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ABSTRACT

This tutorial paper reviews the sukjects of
digital straightness and convexity. The central
questions treated are: When can a digital arc be
the digitization of a real straight lire segment?
When can a digital object be the digitization cf
a real convex set?
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l. Introduction. Digital image or picture processing [1]

is concerned to a great extent with tno excraction and de-
scription of objects or regions in piciures - individual
characters in text, components in circuit diagrams, cells
in Pap smears, tumors in chest x-rnys, buildings in aerial
photographs, etc. [2]. The description often involves
geometrical properties of the regions; thus one needs to
know how to define and measure :;.:h properties when the
pictures are represented in dic¢ital form.

A digital picture is a re«cangular array of lattice

points, with each of which a numerical "gray level" is
associated. We can "segment" a picture into regions, e.g.,
by defining subsets of tle points that have characteristic
ranges of gray levels. Thus a region or objoct in a digital
picture is simply a finite, nonempty set of lattice points.

Digital topology [3], which was the subject of an earlier

paper in this Monthly [4], deals with topological properties

of digital objects, e.g., with their connectedness and adja-
cency properties, and with digital arcs and curves. Some of
the basic concepts of digital topology will be summarized in
Section 2. In this paper we discuss another important class

of properties, involving the concepts of straightness (of

arcs) and convexity (of objects). The central questions are:

When can a digital arc be the digitization of a real straight



line segment? When can a digital object be the digitization
of a real convex set? We will define "digitization" in
Section 3; these questions will be formulated more precisely

in Section 4; and their solutions will be summarized in Sec~

tions 5-6. Section 7 discusses the extension of these results
to three dimensions, and Section 8 sketches algorithms for

determining straightness and convexity based on the results.
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2. Some digital topology. Let Il be a rectangular array

of lattice points having positive integer coordinates
(x,y), where lsxsM, lsysN. To each lattice point P =
(x,y) is associated a closed unit square, called a cell,
centered at P; it will be denoted by P' or by (x,y)’'.
The 4-neigbors of (x,y) are its four horizontal and
vertical neighbors (x+1l,y) and (x,y+l), provided these

are in 1. The 8-neighbors of (x,y) consist of its y-

neighbors together with its four diagonal neighbors (x-1,
y+l) and (x+l,y+l) in II. Evidently Q is a 4-neighbor of
P if the cell Q' shares a side with P', and an 8-neighbor
if P' and Q' share a side or a corner. We can thus also
define the 4- and 8-neighbors of a cell.

A path from P to Q is a sequence of points P=P0,Pl,...,
Pn=Q such that P; is a neighbor of LY, laisn; we speak of
a 4-path or an 8-path, depending on whether "neighbor" means
4-neighbor or 8-neighbor. Let S be any subset of II. We
say that P and Q are (4- or 8-) connected in S if there exist
a path from P to Q consisting entirely of points of S. This
is readily an equivalence relation; its equivalence classes
are called the (4- or 8-) components of S. 3«1 is called
connected if any two points of S are connected in §, i.e., if
there is only one component of S. The definitions for a set

of cells S' are analogous.
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Let § be the complement of S in . Components of §
that do not meet the border of Il (the points for which
Xx=l or M, y=1 or N) are called holes in S, If S has no

holes, it is called simply connected. It turns out to be

desirable to always use opposite types of connectedness for
S and §, i.e., if we use 4- for S, we use 8- for S, and vice
versa., Thus, e.g., S is simply 8-connected if it is 8~
connected and has no 4-holes.

Acll is called a (4~ or 8-) arc if it is connected, and
all but two of its points (the "endpoints") have exactly
two neighbors in A, while those two have exactly one, A
cellular arc is defined analogously. Since we use opposite
types of connectedness for A and A, it is easily shown that
an arc is simply connected. For further results on digital

arcs and closed curves, see [3-4].
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3. Digitization of regions and arcs. For any Scll, S' denotes

the set of cells corresponding to the points of S. The union
of these cells regarded as subsets of the real plane will be
denoted by <§'>., Similarly, we will use the notation <P'>
when we regard the cell P' as a subset of the plane.

