DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRES--ETC(U) JAN 81 R B HURWITZ. L B CROOK DYNSROC/SPD-0833-06 NL AD-A094 342 UNCLASSIFIED 1 0=2 4D A 0948582 # DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER Bethesda, Maryland 20084 AD A 094 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRESENTING THE R/V ATHENA WITH AND WITHOUT THE BASS DYNAMOMETER BOAL N ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRESENTING THE R/V ATHENA WITH AND WITHOUT THE BASS DYNAMOMETER BOAT. bу Rae B. Hurwitz and L. Bruce/Crook APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED DTIC ELECT: FEB 2 1981 Ship Performance Department Departmental Report JANUARY 1981 DTNSRDC/SPD-0833-06 NDW-DTNSRDC 5602/30 (2-80) 81 2 2 U 68 # MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | REPORT DOCUMENTATION | READ INSTRUCTIONS BEFORE COMPLETING FORM | | | | |--|--|--|--|--| | 1. REPORT NUMBER | 2 GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | | | DTNSRDC/SPD-0833-06 | 7D AL 44 347 | | | | | 4. TITLE (and Subtitle) | | 5. TYPE OF REPORT & PERIOD COVERED | | | | ANALYSIS OF EXPERIMENTAL DATA FOR | MODEL 5365 | Final | | | | REPRESENTING THE R/V ATHENA WITH | AND WITHOUT THE | 6 PERFORMING ORG. REPORT NUMBER | | | | BASS DYNAMOMETER BOAT | | B. PERFORMING ONG. REPORT NUMBER | | | | 7. AUTHOR(a) | | B. CONTRACT OR GRANT NUMBER(#) | | | | RAE B. HURWITZ and L. BRUCE CROOK | | NOO167-78-C-0089 | | | | | Ì | · · | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | | DAVID TAYLOR NAVAL SHIP R & D CEN | men | PROGRAM ELEMENT 63508N | | | | BETHESDA, MARYLAND 20084 | IEK | TASK AREA S0379001 TASK 1997 | | | | 11. CONTROLLING OFFICE NAME AND ADDRESS | | 12. REPORT CALE | | | | NAVAL SFA SYSTEMS COMMAND (NAVSEA | 05R) | JANUARY 1981 | | | | WASHINGTON, D.C. 20362 | · . | 13 NUMBER OF PAGES | | | | | | 171 + XVI 15. SECURITY CLASS. (of this report) | | | | 14 MONITORING AGENCY NAME & ADDRESS(If differen | f from Conffolling Office) | (5. SECURITY CEASS. [of Inte report) | | | | | | Unclassified | | | | | ı | 154. DECLASSIFICATION DOWNGRADING SCHEDULE | | | | 16 DISTRIBUTION STATEMENT (of this Report) | | | | | | Approved for public release: Di | | • • • • | | | | | | | | | | | | | | | | 17. DISTRIBUTION STATEMENT (of the abstract entered | in Block 20, if different from | m Report) | 18 SUPPLEMENTARY NOTES | | | | | | | | | | | | | | | | | | 19 KEY WORDS (Continue on reverse side if necessary an | d Identify by black sumbers | | | | | | | | | | | Wake survey; R/V ATHENA; Wake scr | een; Inclined flo | ow; Bass dynamometer boat | | | | | | i | | | | | | (| | | | ABSTRACT (Continue on reverse side if necessary and | identify by block number) | | | | | This report describes a series of overall project of the David Ta | | | | | | Center (DTNSRDC) to adapt controllable pitch propellers to the needs of high | | | | | | speed combatant ships. The first set of experiments was conducted on a model | | | | | | of the R/V ATHENA with and withour | | | | | | second set repeated the first, examounted aft of the model. The th | | | | | | moder, the th | iru set was a sei | ries of fuedfized wake (over) | | | | S FORM SAME | | | | | distribution experiments, in which the model was removed and the pitot rake was mounted upstream of the Bass Boat. The effect of an operating port propeller on the mean starboard wake distribution and the harmonic content of the wake was small. The presence of the Bass Boat behind the ATHENA model, however, affects both the mean values and the harmonic content of the wake. Finally, one idealized mean wake distribution was shown to be weakly dependent on speed, and the harmonic content of wakes at two different speeds differed by less than three percent. - 9. SHIP PERFORMANCE DEPARTMENT - 10. Work Unit Number 1524-641 # TABLE OF CONTENTS | F | age | |--|------| | LIST OF FIGURES | iv | | LIST OF TABLES | ix | | NOTATION | xiii | | ABSTRACT | 1 | | ADMINISTRATIVE INFORMATION | 1 | | INTRODUCTION | 2 | | EXPERIMENTAL PROCEDURE | 3 | | ACCURACY ASSESSMENT | 7 | | PRESENTATION AND DISCUSSION OF RESULTS | 7 | | CONCLUSIONS | 14 | | TEFFERENCES | 16 | | APPENDIX A - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 3 AND 9 | . 31 | | APPENDIX B - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 10 | . 61 | | APPENDIX C - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 11 | . 77 | | APPENDIX D - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 12 | . 93 | | APPENDIX E - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 13 | .109 | | APPENDIX F - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 14 | .125 | | APPENDIX G - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 15 | .141 | | APPENDIX H - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 16 | .157 | # LIST OF FIGURES | | | Page | |------|--|------| | 1 - | Rake Arrangement Sketch Showing Five Spherical Head Pitot Tubes with Five Holes Each | 17 | | 2 ~ | Rake Arrangement Photographs Showing Installation in Starboard Shaft of Model 5365 During Experiments 3 and 9 Without Port Propeller | 18 | | 3 - | Sketch Illustrating Location of Wake Survey Experimental Radii on Model 5365 Afterbody Sections Representing the R/V ATHENA | 19 | | 4 - | Rake Arrangement Photograph Showing Closeup Profile View of Installation in Starboard Shaft of Model 5365 Without Port Propeller | 20 | | 5 - | Rake Arrangement Photograph Showing Closeup Quartering View of Installation in the Starboard Shaft of Model 5365 Without Port Propeller | 21 | | 6 - | Rake Arrangement Photograph Showing Installation in Bass
Dynamometer Boat, Model 5271, Mounted Behind Starboard
Shaft of Model 5365 With and Without Port Propeller as
During Experiments 11 and 12 | 22 | | 7 - | Rake Arrangement Photograph Showing Bass Dynamometer Boat Mounted for 20 Degree (0.349 radian) Inclined Idealized Flow Wake Experiment 13 | 23 | | 8 - | Wake Screen Photograph Showing Downstream View at Spherical Head Pitot Tubes Used for Idealized Flow Experiment 14 | 24 | | 9 - | Schematic of Wake Screen Wire Sections and Sizes Used for Idealized Flow Experiment 14 | 25 | | 10 ~ | Wake Screen Photograph Showing Upstream View Into the Flow for Idealized Flow Experiment 14 | 26 | | 11 - | Bass Dynamometer Boat Mounted Behind the Wake Screen Photograph Showing Arrangement of Pitot Tubes for Idealized Flow Experiment 14 | 27 | | 12 - | Bass Dynamometer Boat Mounted for 10 Degree (0.174 radian) Inclined Idealized Flow Wake Photograph Showing Spacer Block Used for Experiments 15 and 16 | 28 | | A-1 | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiments 3 and 9 | 32 | | | | Page | |--------|---|------| | A-2 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiments 3 and 9 | 33 | | A-3 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiments 3 and 9 | 34 | | A-4 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiments 3 and 9 | 35 | | A-5 - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 3 | 36 | | A-6 - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 3 | 37 | | A-7 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 9 | 38 | | A-8 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 9 | 39 | | A-9 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 9 | 40 | | A-10 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 9 | 41 | | A-11 - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 9 | 42 | | A-12 - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 9 | 43 | | B-1 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 | | | | for Experiment 10 | 62 | | B-2 - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 10 | 63 | | | | U.J | | | | | Page | |-----|---|---|------| | B-3 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 10 | 64 | | B-4 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio $\approx
0.963$ for Experiment 10 | 65 | | B-5 | - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 10 | 66 | | B-6 | - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 10 | 67 | | C-1 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 11 | 78 | | C-2 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 11 | 79 | | C-3 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 11 | 80 | | C-4 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 11 | 81 | | C-5 | - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 11 | 82 | | C-6 | - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 11 | 83 | | D-1 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 12 | 94 | | D-2 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 12 | 95 | | D-3 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 12 | 96 | | | | | Page | |-----|---|---|------| | D-4 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 12 | 97 | | D-5 | - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 12 | 98 | | D-6 | - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 12 | 99 | | E-1 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 13 | 110 | | E-2 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 13 | 111 | | E-3 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 13 | 112 | | E-4 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 13 | 113 | | E-5 | - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 13 | 114 | | E-6 | - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 13 | 115 | | F-1 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 14 | 126 | | F-2 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 14 | 127 | | F-3 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 14 | 128 | | F-4 | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 14 | 129 | | | | | Page | |-------|---------|---|------| | F-5 | - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 14 | 130 | | F-6 | - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 14 | 131 | | G-1 · | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 15 | | | G-2 - | _ | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 15 | | | G-3 - | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 15 | | | G-4 - | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 15 | 145 | | G-5 - | - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 15 | 146 | | G-6 - | - | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 15 | 147 | | н-1 - | - | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 16 | 158 | | H-2 - | | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 16 | 159 | | н-3 - | _ | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 16 | 160 | | H-4 - | _ | Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 16 | 161 | | Н-5 - | - | Radial Distribution of the Mean Velocity Component Ratios for Experiment 16 | 162 | | н-6 | | Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 16 | 163 | # LIST OF TABLES | | | | Page | |-------------|---|--|------| | 1 | _ | Ship and Model Characteristics, R/V ATHENA Represented by Model 5365 | 29 | | 2 | - | Experimental Program | 30 | | A-1 | - | Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 3 | 44 | | A-2 | _ | Listing of the Mean Velocity Component Ratios, the Mean
Advance Angles and Other Derived Quantities at the
Experimental and Interpolated Radii for Experiment 3 | 45 | | A-3 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 3 | 46 | | A-4 | _ | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 3 | 47 | | A- 5 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 3 | 49 | | A-6 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 3 | 50 | | A- 7 | _ | Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 9 | 52 | | A-8 | - | Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 9 | 53 | | A-9 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 9 | 54 | | A-10 | _ | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 9 | 55 | | A-11 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 9 | 57 | | A-12 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 9 | 58 | | B-1 | - | Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 10 | 68 | | B-2 | - | Listing of the Mean Velocity Component Ratios, the Mean
Advance Angles and Other Derived Quantities at the
Experimental and Interpolated Radii for Experiment 10 | 69 | # LIST OF TABLES (Continued) | | | Pa | ge | |-----|------------|--|-----| | B-3 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 10 | 70 | | B-4 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 10 | 71 | | B-5 | | Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 10 | 73 | | B-6 | _ - | Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 10 | 74 | | C-1 | - | Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 11 | 84 | | C-2 | - | Listing of the Mean Velocity Component Ratios, the Mean
Advance Angles and Other Derived Quantities at the
Experimental and Interpolated Radii for Experiment 11 | 85 | | C-3 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 11 | 86 | | C-4 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 11 | 87 | | C-5 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 11 | 89 | | C-6 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 11 | 90 | | D-1 | _ | Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 121 | .00 | | D-2 | - | Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 121 | .01 | | D-3 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 12 | .02 | | D-4 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 12 | .03 | | D-5 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for
Experiment 12 | .05 | | D-6 | - | Harmonic Analyses of Tangential Velocity Component Ratios | 06 | # LIST OF TABLES (Continued) | | | · · · · · | Page | |------|---|--|------| | E-1 | - | Input Data for Harmonic Analysis for R/V ATHENA with Bass Dynamometer Boat, Experiment 13 | 116 | | E-2 | - | Listing of the Mean Velocity Component Ratios, the Mean
Advance Angles and Other Derived Quantities at the
Experimental and Interpolated Radii for Experiment 13 | 117 | | E-3 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 13 | 118 | | E-4 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 13 | 119 | | E-5 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 13 | 121 | | E-6 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 13 | 122 | | F-1 | - | Input Data for Harmonic Analysis for R/V ATHENA with Bass Dynamometer Boat, Experiment 14 | 132 | | F-2 | _ | Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 14 | 133 | | F- 3 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 14 | 134 | | F-4 | _ | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 14 | 135 | | F-5 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 14 | 137 | | F-6 | - | Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 14 | 138 | | G-1 | _ | Input Data for Harmonic Analysis for R/V ATHENA with Bass Dynamometer Boat, Experiment 15 | 148 | | G-2 | - | Listing of the Mean Velocity Component Ratios, the Mean
Advance Angles and Other Derived Quantities at the
Experimental and Interpolated Radii for Experiment 15 | 149 | | G-3 | - | Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 15 | 150 | # LIST OF TABLES (Continued) | | Page | |--|-------| | G-4 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 15 | 151 | | G-5 - Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 15 | 153 | | G-6 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 15 | . 154 | | H-1 - Input Data for Harmonic Analysis for R/V ATHENA with Bass
Dynamometer Boat, Experiment 16 | . 164 | | H-2 - Listing of the Mean Velocity Component Ratios, the Mean
Advance Angles and Other Derived Quantities at the
Experimental and Interpolated Radii for Experiment 16 | . 165 | | H-3 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 16 | . 166 | | H-4 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 16 | . 167 | | H-5 - Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 16 | . 169 | | H-6 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 16 | . 170 | # NOTATION | CONVENTIONAL SYMBOL | SYMBOL APPEARING ON PLOTS | DEFINITION | |---|---------------------------|---| | A_{N} | COS COEF | The cosine coefficient of the Nth harmonic* | | B _N | SIN COEF | The sine coefficient of the Nth harmonic* | | D | | Propeller diameter | | J _V | | Apparent advance coefficient $J_{V} = \frac{V}{nD}$ (dimensionless) | | N | N | Harmonic number | | n | | Propeller revolutions | | r/R or x | R a dius or RAD. | Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R) | | V | v | Actual model or ship velocity | | $V_{\mathbf{b}}(\mathbf{x}, \boldsymbol{\theta})$ | | Resultant inflow velocity to blade for a given point | | $\overline{V}_{l_{i}}(x)$ | | Mean resultant inflow velocity to blade for a given radius | | $V_{\mathbf{r}}(\mathbf{x}, \boldsymbol{\theta})$ | VR | Radial component of the fluid velocity for a given point (positive toward the shaft centerline) | | $\overline{\mathbb{V}}_{\mathbf{r}}(\mathbf{x})$ | | Mean radial velocity component for a given radius | | $V_{\mathbf{r}}(\mathbf{x},\theta)/V$ | VR/V | Radial velocity component ratio for a given point | | $\overline{V}_{\mathbf{r}}(\mathbf{x})/V$ | VRBAR | Mean radial velocity component ratio for a given radius | | Υ _t (x,θ) | VT | Tangential component of the fluid velocity for a given point (positive in a counterclockwise direction looking forward) | ^{*}See footnote on the following page | | MOTATION (CONCING | EU) | |---|-------------------|--| | $\overline{V}_{t}(x)$ | *** | Mean tangential velocity component for a given radius | | $v_{t}^{(x,\theta)/V}$ | VT/V | Tangential velocity component ratio for a given point | | $\overline{V}_{t}(x)/V$ | VTBAR | Mean tangential velocity component ratio for a given radius | | $(\widetilde{V}_{t}(\mathbf{x})/V)_{N}$ | AMPLITUDE | Amplitude (B for single screw symmetric; C_N^N otherwise) of Nth | | | | harmonic of the tangential velocity component ratio for a given radius? | | $v_{\mathbf{x}}^{(\mathbf{x},\mathbf{x})}$ | VX | Longitudinal (normal to the plane of survey) component of the fluid velocity for a given point (positive in the astern direction) | | $\overline{v}_{\mathbf{x}}(\mathbf{x})$ | | Mean longitudinal velocity com-
ponent for a given radius | | $V_{\mathbf{x}}(\mathbf{x}, \mathbf{\theta})/V$ | VX/V | Longitudinal velocity component ratio for a given point | | $\overline{v}_{\mathbf{x}}(\mathbf{x})/v$ | VXBAR | Mean longitudinal velocity component ratio for a given radius | | $(\widetilde{\mathbf{v}}_{\mathbf{x}}(\mathbf{x})/\mathbf{v})_{\mathbf{N}}$ | AMPI.ITUDE | Amplitude (A _N for single screw symmetric; C _N otherwise) of Nth harmonic of the longitudinal velocity component ratio for a given radius* | | ϕ_{N} | PHASE ANGLE | Phase Angle of Nth harmonic* | *The harmonic amplitudes of any circumferential velocity distribution $\ f\left(\theta\right)$ are the coefficients of the Fourier Series: $$f(\theta) = A_0 + \sum_{N=1}^{N} A_N \cos(N\theta) + \sum_{N=1}^{N} B_N \sin(N\theta)$$ $$= A_0 + \sum_{N=1}^{N} C_N \sin(N\theta + \phi_N)$$ #### NOTATION (Continued) 1-w(x) 1-WX Volumetric mean velocity ratio from the hub to a given radius $$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \sqrt{(\overline{V}_{x_c}(x)/V) \cdot x \cdot dx} \\ \frac{r_{hub}/R}{(r/R)^2 - (r_{hub}/R)^2} \end{bmatrix}$$ where $$\overline{V}_{\mathbf{c}}(\mathbf{x}) = \int_{0}^{\infty} \left[\frac{V_{\mathbf{c}}(\mathbf{x}, \hat{\boldsymbol{\theta}})}{2^{\frac{1}{12}} V} \right] d\hat{\boldsymbol{\theta}}$$ and $v_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)/v) = (v_{\mathbf{x}}(\mathbf{x},\theta)/v) - (v_{\mathbf{t}}(\mathbf{x},\theta)/v) \text{ tan } (\theta(\mathbf{x},\theta))$ 1-wv(x) 1-MAX Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction) $$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \sqrt{(\overline{v}_{x}(x)/V) \cdot x \cdot dx} \\ r_{hub}/R \\ \hline (r/R)^{2} - (r_{hub}/R)^{2} \end{bmatrix}$$ $\beta(\mathbf{x},\theta)$ Advance angle in degrees for a given point $\vec{\beta}(\mathbf{x})$ BBAR Mean advance angle in degrees for a given radius + A B BPOS Variation of the maximum advance angle from the mean for a given radius #### NOTATION (Continued) - A B BNEG Variation of the minimum advance angle from the mean for a given radius Angle in Degrees Position angle (angular coordinate) in degrees #### VELOCITY DIAGRAM OF BETA ANGLES #### ENGLISH/SI EQUIVALENTS | ENGL1SH | | SI | |---------|-------------------|--| | 1 | inch | 25.400 millimeters [0.0254 m (meters)] | | 1 | toot | 0.3048 m (meters) | | 1 | foot per second | 0.3048 m/sec (meters per second) | | 1 | knot | 0.5144 m/sec (meters per second) | | 1 | pound (force) | 4.4480 N (Newtons) | | l | degree (angle) | 0.01745 rad (radians) | | 1 | horsepower | 0.7457 kW (kilowatts) | | 1 | long ton | 1.016 metric tons or 1016 kilograms | | 1 | inch water (60°F) | 248.8 pa (pascals) | xvi #### ABSTRACT This report describes a series of model experiments conducted as part of the overall project of the David Taylor Naval Ship R&D Center (DTNSRDC) to adapt controllable pitch propellers to the needs of high speed combatant ships. The first set of experiments was conducted on a model of the R/V ATHENA, with and without the port propeller operating. The second set of experiments repeated the first, except that the Bass Dynamometer Boat was mounted aft of the model. The third set was a series of idealized wake distribution experiments, in which the model was removed and the pitot rake was mounted upstream of the Bass Boat. The effect of an operating port propeller on the mean starboard wake distribution was small. The presence of the Bass Boat behind the ATHENA model, however, affects both the mean values and the harmonic content of the wake. Finally, one idealized mean wake
distribution was shown to be weakly dependent on speed, and the harmonic content of wakes at two different speeds differed by less than three percent. #### ADMINISTRATIVE INFORMATION The experimental program was initiated and funded by the Naval Sea Systems Command (NAVSEA 05R) under Task Area S0379001. This work was performed at the David Taylor Naval Ship R&D Center (DTNSRDC) under work unit number 1524-641. The preliminary data analysis was performed by Chi Associates, Inc. (CAI) under contract to DTNSRDC. #### INTRODUCTION As part of its overall project to adapt controllable pitch propellers to the needs of high speed combatant ships, the David Taylor Naval Ship Research and Development Center (DTNSRDC) conducted a full-scale wake survey aboard the R/V ATHENA in September 1977 as reported by Day et al. The specific goal of this project was to obtain propeller disk velocity component ratios in the wake of a full-scale ship. In addition, propeller blade loading experiments have been completed for the R/V ATHENA. Subsequent to the full-scale wake trials, a series of wake surveys were conducted on a model of the R/V ATHENA. These experiments were designed to evaluate the model wake at one propeller location, both with and without the other propeller operating. In addition, wake survey experiments were conducted with and without the Bass Dynamometer Boat mounted aft of the model. The Bass Dynamometer Boat was used in the blade loading experiments to drive the propeller and dynamometry systems from behind the model. The wake information was necessary to account for the effect of the Bass Boat on the flow into the propeller in the analysis of the blade loading experiments. Several idealized wake distributions were measured, and will be used for blade loading calculations for a propeller operating in an idealized wake. An idealized wake is the breaking down of a wake field into a purely longitudinally dominated wake by a wake screen or a purely tangentially dominated wake by inclining the flow angle. The blade loading calculations for the R/V ATHENA will be compared with experimental force measurements on a model propeller to help determine the validity of the load calculation method and will be reported later. References are listed on page 16. #### EXPERIMENTAL PROCEDURE The experiments described in this report measured the propeller disk velocity components under a variety of operating conditions. In the first set of experiments (Experiments 3, 9 and 10), wake measurements were obtained from the starboard propeller plane of the model with, and without the port propeller operating. In the second set (Experiments 11 and 12), measurements were taken with the model followed by the Bass Dynamometer Boat, with and without the port propeller operating. The third set of experiments (Experiments 13 through 16) consisted of idealized wake surveys. The ATHENA model was removed, and a pitot tube rake was mounted ahead of the Bass Dynamometer Boat. These experiments were run behind a screen which provided an idealized wake distribution. DTNSRDC Model 5365, representing the R/V ATHENA (PG-94), was constructed to a linear ratio of 8.250, in accordance with model specifications of the Mayal Sea Systems Command (NAVSEA 05R). Model and ship characteristics are presented in Table 1. The model was fitted with shafts and struts, a centerline skeg, and stabilizer fins. Model rudders were not included. DTSSRDC pitot tube rake number 7 was mounted in the model through the starboard shafting. Differential pressure gauges were used to measure the velocities in the plane of the propeller at four radial locations. A sketch of the pitot rake on the model is shown in Figure 1. The rake as fitted to Model 5365, including the five-hole spherical pitot tubes, is shown in Figure 2. The DTNSRDC Bass Dynamometer Boat (Model 5271) was employed in all but the first three experiments. It was mounted in the same location in which it had previously been run to study unsteady propeller blade forces behind a model, and was later mounted behind the pitot rake and wake screen. The experimental program, as it pertains to this report, is described in Table 2. The experiments being discussed are 3 and 9 through 16. All the other experiments (1, 2, and 4 through 8) are discussed in another report by Hurwitz and Crook². Experiment 3 was a conventional wake survey experiment which measured the Model 5365 starboard wake without the port propeller operating in the initial setup. Experiment 9 repeated this test to verify that the model conditions were essentially unchanged in the second setup from the original. For Experiment 10, with the port propeller operating, the model conditions from Experiments 3 and 9 were duplicated. Experiments 11 and 12 were again conventional wake surveys, with the pitot tube rake mounted from inside the starboard shaft; but the Bass Dynamometer Boat was attached downstream of the ATHENA model. Experiment 11 was conducted without the port propeller, and Experiment 12 with the port propeller operating. A sketch of the experimental radii taken with the pitot tube arrangement behind the hull sections is shown in Figure 3. Figures 4 and 5 are profile and quartering photographs of the pitot tube rake and the ATHENA model. Figure 6 shows the experimental setup during Experiments 11 and 12. Experiments 13 through 16 were conducted to create idealized wakes. Data from these wake surveys were required to perform calculations of unsteady blade loads for comparison with experimental results. Experiment 13 modeled an uniform flow with the rake inclined at 20 degrees (0.349 radian), as shown in Figure 7. Experiment 14 was performed to measure the flow behind a one-cycle wake screen with the bass dynamometer boat and rake both at zero degree inclination. Figures 8 through 10 show the wake screen used, and Figures 11 and 12 show the experimental setups. Finally, Experiments 15 and 16 were uniform flow surveys at ten degrees (0.175 radian) inclination of the bass dynamometer boat and rake at model speeds corresponding to full-scale speeds of 17.2 and 8.6 knots (8.8 and 4.4 m/s), respectively. Also the single cycle wake screen was removed during Experiments 15 and 16. The full-scale propeller disk was 6 feet (1.83 meters) in diameter. The radii at which measurements were made, expressed as ratios of the propeller radius (r/R), were 0.456, 0.633, 0.781, and 0.963. The plane in which the velocity measurements were taken was the starboard propeller plane located 146.2 feet (44.56 meters) aft of the forward perpendicular. The ATHENA displacement was 263 tons (267 metric tons), and the model trim was locked at a speed corresponding to a 20 knot (10.3 meter/second) ship speed, with the pitot rake in the zero degree position. The wake measurement system consisted of a pitot tube rake and four differential pressure gages. The rake has five 5-hole spherical pitot tubes mounted in a common housing. Measurements were not made using the innermost pitot tube because of the flow interference between the pitot tube and the propeller hub. Figure 1 shows the arrangement of the rake and the pitot tubes. A description of the use and the calibration of 5-hole tubes is given by Hadler and Cheng. The carriage computer integrated the four pressure signals from each pitot tube, the model speed, and the angular position of the rake, over a 5-second period. Digital voltmeters and frequency counters monitored the computer values. The computer collected the pressure data for each of the four pitot tubes. The rake was then rotated to a new angle, and the procedure was repeated until data were obtained throughout the entire rotation of the rake in the propeller disc. Velocity component ratios were computed from the pressure data using established computer programs. The circumferential distributions of the longitudinal, tangential, and radial velocity component ratios were plotted for each radial location. Plots of the data were generated by a Control Data Corporation (CDC) Computer using a CALCOMP Plotter. Data were checked for random errors and agreement with previous experiments. Interpolation of the velocity component ratios in the radial and circumferential directions was made. This process yielded interpolated data every 2.5 degrees (0.044 radians) for four experimental radii, and for additional selected radii (interpolated radii). The mean longitudinal, tangential, and radial velocity component ratios; the volumetric mean wake; and the mean and extreme values of the advance angles were computed and are presented in this report. The advance angles were calculated using an advance coefficient, J_{v} , of 0.739. Explanation of this terminology and a diagram showing the relationship among the velocity vectors, the advance coefficient. and the advance angles are presented in the "Notation" section of this report. Harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios were computed for the experimental data. The harmonic content was determined by Fourier series analysis. The results of the harmonic analyses are presented as amplitudes and phase angles of a sine series. #### ACCURACY ASSESSMENT The instrumentation accuracy and the repeatability of wake survey experiments have been discussed in detail by Hadler and Cheng, ³ and Day ⁴. The mean velocity component ratios and the harmonic amplitudes of these ratios all repeat within one percent of the model velocity. The accuracy of the entire velocity survey measurement system was also determined to be one percent of the model velocity, except in flow regions where steep velocity gradients occur, such as behind a shaft strut. In these high gradient regions, the accuracy was shown to be much less. These error bounds were derived for wake surveys calculated at model speeds of at least four knots, with the accuracy decreasing at lower speeds. All data comparisons which follow
