying a Fourier

transformation with respect to the z-axis, the three-dimen-

ional wave equation can be reduced to a two-dimensional wave

equation. A

Figure 10. Three-dime.; ional wedge

As an example of this, if , is a solution to

the three-dimensional wave equation

+a k't 0

then q #,w) .f/-'(1',c - dz is a solution to

the two-dimensional wave equal ion

3,



2 +fW 0

where K w (Ref 1:243). When the two-dimensional

wave equation above is solved for , then may be

solved using the inversion (Ref 1:243)

P(e z) = ~ (,,w)e'wzdw (59)

Parabolic Cylinder

Since technology has not advanced yet to the stage of

producing perfectly sharp edges, the parabolic cylinder is

a:seful to approximate a rounded corner. The two-dimensional

parabolic-cylindrical coordinate system is shown in Figure 11.

A
:, z-axis is perpendicular to the plane of the paper. The

transformation from rectangular coordinates (x,y,z) to

:,raholic-cylindrical coordinates (u,v,z) is given in Figure II.

The wave equation that must be solved, Eq (7), in parabolic-

c-' lindrical coordinates is (Ref 7:282)

+ = (60)
cZ~Z~v )  tu + , + - zzt + =6

C 2( U2 4.VI) ~ 2  7.

.:iere r(u,v,z) ; replaces the vector E . Assuming

/, ,v,Z) is separable, i.e.,
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-- o
€/VZ (64)

T:quation (62) is the harmonic equation discussed

carlier, leading to linear combinations of cosines and

-ines. These solutions are bounded Cor - .o< z < c.

iiquation (62) has as a general solution (Ref 7:294)

U(u) gkcQ/LI] .%/~
Ae... HV "z" - A

+Bekrcu/2H (J 1 4 (65)

kier kz  is given in Appendix B and I (.) is called

,he Ilermite function of degree V and defined in

Appendix A.

The solution to Eq (65) must be bounded for u

approaching t o. Using the asymptotic expansions for

II (ix) and 1. (ix) given in Appendix A thus forces

, ill lFq (05) to equal zero aiid V to equal non-negati t'

i.ltegers. Thus the condition of fiiite UJ(u) forces

., (t5) to become

U(u) A e 1  • Hn(. /' ' ) , n = (0,1,2,3,...)

(65')
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With the restriction of *V = n = (0,1,2,3,...)

((04) has the general solution (R~ef 7:294)

V (v) P el /afl(H $7PV)

+ -QklcV /-~C7 V) (b6)

ing the asymptotic expansions for I (ix) and

i (x) given in Appendix A and the Fact that V v)

,List be bounded, yields

\ iv) = Q e •~c~2/ l V) , n = (0,1,2,3...)

(66')

Fhe surface of the conductor (see Figure 11) is at

k . The boundary condit ion that must be satisfied

I- t [hen

h I

Using superposition of the solitions to tEq.s (62),

((,3), and (64), setting z = 0 for the two-dimensional

piroblem, and combining the constant A in Eq H(5') with

414

!ie constant Q in Eq (66') to make Qm then lA (67)
lon,



F l~.4k,,ciu) If (VkL.1VC) (68)

.t i< necessary to find the coefficiunt. for each

a:, 1n that sat isfY lIv (0,S) in otd'cr to complete the

' oluti on to Fq (601. The boundary cond it ion of Fq (67)

forces the conditions of q ((8) . I inding solutions to

on a computer presents a more difficult problem

han that of t(q (45).

1he, cal Coordinates and the Cone

Ii this sect ion, the spherical wi'e equation is solved

J tIte >o lut ion for the bounda rv condi it ions of a perfectly

,nduct ig cone arc briefly di scissed. The spherical

oordinate system to be used. with coordinates (re,O)

i defined in Figure 12.

A

A I

igur 1?. .;pheri. 1 ,1 U i:a , um



S.herical Wave Equati.on. The scalar lelmholtz equation

o spherical coordinates is given by (Ref 1:264)

r L-n 4( rs@in@L)

I Z. (69)
+ 2. sinae 9 +K2

.\-,sulin g /'(r, ,$) is separable, i.e.

r,,) = r'= R(r)(e (8) )= Rg 61

tlhen thu method of Separation of Variables yields the three

.,lifctential equations (Ref 1:265)

d +m2 =0 (70)

r (ro+R) + Lklra n(n4 1) O (71)

tcl sinG±~d + [y)(fr +) oila1O U

i u ation (70) is the harmon ic equat ion seen in the

pIevious two sections. Its solutions are denoted by h(mo) .

iquation (71) is closely related to Bessel's equation as

in I(I (24) of the first section. It has solutions that

arC called spherical Bessel functions. Denoting the

Odinary Bessel functions by B (kr) ad h (kr') for
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t1spherical Bessel functions, thc relaition between the

.. is given by (Rcf 1: 265)

* b (kr) 3

* tuation (72) is related to Legendre's equation and gives

,;e to associated Legendre solutions (see Appendix A),

-,-noted by L (cs9 (Ref 1:265).

The solution to $Pin Eq (69) is therefore written

a linear combination of

~'(h (m~ t,, h$) 1 (kr) Lm (cose) (73)

Cone. Figure 13a represents a finite perfectly

CLIlduIcting Cone imibedded in free space and FigUre 13b

&prse!t5an infinite perfectly conduicting cone imbedded

f ree ,;pace. Bot h cone-s IMNO oConduc1,tor surfaceos eas ii c

esJin >npheiical coordiniates.

Roges, Schindler, and Schultz (Rcf' 8:67-80) have

.I, .tined numerical results from a computer for the case

-.t a monochromatic plane wave (electric field xA-polarized)

.nident head on the tip of the cone in Figure 13a

ropagating in the -z direction). The boundary conditions

,it must be satisf ied include (Ref 8: 70)

Ak'4



A

(b) Infinite co .e 1 i ii.a ., " G a . sourc= U 
, 0 Oy ad 

r $

., tin ito cn rgy at the edge of the c 'le { --- t
8-eo).

w ,rrington (Ref 1:30 )3-30) ( examines the case of a

AA

: f o ,r m - d i r e c t e d r i n g s o u r c e i lurn i n a t i n g a n i n f i n i t e
, eas i Figure 1 3b. The bou~ndary conditions 

that must

Ssat isi 

ted 
include 

(Ref 
1:3113)

eo '11d r <' 1

Ali, I'Inite e cro at the dgc of lic cmi r , 1



E = 0 ,

,111L that the energy remain bounded (finite). The boundary

corditions for the cone in both cases require that (Ref 1:

S04 and Ref 8:72)

P± PCos ~ 0 (74)

,.here P (cos e) is called the associated Legendre

(,:nction of the first kind of order v (see Appendix A

Cor a definition). The important point here is that the

physical boundaries of the cone geometry force the condition

in Eq (74) to be true. Numerical calculations are difficult

to obtain for E because of the problem of obtaining the

,igenvalues v and the eigenfiinctions P (cosG) in

(74) (Ref 1:305 and Ref 8:77).
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IV. Verification of Routines

Int roduction

The purpose of this chapter" is to verify a Bessel

fulnction computer subroutine able to fulfill the require-

ments of the criteria established in the following

sections. Equation (46) is the key equation in support

of the main objective of this thesis. ft involves fractional

order Bessel functions of the first kind. Though many

reliable computer subroutines are available for integer

order Bessel functions and spherical (order of odd multiples

ol one-half) Bessel functions of the first kind, not many

are available to calculate fractional order Bessel functions.

.quation (46) involves an infinite summation. Since com-

i)iters can only compute finite sums, it is necessary to

truncate Eq (46) in such a way that the terms truncated off

., insignificant compared to the finite sum. For higher

,i,- uments of the Bessel function (on tile order of one

itzndred), orders greater than the argument are needed before

the value of the Bessel functions fall off appreciably.

The refore, it is also necessary to find a computer subroutine

th i, calculates high order (and fractional) Bessel functions

o.t the first kind. The availability of reliable computer

*hIroutines of this kind is still further reduced. The



necessity of finding such a subroutine is thus of the

utmost importance.

A thorough literature check has revealed no numerical

results for the time-averaged power density loss dissipated

on the surface of a conducting wedge near the vicinity of

its edge. Thus, there isn't any data to check the results

of a truncation of Eq (46) against. The next chapter

presents numerical results for a truncated version of

Lq (46). In order to accept these results as valid,

alternative checks must be made. One method involves

vtrifying the Bessel function subroutine for the range of

.gument and order established in the criteria of the next

section. Another method involves the half-plane problem

discussed in the previous chapter. Equation (46), for

the wedge, and Eq (52'), for the half-plane, are very

similar in nature. lbth equations involve an infinite

s mi containing a Bessel function of the first kind of

;icreasing order (fractional and/or integer). They are

also both multiplied by [ T)rder * (order) . sin

larder . constant)] , where the word "order" represents

the value of the order. The order is the increasing index

of the summation. A finite summation version of Eq (52')

For the half-plane is compared against the classical

solution (from Born and Wolf) of Eq (55'). Thus, because

the similarity in nature of Eqs (46) and (52'), it is

4 H



hoped that the results of Eq (46) presented in the next

chapter can be accepted as valid.