Let R be any subset of <[i'>, We say that S&l is the

digital image of R, and that S' is the cellular image of R,

if

(a) R&<g'>

{b) For all P53 we have (P')°{} Rpxf,

where (“';° is the interior of Pp'.
We will sometimes refer to the processz of forming the digital
or cellular image of a set as "digitization". A simple example
of a set and its digital and cellular images is shown in
Figure 1. A slightly different definition was used in [5-7],
which required only P!(i R # # in (b}; but that definition
does not specify a uniqgue digital image, and furthermore
the definition just given turnas out tc yield better results
when we study digital straightness &nd convexity. Note,
however, that by this definition, a nonempty set can have
an empty image (indeed, anv s2t thal meets no cell interior
has an empty image); but a nonempty open set must have a non-
empty image.
Let C be any curve in <Ji'>, and coasider the Cartesian

grid lines defined by the points of II. Wwhenever C crosses a



grid line, the point of Il nearest the crossing becomes
a point of the digital image of C. (If the crossing is
exactly midway between two lattice points, we use the
one with smaller coordinate [8]). Evidently, this is not
a special case of the definition of the digital image
of R. Similarly, we say that S' is the cellular image
of C [9] if

(a) C & <8'>

{b) For all PcS we have (P')° {1 C # @; or else (P')°®

NC=48g, PPAC # g, and P lies to the right of C
{(with respect to a given sense defined on C)

Again, this is not a special case of the definition of the
cellular image of R. However, the definitions become the
same if we thicken C slightly on its right side. Examples
of the digital and cellular images of an arc arce shown in
Figure 2.

Note that (for historical reasons) we are not using
the same definitions for the digital and cellular images
of a curve; the latter definition is given in order to make
it equivalent to the de.inition for an arbitrary set R by
thickening. Note also that the digitization of a simple arc
in the plane need not be a digital or cellular arc; even
if the curvature of the real arc is sufficiently smell, its
digital and cellular images may not be arcs. However, the
image of a real straight line cegment is always a (digital,

cellular) arc.
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4. Digital convexity and straightness. We can now formulate

the two central questions that are the subject of this paper:

(a) When is a set the digital or cellular image of a

convex set? Note that any set S or S§' is always the

image of a non-convex set, e.g. having small concavi-

ties that are missed by the digitization process; but

not every S or S' can be the image of a convex set.
Sklansky [7], using a slightly different definition of digi~-
tization, called such an S' "digitally convex". Other authors
[(5,10] attempted to characterize digitally convex sets in
various ways, e.g. by requiring that for all P, Q € §, any
point of Il on the (real) line segment PQ is a point of §; but
these conditions were not necessary and sufficient for digital
sonvexity. In Section 5 we will see that when our definition
of digitization is used, several characterizations of digital
convexity do in fact turn out to be equivalent to each other
and to the property of being the image of a convex set.

(b) When is an arc the digital or cellular image of a

straight line segment? Here again, note that any

arc A or A' is always the image of a non-straight

real arc, e.g. having small irregularities, but not

every A or A' is the image of a straight line.
Freeman [1l] gave a semi-formal set of conditions for a digi-
tal arc to be the digital image of a straight line, and

Rosenfeld [12] gave a necessary and sufficient condition., In
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Section 6 we will see that this condition is analogous to
one of the characterizations of digital convexity; a digi-
tal or cellular arc is convex iff it is the image of a
straight line. We will also see that a set is digitally
convex iff a digital line segment joining any two of its
points is contained in it, which is analogous to a standard

characterization of convexity in the real plane.
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5. Digital convexity. In this section we summarize the main

results on characterization of digitally convex objects. The

proofs can be found in [13-15].

Theorem 5.1. The following properties of a set S&Il are

all equivalent:

(a) For any P,Q¢cS, there exists no point of S lying on
the (real) line segment P(Q.

In other words: There exists no triple of col-
linear points of II such that the first and last
ones lie ir S and the middle one lies in §.

(b) For any P,Q¢S, and any point (u,v) of the real line
segment PQ, there exists a point (x,y) of S such that
max {|x-u|, |y-v|} < 1.

In other words: The line segment joining any two
points of S lies everywhere "near" S, in the sense
that every point of it is strictly within city
block distance 1 of some point of S.

(c) For any P,Q€S, let Ry, be the subset of <S'> bounded
by the real line segment PQ and the boundary of <S'>;
then Rpg contains no point of §.

