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Correlation is the most ubiquitous of all signal processing

and data treatment methods and is inherent in many of the procedures

which are routinely followed in the chemistry laboratory. Yet,

many chemists do not understand the fundamentals of correlation and

therefore overlook many potentially useful data treatment options.

In its many guises, correlation can be used to indicate the sim-

ilarity of two recorded wave forms or spectra, help to smooth or

average noisy data, improve the fidelity of a measurement system,

separate overlapping or unresolved peaks in gas chromatography or

spectroscopy, extract signals which seem to be hopelessly buried

in noise, or make possible the measurement of such diverse things

as the diffusion of macromolecules in solution, the electro-

phoretic mobility of various chemical compounds, or the sub-

nanosecond kinetics of fluorescent species. In this brief paper,

the basic operations inherent in the correlation process will be

reviewed and the range of application of correlation methods ex-

amined. Specific examples of how correlation can be used in the

chemical laboratory will be provided, and references will be cited

where additional information on correlation can be found.

In general, correlation analysis simply enables one to de-

termine the similarity between two wave forms. Ordinarily, the

wave forms are considered to be time-varying functions, but need

not be. Any wave form (or function) which could be recorded in

any way or stored in a computer can be correlated. As a homely

example of the correlation process one can cite a situation which

occurred several years ago, when an extremely strong correlation

was found between the birth rate in New York City and the blackout

which occurred some nine months earlier. This example illustrates S
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one of the important characteristics of the correlation process--a

displacement of some kind, often a time-displaced delay.

The correlation process can be described mathematically in

the following way:

lim l +T

C1 ,1 (T) = T f 1 (t)f(t-T)dt (1)
-T

lim 1[+T

CI,2(- T - -1 T f1 (t)f2 (t-T)dt (2)

These equations indicate that there are two kinds of correlation

operations; Equation 1 illustrates the type called autocorrelation

whereas Equation 2 illustrates cross-correlation. To understand

the nature of these processes, let us examine what these equations

physically represent. Equation 1 will serve as an example. In

Equation 1, a time-varying wave form [f1 (t)] is multiplied by

itself. The product is then integrated over all time and divided

by the integration interval. In other words, the product is

time-averaged. This time-averaged product constitutes one point

of the autocorreZation function; in particular, that point which

occurs at a selected value of T. In this context, T can be

thought of as simply a time delay. That is, it indicates the fact

that the two time-varying wave forms are not coincident in time

but are displaced from each other by an amount equal to T.

Because the autocorrelation function must be expressed in terms

of T, this multiplication and averaging process must be carried

out over a broad range of T values and the results plotted versus

T. The cross-correlation process is similar to the above description,
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but requires that two different wave forms [fl(t) and f2 (t)]

must be multiplied and averaged.

It is often more intuitively satisfying to examine how the

correlation process can be implemented experimentally. An in-

strument useful for autocorrelation is shown in Figure 1. In

Figure 1, the exact steps required by Equation 1 are carried out.

A wave form to be correlated is simply multiplied by a time-delayed

version of itself. The resulting product is then averaged and

indicates the value of the autocorrelation process at that par-

ticular delay. To trace out the entire autocorrelation function,

it is only necessary to slowly sweep the delay between the original

wave form and its replicate.

To appreciate the utility of the correlation method, let us

examine the effect of autocorrelation on the simplest of all

wave forms--a sine wave. To begin, let us compute the auto-

correlation function when the delay (T) is zero (see Figure 2a).

At this setting, the sine wave will be multiplied by itself

in phase, so that the product wave form will be a squared sine wave

which is everywhere greater than zero. The average value of this

sine-squared wave will then be the mean square value of the

original sine wave and is plotted in Figure 2a as a dashed line

and in Figure 2e as the corresponding point on the autocorrelation

function. Let us now imagine that the time delay has been in-

creased by an amount exactly equal to one-half period of the

input sinusoidal signal (see Figure 2c). In this case, the

replica wave will be exactly 1800 out of phase with the original,

so that its negative lobes will be multiplied by positive lobes

I.
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from the original and vice versa. The result will clearly be

another sine squared wave, but which will be everywhere negative.

