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ABSTRACT

This tutorial paper reviews the subjects of
digital straightness and convexity. The central
questions treated are: When can a digital arc be
the digitization of a real straight line segment?
When can a digital object be the digitization cf
a real convex set?
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1. Introduction. Digital image or picture processing [13

is concerned to a great extent with tto excraction and de-

scription of objects or regions in piCiures - individual

characters in text, components in circuit diagrams, cells

in Pap smears, tumors in chest x-rtys, buildings in aerial

photographs, etc. [2]. The desc .iption often involves

geometrical properties of the regions; thus one needs to

know how to define and measure s1 ,h properties when the

pictures are represented in di.'tal form.

A digital picture is a re .cangular array of lattice

points, with each of which a numerical "gray level" is

associated. We can "segment" a picture into regions, e.g.,

by defining subsets of t'ie points that have characteristic

ranges of gray levels. Thus a region or objact in a digital

picture is simply a finite, nonempty set of lattice points.

Digital topology [3], which was the subject of an earlier

paper in this Monthly [4], deals with topological properties

of digital objects, e.g., with their connectedness and adja-

cency properties, and with digital arcs and curves. Some of

the basic concepts of digital topology will be summarized in

Section 2. In this paper we discuss another important class

of properties, involving the concepts of straiqhtness (of

arcs) and convexity (of objects). The central questions are:

When can a digital arc be the digitization of a real straight



line segment? When can a digital object be the digitization

of a real convex set? We will define "digitization" in

Section 3; these questions will be formulated more precisely

in Section 4; and their solutions will be summarized in Sec-

tions 5-6. Section 7 discusses the extension of these results

to three dimensions, and Section 8 sketches algorithms for

determining straightness and convexity based on the results.
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2. Some digital topology. Let 1[ be a rectangular array

of lattice points having positive integer coordinates

(x,y), where lsx.M, l.6yN. To each lattice point P =

(x,y) is associated a closed unit square, called a cell,

centered at P; it will be denoted by P' or by (x,y)'.

The 4-neigbors of (x,y) are its four horizontal and

vertical neighbors (x±l,y) and (x,y±l), provided these

are in N. The 8-neighbors of (x,y) consist of its y-

neighbors together with its four diagonal neighbors (x-l,

y±l) and (x+l,y±l) in n. Evidently Q is a 4-neighbor of

P if the cell Q' shares a side with PI, and an 8-neighbor

if P' and Q' share a side or a corner. We can thus also

define the 4- and 8-neighbors of a cell.

A path from P to Q is a sequence of points P=P 0 ,P11...,

Pn=Q such that Pi is a neighbor uf Pi-1  li~n; we speak of

a 4-path or an 8-path, depending on whether "neighbor" means

4-neighbor or 8-neighbor. Let S be any subset of n. We

say that P and Q are (4- or 8-) connected in S if there exists

a path from P to Q consisting entirely of points of S. This

is readily an equivalence relation; ito equivalence classes

are called the (4- or 8-) components of S. SQfH is called

connected if any two points of S are connected in S, i.e., if

there is only one component of S. The definitions for a set

of cells S' are analogous.



Let S be the complement of S in n. Components of S

that do not meet the border of H (the points for which

x-l or M, y=l or N) are called holes in S. If S has no

holes, it is called simply connected. It turns out to be

desirable to always use opposite types of connectedness for

S and S, i.e., if we use 4- for S, we use 8- for S, and vice

versa. Thus, e.g., S is simply 8-connected if it is 8-

connected and has no 4-holes.

AQII is called a (4- or 8-) arc if it is connected, and

all but two of its points (the "endpoints") have exactly

two neighbors in A, while those two have exactly one. A

cellular arc is defined analogously. Since we use opposite

types of connectedness for A and A, it is easily shown that

an arc is simply connected. For further results on digital

arcs and closed curves, see [3-4].



3. Digitization of regions and arcs. For any S n, S' denotes

the set of cells corresponding to the points of S. The union

of these cells regarded as subsets of the real plane will be

denoted by <S'>. Similarly, we will use the notation <P'>

when we regard the cell P' as a subset of the plane.