(d) Let H(S) be the (real) convex hull of S; then no point
of § lies in H{S).

An alternative form of (d) is: For any \(u,v)€H(S),
there exists an (x,y)¢ S such that max {|u-x|, |v-y|}

< 1.



Given a set S&«ll, a point P of § is called semi-isolated

if only one of its 4-neighbors is in S. A set S is regular

if it does not have any semi-isolated points.

Theorem 5.2. Let Sl be a regular set. Then it is the

digital image of a convex subset of the real plane if and

only if it has the properties in Theorem 5.1.

A set S that satisfier Theorem 5.1 will be called digi-

tally convex. Therefore, a reqular set £ is digitally con-

vex if and culy if there enists a convex subset R of the real
plane whose digital image is S. However, if S is not regular,
then S8 may be digitally convex but have no convex preimage as
shown in Figure 3.

In the real plane, a region R is convex if the midpoint
of any pair of points of R also lies in R. In the digital
case, however, the analogous condition is necessary for con-
vexity, but not sufficient. Let P=(a,b) and Q=(c,d) be two

a+c b+d

points of II, and let u= 5 V= 5 The set of midpoints

of P and Q is the set of lattice points Mpy = {Clug, tvi) o (g, vy,

(ful, Lvy), (ful, fvl)}. Note that this set consists of one,
two, or four points, depending on whether a and ¢, b and d have

the same or opposite parity.

Theorem 5.3. If S is digitally convex, then for all P,Q ¢ S

we have MPQ (iS # 9, but not conversely.

However, we can prove that another property involving midpoints
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is equivalent to convexity. Let P = (a,b), Q = (c,d), (u,v)

- { a;c , b;d ). On the real line segment P(u,v), let P*

(possibly the same as P) be the lattice point closest to
(u,v), and similarly let Q* be the lattice point on Tu,v)Q
closest t¢ (u,v). Then S is digitally convex if, for all

P,Q€S, either P* or Q* is in S.
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6. Digital and cellular straightness. We next present the

main results on digital straightness and its relationship

to digital convexity. For further details see [9,14].

Theorem 6.1. The following properties of a digital

arc Acll are equivalent:
(a) For any P,Q¢A, and any point (u,v) of the real line
segment PQ, there exists a point (x,y) of A such
that max {|x-u|, |y-v|} < 1.

Note that this is the same as (b) of Theorem 5.1.

(b) There exists a straight line segment whose digital

4 image is A.

- A digital arc satisfying Theorem 6.1 will be called a digital

gtraight line segment.

3 Corollary 6.2. A digital arc is a digital straight line

segment iff it is digitally convex.

;. Theorem 6.3. Scll is digitally conve¢ if any two points

of S lie on a digital straight line segment contained in S.

Theorem 6.4. A cellular arc A'<cll' is the cellular image

of a straight line segment iff there exists a straight line

segment whose cellular image is A'.

The proof, which is quite complicated, is based on establishing

that property (a) of Theorem 6.1 holds for such cellular arcs.




A cellular arc satisfying Theorem 6.4 will be called a

cellular straight line segment.

Corollary 6.5. A cellular arc is a cellular straight

line segment iff it is cellularly convex.

Theorem 6.6. S'cll' is cellularly convex if any two cells

of S§' lie on a cellular straight line segment contained in S.
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7. The three~dimensional case. It is straightforward to

extend the basic concepts of digital topology from two to

three (or more) dimensions [l17]. A point Q = (u,v,w) is a

6-neighbor of P = (x,y,z) if |x-u| + |y-u| + |z-w| = 1, and
a 26-neighbor if max {|x-u|, |y-v|, |z-w |}= 1. Given a
finite set S of three-dimensional lattice points, a point P
of S is called semi-isolated if four of its 6-neighbors are
ia § and they are mutually 26-neighbors. A set S is reqular
if it has no semi-isolated point.
The properties that characterize digitally convex sets

