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sional spatial autoregressive models and we develop fast, optimal,
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ean squared error (MMSE). Within the class of spatial autore-
gressive models, there are two nonequivalent classes of random
field (RF) models, the so-called simultaneous autoregressive
(SAR) models and the conditional Markov (CM) models. In this
paper, we develop restoration algorithms and give examples of
restoration using the SAR models. The restoration filter is
optimal, if the parameters characterizing the RF models are
known exactly. In practice, however, they are estimated from
the images. An iterative scheme is used for the estimation
of parameters in SAR models. Performance bounds of restoration
algorithms are calculated. In a subsequent paper, the case
of CM models will be considered.
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ABSTRACT

We consider the application of spatial autoreqressive random
field models in the restoration of degraded images. The degrada-
tion is assumed to be due to a space invariant, periodic, non-
separable point spread function and additive noise, colored or
white. We assume that the images are represented by two-dimen-
sional spatial autoregressive models and we develop fast, optimal,
non-recursive filters, the optimality criterion being the minimum
mean squared error (MMSE). Within the class of spatial autore-
gressive models, there are two nonequivalent classes of random
field (RF) models, the so-called simultaneous autoregressive (SAR)
models and the conditional Markov (CM) models. In this paper, we
develop restoration algorithms and give examples of restoration
using the SAR models. The restoration filter is optimal, if the
parameters characterizing the RF models are known exactly. In
practice, however, they are estimated from the images. An iterative
scheme is used for the estimation of parameters in SAR models.
Performance bounds of restoration algorithms are calculated. In a
subsequent paper, the case of CM models will be considered.
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1. Introduction

The restoration of degraded images has many fields of appli-

cation, including space imagery and biomedical images (1-2].

Several approaches have been suggested in the literature using

recursive Kalman filter type algorithms [3-5], inverse filtering

methods, and two-dimensional discrete partial difference equations

[6-7]. The Kalman filter algorithms insist on the assumption of

an underlying causal representation for the images displayed as

a state space model. The various Kalman filter methods differ

from one another basically regarding the assumptions that they

make about the autocorrelation function. Much attention has been

paid to exponential separable correlation functions in the litera-

ture. Also, the optimality with respect to MMSE claimed in Kalman

filter type algorithms is valid only when the parameters of the

underlying RF models are exactly known. In practice, the parameters

of the model are estimated from the images, and substituted for

the unknown parameters. Optimality, with respect to some criterion,

can be claimed only if estimation of the parameters and minimization

of the mean square error are tackled simultaneously so as to

minimize the criterion function. Detailed discussions on inverse

* filtering approaches may be found in [1-2].

Recently [6-7], stochastic representations of digital images

by finite difference approximations of partial differential El

equations (PDE) have been used to develop restoration algorithms. "
_

Corresponding to the PDE classification of hyperbolic, parabolic,,

Avbil and/or
;isf Spccta].
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and elliptic systems, three different algorithms, viz., the

causal, semicausal and noncausal algorithms, have been developed.

By making appropriate assumptions regarding the boundary pixels,

the original observations are decomposed into two parts such that

the covariance matrix corresponding to one set is diagonalized by

sine transforms and the other part corresponds to the boundary

response. The important feature is that the eigenfunction expan-

sion of the covariance matrix in terms of sine functions enables

fast implementation of the restoration filters.

We consider the use of spatial autoregressive models for the

image restoration problem. Within the family of spatial autore-

gressive models, there are two nonequivalent classes of RF models,

the so-called simultaneous autoregressive (SAR) [8-10] models and

the conditional Markov (CM) [10-131 models. These models charac-

terize the statistical dependency of a pixel on its neighbors by

a linear weighted sum of neighboring pixels and additive noise,

independent or correlated depending upon whether the models are

simultaneous or conditional. The structure of these models can be

explained as follows: suppose we are given an observation set

{y(s), s = (i,j)tR}, S ={13 = (i,j) li,j<M}, where y(s) is the

observation at location s. Then the expectation of y(s), condi-

tional on all y(s1 ), Sl fSl@S, is only a function of the obser-

vations at positions belonging to the neighbor set for the condi-

tional models, whereas for the simultaneous models, the conditional

expectation is a function of observations at positions belonging
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to the neighbor set and some extra neighbors. For instance, the

conditional expectation of a four neighbor simultaneous model with

dependence on east, west, north and south neighbors is a function

of eight nearest neighbors and second nearest neighbors on the east,

west, north and south. These two classes of models are non-

equivalent, in that given a SAR model, an equivalent CM model can

always be found (usually with more parameters); however, the

converse is not true. For instance, there is no equivalent SAR

model for the CM model with dependence on the east, west, north

and south neighbors. In this paper, we are primarily concerned

with the use of SAR models for the digital image restoration

problem. Similar results for CM models will be given later. For

some results concerning the use of conditional models in image

restoration, the reader is referred to [5,14].