Accordingly, the average value of this product will simply be

the negative mean square of the original sine wave. This point

has also been plotted on Figure 2e. Finally, if we increase the

time delay by an amount exactly equal to the period of the input

wave form, the replica wave will once more be in phase with the

input, to produce a result similar to the first point we considered.

Inte-rmediate points between these selected values of delay will

vary smoothly; moreover, the process will continue indefinitely,

and repetitively, because of the continuous nature of the input

wave form. The result, shown in Figure 2e is another sinusoidal

wave, but one which has its maximum value at the horizontal

axis (delay) point of zero. In other words, the autocorrelation

function of a sine wave of arbitrary phase is a cosine wave of

period equal to the original wave form and of amplitude equal to

the mean square value of that wave. Thus, we can determine from

the autocorrelation function both the frequency and the amplitude

of the original wave.

Notice that the foregoing treatment imposes no constraints on

the frequency or amplitude of the input sinusoid. Therefore, for

a more complex input signal, which can itself be broken into a

large number of individual sine waves or frequency components, a

similar process will take place. In such a case, each of the

sinusoidal frequency components of the complex wave form will

undergo the same phase-relating process and become a cosine wave

with its maximum value at the zero delay point. Four such cosine
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autocorrelation images are shown in Figure 3a. Because all the

frequency components will then be phase related, and will add at

the zero delay point, the amplitude of that point will increase

as the number and amplitude of the composite sine waves of the

complex signal increase. However, beyond the zero delay point,

the cosine waves will fall out of phase, being of different

frequency, and might destructively interfere. For an extremely

complex wave form, such as one might expect from a randomly

varying pen trace on a recorder (Figure 3b), essentially all

frequencies will exist, to produce a destructive interference

pattern such as illustrated in Figure 3c. In such a situation,

the autocorrelation function will consist ultimately of a single

large point, located at T = 0, with values at all other T being

zero.

This example illustrates one of the powers of autocorrelation;

that of signal-to-noise enhancement (1). When a periodic signal

is difficult to measure because it varies in an apparently random

fashion or is largely obscured by unwanted fluctuations (such as

the wandering of a pen on a chart recorder), autocorrelation can

often help extract the signal from the obscuring noise. If the

signal is coherent in time, as essentially all signals are, it

will yield an autocorrelation function which, like the sine wave,

will contribute to the autocorrelation function even at very large

values of delay. However, because noise is incoherent (that is,

random), it will contribute strongly to the autocorrelation

function only at small delay values. For a sinusoidal signal,

originally buried in noise, the resulting autocorrelation function

might look something like that in Figure 4. To extract the signal
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from this autocorreZogran, one need only examine the trace at

large values of delay.

Cross-correlation is essentially the same as autocorrelation

except that the original and delayed wave forms do not emanate

from the same source. Therefore, one would not expect the simple

squaring behavior occurring in autocorrelation to be duplicated.

However, if the two inputs (see Figure 5) happen to contain any

common frequency, that frequency (consisting of a single sine

wave) will behave much the same as described in autocorrelation.

Of course, because the sine waves from the two different sources

might not be in phase, the maximum value in the cross-correlation

plot might not occur at a delay (T) of zero. Importantly, the

cross-correlation function between any two wave forms will contain

all frequencies which are common to the two wave forms but will

exclude all others. Moreover, the relative phases of the two

input wave forms will be indicated; in other words, the cross-

correlation function will indicate the temporal displacement be-

tween the two waves. To repeat the example cited earlier, a cross-

correlation plot between birth rate and the illumination of the

city of New York would produce a very strong peak with a delay of

nine months.

In many ways, cross-correlation is even more powerful for

signal extraction than is autocorrelation. Because noise present

in the two inputs during cross-correlation would probably not

originate from the same source, they will be incoherent and pro-

duce no output. Simply stated, each source of noise will appear

random, and when two random waveforms are multiplied, their product
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will be a third random pattern which will have an average value

of zero. Obviously, this zero value contributes nothing to the

cross-correlation function. In a typical application of cross-

correlation, a signal to be measured (see Figure 5) might be

cross-correlated with a reference wave form derived from the same

source as the signal and which is synchronous with the signal.