are also easily extendable to three dimensions. However, it

turns out that many of these extensions are no longer equiva-

lent (18]. 1In fact, we have

Theorem 7.1. The following properties of a finite regu-
lar set S of three-dimensional lattice points are equivalent:
(a) For any O,P,Q¢S, and any point (u,v,w) of the real
triangle OPQ, there exists a point (x,y,2) of S
such that max {|u-x|, |v-y|, |w-2z|} < 1.
(b) Let H(S) be the (real) convex hull of §; then for
any point (u,v,w) of H(S), there exists a point
(x,y,2) of S such that max {|u-x|, |v-y|, |w-z|} < 1.
(c) S is the digital image of a convex subset of real
3-space,
An S (not necessarily regular) that has properties a) and b)

of Theorem 7.1 is called a digital convex solid.
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Theorem 7.2. The following properties of S are neces-

sary, but not sufficient, for 5 to be a digital convex solid:

(a') For any P,Q€S. there exists no point of S on the
(real) line segment PQ.

(b') For any P,Q€¢S, and any (u,v,w) on the real line
segment PQ, there exists an (x,Y,z)€S such that
max {|x-ul|, |y-v|, lz-w|} < 1.

(c') H(S) contains no point of §.

The non~sufficiency of these properties is illustrated in
Figure 4, where set S is not convex but satisfies (a') and

(b'), and T is not convex but satisfies {c¢').
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8. Algorithms. We describe algorithms that determine
i) whether or not a given set S&ll is digitally convex.
ii) whether or not a given set Scll is a digital straight
line segment.
iii) whether or not a given set S of three-dimensional
lattice points is digitally convex.
Let T = {(x,y)| 1= x sMand 1l sy sN} and s 1.
A point P is a corner point of S(S) if two of its 4-neighbors

are points of S(S) and they are mutually 8-neighbors.

Algorithm 2D-CONVEX (S)

1. Construct the convex hull H(S) of the set of corner
points of S.

2. Check if H(S) contains a corner point of S. If it
does, then S is not digitally convex. Otherwise,

S is digitally convex.

Algorithm STRAIGHT-LINE(S)
1, Check if S is a digital arc. 1If not, S is not a
digital straight line segment.
2, Using 2D-CONVEX, determine whether or not S is convex.
If it is then S is a digital straight line segment.
Otherwise, it is not.
If we represent S by a method called run length code [1],
then the convex hull H(S) may be constructed in time O(M) by
the method in [16]). Thus, both algorithms 2D-CONVEX and

STRAIGHT-LINE run in time 0 (M).
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Given a set S of three dimensional lattice points, a
point of S is a corner point of S if three of its 6~neighbors
are in S and they are mutually 26-neighbors. Let H be a
three dimensional polyhedron. Then a point P on the surfaces
of H is a semi~lattice point if two of its coordinates are
integers. A pecint P on the edges of H is a semi-lattice
point if one of its coordinates is an integer. A semi-lattice
point P=(x,y,2z) is said to be near S if there is a point

Q=(u,v,w) of S such that max {|u-x|,|u-y|,|w-2|}< 1.

Algorithm 3D-CONVEX(S)
1. Construct the convex hull H(S) of the set of corner
points of S.

2. Check if H(S) contains a point of §. If so, S is not

digitally convex.

3. Check if H(S) has a semi-lattice point which is not

near S. If so, then S is not digitally convex.

4. Otherwise, S is digitally convex.

Suppose that S is a subset of the set of three dimensional
lattice points, {(x,y,z)ILS-x,y,QS-M}. Again, if S is repre-
sented by a run length code, then the convex hull H(S) may be
constructed in time O(leogbn by the method in [19]). Thus,

the algorithm 3D-CONVEX runs in time o(leog M).
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9. Concluding remarks

We have seen that concepts such as straightness and

3 convexity can be defined for sets of lattice points, but
properties of those concepts that are all equivalent in the
real domain may become inequivalent in the discrete domain,
Moreover, properties that are equivalent in two dimensions
may become inequivalent in three. Thus in order to measure
geometrical properties of digital objects, careful thought
is needed to determine which of the standard concepts in

the real domain can be safely used in the digital case.
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(a) S (b) S' and R

Figure 1. R and its digital and cellular images, S and S'.
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(a) {b)

Figure 2. Digital and ce.lular images of an arc.
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Figure 3. A set which is digitally convex but has no convex preimage.
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Examples illustrating the non-sufficiency of various

Figure 4.
convexity properties in three dimensiocons.