Let R be any subset of <n'>. We say that SQU is the

digital image of R, and that S' is the cellular image of R,

if

(a) Ri<S'>

(b) For all PE6 we have (P')"1 ROO,

where (?') is the interior of P'.

We will sometimes rfrer to the process of forming the digital

or cellular image of a set as "digitization". A simple example

of a set and its digital and cellular images is shown in

Figure I. A slightly different definition was used in [5-71,

which required only P'O R 0 in (b); but that definition

does not specify a unique digital image, and furthermore

the definition just given turns out to yield better results

when we study digital straightness vnd convexity. Note,

however, that by this definition, a nonempty set can have

an empty image (indeea, any set that meets no cell interior

has an empty image); bAt a nonempty open set must have a non-

empty image.

Let C be any curve in <I!':, and consider the Cartesian

grid lines defined by the points of n. Whenever C crosses a



grid line, the point of RI nearest the crossing becomes

a point of the digital image of C. (If the crossing is

exactly midway between two lattice points, we use the

one with smaller coordinate (8]). Evidently, this is not

a special case of the definition of the digital image

of R. Similarly, we say that S' is the cellular image

of C [9] if

(a) C Q <SO>

(b) For all PES we have (P')0 fl C 0 0; or else (P')O

1 C = 0, P'I C # 0, and P lies to the right of C

(with respect to a given sense defined on C)

Again, this is not a special case of the definition of the

cellular image of R. Howevei, the definitions become the

same if we thicken C slightly on its right side. Examples

of the digital and cellular images of an arc are shown in

Figure 2.

Note that (for historical reasons) we are not using

the same definitions for the digital and cellular images

of a curve; the latter definition is given in order to make

it equivalent to the de-inition for an arbitrary set R by

thickening. Note also that the digitization of a simple arc

in the plane need not be a digital or cellular arc; even

if the curvature of the real arc is sufficiently small, its

digital and cellular images may not be arcs. However, the

image of a real straight line 3egment is always a (digital,

cellular) arc.



4. Digital convexity and straiqhtness. We can now formulate

the two central questions that are the subject of this paper:

(a) When is a set the digital or cellular image of a

convex set? Note that any set S or S' is always the

image of a non-convex set, e.g. having small concavi-

ties that are missed by the digitization process; but

not every S or S' can be the image of a convex set.

Sklansky [7], using a slightly different definition of digi-

tization, called such an S' "digitally convex". Other authors

(5,10] attempted to characterize digitally convex sets in

various ways, e.g. by requiring that for all P, Q C S, any

point of n on the (real) line segment PQ is a point of S; but

these conditions were not necessary and sufficient for digital

-onvexity. In Section 5 we will see that when our definition

of digitization is used, several characterizations of digital

convexity do in fact turn out to be equivalent to each other

and to the property of being the image of a convex set.

(b) When is an arc the digital or cellular image of a

straight line segment? Here again, note that any

arc A or A' is always the image of a non-straight

real arc, e.g. having small irregularities, but not

every A or A' is the image of a straight line.

Freeman [11] gave a semi-formal set of conditions for a digi-

tal arc to be the digital image of a straight line, and

Rosenfeld [12] gave a necessary and sufficient condition. In



Section 6 we will see that this condition is analogous to

one of the characterizations of digital convexity; a digi-

tal or cellular arc is convex iff it is the image of a

straight line. We will also see that a set is digitally

convex iff a digital line segment joining any two of its

points is contained in it, which is analogous to a standard

characterization of convexity in the real plane.



5. Digital convexity. In this section we summarize the main

results on characterization of digitally convex objects. The

proofs can be found in (13-15].

Theorem 5.1. The following properties of a set SQH are

all equivalent:

(a) For any P,QCS, there exists no point of S lying on

the (real) line segment PQ.

In other words: There exists no triple of col-.

linear points of n such that the first and last

ones lie in S and the middle one lies in S.

(b) For any P,QES, and any point (u,v) of the real line

segment PQ, there exists a point (x,y) of S such that

max {Ix-uJ, ly-vJ) < 1.

In other words: The line segment joining any two

points of S lies everywhere "near" S, in the sense

that every point of it is strictly within city

block distance 1 of some point of S.