For a finite image, the neighbors in all directions are not

defined for boundary pixels. Some assumptions have to be made

regrading the distribution of boundary pixels. In this report, we

assume that the given finite images are represented on a torus

lattice. This representation on torus lattices leads to covariance

matrices that have block circulant structures. Since block circu-

lant matrices are diagonalized by Fourier vectors, FFT computations

can be used for the implementation of restoration filters.

Circulant approximations to Toeplitz covariance structures have

been considered in the image restoration literature. But the
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block circulant structure that arises in our case is due to the

underlying RF model. Consequently, the covariance matrices are

exactly block circulant.

Using the specific representation mentioned above for the

images, the restoration problem is then posed as one of minimiz-

ing the mean square error between the original and the restored

image. This assumes that the SAR model is completely specified,

i.e., the parameters characterizing the SAR model are known. In

practice, however, these parameters are unknown and are estimated

from the images. For SAR models that include dependency in all

directions, the Jacobian of the transformation matrix from the

noisy variates to the observations is not unity, leading to a log

likelihood function that is nonquadratic in the parameters. Direct

minimization of the log likelihood function using "off the shelf"

computer programs might lead to a slow convergence rate. Conse-

quently, an iterative scheme suggested elsewhere [15-16] is used

for estimating the parameters.

The organization of the paper is as follows: In Section 2, we

pose the restoration problem using the SAR models and derive its

optimal filter, given the parameters of the SAR model. A brief

discussion is given regarding the estimation of unknown parameters

in SAR models. Performance bounds for the restoration algorithms

are also derived. Several examples of restorations are given in

Section 3. Finally, discussion is given in Section 4.

2
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2. Restoration Schemes Using the Simulataneous Random Field Models

2.1 Derivation of the Optimal Filter

Consider an MxM zero mean, undegraded image represented by a

two-dimensional array of gray levels, {y(s),s=(i,j) Q1,Q={s=(ij),

l<i,j<M} where y(s) is the gray level of the cell s. Since for a

finite image, some of the neighbors for the boundary points are

not defined, the image is assumed to be folded into a torus so

that (2.1) is satisfied:

y[(s)+(il,jl)]=y({(s)+(il-M,jl-M)}(mod M+l,mod M+1)] (2.1)

Assume that the original image y(s) obeys the SAR model

y(s)= E .i jy(s+(ij))+/Pw(s), s 0 (2.2)
(i, j)EN 

In (2.2), {w(s),sES2}is a sequence of independent and indentically

distributed random variables of zero mean and unit variance and

N denotes the neighbor set, i.e., the set of neighbors on which

the observation at y(s) is dependent. Equation (2.2) is charac-
terized by a set of parameters {. ,(i,j)LN,p). Typically, N

might include the members {(-l,0),(0,i),(i,0),(O,-l)} corresponding

to nearest neighbors in north, east, south, and west directions,

or N might beN-{(-i,0),(ii),(0,1),(1,O),(0,-1)}. One of the

characteristics of the model in (2.2) is that, when the parameters

corresponding to symmetric neighbor sets are interchanged, the

resulting model has second order properties identical to the ori-

4ginal. Denoting y and w as M2 xl vectors of lexicographically

ordered arrays {y(.)} and (w(.)}, (2.2) can be written as

B(8)y = /Pw (2.3)

where B(O) is an M2xM2 block circulant matrix and has the

following structure:



B B • • ,M
1,1 1,2 B'

BIM BII B 1,M-1

B(8)= BIM_1 ... BI, 1 B1,M-2

B ,2 ... ... B 1

where each of the component matrices is circulant. For the case

B1,I = c i r c u l a n t (1,00, I , , - - , 8to 0 , _1 )

BI1,2=circulant (o 1,1, 0,...,0)

BlM=circulant (0_1,0,0...,0)

and

B 1,j=0 j3l,2,... ,M.

Assuming that B(O) has an inverse, we have

y = /P B( )- w (2.4)

and the image covariance matrix

Q = E(yyT) = T -(1)B(0)]-  (2.5)

is also block circulant.

Consider the case when the image y is degraded by a non-

separable, spatially invariant, periodic PSF represented by a

block circulant matrix H and an additive colored noise n(s),sEQ.