Criteria and Results for Verifvinp Bessel Function Subroutine

This section provides support to verify a Bessel

function subroutine that produces Bessel functions of the

first kind, given by J YN(kf ) , for use in Eqs (45)

and (46), where V is the fractional part of the order and

N is the integer part of the order.

The argument of the Bessel function is ke , where

k is the wavenumber given by Eq (5) in Chapter II, and

e is the radial distance from the edge to the point of
interest. Since the main objective of this thesis is to

find the time-averaged power density dissipated on the

surface of a highly conducting infinite wedge (of angle

90') near the vicinity of the edge, it is necessary to

establish the range of ke . Atomic distances (radius

atoms, bond lengths between atols making up a molecule,

tct.) range around the order of one angstrom (1A = 10

meters). The radius of a copper ion (+1) is 0.96A, for

example (Ref 4:F-171). Since the incident radiation of

interest is a monochromatic plane-wave in the micron

uavelength range, a value of k? = 0.001 represents a

point e c 0.000159 wavelengths (of the incident radiation)

from the edge. For a CO2 laser of )= 10.6 microns

J49



is then equal to approximately 16.9A away from the

eI1ge, which is closer to the edge than what present

tcchnology can probably make for a sharp corner of a plane,

flat mirror. Increasing k by a factor of 105 (ke - 100)

gives the point 15.9 wavelengths away from the edge,

or e!1 6 9 microns = 0.169 mm for ? = 10.6 microns. Thus,

by choosing the range 0.001 < ke 100 , an adequate range

is provided for investigating the power density dissipated

on the surface of a highly conductive infinite wedge near

ti-e vicinity of the edge. The Bessel function subroutine

must be verified, therefore, for a range of argument

().(101.< ke 100 (Note: Another very important reason for

choosing the upper bound of ke = 100 is that the Bessel

function subroutine requires a large amount of computer

m,-mory and time when computing large orders for arguments

g reatcr than 100 or so. Appendix C describes the basic

theory behind the Bessel function subroutine used).

Lquations (45) and (46) for the wedge involve an

inifinite summation. Since the cowputer can only evaluate

finite summations, an approximation of Eqs (45) and (46)

ii,_,.t be made by truncating thc infinite summation. The

truncated-off terms must be small enough so as to be

insignificant if all of them were added to the finite

s,,mation approximation. Recalling that the Bessel

fImction of concern involves an order having an integer

so



part, N , and a fractional part, V , it is necessary

to truncate the summation at some maximum integer order,

N * The condition chosen on N is such that form ax inl a x

any integer M greater than N , the absolute value

of J V,M(kf) must be less than 10- 10  ie

For JK k)

where 0.001 keC.100 ; real

0 <1 ; V real

N = (0,1,2,3,...,Nmax) (75)

then for any integer M > Nmax

IJ V4M (ke) < 1 0 - 1 0

rhe condition for IJ,, M(ke )I < 10-10 is chosen

tor reasons discussed in Appendix B. The above conditions,

i, (75), are true for all the criteria presented in this

chapter.

The criteria can now be established to determine the

validity of the Bessel function subroutine for the range

of argument and order given in Eq (75).



Criterion (IV-1). For the range of argument and

order given in Eq (75), then require

sue _0,,- (ke)T < iD0

'here the value of J +N (kt) calculated by the sub-

routine is denoted by J V4-W (k? )JS and the value

of JV - (k ) given by accepted, published values is

denoted by Jy0br (k) ISTD

The value of 10- relative error was chosen rather

arbitrarily since it is difficult to predict what the

computer round-off error and addition of absolute error,

due to the summation in Eqs (45) and (46), will come out

.!s. Round-off error is defined as the error taking into

account the truncation of an infinite summation and the

inherent error due to rounding off the values of terms

other than the Bessel function in E(qs (45) and (46). The

round-off error, if a problem, will become evident in the

half-plane check in the next section.

As a check to see how the absolute error of the Bessel

function subroutine adds up in a summation, use is made

of the following relations (Ref 5:301, 361)

0 U



J in7 1 )d I( (76b)

N=-

tdhere and JP(,/and ) are commonly known as

the Fresnel cosine and sine integrals, respectively.

ior computational reasons discussed earlier, the infinite

u,,ims in Eqs (76a), (76b), and (77) must be truncated to

N MN, where N is defined as in Eq (75). Even though

LI~s (76a), (76b), and (77) involve only the summation of

kossel functions of integer order or of integer plus one-

ji.ill order while Eqs (45) and (46) involve the summation

otf Bessel functions of any fractional order, Eqs (76a),

Tob) , and (77) provide both a worst case and best case

, olx > 10 . For x <10 , the accuracy will depend

oii computer memory requested (see Appendix C). The Bessel

tLnction routine, for x .10 , provides better accuracy

for fractional orders approaching one-half than for

fractional orders approaching zero or one (see Appendix C).

As a result, Eqs (76a) and (76b) provide the best case for

checking for accuracy and Eq (77) provides the worst case.
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Criterion (IV-2a). For the range of argument and

order given in Eq (75), then require

ke w(a/f2: )
N0< /0 -

ere ke) denotes accepted, published values of

the Fresnel cosine integral and the summation is the

truncated version of Eq (76a). N max in this case is

equal to the even value of 2N where the summation is

t i-oncated.

Criterion (IV-2b). For the range of argument and

order given in Eq (75), then require

S~~l~e) - -: (k)-
M=0 ZN+~ t
k)< 10-

where denotes accepted, published values

of the Fresnel sine integral and the summation is the

truncated version of Eq (76b). N in this case ismax

equal to the odd value of 2N+l where the summation is

truncated.
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Criterion (IV-3). For the range of argument and

,crder given in Eq (75), then requtirc

1 T 2oke 2 J- (ke < o-0
14=1

,,,here the expression in the square brackets is the
truncated version of Eq (77). N in this case is

equal to the even value of 2N where the summation is

truncated.

As in Criterion (IV-l), the relative error for the

iost recently presented criteria was chosen rather

1rhitrarily since it is hard to predict if the round-off

error will be a problem. The next section (involving

the half-plane) offers a better indicator on how

(in)significant the round-off error is.

Results. The following tables are results of computer

rins to test the criteria presented so Far in this chapter.

Inly a few of the hundreds of valties tested are presented

in these tables (additional tables are in Appendix D).

Ihe range of order and argument, however, is limited by

the non-availability of published tables to compare

against (see Appendix D).

Table (IV-l) is in reference to Criterion (IV-l)

(two additional tables are in Appendix D). The column
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labeled Relative Error gives the absolutc value of the

,r ror given in Criterion (IV-l). As evidenced by

fable (IV-l), the maximum relative error between the

>Uhroutine value and the accepted value is less than

10 The additional tables piesented in Appendix D

also have maximum relative errors less than 10-6. All

the values produced by the subroutine that were checked

,ith accepted values met Criterion (IV-l).

Table (IV-2a) is in reference to Criterion (IV-2a).

lables for Criterion (IV-2b) and Criterion (IV-3) are

presesnted in Appendix D. The column labeled Relative

ti ror gives the absolute value of the error given in

,riterion (IV-2a). As evidenced by Table (IV-2a), the

naximuin relative error between the subroutine value and

the accepted value is less than l0 - 3 . The additional

tables presented in Appendix D also have maximum relative

urots less than 10 - 3 . All the values produced by the

.Ld)ioatine that were checked with accepted values met

I itcrion (IV-i).
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TABLE (IV-la)

Bessel Function Subroutine Check

Against Published StanJards for J+,(kt)

Range: 0.01 k 4 100

N= (0,1,2,...,100)

-V = 1/2

J ) J+' (k? Relative

N Subroutine Standa rd* Error

0 .0797871199 .0797871263 8.02(-8)
1 .2659588395(-3) .2659588606(-3) 7.93(-8)
2 .5319191988(-6) .5319192411(-6) 7.95(-8)

12 .1009230707(-37) .1009230776(-37) 6.84(-8)

0 .1783380682 .1783381)824 7.96(-8)
I .2972796639(-2) .2972796874(-2) 7.91(-8)
2 .2973009005(-4) .2973t)09240(-4) 7.90(-8)

12 .55092972289(-29) .55092976611(-29) 6.75(-8)

0 .2518929203 .2518929403 7.94(-8)

0.1 1 .8402033633(-2) .8402034300(-2) 3.96(-8)
2 .1680887056(-3) .1680887190(-3) 7.97(-8)
12 .3190882666(-25) .3190882824(-25) 4.95(-8)