will be referenced to the model velocity. Since the accuracy is on the order of one percent of the model velocity, higher order harmonics, whose amplitudes tend to be less than one percent of model velocity, cannot be considered to be as accurate as the mean values and lower order harmonics. The small higher order harmonics do not make a significant contribution to the reproduction of the velocity component ratios, though they do contribute to moments and forces calculated from the wake harmonics. #### PRESENTATION AND DISCUSSION OF RESULTS EXPERIMENTS 3, 9, AND 10 - EFFECT OF OPERATING PORT PROPELLER ON CONVENTIONAL WAKE SURVEYS Experiments 3, 9, and 10 were conventional wake surveys of the starboard propeller plane of the R/V ATHENA (Model 5365). Experiment 3 was conducted without the port propeller operating, Experiment 9 was a check of Experiment 3, and Experiment 10 was identical to Experiment 3, except that the port propeller was operating. A listing of the input data for Experiment 3 (without the port propeller operating) is presented in Table A-1, of Appendix A. The circumferential distribution of the longitudinal, tangential, and radial velocity component ratios from Experiment 3 are shown in graphical form for each pitot tube radius in Figures A-1 through A-4. Included in these figures are the data from Experiment 9, which agree with the data for Experiment 3. The mean longitudinal (VXBAR), tangential (VTBAR), and radial (VRBAR) velocity component ratios, and the volumetric mean wake (1-WX) are presented in Table A-2. These quantities, except the radial mean, are presented graphically in Figure A-5. The calculated mean values of the advance angle (BBAR), and the extreme variations (BPOS and BNEG) are shown in Figure A-6 and Table A-2. Tables A 3 through A-6 present the harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii. The results are presented in a similar form for Experiment 10 (with the port propeller operating). The circumferential distributions of the velocity component ratios are presented in Appendix B as Figures B-1 through B-4, the input data are listed in Table B-1, and mean values are presented in Figures B-5 and B-6, and Table B-2. The results of the harmonic analyses are presented in Tables B-3 through B-6. When the results from Experiments 3 and 10 are compared, only small differences are seen. The mean values for the input radii of longitudinal, tangential, and radial velocity listed in Tables A-2 and B-2 agree in most cases to within one percent of the freestream velocity. The circumferential mean values from Experiment 3 are not consistently higher or lower than those from Experiment 10. The results of the harmonic analyses compare just as favorably. For example, at the input radii, the amplitudes of all harmonics of the longitudinal, tang atial, and radial velocity component ratios differ by less than one percent of freestream. The phase angles, however, are different at several radii. The good agreement of the data, all within experimental accuracy, for Experiments 3 and 10, indicates only a small effect on the starboard wake is realized when the port propeller is operating. EXPERIMENTS 11 AND 12 - EFFECT OF OPERATING PORT PROPELLER IN FRONT OF BASS DYNAMOMETER BOAT MOUNTED DOWNSTREAM Experiments 11 and 12 were conventional wake surveys on the starboard propeller plane of the R/V ATHENA (Model 5365), with the Bass Dynamometer Boat (Model 5271) mounted downstream. This setup physically modeled the unsteady blade force experiments mentioned previously. Experiment 11 was conducted without the port propeller operating, and Experiment 12 was identical to Experiment 11, except that the port propeller was operating. The circumferential distribution of the longitudinal, tangential, and radial velocity component ratios for Experiment 11 are shown graphically for each pitot tube radius in Appendix C as Figures C-1 through C-4. A listing of the input data is presented in Table C-1. The mean longitudinal, tangential, and radial velocity component ratios and the volumetric mean wake are presented in Figure C-5 and Table C-2. The calculated mean and extreme values of the advance angles are also shown in Table C-2 and in Figure C-6. Tables C-3 through C-6 present the results of harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii. The results are presented in a similar form for Experiment 12. The circumferential distributions of the velocity component ratios are presented in Figures D-1 through D-4, the input data is listed in Table D-1, and the mean values are presented in Figures D-5 and D-6, and in Table D-2. The harmonic analyses are presented in Tables D-3 through D-6. When the results from Experiments 11 and 12 are compared, only small differences are seen. The mean values of the longitudinal, tangential, and radial velocity component ratios for the input radii all agree to within one percent of freestream. At each radius, the longitudinal mean velocity component ratio is slightly higher with the port propeller operating (Experiment 12). However, the values are so hearly the same that no conclusions can be drawn regarding the trend. The results of the harmonic analyses also compare favorably. For example, at the input radii, the amplitudes of the first harmonic of the longitudinal velocity component ratios differ less than one percent of freestream. The phase angles, however, are different for several of the radii. The harmonics of the tangential velocity component ratios also show good agreement, with the differences being very small compared to free-stream with good phase angle agreement. These results further verify the earlier conclusions that with the port propeller operating only a small effect on the starboard wake distribution is realized. #### EXPERIMENTS 9 AND 11 - EFFECT OF BASS DYNAMOMETER BOAT MOUNTED DOWNSTREAM The results already presented from Experiments 9 and 11 can be compared to determine the effect of the Bass Dynamometer Boat on the ATHENA model wake. The differences are very significant. The mean values of the longitudinal velocity component ratios in Tables A-2 and C-2 showed differences of 10 to 20 percent of the model velocity. The longitudinal velocity component ratios were always smaller with the Bass Dynamometer Boat behind the ATHENA model, as expected. The tangential and radial mean ratios also changed, though no consistent trend was evident. The harmonics of the longitudinal velocity component ratios showed some differences. For example, the amplitude of the first harmonic is slightly less when the Bass Boat is present; however, the fifth harmonic shows the opposite trend, that is, slightly higher when the Bass Boat is present. The tangential harmonics differ only slightly. For example, the amplitudes of the first harmonic taken with the Bass Boat differed by about 2 percent of freestream when compared to the amplitudes of the first harmonic without the Bass Boat. #### EXPERIMENT 13 - IDEALIZED WAKE SURVEY AT LARGE INFLOW ANGLE Experiment 13 was an idealized wake survey conducted with the Bass Dynamometer Boat downstream of only the pitot tube rake, that is, no ATHENA model was present for this experiment or single cycle wake screen. The rake inclination to the direction of travel was 20 degrees (0.349 radians). The circumferential distribution of the longitudinal, tangential, and radial component ratios for Experiment 13 are shown graphically for each pitot tube radius in Figures E-1 through E-4. A listing of the input data is presented in Table E-1. The mean longitudinal, tangential, and radial velocity component ratios and the volumetric mean wake are presented in Table E-2 and Figure E-5. The calculated mean and extreme values of the advance angles are shown in Figure E-6 and Table E-2. Tables E-2 through E-6 present the results of harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios. The mean values presented in Table E-2 are not uniform for all radii, though all differences are less than three percent of model velocity. The circumferential mean values of velocity components for this experiment indicate that the Bass Dynamometer Boat not only retards the flow, but also has a small effect on the radial distribution of the flow. # ENPERIMENT 14 - IDEALIZED WAKE SURVEY WITHOUT ANY INFLOW ANGLE BEHIND A WAKE SCREEN Experiment 14 was an idealized wake survey conducted with the Bass Dynamometer Boat mounted at zero degree inclination downstream of a one-cycle wake screen. The results are presented in a form similar to Experiment 13. The circumferential velocity component distributions are presented in Figures F-1 through F-4, the input data are listed in Table F-1, and the mean values are presented in Figures F-5 and F-6 and Table F-2. The results of harmonic analyses are presented in Tables F-3 through F-6. The circumferential distributions shown in Figures F-1 through F-4 indicate that the wake screen did indeed produce a one-cycle wake with a peak-to-peak variation to longitudinal velocity component ratio of about 0.3. Table F-2 indicates that the mean longitudinal velocity component ratio is about 0.63. The longitudinal harmonics presented in Table F-3 indicate that even though the wake has only one cycle the higher harmonics are still significant. EXPERIMENTS 15 AND 16 - EFFECT OF SPEED ON IDEALIZED WAKE SURVEY Experiments 15 and 16 were idealized wake surveys conducted with only the Bass Dynamometer Boat downstream of the pitot tube rake. There was no single cycle wake screen during these experiments. The rake inclination to the direction of travel was ten degrees for both experiments. Experiment 16 was identical to Experiment 15, except that the towing speed of Experiment 16 was
one-half that of Experiment 15. The circumferential distribution of the longitudinal, tangential, and radial velocity component ratios for Experiment 15 are shown in Figures G-1 through G-4. A listing of the input data is presented in Table G-1. The mean longitudinal, tangential, and radial velocity component ratios and the volumetric mean wake are presented in Table G-2 and Figure G-5. The calculated mean and extreme values of the advance angles are shown in Figure G-6 and Table G-2. Tables G-3 through G-6 present the results of harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii. The results are presented in similar form for Experiment 16. The circumferential velocity component distributions are presented in Figures H-1 through H-4, the input data are listed in Table H-1, and the mean values are presented in Figures H-5 and H-6 and in Table H-2. The results of harmonic analyses are presented in Tables H-3 through H-6. When the results from Experiments 15 and 16 are compared, only small differences are noted. The differences between mean values presented in Tables G-2 and H-2 are not significant with a maximum difference of about one percent of model velocity in the longitudinal mean, and a maximum difference in the tangential and radial means of less than one percent. The harmonics do not compare as favorably as the mean values, although the amplitudes of the first harmonic of the tangential velocity component ratios at the input radii differ by less than three percent of model velocity. The amplitudes of the first harmonic for the longitudinal ratios are in better agreement with the maximum difference being less than one percent of model velocity. These small differences indicate this idealized wake is only weakly dependent on speed. #### CONCLUSIONS - (1) The effect due to the port propeller operating on the starboard mean wake distribution is small. This effect was illustrated twice and established no noticeable trends in the mean velocity component ratios. - (2) The Bass Dynamometer Boat mounted aft of the R/V ATHENA very significantly affects the mean longitudinal velocity component ratios. These mean longitudinal velocity component ratios with and without the Bass Dynamometer Boat differ by 10 to 20 percent. The results of the harmonic analyses show smaller trends. The radial distribution of the flow is also slightly influenced. - (3) The Bass Dynamometer Boat affects each radius differently due to the bass dynamometer blunt bow causing greater flow obstruction when at a 20 degree inclination. - (4) When a single cycle wake screen is mounted upstream of the Bass Dynamometer Boat, both at zero inclined angle, the wake screen affects the peak to peak fluctuations in the longitudinal velocity component ratios. These peak to peak fluctuation ranges are half the total mean longitudinal velocity component ratio values. The single cycle wake screen affects the higher harmonics significantly. - (5) The idealized flow wake surveys show a weak dependence upon velocity when the Bass Dynamometer Boat and rake are mounted at a ten degree angle of inclination to the free surface without any single cycle wake screen present. #### REFERENCES - 1. Day, W. G., Jr., A. M. Reed, R. B. Hurwitz, "Full-Scale Propeller Disk Wake Survey and Boundary Layer Velocity Profile Measurements on the 154-Foot Ship R/V ATHENA," DTNSRDC Ship Performance Department Report DTNSRDC/SPD-0833-01 (Sep 1980). - 2. Hurwitz, R. B. and L. B. Crook, "Analysis of Wake Survey Experimental Data for Model 5365 Representing the R/V ATHENA in the DTNSRDC Towing Tank," DTNSRDC Ship Performance Department Report DTNSRDC/SPD-0833-04 (Oct 1980). - 3. Hadler, J. B. and H. M. Cheng, "Analysis of Experimental Wake Data in Way of Propeller Plane of Single- and Twin- Screw Ship Models," Trans. Soc. Naval Arch. and Mar. Eng., Vol. 73, pp. 287-414 (1965). - 4. Day, W. G., Jr., "Effect of Speed on the Wake in Way of the Propeller Plane for the DD 963 Class Destroyer Represented by Model 5265-1B," NSRDC Ship Performance Department Report SPD-311-37 (Jun 1975). Figure 1 - Rake Arrangement Sketch Showing Five Spherical Head Pitot Tubes with Five Holes Each PSD 0604-5-78-2 Figure 2 - Rake Arrangement Photographs Showing Installation in Starboard Shaft of Model 5365 During Experiments 3 and 9 Without Port Propeller Figure 3 - Sketch Illustrating Location of Wake Survey Experimental Radii on Model 5365 Afterbody Sections Representing the R/V ATHENA Figure 4 - Rake Arrangement Photograph Showing Closeup Profile View of Installation in Starboard Shaft of Model 5355 Without Port Propeller Figure 3 - Rake Arrangement Photograph Showing Closeup Quartering View of Installation in the Starboard Shaft of Model 5365 Without Port Propeller PSD 0603-5-78-3 FSD 0604-5-78-1 Figure 6 - Fige Arrangement Photograph Showing Installation in Bass Dynamometer Boat, Model 5271, Mounted Behind Starboard Shaft of Model 5365 With and Without Port Propeller as During Experiments II and 12 Figure 7 - Rake Arrangement Photograph Showing Bass Dynamometer Boat Mounted for 20 Degree (0.349 radian) Inclined Idealized Flow Wake Experiment 13 PSD 0607-5-78-1 Figure 8 - Wake Screen Photograph Showing Downstream View at Spherical Head Pitot Tubes Used for Idealized Flow Experiment 14 | | SCREE | N SIZE | |---------------|-------------------|-------------------| | REGION | WIRES
PER INCH | DIAMETER (inches) | | SUPPORT (ALL) | 16 | 0.009 | | 1 | 20 | 0.011 | Figure 9 - Schematic of Wake Screen Wire Sections and Sizes Used for Idealized Flow Experiment 14 PSD 0604-5-78-11 Figure 10 - Wake Screen Phototgraph Showing Upstream View Into the Flow for Idealized Flow Experiment 14 Figure 11 - Bass Dynamometer Boat Mounted Behind the Wake Screen Photograph Showing Arrangement of Pitot Tubes for Idealized Flow Experiment 14 27 Figure 12 - Bass Dynamometer Boat Mounted for 10 Degree (0.174 radian) Inclined Idealized Flow Wake Photograph Showing Spacer Block Used for Experiments 15 and 16 TABLE I Ship and Model Characteristics R/V ATHENA Represented by Model 5365 | | Ship | Model | |----------------------------------|---|--| | Length Between
Perpendiculars | 154.0 ft (46.9m) | 18.6 ft (5.7m) | | Length Overall | 164.5 ft (50.1m) | 19.9 ft (6.1m) | | Maximum Beam | 24.0 ft (7.3 m) | 2.9 ft (0.9m) | | Displacement | 263 tons (267.3 tonnes) | 1020 lbs (462.6 kg) | | Wetted Surface | $3413 \text{ ft}^2 (317.1 \text{ m}^2)$ | $50.15 \text{ ft}^2 (4.659 \text{ m}^2)$ | | Draft | 5.63 ft (1.72 m) | 0.682 ft (0.208 m) | | Trim by Stern | 0.59 ft (0.18 m) | 0.071 ft (0.022 m) | | Propeller Diameter | 6.0 ft (1.8 m) | 8.73 in (22.2 cm) | | Linear Scale Ratio | 8.25 | 1.0 | Propulsion: Twin screw, controllable pitch, 4 blades each Appendages: Twin stabilizers, main shafts and V-struts, twin rudders, centerline skeg ## APPENDIX A VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 3 AND 9 Table 2 EXPERIMENTAL PROGRAM | Port Propeller
Operating | ОП | yes | ои | yes | Ou | ou | no | ou | |--|-------------|-------------|-------------|-------------|------------|------------|------------|-----------| | Wake | ou | ou | ou | ou | ou | yes | ou | ou | | Dynamometer
Boat | ou | no | yes | yes | yes | yes | yes | yes | | Athena
Model | yes | yes | yes | yes | no | no | ou | ОП | | Shaft
Inclination | * | * | * | * | 20° | 0) | 100 | 100 | | Equivalent
Ship Speed in
Knots (m/s) | 20.0 (10.3) | 20.0 (10.3) | 20.0 (10.3) | 20.0 (10.3) | 11.5 (5.9) | 12.9 (6.6) | 17.2 (8.8) | 8.6 (4.4) | | Experiment
Number | 3,9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | * Model trim set at equivalent ship speed twenty knots (10.3 meters/second) ## APPENDIX A VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 3 AND 9 VE. OCTTY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 $0.456\ \text{RAD}$. Figure A-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiments 3 and 9 x : Experiment 3 **③** : Experiment 9 VERBELT COMPONENT RATIOS FOR MODEL 5355 CORRELATION WITH R/V ATHENA 3 $0.633\,\text{RAD}_{\star}$ Figure A-2 - Circumferential Distribution of the Longitudinal, Fangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiments 3 and 9 x : Experiment 3 **③** : Experiment 9 FIGURE COMPONENT RATIOS FOR MODEL 5065 CORRELATION WITH R/V ATHENA 3 O 791 RAD. Figure A-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiments 3 and 9 x : Experiment 3 S : Experiment 9 VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3. 0.363 RAD. Figure A-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiments 3 and 9 x : Experiment 3 **③** : Experiment 9 Figure A-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 3 Figure A-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment $\bf 3$ VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 0 0.455 RHQ. Figure A-7 - Circumterential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 9 VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9 0.633 RAD. Figure A-8 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 9 Figure A-9 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 9 0.963 RAD. Figure A-10 - Circumferential Distribution of the Longitudinal, Tangential,
and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 9 Figure A-11 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 9 $\,$ Figure A-12 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 9 $\,$ TABLE A-1 INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 3 | | | | | | | | | | PUTGER | 781 | | | ##01U3 = | 44.7 | | |----------------|----------|------------|------------|----------------|-----------|------------|------------|--------------------|--------|----------------|--------------------|----------------------|----------------|----------------|--------------------| | | ****** | 5 5 | | | | | | 41617 | 41/4 | 41/4 | 40/4 | A NGC E | VE/V | V1 /V | ¥=/¥ | | 14617 | W1/V | 4179 | 40/4 | A MGL F | PADIUS = | 417V | 44/4 | | 1.038 | 071 | 161
699 | 7.7 | 1.653 | .634 | 134 | | 1.7 | - 94 7 | . 877 | 617 | -2.4 | 1.614 | 039 | 674 | 11.6 | 1.043 | 041 | 189 | 19.4 | . 96 8 | -, 143 | 138 | | 1.4 | . 944 | .017 | 014 | -:; | 1.007 | 8 16 | 076 | 15.0 | 1.451 | 248 | 111 | 17.4 | . 471 | 144 | *.148 | | 7.4 | . 444 | 614 | 577 | 1.1 | 1.007 | 842 | 0/5 | 15.5 | 1.841 | 867 | 115 | 19.4 | . 947 | -,855
-,864 | 158 | | 11.0 | . 99 1 | 877 | 848 | 5.8 | 1.81% | 646 | 977 | 17.6 | 1.878 | 072
078 | 115 | 81.8 | 1.005 | 666 | 154 | | 13.4 | . 998 | 845 | 844 | 11.2 | 1.071 | 867 | 013 | 21.0 | 1.045 | 142 | | 23.4 | 1.119 | 044 | 155 | | M.F | 1-002 | 167 | 074 | 11.7 | 1.819 | | 193 | 21.8 | 1.090 | ~ 3 | 119 | 27.a
25.a | 1.419 | 144 | 157 | | 17.5 | 1.006 | FAG
897 | 063 | 19.8 | 1.054 | 844 | 18A
185 | 23.4 | 1.878 | 638 | 113 | 27.8 | . 473 | 849 | 146 | | 19.4 | 1.000 | 176 | 041 | 21.4 | 1.076 | 071 | 140 | 8.1 | 1.117 | 641 | 1 09 | 79 . S | 1.646 | 113 | 166
174 | | 19.0 | 1.817 | 178 | - 147 | 21.1 | . 984 | 027 | 189 | 75.3
27.8 | 1.001 | 177 | 113 | 19.4 | 1.052 | 167 | 168 | | 21.0 | 1.314 | 198 | 184 | 27.8 | 1.818 | 131 | 1 3 9 | 27.7 | 1.024 | 1 39 | 138 | 79.4
57.5 | 1.844 | -,187 | 159
168 | | 27.0 | 1.144 | 117 | 847 | 24.3
11.4 | 1.064 | ~.114 | 134 | 79.3 | 1.847 | 174 | 142 | 45.4 | 1.854 | 147 | 174 | | m | 1.117 | 177 | 692 | 13.2 | 1.671 | L00
094 | 136 | 33.7 | 1,049 | 110 | 147 | 55.5 | 1.093 | 154 | 110 | | 11.4 | 1.127 | 176 | 691 | 96.1 | 1.865 | 161 | **179 | 14.7 | 1.006 | 111 | 134 | 61.8
71.7
79.8 | 1.861 | -,144 | 875 | | M.7 | 1.114 | - 1 11 | | 17.3
14.8 | 1.841 | 184 | 128 | 19.2
43.8 | 1.844 | 171
133 | 17A
117 | 79.4 | 1.044 | 178 | 041 | | 17.7 | 1.137 | 145 | | 74.8 | 1 - 8 4 3 | 114 | 174 | 41.4 | 1.842 | 154 | 199 | 47.9 | 1.155 | 176
17F | ~ . 851
~ . 824 | | 19.4 | 1.127 | 137 | 448 | 41.1 | 1.871 | 110 | 119 | 59.4 | 1.892 | 149 | 841 | 94.6 | 1.075 | 177 | ~ . 662 | | | 1.178 | 199 | | 47.0 | 1-872 | -, 134 | 169 | 67.8 | 1.897 | 104 | 015 | 187.5 | 1.873 | 175 | . 674 | | 51.4 | 1.174 | 1 56 | 075 | 14.3
51.5 | 1.473 | 148 | 105 | 74.4 | 1.091 | 195 | 438 | 1 11 . 3 | 1.078 | 165 | . 648 | | 55.6 | 1.134 | | . 165 | 41.1 | 1.878 | 144 | 182 | 43.4 | 1.184 | 196 | 474 | 119.0 | 1.054 | 156 | . 975 | | 47.4 | 1.144 | - 210 | **2 | 55.4 | 1.876 | 151 | 893 | 91.9 | 1.181 | 246 | - 417 | 177.4 | 1.858 | 191 | . 196 | | 74.4 | 1.101 | 277 | 844 | 17.6 | 1.047 | 157 | 844 | 94.8 | 1.443 | : 99 | . 839 | 1 5.4 | 1.858 | 174 | . 115 | | 7.5 | 1.144 | 741 | 129 | 44.4 | 1.875 | 161 | | 187.8 | 1.091 | 197 | . 967 | 139.4 | 1.041 | 114 | .134 | | 41.4 | 1.147 | 767 | 817 | 49.3 | 1.879 | 189 | 074 | 115.9 | 1.007 | 143 | . 844 | 151.2 | 1.056 | 6 9 7 | .167 | | 44.8 | 1.144 | 245 | | 44.6 | 1.041 | 170 | 148 | 123.4 | 1.049 | 169 | . 185 | 159.2 | 1.555 | 868 | -156 | | 197.9 | 1.142 | 744 | .013 | 77.7
85.0 | 1.887 | 147 | 841 | 137.8 | 1.644 | 157 | -175 | 199.3 | 1.061 | # 34 | - 164 | | 1 14. 4 | 1.143 | 276 | . 845 | 93.7 | 1.044 | 191 | 071 | 1 . 7 . 4 | 1.821 | 134 | . 1 14 | 179.4 | 1.651 | 818 | .178 | | 117.8 | 1.144 | 218 | . 844 | 101.0 | 1.841 | 198 | . 014 | 195.9 | 1.048 | | - 144 | 143.3 | 1.04 | | .100 | | 1 11 . 0 | 1-146 | 146 | . 64.6 | 109.1 | 1.044 | 141 | . 830 | 154.3 | 1.040 | 674 | .172 | 191.0 | 1.067 | | . 144 | | 1.79.7 | 1-1-1 | 154 | | 174.8 | 1.877 | 154 | . 474 | 177.0 | 1.101 | 0 12 | . 141 | 199.4 | 1.844 | | .167 | | 119.4 | 1.162 | 166 | . 846 | 177.0. | 1.858 | -,114 | . 143 | 179.0 | 1.046 | 885 | . 163 | 287.4 | 1.060 | | -153 | | 157.4 | 1-140 | 131 | . 196 | 139.7 | 1.145 | 114 | . 185 | 179.7 | 1.004 | 116 | . 107 | 214.2 | 1.842 | .110 | - 139
- 138 | | 151.6 | 1.119 | 114 | - 186 | 140.4 | 1.058 | 115 | - 109 | 190.5 | 1.079 | . 619 | - 197 | 223.2 | 1.097 | 1 32 | .125 | | 199.6 | 1.143 | | . 104 | 194.0 | 1.858 | 041 | - 120 | 197.0 | 1.845 | . 0 4 4 | . 176 | 731.1
734.4 | 1.854 | 150 | . 186
. 685 | | 161,9 | 1-1-6 | | . 184 | 114.6 | 1.855 | 853 | - 131 | 199.4 | 1.887 | . 857 | . 173 | 734.4 | 1.062 | .163 | . 846 | | 1/1.4 | 1.145 | 011 | . 111 | 177.0 | 1.852 | 034 | - 1 19 | 7 6 5.4 | 1.046 | . 849 | . 16R | 744.8 | 1.806 | . 177 | .063 | | 176.7 | 1.148 | 019 | . 114 | 179.1 | 1.845 | | . 139 | 719.4 | 1.674 | . 116 | . 144 | 254.8 | 1.067 | . 186 | . 826 | | 174.7 | 1.116 | 004 | . 119 | 140.9 | 1.854 | . 0 7 2 | -178 | 2 24 . E | 1.073 | .137 | - 170 | 267.4 | 1.064 | . 197 | . 614 | | 144.0 | 1.148 | .012 | .114 | 194.8 | 1.046 | . 6 7 6 | . 179 | 739.9 | 1.472 | ,143 | . 198 | 270.9
278.4 | 1.069 | .1% | 611 | | 147.8 | 1.141 | .849 | . 11 J | 286-9 | 1.044 | .107 | -110 | 741.8 | 1.077 | .162 | . 007 | 274.4 | 1.160 | .1% | 834 | | 7 96 . 6 | 1.141 | . 104 | . 141 | 284.9
212.4 | 1.043 | . 1 37 | . 119 | 259.4 | 1.8** | .174 | .043 | 746.6 | 1.440 | . 198
. LBP | 85A
884 | | 716.5 | 1.148 | . 1 14 | . 194 | 770.0 | 1.146 | .156 | . 991 | 299.0 | 1.044 | .145 | . 542 | 298.4 | 1.083
1.647 | .176 | - , 697 | | 277.8 | 1.151 | . 101 | . 80 h | 274.4
276.7 | 1.041 | . 176 | . 974 | 247.7 | 1.895 | .144 | - 819 | 311.4 | 1.834 | . 1 69 | 189 | | 7 36 . 6 | 1.151 | . 99 | . 644 | 7 34 . 7 | 1.844 | - 1 97 | . 898 | 774.4 | 1.048 | . 1 47 | 017 | 319.1 | 1.056 | . 141 | 135 | | 755.6 | 1.144 | .718 | . 847 | 744.6 | 1.855 | .706 | . 617 | 789.8
791.8 | 1.847 | .176 | 811 | 319.7 | 1.053 | . 1 10 | 154 | | 754.0 | 1.151 | . 774 | . 971 | 748.8 | 1.766 | . 221 | 004 | 299.8 | 1.847 | .161 | 875 | 175.8 | 1.055 | .111 | 167 | | 267.5 | 1.157 | . 224 | 005 | 268,5
276,5 | 1.043 | . 279 | 827 | 744,4 | 1.867 | .163 | ~ . 876
~ . 188 | 264.4 | 1.865 | . 117 | 169 | | 279.6 | 1.147 | . 271 | 817 | 264.5 | 1.862 | .714 | 064 | 317.8 | 1.061 | . 1 29 | 121 | 379.4 | 1.054 | . 1 11 | 174 | | 788.4 | 1-196 | .214 | 671 | 297.4 | 1.041 | . 204 | . 116 | 31 7. 9
3 19. 7 | 1.000 | .114 | 176 | 3 33 . 7 | . 978 | . 1 4 3 | 178 | | 744.3 | 1.144 | . 198 | 847 | 100.4 | 1.04 | -191 | 103
170 | 121.1 | 1.874 | .114 | - 111 | 334.4 | 1.066 | | - , 164 | | 999.4
187.1 | 1.117 | .147 | - 656 | 31 4 . 7 | 1.855 | -144 | 1 70 | 127.3 | 1.859 | .199 | 134 | 337.4 | 1.855 | .863 | 177 | | 164.7 | 1.161 | . 1 ** | 64.6 | 374.8 | 1.894 | .178 | 144 | 129.6 | 1.091 | .101 | 14P | 319.1 | 1.041 | 100. | 178 | | 384.7 | 1-114 | .149 | | 574.8 | 1.843 | .117 | 151 | 331.7 | .975 | . 1 24 | 148 | 348.8 | 1.892 | .001 | 104 | | 111.9 | 1.138 | . 159 | 075 | 1 70 . F | 1.044 | -117 | 144 | 111.1 | 1.847 | .131 | 149 | 391.3 | 1.639 | . 6 64 | 163 | | 114 - 1 | 1.147 | - 1 58 | 179 | 314.0 | . 99 9 | . 111 | 197 | 117.5 | 1.891 | | ~. 196 | 359.8 | 1.002 | . 6 34 | 135
139 | | 114.0 | 1.115 | . 1 30 | 887
484 | 314.0 | 1.994 | . 874 | 148 | 370.4 | 1.441 | .443 | 146 | 359.0 | 1.001 | . 0 34 | 134 | | 117.8 | 1.174 | - 1 32 | 844 | 334.4 | 1.047 | . 8.39 | 174 | 341.7 | 1.878 | .051 | 154 | 399.4 | 1.003 | .834 | 134 | | 177.1 | 1 - 1 11 | .175 | 845 | 147.9 | 1.816 | . 8 59 | 175 | 341.7 | 1.979 | .847 | 143 | | | | | | 170.0 | 1.111 | -119 | 148 | 344.5 | 1.818 | | 117 | 144.2 | 1.441 | .433 | 147 | | | | | | 174.0 | 1.114 | .117 | 111 | 144.6 | 1.011 | .017 | 187 | 167.4 | 1-001 | . 8 17 | 147 | | | | | | 170.6 | 1.144 | . 111 | 191 | 391.0 | 1.014 | . 101 | 181
898 | 147.7 | 1.855 | . 677 | 100 | | | | | | 101.4 | 1.114 | . 170 | 897 | 357.1 | 1.010 | 477 | *** | 744.4 | 1.077 | 017 | 111 | | | | | | 7 46 . F | 1.875 | . 1 19 | 011 | 394.8
189.1 | 1.814 | 674 | 876 | 147.4 | 1.034 | -,010
-,073 | 111 | | | | | | 117.0 | t - #11 | . 4 4 1 | 844 | 344.1 | 1.00 | 617 | 874 | | ••• | | | | | | | | 140.0 | 1.876 | . 857 | - , 84 1 | | | | | | | | | | | | | | 161.9 | 1.619 | . 647 | 824 | | | | | | | | | | | | | | 107.7 | 1.874 | . 8 17 | 674 | | | | | | | | | | | | | | 147.7 | 1.014 | | 610 | | | | | | | | | | | | | | 981.8
191.7 | 1-071 | . 6 79 | | | | | | | | | | | | | | | 146.8 | 1.818 | .816 | 010 | | | | | | | | | | | | | | 14 7 . 4 | 1.814 | . 679 | 011 | | | | | | | | | | | | | | ,,,, | . *** | 179 | 61 9 | | | | | | | | | | | | | TABLE A-2 - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 3 VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 FROPELLER DIAWLTER 5.00 FEET | - | | NO. 1 | 600. | 008 | 1.086 | 1.093 | 13.87 | 06. | 95.00 | -1.26 | 334.30 | |---|--|-------|---------|---------------|--------------------|-------------|-------------|---------------|-------|-------------|--------| | o |)
) | | 700 | 900. | 1.093 | 1.101 | 15.61 | 1.06 | 95.00 | -1.90 | 336.50 | | c
a | | | 500.1 | .015 | 1.048 | 1.108 | 17.65 | 1.35 | 95.00 | -2.32 | 332.30 | | (0) | 000: 000: 000: 000: 000: 000: 000: 000 | 9 6 | | . 007 | 1.107 | σ <u>.</u> | 19.82 | 1.82 | 95.00 | -1.88 | | | .1 | | 7000 | | 600 | 1.128 | 1.146 | 22.51 | 2.52 | 92.50 | -2.17 -1.88 | 22.00 | | 1 | | n : | N 000 | 000.1 | φ <u>±</u>
- | : - |
27.41 | 3.33 | 03. g | -6.17 - ::: | 2 | | | , 6 | 60 | ۵.
ا | . 0 23 | 1.216 | 1.263 | 34.87 | 4 .8.3 | 85.00 | -6.17 |)
) | | ,
() | 0 1 | · · | 2 | .041 | 1.237 | 1.308 | 40.05 | 6.77 | 22.50 | -9.67 | | | د
د | N 0 | 0.00 | , eb. 1 | .056 | 000.0 | 000.0 | 44.74 | 10.21 | 22.50 | -11.67 |)
) | | 200 | 06. | 0 0 | ,
, | 008 | 1.086 | 1.093 | 14.38 | . 95 | 95.00 | 232 50 0 00 | 336.30 | | 9 | 0 0 | 2 6 | 20 | ក | 94 | 7 | 10 | ~ | 0 | - 0 | | | | | - |)
 | • | - | | 18.0 | 1.4 | 95.0 | -2.31 | 3.76. | | (: | 101. | 000:- | | o. 890 | | 1.1355 1.10 | 21.25 18.09 | 53 | | -1.91 -2.3 | 2 | | 000000000000000000000000000000000000000 | | 2 | 7 | 0. 800008 · | . 1, 180 1,119 1,0 | | <u>\$</u> | 53 | . 50 | ÷ 6 | 232.00 | ¹⁵ CIRCUMPERENTIAL MEAN LONGITUDINAL VELOCITY. 15 CIRCUMPERENTIAL MEAN TANGENTIAL VELOCITY. 15 CIRCUMPERINTIAL MEAN RADIAL VELOCITY. 15 CONCUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORPUTION. 15 VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORPUTION. 15 VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORPUTION. 15 VARIATION PUTABLY THE MAXIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS). 15 VARIATION PUTABLY THE MINIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS). 15 VARIATION PUTABLY THE MINIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS). 15 VARIATION PUTABLY THE MINIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS). VXBAP VTBAR VRBAR 1-%-K ^{1-8×} 8842 8700 dveg 1-814 TABLE A- | , | VE LOC 114 CO | COMPONENT OPROPELLER | RATICS FOR
DIAVETER | 00.6
6.60 | 5365
FEET | LORRELATION | W11H H/V | ATHENA 3 | |---|------------------------|----------------------|----------------------------|-------------------|-------------------|-----------------|------------------|------------------| | HARMONIC | HARMONIC ANALYSES | OF LONGI | LONGI TUDIMAL N | V: LOCITY | COMPOSENT | RATIOS | ((() () () | | | HARMONIC | +-
H | N | 'n | 4 | S | 9 | 7 | æ | | RADIUS = .456
AMPLITUDE = FHASE ANGLE = | ,0367 | .0358 | .0234 | . 0150
267.3 | .0143 | .0099
263.6 | .0050
244.1 | . 0026
195. 5 | | RADIUS = .633
AMPLITUDE =
FHASE ANGLE = | 3
. 0150
a 323.3 | .0224
268.9 | .007.8
2:5.5 | 010
010
010 | , 605.6
202.2 | .0013
288.8 | . 00 10
6. 21 | .0027 | | RADIUS = .781
AMPLITUDE =
EMASE ANGLE = | 1
 | .0147 | 2. 4.3 | \$200°
\$200° | . 062a
258. J | .0040
278.0 | .0007 | ,0012 | | HADIUS = .963
AMPLITUDE = PHASE ANGLE = | 3 .0187
* 261.6 | .0193 | .0152 | .0067 | .0083 | .0070 | .0058 | .0038 | | HARMONIC | ANALYSES | OF LONG! | LONGI TUDITAL | K410000A | COMPOSENT | RATIOS | (v ×v) | | | HARMON I C | ئ | 0 | 11 | 1.2 | 13 | 44 | 35 | 16 | | RADIUS = .456
AMPLITUDE = PHASE ANGLE = | 6 .0044
130.7 | .0058
130.5 | # 1001
1001
1001 | . 0057
3. 057 | .00%4
126.8 | .0630
154.0 | . 0009
1.951 | . 9019
296. 1 | | ##DIUS = .633
ATPLITUDE =
PR4SE #WGLE = | 3 .c03.4
= 73.2 | .0021 | 5100.
144.1 | 62.0.
9.344 | .0033 | .0032 | . 003.
2.2.5 | .0034
271.8 | | RADIUS = .781
AMPLITUDE =
PHASE ANGLE = | = .9007
= 267.1 | .0027 | . 0019
205.2 | , C016
2-3-3 | . 00 t8
296. 0 | . 0027
274.4 | .0628
319.3 | .0003 | | PADIUS963
A'APLITUDE . PHASE ANGLE . | 3 .0027
= 165.9 | .0026 | 10012
1941.8 | .0026 | . 0020
205.3 | 298.0 | .0010 | .0014 | TABLE A-4 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPEREMENT 3 | V.E. | VELBUITY COM | COMPONENT A | RATIOS FO-
DIAMETER - | 4 700EL
7 6.00 | 5355 C3 | CORRELATION | V B H I W | V ATHENA . 739 | |---|----------------|-----------------|--------------------------|--|------------------|-----------------|-----------------|------------------| | HARMONIC | ANALYSES C | OF LONGII | LONGITUDIAL V | ¥1177 | COMPLYENT | IT RATIOS | (7.>/) | | | HAPMONIC = | - | 7 | , ~ | ·• | S | ٩ | 7 | æ | | RADIUS = .312
AMPLITUDE =
FHANE ANGLE = | 2.15.6 | . 0499
275.9 | 2 3 | 64 m
13 m
13 m | .02°8
272.0 | .0265 | . 0155
2.5.2 | 201.0 | | #AD105 = .350
#AD1120E = EMASE #MOLE = | .0730 | .0459 | 275.1 | \$ C
1 7 7
1 6 | .0224 | .0213 | .6122 | . 010.
4.102 | | RADIUS = ,400
AMPLITUDE = PHASE ANGLE = | .0537 | .0409 | .0343
273.6 | . C281
21 B.3 | 270.5 | .0153
262.9 | . 0045
239.1 | 200-1 | | PADIUS = .500
APPLITUDE
PHASE ANGLE = | .0269 | .0320 | 20172 | 0 t | .0110
268.0 | . 9865
254.9 | .0023 | . 6005
154. 0 | | RADIUS = .600
AMPLITUSE =
FMASE ANGLE = | .0167 | .0246
269.9 | .00x2
254.7 | 20038
204.2 | , 00HB
253.9 | .0019 | .0009 | .0025
31.6 | | PADIUS = ,700
AMPLITUDE =
PHASE ANGLE = | 312.2 | .0177 | .0040
264.3 | 3.000
3.000
3.000 | .0039
268.t | .0032 | .0006 | .0008 | | PADIUS = ,800
AMPLITUDE = :
FHASE ANGLE = | .0106
284.5 | .0144 | . 00 %
266.6 | .0023
303.6 | .0029
251.8 | .00.10 | 0100. | .0015 | | 9ADIUS = .900
AMPLITODE =
PYASE ANGLE = | .0145
265.7 | .0159 | 244.5 | .0029
8.815 | .0051
220.H | .0046 | .0036
175.6 | .0031
180.9 | | PADIUS - 1.000
ATPLITODE | 0167 | .0193 | 2010.