Thus if x and n denote M 2xl vectors of lexicographic ordered

j arrays {x(-)} and {n(")}, where n(.) is zero mean, signal

independent additive noise with known circular correlation

structure,

__ _ _ _



TE(r Tn) = C (a block circulant matrix) (2.6)

we have

x = HY+n (2.7)

We assume for the present that the PSF matrix H and the parameters

(e,p) in (2.2) as well as the matrix C in (2.6) are completely

known. We also assume that the degraded image fits completely

inside their recording frame. In other words, the problems due

to truncation of the degraded image by a finite recording frame

are not considered. The restoration problem is posed as follows:

determine R, a function of x, such that the mean squared error f

is a minimum where

f = (y-x)T(y-x) (2.8)

and x is that minimizing value of x. The optimal estimate x

has the following expression [1, p. 133]:

x=Q H T(HQHT+C)-I x (2.9)

Let fij=col[tjxi,... rX M-t 1Le f.=o~tXt '..A tj], (i,j)=l,...,S
-1J -~ 1J 1

2 M-1tj=colfl,.j .. A M], = vector

X i=exp [/21 0 (i-l) ], X0 =2Tr/M.

Let h ij,ij, and cij,l<i,j<M denote the M2 eigenvalues of the

block circulant matrices, H, B(e) and C respectively. Then from

the theory of circulant matrices,

ij=(1- i j  (2.10)

lij= (ho+ hT ij)

'..00



where

Tij=col[exp(I-I -M-i)k+(j-] ),kl, (k, ')QN]
M

and h=col(h i Oj _(ij)< p, (ij)/(0,O) I

and p is the width of the PSF. Using the fact that the Fourier

vectors f.. are the eigenvectors of Q, H, and C, with the corre-

sponding eigenvalues p/11w .11 hij and cij, the following

expression can be written for x:
1 1 __ 2+CijT

x 1 f .(Pi/(pl1ih. 11 +*l. *II 2))~I x (2.11)
M 2 QJ 1Jj JJ -If

where * denotes the complex conjugate operator. The computation

of x can be done by using FFT and the computational complexity

is O(M2 log M). The following special cases of (2.1) are of

interest.

Case i (Additive noise q is white with variance y):

For this case, C=y I and x reduces to

x = 1 z f (P i /(PI1 11 2 +Y11 jl !2) f T x( . 2

M2 ( j(h. ij ))f x (2.12)

Case ii (Degradation is due to white noise only):

For this case, H=I and hence x reduces to

x f.. J (ji x (2.13)
M 2 Q 1J (P+YIIv'~iI 2) '*1J

The restoration algorithms given above have a general structure

that is valid for the so-called causal, semicausal and non-causal

neighbor sets. (Actually, due to the torus assumption, the neigh-

bor set N={(-i,0),(0,-i),(-i,-i)} does not correspond to a



strictly causal model, but the error in approximation due to torus

structure is very small for causal neighbor sets.) We have not

made any special assumptions such as isotropy, etc.

Thus far we have assumed that the parameters O,f) characterizing

the original image are known. In practice, however, they are

estimated from the original image and the estimated parameters

are used in place of true parameters in the restoration alqorithms.

Ie

I'

4
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2.2 Parameter Estimation

The popular methods of estimation are the method of least

squares (LS) and of maximum likelihood (ML). However, the

classical LS estimates are not in general consistent, when we

consider SAR models that include neighbor set dependence in all

the directions [8). The ML estimation scheme involves obtaining

an expression for the likelihood of the observations. We first

assume that {w(-)} is distributed normally with zero mean and unit

variance. To ensure stationarity, assume 1pij (0)300, i,j=l,...,M.

By using the property of the noise {w(')) and (2.1), the log

likelihood of observations Znp(yj6,p) can be written as

Yn p(yf1,p) = £n det B(0)-(M2 /2) Pn2rp-- _L E(y(s)-OTz(s))2  (2.14)

where

z(s)=col[y(s+(k,9,)) ,(k,£)tN]

But Zn det B(O) = Z n(ij) (2.15)

Substitution of (2.15) into (2.14) gives the desired log likeli-

hood function. Due to the log likelihood function being non-

quadratic in 0, a gradient procedure such as Newton-Raphson may

be used. Using "off the shelf" algorithms may be computationally

expensive. We use the iterative scheme given below in (2.16) and

(2.17) to estimate the parameters:

Wt+l [R - -1 -1(v - u) (2.16)
Pt Pt

1 E 2(y(s)-Ot+l!(S)) (2.17)
M



W0 - 1 E (y(s)_Woz(s))2

n~j -  - -J T _CT.
-T 2i

M
v C .zR ( S T Tsj i -c , i
~ (i,j)EI1 ~ (i ~ i-j)jij)

cT.=col [[cos( 7((i-l)k+(j-l)£))], (k £)N], M-vector

S jcol[sin(--lli-l)k+lj-l)t))], (k,9,)t N], M-vector
-1 M

TEz(S)z(S) , u= E z(s)y(s)

Let (e,P) denote the final estimates of (O,p). In the implemen-

tation of the restoration filters the estimates T and -Y obtained

from Theorem 1 are used in the place of time parameters. For

large values of M, the estimates and 7 are close to the ML

estimates and are asymptotically consistent and efficient. More

discussion regarding the estimation scheme may be found in (15-161.



2.3 Error Analysis of the Restoration Algorithms

A desirable quantity to compute is the expected value of the

minimum error Since all our experiments were done for the case

of degradation due to additive white noise, assume from now on that

c = yI , (2.18)

where y is the noise variance. By substitution of (2.9) into

(2.8), the following expression is obtained for the expected

value of the minimum error e [1]:

e = I Tr[Q-L H Q] (2.19)

where

L = Q H T(H Q HT+C) - 1

Using the fact that the trace of a matrix is the sum of its

eigenvalues,
~1

e = I Tr[Q-L H Q]
M

I 2 hi e h.j 2
M ij1 I I 1wi .11 1) I1) j 1 2fi

1] 11 1 )

ij 2 ij + y)

which after simplification gives

1 E py
e = j (2.20)

M (011h 112 + Y I 112
.11).i



3. Examples of Restoration

The algorithms described in Section 2 were implemented on

different sizes of the standard USC "girl image" under different

conditions.

Example 1 (Image with additive white Gaussian noise)

Figure l(a) shows the original girl image of size 256x256

and intensity variations over the range 0-255. Since a 256x256

image may not be stationary, the image was divided into 16 blocks,

each of size 64x64, and each block was modeled by a SAR model,

with N={(-l,0),(l,0),(0,-l),(O,l)}. Parameters were estimated

using the iterative scheme in Section 2.2. Figure l(b) shows

the noisy image with SNR=7 db. The restoration algorithm in (2.13)

was implemented and each block was restored independently. We

emphasize that blocking was done due to considerations of

stationarity alone and not due to any computational problems.

The restored image is shown in Figure 1(c).

Due to the blocking, artificial lines are present in the

restored image at known locations. These lines may be removed

either in the Fourier transform domain or by a linear inter-

polation technique [2]. We used the latter technique. To remove

vertical lines (3 pixels in width), each pixel in the lines was

replaced by a linear weighted sum of neighboring pixels (including

the current pixel) with weights 0.25, 0.2, 0.1, 0.2, 0.25. The

image with vertical bars removed is in Figure l(d). The same

technique was used to remove the horizontal bars and the final

restored picture is shown in Figure l(e).

S..



Example 2 (Image with blur and noise):

For this experiment, a 64x64 window of the original girl's

face was used. The parameters corresponding to different neighbor

sets were computed. The image was blurred by using the PSF
h(k) exp{-0 4(k2 +22 ),

hxpk-0.)(- (3.1)

and Gaussian noise of SNR=7 db was added. The results of

implementing (2.12) are given in Figure 2 for different neighbor

sets of dependence. Similar results for SNR=O db are shown in

Figure 3. The details of the neighbor sets used may be found in

the figure caption.

To get some idea as to the amount of theoretical improvement

that is possible, when using different neighbor sets, numerical values

of the expected error e were computed using (2.20) for those neighbor

sets. The quantity g defined as

g =10 log MSE between original and degraded
e

is tabulated in Table 1 for SNR=7 db and 0 db and for the blur

function with PSF given in (3.1). The values of the numerator for

SNR=7 db and 0 db were 511.41 and 1910.1 respectively. Although

not reported here, the implementation for the case of colored

noise can be done with equal ease.



Table 1

Performance bounds in decibels as predicted by various SAR

models for the PSF in (3.1) and M=64.