The resulting plot will be a noise-free indication of the signal

amplitude. In the special case when the cross-correlation function

is measured only at the single value of delay corresponding to

the maximum overlap between signal and reference, a process

call lock-in ampZification (2) occurs. Thus, a lock-in amplifier

is nothing but a cross-correlator configured for measurement at a

specific delay.

Because cross-correlation yields a result which contains all

the frequency components common to the two correlated wave forms,

it indicates the sirilarity of the two wave forms. This property

makes the method useful in such laboratory applications as spectral

file searching (3), where the identity of an unknown substance is

ascertained by comparison of its infrared, mass, or elemental

emission spectrum with those of known compounds.

In addition, this property of correlation enables one to

extract from a complex wave form or spectrum only those features

which are of interest. This procedure, known as matched filtering,

is useful not only to extract complex signals from others which

interfere, but aids in the highlighting of specific features from

such things as mass spectra or elemental emission spectra (4,5).

One merely has to record a trace of the kind of features desired

(for example, a spectrum of the pure compound) and then to cross-

correlate that trace with one which contains potentially inter-
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fering features. The resulting cross-correlation function will

then be free of interference and indicate only the amplitude of

the desired component.

Besides signal detection, cross-correlation operations are

utilized in the chemical laboratory to smooth, differentiate,

resolution enhance and deconvolve all kinds of chemical signals.

In fact the classic data processing procedures presented by

Savitzky and Golay (6,7) for smoothing and differentiation of

wave forms are based on cross-correlation operations.

One interesting application of the correlation method is in

the realm of linear response theory. Briefly, linear response

theory enables one to characterize the temporal behavior of any

desired system or network merely by applying an appropriate

perturbation to the system. The simplest example of such a pro-

cedure is shown in Figure 6. In this figure, a very brief input

perturbation is sent into the device to be tested. In the limit,

this abrupt input perturbation resembles a true impuZse or Dirac

delta function as shown on the left hand side of Figure 6. In

response to this perturbation, the system will elicit an output

which indicates its time response. According to linear response

theory, this specific output is termed, appropriately, the

impulse responsc function. It should be recognized that such

measurements are extremely common in chemistry. For example,

rapid kinetics are usually determined by pertubing the chemical

system which is to be examined with a very brief pulse of exciting

energy. Usually, the energy is in the form of an electrical,

temperature, or pressure jump, or pulse which exerts a stress

upon the chemical system. In turn, the chemical system either
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rlaxes back to its old equilibrium point or approaches a new

equilibrium situation at a rate which reflects the chemical

kinetics. Similarly, in Fourier transform NMR spectroscopy, a

pulse of radio-frequency energy is sent into the nuclei of in-

terest, which then exhibit a free induction decay characteristic

of the species being orobed. Although not part of the perturbation

process, Fourier transformation of the free induction decay then

yields the desired nuclear magnetic resonance spectrum of the

molecuile.

Time-resolved fluorimetric measurements also employ an

ir.oulsive kind of perturbation. In this application, the per-

turbation is a brief, intense flash of light, which elicits from

the molecule of interest a measurable fluorescence whose decay

rate indicates the molecule's excited-state kinetics. Finally,

even gas chromatography employs the principles embodied in linear

response theory. In GC techniques, an impulse of sample is dir-

ected onto the column, so that the output of the gas chromatograph

reveals the response of the instrument to that particular sample.

In other words, a gas chromatogram is simply an impulse response

function of the GC instrument to that particular chemical sample.

Clear.:ly, impulse response measurements have broad applications.

Moreover, from the foregoing examples it can be seen that the

impulse need not be electrical in nature, but can consist of any

rapidly changing energy source, from electrical to mechanical to

temperature, even to the chemical sample itself. Because of this

broad application and the importance of impulse-type measurements

to chemistry, various alternative schemes to obtain the same

information have been sought. Those scientists involved in linear

response theory have explored these alternative schemes in some

detail and we can benefit from their experience.