204.9 | 15 17
25 15
11 15 15
15 15
15 15 | . 0683
213. 7 | .0070 | .0058
175.5 | .0038 | ** TABLE A-4 (Continued) | > | VELOCITI / COMP | COMPONENT | RATIOS FOR MODEL DIATETER : 6.00 | 4 MODEL | | 8365 CORMELATION
FEET | WITH R/V | ATHE . 739 | |---|-----------------|-----------|----------------------------------|-----------------|----------------|--------------------------|----------------|----------------| | HARMON 1 C | ANAL SES OF | | LONGITUDINAL V- SUCITY | :.0C1TY | CONDUMENT | T RATIOS | (> × >) | | | HARMONIC = | ō | 0, | 1. | 12 | 13 | 14 | 15 | 15 | | RADIUS = .312
AMPLITUDE = FHASE ANGLE = | .0100 | .0157 | 130.7 | 0156
178.5 | .0185 | .0107 | .0082 | .0014 | | RADIUS = .350
AMPLITUDE = FHASE ANGLE = | 173.7 | .0125 | 1.0.1 | .0126 | .0145 | .0092 | .0055
75.3 | .0026
.3.8 | | RADIUS = .400
AMPLITUDE = PHASE ANGLE = | .0057
150.6 | .0069 | 130.7 | .0091 | .0098
120.5 | .0054 | .0025
88.2 | 2100. | | PADIUS = .500
AMPLITUDE = =
FHASE ANGLE = | 10.00 | .0042 | .0002
121.8 | . 0035
129.8 | .0027 | .0020 | .0021 | .0028 | | AADIUS = .600
AMPLITUTE = =
PHASE ANGLE = | .6037
79.3 | .0024 | .0021 | .0062
278.2 | .0025 | .0028
254.0 | .0033 | .0036
273.4 | | RADIUS = .700
APPLITUNE = FHASE ANGLE = | .0011 | .0012 | .0009
208.4 | .0012 | .0034 | .0030 | .0030
288.6 | .0017 | | RADIUS = .800
AMPLITUDE = PHASE ANGLE = | .0069
255.3 | 250.0 | .0020
284.9 | .0017 | .0036
295.9 | .0026 | .0027 | .0001 | | RADIUS = .900
AMPLITUDE = EHASE ANGLE = | 201.1 | .0026 | . 6014
2 54. 6 | .0022
268.9 | ,0020
270.9 | .0021 | .0012 | .0010 | | PADIUS = ' 000
AMP.ITUDE = FHASE ANGLE = | .0027 | .0026 | .0012
195.8 | . CC26 | .0020 | .0017 | .0010 | 43.5 | TIBLE A-5 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 3 | .*
.* | VELOCITY COMPONENT | | CONDUMENT RATIOS FOR PROPERER DIATETER | 1305th
6.00 | 5365
FEET | CORRELATION | WITH RIV | ATHENA
.739 | |---|--------------------|-----------------|--|----------------|------------------------|-------------|----------------|----------------| | HARMON1C | ANALYSES | DF TANG | ANALYSES OF TANGENTIAL VE | | OCIIV COMPONENT | . RAT105 | (VT/V) | | | HARMONIC = | - | 6 | m | 7 | Z. | 9 | 7 | 60 | | RADIUS = .456
AMPLITUDE =
FHASE ANGLE = | .2353 | .0054 | 131.0 | .00.0 | .0046
141.6 | .0036 | .0034 | .0031
84.2 | | RADIUS = .633
ACPLITODE =
EMASE ANGLE = | .2069 | .0088
289.5 | 0072 | .0059 | .0047 | .0041 | .0037 | .0026
282.0 | | AMPLITUDE = 781
AMPLITUDE = FHASE ANGLE = | 1932 | . 0037
283.4 | 6.50°. | 21.3.2 | .0034
2 79.0 | .0020 | .0022 | .0013 | | RADIUS963
AMPLITUDE =
PHASE ANGLE = | .1868 | .0031 | .0026 | .0042 | .0044
106.3 | .0044 | .0027 | .0012 | | HARMONIC | ANDLYSES | OF TANGENT; 38 | | - ¥1155-37 | COMPONENT | . RAT105 | (V1/V) | | | HARROWIC = | 6 | 10 | - | <u>?</u> | 13 | 7 | 15 | 16 | | RADIUS = .456
ATPLITUDE =
FHASE ANGLE = | .0050 | .0045 | 40.2 | .00 51 | .00.12 | .0026 | .0012 | .00:0 | | ##PLITUCE = .633
##PLITUCE = : | . v625
?97.0 | .0024 | 20008 | 0008
211.8 | .0016 | .0030 | .0030 | .0034
156.5 | | AMBLITONE - 781
#YPLITONE =
FRASE ANGLE = | .0019 | .0008 | . 48.6 | 0000 | .0013 | .3618 | .0014 | .0015 | | FADIUS = .963
AMPLITUDE = FHASE ANGLE = | .0002
21.5 | .0008 | 20014 | .0023
191.3 | .0025 | .0022 | .0016
124.8 | .0014 | | | | | | | | | | | TABLE A-A - HARMONIC AMALYSFS OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 3 | VELCTITY COMPONENT RATEGS FOR MODEL 5305 CORRELATION WITH R/V ATHENA 3 | JA = .739 | |--|-----------| | CORRELATION | | | 5305 | 134 | | ANDE L | 6.00 | | 1165 FOR | ALLE TER | | AA | ia | | VELCTIY COSPONENT | PROPELLEA | | , E . | VELC, ITY COS | COMPONENT
PROPELLER | RATIES FOR
DIADETER | 4 AMODEL
6.00 | 5305
FEET | CORRELATION | WITH R/V
JA = | , ATHEN | |---|----------------|------------------------|------------------------|------------------|---------------------|----------------|------------------|---------------| | HARMONIC | ALTALYSES | OF TANG | TANGENTIAL VE. | CCLITY | VE. COLTY COMPONENT | RATIOS | (V7.7V) | | | MARKETT. | - | Ci | ٣ | 3 | 'n | φ | 7 | ar. | | 470105312
470117006 =
EMASE AMULE = | 2717 | 0308 | .6212 | 1,313
 .0196 | .0165 | .0161 | .0137
88.8 | | 410115 = .350
439_1102E
FMASE 3M3LE = | .2010 | .0226 | .0154 | 126.2 | ,0149 | .0124 | .0121 | .0104
88.5 | | PADIUS = .400
AMPLITUDE =
PHASE ANGLE = | .2483
178.5 | .0134 | , CCH7 | . 6095
171.5 | .0045
129.8 | 129.9 | .0076 | .0066 | | PADIUS500
AMPLITUNE -
PHASE ANGLE - | .2273 | .0027 | .0013
2 52.7 | 1200 | 177.9 | 1,591 | .0908 | 0010
69.3 | | FAG105 = .600
AMMITTOE = FAMSE ANGLE = | .2112
183.6 | .0080 | .00u6
2 P3.6 | 2051
276.5 | .00.tu | .9037
268.4 | .003+ | . 6021 | | 8AD195 = .700
APPLITODE = :
FWASE ANGLE = | 1997 | .0065 | .0061 | 275.1 | .0047
279.9 | .0034
268.0 | .0033 | .0020 | | FADIUS = .800
ATPLITUDE =
PHASE ANGLE = | 1920 | .0031
280.0 | 29.77.1 | .0023
256.8 | . 0029
278.3 | .0015 | .0019
296.8 | .0012 | | 64010S = .900
ATMITTOSE = 5
FMASE AAGLE = | .1978
178.3 | .0014 | .0002
250.3 | .0019
1:8.0 | .0010 | 9100. | .0008 | .0008 | | AMPLITUDE = 1.000 = PHASE ANGLE = | . 1868 | .0031 | .6526 | .0040 | 106.3 | .0044 | .0027 | .0012 | TABLE A-6 (Continued) | 332 | VELOCITY COV | COMPONENT PROPELLER | RATIOS FOR MODEL DIATER & 6.00 | 00.6
1300# | 5365 COR
FEET | CORRELATION | R H H H B D | V ATHENA . | |--|-----------------------|---------------------|--------------------------------|-------------------|------------------|---------------|-------------|-----------------| | HARNDAIC | ANALYSES | OF TANGE | OF TANSENTIAL VE | 00.117 | COMPOVENT | RATIOS | (VT/V) | | | HARNOT 1C = | ກ | 0, | : | , 2 | 5 | 14 | 5. | 16 | | RADIUS : .312
AVPLITUDE :
:HASE ANGLE : | .0169 | .0162 | .0180
50.3 | .0154 | .0136 | .0096
30.8 | 6.5 | .0047 | | RADIUS = .350
AMPLITUDE =
PHASE ANGLE = | .0132 | .0124 | .0143 | .0122
49.3 | .0107 | .0073
35.0 | .0057 | .0029 | | RADIUS400
AMPLITUDE =
EHASE ANGLE = | 5 169
69001 | .0082 | .0101 | -008
-013 | .0073 | .0047 | .0031 | . 0009
315.5 | | SADIUS = .500
AMPLITUDE =
PHASE ANGLE = | .0027 | .0025 | .0037 | .0030
£0.4 | .0024 | .0020 | .0013 | .0020 | | RADIUS = .500
ATPLITUDE =
PHASE ANGLE = | .0020
306.2 | .0022 | .0005
3 23.2 | , 600)
188. 6 | .0013 | .0028 | .002H | .0033 | | #ADIUS = .700
4:PLITUDE = = PHASE ANGLE = | 314.3 | .0011 | .0003
3 24.7 | . 0004 | .0013 | .0323 | .0021 | .0025 | | RADIUS = .800
AMPLITUDE = EHASE ANGLE = | .0018
333.5 | . 0009
.40.8 | .0902 | 9000. | .0013 | .0018 | .0013 | . 0013 | | PADIUS = .900
ACPLITUDE = PHASE ANGLE = | 348.9 | .0004 | 60066
140.3 | .0013 | .0017 | .0019 | .0013 | . 0005
84.8 | | RADIUS = 1.000
AUPLITUDE =
PHASE ANDLE = | 51.6 | .0008
212.2 | 206.4
206.4 | . 6693
121.3 | .0025 | .0022 | .0016 | 46.0 | TABLE A-7 INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHEMA, MODEL 5365, EXPERIMENT 9 | | INPUT | DATA | | | | | | |--------------------------------|----------|-------------|----------------|---------------|----------|-------|-------| | | RADIUS = | .456 | | | RADIUS . | .781 | | | ANGLE | VX:V | VT:V | VR/V | ANGLE | VX/V | V1/V | VR/V | | -1.0 | 1.014 | .023 | 010 | 2.9 | 1,015 | 025 | 092 | | 17.6 | 1.003 | 098 | 076 | 48.7 | 1.052 | 137 | 104 | | 45.2 | 1.122 | 16B | 084 | 89.1 | 1.063 | ~.190 | .007 | | 63.6 | 1.121 | 217 | 053 | 94.6 | 1.070 | ~.188 | .023 | | 63.6 | 1.124 | 216 | 058 | 133.2 | 1.058 | ~.136 | .127 | | 91.1 | 1.137 | 241 | 007 | 140.0 | 1.054 | 117 | . 142 | | 109.0 | 1.132 | 228 | .031 | 179.0 | 1.075 | .002 | .182 | | 135.0 | 1.129 | 170 | .076 | 179.0 | 1.076 | .002 | , 182 | | 155.6 | 1.136 | 097 | . 099 | 225.5 | 1.075 | .134 | . 135 | | 179.7 | 1.131 | 003 | ,111 | 271.4 | 1.092 | .191 | .013 | | 193.0 | 1.136 | .055 | . 108 | 316.0 | 1.072 | .128 | 116 | | 224.2 | 1.138 | . 159 | . 081 | 349.3 | 1.024 | .025 | 127 | | 240.0 | 1.145 | . 196 | . 055 | 351. 3 | 1.020 | .016 | 121 | | 269. 6 | 1.137 | . 225 | .002 | 355.6 | 1.027 | 017 | 111 | | 269.7 | 1.145 | . 224 | ~.002 | 362.9 | 1.015 | ~.025 | ~.092 | | 286.1 | 1,143 | .215 | ~.034 | | | | | | 315.0 | 1,131 | .148 | 081 | | | | | | 331.0 | 1.121 | .116 | 093 | | RADIUS * | | | | 359.0 | 1.014 | .023 | 010 | ANGLE | VX/V | VT/V | VR/V | | 361. 0 | 1.014 | .023 | 010 | ~ . 5 | 1.011 | .036 | 135 | | | | | | -1.0 | 1.009 | .036 | 137 | | | RADIUS = | | | 45.5 | 1.050 | 120 | 145 | | ANGLE | A × . A | VT/V | VR/V | 91.2 | 1.071 | 177 | 014 | | ~ . 3 | 1.013 | ~.035 | ~.070 | 135.1 | 1.056 | 124 | .115 | | 46.0 | 1.048 | ~.133 | -,111 | 180.9 | 1.066 | .009 | . 169 | | 91.7 | 1.091 | ~.189 | 007 | 225.1 | 1.066 | .133 | ,119 | | 137.0 | 1.053 | ~.122 | .102 | 271.0 | 1.074 | . 193 | 011 | | 137.0 | 1,056 | ~.121 | . 101 | 316.0 | 1.063 | .135 | 146 | | 183.4 | 1.049 | .032 | .136 | 359.0 | 1.009 | .036 | 137 | | 225.5 | 1.047 | .168 | .080 | 359.5 | 1.011 | .036 | -,135 | | 271.5 | 1.071 | . 225 | 032
129 | 360.5 | 1.011 | .036 | 135 | | 315.7 | 1.059 | . 152 | -, 155 | | | | | | 330.8 | 1,064 | .117 | ~.135
~.126 | | | | | | 340.0 | 1.047 | .035 | ~. 101 | | | | | | 351, 0
358, 0 | 1.016 | .005
035 | ~.101
~.074 | | | | | | 358.0
359.7 | 1.013 | ~.035 | 070 | | | | | | 309.7 | 1.013 | 033 | 070 | | | | | TABLE A-8 - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 9 Š %T.7% SHOW. . 739 ₹ VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9 PROPELLER DIAMETEP = 6.00 FEET | 1.000 | 1.057 | 800. | 008 | 1.077 | 1.082 | 13.93 | 90.06 | 352.50 | |---------------|---------------|------------|-------|---------------|-------|---------|---|------------------------------| | 906 | 1.051 | .002 | .007 | 1.082 | 1.088 | 15.49 | 3.79 2.23 1.13 .84 6.42 5.44 4.50 3.34 2.49 1.57 1.07 .84 .79 0.00 92.50 102.50 90.00 105.00 102.50 95.00 90.00 92.50 97.50 102.50 100.00 90.00 | 357.50 | | . 800 | 1.064 | 000 | .016 | 1.088 | 1.095 | 17.37 | 1.07 | 99. –
357.50 | | . 700 | 1.060 | .004 | .007 | 1.097 | 1.107 | 19.58 | 1.57 | 245.00 | | .600 | 1.060 | .011 | 010 | 1.117 | 1.132 | 22.48 | 2.49 | -1.40 | | . 500 | 1.094 | .001 | 002 | 1.147 | 1.172 | 27.20 | 3.34 | -1.89 | | .400 | 1.152 | 020 | .021 | 1.185 | 1.229 | 34.42 | 4.50
95.00 | -4.55
357.50 | | .350 | 1.191 | 034 | .038 | 1.207 | 1.265 | 39.31 | 5.44 | -6.94
357.50 | | .312 | 1.224 | 047 | .054 | 000.0 | 0.000 | 43.73 | 6.42 | -9.28
357.50 | | .963 | 1.057 | 800. | 008 | 1.077 | 1.082 | 14.44 | .84 | 352.50 | | . 781 | 1.064 | 000 | .016 | 1.088 | 1.095 | 17.76 | 1.13 | 98
357.50 | | .633 | 1.055 | 110. | 600 | 1.109 | 1.122 | 21.31 | 2.23 | -1.26
242.50 | | RADIUS = .456 | VXBAR = 1.116 | VTBAR =007 | 900 = | 1-WVX # 1.160 | 1.196 | = 30.01 | = 3.79
= 90.00 | ENEG = -2.69
THETA = 0.00 | | RADIUS | VXBAR | VTBAR | VRBAR | 1-WVX | XM-F | BBAR | BPOS
THETA | ENEG
THETA | IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY. IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY. IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY. IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION. IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION. IS MEAN ANGLE OF ADVANCE. IS MEAN ANGLE OF ADVANCE. IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS). IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS). IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VTBAR VRBAR 1-WVX 1-WVX 1-EX BBBAR BBBAR BBCG THETA TABLE A-9 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIZENTAL | : | RADII FOR EXPERIMENT 9 | TAPERENENT | 6 | | | | | | | |---|--|--|------------------------|------------------------|-----------------------|--|----------------|-----------------|-------| | | | VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER = | COMPONENT | RAT105
DIAMETER | FOR MODE | MODEL 5365 FROM
6.00 FEFT | ₩ Exp. 9 | ر
م
* | .739 | | | HARMONIC | ANALYSES | OF LONGI | TUDINAL | VELOCITY | HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT | RATIOS | (\ \ \ \ \ \) | | | | HARMONIC | - | 2 | ю | 4 | 5 | 9 | 7 | œ | | | RADIUS = .456
AMPLITUDE = PHASE ANGLE = | .0379
254.5 | .0328
2 56.8 | .0226 | .0159 | .0098 | .0063 | .0031 | .0006 | | | RADIUS = .633
AMPLITUDE = PHASE ANGLE = | .0079 | .0222 | .0093
2 19.8 | .0027 | .0042 | .0033 | .0019 | .0016 | | | RADIUS = .781 AMPLITUDE = PHASE ANGLE = | .0196 | .0151 | .9069 | .0056 | .0063 | .0014 | 296.3 | .0012 | | | RADIUS = .963
AMPLITUDE =
PIIASE ANGLE = | .0165
256.5 | .0167 | .0095 | .0029 | 319.7 | 344.8 | .0009
19.9 | 39.5 | | | HARMONIC | ANALYSES | 0.5 | TUDINAL | LONGITUDINAL VELOCITY | COMPONENT | RATIOS | (v/xv) | | | | HARMONIC | ø | 0 | = | 12 | 13 | 4 | 15 | 16 | | | RADIUS = .456
AMPLITUDE = PHASE ANGLE = | .0021 | .0014 | .0006 | .0005 | .0007 | .0008
133.8 | .0008 | .0004 | | | RADIUS = .633
AMPLITUDE *
FMASE ANGLE * | .0013 | ,001 0
353.7 | .0006 | .0008 | .0002 | .0001 | .0002 | .0001 | | | RADIUS = .781
AMPLITUDE = PHASE ANGLE = | .0013 | .0007 | .0007 | .0005 | .0008 | .0004 | .0005 | .0004 | | | RADIUS = .963
AMPLITUDE = PHASE ANGLE = | .0002 | 200.9 | .0003 | 318.7 | 3.003 | .0002
340.6 | 25.4 | .0001 | TABLE A-10 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED | PADII FOR E | FOR EXPERIMENT | 6 I | | | | | | | |---|--------------------------------|---------------------------------------|------------------------
-----------------------|----------------------------|----------------|--------------------------------|------------------------| | > | VELOCITY COMPONENT PROPELLER D | COMPONENT RATIOS : PROPELLER DIAMETER | RATIOS
SIAMETER | F0.R | MODEL 5365 FF
6.00 FEET | FROM EXP. | 9
♠∪ | . 739 | | HARMONIC ANALYSES | | DF LONGI | TUDINAL | LONGITUDINAL VELOCITY | COMPONENT | I FATIOS | (VX/V) | | | HARMONIC | | N | e | 4 | ស | 9 | 7 | ш | | RADIUS = .312
AMPLITUDE =
PHASE ANGLE = | .1039 | .0435
265.5 | .0460 | .0400 | .0203
235.6 | .0132 | .0106 | .002 2
134.3 | | RADIUS = .350
AMPLITUDE =
PHASE ANGLE = | .0828 | .0404 | .0386
2 60.6 | .0324
251.5 | .0170 | .0109 | .0083 | .0015 | | RADIUS = .400
AMPLITUDE = PHASE ANGLE = | .0590 | .0367
259.9 | .0302 | .0238
246.1 | .0133 | .0084 | .00 56
169. 5 | .0007
97.8 | | RADIUS = .500
AMPLITUDE = PHASE ANGLE = | .02 54
262.8 | .0300 | .0180 | .0110 | .0076 | .0051 | .0017 | .0009 | | RADIUS = .600
AMPLITUDE =
PHASE ANGLE = | .0101 | .0240
252.6 | .0109 | .0040 | .0046 | .0036
263.1 | .0016
292.8 | .0015
334.6 | | RADIUS = .700
AMPLITUDE *
PHASE ANGLE * | .0129 | .0179 | .0070 | .0023 | .0057
266.6 | .0023 | .0018 | .0014 | | RADIUS = .800
AMPLITUDE *
PHASE ANGLE * | .0204 | .0147 | .0071 | .0060 | .0063 | .0012
260.6 | .0013
297.9 | .0012 | | RADIUS = .900
AWPLITUDE *
FHASE ANGLE * | .0197 | .0150 | .0095
2 76.8 | .0054
339.5 | .0048
291.6 | .0008 | .0008
330.6 | 304.0 | | RADIUS = 1.000
AMPLITUDE = PHASE ANGLE = | .0165 | .0167 | .0095 | .0029 | .0033 | 344.8 | 9.91 | 39.5 | TABLE A-10 (Continued) | | VELOCITY COMPONENT PROPELLER | COMPONENT PROPELLER D | RATIOS DIAMETER | FOR MODEL | - 5365
- EET | FROM EXP. 9 | A | .739 | |---|------------------------------|-----------------------|-----------------|-----------|-----------------|------------------------|--------|----------------| | HARMONIC | HARMONIC ANALYSES C | DF LONGIT | LONGITUDINAL | VELOCITY | COMPONENT | IT RATIOS | (VX/V) | | | HARMONIC | en | ō | - | 12 | 13 | 14 | 51 | 16 | | RADIUS = .312
AMPLITUDE =
PHASE ANGLE = | .0035 | .0012 | .0003
258.2 | .0014 | .0016 | .0016 | .0015 | .0008
176.8 | | RADIUS = .350
AMPLITUDE = PHASE ANGLE = | .0021
70.7 | .0013 | .0001 | .0009 | .0013 | .0014 | .0013 | 167.3 | | RADIUS = ,400
AMPLITUDE *
PHASE ANGLE * | .0025 | .0014 | .0004 | .0003 | .0010 | 140.5 | .0010 | .0005 | | RADIUS500
AMPLITUDE | 35.5 | .0014 | .0007 | .0007 | .0006 | .0006 | .0006 | .0003 | | RADIUS = .600
AMPLITUDE = PHASE ANGLE = | 4100. | 1100. | .0007 | .0009 | .0004 | .0002 | .0003 | .0002
84.8 | | RADIUS = .700
AMPLITUDE =
PHASE ANGLE = | 304.5 | 301.3 | .0005 | .0003 | .0004 | .0002
259. 5 | .0002 | .0002 | | RADIUS = .800
AMPLITUDE = PHASE ANGLE = | .0013 | .0007 | .0008 | .0006 | .0008 | .0004 | .0005 | .0004 | | RADIUS = .900
AMPLITUDE **
PHASE ANGLE ** | .0007 | .0005 | .0006 | .0005 | .0006 | .0003 | .0003 | .0002
283.9 | | RADIUS = 1.000 AMPLITUDE = PHASE ANGLE = | .0002 | .0001 | .0003 | 318.7 | 310.6 | .0002 | .0001 | .0001 | TABLE A-11 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL | 4E. | VELOCITY COMPONENT PROPELLER D | COMPONENT PROPELLER D | RATIOS FO | αx | MODEL 5365 FROM 6.00 FEET | M Exp. | ο
∀ | .739 | |---|--|-----------------------|---------------|----------------|----------------------------------|----------------|---------------|---------------| | HARMONIC ANALYSES | | OF TANGE | NTIAL VE | רסכונג נ | OF TANGENTIAL VELOCITY COMPONENT | RATIOS | (V1/V) | | | HARMONIC * | | 7 | ы | 4 | ß | 9 | ۲ | 6 0 | | RADIUS ~ .456
AMPLITUDE ~
PHASE ANGLE ~ | .2333 | .0027 | .0030 | .0039 | .0046 | .0028 | .0022 | .0014 | | RADIUS = .633
AMPLITUDE =
PHASE ANGLE = | .2047 | .0105 | 271.3 | .0063
263.9 | .0048
275.6 | .0039
303.8 | .0037 | . 0024
8. | | RADIUS = .781
AMPLITUDE =
PHASE ANGLE * | .1873 | .0015 | 304. | .0021 | .0022 | .0020 | .0011 | 294.9 | | RADIUS = .963
AMPLITUDE =
PHASE ANGLE = | 178.8 | 39.5 | .0037 | .0032
51.8 | . 0023
53.6 | .0022
58.4 | .0022 | .0017
82.4 | | HARMONIC | HARMONIC ANALYSES OF TANGENTIAL VELOCITY | DF TANG | ENTIAL V | ELOCITY | COMPONENT | RATIOS | (VT/V) | | | HARMONIC | 65 | 0 | Ξ | 12 | 13 | 4. | 51 | 16 | | RADIUS = .456
AMPLITUDE *
PHASE ANGLE * | .0022 | .001 6
63.1 | .0014
83.8 | .0011
95.8 | 100. | 114.9 | .0009 | .0006 | | RADIUS = .633
AMPLITUDE =
PHASE ANGLE = | 39.3 | .0015 | ,0013 | .0013 | 175.7 | .0014 | .0013 | .0012 | | RADIUS = .781
AMPLITUDE = *
PHASE ANGLE * | .0010 | . 0008
293.1 | 304.5 | 305.1 | 304.1 | .0005 | 316.8 | .0005 | | RADIUS = .963 AMPLITUDE = PHASE ANGLE = | .0013
103.3 | .0008 | .0005
9.86 | .0004 | , 0000,
888. 0 | 78.8 | 71.7 | .0004
89.7 | TABLE A-12 - HARMONIC ZNALYSUS OF TRIGENTIAL VELOCITY COMPONENT JATIOS AT THE INTERPOLATED RABIE FOR EXPERIMENT 9 | | 739 | |---|--------------------| | | * YO | | 0 | | | FROM EXP. | | | R ROM | | | 5365 | FEET | | VELOCITY COMPONENT RATIOS FOR MODEL 5365 FI | 6.00 FEET | | FOR | 14 | | 105 | ETER | | RAT | DIAM | | L N H | _
R.B. | | COMPON | PROPELLER DIAMETER | | ¥ L | ۵ | | VELOC | | | | | | | 086 | PROPELLER | DIANETER | ÷ 6.00 | 6.00 FEET | | * 4 0 | .739 | |---|-------------------|------------------------|------------------------|----------------|---------------|--------------|--------------|-------| | HARMONIC | HARMONIC ANALYSES | DF TANGE | OF TANGENTIAL VELOCITY | | COMPONENT | RATIOS | (V1/V) | | | HARWONIC . | - | 7 | Е | 4 | ις | 9 | 1 | 90 | | RADIUS = .312
AMPLITUDE = *
PHASE ANGLE = | .2652
174.9 | . 0329
99. 5 | 108.7 | 114.2 | .0190 | .0154 | .0139 | .0050 | | RADIUS = .350
AMPLITUDE = PHASE ANGLE = | 176.8 | .0232 | .0128 | .0139 | .0144 | .0113 | .0101 | .0035 | | RADIUS = .400
AMPLITUDE =
PHASE ANGLE = | .2446 | .0124 | .0071 | .0082 | .0091 | .0068 | .0059 | .0020 | | RADIUS = .500
AMPLITUDE =
PHASE ANGLE = | .2253 | .0031 | .0035 | .0033 | .0028 | .0011 | .0008 | .0017 | | RADIUS = .600
AMPLITUDE =
PHASE ANGLE * | .2094 | .0101 | .0070 | .0060 | .0044 | .0035 | .0034 | .0024 | | RADIUS = .700 AMPLITUDE = PHASE ANGLE = | . 1954
182.8 | .0056 | .0059
2 83.5 | .0043
264.9 | .0037 | .0030 | .0022 | .0016 | | RADIUS = .800
AMPLITUDE =
PHASE ANGLE = | .1859 | .0010 | 310.3 | .0016 | . 0019 | .0018 | .0009 | .0011 | | FADIUS = .900 AMPLITUDE = PHASE ANGLE = | . 1815 | .0021 | .0032
355.4 | .0015
39.6 | .0007 | 8.67
79.8 | .0006 | .0002 | | RADIUS = 1.000
AMPLITUDE = PHISS ANGLE = | .1813 | .0025
39.5 | .0037 | .0032 | .0023
53.6 | 58.4 | .0022 | .0017 | IABLL A-12 (Continued) | > | VELOCITY COMPONENT PROPELLER | COMPONENT
PROPELLER D | RATIOS F
DIAMETER | 8 O | MODEL 5365 FROM
6.00 FEET | M EXP. | o > | .739 | |---|------------------------------|--------------------------|------------------------|---------------|------------------------------|----------------|------------|---------------| | HARMONIC | ANALYSES | | OF TANGENTIAL VELOCITY | - DC1 TY | COMPONENT | RATIOS | (V1/V) | | | HARMONIC | 6 | 0 | - | 12 | 13 | 4 | 15 | 9 | | PADIUS + .312 AMPLITUDE = PHASE ANGLE * | .0020 | .0008 | .0015
350.3 | .0028 | .0036
33.8 | .0041 | .0047 | .0042
84.8 | | RADIUS = .350
AMPLITUDE =
PHASE ANGLE = | . 0019
109.9 | .0007 | .0011 | .0019 | .0025 | .0030 | .0034 | .0030 | | RADIUS = .400
AMPLITUDE =
PHASE ANGLE = | .0020 | .0012 | .0011 | .0012 | .0015 | .0018 | .0020 | .0017 | | RADIUS = .500
AMPLITUDE =
PHASE ANGLE = | .0022 | .0019 | .0016 | .0013 | .0012 | .0010 | .0006 | .0004 | | RADIUS = .600
AMPLITUDE = PHASE ANGLE = | .0019 | .001 8
66.8 | .0015 | .0015 | .0015 | .0014
199.0 | .0012 | .0012 | | RADIUS = .700
AMPLITUDE = PHASE ANGLE = | .0008 | .0005
6.7 | .0002 | .0002 | .0005 | 239.2 | .0007 | .0008 | | RADIUS = .800
AMPLITUDE = PHASE ANGLE = | 272.4 | .0008 | .0008
303.0 | .0007 | 311.6 | .0006 | .0005 | 331.3 | | RADIUS = .900
AMPLITUDE *
PHASE ANGLE * | 207.9 | . 6003 | .0004 | .0004 | .3004 | .0004 | 20.2 | .0004 | | RADIUS = 1.000
AMPLITUDE = PHASE ANGLE = | .0013 | .0008 | 98.6 | .0004
93.3 | . 000 .
400 . 0 | .0004 | .0004 | .0004
89.7 | ## APPENDIX B VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 10 Figure 3-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 10 VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 10 0 633 RAD. Figure B-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 10 Figure 8-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment IO VELOCITY COMPONENT RA LOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 10 $-0.963~\text{RAD}_{\odot}$ Figure 8-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 10 Figure B-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 10 Figure $\beta - 6$ - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 10 TABLE B-1 ## INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 10 | | RADIUS + | | | | #401US - | | | | Rantus • | .741 | | |
##11US + | .963 | | |-------|-----------|---------|----------|----------------|----------|---------|---------|--------------|--------------|----------|---------|-----------|-----------|---------|--------------------| | **** | *1/* | ¥1/¥ | 4R/ ¥ | 4466 | 41/4 | ¥ 17¥ | 44/4 | ANGLE | V 1 / V | ¥174 | 44/4 | AMGLE | 41/4 | *1/4 | 4874 | | | 4 | . 017 | 00 9 | 1.5 | 1 - , 49 | 6 2 3 | 073 | 5 | 1 . 5 . | 00* | 137 | 9.5 | 1. 37 | . 044 | 165 | | 3 - 0 | .49. | .019 | 610 | 10.0 | 1 - 124 | 655 | 664 | 3.5 | 1 21 | 513 | 515 | 19.6 | 1 - 17 | 699 | 130 | | 9.5 | . 47 | 616 | 1 | 1 | 1 17 | 055 | 0 4 3 | 7.0 | 1 - 10 | 621 | 897 | 23.7 | 117 | 057 | 156 | | 11.6 | . 467 | 020 | 4 - 6 | 17.0 | 1 34 | 056 | | 9.1 | 1. 15 | | 844 | 25.7 | 1 3 . | 041 | 160 | | 13.4 | . 16. | 0.00 | 054 | 19.0 | 14.44 | 041 | 131 | 11.3 | 1 . 1* | 546 | 1 . 1 | 27.6 | 1.506 | 023 | 156 | | 15.6 | 2445 | 1 2 | 0.5 | 22.1 | 1 3 5 | 25 | - 187 | 15.3 | 1. 20 | 41 | 105 | 24.5 | 1957 | 627 | - 158 | | 17.4 | 162 | 0 99 | 642 | 24.3 | | - 0 34 | 115 | 15.3 | 1 35 | 044 | 117 | 29.7 | . 467 | 107 | 15.0 | | : 4.5 | . +1: | 144 | 133 | 5 - 1 | . 979 | 6 31 | 115 | 17.3 | 1 - 5 | - 051 | - 111 | 31.0 | 1. 55 | 110 | 166 | | 11.6 | 4 | 165 | * 111 * | 26.3 | . 456 | 0 31 | 114 | 19.7 | 1 ** | 052 | 11 - | 35.7 | 1 55 | 6 91 | 169 | | *4.5 | 1.121 | - 154 | 115 | 26.45 | . 171 | - 0 42 | 131 | 19.4 | 5.4 | 050 | 112 | 37.7 | 156 | - , 689 | 7.185 | | 27.0 | 1.137 | 151 | 49 9 | 27.0 | 1.754 | 117 | 139 | 21.1
23.2 | 1 - 51 | 025 | - 11 4 | 19.6 | 1 . 57 | 6 97 | 177 | | 27.3 | 1.157 | 119 | 998 | 36.1 | 1 75 | 105 | -,165 | 2 | 1 | - 669 | 117 | 49.3 | 1. ** | 124 | 15 8 | | 29.6 | 1.13. | 119 | 038 | 14.4 | 1. 23 | - 104 | 145 | 27.2 | . 16.2 | 4- | 1 3 7 | 69.5 | 1 . 61 | 167 | * . 134 | | 17.5 | 1.12 | 141 | 198 | 19.0 | 164 | - 169 | -,137 | 29.0 | 1 - 27 | 114 | 151 | 79.4 | 1 | 167 | 189
876 | | 47.0 | 1.114 | 177 | ***** | 47.1 | 1. 64 | 115 | 133 | 31.2 | 1. 51 | 094 | 155 | 49.3 | 1.174 | 192 | | | -9.0 | 1 - 117 | -, 183 | 071 | ** -1 | 1 | 177 | 124 | 55 -1 | 1 67 | 0 90 | - 14 5 | 91.3 | 1 4 ! | 1 📆 | * . 6 * 6 | | 53.5 | 1.124 | 195 | 006 | 56.3
56.0 | 1 55 | - 1 30 | 175 | 17.2 | 4 4 67 | t 96 | 1 . 5 | 41.4 | 1 / ? | 193 | 030 | | 57.5 | 1.171 | 266 | 981 | 60.0 | 1 8 . | - 165 | 098 | 97.1 | 1. 57 | 10 5 | - 111 | 109.0 | 1 75 | 189 | - 4554 | | 40.4 | 1.:27 | 711 | 2/8 | 70.1 | 1.791 | 1 04 | 015 | 59.4 | 15.59 | 160 | 099 | 139.1 | 1 81 | 190 | . 626 | | 51.5 | 1.125 | 219 | 075 | 5.00 | 1 | 500 | | 69.1 | 1 5 9 | 180 | 874 | 114.0 | 1 7 - | 178 | | | 17.0 | 1 - 1 7 4 | 232 | 865 | 49.7 | 1 | 260 | 049 | 79.1 | 1 . 67 | 197 | | 179-1 | 1 7 - | - 159 | .813 | | 4 | 1.141 | 261 | 025 | 91.0 | 1. 94 | 765 | 619 | 79.4
63.1 | 1 - 65 | - 190 | | 119.5 | 1. 6. | - 135 | .123 | | ** .: | 1 - 1 38 | 265 | 55 4 | 100.0 | 149 | 425 | .612 | 46.3 | 1. 6. | 26 ? | 613 | 1 . 6 . 3 | 1 61 | 167 | .100 | | 187.5 | 1.197 | - 25 | . 21 h | 139.0 | 144 | ; 4A | .026 | 94.6 | 1. ** | 25* | | 159.3 | 1 67 | 977 | -161 | | 119.3 | 1.15. | 1,214 | .042 | 129.0 | 1 | - : 60 | . 04 1 | 119.5 | 1. *: | 2.2 | | 179.7 | 1. 64 | 0 | .17 2 | | 127.6 | 1 - 1 39 | 222 | . 0 - 0 | 117.0 | 61 | 1.5 | . 153 | 126.2 | 1. 6 | 1 | | 141.0 | 1 | 00 | .174 | | 141.5 | 1.131 | 1.147 | | 199.4 | 1 65 | 1 40 | . 10 % | 2.19.2 | 164 | -, 364 | -117 | 184.3 | 1 / . | . 021 | -175 | | 167.6 | 1.137 | 160 | . 111 | 159.6 | 158 | 163 | .119 | 139.5 | 1. 60 | - , 1 44 | - 1 • 0 | 199.2 | 1 - 71 | . 642 | -157 | | 179.8 | 1.111 | 0.24 | -115 | 169.4 | 19 | 0.31 | . 139 | 159.3 | 1. 6. | . 601 | .151 | 214-1 | 1 | . 111 | -111 | | 187.4 | 1.131 | | .115 | 174.5 | 14.57 | - 48 5 | . 1 * 1 | 171.5 | 1. 6 | . 10 | . 185 | 224-8 | 1 . 5* | - 177 | -179 | | 147.4 | 1.135 | . 664 | -115 | 161.4 | 1 - 56 | - 014 | .1.1 | 179.7 | 1. 64 | 004 | -144 | 278.4 | 1 - 73 | . 1 37 | .119 | | 225.8 | 1 - 1 35 | . 152 | . 185 | 199.0 | | | . 1 1 1 | 107.0 | 1 41 | . 615 | . : 4 4 | 294.1 | 174 | . 157 | .891 | | 724.1 | 1.147 | . 158 | | 249.1 | 11.41 | . 164 | . 11 9 | 194.3 | 1 | . 641 | .151 | 759.2 | 1 55 | 184 | . 634 | | 214.8 | 1 - 1 96 | 174 | . 67 2 | 219.5 | 1 | - 1 - 1 | 4191 | 203.9 | 1 7% | | .17 | 264.7 | 1 91 | . 1 96 | 3 - | | 248.1 | 1.189 | . 202 | .627 | 229.2 | 1 | - 154 | .869 | 211.9 | 1. /5 | . 2 9.2 | 15.5 | 219.1 | 1 87 | . 191 | ~ . 026
~ . 057 | | 253.3 | 1.10 | . 217 | 415 | 219.5 | 1 50 | 19. | .051 | 219.8 | 1. /1 | .115 | .144 | 219.2 | 1 82 | . 176 | 091 | | 249.1 | 1 - 1 5 - | . 276 | . 00 7 | 2.9.2 | 1 54 | . 204 | . 452 | 227.4 | 11.77 | 1 15 | . 13 / | 32 A . A | 1 - 62 | . 149 | ~ - 114 | | 240.7 | 1 - 1 4 | . 220 | . 04 7 | 759.5 | 1 - 75 | .219 | - 84 5 | 254.3 | 1. 65 | . 155 | -177 | 316.3 | 1 | 141 | 16 5 | | 714.7 | 1.153 | . 271 | 015 | 271.2 | 168 | . 275 | 026 | 240.2 | 1 - 85 | 163 | .11.4 | 319.2 | 1 - 262 | . 134 | * . 157 | | 744.1 | 1.15 | 513 | 633 | 279.8 | 1. 11 | + 221 | | 251.9 | 1 - 42 | .167 | . 166 | 32 5 . 2 | 1 - 1 0 3 | . 124 | 157 | | 237.4 | 1 ** | . 197 | 451 | 249.2 | 1 60 | . 734 | | 254 | 1. 91 | | . 256 | 375.7 | 1 64 | . 118 | 134 | | 311.4 | 1 - 1 1 - | 1174 | | 299.5
389.3 | 1 . 61 | - 197 | 11 * | 267.4 | 1 97 | . 1 90 | .017 | 327.2 | 1 65 | . 116 | 16 4 | | 22 | 1 . 1 1 | . 1 33 | 204 | 315.3 | 64 | . 149 | - 117.5 | 275.5 | 1 94 | . 190 | 03 % | 311.7 | . 494 | . 163 | 168 | | 325.5 | 1 . 1 34 | . 121 | 467 | 324.5 | 1 7 2 | - 176 | 139 | 743.6 | 1. 96 | . 187 | | 333.7 | . 160 | . 4 45 | 145 | | 329.0 | 4 ** | - 115 | | 329.5
529.5 | 165 | 171 | 146 | 221.7 | 1 4 . | . 1 *6 | 0 4 1 | 334.8 | 1 56 | . 6 37 | 1 - 9 | | 111.4 | 1-1-1 | .117 | | 311.0 | 1/. | .119 | 115 | 799.5 | 1 - 1 5 - 75 | . 178 | | 317.7 | 1. 41 | . 672 | 17 4 | | 355. | 11.41 | . 1 99 | . 104 | 331.4 | 1 - 61 | 142 | -,154 | 311.0 | 1 | . 155 | 644 | 39.1.1 | 1 | . 144 | 173 | | 111 | 1 . 1 . | . 135 | 444 | 115.5 | 1 . 55 | 1.45 | 156 | 315.5 | 1 . 7 . | 1117 | - 1107 | 344.7 | 1.54 | | 17% | | 349.5 | 1. 1. | . 0 97 | 45.5 | 317.0 | . 47 . | - 1 42 | -,154 | 319.8 | 1 - 1 | . 126 | 114 | 349.2 | 1 4 | .478 | 17 0 | | 3.1. | 1. 2. | | 45 9 | 319.5 | 1 . 42 | . 6.74 | 161 | 323.4 | 1 - 1 | 114 | 176 | 155 | 1 . 51 | . 663 | 159 | | 3-1. | 1 - 25 2 | . 247 | 0 3 0 | 561.6 | 1 54 | . 841 | 176 | 327.4 | 1. 78 | 115 | - 132 | 159.1 | 1 - 17 | . 648 | 1 . 4 | | 3+7.2 | 1 . • / | . 6 . 1 | 127 | 363.4 | 1. • * | 0.55 | 12 7 | 374.0 | 1. 01 | . 143 | | | | | | | 347.8 | 1 | . 9 34 | 176 | 145.4 | 1 | . : 44 | 176 | 311.0 | 1 | . 157 | 11 1 | | | | | | 151.7 | 1127 | . 0 36 | 0 1 6 | 3-9.2 | 1 25 | 75 | 13 9 | 313.0 | 1 4.7 | . 652 | 119 | | | | | | 355.5 | 11.724 | . 6 21 | 418 | 353.7 | 1. 15 | -017 | 046 | 317.5 | 14.85 | . 854 | - 107 | | | | | | 359.0 | 1 17 | .017 | - , 11 1 | 347.0 | 1 11 | - 611 | 076 | 319.6 | 1 41 | . 071 | 165 | | | | | | | | | | 149.3 | 2.1 | - 1 | 0'5 | 341.4 | 1 7 | . 855 | - 14.5 | | | | | | | | | | 149, | 1. 39 | - 621 | 073 | 349.4 | 1. 44. | . 641 | - 1111 | | | | | | | | | | | | | | 355.3 | 1. 41 | .013 | 5.115 | | | | | | | | | | | | | | 159.5 | 1. 34 | 0 | 16 ? | LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 10 1 TABLE B-2 | 0
4
2
1
1
1 | 1.000 | 1.064 | . 605 | 610 | 1.081 | 1.089 | 14.02 | 88.