0 .5409737469 .5409737899 7.95(-8)
1 .9170169233(-1) .91701699,0(- 1) 7.93(-8)
2 .9236407085(-2) .9236107820(-2) 7.96(-8)

12 .1734224713(-16) .1734224842(-16) 7.44(-8)

0 .6713966538 .0h713967071 7.94(-8)
1 .2402978200 .2402978391 7.96(-8)

l) 2 .4949680629(-1) .4949681022(-1) 7.94(-8)

12 .9907033371(-13) .9907034182(-13) 8 19(-8)

0 -.1372637248 -.1372637358 8.01(-8)
10 10 .1630073534 .1630073664 7.98(-8)

0 -. 2960583121(-4) -. 2960583189(-1) 2.30(-8)
51) 10 -. 8484972142(-1) -. 8484972092(- 1) 5.89(-9)

100 .5749161075(-21) .574916103(-21) 5.57(-9)

0 -. 4040213234 (-1) - . 4)10.! 13272 (- 1 ) 9.41(-9)
l1)) 10 -. 1561124543(-2) -. 1561123855(-2) 4.41(-7)

100 .8681364822(-1) .80813o4620(- 1) 2.33(-8)

\&itv: The number in parenthesis is the pouvv or 1 by which the
preceding number must be mult ipl ied.
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TABLE (TV-2a)

Fresnel Cosine jLutoigriI Check

of Subroutine Versus Publislied StandJards

Range: 0.0014137 <ke< 100.53096

N =(0,2,1,...,N MI)

V= 1/2

ke 2 (U)-Subroutinc &(UJ) Relative
k U (see Eq (76a) Standard* Error

03 .0014137 .0300000 .0300000 0.0

.04 .0025133 .0400000 .0400000 0.0

.o6 .0056549 .0599997 .0599998 1.67(-6)

. s.0100531 .0799986 .0799992 7.50(-6)

o.1 .015708 .0999959 .0999975 1.62(-5)

0.1 .0628319 .1998684 .1999211 2.64(-4)

O.S.3926991 .4923317 .4923442 2.54(-S)

1.0 1.5707963 .7798923 .7798934 1.41(-6)

1.3,- 3.5342917 .4452353 .4452612 5.81(-5)

2.0 6.2831853 .4882271 .4882S34 5.39(-S)

2.S 9.817477 .4574086 .4574130 S.62(-6)

3.9) 14.137167 .6056911 .6057208 4.90(-5)

3519.242255 .5325688 .5325724 6.76(-6)

4.(1 25.132741 .4984151 .4984260 2.13(-5)

4.5- 31.808626 .5260180 .5260259 1.50(-5)

5.0 39.269908 .5636193 .5636312 2.10(-5)

6.o S6.548668 .4995256 .4995315 1.24(-5)

o.5 66.366145 .481S931 .4816035 2.21(-5)

7.0 76.96902 .54S4600 .5454671 1.35(-5)

7.5 88.357293 S5160098 .5160183 1.70(-5)

8.0 100.53096 .4997858 .4998022 3.33(-5)

f(c 5)

>.atc: The number in parenthesis is the p)ower of 10 b~y which
thle preceding number must bc multiplied.



Conclusions. Even though it is impossible to check

for every possible value of 1e , , and N due to

the infinite number of values ke , , and N may be

(though limited in range), the results just presented for

the values of argument and order chosen all satisfy the

criteria of this section. The values of argument and order

%,.ere chosen so as to best exhibit the behavior (error-wise)

of the subroutine for varied ranges of argument and order

(and also on the availability of published standards). The

final criterion that must be met is for the half-plane,

presented in the next section.

(:riterion and Results for Verifying the Half-Plane

The purpose of this section is to verify the use of a

truncated version of Eqs (52) and (52') for the half-plane.

By the similarity of Eqs (52) and (52') to Eqs (45) and

(46) for the wedge, it is presumed that if the half-plane

vcr.;ion can be verified, then the calculations for the highly

conducting infinite wedge. presented in the next chapter,

should have about the same order of percent error as the

ha! f-plane.

The solutions of Born and Wolf for the half-plane (see

Chapter III) are used as the standard on which truncated

versions of Eqs (52) and (52') are compared for relative

error determination.



Criterion (IV-4). Use is made of Eqs (55) and (55')

from Chapter III (Born and Wolf's classical half-plane

solution), i.e.

AsB -Hs az
" BW Z

where H P _

a U (s)

= s • 3* (55')

sH  sBW

anid the truncated version of Eqs (52) and (52')

A A

E0

where Hi 1J(k'

SC I

sin( _(78)

'iSj (78')



1icase of the infinite 'half-voluflCe (given by Eqs (57)

!I] (S8) of Chapter 111) is given by a table in Appendix Do

c. re Eq (57) is truncated in a similar manner as Eq (78).

A

-,ee I jrfectly
jp ace 19' (orductirtL

Y .alf -p arne

=ter~~



where the range of argument and order are given in Eq (75).

N in this case, however, is equal to the integer portionmax
of m/2 where the summation is truncated. It is then

required that

l' aw

be less than 0.01 for excellent results and less than 0.05

for good results. Again, as before, the choices for 0.01

and 0.05 are completely arbitrary. The choice normally

depends on the accuracy needed for a particular application

or experiment.

The range of incident radiation angle, , is chosen

so as to coincide with the range of angles of incidence,

measured with respect to the surface normal, of the wedge

presented in the next chapter.

Results. The following tables are results of computer

runs to test Criterion (IV-4). The angle of incidence is

now described by Gi where e is measured with respect to

the surface normal (see Figure 14). Table (IV-4a) is for
(; = 0  (normal incidence) and Table (IV-4b) is for

0i = 45S . Additional tables for 91 are given in

Appendix D. Without affecting the relative error, the

q uant it y E 0  is normalized to equal one.
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TABLE (IV-4a

Half-Plane Check of Subroutine

Versus Born and Wolf's Solutions

Angle of Incidence: =0

Distance from Edge: 0.001S k 100

" 1 .* .1 •Relative
S S S S

k Subroutine1  Born and W1blft Error

.001 .3445668154(3) .3445668614(3) 1.63(-7)

.002 .1780327007 (3) .1780327274 (3) 1.50 (-7)

.003 .1217155868(3) .12171 56048 (3) 1.48(-7)

.004 .9324531437(2) .9324532796(2) 1.46(-7)

.005 .7600434579(2) .7600435669(2) 1.44(-7)

.006 .6441669591(2) .6441670484 (2) 1.39(-7)

.007 .5607918191 (2) .5607918942(2) 1.34 (-7)

.008 .4978420458(2) .4978421095(2) 1.28(-7)

.009 .4485782759(2) .4485783299(2) 1.20(-7)

.01 .4089399381(2) .4089399834(2) 1.11(-7)

.03 .1113554737(2) .1113547673(2) 6.34(-6)

0.1 .7004508694(l) .7004651448(1) 6.24(-5)

0.5 .3581315193(l) .3581192719(1) 3.41(-5)

1 ,O .3425171544(1) .3,125149724(1) 6.37(-6)

5.0 .4064911798(1) .4064741893(1) 4.17(-5)

I 1, .4032786222(1) .403275S312(1) 7.66(-6)

20 .3988001132(1) .3987946918 (1) 1.36(-5)

3() .4004309739(1) .400-1269284(1) 1.01(-5)

41) .3999589141(1) .3999588194 (1) 2.37(-7)

s0 .3998500232(1) .3998500575 (1) 8.57 (-8)

60 .4002128775(1) .4002128661(1) 2.83(-8)

70 .3998080504(1) .3998080486 (1) 4.54(-9)

80 .4001249244 (1) .4001249246(1) 6.53(-10)

9 .3999562725(1) .3999562692(1) 8.24 (-9)

.3999732579(1) .3999732559(1) 5.19(-9)

Note: Number in parenthesis is the powr of ) by which the number
must be multiplied.

t N.iialiZed for V , Eo 
= 1
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TABLE (IN'-411)

Half-Plane CheclR of Subroutine

Versus Born and Wolf's Solutions

Angle of Incidence: eG;= 45*
Ditnefro Edge: 0.001 Sk? 100

Relative
s S SS

1.Subrout inet Born and Woift Error

.001 .S672064751(3) .56720(6S603(3) 1.50(-7)

.002 .2886873766(3) .2886874211(3) 1.54(-7)

.003 .19S1000809(3) .1951001107(3) l.S3(-7)

.004 .1480164777(3) .148016S002(3) 1.52(-7)

.005 .1196182206(3) .1196182386(3) l.S1(-7)

.006 .1005984697(3) .1005984848(3) 1.50(-7)

.007 .8695610556(2) .8695611858(2) l.50(-7)

.008 .7668500398(2) .7668501540(2) 1.49(-7)

.0J09 .6866782750 (2) .6866783768 (2) 1.48 (-7)

.()1 .6223260214(2) .6223261132(2) 1.48(-7)

.05 .1471591210(2) .1471591248(2) 2.58(-8)

[V.1 .8339781086(1) .8339773058(1) 9.62(-7)

0).5 .2816598597(1) .28100101727(l) 2.12(-4)

1.0 .2068285593(1) .2068281692(1) 2.37(-6)

.0.1784461110(1) .1784323115(1) 7.73(-S)

10.2019055026(1) .2019047014(1) 44(b

20 .1995248743(1) .1995-224135(1) 1.23(-S)

3!1.1999774545(1) 1 1 '9974 7669 (1) 1.34(-S)

40.2002617145(l) .21102590108(1) 1 .05(-5)
50 .1996340769(1) .1996326280(1) 7.25(-6)

kh0 .2004134840(l) .2004125591(1) 4.61(-6)

70 .1995775856(1) .1995723727(1) 2.61(-5)

SO.2004112916(l) .2004083762(1) 1.45(-5)

90 .1996154167(1) .1996138054(l) 8.07(-6)

100 .2003493654(1) .2003-129850(l) 3.18(-5)

t9 Noninalized for4 F = I.