(c) For any P,QES, let RpQ be the subset of <S'> bounded

by the real line segment PQ and the boundary of <S'>;

then RPQ contains no point of S.

(d) Let H(S) be the (real) convex hull of S; then no point

of S lies in H(S).

An alternative form of (d) is: For any tu,v) EH(S),

there exists an (xy) .- S such that max {u-xj, Iv-yl}

< 1.



Given a set S611, a point P of S is called semi-isolated

if only one of its 4-neighbors is in S. A set S is regular

if it does not have any semi-isolated points.

Theorem 5.2. Let SQR be a regular set. Then it is the

digital image of a convex subset of the real plane if and

only if it has the properties in Theorem 5.1.

A set S that satisfies Theorem 5.1 will be called digi-

tally convex. Therefore, a regular set S is digitally con-

vex if and catly if there exists a convex subset R of the real

plane whose digital image is S. However, if S is not regular,

then S may be digitally convex but have no convex preimage as

shown in Figure 3.

In the real plane, a region R is convex if the midpoint

of any pair of points of R also lies in R. In the digital

case, however, the analogous condition is necessary for con-

vexity, but not sufficient. Let P=(a,b) and Q=(c,d) be two

a+c b+d
points of n, and let u= 2 , v= 2 The set of midpoints

of P and Q is the set of lattice points M {(luI, tvJ),(Luj,[vi).

(ful, jvj), (ful, fvl)). Note that this set consists of one,

two, or four points, depending on whether a and c, b and d have

the same or opposite parity.

Theorem 5.3. If S is digitally convex, then for all P,Q . S

we have MpQ f, S 0 0, but not conversely.

However, we can prove that another property involving midpoints



is equivalent to convexity. Let P = (a,b), Q * (c,d), (u,v)

a+c b+d ). On the real line segment P(u,v), let P*
2 ' 2

(possibly the same as P) be the lattice point closest to

(u,v), and similarly let Q* be the lattice point on (u,v)Q

closest to (u,v). Then S is digitally convex if, for all

P,QES, either P* or Q* is in S.

r!
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6. Digital and cellular straightness. We next present the

main results on digital straightness and its relationship

to digital convexit>. For further details see (9,14].

Theorem 6.1. The following properties of a digital

arc Aaf are equivalent:

(a) For any P,Q(A, and any point (u,v) of the real line

segment PQ, there exists a point (x,y) of A such

that max {jx-ul, ly-vj} < 1.

Note that this is the same as (b) of Theorem 5.1.

(b) There exists a straight line segment whose digital

image is A.

A digital arc satisfying Theorem 6.1 will be called a digital

straight line segment.

Corollary 6.2. A digital arc is a digital straight lineVsegment iff it is digitally convex.
Theorem 6.3. SQH is digitally convec if any two points

of S lie on a digital straight line segment contained in S.

Theorem 6.4. A cellular arc AQHI' is the cellular image

of a straight line segment iff there exists a straight line

segment whose cellular image is A'.

The proof, which is quite complicated, is based on establishing

that property (a) of Theorem 6.1 holds for such cellular arcs.

I



A cellular arc satisfying Theorem 6.4 will be called a

cellular straight line.segment.

Corollary 6.5. A cellular arc is a cellular straight

line segment iff it is cellularly convex.

Theorem 6.6. S'QH' is cellularly convex if any two cells

of S' lie on a cellular straight line segment contained in S.

I



7. The three-dimensional case. It is straightforward to

extend the basic concepts of digital topology from two to

three (or more) dimensions [17]. A point Q = (u,v,w) is a

6-neighbor of P = (x,y,z) if ix-ul + ly-ul + Iz-wl = 1, and

a 26-neighbor if max {jx-uj, ly-vi, Iz-w 1}= 1. Given a

finite set S of three-dimensional lattice points, a point P

of S is called semi-isolated if four of its 6-neighbors are

in S and they are mutually 26-neighbors. A set S is regular

if it has no semi-isolated point.