To understand these alternative approaches, let us examine

the measurement portrayed in Figure 6 in more detail. First, let

us recognize that the delta function or impulse used to perturb the

system under study contains all frequencies; that is, its Fourier

transform is flat. Consequently, sending a delta function or

impulse into a system is equivalent to perturbing the system with

all frequencies at the same time. Therefore, the impulse response

function is analogous to the frequency response of the device

under test, but is a time-domain representation. As a result,

phase shifts, distortions, and other phenomena easily perceived

in the time-domain can readily be studied.

From these simple considerations, one can imagine that dif-

ferent perturbation wave forms than an impulse can be used, as

long as those waveforms contain a broad range of frequencies.

The most common and most useful such waveform that has been

studied is one which is stochastic, i.e. noisy. Like an impulse,

white noise contains all frequencies, although the frequencies

have random phases and amplitudes. Therefore, from the concepts

embodied in linear response theory, it should be possible to

obtain time-response characteristics of a system by perturbing it

with white noise and observing the response of the system to that

perturbation. However, one intuitively realizes that the response

of the system under these conditions would also appear to be noisy.

Of course, this noisy response would exhibit the same attenuations,

distortions, and changes of frequency composition as would the

impulse response. The trick, then, is to extract from the "noisy"

response the same information that is readily discerned from the

impulse response.

• . . . . . . . . . . . . . . .l f .. .. " ll/. .. ... . . . .. i I . . . . . . .. . ". . . . " '
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This "trick" is .-eadily accomplished through use of cross-

correlation. It will be recalled that the autocorrelation function

of white noise is simply a delta function. Therefore, it can

readily be understood that cross-correlation of white noise with

a changed representation of the noise will produce no longer a-

delta function, but a delta function which is distorted, skewed,

or changed in a way which reflects those distortions. This ap-

proach is represented schematically in Figure 7.

In Figure 7, a randomly varying signal (i.e. noise) is used

to perturb the system under test. Because of the system's finite

frequency response, its response to the perturbation is no longer

identical in appearance to the white noise, but has lost some of

its high frequency content because of the limited frequency response.

Therefore, cross-correlation of the random input with the elicited

response produces not a delta function, but a pulse which has

attenuated high-frequency composition. In turn, this loss in

high-requency content is reflected in the finite rise and decay

times of the cross-correlation function.

How do these apparently esoteric concepts apply to chemistry?

Ir the case of nuclear magnetic resonance spectrometry (8), the

random input perturbation consists of the application to the

nuclei of interest not a single radio frequency pulse, but a

train of such pulses which are spaced randomly in time. In this

example, it is important to recognize that the amplitude of the

pulses need not be random (i.e. stochastic), but only their

repetition rate. Therefore, application of such a random sequence

of pulses to the nuclei and cross-correlating the sequence with

the apparently noisy response will produce a function identical

to the free induction decay. The advantage derived from this
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approach is that the rf energy can be applied to the nuclei

continuously but at low amplitude, to avoid saturating the

nuclei but still yield a high-quality free induction decay

signal.

In a similar fashion, gas chromatography can be pursued by

injecting onto a column not a single increment (delta function)

of sample, but either a random sequence of sample aliquots or a

randomly varying sample concentration (9). This latter kind

of 4njection can be implemented by means of several switching

schemes involving solvent and sample. Obviously, such an in-

jection approach would produce a noisy, apparently meaningless

chromatogram. However, cross-correlation of this noisy chromato-

gram with the input injection pattern will yield a conventional-

appearing chromatogram, with the advantage that the column was

used more efficiently and that continuous monitoring becomes

possible. In this particular application, it is important to

recognize that sample concentration fluctuations must be small

to prevent the column from being overloaded and inducing non-

linearity into its operation. Also, it must be recognized that

no increase in the speed of separation is derived from this

approach; although continuous monitoring becomes possible,

the cross-correlation chromatogram which is obtained from

any particular sample aliquot is only available after a length

of time equal to the elution time of the slowest-moving sample

component.
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In time-resolved fluorimetry, use of the correlation approach