Note: T'he number in parenthesis is the power of 10 by which the preceding
nlumber must be multiplied.
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Conclusicns. All of the results obtained were excellent

(< C.01 relative error in accordance with Criterion (IV-4)).

In addition to the tables shown in this chapter and Appendix D,

checks were made for varying G; 1-y 0.1 radians (04 9i )

with the same results of "excellent." The results for the

infinite half-volume, given in App~endix D, also came out as

excellent.

Since Eqs (45) and (46) for the infinite wedge are similar

in nature to Eqs (52) and (52') for the half-plane, then great

prom,,ise is given to the success of a similar truncation working

on the wedge equations.
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I. Numerical Results for !ede and Analysis

This chapter gives numeri'al re::ul*.: , presented in the

-m of graphs and tables, for the time-averaged power density

-s .:.,von by Eq (46) and by Eq (4?) into zq (18). The wedge

b- co,:,ideredi is shown in 1igiure 15. It occupies the

-,ce given in cylindrical <oodna;e; ) , 0 <

- 4 c < 4 , o. The te!-"e is further assumed

be of finite conductivity C- (0'WU.E) and imbedded in

, -e zpace.

A

I ujediae

e. ~C): :.M° S< ,

Figure 15. :edge geomet 1, cu.sj i . for calculations



For computational reasons, the infinite summations

.,:ven in Lqs (46) and (49) are truticated in the manner of

r.e half-plane case verified in Chapter IV. The range of

:. es of the incident monochrainati c plane wave is chosen

0 0 n, J a (where ; 9is measuI'ed a:; ::h uwu, in i'igure 15).

... is range is chosen because i L pt.vidu:i the worst case

.,igh ,r power density loss) for the tup .;iedge surface (O- Z

,,ar the vicinity of the edge. Thus, the iange of inciuent

...les for the incident radiation CovUrL; normal incidence

O =06 ) to grazing incidence (&9=90l). The range of distance

• ,)m the wedge edge times the propagation constant k is

~ 4 100.

!rhe following graphs yield the normalized )

2:.e-:veraged power density loss (ii ;',atts per 'quare meter)

r" Ith T i and TNI polarization of the incident field. b.iuti-

: icalicn of the normalized power density loss Iby 6,E., r ,/
.: "ive.. O" , , an " tis *yield:; a !' rot appr'oxi .. U-Lan,4Z

t: ait per square uter absk (c. :,. :.e ,d e :.

-t,.y -t! tthe edre, , co:. iti ,:, O>>W E

.tx lied. Phe graphs ate of two t:Vl)es: (l) norml- .... er

;,_.nsity loss versus k f or vacious values of 6l ; (2) nor-

nalized power density loss versus El for various values of

hiWe tables give the power density loss in terms of an

, .orption coefficient. The absorption coefficient, , is

:.e ratio of* absorbed power density to the incident power

.sity (irradiance); i.e. @. wh ere (9 is jiven

10 les



as in Eq (18) and 10 is the irradiance (in watts per square

meter) and equal to 0 •3ince the graphs yield
2

if the normalized power density is multiplied by SoEo/¢ ]A0

then -

-~ G0

--nere &rorm is the normalized power density loss ( as iii

:r.e graphs). The results are for both TE and TMl2 polarization

_;f incident field wavelengths of 3.8 1Alm and 1O. 6
1Mm and

... : e conductivity of 0,= 5.8 x 10 7 mhos/meter. The column

!a:eled () Gmax gives the value of 19 such that is maxi-

:::ur" at a given value of k. . The column labeled (4)

,%,es the distance from the wedge edge in angstrcMs. This

aiue depends on the incident field wavelength ( k - 21T/X).

Phe graphs and tables are now pze:,en-,ted. Aniysi

i.sult-; follows the graphs an, Lables.
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TABLE (V-1)

Absorptiac Coefficient for Wedge

Incident Wavelength: ?y 3.8 ,um

Skin Depthi = 74.4

TE TM
ke e(A) e

0.001 6.0479 0.00 0.01107 45.00 0.94672

0.005 30.239 0.0 0.01132 45.0 0.32390

0.01 60.479 0.00 0.01155 45.0 0.20418

0.05 302.39 0.00 0.01269 36.9 0.07149

0.1 604.79 0.0- 0.01365 25.4°  0.04672

0.5 3023.9 0.0* 0.01696 8.2* 0.02283

1.0 6047.9 0,00 0.01746 0.0 0.02140

5.0 30239. 16.80 0.03491 0.0" 0.02498

10.0 60479. 48.3 0 0.04583 0.0 0.02479

50.0 302394. 74.10 0.03539 0.00 0.02461

1 CIO0.0 604789. 77.,0 0. 0338 0.0e  0. 0246,,

. 0.05110 at =24192. A (ke- 4.0) and 22-5*

',, @m. 0.94672 at 6.o479 A (k, 0.001) and eI-45
For 100 o0"
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TABLE (V-2)

Absorption Coefficient for Wedge

Incident Wavelengths A,=10.61Am

Skin Depths O=124.3 A

TE TM

0.001 16.870 0.0 0.00663 45.00 0.56686

0.005 84.352 0.0 0.00678 45.0' 0.19394

0.01 168.70 O.d 0.00691 45.0" 0.12226

0.05 843.52 O.dC 0.00760 36.9o 0.04280

0.1 1687.0 0.d' 0.00818 25.4 0.02798

0.5 8435.2 o.d 0.01016 8.2 0.01367

1.0 16870. 0.6 0.01046 0.00 0.01281
0

5.0 84352. 16.8 0.0:090 0.0 0.01496

10.0 168704. 48.3 0.02744 0.00 0.014-5

50.0 843521. 74.1 0.02119 0.0 0.01473

100.0 1687042. 77.0 0.02029 0.0°  0.01473

0.03060 at - 6 7 48 2 . A (ke 4.0) and 6=22.5

i ha Q5 :0.56686 at tt1 6 . 8 70 A' (ke : 0.001) and =45.

For > A 10

0.17273 at 100. A* ( 0.006) and A;J= 45.
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Several observations are evident from the graphs just

resented. Figure 16 through and including Figure 19 are

iare for the incident field having TV2 polarization (the elec-
A

'ric field z-polarized). Figure 20 through and including

igure 23 are for the incident field having TE polarization

kthe magnetic field z-polarized).

Figure 16 plots versus ke for the range of

J.001 kf <0.01. The five curves are for different values

of e, as indicated on the graph. It is evident that the

, aximum values of fo for each 6),= constant curve occur

closest to the edge at ke= 0.01. The maximum value of

curL.- for G; 450 and k 0.001. It is also evident that

t.te nminimum values of 3ornoccur for 0;= 0 (normal incidence)

and g;= 90 (grazing incidence). Figure 18, which plots Porm

LcrS s ; for different values of ke (O.O01,ke< 0.01),

..how that for each ke = constant curve, .is maximum
t 6 45 and minimum at G= 0 and 6.= 90 • All of the

,rvei art, nonlinear. This is to be expected for T.Y oolar-

0.zation, since for G.= 45 (,,edge angle 2 oV = 900), the

urface current parallel to the edge will increase as - y3

a. the edge is approached (Ref 3m 19).

In direct contrast to the T case for the range 0.001

tke 0.01, is the TE case for the same range of k

Figure 23 plots versus k e (0.001 < kf0.01). For

= and E; 22.5 Oincrea.,e.,; linearly with k
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.or e 67.5eand ej 900 decreases linearly with k

Por e;= 450, essentially remains constant for increas-

ing ke. The value of is also much smaller (by around

00to 80 times) than l.r for the TV case, as in Figure 16.

rhis is to be expected, however, because oJ,,,,in the TM case

iS proportional to (k ) 2 while oin the TE case is not.