00.36 | -1.22
332.50 | |---|---------|--------|----------|-------|--------------|-------------|-------------|--
---| | 4 1 A 1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 000 | 1.066 | 100.1 | 900. | 1.085 | 1.095 | 15.56 | .94
97.56 | -1.63 | | 10% ±11H | 0000 | 1.007 | 400.1 | .016 | 1.001 | 1.104 | 17.43 | 1.16 | -1.60
332.50 | | 4 1 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ن ۵۵٪. | 1.064 | 000:- | 800. | 1.101 | 1,117 | 19.61 | †0
 -0
 -0
 -0
 -0 | 332.50 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .600 | 1.00.1 | 300. | 100°- | 1.120 | 1.143 | 22.63 | 100.00 | -2.46
335.60 | | VELDAL V COMPONENT PATIL. TO TO SOUS CONSELATION ALTH ROY ATHENA 10 FRED. FROM LINE AND THEN AND FELL TO FELL TO SOUR THE SOURCE SOLD TO SOURCE SOUR SOURCE | y
u | -75 | | CY | ;
;
•= | #
#
* | | . 00 2.39 1.24 .93 4.91 6.65 4.97 . 7 2.13 1.74 1.16 .94 .88 | | | 200
E 4
100
100
100
100
100
100
100
100
100
10 | a. | 2 | 1.0.1 | | 1.135 | 1.242 | 34.4.3 | 4
90. | 9.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
1 | | 707708EN | .350 | 1.193 | 0.48 | .035 | 1.205 | 1.290 | 39.56 | 6.65
22.50 | -8.93
5.00 | | | . 12 | 1331 | ۳
٠٠٠ | ? | 0.00 | 00000 | 4.1, 01 | ē ? | -14,27 | | y
T | (ac ; | : 00: | 300. | 610 | 1.582 | 1.095 | 14.54 | 70
70
90 | 332.50 | | 1 | T. | 1.066 | +.004 | 0.10 | 1.032 | 104 | 17.e2 | 1.24 | 322.50 | | 12:67:52:40 | (, , , | 1.5.7 | 200 | | 5. | 1.133 | 21.46 | 2.39 | 726
355.60 | | , C | ٤. | 20 | - 516 | 5 | 19. 1 | 50 : · · | | | 1 5 5 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | - | | : | ٠. | : | 3
5
5 | | | 114 JUST. ACCOMPENDATE, WEAK EQUALITY CONTROL SELECTIVE ACCOMPENDATE TO STATE ACCOMPENDATE ACCOUNTY. RECOMPENDATE THE TRANSPORT VELOCITY OF TAXABLE ACCOUNTY. A CONTROL OF A WAS TO CONTROL OF TAXABLE ACCOUNTY. A CONTROL OF A CANAGE. A CONTROL OF TAXABLE ACCOUNTY OF ACCOUNTY ACCOUNTY. A CANADA TO CONTROL OF TAXABLE ACCOUNTY. A CANADA TO CONTROL OF AC HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 10 TABLE B-3 | 1 | in pe | | | - 70 | | | | |
--|---|----------------------------|--|--------------------------------------|-------------------|--|---------------------|---------------------------| | | | | .; | | | 0 | 2.2 | | | • | | ^, | | | •• | ٥ | • | ÷ | | | | .0348
263.2 | | | 0.120 | 253.9 | .0070
2.0.2 | 0 a
0 a | | 2 add 1 | | - 9224
259+9 | | 10 m
10 m
10 m
10 m
10 m | 2.55 | .0032
274.8 | . 3007.
307.5 | (a) (V) | | | 3 : <i>(</i> > | ጠ ጠ
ጠ
(1 ක)
(1 ක) | ************************************** | | 21.00 | . 0018
243.8 | . 6921
133.2 | 7 · | | 5 B 277 C 27 C 27 C 27 C 27 C 27 C 27 C 2 | * 80
* 30
* 50
* 50
* 50
* 50
* 50
* 50
* 50
* 5 | 2.0
0.8
0.8 | 2 | | 2.007.2 | .005
.005
.44.6 | ٠٠٠
١٥٠٠
١٥٠٤ | 역 G
7 :
12 %
보호 | | H4F V 33, 10 | A Same Control | 1000 | | | | 70 E 7 E | | | | | c | 0 | | 14 | | ·, | 3. | ī. | | 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | त्त्र त
१८ | 5 °C
0 °C
0 °C | | | ÷ ; | 40
54 | 51.5 | | | 0.00 | | 3 6
6 - | | | | 75 (D) |
 | (2) | | # 0 | 15 (5)
14 - 1
2 - 24
25
2 - 2 | .0007
200.5 | | > 7.
> 6. | 0 0
0 0
0 0 | 60 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 3 F
0 7
0 7 | 30 m
3 3
4 0
4 3 | | 5. 331C27
3. 331C27
3. 321C27
3. 321C27 | 5.633 | 0.00%
0.00% | | | · | 8 8
6 7
6 7
7 | 0. x 00 | . 7
3 3
3 3 | HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 10 TABLE B-4 | PREDITIY CONTRACTOR | COMPONENT PROPELLER C | RENT RATION FO | 000 S | 5355
FEET | CORRELATION | G H114 | V ATHENA 10 | |---------------------|-----------------------|----------------|----------------------------|----------------|------------------------|----------------|------------------| | | | ر بران
د | | رد | | 7 | v | | . 1133
236.3 | .0458
265.9 | .0423
200.5 | 0.43
0.03
0.03 | .0272 | .0248 | .0187 | .0143 | | 6959
239.6 | .0428 | .03%
208.8 | * C1 | .0235
251.4 | .0206 | .0151 | .0112 | | .0593 | .0370 | 2, 10, 2 | . 9 2 03
. 59. 5 | .0192 | .0157 | .0109 | .0.77 | | .0246 | .0316 | .0175
234.1 | . 0122
285.1 | .0122
250.4 | .0083 | .0046 | .0025 | | .0138
527.5 | .0253
260.5 | 250.5 | .0031
244.3 | .0073 | .0040 | .0012 | . 0000
349.8 | | .6039
.88.7 | 259 0 | 200.2 | 00.00. | .0047
243.9 | .0024 | .0007 | . ୧୯୦୭
ଅଟି: ଜ | | . 010.
24.3 | .0140 | | 5.50° | .6047 | .0019 | .0624 | .0017 | | . 620a
256.2 | .0155
255.4 | 22. 4 | .0053 | .0063
205.3 | ანენ.
196. 8 | .0010
154.8 | . (037
101.9 | | . 01d5
946.8 | .0196 | 22.5 | 0 | 211.1 | .0051
189.6 | 100.1 | 167.0
167.0 | (ABLE 8-4 (Continued) • 7. ATH 10 1000 · 90. 40. .007: 60.7 . 6625 308. 1 . 56.39 292.1 .0019 291.9 .0001 .00% 97.2 4000. 4 TO LEGIS CHAREATION ATTHE .20°. 87°. 3.05 4.05 4.05 35...38 . 56.30 81.0 .0030 0020 285. A 2 . 3 . 3 20012 .0020 242.5 7) 111 CON CHENT RATIOS 5.1.1 30075 .0021 83.9 .0016 296.3 .0025 283.3 .0027 .0023 .0026 • 1 . 0.27 1 • 9. 9 . 01 ° 0 1 0 0 · 9 0 · 9 10101 41021 5040 94.3 354.9 .0.25 256.3 . 0017 224. 5 23.14 23.14.6 2.0.0 107.17 000 % . 0.984 214. 163.3 100 103.1 .001 2101 200 : 3 0.1.1.1 1,510s 114.8 9.00 j 3, 3, 16 14, 7, 3 .:030 2 / 3 2.000 Attaches to 05 (010110); 13 . 0108 143.8 .0097 138.0 .004 130.4 ,0042 210.3 .0002 .0020 1£0.4 .0034 . 0032 199.0 0 2.3 1,271 .002.1 0000 202 3.1 137.6 10027 .003; 103.9 in G 2007.00 100.00 1 3000 - 2000 -
2000 - 20 430105 = 1,000 3.00_7100E 6847E A50_E 000. . . . н 11.11.11.11.11 ۲. ##01.0 = .3 ##011.00E :P#SF #131E 3 1 2 3 6 7 1 2 1 B - 2 10 1 0 1 1 • ···. . HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE B-5 * | KADIL F | FOR EXPER | EXFERIMENT | 01 | | | | | | |---|---------------------------|--|---------------------|------------|--------------------|----------------|---------------------------|---| | | | COTPONCYT A | DIAT | 10 | 53+5 (3PPE
FELT | PELATION | E TO | J AT. 124 10 | |) [* C e V · · | 577 17.5 | 3777 30 | A STATE OF STATE | ر.
 | 200 00000 | 24T105 | | | |) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | · | ₹ | ÷ | ٠; | ທ | ÷ο | 7 | ಐ | | 0000 - 00000 0000 0000 0000 0000 0000 | | . 000-3
54-8 | 80 | | . 6538
139.7 | .0037 | 0000.
03.00 | #
0 .
0 t | | 37 V 30 V 4 V 30 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V | 715 | 3000 + 30 | 0 (2)
17
• (N | • • | .0041
241.8 | .0029 | .0027
283.2 | , 00019
642, 1 | | 440105 = .781
47941:00E = = | 989
989
1 | .0059 | 3.6 | | .001.283.0 | .6007
255.3 | . 00 . 2
2 . 5 . 5 . 5 | 1 : t <
C : +
C : t :
C : t :
C : t : | | 0000. # 000000
#000000000000000000000000 | 2007
2007
2008 | .0071
68.4 | .a

 | (A) (A) | 0.00.
0.00. | .0035 | 2003.
4.601 | 0 10
0 10
0 10 | | OINOURKH | ANGLISES | OF | TANDENTE | | COMPONENT | T RATIOS | (× T ×) | | | 1 0 1 2 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 | Ö | õ | | <u></u> | en
En |
.1 | 3.5 | <u> </u> | | 957 - 377 - 777 - 777 - 777 - 777
- 777 - | .0048
30.1 | .005.7 | | | 03/52 · | .0035
359.3 | .0022
340.J | - C
- C C | | 4.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.000
61.000
41.000 | .0008
292.8 | 2 2 | <u>0.0</u> | .0020 | .0335 | 00000. | .0033
163.7 | | 1 H B B B B B B B B B B B B B B B B B B | : 0
::
::: | .001
18:.8 | | | # 300 m | .6020 | .0012 | .0006
247.2 | | 8 3000 1000 8 3000 1000 8 3000 11 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10 | . 0013
7.63.7 | .00013 | 7. T | | .001. | 0.001. | . :000
221.8 | . 0000 s
2 u b . 0 | HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 10 TABLE 8-6 | -1 | : . | |--|-----| | The state of s | • : | | | | | | | | ٠. | | | - | | | | | | | •: | • | |---|------------------------------------|------------------------------------|----------------------|---|------------------------------|---
--|---------------------| | | | | | | | | • | | | | | ۲۰ | | • | s | -Ω- | - | ٢ | | | | | | | 5. <u>\$</u> | .0156 | .0123 | 0.5 | | | | 50
50
50
50 | | | 123.7 | 120.1 | . 00.
1. 10 | | | | | 87.6E | + 2
+ | | 0.00
0.00
0.00
0.00 | .0076 | . 300°. | T-00: | | | 2. | - 5%
15 - 1
13 - 1
13 - 1 | * O4 | + t
 | .0016
9.181 | .0016
163.9 | .0007 | | | | | 310.2 | * ***
** | | ar t- | 0 C C C C C C C C C C C C C C C C C C C | 5.537 | | | | : 1
: . | 000.
0.000. | | | E000. | 0.00 | 6 1
6 2
7 3
7 4 | 7 0 0
0 0
0 7 | | | | 28.2 | - 59 | | 3 C.
F
W
W. C. | 1 0
0 1
0 1 | 100 mm 10 | 0.00 | | | 17 (1)
13 (4)
1 (4)
1 (5) | | . 13 | 1 · · · · · · · · · · · · · · · · · · · | 103. | 0.
0.
0.
0. | | 100. | | 1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000 | 1.3.1.7. | .00°1
88.4 | | : | | .003 5 | 0.
0.
0.
0.
0. | 5.6 | TABLE B-6 (Continued) | * | | | | 19 | | 5 | 4 1 7 4 5 7 | H. F. | |---|--|--------------------------|-----
---|----------------|---|---|--| | | | | | | | 821108 | · | | | | Ŧ | Q
F | | | | 7 | <u>ئ</u>
• | ÷ | | | | ÷ ; | | 1. | 1610. | 0.4 | | 2 +
2 +
5 +
5 +
1 | | | | 9.4
 | | • | | . 0124
448.7 | 3 · · · · · · · · · · · · · · · · · · · | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | | | 000 | : | | 3.50° | .0078
8.1.6 | \$.
\$.
\$.
\$. | | | | | | • . | • | 80000
00000 | .0012
28.6 | 7.73. | | | | 28.0 | 5 7
6 2
6 5
+ 6 | | • • | 7 O | © 6.
000.
000.
000.
000.
000.
000.
000.
0 | | | | | | 2.2.5 | | | 7. "T | 20.
34
01. | | . 14
. ()
. () | | | 1.00. | .0012
176.8 | | • | m :: | 6:00. | 11.2.1 | 1. 7
.3
 | | | 100
100
1.36 | 147.3 | | 1 m = | E 3. | 4 N
0 T
0 T | 3 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | 3 · · · · · · · · · · · · · · · · · · · | | | 7.00
6.00
7.00
7.00
7.00
7.00
7.00
7.00 | 117.7 | . ÷ | | 153.3 | 0.000. | 2.1.50 | ၈၀
၁၈
၀၈
၁၈
၁၈ | ## APPENDIX C VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 11 POLICITIES INFONENT RHITIGG FOR MODEL GUSS WITH BAGG BOAT GEHIND WZO PRII. GL456 RAO. Figure C-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 tor Experiment 11 IF, IN ITY LOMPSMENT RATIOS FOR MODEL 5355 WITH SHOP BYHIT FRUIT, μ is said 0.837 RAD. Figure C-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 11 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRES--ETC(U) JAN 81 R B HURWITZ- L B CROOK DYNSROC/SPO-0833-06 NI AD-A094 342 UNCLASSIFIED 2 0.2 4P- A 094342 END 2-81 DTIC VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND W/O PRII 0.781~RAD Figure C-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 11 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND W/O PR11 0.963 RAD. Figure C-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 11 Figure C-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 11 Figure C-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 11 TABLE C-1 INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 11 | ANGLE | ATLA - | **54 | VR/V | ANGLE | RACTUS | | | | RADIUS . | .781 | | | 4401UE - | | | |----------------|----------------|----------------|--------------|----------------|----------------|----------------|-------------|----------------|-----------------------|----------------|----------------|----------------|--------------|----------------|-----------------------| | 9 | . 419 | 013 | 058 | -5.0 | V17V | 0% | VR/V
895 | ANGLE | AXAA | 4174 | AK \A | -1.8 | VE/V | 4174 | VR/V | | 1.1 | . 925 | 6 36 | 877 | .5 | 984 | 001 | 2 94 | 1.1 | .913 | 843
866 | 123 | 3.3 | . 154 | 881
814 | 129
130 | | 7.1
18.8 | .450 | 877
883 | 007 | 2.4 | - 986 | 866 | 8 99 | 41.0 | .943 | 867 | 133 | 4.3 | . 050 | 422 | 127 | | 18.5 | . 983 | 841 | 10 | 4.5
6.5 | .987 | 667 | 184 | 13.0 | . 948 | 966 | 135 | | . 062 | 041 | 141 | | 13.5 | .895 | 871 | 004 | 10.6 | . 939 | 072
070 | 107 | 14.8 | . 950 | 869 | 1 37 | 16.4
20.2 | .879 | 866
878 | 158
161 | | 15.1 | . 487 | 073 | 098 | 14.6 | . 443 | 062 | 129 | 17.1 | . 966
. 963 | 676
669 | 1 %
1 % | 22.2 | . 927 | 653 | 159 | | 17.1 | . 164 | 077
097 |
103 | 16.6 | . 140 | ~. 843 | 123 | 10.0 | . 974 | 866 | 133 | 24.4 | . 401 | 046 | 151 | | 19.3 | .961 | 1.37 | 116 | 20.4 | . 922 | 48
48 | 117 | £1.1 | . 979 | 033 | -129 | 24.4 | . 891 | 842 | 156 | | 71.0 | .96' | 148 | 110 | 88.0 | . 455 | 113 | 1 35 | 22.9
24.6 | .097 | 837 | 128 | 20.2 | .944 | 127 | 173
104 | | 23.2
23.2 | .981 | 133 | 124 | 24.6 | . 925 | 129 | 149 | 27.0 | .768 | 122 | 162 | 20.3 | . 944 | 119 | 184 | | 26.0 | .973 | 114 | 112 | 26.5
26.5 | . 944 | 183 | 145 | 20.0 | . 975 | 163 | 161 | 36.0 | . 954 | 100 | 102 | | 29.0 | . 469 | 117 | 116 | 30.7 | .942 | 112
163 | 146 | 29.8
32.8 | .977 | 181
183 | 160 | 10 .4
22 .4 | . 94 9 | 102
090 | 103 | | 29.6 | .971 | 116 | 110 | 12.6 | . 963 | 106 | 140 | 17.1 | -970 | 113 | 153
145 | 19.0 | .956 | 115 | 162 | | 13.2 | .068 | 122
128 | 100 | 32.4 | . 146 | 110 | 1 30 | 39.1 | - 971 | 119 | 141 | 10 .0 | . 961 | 133 | 1 30 | | 39.1 | . 961 | 147 | 165 | 40.3 | . 941 | 116
120 | 139 | *1.1 | . 964 | 129 | 148 | 41.1
47.1 | . 962 | 146
166 | 116 | | 19.0 | . 964 | 170 | 6 6 6 | 50.5 | . 943 | 146 | 149 | 49.3
61.0 | . 964
. 967 | 147 | 123 | 79.7 | .969 | 167 | 891
865 | | 17.1 | .969 | 198
202 | 871
850 | 60.2 | . 94.0 | 165 | 049 | 69.6 | . 966 | 173 | 074 | 49.1 | . 962 | 171 | 037 | | 79.6 | . 979 | 289 | 0 29 | 78.4 | . 958
. 955 | 174 | 066 | 41.4 | . 161 | 184 | 042 | 99.4 | . 963 | 167 | 010 | | 47.4 | .970 | 710 | | 10.1 | .992 | 166
161 | 642 | 99.7 | . 958 | 186 | 019 | 109.3 | .468
.976 | 157 | .817
.842 | | 19.4 | .970 | 205 | -611 | 99.6 | . 954 | 175 | .001 | 107.0 | .972 | 179 | .009 | 129.2 | . 954 | 120 | .067 | | 114.6 | .960 | 174 | .835
.854 | 119.6 | . 943 | 169 | .424 | 119.6 | 960 | 152 | .059 | 139.0 | . 996 | 102 | .847 | | 129.8 | . 953 | 149 | .171 | 129.3 | . 924 | 144 | .047 | 129.4 | . 958 | 132 | .441 | 148.8 | . 952 | 876
846 | -104 | | 179.8 | . 956 | 110 | -486 | 139.2 | . 914 | -, 101 | .003 | 139.7 | .947 | 195
677 | .188
.115 | 168.9 | .943 | 815 | -116 | | 159.0 | . 947 | 001 | .899 | 149.1 | .917 | 673 | .097 | 149.9 | .942 | 677 | .115 | 179.8 | . 950 | - 016 | -125 | | 160.8 | . 944 | 100 | .169 | 150.0 | .986 | 636
684 | .184 | 168.0 | . 946 | 644 | .124 | 198.8 | . 961 | . 647 | -120 | | 100.5 | .961 | . 823 | -110 | 101.1 | . 104 | . 6 36 | .110 | 178-1 | .941 | 618
611 | .1 32
.1 30 | 211.3 | .952 | . 115 | .111
. 89 4 | | 198.4 | .947 | . 827 | -100 | 107.1 | . 484 | . 864 | .187 | 100.2 | .951 | . 621 | .131 | 210.0 | . 955 | .135 | .079 | | 201.6 | 948 | - 182 | -105 | 201.2 | . 4 9 4 | - 169 | .020 | 146.3 | .955 | 22 | -1 32 | 233.1 | . 162 | . 166 | .844 | | 210.0 | . 993 | - 1 39 | - 3 86 | 221.0 | .90 | . 130 | .075 | 198.8
208.8 | . 949 | . 855 | -127 | 239.8
251.2 | .964 | . 176 | - 467
- 469 | | 228.5
238.5 | . 954 | - 170 | .074 | 227.4 | . 925 | . 186 | . 1 12 | 214.5 | . 954 | .119 | -119 | 259.0 | 961 | . 197 | 033 | | 248.2 | .984 | . 193
. 209 | .052 | 241.4
249.7 | . 925 | . 707 | -662 | 228.5 | . 958 | . 145 | | 269.4 | .969 | - 195 | 865 | | 250.3 | . 964 | .219 | .310 | 261.5 | . 443 | .212
.218 | 819
058 | 6.963 | . 954 | - 176 | .461 | 279.3 | .978 | . 100 | 0 97 | | 258.3
259.8 | . 966 | . 220 | .010 | 249.4 | . 939 | . 215 | 477 | 248.3
258.3 | . 969 | . 184 | .833
.807 | 299.5 | . 956 | . 174
. 153 | 129 | | 249.6 | . 464 | . 224 | 000 | 281.0 | . 933 | . 205 | 103 | 259.9 | . 982 | 198 | 0 24 | 789.6 | . 105 | .125 | 176 | | 279.6 | . 463 | . 213 | 053 | 207.0 | .936 | - 192 | 123 | 269.9 | .973 | - 199 | 054 | 319.6 | . 963 | . 893 | 195 | | 299.5 | . 951 | . 1 98 | 676 | 301.4 | . 932 | . 1 64 | 127 | 279.6 | . 975 | . 199
- 175 | 0 06 | 321.9
323.7 | .974 | . 8 67 | 197
199 | | 299.2
311.6 | . 957 | .177 | 891 | 399.9 | .419 | - 146 | 159 | 299.3 | .973 | . 153 | 112 | 329.7 | . 974 | .196 | 202 | | 315.1 | . 955 | .129 | 111 | 319.0 | . 964 | . 184 | 169 | 309.2 | .972 | - 128 | 159 | 327.7 | . 891 | . 029 | 107 | | 319.2 | . 954 | .118 | 116 | 327.4 | .933 | . 101 | 176 | 319.1
322.0 | . 901 | . 6 95 | 174 | 327.6
329.6 | . 987 | . 116 | 200 | | 319.2 | . 959
. 964 | . 115 | 116 | 329.9 | .911 | -117 | 181 | 325.0 | .983 | . 888 | 177 | 129.7 | . 497 | . 6 3 3 | 1 86 | | 327.0 | . 967 | . 104 | 116 | 331.0 | . 852 | . 8 95 | 171 | 326.8 | . 972 | -111 | 102 | 331.7 | . 952 | . 626 | 194 | | 1.956 | .967 | . 185 | 117 | 134.2 | . 450 | . 847 | 153 | 324.0 | . 693 | . 102 | 101 | 319.9
349.9 | . 741 | . 855
. 833 | 165 | | 338.9
332.9 | . 96.6 | . 178 | 117 | 139.9 | . 883 | 1125 | 148 | 120.9
130.9 | .8 0 8
.916 | - 184
- 832 | 144 | 359.0 | . 947 | . 001 | 149 | | 337.4 | . 981 | . 114 | 113 | 340.0 | .067 | . 610 | 1 36 | 132.9 | . 963 | . 623 | 175 | 362.2 | . 454 | 014 | 1 30 | | 336.8 | . 124 | . 4 64 | 071 | 340.3 | . 691 | . 611
. 667 | 133
131 | 334.9 | , 164 | . 6 36 | 179 | | | | | | 110.0 | . 966 | . 447 | 051 | 344.8 | . 876 | 819 | *.114 | 340.0 | .944 | . 825 | 176 | | | | | | 391.0 | .942 | . 647 | 852 | 347.0 | . 879 | 4 30 | 105 | 340.0 | . 933 | . 625 | 165 | | | | | | 342.9 | . 661 | .12 | 039 | 392.3
355.6 | . #74 | 844 | 094 | 348.9 | . 919 | 006 | 1 31 | | | | | | 344.8 | . 864 | . 8 27 | 0 31 | 360.5 | 984 | 661 | 695
895 | 344.8 | . 913 | 143 | 153 | | | | | | 347.8 | .852 | - 024 | 033 | | | | | | | | | | | | | | 351.0 | . 429 | . 024 | 0 36 | | | | | | | | | | | | | | 394.6 | .427 | 006 | 616 | | | | | | | | | | | | | | 350.8
359.1 | -476 | 010 | 164 | | | | | | | | | | | | | | 36 3 . 1 | .819 | . 613
636 | 464 | LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT II ı TABLE C-2 VERGCITY CONFONCAL PARTIES FOR MICCL 5365 WITH BASS BOAT BEHIND W/O PRIT PROPELLER DIAMETER = 6.00 FEET | 1.000 | .949 | .007 | 040 | .950 | . 952 | 12.56 | .78
77.50 | -1.27 | |---------------|-------|--------|-------|-----------|---------|---------|----------------|-----------------| | .900 | .958 | .004 | 033 | .949 | .951 | 14.04 | . H 77 | -1.04 | | . 800 | 096. | .002 | 027 | .946 | .948 | 15.74 | 1.03 | -1.20 | | . 700 | .945 | .005 | 028 | .943 | .947 | 17.58 | 1.44 | 330.00 | | .600 | | | 031 | .948 | . 954 | | 2.14 | -1.89
332.50 | | . 500 | | .007 | • | | .972 | 23.64 | \$.03
00.00 | -2.80
335.00 | | .400 | 306. | 300 | 800· | .985 | 1.001 | 29.56 | 4.43 | 0.00 | | .350 | 886. | 005 | | | 610. | 33.67 | 6.25 | -8.15
0.00 | | .312 | 1.009 | 010 | .040 | 0.000 | 0.000 | 37.46 | 9.18 | 0.00 | | £96. | .949 | .007 | 040 | 948 | .950 | 13.02 | .83 | -1.31
357.50 | | .781 | .958 | .003 | 026 | .943 | .946 | 16.08 | 1.99 | -1.18
327.50 | | .633 | .925 | 600. | 033 | .945 | 056. | 18.90 | 1.91 | -1.67 | | RADIUS = .456 | 945 | = .004 | 007 | 176. = | ≥ .984 | = 25.93 | 3.56 | = -3.53 | | RADIUS | VXBAR | VTBAR | VRBAR | ¥ > ₹ - ₽ | 1 - N X | 8848 | 8893
1867A | BNEG
THETA | was manifestation and the state of IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY. IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY. IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY. IS SIRCUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL COPRECTION. IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANSENTIAL COPRECTION. IS SEAN ANGLE OF ADVANCE. IS SEAN ANGLE OF ADVANCE. IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS). IS VARIATION DETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS). IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPGS OR BNEG OLCURS. VXBAR VTBAR VRBAR 1-WV× HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 11 TABLE C-3 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND W/O PRIT PROPELLER DIAMETER = 6.00 FEET | HARMONIC ANALYSES | |----------------------------| | .0233 .0347
283.6 283.5 | | .0083 .0237
37.0 278.5 | | .0036 .0178
196.3 276.8 | | .0184 .0255
263.7 263.7 | | ANALYSES OF LONGITUDINAL | | 01 | | .0020 .0035
156.6 128.6 | | .0028 .0034
58.3 88.3 | | .0007 .0018
299.5 91.4 | | .0041 .0015
190.2 241.9 | HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 11 TABLE C-4 VELOCITY COMPONENT RATIOS FOR MUDEL 5365 WITH BASS BOAT BEHIND W/O PRIT PROPELLER DIAMETRY = 6.00 FFET HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V) | - | HARMONIC | 11 | - | 8 | ຠ | •; | ເກ | 9 | 7 | 9 | |--------------|--|--------------|---------------|-----------------|--------------------------|---------------|-----------------|----------------|----------------|------------------| | - | RADIUS = AMPLITUDE PHASE ANGLE | .312
E = | .0732 | .0472 | .0446 | .032 | .0317 | .0267 | .0202
269.8 | .0148 | | | RADIUS =
AMPLITUDE
PHASE ANGLE | . 350
 | .0573 | .0436
286.5 | .0364
230.0 | .0322 | .0263 | .0217 | .0155 | .0104 | | | RADIUS = AMPLITUDE PHASE ANGLE | . 400 | .0393 | .0392 | .0278
2 30.8 | . 6242 | .0203 | .0163 | .0104 | .0055 | | | RADIUS =
AMPLITUDE
PHASE ANGLE | . 500
| .0141 | .0316
282.24 | .0143 | 286.5 | .0123 | .0090 | .00.4
333.5 | .0023 | | | RADIUS = .6
AMPLITUDE
PHASE ANGLE | .600
E # | .0079
19.9 | .0254
279.3 | . 66n8
2 93. 1 | .0053 | .0087 | .0064 | .0051 | .0047 | | | RADIUS = .7
AMPLITUDE
PHASE ANGLE | . 700
E = | .0033 | .0158
279.2 | 304.5 | .00%
323.3 | .0073 | .0049 | .0021 | .0018 | | | RADIUS = .6
AMPLITUDE
PHASE ANGLE | . 800
| .0046 | .0178 | .0078
290.7 | .00.