poses several difficult problems, because of the short time scale

on which such measurements must be made. In particular, most

fluorescence decay times are on the order of nanoseconds, requiring

a perturbing light source which fluctuates at extremely high

(gigahertz) frequencies and a cross-correlation device which can

respond to nanosecond-duration signals. Fortunately, these

experimental difficulties can be overcome through use of novel

measurement techniques which involve the use of laser mode noise

as a perturbing source and high-frequency microwave components in

the correlation instrument. The interested reader is referred to

the original literature for discussions of these components (10,11).

Finally, for the measurement of chemical kinetics, random

temperature, pressure, or chemical concentration fluctuations can

be used to perturb the system. Perhaps the most elegant of the

resulting procedures arises from the realization that chemical

substances are intrinsically perturbed by the random events oc-

curring in any medium of any temperature above absolute zero. That

is, chemical reactions at equilibrium are actually dynamic systems,

With forward and reverse reac-ions going on at all times. There-

fore, if o:e would observu the concentration of any of the com-

ponents in the equLiliblium, one would observe not just an equilibrium

concentration, but minute fluctuations about that concentration,

because of small but fine perturbations (e.g. collisions) which

occur in the medium to produce the measured substance and the

random events which cause its consumption. Presuming these

perturbations to be truly random, one can obtain a measure of the

chemical kinetics affectinq that substance by autocorrelating the

fluctuations it exhibits. Although such a procedure requires one
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to essentially observe single molecular events, it has been found

possible tc do so, using highly sensitive detection techniques

such as fluorescence (12). The elegance of this procedure is

obvious; not only does it enable one to observe the kinetic be-

havior of reactions truly at equilibrium, but it employs the

natural stochastic events experienced by a molecule to probe its

behavior.

From this overview, it should be evident that correlation

techaiques are indeed ubiquitous in the chemical laboratory. Not

only are they inherently involved in many measurements which

chemists take, but they can be used to advantage to extract

chemical data from apparently meaningless signals, to improve the

quality of chemical data, to isolate desired signal features

from interfering wave forms, or they can be used to develop

entirely new techniques for chemical measurements which employ

the fundamental but unavoidable stochastic events which each

chemical substance experiences. Hopefully, this introductory

overview will stimulate the reader to explore correlation methods

in more detail, to employ them in his own laboratory, and to

perhaps develop new procedures based on correlation analysis.
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Figure Captions

Figure 1. Block diagram of the auto-correlation operation.

Figure 2. Autocorrelatior of a sine wave. Schematic for auto-

correlation process at T = 00 (a), T = 900 (b),

T = 1800 (c), r = 2700 (d) and the resulting auto-

correlation function (e). (Figure used with permission

of Plenum Publishing Corp.)

Figure 3. (a) Cosine autocorrelation images.

(b) Random waveform.

(c) Ideal autocorrelation function of random waveform.

(Figures used with the permission of Plenum Publishing

Corp.)

Figure 4. Autocorrelation function of a noisy sine wave. (Figure

used with permission of Plenum Publishing Corp.)

Figure 5. Cross-correlation of a sine and square wave (lock-in

amplifier) at T = 0. (Figure used with permission of

Plenum Publishing Corp.)



Figure 5. Illustration of how an Impulse Response Function is obtained.

The '[-:strument" in this illustration might be any system

to be tested, incliding an electronic network, a large instru-

mental array, or chemical species themselves. The input

perturbation to the system, shown on the left, resembles

mathematically a Dirac delta (,') function and produces the

inpul re,;p on ,own on the riqht.

Figure 7. Use of cro, s-,:orrc!at ion and white noise (random perturbation)

to test o ,ystei's iespouse. The noisy perturbation (at

left). when correlited with the response it elicits, generates

the imFpilVe respotice functicn of the system, shown en the

right.
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