Thus, very small values of kC in the Ts' case (ke<< 1)

dralnatically increases As evidenced from Figures

.0 and 23 for the range OO01 <kF4 0.01 and 049i,<90

o doesn't change as dramatically for the TE case as for

-ae T. case in Figures 16 and 18.

igure 17 shows that decreases rapidly from

0.5 to k>0.5, and after the 'overshoot' present around

1<k <5 damps out, o remains essentially constant for

> 10. This constant value for 6rj decreases with in-

creasing 19;. This is to be expected since the reflectance,

,ich is proportional to the reflected field flux over the

ncicnt field flux increaLee, with inceaing angle of incidence.

.igures 21 and 22 plot versus k (0.5,<ke< 100)

:or various values of eOfor TE polarization. In direct

contrast to the TM case for this range of k , does not

damp out rapidly and approach a constant. Figure 21 shows

that for 19;= 0Qand ,= 450, oscillates like a sinusoidal

function times a decaying exponential function. Figure 22
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zhows 3imilar behavior for e; = 22.5', 67.5*, and 90°. The

..aximizn values of 155 occur for 8; = 22.50 and ke!'5. The

r. inimlm values of koo occur for 9;= 90 Figures 21 and

....for the TE case appear to oscillate about p r~equal to

,our (except for e; = 9o), whereas in the TM case, Morw%

d-ecreases with e, for 4>1 This is to be expected because

the reflectance in the TM, case changes less dramatically for

increasing 8; (until G; approaches 90@ ) than for the TE

case (Ref 9: 80-89).

Figure 19 plots versus &, for various values of
worm

(0. .1<k < 100). In relation to Figure 18, the values of

is greatly reduced. Also, except for ke=O.1, the

.'irious k f= constant curves tend to lose the bell shape

-vident in the curves for ke<O.O1 in Figure 18. For ke> 10,
...e curves are nearly the same (as evidenced by the =10

curve being almost the same as the k 1 = 00 curve in Figure

. Thi; trend was evident from the data obtained for any

liie of k.p in this range. The TE case is again much different

" 'tr.sar.- range of k . The variou:-, curves for 0.1 K

S100 in ,'igure 20 do not share a common shape as the curves

ir Figure 19 for the TY case do. The highest values of

,I-ear on the k = 10 curve.

Figures 16 and 19 can be compared to similar plots for

the half-plane (see Figures 24 and 25 in Appendix D). From

.ch a comparison, it is evident that for the range of k
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closest to the edge (0.0014ke 0.01), the induced current

ir, the half-plane is considerably higher than for the 900

,wcdge. This is expected since for the half-plane, the surface
- "a

-Arrent parallel to the edge in( ceases as as the edge is

ap:proached. For the wedge, the surface current increases as

(,ef 3: 19). For distance:3 further from the edge, however,

Nfor the wedge are on the order of o for the half-

tIane. This indicates that the wedre reduces to the half-

ane rroblem for ke far enough away from the edge. This is

•e for both the TE and TI cases.

Tables (V-1) and (V-2) specialize the results for mater-

1 parameters T", E , and/ and incident wavelength, A..

:.; kfn depth, 5 , is determined as in Eq (12). As given

,i, Eq (79), the tables give the maximum absorption of incident

:lux (Natts/reter 2 ) for a given distance from the wedge edge,

Wand ax Thus, the tables are in answer to the main

Sec~ive o' this thesis described in Chapter I.

..Ault. V/-1) is for the incident field viavelength equal

3. jm. .:ith a conductivity 0 asssiaed to be equal to

7* t1) rF.os/meter , the skin depth 0 is thus equal to

.. (ee Eq (15) ). The maximum absorption of incident

f', Id flux is for a maximum value of . For TE incident

Farizaticn, occurs for a distance e 24192. A from
maC

- edge and 22.50. The amount of time-averaged power

.itj ab;iorbed is thus equal to approximately five percent

} ,



of the incident field flux (in watts per square meter). Thus,

for an incident field flux (TE polarized, 1G;=22.50 ,  ,= 3.8 /pm)

of 1CO watts/cm 2 , the copper wedge would have to be able to

=hsorb 5 x 104 watts/cm 2 , otherwise it might be damaged a

distance 2.4/U away from the edge. For an incident field

Cf wavelengLh 10.6/#m , Table (V-2) reveals the most absorp-

tion takes place at e--: 6.7/im and )=22.5' (3 Z 0.03).

;'ese percentages are a percent or two higher than for copper

;f anY geometrical shape for the 3.81am to 10.6/zm range

,f incident field wavelength (Ref 9a 88).

The TW case is much different. Tables (V-1) and (V-2)

".ow as high as 0.94672. This means that almost 95 per-

urit of the incident field flux is absorbed at ke = 0.001

, = 01A The calculated is only a first approxi-

•,.atiorn, however. It is based on the assumption that the

-eis a linear, isotropic mdiuwn. For ke = 0.001 , the

i tace froi the edge is only about .6.9 A for o= 10.6/Uan

:..1 6.C A for 0 = 3.8/ant. Sfncu co pper Ias a radius of

:.,out one angstrom, the linear assujmiption surely breaks down

Lit K -z 0.001. This problem is not evident in the TE case

ecaue occurs for a distance from the edge thousands

of copper atoms away, hence accepting linearity of the medium

a.; a valid assumption. It is now aossumed that the linear
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assumption be valid for e > 100 A . The value of 100 A is

arbitrary, but necessary in order to establish a valid inter-

uretation of the results. Thus, for e 1 100 A , k e must be

iroazer than 0.006 for ?o 10.6 /a m and k must be greater

than.0165 for X. 3.8 ,Um . As evidenced from Figures 16

and 17, the maximum will thus occur at k( = 0.006 ( e C

100 A ) at *: 10.6, m and 0; = 45, and at ke = .0165(e-

100 ) at 3.8 /Am and 0; 45! For 3.8 ,am

iL about 0.143 which is much more than for TE polar-

ization. For o= 10.6 /4m , however , the value of

implies that more than 17 percent of the incident flux is

,oebed. Fcr very large values of incident flux, damage to

0

tlie wedge surface 100 A from the edge would be more likely

for the Tfw case than for the TE case.

The analysis given above for the graphs and tables are

ualy a first approximation. The assumptions made included

tucating the wedge medium as linesi' anid isotropic, using the

.. ALf.ace current density for a perfect conductor (T-@0), and

.L,! ;min depth approximation. It is also assumed that all of

the power density absorbed is converLtibLe to heat (in watts

pu" jquare meter). Another assuimtion made is that the in-

finite wedge solution can be used to approximate a finite

wecdge near the vicinity of the edu'ce. Of note here is that for

ke large (greater that 10) , the effects of the edge on the

*.,,uLed surface current is dramati ly reduced for either

o:, TE polarization.



I. Conclusions a,,:d ! ecommerdations

-r',,e t,;ic theory to sol'e the wave equation for given

tom.... rie.- lias been investi ,ated in thi': report. This theory

..as teen a-Pplied to solve for the time-averaged power density

.issir)ated on the surface of L highly conductive 90 infinite

.,dge illuninated by a monochromatic plane wave. By multi-

*..yir, the normalized results by a combatant depending on the

.. te'Il piram.eters of the wedtge (0 6 ,/. ) and the incident

±,> freaency, numerical results are derived for a conduct-

- face of 0 = 5.8 x 107 mhos/rieter and incident

, gtn of )y 3.8?p m and 10 .6/Lm . Though the

.. d used in the calculation is asswned infinite in extent,

-:,e.et. of the edge on the induced surface current is seen

h t JIre:n'.ticaily reduced just a few wavelengths away fro!n1

, e.

:.i l.uu',' has shown- tl lt for th-, electric field fL. A
. onIc p1 ane ',~ve zo-Id palle! to the shap e.

* a ,igh I. conductive 900eedc.e, a high percentage ( 17 per-

,nt) of tli incident flux can be absorbed 100 A away from

_.e eAge. Though many assumptions are made to arrive at this

result, it has been shown that it is a Food first approxima-.

on. Therefore, this study provide-, a keener insight into

:.e amount of incident flux abs-orbed by a highly conductive

"'_!Age ,,ar the vicinity .f the edgc for both TZ and Tl.

I .,-an variou.s ang ; of c
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-Ance the cesults are only a fir.t approximation, it

recormmer.-ed that more factor-s be taken into account for

, ,:.cura-e results. These include thermal conductivity of

., -!.ge . - well as applyingi Pourier transform techniques

-:inite wedge. wore ,tu(y into finding the difference

: itu of the surface ci.rrents induced on the surface

initt corductive wede:e as opposed to one of infinite

"v!.,, is also recommended.

.:.3 'udy also opens the door to the need for better

S -u :ur.c,ioi routines to calculate high fractional order

. iih a..-ument Bessel functions of the first kind, as

the shortcomings of the Bessel function subroutine

Ss',3 . ed i, Appendix C.