305.9 | . 6070
283.7 | .0027 | .0021 | 261.1 | | _ , _ | RADIUS
AMPLITEGE
PHATE AMILE | . 900 | .0118 | .0209 | . 610 : | 000 | .0094
251.4 | .0036
254.4 | .003H | . 0036
2-11-4 | | |
RADIUS 1.000
AMPLITUDE =
PHASE ANGLE = | 000 | .0184 | . 0255
263.7 | .0143
248.8 | 245.5 | .0125 | .0365 | .0001 | .0042 | TABLE C-4 (Continued) | | VELOCITY COUPONENT RATION FOR PROPELLER DIRMETER : | OPELLER | RATION
DIAMETER | | MTJEL 5365 WI
6.00 FEET | WITH BASS I | BOAT BEHING KYD | 14.0 W/O PR | |---|--|----------------|--------------------|----------------|---------------------------------|-------------|-----------------|-----------------| | HARGONIC | HARMONIC ANALYSES | OF LONG! | TUBINAL | VELGCITY | LONGITUDINAL VELCCITY COMPONENT | T RATIOS | (////) | | | HARMONIC | Gn | 0 | : | 12 | 13 | 4 | 1.5 | 1.6 | | RADIUS = .312
AMPLITUDE =
PHASE ANGLE = | .0094 | .0000
179.8 | . 005A | .006.3 | 138.8 | .0074 | .0059 | .0052 | | RADIUS = .350
AMPLITUDE = PHASE ANGLE = | .0068
204.7 | .0049 | ,0049
159.5 | .0072 | 140.2 | .0051 | .0035 | .0028 | | RADIUS = .400 AMPLITUDE = PHASE ANGLE = | .0040 | .0040 | .00.43 | .0053
161.3 | .0061 | .0025 | .0014 | .0022 | | RADIUS = .500
AMPLITUDE = =
PHASE ANGLE = | .0018 | .0035 | .0027 | .0030 | 206.6 | .0015 | .0035 | .0052
312.5 | | RADIUS = .600
AMPLITUCE = PHASE ANGLE = | .0028 | 91.9 | .0017 | .00:0 | .003 0
288.9 | .0033 | .0047 | 317.8 | | RADIUS = ,700
AMPLITUDE = PHASE ANGLE = | 30.0 | .0028
88.3 | .0001
176.3 | .0016
269.1 | .0030 | .0025 | .0025 | . 0018
298.9 | | RADIUS = .800
AMPLITUDE =
PHASE AMJLE = | .0008 | .0015
83.3 | .0015
263. H | .0027 | .0023 | .0017 | .0007 | .0014 | | RADIUS900
AMPLITUDE =
PHASE ANGLE = | .0024 | .0004 | .0620 | 306.8 | .0011 | .0016 | .0007
355.8 | .0012 | | RADIUS = 1.000
AMPLITUDE = = PHASE ANGLE = | .0041 | .0015 | .0031 | .0026
323.0 | .0009
351.8 | 335.0 | 337.4 | .0013 | HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 11 t TABLE C-5 | HARRONIC | HARDONIC ANALYSES | OF TANGE | INTIAL V | ELOCITY | OF TANGENTIAL VELOCITY COMPONENT RATIOS | RATIOS | (V1/V) | | |---|-------------------|----------|---------------|---------------|---|--------|--------|----------------| | HARRONIC = | - | n | n | •1 | ທ | 9 | 7 | ອກ | | RADIUS = .456
AMPLITINE = | .2175 | .0025 | .0019 | 6:00. | . 0022 | .0041 | 6100. | 8000 | | PHASE ANGLE . | 187.3 | 305.7 | 205.8 | 204.7 | 186.1 | 205.1 | 207.7 | 214.4 | | RADIUS633 | 40 | 0110 | 0 200 | Ç | 6900 | 1.1.00 | 90.00 | 4600 | | PHASE ANGLE = | 130.1 | 3005.5 | 3000 | 307.0 | 314.3 | 313.2 | 317.4 | 331.0 | | RADIUS781
AMPLITUDE =
PHASE ANGLE = | .1884 | .0100 | .0054 | 314.2 | .0021 | .0016 | .0015 | .0014 | | RADIUS = .963
AMPLITUDE = =
PHASE ANGLE = | .1799 | .0077 | .0033 | .0029
87.7 | .0036 | .0031 | .0029 | .0025 | | HARRONIC | . ANALYSES | | ENTIAL V | ELOCITY | OF TANGENTIAL VELOCITY COMPONENT | RATIOS | (V1/V) | | | HARMONIC = | 6 | 0 | = | 2 | 5 | 4 | 15 | 15 | | RADIUS = ,456
AMPLITUDE =
PHASE ANGLE = | .0019 | .0023 | .0032 | .0025 | .0027 | .0015 | .0017 | .0018 | | RADIUS = .633
AMPLITUDE =
PHASE ANGLE = | .0030
339.4 | .0034 | .0013
15.5 | .0005 | .0016
158.0 | .0024 | .0031 | .0028
199.4 | .0008 156.5 201.7 .0022 .0020 1.90.1 .000ë 150.4 .0004 .0004 RADIUS = .781 AMPLITUDE = PHASE ANGLE = 336.9 313.0 .0016 .0016 .3023 .0524 .0018 .0025 RADIUS = .963 AMPLITUDE = PHASE ANGLE = HARMONIC ANALYSES OF TAMGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 11 9-0 ET PR11 | > | VELOCITY COMPONENT PROPELLER C | CGNPONENT
PROPELLER D | RATIOS F
DIAVETER | FOR #5251 | RODEL SOBS WI
6.00 FECT | WITH BASS | BOAT BEH
JA = | BEHIND W/O | |---|--------------------------------|--------------------------|----------------------|----------------|----------------------------|-----------|------------------|-----------------| | DINDUNA | ANALYSES | OF TANGE | TANGENTIAL VELOCITY | | COMPONENT | RATICS | (V1/V) | | | HARMONIC | - | 6 | n | 4 | J | 9 | 7 | Σ. | | RADIUS 312
AMELLICOL
PHASE ANGLE = | 181.5 | 114.4 | . e 170
135.2 | 6.107 | 0.651 | 171.7 | 150.4 | 101.7 | | RADIUS 350 AMPLITUBL = PHASE ASSIL = | .2335 | .0132 | .0119 | .0146
192.0 | .0129 | .0127 | .0048
152.8 | 0000 | | RADIUS : .400
AMPLITUDE = =
PHASE ANGLE = | .2254 | .0050 | 147.0 | .0092
178.0 | .6671
155.7 | .0080 | .00.45
159.8 | 10041 | | RADIUS = .500
AMPLITUSE = PHASE ANGLE = | .2120 | .0371 | .0033
279.8 | .0035 | 281.0 | .0027 | .0020 | .co18 | | RADIUS = .600
AMPLITUDE = PHASE ANGLE = | 190.1 | .0133 | .0074 | 301.5
301.5 | .0058 | .0041 | .00.47 | .0043
330.2 | | RADIUS = ,700
AMPLITUDE =
PHASE ANGLE = | .1936
188.9 | .0119 | .0007 | .0051
308.3 | .0044
313.4 | .0032 | .0034
319.8 | .0031 | | RADIUS = .800
AMPLITUM = = PHASE ANGLE == | . 1873 | .0097 | 334.0 | .0030 | 317.1 | .0012 | .0011 | 319.1 | | RADIUS900
AMPLITUDE =
PHA :E ANGLE = | .1824 | .0083 | .0038
1.0 | 36.3 | .0016 | .0013 | .0013 | .0012
11:3.6 | | RADIUS = 1.000
AMPLITUDE '=
PHASE ANGLE * | .1799 | .0077 | .0033 | .0029
87.7 | .0036 | .0031 | .0029 | .0025 | Y. 5 TABLE C-6 (Continued) VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHTWO W/O PART PROPELLER DIAMETER 3 6.00 FEET | | ž | מיייים אי | r
 |)
)
)
(| ا
ا
ا | | t
7 | h | |--|----------------|----------------|----------------|-------------------------------|---------------------------------|------------------------|----------------|----------------| | DINOMARH | ANALYSES | OF TANGE | TANGENTIAL VE | VELOCITY | COMPONENT | RATIOS | (VT/V) | | | HARMONIC = | თ | 0 | 11 | Çi | 13 | 14 | 3. | | | RADIUS = .312
AMPLITODE =
PHASE ANGLE = | .0077 | .0095 | .00% | .0069
83.4 | .0065 | .0066 | .0038
46.6 | 21.4 | | RADIUS = .350
ATPLIJUDE = :
PHANCE ANGLE = | .0054 | .0068
108.3 | .005.
83. | 7.00 | .0054
68.0 | .0045 | 59.7 | .0005
53.7 | | AMPLITODE = .400 = PHASE AVGLE = | .0030
96.6 | 0040 | ,0543
75.3 | .0046
73.4 | .0040 | .0028 | 90016 | 197.8 | | RADIUS = .500
AMPLITUDE = PH45E ANGLE = | .0022
d.8 | .0025
6.3 | .0025 | . 00.00
. 00.00
. 00.00 | 0.000. | .0013 | .0023 | .0024
199.5 | | RAPIUS = .600
AMPLITODE =
PHASE ANGUE = | .0031 | 6035
335.9 | .0615 | .0005 | .0015 | .0022 | .0031
183.5 | .0029 | | RADIUS = .700
AMPLITUSS =
PHASE ANGLE = | .0013
348.9 | .0614 | .0056
.45.5 | .00:2 | 0019 | .0025 | .0025 | .0018 | | AAD1US = .800
ADD11701 =
PHASE AVGLE = | .0007 | .0007 | .000.7 | 000
000
1 | .0000 | .0021 | .0015 | .000
1.8.1 | | RADIUS900
AMPLITUDE =
FHACE ANGLE = | .0020
165.8 | ,0017
(72.9 | 192.2 | (A) (C) | 30 m
0 m
0 m | . 00
8 . 5
9 . 5 | .0007 | 4 0000
4 4 | | AMPLITUDE = 1.000 | .0025 | 194.1 | .0024 | (A (C) | . 6
0 0
0 0
0 0
0 0 | 252.5
252.5 | 9000. | .0008
3.6.9 | APPENDIX D VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 12 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 $0.456~{\rm RAD}_{\odot}$ Figure D-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 12 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 0.633 RAD. Figure D-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 12 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WERDP 12 0.781 RAD. Figure D-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 12 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 $0.963~\text{RAD}_{\odot}$ Figure D-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 12 Figure D-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 12 Figure D-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 12 TABLE D-1 ## INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 12 | | RAF1U5 - | | | | | | | | | | | | | | | |---|----------------|------------------|-------|----------------|----------|--------------------|--------|----------------|----------|------------------|--------------|----------------|----------------|--------------|--------------| | AMELE | VX/4 | 91/8 | VR/V | AMELE | RACIUS : | * .633
1/ | V# / V | ANGLE | RAPIUS : | .781
V1/V | VR / V | AMGLE | ##C1US . | .963
VT/V | 48/4 | | -3.0 | . 824 | . 449 | 8 44 | -5.0 | . 696 | 645 | 4 44 | -2.9 | .023 | -,013 | 1 20 | -4.6 | 414 | | 148 | | 1.1 | .414 | . 605 | 063 | .4 | | - 846 | 0 67 | 1.1 | . 923 | 027 | 117 | -44 | . 844 | . 619 | 1 35 | | | . 414 | 156. | 870 | 7.0 | .920 | 8 75 | 110 | 5.1 | .928 | -, 839 | 124 | 4.3 | . 877 | 061 | 1 35 | | 11.8 | .426 | 162 | 005 | 16.0 | . 930 | 154 | 117 | 11.1 | . 943 | 647 | 127 | 12.0 | . 163 | 8 21 | 141 | | 13.5 | . 433 | * . 875 | 8 8 9 | 10.0 | .927 | 845 | 110 | 13.2 | .950 | 852
051 | 1 31
1 31 | 16.2 | . 996 | 844
854 | 149 | | 15.1 | . 0 31 | 6 96 | 1 8 9 | 4. 05 | . 884 | 181 | 127 | 15.2 | . 367 | 059 | 1 34 | 10.3 | 984 | 457 | 161 | | 17.2 | .444 | . 157 | 111 | 4.85 | . 0 04 | * . 129 | 175 | 17.3 | . 974 | -, 164 | - ,1 36 | 24.4 | . 976 | 863 | 161 | | 21.0 | . 965 | -, 144 | 131 | 4.55 | . 038 | 9 85 | 1+3 | 19.0 | . 981 | 952 | 1 35 | 20.5 | . 41# | 661 | 144 | | 23.2 | . 987 | 176 | 1 24 | 24.4
24.0 | .910 | 123 | 153 | 19.2 | .963 | 854
 1 39 | 22.4
24.4 | . 934 | 050 | 166 | | 29.8 | . 4.00 | 115 | 151 | 20.6 | . 459 | - 195 | 197 | 21.3 | .945 | -, 855 | - · 1 37 | 26.0 | .975 | 0% | 163 | | 27.1 | .983 | 112 | 120 | 30.6 | . 949 | 095 | 156 | 23.3 | . 423 | 617 | 1 37 | 28.5 | . 940 | 114 | 1 % | | 31.2 | 974 | 116 | 120 | 18.9 | . 990 | ~ . 9 96 | 194 | 25.3 | . 905 | 163 | 154 | 30.3 | . 975 | 891 | 1 98 | | 33.3 | . 476 | ~ . 127 | 119 | 14.3
36.6 | . 956 | -193 | 172 | 27.3 | . 978 | 111 | 170 | 32.5 | . 968 | 087 | - 1 96 | | 35.2 | . 473 | 133 | 114 | 10.0 | . 948 | 110 | 158 | 29.3 | .949 | 093 | 174 | 34.8
56.8 | . 969 | 6 90 | 197 | | 17.3 | .971 | 141 | 110 | 42.0 | . * * * | 170 | 142 | 33.3 | . 974 | 693 | 171 | 34.0 | . 957 | 101 | 140 | | 39.2 | . 767 | ~. 147 | 116 | .4.1 | . 954 | 1 38 | 1 35 | 37.2 | .982 | 101 | 165 | 46.4 | . 96 9 | 114 | 1 71 | | 49.4 | . 170 | 173 | 166 | 30.5 | | 146 | 129 | 39.3 | . 979 | 189 | 162 | 54.3 | . 947 | 135 | 156 | | 59.6 | . 975 | 197 | 0 90 | 61.1 | :32 | 123
169 | 145 | 49.4
59.3 | .975 | - 134 | 144 | 1.50 | . 964 | 146 | 1 4 4 | | 67.5 | . 476 | 215 | 674 | 70.3 | . 956 | 106 | 7 | 69.0 | . 978 | 159
178 | 124 | 70.0 | .970 | -, 151 | 1 61 | | 79.8
89.7 | . 474 | ~. 227
~. 232 | 649 | 79.8 | . 467 | * 1 194 | 063 | 79.5 | .978 | 194 | 074 | 77.0 | .973 | 177 | 100 | | 11.1 | . 179 | 231 | 001 | 19.9 | . 165 | 1.194 | 0 36 | 89.7 | . 981 | 2 64 | 841 | 74.7 | . 972 | 179 | 895 | | 189.7 | . 974 | 221 | .0 22 | 99.8
99.8 | . 964 | 197 | 012 | 199.4 | . 991 | 204 | 6 10 | 95.7 | . 976 | 185 | 077 | | 119.0 | . • 70 | 284 | .400 | 109.0 | 954 | 196 | 012 | 119.6 | . 978 | 178 | .023 | 103.0 | .974 | 189
187 | 0 31
0 25 | | 129.8 | . 764 | 101 | .064 | 119.5 | .452 | 176 | . 6 38 | 129.9 | . 962 | 157 | .079 | 149.0 | . 97h | 183 | 001 | | 194.0 | . 997 | 151 | .885 | 129.3 | . 934 | 157 | .063 | 139.6 | . 959 | 130 | .101 | 117.2 | .977 | 174 | .025 | | 199.9 | 94.1 | 0 76 | .100 | 119.1 | .927 | 129 | .003 | 169.9 | . 969 | * . 199 | .119 | 119-1 | .971 | 178 | . 0 31 | | 169.8 | .955 | 8 32 | .112 | 156.9 | . 762 | ~ . 1 60 | .110 | 160 -2 | .957 | 865 | .132 | 132.8 | .967 | 1 47 | .073 | | 186.4 | . 952 | . 861 | .41.8 | 149.1 | 911 | 627 | :117 | 176.2 | 946 | 627
897 | .1 57 | 141.0 | . 98 9 | 127 | .684 | | 190.0 | . 993 | . 843 | .115 | 179.8 | . 40 3 | . 813 | .110 | 100.4 | .952 | . 005 | .1 39 | 147.0 | . 951 | 100 | -107 | | 4.506 | | . 607 | .106 | 109.2 | -113 | . 847 | .114 | 100.4 | . 954 | . 667 | .148 | 156 .8 | . 951 | 876 | -119 | | 218.4 | . 997 | . 170 | .897 | 209.0 | . 985 | -80a
-117 | .182 | 198.b
208.7 | .954 | . 848 | .1 35 | 150.0 | . 954
, 458 | 668 | .121 | | 4. 055 | . 956 | . 153 | .041 | 214.2 | . 985 | 150 | .067 | 210.5 | . 952 | . 100 | .127 | 172.9 | . 956 | 847 | .127 | | 230.5
239.0 | . 961 | . 101 | .043 | 229.4 | . 916 | .175 | .841 | 550.0 | .952 | . 1 30 | .093 | 178.9 | 454 | . 901 | | | 200.0 | . 947 | . 213 | .626 | 279.4 | . 916 | . 174 | .842 | 238.6 | . 964 | . 159 | .165 | 101-0 | . 457 | | -1 34 | | 259.0 | .471 | .217 | 8 6 2 | 219.3 | .912 | - 195 | .016 | 240.2
250.0 | . 967 | - 140 | .044 | 119.8 | . 956 | . 0.35 | -1 30 | | 264.8 | . 975 | . 215 | | 259,1 | . 9 34 | . 713 | 010 | 259.4 | .97A | . 190
. 197 | .611 | 197.8 | . 951 | . 862 | .123 | | 279.6
289.6 | . 96 1 | . 212 | 8 % ? | 269.8 | . 935 | . 214 | 846 | 269.8 | 986 | . 197 | 4 | 205.1 | . 456 | .607 | .113 | | 299.2 | . 958 | . 179 | 849 | 279.0 | . 934 | . 208 | 0*4 | 279.0 | . 987 | . 190 | 073 | 213.1 | . 95 9 | . 110 | .100 | | 304.3 | . 996 | 196 | 102 | 249.0
249.0 | .441 | -177 | 114 | 209.7 | .979 | . 177 | 103 | 219-1 | .963 | . 127 | .043 | | 315.6 | . 954 | . 1 37 | 184 | 100.0 | .992 | .145 | 153 | 309.4 | .980 | . 15A
. 15g | 129 | 220.2 | . 968 | . 132 | .063 | | 314.8 | 941 | . 131 | 164 | 317.6 | . 934 | 1.20 | 164 | 313.3 | 190 | . 121 | 158 | 237.2 | 475 | . 165 | .041 | | 310.8 | . *6: | . 12% | 111 | 371.0 | . 939 | - 107 | 167 | 317.2 | . 981 | . 100 | 164 | 219.2 | .973 | . 169 | .837 | | 327.0 | . 977 | . 107 | 110 | 329.0 | . 946 | - 186 | 171 | 310.0 | . 9 96 | . 107 | 165 | 245.2
251.3 | . 974 | . 179 | .010 | | 324.2 | .471 | . 185 | 117 | 330.0 | .937 | .118 | 179 | 321.2 | . 996 | . # 97
. 8 98 | 168 | 259.1 | . 969 | .189 | 006 | | 338.6 | . 96 9 | .114 | 110 | 371.0 | . 44. | -115 | 179 | 327.1 | . 957 | .119 | 163 | 261.2 | . 974 | . 191 | 4 39 | | 115.9 | . 433
. 868 | .135 | 111 | 113.9 | . 265 | . 866 | 155 | 329.1 | . 8 94 | . 171 | 177 | 269.0 | . 976 | . 194 | 455 | | 337.1 | . # 34 | . 184 | .695 | 335.9
337.9 | . 107 | . 6 29 | 148 | 351.1 | . 010 | . 0 33 | 165 | 277.0 | . 989 | - 191 | 002 | | 330.0 | . *** | . 862 | 678 | 339.0 | . 910 | . 8 2 7
. 8 3 1 | 141 | 335.8 | .973 | .020 | 167 | 279.3 | . 963
. 967 | . 190 | 009 | | 338.4
343.1 | . 473 | . 564 | 079 | 344.1 | . #41 | . 616 | 129 | 317.4 | .969 | . 054 | - 175 | 293.0 | 959 | 178 | 1 32 | | 344.7 | . 884 | . 6 33 | 6 % | 166.1 | . 446 | 867 | 11* | 348.4 | . 055 | . 6 44 | 1 66 | 293.0 | . 961 | . 170 | 1 32 | | 344.8 | . 166 | 1824 | 050 | 352.1
199.0 | .005 | 825 | 499 | 342.0 | | . 6 37 | 164 | 299.3 | . 445 | . 157 | 148 | | 393.1 | . 291 | . 120 | 0 .2 | 344.5 | . 694 | 845 | 040 | 144.9
346.9 | . 939 | . 0 31 | - 150 | 301.0 | . 967 | . 152 | 153 | | 357.6 | .424 | . 884 | 449 | | •••• | | | 347.8 | 914 | .017 | 169 | 389.5 | . 964 | . 1 31 | 171 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .019 | 005 | 06) | | | | | 3.9.8 | . 926 | | 142 | 317.5 | 440 | - 106 | 147 | | | | | | | | | | 357.1 | .919 | 687 | 178 | 319.5 | . 971 | . 180 | 189 | | | | | | | | | | 361.1 | .921 | 613 | 126 | 323.7 | .964 | . 093 | 191 | | | | | | | | | | •••• | . 461 | ***** | 117 | 325.0 | . 971 | . 191 | 197 | | | | | | | | | | | | | | 327.7 | .92? | . 129 | 192 | | | | | | | | | | | | | | 331.7 | .972 | . 027 | 100 | | | | | | | | | | | | | | 333.7 | . 981
. 966 | . 844 | 187 | | | | | | | | | | | | | | 337.7 | . 976 | . 209 | 197 | | | | | | | | | | | | | | 339.8 | . 967 | . 867 | 104 | | | | | | | | | | | | | | 319.0 | . 96.9 | . 964 | 186 | | | | | | | | | | | | | | 343.0 | . 951
. 936 | . 661 | 175 | | | | | | | | | | | | | | 351.0 | ,925 | .043 | 169 | | | | | | | | | | | | | | 356.6 | .919 | .136 | 140 | | | | | | | | | | | | | | 368 -1 | | | 1 35 | LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 12 1 TABLE D-2 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 PROPELLER DIAMETER = 6.00 FEET | 1.000 | . 957 | .003 | 043 | 986. | . 961 | 12.67 | .87 | 7.50 | |---------------|-------|-------|-------|-----------|--------|---------|--|--------------| | 006. | 996. | 000 | 035 | . 954 | .960 | 14.16 | .71 2.14 1.25 .92 10.55 7.89 4.97 3.19 2.38 1.63 1.18 .96 .87 .50 82.50 95.00 95.00 97.50 102.50 | 327.50 | | . 800 | 996. | 003 | 028 | . 950 | . 958 | 15.86 | 1.18 | -1.34 | | .700 | .950 | 1.001 | 029 | .947 | 926. | 17.71 | 1.63 | 330.00 | | .600 | .928 | .001 | 031 | .952 | .964 | 19.99 | 2.38 | 332.50 | | . 500 | . 938 | 003 | 018 | .967 | 934 | 23.84 | 3.19 | 535.00 | | .400 | 696. | 012 | .005 | .988 | 1.014 | 29.82 | 4.97 | 5.82 | | .350 | . 992 | 017 | .021 | 1.002 | 1.035 | 33.98 | 7.89 | 9.19
5.00 | | .312 | 1.013 | 022 | .035 | 0.000 | 0.000 | 37.82 | 10.55 | 12.54 | | .963 | .957 | .003 | 043 | .954 | 696. | 13.14 | 102.50 | 7.50 | | . 781 | . 964 | 002 | 027 | . 948 | . 955 | 16.20 | 1.25 | 330.00 | | .633 | .930 | .001 | 033 | .949 | 096. | 19.05 | 2.14 | -2.13 | | RADIUS = .456 | - 949 | 900 = | 600 = | £ .975 | 166. = | = 26.15 | 3.71 = 92.50 | = -3.59 | | RADIUS | VXBAR | VTBAR | VRBAR | 1 - W < X | XX-L | 8848 | BPOSTHETA | BNEG | IS CIRCUMFERENTIAL MEAN LONSITUDINAL VELOCITY. IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY. IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY. IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION. IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION. IS MEAN ANGLE OF ADVANCE. IS VARIATION BETWEEN THE WAXIMUM AND MEAN ADVANCE ANGLES IDELTA BETA MINUS). IS VARIATION BETWEEN THE WINIMUM AND MEAN ADVANCE ANGLES IDELTA BETA MINUS). IS ANGLE IN DEGREES AT AHICH CORRESPONDING BPOS OR BNEG OCCURS. BBAR BPOS BNEG THETA ĺ HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 12 TABLE D-3 | .0247 .0352
285.3 274.5
.0132 .0254
16.3 271.1 | m | 4 | | | | | |---|----------------|-----------------------------------|--|---|---|--| | | | r | S | 9 | 7 | 80 | | | 276.0 | .0181 | .0171 | .0121 | .0064 | .0039 | | | .0061 | .0039
300.8 | .0061 | .0034
22.8 | .0023 | .0021 | | | .0070 | .0054 | .0072 | .0025 | .0014 | .0018 | | .0123 .0217
268.4 261.6 | .0101 | .0097 | .0106 | .0077 | .0056 | .0046 | | ANALYSES OF LONG! | LONGI TUDI NAL | VELOCITY | COMPONENT | T RATIOS | (VX/V) | | | 01 | Ξ | 12 | 13 | 14 | 15 | 16 | | .0054 .0061
191.3 151.6 | .0076 | .0067 | .0048 | .0022 | .0004 | .0019 | | .0032 .0023
73.7 56.3 | .0010 | .0009
5.8 | .0021 | .0039 | .0036 | .0045
294.8 | | .0009 .0013
261.2 216.8 | .0012 | .0029 | .0031 | .0032 | .0015 | .0011 | | .0028 .0024
193.3 211.3 | .0005 | .0001 | .
0004 | .0011
339.8 | .0013
69.5 | .0006 | | | | . 0023
56.3
. 0013
216.8 | .0023 .0010
56.3 .0010
.0013 .0012
216.8 282.3
.0024 .0005 | .0013 .0010 .0009
56.3 67.6 5.8
.0013 .0012 .0029
216.8 282.3 300.4
.0024 .0005 .0001 | .0023 .0010 .0009 .0021
56.3 .67.6 5.8 326.9
.0013 .0012 .0029 .0031
216.8 282.3 300.4 315.0
.0024 .0005 .0001 .0004
211.3 247.2 221.6 216.9 | .0023 .0010 .0009 .0021 .0039
56.3 67.6 5.8 326.9 304.7
.0013 .0012 .0029 .0031 .0032
216.8 282.3 300.4 315.0 306.3
.0024 .0005 .0001 .0004 .0011
211.3 247.2 221.6 216.9 339.8 | HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 12 TABLE D-4 VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 PROPELLER DIAMETER = 6.00 FEET | (VX/V) | |---| | RATIOS | | COMPONENT | | VELOCITY | | HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS | | 9 | | ANALYSES | | HARMONIC | | HARMONIC = | - | α | m | 4 | ហ | 9 | 1 | 80 | |--|----------------|-------|------------------------|----------------|-------|----------------|----------------|-------| | RADIUS = .312
AMPLITUDE =
PHASE ANGLE = | .0712 | .0440 | .0458
2 75.8 | .0430 | .0390 | .0373
259.6 | .0236 | .0146 | | RADIUS = .350
AMPLITUDE =
PHASE ANGLE = | .0560 | .0416 | .0382
2 75.8 | .0353 | .0321 | .0294 | .0182
266.8 | .0112 | | RADIUS = .400
AMPLITUDE =
PHASE ANGLE = | .0391 | .0385 | .0293 | .0264 | .0242 | .0203 | .0120 | .0074 | | RADIUS = .500
AMPLITUDE =
PHASE ANGLE = | .0174 | .0327 | .0156
2 76.3 | .0128 | .0127 | .0071 | .0030 | .0017 | | RADIUS = .600
AMPLITUDE =
PHASE ANGLE = | .0133 | .0271 | .0076
2 78.6 | .0051
290.8 | .0070 | .0029 | .0018 | .0016 | | RADIUS = .700
AMPLITUDE =
PHASE ANGLE = | .0071 | .0207 | .0067
2 88.6 | .0051 | .0067 | .0031
354.8 | .0011 | .0023 | | RADIUS = .800
AMPLITUDE =
PHASE ANGLE = | .0018 | .0174 | .0070 | .0054 | .0073 | .0025 | .0015 | .0015 | | RADIUS = .900
AMPLITUDE =
PHASE ANGLE = | .0059
249.6 | .0186 | .0079 | .0065 | .0088 | .0046 | .0033 | .0018 | | RADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = | .0123 | .0217 | .0101 | .0097 | .0106 | .0077 | .0056 | .0046 | Contraction Contraction or the TABLE D-4 (Continued) 12 40H | | VELOCITY COMPONENT PROPELLER O | COMPONENT
PROPELLER | C RATIOS F
DIAMETER | ir
t " | MODEL 5365 WITH
6.00 FEET | BASS | BOAT BEHIND WPRD
JA = ,739 | 074W CN1 | |---|--------------------------------|------------------------|------------------------|-----------------------|------------------------------|----------------|-------------------------------|----------| | HARMONIC | HARMONIC ANALYSES | DE LONGE | TUDINAL | LONGITUDINAL VELCCITY | COMPONENT | RATIOS | (\ \ \ \ \ \ \ | | | HARMONIC = | 6 | 10 | | 5 | 13 | 14 | 2. | 16 | | RADIUS = .312
AMPLITUDE = PHASE ANGLE = | .0199 | .0184 | 161.3 | .0171 | ,0152 | .0123 | .0080 | .0083 | | RADIUS = .350
AMPLITUDE = =
PHASE ANGLE = | 212.5 | .0144 | .0155 | .0140 | .0120 | .0091 | .0055 | .0054 | | RADIUS = .400
AMPLITUDE = PHASE ANGLE = | .0099 | .0099
164.6 | .0114 | .0102 | .0084 | .0055 | ,0027 | .0025 | | RADIUS 500
AMPLITUDE PHASE ANGLE | .0031 | .0040 | .0051 | .0043 | .0025
145.5 | .0006 | .0015
298.5 | .0031 | | RADIUS = .600
AMPLITUDE = PHASE ANGLE = | .0031 | .0025 | 102.1 | .0007 | .0013 | .0033 | .0034
306.6 | .0046 | | RADIUS = .700
AMPLITUDE = PHASE ANGLE = | .0010 | .0005 | .0005 | .0021 | .0029 | .0037 | .0026 | .0024 | | RADIUS = .800
AMPLITUDE = PHASE ANGLE = | .0012 | .0015 | 279.9 | .0029 | .0030 | .0030 | .0013
302.8 | 13.6 | | RADIUS = .900
AMPLITUDE = PHASE ANGLE = | .0022 | .0024 | 270.0 | .0018 | .0016 | .0019 | ,0005
34.5 | .0010 | | RADIUS = 1,000
AMPLITUDE = PHASE ANGLE = | .0028 | .0024 | .0005 | .0001 | .0004 | .00tt
339.8 | .0013
69.5 | .0006 | HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 12 TABLE D-5 | > | VELOCITY COMPONEST
PROPELLER D | COMPONEST
PROPELLER D | RATIOS
IAMETER | <u>د</u> ۳ | MODEL 5365 WI
6.00 FEET | TH BASS | BOAT BEH | WITH BASS BOAT BEHIND WPROP 12
JA = .739 | |---|-----------------------------------|--------------------------|------------------------|------------|----------------------------|---------|---------------|---| | HARMONIC | ANALYSES | OF TANGE | TANGENTIAL VELOCITY | ELOCITY | COMPONENT | RATIOS | (V1/V) | | | HARMONIC | - | Ø | က | 4 | ហ | 9 | 7 | œ | | RADIUS = .456
AMPLITUDE =
PHASE ANGLE = | .2264 | .0041 | .0017 | .0055 | .0019 | .0046 | .0014 | .0020 | | RADIUS = ,633
AMPLITUDE = PHASE ANGLE = | .2044 | 319.9 | .00°5
2 98.6 | .0061 | .0060 | .0049 | .0045 | .0032
309.8 | | RADIUS = .781
AMPLITUDE =
PHASE ANGLE = | .1937 | .0122 | .0065 | .0029 | .0017 | .0015 | .0013 | .0008
287.4 | | RADIUS = .963
AMPLITUDE = PHASE ANGLE = | .1865 | .0096
6.5 | .0028 | .0033 | .0041 | .0033 | .0021 | .0018 | | HARMONIC | ANALYSES | OF TANGE | TANGENTIAL VELOCITY | ELOCITY | COMPONENT | RATIOS | (V1/V) | | | HARMONIC = | 6 | 10 | | 12 | £. | 14 | 15 | 16 | | RADIUS = .456
AMPLITUDE = PHASE ANGLE = | .0033 | .0038 | .0050 | .0051 | .0047 | .0030 | .0019
81.0 | .0009
233.6 | | RADIUS = .633
AMPLITUDE =
PHASE ANGLE = | .0027 | .0015 | .0012 | .0015 | .0023
203.8 | .0030 | .0032 | .0029 | | RADIUS = .781
AMPLITUDE = PHASE ANGLE = | .0010 | .0004 | .0006 | .0013 | .0014 | .0017 | .0010 | .0006
202.9 | | RADIUS = ,963
AMPLITUDE =
PHASE ANGLE = | .0010 | .0010 | .0012 | .0010 | .0013 | .0007 | .0009 | .0002
357.8 | HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 12 TABLE D-6 | ∨ E | ELCCITY COMPOSEST
PROPELLER D | 7.00.00
0.00.00
0.00.00 | RATIOS F
DIATETER | 08 W00E
- 6.00 | . 5365
FEET | AITH BASS | BOAT BEHIND
JA = 77 | 140 48808 12
.739 | |---|----------------------------------|-------------------------------|----------------------|-------------------|----------------|----------------|------------------------|----------------------| | HARTONIC | ANALYSES | OF TANGE | ANGENT: AL VE | Y11001 | COMPONENT | RATIOS | (V1/V) | | | HARMONIC = | - | 8 | m | 4 | ທ | 9 | 7 | 80 | | RADIUS = .312
AMPLITUSE = PHASE ANGLE = | 176.9 | .0234 | .0174 | .0226 | .0167 | .0203 | .0134 | .0123 | | RADIOS = .350
AMPLITUDE = PHASE ANGLE = | .2453 | 99.69
99.6 | .0121 | .6170 | .0118 | .0152 | .0095 | .0090 | | AADIUS = .400
AYPLITUDE = =
PHASE ANGLE = | .2358 | .0077 | .00£1 | .6107 | .0063 | .0095
148.6 | .0052 | .0053 | | PADIUS = .500
ATPLITUDE = PHASE ATGLE = | .2200 | .0072 | .0034 | .0035 | .0024 | .0026 | .0013 | .0008
14.5 | | AMPLITOSE = BHASE ANGLE = | .2078 | .0132 | .0079 | .0056
288.2 | .0058 | .0045 | .0042 | .0030 | | AMPLITUDE = PHASE ANGLE = | . 1990 | .0129 | 313.2 | .0048
242.3 | .0041 | .0033
283.5 | .0030 | .0021 | | AADIUS = .800
AAPLITUDE = =
PHASE ANGLE = | .1926 | .0121 | .0062
332.7 | .0024 | .0012 | .0011 | 301.0 | .0006 | | RADIUS = .900
AMPLITUDE = =
PHASE ANGLE = | .1883 | .0109
3.2 | .0043
353.4 | .0010 | .0020 | .0018 | .0010 | .0010 | | RADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = | .1865 | .0096
6.5 | .0028 | .0033 | .0041 | .0033
132.8 | .0021 | .0018 | TABLE D-6 (Continued) | | 16 | | .0033 | 341.5 | . 0018 | . 0029 | 0.661 | 205.5 | 351.9 | . 0002
1 357.8 | |-----------|-------------------------------|---|--|---|------------------------------------|--|--|------------------------------------|---|--| | V/TV) | 15 | 43.8 | .0077 | .0045 | .0014 | .0030 | .0020 | .0008 | .0006 | .0009 | | RATIOS | 4 | .0132
35.3 | 36.9 | .0063 | .0012 | 194.4 | .0023 | .0016 | .0010 | .0007 | | COMPONENT | 13 | .0163 | .0127 | .0085 | .0024 | .0018 | .0018 | .0013 | .0012 | .0013
197.8 | | | 12 | .0159 | .0126 | .0097
49.3 | .0023
52.8 | .0008 | .001.3 | .0013 | 10011 | .0010 | | | = | .0150 | .0119
54.1 |
.0083 | .0029 | .0008
2 91.6 | .0008
246.0 | .0007 | .0009 | .0012 | | OF TANG | 0 | .0124 | .0097
ē9.3 | .0066 | .0022 | .0014 | .0007 | .0005 | .0009 | 0010 | | ANALYSES | თ | .0115 | .0088 | .0058 | .0023 | .0026 | .0020 | .0008 | .0003 | 0105.