Neighbor set N SNR=7 db SNR=0 db

{(-i,0),(0,-i),(-i,-)} causal 4.687 8.678

{(-1,0),(I,0),(0,-l))semi-causal 6.020 9.955

{(-i,0),(i,0),(0,-l),(0,i)} non-causal 5.634 8.641

non-causal 5.530 8.531

non-causal 4.630 6.811

(0,-) , (-i,-i) non-causal 5.272 12.12

A

-I1



4. Discussion

We have developed restoration schemes using spatial auto-

regressive random field models. When dependence in all directions

is included, the neighbors corresponding to the boundary pixels

are not defined for these models. Hence some assumptions must be

made regarding the distribution of these boundary pixels. It would

be beneficial to make assumptions which aid in reducing excessive

computations otherwise present in MMSE restoration problems, while

at the same time not sacrificing any optimality properties. This

leads to the problem of finding covariance matrices of SAR models

that are diagonalized by fast transforms such as the FFT, sine or

cosine transforms. By appropriately imposing some assumptions

about the boundary pixels, covariance matrices which are diagonalized

by these fast trasnforms can be realized (10]. We have used one

such assumption, viz., that the images are represented on a

toroidal lattice. The use of the torus lattice representation

leads to the use of the FFT in the implementation of the filters,

for any arbitrary neighbor set.

Such fast restoration filters have been considered in the

literature [6-7] for different neighbor sets, using fast sine

transforms. There are several disadvantages in using this formu-

lation. Since the fast sine trasnforms diagonalize symmetric,

tridiagonal Toeplitz matrices, the decomposition schemes suggested

in (7] are valid only for isotropic neighbor sets. For instance,

for the neighbor set N = {(0,-l),(l,0),(-1,0)), it is required

that 0 =0_1,0 . However, our experiments with this model and
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the estimation scheme in Section 2 do not support this assumption.

Also, when neighbor sets like {(-1,O),(lO),(0,-1),(O,1),(1,l),

(-1,-i) ,(-1,l), (l,-1),(0,2),(,-2) ,(-2,O),(2,0) are considered,

the resulting covariance matrices have banded Toeplitz structures

and hence are not diagonalized exactly by sine transforms, so that

approximate methods are required. On the other hand, the approach

taken in this paper does not involve any such approximations. Given

that some assumptions have to be made -egarding the boundary

pixels, it is preferable to make assumptions which have more

general applicability.

The assumption of torus lattices can also be justified as

follows: We computed the noramlized autocorrelation function at

lower lags for different SAR models using the torus assumption

and also by Fourier inversion of the spectral density function

corresponding to some SAR models without the torus assumption.

The numerical values differ in the second or third decimal place.

Also, the torus assumption leads to an intuitively appealing

relationship, viz., the eigenvalues of the covariance matrix are

the two-dimensional discrete spectral density function.

We have also estimated the parameters of the underlying SAR

models. The need for good estimates can be explained as follows.

There is always a finite error in restoration; this error will be

greater if the parameters characterizing the SAR models are not

consistent or efficient. Though estimation schemes for unilateral

neighbor sets are simple, they are not so for the SAR models

considered here. By using the asymptotically consistent and



efficient estimates considered in this paper, the errors due to

incorrect model specification can be reduced.

Fast Fourier transforms for image restoration using Wiener

filters 11,171 have been considered earlier by approximating the

block Toeplitz covariance structures by block circulant matrices.

The important difference between the scheme developed here and

the earlier schemes is in the characterization of signal statistics.

The MMSE schemes need exact knowledge of the two-dimensional

spectral density function (SDF). In practice it is not known.

Hence, the true SDF is replaced by an estimate. Typical estimates

of the SDF can be obtained by making suitable assumptions regarding

the ACF as in [17], or by using estimates such as the FFTs of

empirical covarance matrices. The former scheme assumes very

simple functions for the ACF, while the latter uses inconsistent

estimates of the SDF. In our approach, the true two-dimensional

SDF is an explicit function of the parameters given by

S (0,p, 1 ,v 2 ) = p/1j11 (0) 12 , where v 1 =X 0i,v 2 = X0 j. By using
asymptotically consistent estimates like S (WpI1l2, as done

here, better performance can be achieved. Also, the underlying

structures of SAR models are more complicated and varied than that

of the simple causal model in [171.

*1-
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(b)

(d)

Fig.l. Restoration of a noisy image:

a) original

b) noisy SNR 7 db

s ) restored image (note the presence

_j. of lines due to blocking)

d) vertical lines removed

e) final restored image.



Figj. 2. Restoration of image Fig. 3. Similar to Fig. 2 with

containing blur (4.1) SNR 0 db.

and Gaussian noise
(1,1) :Original;
(1,2): Blurred image;

(1,3): Restored image, SNR =a

(2,1): Blur and noise (7 db);-

(2,2) : Restoration with N ={(,l (l0 -,l

(2,3)-. N ((10(,0,(,-);
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