:t is finally recommended that more study be given to

*lvir.. fo- the eigenvalue.s an.1 ei ,enfunctions for the type

.'-lem encountered with the cone and parabolic cylinder.

. I 1 mo:2to,t because of tho Ilnr'ea e in use of such co:.-

. aj . ULJ , x Cw.;.

FL..(
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APPENDIX A

Definition of Certain Functions

The purpose of this Appendix is to lend support to various

references made within this thesis to the definitions of certain

functions.

Bessel Functions (Ref 1:460-464)

Bessel's equation of order V is

d Cx ) + (x2 v)y 0 (A-1)

Solutions to Eq (A-l) include

Jc : (-I) V (K)
J'x) m (wvniv) (.)20"+V (A-2)

jv (x) = (A-)(-v-V (VV-,,)! Ca) ""  ("

where JV(x) and J_ v(x) are Bessel functions of the first

kind of order v and -v , respectively. Bessel's function

of the second kind of order v is also a solution to Eq (A-l)

and is given by

N v(X) T. T.(X) C o rI) (A-4)
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Hankel functions of the first and second kind of order v

are also solutions to Eq (A-l) and defined as

Hv1 )(x) = Jv(x) + i N (x) (A-5)

Hv2 ) (x )  = J (x) - i N (x) (A-6)vvv

respectively.

Asymptotic approximations for Eqs (A-2) and (A-4) for

x--0 are given by

J (x) V(A-7)

Nv(X). (V-i)! - "[aI A8

N (x)- - ___ (A-8)IT X
pro-vided Re kvI > 0 For large arguments (x-+ , the

leading r-rms in the asymptotic expansion are given by

(x) (A-9)

N\ F(x) s.inqX. . (A-10)

Provided Iphase (x)( < f Equations (A-9) and (A-10) into

Eqs (A-S) and (A-6) thus yield
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H1)(x) - e (A-11)

H( 2 ) (Vx Y, i

v I e- (A-12)

Associated Legendre Functions (Ref 7:164, 193)

"2he associated Legendre equation is

(1 - z 2)A. - Ota +~V virjy A3
.-- dz Z-U 0 (A- 13)

dzdi

for arbitrary " and m = (0,1,2,3,...) Solutions to

Eq (A-13) include

1rn(Z) = (z2 - ,V. . RP(z) (A-14)

omz

where 1 (z) is called the associated Legendre function of the

first kind. P (z) is a solution to Eq (A-14) for m = 0 and

called Legendre's function of the first kind. It is given

as

sin a) -))k
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where N is the closest integer to J such that N V.

el-mite Functions (Ref 7:260, 284, 294)

-he differential equation

Tz +? a V 0 (A-16)dza  z

has Mlermite functions for solutions. Iermite's function of

degree is given by

V z

2 2 /) (A-17).-

where 0( ,I;z) is known as the confluent hypergeonetric

function. It is given by

,iz = (C<4 zk,
6- (Y)kzk

for I ZI < oo

and "' (0,-l,-2,-3,...) (A-18)

For large values of argument (z-=='o0) , then
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H (Z)(27-)(A-19)

H~ (az)e(A20

For Vequal to an integer n ,then the asymptotic expressions

are approximated by

H (iz) ---- 4 i n (2z)n (A -21)

H n-l (z) (2z) -n 1  (A -22)
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APPENDIX B

Miscellaneous Support of Thesis

The purpose of this Appendix is to lend support to

various references made within this thesis.

Derivation of Source Current Density

The details leading to the derivation of Eq (36) is

presented in this section. In reference to Figure 7a in

Chapter III, the current filament is considered to be an

impulse of current of strength I (in amps). Figure 7b

represents a vanishingly small area surrounding the current

filament; small enough so that the current filament can be

considered as a current sheet = e ) separating the

regions for e >e' and e<e'

Ap[Iying Ampere's circuital law (Ref 1:33)

d " (B-l)

ClosedL Ve~l

where t is the total current on the surface of the boundary

enclosed by the path shown in Figure1t, then (Ref 1:34)

n ) - HI Js (B-2)

is obtained for the surface current density. It is noted

A A
that n a and HI  is the magnetic field on the Region I
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side of the surface boundary and Iii is the magnetic field

on the Region II side of the surface boundary. Both H

and H must be --Polarized because Js is Z-polarized

A A
and n a . Taking the Region I side of the boundary to

be located at e = e+ and the Region II side of the boundary

to be located at C = , then the scalar surface boundary

eor.atioi is written as

= H#(e'+ ) HO ( ('-) CB-3)

wle'-e tif{(e4) represents the surface magnetic field in

RCe..ion T and f {eI- ) represents the surface magnetic field

in Region II. Recalling Eq (2')

VxE = -iW/JH

an.. since H at the surface is s-polarized and E is

z-polarized, Eq (2') is then written in scalar form as

__ 4W (B-5)

Substitution of Eq (31) for Ez  into the above equation

yields
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a i-I'() " '(ks)[('o)~4(-e]e

((2)
~(B-6)

where .;(k,) denotes a - nd (2)/(ke denotes
.ke. .Applying Eq (B-3) to Eq (B-6), with e

b- .'

for e > ' and for e < and then setting

9 " ,yields for the source

E=k" - tkz) R'k1-vk)
- (B-7)

Using tbe relations (Ref 1:402)

H 2 (x) = Jr (x) i N (x)

(B -8)

H ~(x) = J *(x) -i N /(x)

V V V ,

where the primes denote the first derivative with respect

to the variable x and N (x) is the Bessel function of the

second kind of order v , and then by applying the Wronskian

of Bess,. l's equation given by (Ref 1:463)

96



implies that

, . e')z i keI) -(keUTv c (/k,, H (

- :r') (keI') --Tv (ke') (k')
- ( (ke') T (k')I- jNvke'),J(ke)

= - i [(kei (ke) Nv-(ke') Vv(ke')

Z If (B-10)

Su stittiting this result into the expression for Jz yields

Le-();lto\ h Boundary Condition (Ref 3:18)

As &'ong as the radius of curvature of a good conductor

is much larger than the skin depth, the conductor boundary

may be described by an impedance boundary condition, where

t of hq (17) is the surface impedance. Since the wedge

has a flat top surface and the point of observation isn't

on the c.!ge singularity, the above stated Leontovich Boundary

Con,liti n is applicable.

97



Parabolic Cylinder

ThE purpose of this section is to derive Eqs (62),

(o3) .,nd (64). Recalling Eqs (60) and (61),

+2 (60)

(jTJ U (.) V )Z (Z) (61)

then the method of Separation of Variables can be used.

Substitition of Eq (61) into Eq (60), dividing through by

I ~0 ,and rearranging yields

The right side of Eq (B-12) is a function in z only, while

the left side is a function in u and v Therefore, in

order for the above equation to be true for any u, v ,

and z , both sides must be equal to a constant. Denoting

this constant by k2  implies
z

- (B-13)

z z2
Substitution of Eq (B-13) into the previous equation, multiplying

2 2 2through by c (u + v 2 ) , and rearranging yields
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1. au - iV 2 -,

The right side of Eq (B-14) is a function in v only, and

the left side is a function in u only. Therefore, both

sides must be equal to a constant in order for the above

equation to be true for any u and v Denoting this

constant by 2*+ 1 , the left side of the above equation

becomes

- + Ca kk )uA (B-15)

and the right side becomes

v s~ ~ kV = (a,'a 4-) (B-16)

Sin,:, Eqs (B-13), (B-15), and (B-16) are functions in

oni\ ono variable, the partial derivatives are written as

ordinarN derivatives. Also, by multiplying Eqs (B-13),

(B-15), and (B-16) through by Z , U , and V , respectively,

and rearranging yields

d2  + k z 0 (60)
-

(62odz2

[ (B-7)
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2Where~ , is defined by

k2 + k (B-19)

A substitution of variables is now performed so as to

put Eqs (B-19) and (B-20) into the form

S(B-20)

which has parabolic cylinder functions as solutions for

and where the variable € and parameter V are, in general,

real. or complex (Ref 7:284).

ExeMining Eq (B-17) first, the following substitution

of variables are made:

Let aikDc U (B-21)

Then (? __ 2ikocu4

Using the chain rule, then C

and_ -! (. L> e;k~c
u uk00
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Making the above substitutions into Eq (B-17) yields

ik(c 2; 1'

Dividing the above equation by 2ikDC ( 0) and defining

- -I (B-22)

results in

In a similar fashion, Eq (B-18) becomes

of r!7 k~ =CT + +(B-24)

wheire the substitution of variable

2 = ikv 7 V (B-25)

was made along with Eq (B-22).

Using the substitutions

(B-26)
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inio Eqs (B-23) and (B-24) thus results in

d2U / jJ
+ 4 (63)

0127 (64)

Criteria Choice of N
max

The purpose of this section is to justify the choice made

for Nmax in Eq (75).