119.2 | | | # | . 312
. E | . 350
. E = | . 400
 | . 500
. E | .600 | . 700
.E = | .800 | .900
=
LE = | 1.000
LE = | | H | HARMONIC | RADIUS =
AMPLITUDE
PHASE ANG | RADIUS = AMPLITUDE PHASE ANG | RADIUS =
AMPLITUDE
PHASE A.G | RADIUS =
AMPLITUDE
PHASE ANG | RADIUS =
AVPLITUDE
PHASE ANG | RADIUS =
AMPLITUDE
PHASE ANG | RADIUS =
AMPLITUDE
PHASE ANG | RADIUS =
AMPLITUDE
PHASE ANG | RADIUS = 1.
AMPLITUDE
PHASE ANGLE | | | TANGENTIAL VELOCITY COMPONENT | ARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) | ONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 .312 = .0115 .0124 .0150 .0159 .0163 .0132 .0105 = 80.3 71.7 55.3 48.9 53.4 35.3 43.8 | ARTONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 .312 .312 GLE = .0115 .0124 .0150 .0159 .0163 .0132 .0105 GLE = 80.3 71.7 55.3 48.9 53.4 35.3 43.8 .350 E = 76.5 69.3 54.1 49.0 54.6 36.9 46.7 | -312 | ## OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 312 312 = .0115 .0124 .0150 .0159 .0163 .0132 .0105 = 80.3 71.7 55.3 48.9 53.4 35.3 43.8 350 - 360 = .0088 .0097 .0119 .0126 .0127 .0100 .0077 = 76.5 69.3 54.1 49.0 54.6 36.9 46.7 400 = .0058 .0066 .0083 .0097 .0085 .0063 .0045 = 68.4 64.6 51.7 49.3 57.2 40.5 54.1 550 - 0023 .0022 .0029 .0023 .0024 .0012 .0014 = 18.8 37.9 39.5 52.8 77.2 86.3 144.6 | ## OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 312 312 = 0115 .0124 .0150 .0159 .0163 .0132 .0105 = 80.3 71.7 55.3 48.9 53.4 35.3 43.8 350 350 | - 312 | ## 100 10 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 | SOUNCE ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) | APPENDIX E VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 13 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13 0.456 RAD. Figure E-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 13 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13 $0.633\,\mathrm{RAD}_{\odot}$ Figure E-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 13 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13 $-0.781\;\mathrm{RAD}_{\odot}$ Figure E-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 13 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 200 INC 4KTS13 0.363 RAD. Figure E-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 13 Figure E-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 13 Figure E-6 - Radial Distribution of the Mean Advance Angles and Advance Angle Variations for Experiment 13 TABLE E -1 ## INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 13 | | estius . | | | | #AFIUS = | . 6 3 3 | | | RACIUS . | .7A3 | VR/V | MELE | ***** - | .963
VT/V | 98/ V | |----------------|----------------|----------------|--------|---------------|----------------|----------------|------------|---------------|----------------|----------------|--------------|----------------|----------------|--------------------|----------------| | 44618 | .923 | . 881 | 186 | 486LP
-1.0 | V1/V | 41/V | 25E | 446LE
-2.4 | . 957 | . 8 29 | 306 | 8 | 150. | . 600 | 361 | | | . 04.1 | 107 | 1 1) | 1.3 | . 939 | 010 | 254 | | 944 | 891 | 104 | 1.0 | . 161 | | 310 | | 11.4 | . +24 | 192 | 1 98 | 10.0 | . 920 | 802 | 251 | • | . 454 | 022 | 30 3 | 17.6 | . 073 | 114 | 321 | | 21-1 | . 4 96 | 103 | 716 | 19.4 | . 914 | 1 - 1 | .247 | 17.0 | . 943 | 864 | 102 | 21.0 | . 194 | 176 | 312 | | | 7 1 | 2 36 | 2 20 | 24.3 | . 8 95 | 294 | 237 | 14.5 | . 926 | 116 | 2 90 | 26.6 | . 874 | 164 | 36 1 | | 14.4 | 457 | 788
788 | 213 | 37.3 | . 44.1 | 246 | 214 | 20.5 | . 487 | 177 | 294 | 35.6
44.6 | . 159 | 213 | 257 | | 14.8 | . 464
. 864 | . 176 | 200 | 79.3
16.4 | . 991
. 448 | 244
244 | 210 | 26.8
11.6 | . 441 | 210 | 744 | 53.5 | . 667 | 200 | 227 | | 40.0 | . 446 | 10/ | 176 | 11.6 | . 107 | 313 | 159 | 33.3 | . 894 | 254 | 244 | 55.6 | . 063 | 111 | 1 91 | | 37.2 | | . 197 | 157 | 59.9 | . 486 | - , 326 | 142 | 50.2 | . 0 94 | 244 | 240 | 67.6 | . 860 | 316 | 186 | | 61.8 | . 875 | 198 | 1 31 | | . 919 | 134 | 124 | 48.1 | . 865 | 789 | + . 2 3 9 | 71.4 | . 467 | 119 | 141 | | 64.0 | . 445 | 416 | 175 | 73.5 | . 98 * | 359 | 91 | 44.4 | . 062 | 114 | 711 | 71.4 | . 161 | 333 | 146 | | 71.4 | . 4 5 7 | +58 | 8 9 9 | 79.6 | . 911 | 166 | 166 | 11.0 | . 665 | 139 | 192 | 44.4
44.4 | . 875 | - , 344
- , 346 | 097 | | 74.4 | | 427 | 461 | 42.4 | 350, | 361
361 | 852 | 62.5 | . 404 | 156 | 1 38 | **** | . 8 8 7 | 342 | 856
818 | | 47.6 | | • 27 | 001 | 11.6 | .911 | 350 | .010 | 74.4 | . 487 | 366 | - 196 | 197.9 | | -, 333 | .033 | | 97.0 | . 861 | 70 | 012 | 107.6 | . 007 | 144 | .444 | 79.0 | .90? | 369 | 6 97 | 114.5 | . 867 | 316 | .000 | | 191.6 | . 46 1 | | .8 81 | 116.5 | . 476 |)24 | .005 | 64.5 | . 481 | -,379 | 067 | 129.4 | . 899 | 292 | .123 | | 107.0 | 467 | 429 | .845 | 119.3 | . 471 | 171 | .073 | 91.0 | . 407 | 371 | 0 31 | 137-3 | . 057 | 244 | .177 | | 114.8 | . 464 | - , 347 | .076 | 124.4 | . 851 | 101 | .114 | 94.8 | . 910 | 363 | .869 | 143.4 | . 016 | 718 | .201 | | 121.0 | .457 | 107 | -4.93 | 134.3 | . 637 | 243 | -136 | 99.6 | .987 | 354 | .011 | 197.3 | . 459 | 113 | .197 | | 122.2 | . 454 | -, 375 | .167 | 139-1 | ,413 | 261 | .176 | 186.0 | | 164 | .075 | 157.2 | . 444 | 136 | .236 | | 136.8 | . 456 | -, 100 | -199 | 152.3 | . 887 | 176 | .297 | 119.0 | . 003 | 325 | -100 | 119.4 | . 825 | 123 | .235 | | 163.0 | . * * * | 267 | .164 | 190.9 | . 483 | - 175 | .215 | 120.5 | .459 | 323 | -109 | 159.4 | . 8 6 3 | 120 | . 2 34 | | 191.0 | . 992 | 207 | .176 | 161.5 | .797 | 111 | .777 | 127.6 | . 467 | 2 00 | . 1 37 | 161.4 | . 467 | 110 | .241 | | 150.0 | . *** | 1 63 | -191 | 199.8 | . 487 | 457 | .220 | 134.0 | . 460 | 265 | -165 | 178 - 8 | | 8 54 | .247 | | 199.2 | . * * 1 | 141 | -100 | 179.0 | . 485 | . 865 | | 129.0 | , 467 | 248 | -140 | 176.0 | . 867 | 013 | .250 | | 164.0 | .443 | 007 | -1 92 | 140.5 | . 4 8 4 | -017 | .2 20 | 142.8 | . 850 | 227 | .196 | 100.0 | . 643 | 884
. 848 | .251 | | 177.6 | | - , 841 | .194 | 195.6 | .741 | .057 | .216 | 156.4 | . 457 | - 136 | .724 | 197.4 | | . 184 | .740 | | 100.9 | . 497 | . 100 | -196 | 201.1 | 7.07 | . 199 | .203 | 163.6 | ,447 | - 196 | .739 | 296.4 | . 053 | . 197 | .237 | | 199.2 | . 447 | . 171 | .195 | 267.0 | .796 | . 197 | .191 | 149.0 | . 451 | 854 | .243 | 215.4 | . 853 | . 212 | .213 | | 788.5 | . 4 5.7 | . 171 | .187 | 215.4 | . 7 85 | . 244 | .1/1 | 169.0 | . 161 | 857 | -439 | 824.7 | . 443 | . 290 | .104 | | 261.6 | . 434 | . 141 | -198 | 550 -1 | .767 | . 274 | .155 | 170.0 | . #52 | -, 847 | .244 | 216.6 | . 861 | . 315 | .129 | | | . 444 | . 276 | -176 | 4.555 | . 798 | , 284 | .134 | 170.8 | . 857 | . 00 3
00 ? | .245 | 251.0 | . 866 | . 375 | .649. | | 714.8
219.0 | . 441 | , 77A | .144 | 227.5 | .416 | . 128
. 344 | .070 | 105.0 | . 86 2 | . 642 | .267 | 255.0 | , 001 | . 363 | .025 | | 227.9 | | | .141 | 239.9 | . 4 37 | . 154 | .001 | 103.1 | . 454 | . 1 14 | .243 | 240.0 | . 005 | . 144 | | | 229.0 | 444 | . 151 | 11 27 | 244.8 | 457 | . 177 | . 8 34 | 197.4 | . 890 | | .242 | 249.8 | | . 371 | 054 | | 257.1 | . 454 | . 179 | .167 | 241.0 | . 464 | . 3#1 | .88% | 199.5 | . 461 | . 1 17 | . 234 | 276.4 | . 169 | . 370 | - 114 | | 2 | . **1 | . 488 | .075 | 291.4 | . 161 | . 365 | -112 | 206 -6 | . 474 | . 183 | -224 | 270.0 | , 864 | . 378 | 162 | | 251.0 | . 16.3 | . +13 | .644 | 794.4 | . 070 | | 009
038 | 213.4 | . 415 | . 226 | -283
-173 | 207.8
290.0 | . 451
. 843 | . 361 | 1 49 | | 755.5 | . 461 | . 479 | .001 | 4. P. P. S | . 875 | . 488 | 1 61 | 220.0 | 8.51 | . 293 | -196 | 305.4 | . 452 | . 114 | 2 3 4 | | 273.2 | . 444 | . 621 | . 0 24 | 273.5 | . 475 | | 007 | 235.5 | | - 316 | -113 | 314.0 | .453 | . 271 | 264 | | 290.8 | . 444 | 20 | 053 | 1.00.4 | . 470 | | 122 | 142.8 | .459 | . 113 | -9 66 | 319.0 | . 854 | . 268 | 260 | | 24".0 | . *** | - 417 | 876 | 247.4 | . #74 | . 396 | | 249.9 | .476 | . 343 | .841 | 321.9 | . 162 | . 224 | 249 | | 294.4 | . ** * | . 14 | 187 | 795.4 | . 469 | . 367 | 183 | 246.0 | . 467 | . 194 | *18. | 377.4
115.6 | , 474 | . 147 | -,300
-,313 | | 299.3 | . 461 | . 341
. 376 | 120 | 7.99.5 | . 46.0 | , 348
, 144 | 199 | 254.2 | . 483 | . 367 | 170 | 351.0 | . 893 | 311. | 313 | | 189.1 | . 461 | . 176 | 174 | 307.5 | . 86.5 | . 321 | 226 | 278.6 | . 0 90 | . 350 | 0 07 | 350.0 | | . 895 | 321 | | 314.7 | 44.1 | . 317 | 174 | 316.4 | | . 2 86 | 2 19 | 201.7 | , net | . 361 | 100 | 359.2 | . 427 | . 884 | 381 | | 354.4 | 460 | . 354 | 143 | 319.4 | . 971 | . 276 | 245 | 245.8 | . * * * | . 346 | 152 | 366.0 | . 181 | - , 8% | 310 | | 323.4 | . 46.2 | . 272 | 192 | 323.6 | . 477 | . 747 | 291 | 292.9 | . * * * | - 342 | | | | | | | 110.6 | 467 | . 227 | 1 98 | 131.0 | . (0 0 | . 284 | ? 5 5 | 100.0 | . 8 6 7 | - 131 | - 196 | | | | | | 337.0 | .414 | . 171 | 200 | 111.1 | . 484 | . 191 | 261 | 381.2 | . 84C
. 497 | . 321 | 198 | | | | | | 146.6 | . 484 | . 144 | 199 | 339.2 |
. 181 | . 101 | 760 | 114.0 | 479 | . 276 | -,247 | | | | | | 357.0 | . 11.3 | . 072 | 191 | 152.4 | 979 | | 755 | 121.0 | | . 244 | 2 64 | | | | | | 199.6 | . 471 | . 201 | 188 | 394.0 | . 441 | . 061 | 744 | 321.4 | . 189 | . 2 4 | | | | | | | 300.0 | 961 | 902 | 133 | 394.6 | . 937 | 961 | 242 | 320.0 | . 891 | . 204 | 201 | | | | | | | | | | 361.5 | . 434 | 018 | 256 | 115.0 | - 111 | - 154 | 2 9 1 | | | | | | | | | | | | | | 3.5.6 | . 914 | . 113 | 301 | | | | | | | | | | | | | | 176.0 | . 941 | | 107 | | | | | | | | | | | | | | 357.6 | 997 | . 070 | 304 | | | | | | | | | | | | | | *** | 466 | - 861 | - 100 | | | | | LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 13 ŧ TABLE E-2 | VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13 | | |---|--------------------| | INC | 739 | | 200 | JA = 739 | | ALONE | 47 | | BOAT | | | BASS | | | 5271 | FEET | | MODEL | 6.00 FEET | | Υ
IL | ., | | ATIOS | PROPELLER DIAMETER | | α | 5 | | 1.000 | .870 | .005 | 044 | .872 | .883 | 11.55 | 1.23
97.50 | -1.16 | |---------------|---------|-------|----------------|-------------|---------|---------|---|-----------------| | 006. | .877 | .003 | 042 | .872 | .885 | 12.90 | .67 3.84 2.30 1.31 12.57 9.75 7.31 5.08 4.15 2.97 2.18 1.62 1.2
50 85.00 95.00 97.50 110.00 105.00 105.00 طفيوي 85.00 85.00 95.00 95.00 97.5 | -1.30 | | .800 | . 880 | .002 | 039 | .869 | .886 | 14.50 | 2.18 | -1.77 | | . 700 | .874 | 900. | 037 | .866 | .487 | 16.33 | 2.97 | -2.40 | | .600 | .863 | .012 | 032 | .866 | .893 | 18.60 | 4.15
85.00 | -3.02 | | .500 | . 8n2 | .005 | 910.1 | 848. | 905. | 22.62 | 0.08
d0.00 | -3.36 | | .400 | .868 | 600 | .001 | .873 | .931 | 27.17 | 7.31 | -5.17 | | .350 | .874 | 020 | .013 | 878. | .949 | 30.74 | 9.75 | -6.63
290.00 | | .312 | .879 | 029 | .024 | 0.000 | 0.000 | 34.09 | 12.57 | -8.26
315.00 | | .963 | .870 | .005 | 044 | .871 | 83 | 11.98 | 97.50 | -1.23 | | .781 | .880 | .003 | 039 | .863 | .885 | 14.82 | 2.30 | -1.89
217.50 | | .633 | .864 | .012 | 035 | .865 | 068. | 17.73 | 3.84 | -2.87 | | RADIUS = .456 | w, | 000 | 1.011 | ů. | . 920 | = 24.02 | 5.67 | = -3.96 | | RADIUS | VXBAR = | VIBAR | √£8 A ₽ | # X 7 X 1 L | × × · · | ваия | 800
000
000
000
000
000
000
000
000
000 | BAEG
THETA | IS CIRCUMERENTIAL MEAN LONGITUDINAL VELOCITY. IS CIRCUMERENTIAL MEAN TANGENTIAL VELOCITY. IS CIRCUMERENTIAL MEAN WAKE VELOCITY. IS VILUMETRIC MEAN WAKE VELOCITY WITH TANSENTIAL CORECTION. IS VARIATION BETWEEN THE VALIVOY AND MEAN ADVANCE ANDLES DELTA BETA MINUS). IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES. CELTA BETA MINUS). IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES. IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES. IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES. HARMONIC ANALYSES OF LONGITIDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPLAINENT 13 TABLE E-3 | ო | | |--|--------------------| | 4K 751 | | | ? | ரு
ரே
t - | | 200 | ** | | ALCNE | φ:€1- : ¥1) | | 4
()
(i) | | | .√
.11
.21 | | | (-
(A) | 6.00 FEET | | ا۔
بین
 | 0 | | :- | 4 | | ,
,- | .1 | | 41
(T | • • | | ;
; | P4 F2 ER 01A(: 1.4 | | ;•
, | 1 | | JECCCITY IN CHENT WATER FOR THE BOTH BANK BOAT ALONE 200 INC. 4KTS13 | O. | | | L | | | 2 | | | ,
(| | |---|----------------|----------------|---|------------------------------|--|-------------------------|----------------|------------------| | JIN TRAM | ANA YSES | 15.77 40 | DAST TUBBLE | * | COTP 3161 | * RATIOS | (* × ^) | | | भ ेर्डिक्स
भ | | 0 | 1 | •• | άì | ۵۰ | 7 | T | | 0.000 = 0.000 cm | 0209 | , 6087
8.89 | . 0. c. | | 000
1- 0 | 0.00°
0.00°
0.00° | . 0023 | 400 | | | | : | ! | | | | | • | | 63 | . 057 5 | (-
(- | ၅
် | • | | .6057 | 8:00. | .0016 | | PHASE ANDLE = | <u>.</u> | 272.4 | £ . £ | | 251.7 | 6E.8 | 87.9 | 134.4 | | | | | | | | | | | | <u>ن</u> ب | 0.1 | 0000 | 2113 | 50
64
13 | | 4600, | .0041 | 6600. | | 177 | 75 | rvi
I = | ·
• | ič.
Ģ | 254.8 | 64.00 | 112,2 | ci. | | 96 | 9800. | 4 HCO. | 0
0
0
0 | 100 X | .6052 | . 5033 | .0013 | 4.0 | | | -1 | てい | 164,5 | າ
ໜີ | 249.4 | | 64.7 | 43.4 | | DINONWAL | . ANALYSES | 0F 10N01 | CONSITUDITAL | V1100.1V | COTPONEN | T RATIOS | 17 773 | | | HARMONIC = | 6 7 | 51 | 11 | 5 | 13 | 4 - | 15 | 9, | | ### 456 # 456 # ################################# | 0018 | .0010
38.8 | 13.2 |
0.0
0.0
0.0
0.0 | . 000
500
500
500
500
500
500
500
500
500 | .0021
280.5 | .0013
226.0 | . 0000
355. 0 | | RADIUS = .633
AMPLITUDE = PHASE ANGLE = | .0020 | .0024
132.8 | .0008
161.3 | .0025 | 357.6 | .0005
50.6 | .0020 | .0019
145.4 | | RADIU: .781
AYPLIIUOE =
PHASE ANGLE = | .0012 | .0017 | . 0002
261.3 | 328.2 | .0007 | .6011 | .0014 | .0014
162.5 | | RADIUS = .963
AMPLITUDE = PHASE ANGLE = | .0010 | .0004 | .0018
8J.0 | 000. | .0027
90.8 | .0026
49.3 | .0023
79.8 | 30.5 | ·-. . HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 15 1 TABLE E-4 | | VELCCITY COMPONENT
PROPELLER O | COMPONENT RATION ROPELLER DIATETER | 847125
1476164 | ¥ | #325L 5271 BA
6.00 FEET | BASS BOAT | ALONE 205 |) INC 4KTS13 | |--|-----------------------------------|------------------------------------|-------------------|--------------------|----------------------------|---------------|---------------|-----------------| | OINGREE | ANALYSES | 0F LONG! F | LONGITUDI::4, | VELDOITY COMPONENT | COMPONEN | T RATIOS | (A/XA) 9 | | | HARMONIC = | - | 2 | m | ব | Ŋ | 9 | 7 | 80 | | RADIUS = .312
AMPLITUDE = =
PHASE ANGLE = | .0656 | .0698
95.3 | .0239
85.3 | .0173 | .0161 | .0049 | .0041 | .0078 | | RADIUS = .350
AMPLITUSE = EMASE ANGLE = | . 6400 | .0502
.09 | 6210
64.7 | 0.
64.
64. | . 0129
69.2 | .0048 | .0036
25.8 | .0056 | | PADDICS = .4000 PHADELTCOE | . C139 | .0282 | .0177
8.2.8 | 62.0 | .0092
69.3 | .0051 | .0030 | .0032
35.0 | | 00000000000000000000000000000000000000 | . 6356
79.2 | .0331
2 92.6 | .0128
82.0 | 6. 158
5. 158 | .0034 | .0058 | .0019
36.6 | . 0011 | | 0400105 - 1600
AMPLITURE = PHASE ATOLE = | .0556 | 274.6 | .0163
81.1 | .0143
166.4 | .0003 | .0059
68.6 | .0016 | .0016 | | AMPLITOUS = 700 PHASE AMULE = | .0483 | .0089 | 6.18
9.18 | .0182
97.7 | .0012 | .0044 | .0033 | .0024
57.8 | | RADIUS = .800
AMPLITUDE = PHASE ::301E = | .0340 | .0063 | .0116
86.0 | .0205 | .0020 | .0032 | .0041 | .0041 | | RADIUS = .900
AMPLITUDE = PHASE ANGLE = | .0187 | .0077 | 0.00.
@0.00. | .0203 | .0037 | .0029 | .0028 | . 0043
66. 9 | | RADIUS = 1.000
ATPLITUSE = =
PHASE ATSLE = | .0086 | .0084
68.6 | .00%2
10 · .5 | ® m
⊕ in
O 5 | .0052 | .0033
92.4 | .0013 | .0043
93.4 | TABLE E-4 (Continued) 1 - VELOCITY COMPONENT RATION FOR WOTEL 5271 BANS BOAT ALONE 205 140 4KTS13 PROPELLER DIAMETER - 6.00 FEET .0057 332.8 334.5 .0024 338.6 .0017 .0018 .0013 .0004 30.5 .0004 (× ×) .0004 .0001 .0020 .0012 .0029 79.8 .0007 .0016 .0023 223.8 .0012 VELCETTY COMPONENT RATIOS .0026 .0058 .0046 266.6 .0033 .6013 .0004 .0007 149.8 .0011 .0014 78.2 .0016 .0010 208.3 .0005 339.2 .0012 .0003 .0008 .0018 .0027 <u>س</u> 302.2 .0085 301.9 301.4 .0006 .0026 359.7 .0028 327.5 340.1 .0012 5 .0078 5.4 .0061 5.6 .0042 8.7 20.9 .0005 ,0004 213.3 .0001 280.5 .0008 72.6 80.08 HARTIONIC ANALYSES OF LONGITUDITAL .0085 331.5 334.6 .0330 .0014 .0026 .0001 .0019 .0015 .0004 ç 327.6 344.1 .0017 31.3 .0020 .0010 .0017 .0011 181.0 RADIUS = .500 AMPLITUDE = PHASE ANGLE = PADIUS = .600 AMPLITUDE = = PHASE ANGLE = RADIUS = .700 AMPLITUDE = PHASE ANGLE = RADIUS = .800 AMPLITUDE = PHASE ANGLE = RADIUS = .900 AMPLITUDE = PHASE ANGLE = RADIUS = 1.000 AMPLITUDE = PHASE ANGLE = RADIUS = .312 AMPLITUDE = PHASE ANGLE = RADIUS = .350 AMPLITUDE = PHASE ANGLE = RADIUS = .400 AMPLITUDE = PHASE ANGLE HARMONIC HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE E-5 | 1 | w)
.>> | .0011Y | | 3 1 0 | 90019 | FEE | | יין אַרטוּר (אַרַאַרָּאַרְאַרָּאַרָּאַרָּאַרָּאַרָּאַרָּאַרָאַרָּאַרָּ | 0 140 4KTS13 |
--|---|------------|--|------------------------------|--------------------------|-----------|--------|--|-----------------------| | 56 - 4438 | 01.4000 | S | LL. | , | ¥1100 | COMPONENT | RATIOS | (VT/V) | | | 56 181.9 150.6 146.5 183.2 20.9 207.7 184.0 181.9 150.6 146.5 183.2 20.9 207.7 184.0 181.4 245.8 170.9 176.4 318.5 201.9 346.2 181.4 245.8 170.9 176.4 318.5 201.9 346.2 180.8 3747 .0062 .0054 .00013 .0044 .0011 .0022 180.8 246.0 210.7 .0013 .0041 .0018 .0005 180.2 246.0 210.7 .11.6 352.0 122.6 84.0 150.1 11 12 1 15 150.1 10.1 10.1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | - | 9 | ٠٦ | ü | S | ø | 7 | 6 0 | | = 181.9 150.6 185.5 183.2 20.9 207.7 184.0 | (i) | . 4438 | .0074 | 01.10 | 0900 | .0043 | .0026 | . 0012 | .0030 | | 33 39.99 | | 181.9 | 150.6 | 185.5 | 183.2 | 20.9 | 207.7 | 184.0 | 1.0.0 | | # 181.4 245.8 170.9 176.4 318.5 201.9 346.2 | 8ADIUS = .633 | | | | | | 6 | · · · · · · · · · · · · · · · · · · · | i c | | ### 180.8 | AMPLITUDE = PHASE ANGLE = | 181 | 245.8 | ₩ ₩
3 0
3 2
1 | .0024
176.4 | 318.5 | 201.9 | 346.2 | . 630
. 63
. 63 | | 180.8 193.9 175.4 523.2 11.4 158.1 12.1 163 180.8 93.9 175.4 523.2 11.4 158.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 1 | . 78 | t
t | 0 | •
•
• | (| 0 | • | 6 | 1 | | 63
186.2 246.0 210.7 111.6 352.0 122.6 84.0
5NIC ANALYSES OF TANGENTIAL VEUDCITY COMPONENT RATIOS (VT/V)
19 10 11 12 13 14 15
156
10016 .0020 .0016 .0015 .0014 .0006 .0011
147.9 189.9 175.9 209.2 142.3 166.1 174.4
1335.4 187.7 101.3 176.0 76.8 325.2 218.8
166.1 174.4
181 .0012 .0007 .0009 .0005 .0017 .0005 .0007
1 352.5 281.2 285.1 151.4 275.0 225.2 250.3
163.1 .0005 .0009 .0004 .0005 .0006
1 352.5 281.2 285.1 151.4 275.0 225.2 250.3 | 111 | 180.8 | . 00 . 00 . 00 . 00 . 00 . 00 . 00 . 0 | : 17
5 -0
5 -0
5 -5 | 233.2 | 11.4 | 158.1 | 12.1 | . 6000
44. 3 | | MIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 56 | ڡۣ | .3649 | .0081
246.0 | - 0
0 0
0 0 | 0 +
0 +
0 =
0 = | .0041 | .0018 | .0000
84.0 | .0006
125.6 | | 56 10016 .0020 .0016 .0014 .0006 .0011 147.9 189.9 175.9 209.2 142.3 166.1 174.4 33 .0015 .0007 .0009 .0005 .0010 .0011 .0010 335.4 187.7 101.3 176.0 76.8 325.2 218.8 81 .0012 .0002 .0014 .0009 .0017 .0005 .0007 352.5 281.2 245.1 151.4 275.0 225.2 250.3 63 .0005 .0009 .0014 .0004 .0005 .0006 | OLVOURAL
OLVOVIO | ANALYSES | u
O | ر _ | , 3C114 | COMPONENT | | (\ \ \ \ \ \) | | | 56
147.9 189.9 175.9 239.2 142.3 166.1 174.4
33
33
34
35.4 187.7 101.3 176.0 76.8 325.2 218.8
81
35.5 2 281.2 245.1 151.4 275.0 225.2 250.3
63
36.005 .0005 .0009 .0004 .0005 .0006 | | б | 0 | - | 2 | 13 | 4 | | 16 | | = .0016 .0020 .0016 .0015 .0014 .0006 .0011 = 147.9 189.9 176.9 209.2 142.3 166.1 174.4 330015 .0007 .0009 .0005 .0010 .0011 .0010 = 335.4 187.7 101.3 176.0 76.8 325.2 218.8 810012 .0002 .0014 .0009 .0017 .0005 .0007 = 352.5 281.2 245.1 151.4 275.0 225.2 250.3 630005 .0009 .0014 .0004 .0005 .0006 | | | | | | | | | | | 33 . 0015 . 0007 . 0009 . 0005 . 0010 . 0011 . 0010 . 0015 . 0007 . 0009 . 0005 . 0010 . 0011 . 0010 . 0010 . 0012 . 0007 . 0009 . 0009 . 0017 . 0005 . 0007 = 352.5 281.2 285.1 151.4 275.0 225.2 250.3 63 . 0005 . 0009 . 0007 . 0008 . 0006 . 0005 . 0006 . 0007 . 0006 . 0005 . 0006 . | · · | 00100. | 00500. | 9190. | 000
8000
8000 | 4100. | 9000. | .001 | .0006 | | 335.4 187.7 101.3 176.0 76.8 325.2 218.8 81 | 1 | | | | |) | | • | | | 81
81
80
825.2 218.8
81
80
825.2 218.8
81
80
81
825.2 218.8
83
83
83
83
84
85.2 2005 .0007
85
85
85
86
86
86
86
86
86
86
86
86
86 | ⊒C | .0015 | .0007 | \$000° | 9000 | 00100. | .0011 | . 0010 | .0010 | | 63 10005 10005 10009 10017 10005 10007 10005 10007 10005 10007 10005 100 | 3101F | 335.4 | 187.7 | 101.3 | 176.0 | 76.8 | 325.2 | 218.8 | 320.5 | | = .0012 .0009 .0017 .0005 .0007 = 352.5 281.2 245.1 151.4 275.0 225.2 250.3 = 352.5 281.2 245.1 151.4 275.0 225.2 250.3 = 352.5
281.2 245.1 151.4 275.0 2005 .0006 = .0009 .0004 .0009 .00 | . 78 | | | | , | | | 1 | | | 63 .0005 .0009 .0004 .0005 .0006 = .0005 .0006 = .0009 | m
-1
m | 352.5 | 281.2 | 2000
2000
1000 | 0 4
0 5
0 6
0 6 | 275.0 | .0005 | .0007
250.3 | .0009
225.6 | | | PADIUS = .963
AMPLITUDE = =
PHASE ANGLE = | 000
000 | 9000. | 9 *
9 * | , t | .000 | .0005 | .0006 | .0005 | HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 13 TABLE 11-6 TODEL 5271 BASS BOAT ALONE 200 INC 4KTS13 | 3 | ELDC11Y CO | CCMPCLENT
ACRELLER D | T 841105 F | * 755EL 5271
* 6.00 FEET | | BASS BOAT | ALONE 201
JA = | 20D INC 4K | |--|------------|-------------------------|----------------|-------------------------------|-----------------|----------------|-------------------|----------------| | OIVOURT | ANALYSES | OF TANGE | ANGENTIAL VEL | PCITY | COMPONENT | r RATIOS | (V1/V) | | | HARMONIC = | * | 7 | ю | 4 | ហ | 9 | 7 | œ | | RADIUS = .312 AMPLITUDE = = | .5114 | .0408 | .0229
4.851 | .0062 | .0136 | .0061 | .0081 | 73.7 | | m | . 4913 | .0242 | 180.1 | . 0059
193.0 | .0105 | .0050 | .0059 | .0063 | | RADIUS = .400
AMPLITUDE =
PHASE ANGLE = | .4674 | .0166
114.8 | .0170
182.6 | .0055 | .0071 | .0038 | .0035 | .0046 | | RADIUS = .500
AMPLITUDE =
PHASE ANGLE = | .4277 | .0067
205.6 | 81.0.