The properties that characterize digitally convex sets

are also easily extendable to three dimensions. However, it

turns out that many of these extensions are no longer equiva-

lent [18]. In fact, we have

Theorem 7.1. The following properties of a finite regu-

lar set S of three-dimensional lattice points are equivalent:

(a) For any OP,Q4S, and any point (u,v,w) of the real

triangle OPQ, there exists a point (x,y,z) of S

such that max {ju-xl, Iv-yl, Jw-zj) < 1.

(b) Let H(S) be the (real) convex hull of S; then for

any point (u,v,w) of H(S), there exists a point

(x,y,z) of S such that max {lu-xl, Iv-yj, lw-zl} < 1.

(c) S is the digital image of a convex subset of real

3-space.

An S (not necessarily regular) that has properties a) and b)

of Theorem 7.1 is called a digital convex solid.



Theorem 7.2. The following properties of S are neces-

sary, but not sufficient, for S to be a digital convex solid:

(a') For any P,QS,. there exists no point of S on the

(real) line segment PQ.

(b') For any P,QES, and any (u,v,w) on the real line

segment PQ, there exists an (x,y,z)ES such that

max {jx-uf, ly-vi, Iz-wl} < 1.

(c') H(S) contains no point of S.

The non-sufficiency of these properties is illustrated in

Figure 4, where set S is not convex but satisfies (a') and

(b'), and T is not convex but satisfies (c').



8. Algorithms. We describe algorithms that determine

i) whether or not a given set S9P is digitally convex.

ii) whether or not a given set Saf is a digital straight

line segment.

iii) whether or not a given set S of three-dimensional

lattice points is digitally convex.

Let H = {(x,y)l 1& x & M and 1 & y & N} and S i R.

A point P is a corner point of S(S) if two of its 4-neighbors

are points of S(S) and they are mutually 8-neighbors.

Algorithm 2D-CONVEX (S)

1. Construct the convex hull H(S) of the set of corner

points of S.

2. Check if H(S) contains a corner point of S. If it

does, then S is not digitally convex. Otherwise,

S is digitally convex.

Algorithm STRAIGHT-LINE(S)

1. Check if S is a digital arc. If net, S is not a

digital straight line segment.

2. Using 2D-CONVEX, determine whether or not S is convex.

If it is then S is a digital straight line segment.

Otherwise, it is not.

If we represent S by a method called run length code [1],

then the convex hull H(S) may be constructed in time O(M) by

the method in [16]. Thus, both algorithms 2D-CONVEX and

STRAIGHT-LINE run in time O(M).



Given a set S of three dimensional lattice points, a

point of S is a corner point of S if three of its 6-neighbors

are in S and they are mutually 26-neighbors. Let H be a

three dimensional polyhedron. Then a point P on the surfaces

of H is a semi-lattice point if two of its coordinates are
integers. A point P on the edges of H is a semi-lattice

point if one of its coordinates is an integer. A semi-lattice

point P=(x,y,z) is said to be near S if there is a point

Q=(u,v,w) of S such that max {lu-xfju-yjjw-zj}< 1.

Algorithm 3D-CONVEX (S)

1. Construct the convex hull H(S) of the set of corner

i~ points of S.

2. Check if H(S) contains a point of S. If so, S is not

digitally convex.

3. Check if H(S) has a semi-lattice point which is not

near S. If so, then S is not digitally convex.

4. Otherwise, S is digitally convex.

Suppose that S is a subset of the set of three dimensional

lattice points, {(x,y,z)lis x,y,zlf-M}. Again, if S is repre-

sented by a run length code, then the convex hull H(S) may be

constructed in time O(M2 10gM) by the method in [19]. Thus,

the algorithm 3D-CONVEX runs in time O(M2 log M).



9. Concluding remarks

We have seen that concepts such as straightness and

convexity can be defined for sets of lattice points, but

properties of those concepts that are all equivalent in the

real domain may become inequivalent in the discrete domain.

Moreover, properties that are equivalent in two dimensions

may become inequivalent in three. Thus in order to measure

geometrical properties of digital objects, careful thought

is needed to determine which of the standard concepts in

the real domain can be safely used in the digital case.
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Figure 1. R and its digital and cellular images, S and S'.
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Figure 2. Digital and ce22.ualar images of an arc.
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