By examining Bessel function tables, it is seen that the

1-.iding terms of ar. array of J n (X) (0 44 V 4C ;

n- 0,1,2,...) have an absolute vaLue greater than 10

It is also known that J n(x) is a decreasing function

for +/ yl >x (Ref 5:365, 368). Thus, by choosing to

truncate Eq (45) where the larger ordered Bessel functions

have an absolute value less than 1010, results in the

truncated-off terms (summed together) being less than one

percent of the leading terms.
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APPENDIX C

Theory of Bessel Function Subroutine

The purpose of this Appendix is to briefly describe

tL, theory behind the Bessel function subroutine used in

t-Ks thesis.

The subroutine to calculate J n(X) where 04 V4 1

.nd n = (0,1,2,...) (v, x real) is a UNIVAC routine

(ffcf 10). It is divided into three regions of the argument;

11) x < 10 , (2) 10-, x450 , and (3) x> 50 .

(1), x <10 (Ref 11:102-108). For a function F that

then let

for M>Y> N . Defining

P +M4, 1 0

FVMX) a (a is any real constant) (C-2)

it can be shown that for

103



(C -3)

r 'n >> and using the addition theorem

Liz

m:O

-:tit,,tion of Eq (C-2) into Eq (C-I) yields an array of F

,,.,aes i rom F (x) to I- .,l W It is desired to have

'I so I:q (C-i) can be used to recur backward without

oi accuracy. Then Eq (C-4) is used to find C< , and

CA in I, (C-3) yields Jn (x) The accuracy will depend

,o , lirge M is chosen.

(2) 10O x S0 (Ref 12-18-26). ,1V(x) can be described

T CO.S (C -5)

V 
i'

re t - 1/x and
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t

(C-6)

(The rcutine truncates at t 10 For IV 1 , Eqs (C-s)

almd (C-o) yield eight figure accuracy in J,(x) for x > 8

liuation (C-6) is also most rapidly convergent for V close

,G one->Ialf (i.e., most accurate for 11-%- and least

.c,:curate for -* 0 and V/-*L ). Eq (C-3) is then used

t, recur down, thus producing an array of F+n(x) .

iquation (C-3) is then used to find o( from J (x)

..bstitution of O into the Fn (x) array then produces a

Y+ n(x) array (n = 0,1,2,...,N)

(3) x > 50. The same method (phase-amplitude) is used

;.r x > S0 as in l0 x - 50 However, since computer

time ar.d memory are limited (especially for students), it is

_,mewhat more difficult to get M)> x/2 necessary for

backward recursion. Hence, Jr(x) and J+ I (x) calculated

L.sing Eqs (C-S) and (C-6) are used in Eq (C-1) to recur

forward. This method gives poor accuracy for large orders

because for ,h x/2 ,J (x) nf (x/2).
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Modifications. The range x > 50 proved to be unaccept-

a'lc for producing accurate values of J +n(x) for large

ft (n > x) Therefore, it was decided to recur backward

ior the extended range 106x 100 . This proved to be

,,,2r' successful. Another modification attempted involved

c;alculating a12 and b1 2 in Eq (C-6). This had very little

_.ffect on improving the routine.

this Bessel function subroutine is available by contacting:

Major Glenn R. Doughty

Air Force Institute of Technology

Department of Physics

Wright-Patterson AFB OH 45433
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APPENDIX D

Additional Numerical Results

rhi.- appendix provides space for additional figures not

piaced in the main text. The non-availability of Bessel

f!mction tables for large order and argument limited the

:,n.;es cf argument and order that could be verified. For

L:,aMple, Reference 13 only provided tables for fractional

C':ders limited to 11/2 , ! 1/3 , t 2/3 , and 2 3/4

,i',d onI' for N = 0 . Reference 14, on the other hand,

.. limited to N A 135 and argument < 100 , with

i,-tional order equal to zero.
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TABLE (IV,-lb)

Bessel Function Subroutine Check

Against Published Standards for JV+N (k)

Range: 0.001 -4 100--'lo

N (0,1,2,... ,100)

9 V= 0.0

ko N JN(ke) J N(ke) Relative
kSubroutine Standard* Error

.601 0 .9999997500 .9999997500 0.0
1 .0004999999 .0004999999 0.0

2 .012499990(-5) .012499990(-5) 0.0
3 .0000020833(-S) .0000020833(-S) 0.0

0 .9999750002 .9999750002 0.0
.1 1 .0049999375 .0049999375 0.0
.1 2 .0000124999 .0000124999 0.0

3 .0020833203 (-5) .0020833203 (-5) 0.0

0 .7651976866 .7651976866 0.0
5 .2497577302(-3) .2497S77302(-3) 0.0

10 .263061S1240-) .2630615124(-9) 0.0
?0 .3873503009(-24) .3873503009(-24) 0.0

0 - .1775967713 -.1775967713 0.0
S" 5 .2611405461 .2611405461 0.0

10 .1467802647(-2) .1467802647(-2) 0.0
20 .2770330052(-10) .2770330052(-10) 0.0

0 - .2459357645 - .2459357645 0.0
10 .2074861066 .2074861066 0.0
20 .1151336925(-4) .11S1336925(-4) 0.0
30 l1551096078(-11) .1551096078(-11) 0.0

0 SS581232812(-1) .5581232767(-1) 8.06(-9)
20 - .1167043523 - .1167043528 4.28(-9)
s0 .1214090214 .1214090219 4.12(-9)
100 .1115927365(-20) .1115927368(-20) 2.69(-9)

0 .1998585061(-1) .1998SS5030(-l) 1.55(-8)

100 20 .6221745833 (-1) .6221745850(-l) 2.73(-9)
s0 -.3869834004(-l) - .3869833973(-1) 8.01(-9)
100 .9636667398(4l) .9636667330(-1) 7.06(-9)

10 Ik =0.001 and 0.01 (Ref 14); For all other ke, (Ref 5)

Note. The number in parenthesis is the power of 10 by which the
preceding number must be multiplied.
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TABLE (IV-lc)

Bessel Function Subroutine Check

Against Published Standards for .JV N(ke)

Range: 0.001 . ke 100

N= 0

V1= 1/4

k1/4 (kJ) J1/4 (ke) Relative

k Subroutine Standard* Error

.001 .1649761767 .1649762131 2.21(-7)

.005 .2466957406 .2466957951 2.21(-7)

0.01 .2933679292 .2933679941 2.21(-7)

0.05 .4384768320 .4384769287 2.21(-7)

0.1 .5206577608 .5206578756 2.21(-7)

0.5 .7416564065 .7416565702 2.21(-7)

1.i0 .7522311674 .7522313333 2.21(-7)

5.0 -.2809720038 -.2809720658 2.21(-7)

I0 -.2063937413 -.2063937869 2.21(-7)

20 .1782983389 .1782983385 2.24(-9)

30 -.1246044299 -.1246044300 8.03(-10)

40 .5491175188(-i) .5491175240(-i) 9.47(-9)

.d 1410606328(-1) .1410606269(-I) 4.18(-8)

- .6642673498(-l) - .6642673439(-l) 8.88(-9)
'0 .9125954031(-1) .9125953997(-l) 3.73(-9)

S-.8570889767(-l) -.8570889765(-i) 2.33(-10)

90 .5511011408 (-1) ,55]1011439(-i) 4.72(-9)

100 -. 1107092717(-I) -. ]107092760(-l) 3.88(-8)

* (Ref 13)

Ite; -. 71 number in parenthesis is the power of 10 by which the
preceding number must be multiplied.
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TABLE (IV-2b)

Fresnel Sine Integral Check

of Subroutine Versus Published Standards

Range: 0.0014137.4 kf <100.53096

N = (1,3,5S .**,N max)

V = 1/2

jrU2 (U)-Subroutine (U) Relative
U ke = 1  (see Eq(76b)) Standard* Error

.03 .0014137 .0000141 .0000141 0.0

.04 .0025133 .0000335 .0000335 0.0

.06 .0056549 .0001131 .0001131 0.0

.09 .0100531 .0002681 .0002681 0.0

0.1 .015709 .0005236 .0005236 0.0

0.2 .0628319 .0041871 .0041876 1.19(-4)

0.5 .3926991 .0647320 .0647324 6.18(-6)

1.0 1.5707963 .4382590 .4382591 2.28(-8)

1.5 3.5342917 .6975009 .6975050 5.88(-6)

2.0 6.2831853 .3434101 .3434157 1.62(-5)

-S 9.817477 .6191806 .6191818 1.62(-6)

3.0 14.137167 .4963041 .4963130 1.79(-S)

.519.242255 .4152469 .4152480 2.65(-6)

4.0 25.132741 .4205120 .4205158 9.04(-6)

4.5 31.808626 .4342700 .4342730 6.91(-6)

5.0 39.269908 .4991865 .4991914 5.82(-6)

6.o 56.548668 .4469581 .4469608 6.04(-6)