87.81 | . 000
.100
.100
.200 | .0028 | .0019
209.8 | .0004
289.6 | .0020 | | PADIUS = .600
AYPLITUDE = PHASE ANGLE = | .3989 | .0108 | .0082 | .0030 | 319.9 | .0008
209.3 | .0023 | .0003
159.3 | | RADIUS = .700
AMPLITUDE = PHASE ANGLE = | .3831 | .0022
166.3 | .0355
180.9 | .0008
239.5 | .0031 | .0008 | .0025 | .0005 | | RADIUS = .800
AMPLITUDE = PHASE ANGLE = | .3731 | .0065
98.8 | .0051 | .0014 | .0046 | .0012 | .0021 | .0007 | | RADIUS = .900
AMPLITUDE = PHASE ANGLE = | .3669 | .0023 | .0032 | .0008 | .0047 | .0015 | .0011 | .0006
79.3 | | RADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = | .3649 | .0081 | .0021 | .0013 | ♣ 0041
352.0 | .0018 | .0005 | .0006 | TABLE E-6 (Continued) | 3> | VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER = | OPELLER O | RATIOS F
STAMETER | | MGDEL 5271 37
6.00 FEET | BASS BCAT | ALONE 20D
JA = | D INC 4K1 | |--|--|----------------|----------------------|----------------|----------------------------|----------------|-------------------|-----------| | HARMONIC | ANALYSES | DF TANGE | TANGENTIAL VE | ELOCITY (| COMPONENT | F RATIOS | (V1/V) | | | HARMONIC = | თ | 10 | : | 12 | 13 | 4 | 51 | 16 | | RADIUS = .312
AMPLITUDE =
PHASE ANGLE = | .0067 | .0032 | .0044 | .0032 | .0039 | .0045
158.6 | .0017 | .0043 | | RADIUS = .350
A:PLITUDE =
PHASE ANGLE = | .0051 | .0029 | .0034 | .0026 | .0028 | .0032 | .0014 | .0031 | | RADIUS = .400
AMPLITUDE =
PHASE ANGLE = | .0033 | .0024
192.0 | .0024 | .0620 | .0018 | .0018 | .0012 | .0017 | | PADIUS = .500
ATPLITUDE = PHASE ANGLE = | .0005 | .0016 | .0013 | .0011 | .0014 | .0002 | .0010 | .0001 | | PADIUS = .600
ATPLITUDE = PHASE ANGLE = | .0012 | .0009 | .0010 | .0006 | .0013 | .0010 | .0010 | .0009 | | AADIOS = .700
AMPLITUDE = PHASE ANGLE = | .0014 | .0003 | .0001 | .0008 | .0007 | .0005 | .0009 | .0007 | | PADIUS = .800
AMPLITUDE =
PHASE ANGLE = | .0012
354.8 | .0002 | .0004 | .0009 | .0018 | .0005 | .0007 | .0009 | | RADIUS = .900
AMPLITUDE = PHASE ANGLE = | .0008 | .0003 | .0001 | .0009 | .0011 | .0006 | .0003
319.8 | .0004 | | RADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = | .0005 | .0009 | 9000. | .0008
182.0 | .0004 | .0005 | .0006 | .0005 | ## • APPENDIX F VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 14 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 0.456 RAD. Figure F-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 14 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 $0.633\,\mathrm{RAD}$. Figure F-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 14 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 0.781 RAD. Figure F-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 14 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 0.963 RAD. Figure F-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 14 Figure F-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 14 Figure F-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 14 INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHEMA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 14 TABLE F-1 | | | | | | | | | | | | | | #ADIUS . | .963 | | |----------------|-------------------|--------------|--------------|----------------|----------|--------------------|--------------|----------------|----------------|---------------------|--------------|----------------|-------------|--------------------|--------------| | ARGET | 4474
4474 | .446
VT/V | VR / V | ANGLE | RACTUS + | . 6 3 3
V 1 /V | V# /V | 44616 | ##01US - | .781
V77V
827 | WR / V | AMELE | V1/V | ¥1/V | ph/1 | | 1.0 | | 0 31 | 0:1 | 1.1 | | . 886 | .007 | - 2 . 6 | 1492 | | 001 | -1.0 | -549 | 021 | 106 | | | .544 | 874 | 035 | 1.5 | .433 | 664 | .000 | 1.0 | . 576 | 822 | 007 | 1.3 | .510 | 613 | 010 | | 1.1 | 1131 | - 625 | 011 | 3.3 | . 451 | 815 | .6 21 | 11.0 | . 4 97 | 819 | | 15.0 | .417 | 604 | .614 | | * : | . * 1; | 0 26 | 487 | 6.6 | . 4 85 | 013 | 4613 | 19.0 | . 525 | - , 667
- , 102 | | 10.8 | .519 | . 661
. 618 | 003 | | 11.0 | . 5 5 2 | 8 14
80h | - 006 | 15.0 | . 4 86 | 010 | .006 | 20.2 |
 867 | .007 | 34 .4 | . 101 | . 622 | .010 | | 28.5 | . 94 | 814 | .0 24 | 20.6 | . 496 | 004 | .007 | 33.4 | . 4 9 A | | .414 | 37.8 | .528 | . 023 | .013 | | 26.0 | .179 | 189 | -314 | 23.6 | . 4 9 8 | | .001 | 39.0 | .510 | . 887
. 886 | .009 | 30.5 | .527 | .617 | .001 | | 11.6 | . 4.14 | . 861 | 518. | 30 .0
37 .0 | . 485 | . 622 | .616 | 37.3 | . 523 | | .014 | 71.6 | . 545 | .823 | .004 | | 40 4 | ? . | . 0 16 | -017 | 40.3 | . 4 8 9 | . 0 31 | .015 | 55.6 | .581 | . 619 | 013 | 58.8 | . 526 | . 145 | 8 2 3 | | • 7 • 8 | | . 6 20 | -671 | . 7 . 1 | . 4 9 9 | . # 36 | .819 | 59.8 | .431 | . 619 | 033 | 77.0 | .557 | . 6 M | 815 | | 11.1 | | . 3 10 | 001 | 47.5 | . 4 5 3 | . 0 31 | .017 | 69.5 | .557 | . 6 33 | .114 | 48.5 | . 534 | . 856 | 016 | | 82.5 | 21.64 | . 8 27 | | 91.4 | . 5 26 | . 8 30 | .018 | 76.8 | .529 | . 8 43
. 8 31 | 815 | 17.1 | . 4 9 9 | . 841 | 816
825 | | 69.8 | . 5.76 | | 568 | 59.8
63.0 | .574 | . 842 | .006 | 79.6
83.9 | .575 | . 6 34 | 815 | 97.4 | . 520 | . 001 | 8 35 | | | 11 | . 845 | .00% | 66.3 | . 474 | . 856 | 013 | 91.2 | . 474 | . 858 | 619 | 1.501 | .589 | - 061 | 629 | | 44.7 | . 501 | . 8 79 | - 4 6 8 | 75.0 | . 491 | . 6.36 | 116 | 91.4 | .530 | . 6 35
. 6 36 | 023 | 114.0 | .517 | . 864
. 843 | 0 36
0 39 | | 41.4 | 77.21 | . 0 5 3 | 014 | 14.6 | . 444 | .854 | 613 | 105.0 | . 546 | .17 | 6 36 | 123.5 | .504 | .13 | 034
011 | | 104.0 | . 5.2. | . 351 | | 47.0 | . 4 99 | . 842 | 018 | 117.6 | . 5 34 | . 0 37 | 6 35 | 130.0 | .411 | . 844 | 011
014 | | 112.4 | | . 0 / 9 | 8 2 2 | 11.1 | .587 | . 863 | 884 | 119.4 | .538 | . 1 24 | 4 34
4 17 | 137.8 | .526 | . 6 32
- 6 27 | 4 37 | | 119.6 | .516 | . 0 39 | 017 | 197.1 | | 841 | 0 25 | 127.3 | . 551 | . 144 | 4 36 | 145.0 | . 5 5 7 | . 8 37 | 144 | | 134.5 | | . 444 | 8 26 | 189.2 | . 589 | . 657 | 0 33 | 134.0 | -516 | . 6 25 | 656 | 191.0 | .466 | . 621 | 0 38 | | 114.2 | .576 | . 0 . 4 | 0 25 | 116.3 | . 4 91 | . 050 | 829
827 | 104.9 | .527 | . 0.35 | 057 | 156.8 | .521 | . 6 31 | | | 145.4 | 544 | . 024 | 6 1 3 | 173.5 | . * 5* | . 844 | 0 35 | 156.2 | .550 | . 927 | 0 50 | 144.0 | .521 | . 621 | 6 46 | | 149.8 | . 542 | . 5 39 | 8 2 2 | 130.6 | . 442 | . 857 | 6 33 | 163.4 | . 520 | . 020
. 027 | 852 | 173.8 | .552 | . 1 29
. 1 20 | 064 | | 150.7 | | . 032 | 0 3 3 | 133.8 | .51% | . 0 38 | 8 38
8 48 | 178.6
172.8 | .513 | . 011 | 055 | 102.0 | .517 | . 1 %
12 1 . | 060 | | 163.4 | . 1.74 | . 024 | 825 | 139.1 | -525 | . 0 55 | 047 | 174.2 | .537 | . 0 68 | 156 | 114.0 | .515 | . 6 52 | 169 | | 170.0 | 5.31 | . 019 | 041 | 150 -8 | .471 | .451 | 051 | 174.2 | .576 | . 8 11
. 8 21 | 858 | 147.6 | .532 | . 816 | 463 | | 178.2 | . 5 34 | .014 | | 150.0 | . 586 | . 843 | 452 | 100.0 | .547 | . 125 | 864 | 191.6 | .528 | 023 | 474 | | 177.0 | | .619 | 855 | 166.8 | . 491 | . 6 34 | 145 | 183.3 | .510 | 814 | 865 | 197.0 | .727 | 042
058 | 101 | | 148.8 | | .019 | 055 | 199.6 | . 5 6 8 | . 6 32 | 8 4 7 | 100.0 | .510 | - , 6 31 | 058 | 197.2 | . 7 39 | 853 | 8 6 6 | | 113.3 | - 17 | . 016 | 457 | 170.0 | . 500 | 0.50 | 467 | 193.0 | . 565 | 648 | 051 | 174.5 | .764 | 230 | 050 | | 185.8 | -547 | . 010 | 48.52 | 100.0 | . 500 | . 012 | 869 | 194.8 | .687 | 071
051 | 051 | 200.2 | .749 | 003
.013 | 063
664 | | 190.0 | -1 8 L | . 90 - | 8 4 5 | 148.8 | .526 | 804
.812 | 057 | 4.085 | . 7 94 | | 865 | 284.4 | . 796 | . 920 | 863 | | 191.1 | . 584 | 084 | 0 34 | 100.2 | 3.2 | . 123 | 061 | 784.0 | . 205 | - 584 | 464 | 211.0 | .748 | . 010 | 166 | | 195.1 | ,471
,573 | 047 | 037
071 | 198.4 | . 539 | 011 | 166 | 211.0
219.8 | . 486 | - 017 | 667 | 216.6
218.8 | . 790 | . 110 | 467 | | 787.8 | . 114 | 065 | 010 | 200.4 | .562 | 8 35 | 052
051 | 221.0 | . 888 | 66 2 | 066 | 225.0 | .795 | . 809 | | | 281.0 | . + 2 • | 0 64 | 015 | 200.4 | . 565 | 8 31 | 051 | 224.0 | .797 | 447 | 065 | 233.2 | .789 | . 667
661 | 865 | | 784.4
786.2 | , 1 & 1
, m Ar | - 164 | 055 | 282.5 | .571 | 846 | 4 37
8 35 | 211.6 | . 982 | 613 | 071 | 248.6
247.6 | .783 | 006 | 000 | | 204.5 | . 7 1 * | 965 | .017 | 204.2 | . 6 85 | 656 | + . 8 31 | 247.8 | . 484 | 021 | 8 6 8 | 252.0 | .793 | 812 | 072 | | 299.3 | . 731 | 0% | -610 | 288.0 | .751 | 140 | 4 31 | 295.1
201.8 | .779 | 6 11 | 869 | 296.8
267.1 | .794 | 011 | 072 | | 210.2
212.3 | . * * 1 | 063 | .017 | 289.8
211-5 | . 777 | - 114 | 4 64 | 242.4 | . 775 | 0 33 | 867 | 249.4 | . 787 | 027 | 060 | | 216.4 | . 791 | 0 10 | 007 | 217.8 | .781 | . 619 | 164 | 4.9.6 | .777 | . 044 | 067 | 274.8 | .787 | 120 | 863 | | 220.1 | , 194 | 021 | 0 28 | 224.1 | .792 | .015 | 464 | 276.8
261.2 | .790 | 845 | 858 | 203.8
201.8 | .791 | 635
635 | 858 | | 724.4
731.5 | . 40. | - 61* | 0 - 2 | 231.6 | .761 | . 001 | 067 | 243.9 | . '84 | 8 4 7 | 854 | 295.8 | .789 | 636 | 444 | | 219.8 | , 798 | 0 71 | 050 | 234.8 | | 007 | 041 | 291.4 | . 774
. 778 | 857 | 857 | 298.3
384.8 | .793
786 | 937
941 | 849 | | 244.8 | 91 | -, 0 25 | 041 | 753.1
759.6 | .767 | 813
816 | 866 | 381 -1 | . 7 90 | 861 | 4 + 6 | 312.0 | .703 | 844 | 8 39 | | 244.4 | 791 | 644 | 8 17 | 268.8 | . *67 | 318 | 859 | 369.3 | .771 | 8 % | 0 47 | 319.9 | .798 | 843
849 | 4 39
8 27 | | 259.4 | . 194 | 651
846 | 019 | 267.8 | .746 | - , 626 | 854 | 312.5
319.6 | .775 | 861
861 | 8 35 | 327.1 | 775 | 14 | 0 20 | | 262.3 | 7.85 | 044 | 0 30 | 279.4 | 761 | - 1 % | 856 | 320.0 | . , , , , | 661 | 8 35 | 337.0 | .774 | 145 | 017 | | 264.1 | | 564 | 0 54 | 202.5 | . 744 | 0 3L | 013 | 326.8 | . 775 | 961
959 | 630 | 316.8 | .777 | 0 % | 016 | | 265.9
267.8 | .730 | 050 | - 641 | 284.8 | .764 | 839 | 043 | 314.6 | 777 | -, 144 | 6 21 | 345.2 | .743 | . 0 33 | 010 | | 769.3 | . : 9 . | 651 | 8 19 | 299.4 | . 777 | 14 | 4 * * | 348.0 | .781 | | 071 | 344.0 | .619 | . 843 | 0 35 | | 272.0 | 744 | 651 | 4 16 | 303.0 | .769 | 644 | 6 33 | 343.8 | .773 | 807 | .009 | 392.4 | .515 | 816 | 443 | | 276.4 | | - , 656 | 8 18 | 318.9
318.1 | .746 | 003 | 0 37 | 346.6 | . 697 | . 617 | .027 | 1.000 | .500 | 124 | 009 | | 2 * 4 . 6 | | 654 | 3 37 | 319.2 | .767 | 447 | 117 | 144.6 | . 5 80 | 017 | 023 | 359.8 | .583 | 023 | 616 | | 279.5 | ,791 | 061 | 0 34
0 36 | 329.3 | .744 | 647 | 476 | 393.4 | .521 | 627 | 001 | 361.4 | | | | | 243.9 | . 793 | 061 | 0 35 | 332.5 | . 765 | 8 64 | 8 6 4 | 361.4 | . 474 | 022 | .814 | | | | | | 284.7 | . 7 85 | 467 | 8 12 | 334.3 | .733 | .013 | .447 | | | | | | | | | | 797.8
799.3 | . 186 | -,866 | 0 Jh
0 36 | 334.0 | .702 | . 6 37 | - 111 | | | | | | | | | | 249.9 | . 7 94 | 865 | 0 35 | 339.4 | . 627 | . 143 | 109 | | | | | | | | | | 384.8 | . 197 | - 069 | 821 | 141.4 | -517 | . 175 | - ,426 | | | | | | | | | | 319.1 | .792 | 657 | .007 | 346.0 | | 010 | 816 | | | | | | | | | | 319-1
129-1 | 744 | 675 | .057 | 158.6 | . 494 | 014 | 010 | | | | | | | | | | 371.6 | .711 | 012 | .055 | 357.6 | . 4 9 4 | - , 814
- , 886 | 011 | | | | | | | | | | 314.0 | . 4 2 4 | .017 | . 1 36 | 155.8 | . 474 | 987 | 017 | | | | | | | | | | 334.0 | . 444 | . 8 1 1 | .029 | 199.8 | . 4 5 4 | . 804 | 861 | | | | | | | | | | 337.6
114.9 | . 449 | 861 | .016 | 340 .0 | .44" | . 986 | .117 | | | | | | | | | | 342.9 | .479 | 423 | * .014 | | | | | | | | | | | | | | 347.4 | .575 | 071 | 014 | | | | | | | | | | | | | | 3.4.4 | . 5 8 5 | 679 | | | | | | | | | | | | | | | 140.0 | | 076 | 023 | | | | | | | | | | | | | | 340.1 | 19 | 19 | 016 | | | | | | | | | | | | | | 151.0 | 94 | 657 | .001 | | | | | | | | | | | | | | 344.4 | . 4 76 | -,449 | .007 | | | | | | | | | | | | | | 133.4 | . 444 | 6 11 | 061 | | | | | | | | | | | | | | 144 4 | 3.41 | | | | | | | | | | | | | | | LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 14 TABLE F-2 VELOCITY COMPONENT MATIOS FOR MODEL 5271 BASS BOAT ONLY OING 4.5ATSWOTA PROPELLER DIAMETER = 6.00 FEET | 1.000 | .634 | .007 | 037 | .630 | .632 | 8.46 | 300.00 | 150.00 | |---------------|-------|---------|------------|-----------|---------|---------|--|-----------------------------| | 006. | .643 | 1.001 | 037 | .627 | .630 | g.53 | 5.32 3.77 2.81 2.27 8.17 7.21 6.12 4.87 4.00 3.23 2.77 2.71 2.19
7.50 222.50 210.00 300.62 282.50 282.50 282.50 300.00 222.50 335.00 200.00 | 27.50 | | .800 | .643 | 005 | 035 | .622 | .625 | 10.70 | 2.77
335.00 | -2.61
27.50 | | .700 | .623 | .002 | 033 | .618 | .622 | 11.81 | 3.23 | -2.61
357.50 | | .600 | 865. | .012 | 028 | .623 | .629 | 13.13 | 300.008 | 00.00 | | . 500 | .608 | . 002 | 610 | .638 | .649 | £4.55 | T- (7) | 0 1-
0 1-
0 0
1 00 | | .400 | .640 | 1.020 | 007 | .662 | .691 | 20.45 | 6.12
282.90 | -4,47
187,50 | | .350 | .665 | 037 | 000. | .676 | .702 | 24.62 | 7.21 | 187.50 | | .312 | .688 | 051 | .007 | 0.000 | 0.00.0 | 28.34 | 8.17 | -9.59
187.50 | | .963 | . 534 | .007 | 037 | .627 | . 629 | 8.78 | 300,00 | -2.00
150.00 | | .781 | .640 | 005 | 035 | 619. | .622 | 10.92 | 210.00 | -2.64
27.50 | | .633 | .600 | .012 | 030 | .620 | .625 | 12.51 | 3.77 | -3.25 | | 456 | - 619 | 900'- = | 014 | 647 | = ,663 | = 17.76 | = 5.32
=307.50 | = -3.55 | | RADIUS = .456 | VXBAR | VTBAR | VRBAR =014 | X > 3 - 1 | 1 - W X | 8848 | 8 P C S T H E T A A A | BNEG
THETA | 1 IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELDCITY. IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY. IS CIRCUMERENTIAL MEAN RADIAL VELOCITY. IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION. IS VOLUMETRIC MEAN WAKE LECCITY WITH TANGENTIAL CORRECTION. IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS). IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS). IS VARIATION BETWEEN THE CORRESPONDING
BODY OR SNELL DICLAS. HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 14 LYBLE 1-3 | : | | | | | | ()
()
()
()
()
() | t > | ·
· | |---|----------|-----------------|--------------------|---------------|------------------|----------------------------------|-----------------|---| | 7 | 4411710 | | 1 | | 1 | | | | | n | - | 7 | m | 77 | Ŋ | g | 7 | Œ | | 2. | | , | | | | | | | | PHASE ANGLE = | 142.7 | . 6684
273.5 | 0.00
48.00 | 272.3 | 0.0303 | .004 2
269.3 | . 0230
10.2 | 0 · • · 0 · • · • · • · • · • · • · • · | | . 533
533 | | | | | | | | | | LLI | .1568 | 9650 | | 08 00 | 6010. | .0226 | .0161 | .0052 | | (L) | 164.1 | 259.0 | -8.7
8.7
8.0 | 2.3.0 | 357.6 | 263.7 | 354.9 | 341.9 | | . 78 | | | | | | | ; | • | | PHASE ANDLE | 184.2 | 253.5 | , 07 v 0. | 255.4 | 160.8 | 257.8 | . 0020
359.5 | . 0225
2 61.9 | | RADIUS = .963 | | | | | | | | | | ui
Co | | .0428 | E 40. | 2345 | .0139 | .0249 | . ООБВ | .0206 | | ш | 179.2 | 276.1 | 0 .
0 a . | 0 m
n
0 | 161.1 | 267.1 | 344.4 | 253.0 | | HARTINIC | ANALYSES | 10 PC | בייונטוינינס. | A.100004 | COMPONENT | IT RATIOS | (VX/V) | | | HARMS*IC = | σ | 0 | - | 12 | 13 | 4 | ស | 16 | | RADIUS = .456 | | | | | | | | | | A::DLI 7.3E = | 6900. | 62.01 | .0145 | E# 000 | .0013 | .0026 | 9000. | .0022 | | u:
13
27 | 4. | 120.8 | £2 | D. 47. | 332.1 | 44.2 | 266.5 | 254.1 | | 53 | | | | | | | | | | A7P.IT.OE = = | .0157 | .0077 | | 0100. | . 00.79
. rc. | 0000. | .00.43 | .0022 | | | 3.2.2 | 7 . 80 | 301.3 | 7.76 | 9.77 | 4

ي | 9.08 | 224.3 | | 78 | 9 | 9 | (| 0 | • | 0 | Q
Q | 0 | | FHASE ANGLE = | 7.1 | 258.8 | 331.9 | 313.1 | 338.2 | 180.5 | 320.7 | 111.4 | | 96 | | | | | | | | | | AMPLITUDE = PHASE ANGLE = | .0110 | .0096 | 355.5 | .0037 | 339.5 | .0023 | 350.8 | .0073 | | | | | •
•
•
• | |)
) | • | | • | HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 14 TABLE F-4 1 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY OING 4.5KTSW014 PROPELLER DIAMETER = 6.00 FEET | | Ž
Ž | アスログだしに はん ロー・ とんだい これ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | = 6.00 PEE | ר
ה | | u
∢ | 66/. | |--|-----------------|------------------------|---------------------------------------|-----------------------|----------------|------------------------|----------------|----------------| | HARMONIC | ANALYSES OF | | UDINAL V | LONGITUDINAL VELOCITY | COMPONENT | RATIOS | (v x, v) | | | HARMONIC | - | a | ო | 4 | Ŋ | 9 | 7 | 60 | | RADIUS = .312
AMPLITUDE = PHASE ANGLE = | 1301 | .0683 | .0114 | .0375 | .0243
62.6 | .0205
88.5 | .0244
36.0 | .0219 | | PADIUS = .350
AMPLITUDE = PHASE ANGLE = | .1354 | .0689 | .0083 | .0399
281.6 | .0222 | .0131
87.8 | .0239 | .0165 | | AADIUS = .400
AMPLITUDE = PHASE ANGLE = | 1414 | .0691
2 75.9 | .0061
167.5 | .0425
276.6 | .0210 | .0043 | .0236 | .0115 | | PADIUS = .500
ATPLITUDE = PHASE ANGLE = | .1506 | .0673 | .0049
195.1 | .0483
209.6 | 10.0 | .0100 | .0221 | .0075 | | PADIUS = .600
ATPLITUDE =
PHASE ANGLE = | .1559
183.9 | .0621
259.6 | .0133
190.5 | .0442
244.5 | .0140
359.1 | .0202
264.7 | .0182
356.8 | .0053 | | RADIUS = .700
AMPLITUDE = PHASE ANGLE = | .1554
184.6 | .0508
268.2 | .03.9 | .0384
259.0 | .0027 | .0259
259. 2 | .0077 | .0135 | | RADIUS = .800
AMPLITUDE = PHASE ANGLE = | .1556
183.9 | .0427 | .0534 | .0312 | .0139 | .0282 | .0014 | .0237
260.7 | | RADIUS = .900
AMPLITUDE = PHASE ANGLE = | . 1589
181.5 | .0407 | .0520 | .0314 | .0167 | .0271 | .0024
341.4 | .0248 | | RADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = | .1627 | 428 | .0438
188.0 | .0342 | .0139 | .0249
267.1 | .0068
344.4 | .0206 | TABLE F-4 (Continued) DINOMETH VELOCITY COMPONENT RATILLY FOR MODEL 5271 BASS BOAT ONLY 01/C 4.5NTSW014 PROPELLER DIANTER = 6.00 FEET .0071 0007 .0032 .0029 .0057 126.2 (V × × V) .0053 .0027 178.0 .0048 176.6 .0027 284.8 .0169 .0114 340.6 HABICATO ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS .0086 206.3 .0049 203.3 .0610 39.3 39.4 .0013 .0041 .0342 319.8 .0233 320.2 .0012 132.8 .0088 131.1 .0035 . 60.51 50.3 .0119 .0059 311.2 0.00 00000 Ċ . 000.7 81.18 2.53. 2.63.69. .0130 .4-15 23°.0 3,47.5 .0167 86.3 . 0306 • 83.3 172.3 .0:03 151-2 .0122 .0098 68.2 272.1 0 .0215 80.6 .0112 .0098 .0154 .0118 .0315 86.2 RADIUS = .700 ATPLITUSE = = PHASE ATSLE = RADIUS = .312 ATPLITUDE = = FHASE ANGLE = 840145 = .350 41011405 84056 410.5 AADIUS = .400 AYALITUE = PHASE AYSLE = RADIUS = .500 ATPLITUDE = = PHASE ANGLE = A10105 = .600 A1011705 = . PHASE A1016 = .00°39 108.6 .0073 .0034 .0131 .0025 290.8 . 00 .9 334.7 .0159 9.6 PADIJS = .800 ANPLITOSE = PHASE ANGLE = .0087 338.2 .0035 336.4 .0074 347.9 .0154 0109 006. 11 RADIUS = .900 AMPLITUSE = : PHASE ANGLE = : .0073 .0086 350.8 .0023 .0122 .0097 255.1 355.5 .0096 336.1 RADIUS = 1,000 AMPLITUDE = = PHASE ANGLE = TABLE F-5 | 7 | - HAKMOR
RADII | FOR | ALYSES
XVPERIY
GCITY C | | | VELOCITY
FOR VESEL | u, | AL KAI | AI. | THE EAFENIMEN | |---|---|-------------------------|------------------------------|----------------|--------------------------|--------------------------|----------------------------|----------------|----------------|-------------------| | | 4 | 0
70
13 | PS.
ANALYSES | TANC
TANC | · . | 6.00
5017 | FEE | RATIOS | = AU
(V/TV) | . 739 | | |)
(1)
(1)
(4) | 11 | F -r | 8 | า | 4 | ഗ | Q | 7 | œ | | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4. m.
m.
m.
m. | . 0494
845.3 | | 00°.
00°.
44°. | .0128
176.6 | .0061 | .0026
208.5 | ,0096
268.1 | .0045 | | | # 0 4
0 4
0 4
0 4
5 4
5 1
6 4 | 633 | .0425
340.2 | | ტ.
ტ.
ტ. | .01.3
.85.9 | . 000
160
100
100 | .0067 | .0071 | .0005
235.3 | | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 78 | .0428
338.5 | 343.3
8.83 | かり
の・
ひゃ
ひ・ | . 0056
159.1 | . 0054
84.0 | .0060 | .0005 | .0268 | | | 00 4
00 4
00 4
00 4
00 4 | က ။ ။
ရာ
က | 0388
33 5.6 | .0093
329.1 | 9-0
40-7
0-0 | 180.1 | .0020 | .0083 | .0007 | .0056 | | | HAH
01:08841 | PYONIC
B | ANALYSES
9 | OF TANGE | ANGENTIAL VE | 12 | COMPONENT
13 | RAT105 | (VT/V) | - | | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | . 456
 | .0043
278.4 | .0057 | .002
29.6 | .0065
338.1 | .0005 | .0011 | .0019 | . 2010 | | | | . 633 | .0062 | .0042 | .0015
193.8 | .0057 | .0047 | .0031 | ,0057
76.8 | .0022 | | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | .781
=
LE = | .0028 | .0049 | .0047
255.9 | .0010 | .0062 | .0003 | .0035 | . 6034
9 . 8 1 | | | PADIUS = | . 963
 | .0057 | .0049
161.8 | 0 t
0 t
0 t
0 t | 000
000
000
000 | .0048
256.2 | .0038 | .0070
262.5 | .0026
338.6 | - ANKMONIC ANALYSES OF LANGENTLAL VELOCLIN COMPONENT SATINS AT THE INTERPOLATED RADIT FOR EXPERIMENT 14 TABLE F-6 \$#C14 | , L., | 0017 ¥ CO | 07 C1
≥ 07
≥ 04
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 00.0 | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | +1
-1
-1
-3) | 7470 X740 | 4.5×2×4.4 | |--|----------------|---|---|-----------------------|---|-----------------------|----------------|-----------| | DINCHEVE | ANALYSES | CF TANSENT | E Y TEN | | COMPONENT | RATIOS | (V1,V) | | | B 01705841 | •- | (N | m | 4 | Ŋ | 9 | 7 | 80
| | ATPLITOR STATE STA | ,0612
349.9 | .0087
200.5 | .0017 | .0113 | .0133 | .0074 | .0083 | .0090 | | 0 | .0575
348.8 | .0076
202.8 | .00.
8:00.
1.04. | . 0.1
4.10
8.40 | .0111 | .0049
309.0 | .0087 | .0076 | | 20004. = 20004. = 20004. = 20004. = 3004. = 3004. = 3004. | .0533 | .0060 | .0028
103.3 | .0119 | .0086
301.5 | .0025 | .0093 | .0060 | | 00 m m 00 m m m m m m m m m m m m m m m | .0469
343.9 | .0033
229.6 | 0054
88.6 | . 5128
181.4 | .0044
285.9 | .0039 | .0095
264.0 | .0035 | | 000 - 000 000 000 000 000 000 000 000 0 | .0431 | .0026
295.8 | 1. 6
0. 8
0. 8 | .0120 | .0011 | .0063 | .0080 | .0009 | | PAD5 = .700
AMPLIT.DE
PHASE AMG.E = | .0430 | . 0053
338.4 | 5 / S | .0042 | .0036 | .0051 | .0032 | .0040 | | PADDIOS = .800
AMPLITODE = PHASE ANGLE = | .0426 | .0078 | .0057
81.8 | .0052 | .0055
82.4 | .0051
173.9 | .0005 | .0071 | | RADIUS = .900
AMPLITUDE = PHASE ANGLE = | .0407
336.8 | .0090
336.6 | .0057
81.6 | .0030 | .0035 | .0071 | .0007 | .0071 | | RADIUS = 1,000
AMPLITUDE =
PHASE ANGLE = | .0388 | .0093 | .0059
82.0 | .0021 | .0020 | .0083 | .0007 | .0056 | TABLE F-6 (Continued) VELDOITY COMPOSENT RATIOS FOR MODEL 5271 BASS BOAT ONLY OING 4.5KTSW014 PROPELLER DIAMETER : 6.00 FEET | | | 1
1 | は とこれ とうしょう スプラング・イング イングラング | x | 90.9 | 6.00 FEE | | 4 A D | . 739 | |---|-------------------|----------|------------------------------|------------------|---|---|-------------------------|----------------|----------------| | HARNONIC | | ANALYSES | OF TANGE | TANGENTIAL VE | ELOCITY | COMPONENT | RATIOS | (VI/V) | | | HARMOVIC | н | თ | 0 | 11 | 12 | 13 | 4 | 15 | 16 | | RADIUS = .3
AMPLITUDE
PHASE ANGLE | 8
+ 2
1 | .0095 | .0081 | .0082
357.7 | .0034 | .0178 | .0099 | .0130 | .0074 | | RADIUS = .3
AMPLITODE
PHASE ANGLE | 0 " " | .0068 | .0062 | .0053
2.8 | 310.00
0.000 | .0119 | 150.2 | .0081 | .0048 | | PADOIUS = .4 | 0 11 11 | .0045 | .0053 | .0042 | .0054
328.6 | .0056 | .0038
156.8 | .0027 | .0021 | | RADIUS = .5
ATPLITCOE
PHASE ANGLE | 0 " " | .0051 | . 0000
5.1 | .0014
65.68 | . 000
000
000
000
000
000
000
000
000
00 | . 0028
64.6 | .0013
283.2 | .0043 | .6019 | | PADLITCOE
PHASE ANGLE | 0 # 11 | .0063 | .0052
347.8 | .0012
152.5 | 7 / P / P / P / P / P / P / P / P / P / | 0.00
0.40
0.40
0.40 | 312.5 | .0062 | .0026 | | RADIUS = .7
ATPLITUDE
PHASE ANGLE | . 700 | .0039 | .0012 | 2:33 | 3:022 | . 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 2100.2 | .0012 | .0012
36.9 | | RADIUS = .8
AMPLITUDE
PHASE ANGLE | 8 CO | .0028 | .0054 | .0050 | 0 €
0 0
0 0 | 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6 | . 000.
800.