6.5 66.366145 .5453716 .5453764 8.80(-6)

7.0 76.96902 .4997014 .4997048 6.80(-6)

7.5 88.357293 .4606970 .4607012 9.12(-6)

8.0 100.53096 .4602057 .4602142 1.91(-S)

*(Ref 5)

Note: The number in parenthesis is the powcr of 10 by which
the preceding number must be multiplied.
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TABLE (IV-3)

Bessel Summation Check of Routine for Eq (77)

Range: 0.001--=- k 100

N = (0,1,2,. ,N max)

= 0

Bessel Sum Relative

ke 1 CJ 0 (ke ) +2 J2N(k Error

.001 .99999975 2.50(-10)

.002 1.00000000 0.0

.003 1.00000000 0.0

.004 1.00000000 0.0

.005 1.00000000 0.0

.006 1.00000000 0.0

.007 1.00000000 0.0

.008 1.00000000 0.0

.009 1.00000000 0.0

.01 1.00000000 0.0

.05 .99999997 3.00(-10)

C.1 1.00000000 0.0

0.5 1 . 00000000 0.0

1.0 1.00000000 0.0

5.0 1.00000000 0.0

10 1.00000000 0.0

20 1.00000000 0.0

30 1.00000001 1.00(-10)

40 1.00000000 0.0

50 1.00000000 0.0

O0 1.00000000 0.0

70 1 . 00000000 0.0

80 1. 00000000 0.0

90 1.00000(00 0.0

100 1. 00000000 0.0

Note: The number in parenthesis is the power of 10 by which the preceding

number must be multiplied.
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TABLE (IV-4c)

Half-Plane Check of Subroutine

Versus Born and Wolf's Solutions

Angle of Incidence: 9-= 22.50

Distance from Edge: 0.001 $< kf $100

Relative
s s S S

k e Subroutine Born and Wolf Error

* 001 .4684029211 (3) .4684029950 (3) 1.57 (-7)

.002 .2403209447(3) .2403209813(3) 1.S2(-7)

.003 .1634162387(3) .1634162633(3) 1.50 (-7)

.004 .1246239813(3) .1246239998(3) 1.49(-7)

.005 .1011752171(3) .10117S2320(3) 1.47(-7)

.006 .8544027553(2) .8544028804(2) 1.46(-7)

.007 .7413464357(2) .7413465434(2) 1.45(-7)

.008 .6560952897(2) .6560953843(2) 1.44(-7)

.009 .5894561983(2) .589456282S(2) 1.43(-7)

.01 .5358948389(2) .S358949148(2) 1.42(-7)

.05 .1366385829(2) .1366384225(2) 1.17(-6)

0.1 .8189107747(1) .8189002466(l) 1.29(-5)

0.5 .3467604171 (1) .3467593408(1) 3.10(-6)

1.0 .2963554436(1) .2963273169(1) 9.49(-5)

31) .3469644246(1) .3469617950(1) 7.S8(-6)

10 .3388221165(l) .3388136336(l) 2. 50(-5)

2t) .3404785885(1) .3404684726(l) 2.94(-5)

3o .3409823380(1) .340970383S(1) 1.75(-S)

40 .3412019465(1) .3411990666(l) 8.44(-6)

50 .3413174576(1) .3413084812(l) 2.63(-S)

60 .3413853061(1) .3413817358(1) 1.0S(-S)

70 .3414279933(1) .3414280489(1) 1.63(-7)

80 .3414559925(1) .3414560236(l) 9.11(-8)

90 .3413747647(1) .34141747812(l) 4.87(-8)

100 .3414873892(1) .3414873964 (l) 2.13 (-8)

Normalized for 6- E~ 1.

Note: The number in parenthesis is the power of 10 by which the
preceding number must be multiplied.
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TABLE (IV-4d)

Half-Plane Check of Subroutine

Versus Born and W,'olf's Solutions

Angle of Incidence: ej = 67.5w

Distance from Edge: 0.001 ke k 100

Jb .5** Relative
kss s ske Subroutine Born and W,,olf Error

001 .6259299676 (3) .6259300619(3) i.51(-7)

.002 .3158128663(3) .3158129157(3) 1.56(-7)

.003 .2120104401(3) .2120104731(3) 1.56(-7)

.004 .1599423065(3) .159942331(3) 1.55(-7)

:'05 .1286161098(3) .1286161297(3) 1.55(-7)

.006 .1076814883(3) .1076815049(3) 1.54(-7)

.007 .9269540169(2) .9269541590(2) 1.53(-7)

.008 .8143313033(2) .8143314274(2) 1.52(-7)

.009 .7265710850(2) .7265710602(2) 1.51(-7)

.01 .6562384447(2) .6562385430(2) I.50(-7)

.05 .1429570778(2) .1429570995(2) i.51(-6)
0.1 .7620296496(1) .7620297497(1) 1.31(-7)

0.5 .1995471355(1) .1995466379(1) 2.49 (-6)

1.0 .1219722187(1) .1219690885(1) 2.57(-5)
5.0 .5581411230 .5581361479 8.91(-6)

10 .5005723246 .5005719124 1.02 (-6)

20 .5259130666 .5258607850 9.94(-5)

30 .5671748589 .5671596962 2.67(-5)

40 .5943320126 .5942380397 6.68(-6)
50 .6039451152 .6039073894 6.25(-5)

60 .6004248186 .6004162077 1.43(-5)

70 .5909307243 .5909287139 3.40(-6)

80 .5820611890 .5820,190309 2.09(-5)
90 .5777673975 5.777645133 5.0l(-6)

101) .5787210245 .5787067379 2.47 (-5)

Normalized for la E0 - 1.
Note: The number in parenthesis is the po ifr 1E 10 by which the

preceding number must be multiplied.
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TABLE (IV-4e)

Half-Plane Check of Subroutine

Versus Born and wolf's Solutions

Angle of Incidence: = 90

Distance from Edge: 0.001. k 100

s 1 Relative
k e Subroutine Born and Wolf Error

.001 .6366196711(3) .6366197723(3) 1.59(-7)

.002 .3183098356(3) .3183098861(3) 1.59(-7)

.003 .2122065570(3) .2122065908(3) 1.59(-7)

.004 .1591549178(3) .1591549431(3) 1.59(-7)
.00S .1273239342(3) .1273239545(3) 1.59(-7)
.006 .1061032786(3) .1061032954(3) 1.59(-7)
,007 .9094566739(2) .909456817S(2) 1.59(-7)

.008 .795774S888(2) .7957747153(2) 1.59(-7)
.009) .7073551900(2) .7073553025(2) 1.S9(-7)
.01 .63661967101(2) .6366197722(2) 1.59(-7)

.05 .1273239342(2) .1273239544(2) 1.S9(-7)

0.1 .6366196711(1) .6366197721(1) 1.62(-7)
0.5 .1273239338(1) .1273239544(1) 1.57(-7)

1.0 .6366195720 .6366197718 1.61(-7)
5.0 .1273239336 .1273239542 1.57(-7)

10 .6366196710(-l) .6366197709(-1) 1.69(-8)
20 .3183098905(-1) .3183098851(-1) 5.47(-9)

30 .2122065911(-1) .2122065899(-l) 1.57(-9)
40 .1591549421(-1) .1591549423(-1) 1.27(-8)
50 .1273239554(-1) .1273239538(-l) 7.04(-9)
60 .1061032940(-1) .1061032948(-1) 2.27(-8)

70 .0904568326(-2) .901)4F68120(-2) 1.48(-8)

80 .7957747219(-2) .7857747102(-2) 1.47(-8)
90 .70735S2970(-2) .7073552977(-2) 9.42(-10)

100 .6366197815(-2) .6366197677(-2) 2.17(-8)

Noaized for .. J E0 CO .
Note: The number in parenthesis is the powor of 10 by which the preceding

number must be multiplied.
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TABLE (IV-4f)

Half-Volume Check of jubroutine

Versus Ea (58)

Range of incidence angle3i 09s sc 0*

Distance from Edges o-ool 1 44ke4 0

* Subroutine Relative
kValue Eq (58)Ero

'.O 0.001 3.999999000 .02.5(-7)

.25 0.001 3.414213208 3.414213562 1.04(-7)

'0 0.001 2.0000004199 2.0 2.5(-7)

c7.5 0.001 0.5857867902 0.5857864376 6.0(-7)

90.0 80.0 6.757530467(-19) 0.0 6.76(-19)

*L

alc of Ice where the maximum. v' ati'ie error occurs.

,.A:ative error here is defined uimnpiy us the difference

'Lutween the Subroutine and Eq (58) becau:3e one cannot

divide by zero.
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Curves from top to bottom are for:
t= 90y, .50

0;~ 22.50

E

H- 200

40

.001 .003 .005

k e (unitless)

Fiure 24. Normalized Power Density Vs. k ,TM
Half-plane
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