87. 4 | .0043 | .0037 | | RADIUS = .9
AMPLITUDE
PHASE ANGLE | 0
0
6 | .0039 | .0062 | . 605.0
251.0 | . 0030
158.8 | , 0070
255.8 | 0520 | .0067 | .0037
359.3 | | RADIUS = 1.00
AMPLITUDE
PHASE ANGLE | 0 # # | .0057 | .0049 | .0050
251.7 | .0029
154.9 | .0048
256.2 | .0038 | .0070
262.5 | .0026
338.6 | ## APPENDIX G VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 15 VERDELLY COMPONENT RATIOS FOR MODEL 5271 BASO BOAT ONLY 10 INC 6KTGW015 $0.456~\mathrm{RHO}_{\odot}$ Figure G-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 15 U.533 RHD. Figure G-2 - Circumferential Distribution of the Longitudinal, Tangential, Figure G-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 15 Figure G-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 15 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 6KTSW015 0.963 RAD. Figure G-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 15 Figure G-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 15 Figure G-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 15 TABLE G-1 #### INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 15 | | ****** | | | | **** | | | | | | | | | | | |----------------|----------------|---------------|----------|----------------|----------|------------|--------------|----------------|----------|----------------|---------|----------------|----------------|--------------|--------------| | 40615 | 42/4 | . 456
VT/V | ¥8./¥ | ANGLE | PACTUS . | 41/4 | V# / V | ANGLE | **C1U5 * | .781
V1/V | 44/4 | | ****** | | | | -1.1 | . 976 | . 064 | 1 37 | -6.5 | . 919 | 158 | 168 | - 1.1 | . 951 | - 881 | 184 | ANGLE | AEVA | V 1 /V | 44.14 | | 5.0 | . 414 | 6 30 | 1 34 | | . 916 | 002 | - ,158 | | 969 | 667 | 101 | 7.0 | .924 | 027 | 189 | | 14.0 | . 921 | 865 | 1 34 | 1.1 | . 915 | 6 24 | 156 | 7.5 | . 940 | 627 | 183 | 7.4 | . 934 | 750 | - 187 | | 23.6 | . 921 | 6 99 | 170 | 15.2 | .914 | 051 | 1 51 | 14.6 | . 969 | 850 | 179 | 14. | . 424 | 143 | 183 | | 32.E | .915 | 131 | 121 | 55.4 | . 917 | ~ . 874 | 165 | 17.0 | . 944 | 648 | 179 | 19.0 | . 071 | 857 | 100 | | 11.0 | . 914 | 147 | 115 | 29.0 | - 184 | 0 90 | 1 39 | 21.0 | . 434 | 477 | 176 | \$2.0 | . 919 | 847 | 171 | | 10.0 | . 967 | 160 | 111 | 36.4 | 911 | 114 | - 120 | 29.2 | . 933 | 8 94 | 170 | 89.6 | -91 | 6 85 | 169 | | 59.9 | . 911 | 205 | 6 4 4 | 41.4
91.2 | . 915 | 139 | 119 | 16.8 | .921 | 116 | 163 | 36.8 | . 91 | 103 | 168 | | 67.8 | . 916 | 271 | | 11.4 | 917 | 162 | 6 9 3 | 11.6 | 932 | 1 36 | 149 | 39.0 | . 916 | 189 | 150 | | ** -1 | -917 | 224 | | 69.6 | . 915 | 173 | 1 00 | 11.1 | . 929 | 153 | 1 35 | 94.8
51.2 | .917 | 118 | 149 | | 74.6 | . 920 | 229 | 051 | 72.4 | . 965 | 188 | 164 | 50.0 | . 925 | 164 | 122 | 56.0 | . 919 | 1 3?
1 46 | 1 37
1 71 | | 16.0 | . 91.7 | 2 33 | 8 54 | 79.4 | . 911 | 184 | 853 | 65.8 | . 925 | 181 | 185 | 59.2 | 917 | - , 1 48 | 119 | | 33.1 | .922 | 229 | 115 | 47.1 | . 416 | 185 | 4 34 | 72.4 | . 932 | 289 | 044 | 45.6 | . 914 | -, 150 | 117 | | 185.1 | .921 | 221
26# | .011 | 94.3 | - 915 | 163 | 1 26 | 74.9 | .029 | 193 | 876 | 72.8 | . 912 | 165 | 0 40 | | 116.0 | 918 | 205 | .016 | 161.4 | .910 | 180
162 | 016 | 79.4 | . 927 | 1 46 | 7 . | 79-8 | . 471 | 169 | 473 | | 153.1 | 919 | - 198 | .6 32 | 100.0 | . 101 | 175 | -111 | 94.2 | . 926 | 199 | 032 | | . 915 | 164 | .164 | | 131.4 | . 983 | 166 | .447 | 115.0 | . 983 | 167 | -013 | 98.6 | 929 | 197 | 0 21 | 94.3 | .919 | 172 | **** | | 134.6 | . 966 | 154 | .451 | 122.9 | . 496 | 155 | .121 | 191.0 | . 931 | 196 | 013 | 100.5 | . 914 | 178 | 040 | | 1.1.1 | . 981 | 140 | .254 | 129.9 | . 885 | 1-1 | .041 | 100.0 | . 927 | 1 96 | .084 | 101.0 | 919 | - 170 | 021 | | 198.1 | . 197 | 107 | .664 | 137.2 | . *>9 | 122 | .854 | 115.9 | . 974 | 176 | . 0 2 9 | 196.4 | | 165 | 004 | | 154.8 | . 995 | 184 | .075 | 100.0 | . 865 | 105 | .065 | 110.5 | .921 | 174 | .0 25 | 115.4 | . 410 | 157 | .009 | | 160.1 | . 489 | 672
630 | .075 | 191.0 | . 46.7 | 842
857 | .076 | 123.1 | . 919 | - 162 | . 6 36 | 128.2 | .414 | 158 | .023 | | 100.2 | . 494 | . 422 | .074 | 100.0 | . 855 | - 132 | .876 | 137.5 | .911 | 1 wb
129 | .050 | 122.9 | .913 | 147 | .027 | | 195.2 | . 496 | . 854 | .076 | 178.0 | . 454 | 607 | .164 | 1.0.2 | .909 | 123 | .863 | 130 - 1 | . 411 | 1 13 | .0 + 3 | | 204.2 | . 891 | \$92 | .070 | 100.5 | 492 | - 916 | .885 | 199.6 | . 697 | - 189 | .876 | 137.3 | . 985 | 127 | .059 | | 213.2 | . 194 | . 121 | | 107.5 | . 44 9 | . 6 36 | -551 | 191.0 | . 981 | 988 | | 144.5 | . 994 | 111 | .267 | | 217.2 | . 984 | . 1 48 | .6 4 8 | 194.8 | . 455 | - 861 | -977 | 159.2 | .955 | 665 | .044 | 151.0 | 904 | 482 | .BA3 | | 11.15 | . 307 | 144 | .035 | 501.0 | 44.7 | . 887 | .972 | 166. | . # 49 | 048 | .093 | 158.8 | . 982 | 0+7 | .092 | | 1.145 | . 4 6 9 | - 186 | .020 | 2.003 | . 444 | -111 | -063 | 173.5 | . 194 | 016 | .095 | 166.0 | . 901 | 037 | -100 | | 257.4 | . 917 | . 199 | 010 | 217.8
223.5 | . 440 | . 137 | .658
.638 | 179.8 | .982 | 800 | .0 95 | 173.2 | . 984 | 015 | .107 | | 294.9 | . 919 | . 297 | 912 | 230.9 | . 871 | . 177 | .0.63 | 101.0 | .981 | - 005
- 004 | .0 95 | 179.0 | , 494 | . 00- | -105 | | 267.2 | . 910 | . 207 | 8 25 | 278.1 | . 477 | . 186 | | 188.6 | 982 | . 627 | .693 | 188.4 | . 9 9 7 | - 605 | -164 | | 276.1 | .970 | . 285 | 8 10 | 245.8 | . 691 | - 196 | 1 9 7 | 195.2 | 9.94 | . 050 | .089 | 199.4 | . 902
. 996 | . 624 | -100 | | 278.0 | .715 | . 246 | 845 | 242.6 | . 487 | . 208 | 8 2 2 | 202.0 | .901 | . 072 | .082 | 199.0 | . 493 | | .000 | | 205.0 | . 983 | . 501 | 855 | 256.8 | . * 8 1 | . 218 | 8 2 9 | 204.6 | . 95 # | . 4 94 | .077 | 212.0 | . 497 | . 671 | .094 | | 293.8 | . 484 | . 189 | 078 | 259.4 | .49. | . 213 | 039 | 216.0 | .910 | - 115 | .061 | 208.1 | . 901 | . 0 90 | .066 | | 382.9 | . 904 | . 195 | 079 | 267.8
274.2 | . 8 W.C | . 213 | 054 | 219.5 | .917 | - 175 | -855 | 216.0 | .90. | . 113 | .477 | | \$11.0 | 91: | . 157 | | 298.9 | 90. | . 200 | 069 | 511.5 | .917 | . 1 55 | .0 35 | 219.6 | . 194 | . 1 21 | .072 | | 310.0 | . 410 | . 1 95 | 100 | 201.0 | .491 | . 201 | 10 5 | 238.8 | 159 | . 164 | | 223.0 | . 994 | -131 | .064 | | 129.4 | . 485 | . 176 | 111 | 295.9 | . * 9. | - 1 76 | 115 | 245.6 | . 476 | 171 | | 237.3 | .987 | . 159 | .033 | | 123.6 | . 967 | . 117 | 114 | 365.6 | . 5 96 | . 175 | 124 | 297.8 | . 97# | . 174 | 013 | 239.1 | . 984 | . 161 | .028 | | 327.8 | . 414 | . 185 | 119 |
319.0 | . 444 | - 157 | 1 37 | 258.9 | .079 | - 181 | 029 | 245.8 | . 988 | . 176 | .011 | | 310.0
317.4 | .416 | . 849 | 1177 | 317.4 | . 447 | - 1 30 | - 1 46 | 267.1 | .922 | . 1 43 | | 252.6 | . 988 | . 182 | 9 8 7 | | 310.0 | . 917 | . 000 | 124 | 374.8 | -987 | - 114 | 156 | 274.3
278.8 | . 929 | - 1 62 | 162 | 250.0 | . 90# | . 186 | 6 50 | | 347.6 | . 014 | . 6 27 | 1 *5 | 370.0 | 909 | . 171 | 158 | 241.4 | . 375 | · 183 | 875 | 259.8 | .910 | . 146 | 021 | | 156.6 | . + 25 | 0 0 3 | - 1 36 | 346.4 | | | 168 | 288.6 | 927 | -172 | 194 | 267.8
274.2 | . 484 | - 191 | | | 157.9 | . 476 | 684 | 1 37 | 343.4 | . 414 | . 8 77 | 160 | 299.8 | . 673 | -163 | 118 | 278.6 | . 90 * | . 190 | 667 | | 345.8 | . 91 * | 4 30 | - , 1 36 | 360.4 | . 916 | - 1 02 | 156 | 8.685 | . 426 | . 161 | 119 | 261.0 | | . 184 | 865 | | | | | | | | | | 182.9 | . 924 | + 151 | 176 | 8.105 | . 981 | . 177 | 101 | | | | | | | | | | 310.1 | . 979 | 1 36 | 134 | 295.9 | .987 | . 165 | 118 | | | | | | | | | | 310.0 | . 9 34 | - 117 | 155 | 298.5 | . 987 | . 161 | 124 | | | | | | | | | | 111.0 | . 934 | . 101 | 160 | 30 3 - 1 | . 984 | . 153 | 1 35 | | | | | | | | | | 330.1 | . 961 | . 041 | 176 | 310.0 | . 484 | .137 | 2 4 8 | | | | | | | | | | 336.8 | 94.7 | . 861 | 176 | 324.0 | . 91 1 | .117 | 159 | | | | | | | | | | 146.8 | . 9 . 1 | . 048 | 1 60 | 331.9 | | . 447 | 177 | | | | | | | | | | 353.2 | . 944 | - 0 17 | 183 | 339.2 | . 974 | . 067 | 187 | | | | | | | | | | 357.0 | . 451 | . 203 | 1 4 % | 346.8 | . 025 | . 640 | 1 86 | | | | | | | | | | 168.4 | . 444 | ~ - 00 7 | 181 | 353.5 | | . 021 | 1 08 | | | | | | | | | | | | | | 148.8 | . 0 * 8 | | | LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 15 1 TABLE G-2 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 6KTSW015 PROPELLER DIAMETER = 6.00 FEET | 1.000 | 116. | .005 | 047 | 914 | .919 | 12.07 | .61 | 287.50 | |---------------|---------|--------------|---------|--------------|--------|-------------|---|---| | 006. | .922 | 1.001 | 047 | .914 | .919 | 13.54 | .74 | 63 | | . 800 | . 924 | 004 | 047 | . 910 | .917 | 15.22 | .98 | 267.50 | | .700 | .910 | .001 | 045 | .907 | 916. | 16.99 | 1.39 | 53 - 1.80 - 1.62 - 5.16 - 4.16 - 3.15 - 1.91 - 1.64 - 1.12 - 1.76 - 1.50 257.50 247.50 282.50 285.00 250.00 222.50 220.00 267.50 280. | | .600 | .889 | 600. | 041 | .912 | .925 | 19.14 | 2.04 | -1.64
222.50 | | .500 | 668. | 000 | 033 | .926 | .947 | 22.91 | 2.71 | -1.91 | | . 400 | .928 | 022 | 022 | .947 | .982 | 28.93 | 100.001 | -3.15 | | .350 | .951 | 037 | 410.1 | . 960 | 1.006 | 33.22 | 5.23 | -4.16
282.50 | | .312 | . 971 | 051 | 008 | 0.000 | 0.00.0 | 37.26 | 6.51 | -5.16
282.50 | | €83. | 116. | 60 0. | 047 | 212 | .917 | :2.52 | | 287.50 | | .633 .781 | . 923 | 004 | 043047 | . 90a | .914 | 18.24 15.55 | 100.00
0.00
0.00 | 257.50 | | .633 | 068. | 010. | 043 | 606. | .921 | 18.24 | 1.85 1.03
90.00 100.00 | -1.53 | | . 456 | 606. | =008 | =028 | ± .934 | . 963 | = 25.21 | 3.11 | | | RADIUS = .456 | VXBAR = | VTBAR = | VRBAR = | * × > M, - r | 1-WX | 888 | B C C C C C C C C C C C C C C C C C C C | B453 = -2.34
THETA =285.00 | IS CIRCUMFERENTIAL WEAR LINEIT COINAL VELOCITY. IS CIRCUMFERENTIAL WEAR TALLINTIAL VELOCITY. IS CIRCUMFERENTIAL WEAR TALLINTIAL VELOCITY. IS CIRCUMFERENTIAL WEAR TELECTION. IS JOUNTETRIC WEAR ARME TELECTION TANGENTIAL CORRECTION. IS JOUNTETRIC WEAR ARME TELECTION AND MEAN ADVANCE ANGLES (DELTA BETA PLUS). IS JARIATION BETAFEN THE WAYNOW AND MEAN ADVANCE ANGLES (DELTA BETA MINUS). IS VARIATION BETAFEN THE WINNIMM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS). IS ANGLE IN DEGREES AT AHICH CORRESPONDING BPOS OR BNEG DUCURS. 1 - W V X HARMONIC AMALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 15 TABLE G-3 - | INC 6KTSK015 | 739 | | |--|--|--------------------------------| | 0 | , | • | | STORY STORY TO THE GRAT BASS BOAT ONLY TO INC GKTSWO15 | 114 COMPONENT MALIUS FUR WICHEL SELL COLL. | DODORITED DIAMETER = 6.00 FEET | | | : ii > | | | > | VELCCITY COMPONENT PROPELLER C | COMPONENT
PROPELLER D | RATIOS FOR
DIAMETER = | MCDE1
6.00 | L 5271 BASS
FEET | | BOAT GNLY 10 | INC 6KTS | |--|--------------------------------|--------------------------|--------------------------|----------------|---------------------|----------------|----------------|----------------| | OLNOWARH | ANALYSES | OF LONGIT | LONGITUDINAL VE | VELOCITY | COMPONENT | RATIOS | (VX/V) | | | HARMONIC = | | c | m | .1 | ហ | 9 | 7 | œ | | RADIUS = .456
AMPLITUDE = PHASE ANGLE = | .0099 | ,0059 | .0053 | .0027 | 291.9 | ,0008
305,3 | 351.0 | .0006 | | PAD105 = .633
AMPLITODE = = PHASE ANGLE = = | .0304 | .0.02 | .00.8
83.5 | .0040
102.6 | .0017 | .0022 | .0004
280.8 | 21.3 | | RADIUS = .781 AMPLITUDE = = PHASE ANGLE = = | .0187 | .0030
283.9 | .0071 | .0029
98.7 | .0006 | 98.9 | 12.8 | 330.7 | | RADIUS = .963
AMPLITUOE = PHASE ANGLE = | .0103
62.8 | .0012
147.8 | .0055 | 107.0 | .0001 | 102.5 | .0007 | .0002
175.8 | | HARMONIC | ANALYSES | OF LONG! | LONGITUDINAL VE | VELOCITY | COMPONENT | RATIOS | (カ/メカ) | | | HARMONIC = | 6 | 40 | - | 2 | 13 | 4 | 15 | 9. | | RADIUS = .456
AYPLITUDE = PHASE ANGLE = | .0019 | .0007
356.1 | .0003 | ,0005
46.5 | .0007 | .0007
205.6 | .0007 | .0006 | | RADIUS = .633
AMPLITUDE = = PHASE ANGLE = = | .0008. | .0020 | , 0009
195.5 | ,0003 | .0010 | .0004
239.8 | .0011 | ,0009 | | AMPLITODE = .781 AMPLITODE = PHASE ANGLE = | .0006 | .0004 | 270.7 | .0007
294.0 | 20012 | .0007 | .0006 | 34.0 | | RADIUS = .963
AMPLITUDE = PHASE ANGLE = | .0003 | 40.4 | .0004
311.8 | 21.20. | .0005 | .0005 | .0004 | .0006 | HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 15 TABLE G-4 | BASS BOAT ONLY 10 INC UNTSW015 | . 739 | |---|----------------------| | PENDOTTY COMPLYSY: RATION FOR THOSE BUTT BASS BOAT ONLY 10 1Mg UNTSWOTS | PROPERTY = 0.00 Fort | | OTABOURAL | ANALYSES | 520 | TOD: 14. | ¥1100-34 | COUPGNENT | NT RATIOS | (v x / v) | | |--|------------------------------|--------------------------|------------------------------|--|-----------------------|----------------------|----------------|------------------| | HARMONIC = | • | e. | m | 17 | ហ | છ | 7 | ω | | 840105 = .312
ATPLITOSE =
PHASE ANGLE = | .0372 | | 0101 | 0.038
3.9.0 | .0035 | .0064
300.8 | .0024
20.8 | .001 | | A 10 10 10 10 10 10 10 10 10 10 10 10 10 | .0223 | .0.588
33.1 | 2 · | 4.00
4.00
4.00 | .0025 | .0046
300.8 | 0019 | .001 | | 940105 = .400
47011106 =
FMASE ANGLE = | 2.00
0.00
0.00
0.00 | .0031
328.5 | - C | . 00.7*
48.8 | .00.4
348.0 | .0026
301.2 | . 00.
8.8 | 129.7 | | 940105 = .5000
477100 f
8145 | .2187 | 5 €
3 ±
5 ±
4 ± | | © (3)
(3)
(3)
(4) | 219.4 | . 000
4.40t | .0065 | .0003 | | 440100600
4440114036
64468 4448 | . 0299
67.0 | .0.03
259.5 | | | 238.4 | .0019 | .0004
281.8 | . 000 | | 2001.00 - 2000
- 2000 - | .024
80.0 | ,0064
267.6 | ē, | . 0033
100.0 | .0011 | 00.001 | .0004 | 300. | | 800 8. = 0.110049
E 2001.1100449 | .0177 | .0024
244.3 | .007.9
106.0 | .00.
98.98 | . CC 0 5
2 8 6 • 8 | .0013
86.8 | .0007 | 321. | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .0122 | .2002 | 0.00
0.00
0.00
0.00 | .0030
102.9 | .0002
320.5 | .000
8000
9.58 | .0007
43.6 | . 6003.
254.3 | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ტ
ი ჰ
ი ჰ | . 0012
477.8 | n:
0:: | 00 3 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0 0 0 0 |
4 | . 0001
402.8 | .000.
.000. | .0002
175.8 | TABLE G-4 (Continued) | | a. | - X | Diam's K | 90.00
R | | | ر
م
۱۱ | ee./. | |---|------------------|---------------|----------------|------------|---------------|----------------|-------------------|-----------------| | HARTONIC | HARRING AVALYSES | OF LONG! | LONGITUDIAN | VELOCITY | COMPONENT | 11 RAT105 | (\ \ \ \ \ \ \ \ | | | HARMONIC = | σ | 10 | | ç. | 13 | 14 | 15 | 16 | | RADIUS = .312 | 0300 | 0800 | 9890° | Ø + 000 | .0043 | . 0013 | .0025 | .0035 | | щ | | 63.0 | 33.5 | 305.9 | 207.7 | 141.0 | 84.0 | 3 · t & | | /A % | | .0042 | . 3027 | 4.00 | .0030 | 0.00 | 8100. | 6200. | | PHASE ANGLE = | 7.86.5 | 53.4 | 38.4 | 2.2 | 203. | 8.551 | 80.8 | 38.0 | | S = .40 | • | .0021 | .0018 | , o 3 0 a | .0016 | 8000. | .0011 | . 0014 | | PHASE ANGLE = | 192.3 | 50.4 | 46.7 | 15.9 | 192.5 | 180.2 | 108.5 | 47.3 | | RADIUS = .500
AVPLITUDE = PHASE ANGLE = | .0012 | .0011 | .0000 | .0004 | .0007
89.0 | .0007 | .0008 | .0005 | | AMPLITODE = .600
AMPLITODE = PHASE ANGLE = | .0008
3.39 | .0020 . | .0003 | .0004 | .0011 | .000£
23£.9 | .0011 | .0009 | | RADIUS = .700
AMPLITUDE = =
PHASE ANGLE = | .0007 | .0006 | .0004 | .0005 | .0005 | .0003 | .0008 | .0002 | | RADIUS = .800
AMPLITUDE =
PHASE ANGLE = | .0006 | .0006 | .0011 | .0007 | .0013 | .0007 | .0005 | .0006 | | RADIUS900
AMPLITUDE =
PHASE ANGLE = | 30.2 | .0009
63.8 | .0010
296.2 | .0004 | .0009 | .0005 | .0002 | 3.18.0 | | PADIUS = 1.000
AMPLITUDE = PHASE ANGLE = | .0003 | .0007 | .0008
314.8 | .0012 | .0005 | .0005 | .0004 | . 0006
293.5 | HARMONIC AMALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL | * | FROPELLER DIAMETER = 6.00 FEET | DPELLER (| DIAMETER | 00.0
00.0
00.0 | الله الديد
الله الديد | | 4 | 95∵. ≈ 4 0 | |---|--------------------------------|------------------|-----------------|----------------------|--------------------------|--------------|----------------|--------------------------------| | HAPMONIC | ANALYSES | OF TANGENTIAL | • | ELOCITY (| COMPONENT | RATIOS | (VT,V) | | | HARMONIC | - | 8 | .ე | a | . | 9 | 7 | ထ | | RADIUS = .456
AMPLITUDE =
PHASE ANGLE = | .2203 | .0033 | .0008 | .0004 | 9.61 | .0006 | .0008 | . 0005
201. 6 | | RADIUS = .633
AMPLITUDE =
PHASE ANGLE = | .2005 | .0040 | .0005
44.0 | 14.8 | .0012 | .0004 | .0008 | . 0003
129.4 | | RADIUS = .781
AMPLITUDE = PHASE ANOLE = | .1899 | .0039 | .0020
12.6 | .0002 | .0008
31.9 | .0005 | .0003 | .0004 | | RADIUS = .963
AMPLITORE =
PHASE ANGLE = | 1799 | 310.9 | .0017
4.01 | . 0008
88.0 | .0003 | .0004 | .0002 | . 0002
105.2 | | O. NO WORK AH | ANALYSES
9 | OF TANGENTIAL 10 | NTIBE VE | VELOCITY C | COMPONENT | RATIOS
14 | (VT,V) | 16 | | DADIUS = .456 AMPLITUDE = = | .0007 | .0004 | .0003
.003 | 302.6 | 312.9 | .0002 | 298.5 | .00 03 | | AMPLITIOE = .633 | .00 06
334.6 | .0004 | .0003
52.8 | .0007 | .0003 | .0003 | .0003 | .0005 | | RADIUS = .781
AND ITUDE *
PHASE ANGLE = | .0302 | .0003
99.8 | . 0001
250.3 | 337.5 | .0003 | .0002 | .0006
354.8 | .000 2
287. 0 | | RADIUS = .963
AVPLITUDE =
PHASE ANGLE = | . 0001
256.9 | .0001 | . 6000
270.8 | .0992 | , 0004
94.3 | .0006 | .0003 | . 6002
134.5 | HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 15 TABLE G-6 VELOCITY COMPULENT MATION FOR MODEL SO71 BASS BOAT ONLY 10 INC BATSWO15 PROFELLER DIAMETER = 8.00 FEET | 1 | 144**O'.:C | ANALYSES | OF TANGE | TANGENTIAL V | VELOCITY | COMPONENT | RATIOS | (V1,V) | | |---|---------------------------|------------------------|-----------------------|---------------|-----------------|-----------------------|----------------|---------------|-------| | HARMONIC | 11 | *** | 2 | ო | 4 | ស | 9 | 7 | œ | | RADIUS = .3
AMPLITUSE
PHASE ANGLE | . a. | .2422 | .0223 | 10.3 | .0045 | 31.2 | .0008 | 91.9 | .0016 | | RADIUS = AMPLITUS = PHASE ANGL | .350
* 3.1 | .2359
181. 6 | 97.2 | .0021 | .0032
292.1 | .0025 | .0007
166.8 | .0009 | 218.3 | | RADIUS =
AMPLITUDE
PHASE ANGL | . 400
3.1 | .2282 | .00 93
99.6 | .0014 | .0017 | .0022 | .0007 | .000a
58.7 | 213.1 | | RADIUS = .
AMPLITUDE
PHASE ANGLE | . 5000
11 H | .2146 | 210.1 | .0005
48.9 | .0003 | .6017 | .0006 | 32.1 | .0004 | | RADIUS =
AMPLITUDE
PHASE ANJU | . 600
. E | .2036 | .0039 | .0005 | .0012 | .0013 | .0005 | .0008 | 0003 | | RADIUS : | 7 00 | . 1954
181.8 | .0013 | .00:4 | . COCA
134.8 | . 001
010
6. 10 | . 25.4 | .0005
5.6 | .0004 | | RADIUS =
AMPLITUDE
PHASE ANGL | . 800
= = | .1887 | .0041 | .0621 | .0303
266.4 | .0007 | .0004
114.9 | .0002 | 162.1 | | PADIUS =
AMPLITUDE
PHASE ANDE | .900
= = 31 | 1830 | 31.6 | 16.3 | 16501 | .0005 | .0003 | .0001
45.8 | .0003 | | RADIUS = 1.
AMPLITUDE
PHASE AMGLE | 1.000
CDE =
**GLE = | 1799 | 310.9 | 100. | 8000.
88.0 | . 0003
43.6 | .0004 | .0002 | .0002 | TABLE G-6 (Continued) VELOCITY COMPOSENT PATUDS FOR MODEL 5271 BASS BOAT ONLY 10 INC GKTS#015 PROPELLER DIATETER = 6.00 FEET UA = .739 | | or
o | PACPELLER DIATETER | 01A781E# | | 6.00 FEET | | 11
17 | δς | |--|-----------------------|--------------------|----------------------------|----------------|-----------------|--------|----------------|-----------------| | HARMONIC | ANALYSES | 0 | TANGENTIAL VE | VELOCITY | COMPONENT | RATIOS | (V1/V) | | | HARMONIC | 6 | 10 | ·-
• | 5 | 13 | 14 | 15 | 16 | | RADIUS = .312 AMPLITUDE = PHASE ANGLE = | .051 6
80.3 | . 88 . 88 | .0501
284.9 | .0029
319.5 | . cco6
61.5 | 41.00. | .0002 | .0007 | | RADIUS = .350
AMPLITUSE = #
PHASE ANGLE # | .0012 | 110.3 | .0001 | .0021
318.3 | .0304 | .0010 | .0001 | .0004 | | RADIUS = .400
AMPLITUDE = PHASE ANGLE = | .0009 | 142.8 | .9032 | 315.1 | .000
9.8 | 37.8 | .0001 | .0001 | | RADIUS = .500
AMPLITUDE =
PHASE ANGLE = | .0007 | .0005 | 0000
0100 | .0002 | .0003
293.8 | .0001 | .0002 | .0004 | | RADIUS = .600
AMPLITUDE = =
PHASE ANGLE == | .0007 | .0305 | .0003 | .0006
151.9 | .0003 | .0003 | .0003
339.8 | .0005 | | RADIUS = .700
AMPLITUDE = PHASE ANGLE = | .0003 | .0003 | .0001 | .00C2 | 181.8 | .0000 | .0005 | .0001 | | RACIUS = .800
AMPLITUDE = #
PHASE ANGLE = | .0002 | .0002 | .0622 | .0002 | . 6003
108.3 | .0002 | 356.6 | . ceo2
289.9 | | RADIUS = .900
AMPLITUDE = PHASE ANGLE * | .0001 | .000
69.4 | .000#
202.2 | 0.001
346.0 | .0004 | .0003 | .0004 | 275.2 | | AADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = | .0001 | .000
1.02 | 9 %
3 0
3 (-
6 K) | .0002 | .000.
40.00 | 7.621 | .0003 | .0002 | # APPENDIX H VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 16 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 0.456 RAD. Figure H-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 16 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 0.633 RAD. Figure H-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 16 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 $$0.781\ \text{RAD}_{\odot}$$ Figure H-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios -
Radius Ratio = 0.781 for Experiment 16 VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 0.963 RAD. Figure H-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 16 Figure H-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 16 Figure H-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment $16\,$ TABLE H-1 ### INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 16 | | RACIUS . | 56 | | | | | | | | | | | | | | |----------------|----------------|--------------------|--------|----------------|----------|------------------|-------------|----------------|----------|----------------|---------|----------------|----------|----------------|--------| | ANGLE | ¥1/¥ | ¥1.0 | WE /Y | ANGLE | RECTUS . | 41/4 | W/Y | ARGLE | RADIUS . | ¥7.00 | V# /V | ANGLE | PAPILA = | ,463
VI/V | VR /V | | -1.6 | . 424 | 011 | 124 | 1.0 | .985 | . 001 | 144 | -6.9 | , 936 | . 015 | 169 | -1.0 | . 924 | 662 | 177 | | 1 - 4 | . 92 1 | 415 | 123 | 1.9 | . 6 9 9 | ~. 000 | 1 46 | 1.1 | . 428 | 006 | 177 | •.• | .971 | I B | 103 | | 7.0 | . *10 | 130 | 121 | | . 8 9 9 | ~.010 | 1 43 | 3.3 | . 437 | ~. 610 | 171 | 7,3 | .913 | 621 | 1 8 1 | | 19.5 | . 927 | 876 | 117 | 17.0 | - 981 | 846 | - 1 36 | 18.0 | . 423 | 62 | 173 | 14.4 | . 924 | 842 | 173 | | 21.9 | . 920 | 174 | 116 | 25.9 | .893 | ~. 872
~. 893 | 131 | 19.8 | . 427 | - , 8 56 | 166 | 19.0
21.6 | .929 | 053
057 | 106 | | 20.0 | 915 | - 199 | - 110 | 33.7 | . 990 | 112 | 112 | 39.0 | .916 | 100 | -158 | 20.1 | 1911 | 874 | 168 | | 36.3 | .916 | 120 | 184 | 52.4 | . 0 95 | 131 | | | .911 | 127 | 1 36 | 35.0 | , 963 | 895 | 151 | | | . 914 | 144 | ~.895 | 41.0 | .891 | 14 | 443 | 37.8 | .917 | 143 | * . 117 | 41.1 | .980 | 180 | 143 | | 58.8
57.8 | -911 | 168
173 | ~ | 74.8 | . 491 | 195 | 867 | 65.1 | . 915 | 194 | 181 | 98.3 | . 1 1 7 | 171 | 1 32 | | 66.9 | .914 | 102 | 075 | 79.6 | | 165 | 051 | 76.1 | .919 | 167 | ~ .876 | 57.0 | .916 | 132 | 117 | | 44.1 | . 919 | 193 | - 469 | 11.3 | . 1 16 | 144 | - 16 35 | 13.3 | . 913 | 174 | 064 | 73.0 | .988 | 1 40
1 30 | 186 | | 72.8 | . 916 | 203 | 050 | 186.5 | .989 | 167 | 0 Z1
053 | 92.3
96.9 | . 920 | 176 | 444 | 79.0 | .922 | 145 | 069 | | 79.4 | . 915 | 570 | 8 % 6 | 115.0 | . 845 | 14 | .010 | 111.3 | . 914 | 109 | 14 | 85.8 | . 924 | 149 | 053 | | | .910 | 210 | | 124.0 | . 679 | 139 | | 110.0 | .412 | 161 | .114 | 43.3 | .923 | 144 | 0 19 | | 47.4 | .919 | 216 | 833 | 133.4 | .871 | 1 16 | .048 | 116.0 | . 916 | 1 55 | .816 | 106.5 | . 918 | 144 | 123 | | 188.1 | .917 | 211 | 8 1 8 | 139.0 | . 871 | 190 | 1849 | 119.4 | . 917 | 147 | -621 | 187.0 | . 915 | 143 | 009 | | 111.0 | . 105 | 200 | .114 | 147.8 | , 86C | 193
169 | .851 | 128.5 | . 485 | 113 | .036 | 116.0 | .910 | 13A
136 | .116 | | 119.9 | .416 | 182 | .816 | 191.5 | . 851 | 043 | .071 | 137.6 | 195 | 891 | .065 | 122.1 | 917 | 123 | .073 | | 126.8 | .915 | 173 | .022 | 169.6 | . 848 | 617 | .076 | 155.5 | . 093 | 164 | .473 | 129.4 | . 697 | 121 | 18 32 | | 122.0 | . 91.6 | 165 | . 8 27 | 179.8 | . 895 | . 814 | .675 | 164.4 | . 194 | 144 | .479 | 136.5 | .910 | 187 | .067 | | 136.3 | . 462 | 133 | .937 | 287.8 | . 154 | . 9 33 | .072 | 171-6 | | 171 | -442 | 143.8 | . 984 | 891 | | | 198.3 | . 106 | - 125 | | 196.9 | 761 | . 144 | .164 | 176.0 | . 8 8 9 | - · F86 | .882 | 153.9
157.8 | . 984 | 877 | .074 | | 144.0 | . 497 | 111 | .854 | 199.5 | .458 | . 076
. 845 | .846 | 191.5 | .861 | - 167
- 136 | .443 | 165.8 | . 696 | 8 35 | .872 | | 191.0 | . 982 | 884 | .861 | 214.5 | . 66 3 | . 111 | | 4.005 | . 887 | . 956 | . 6 7 3 | 172.0 | . 1 94 | 617 | .144 | | 154.6 | . 647 | 259 | | 223.0 | . 079 | . 136 | -6 32 | 289.5 | . 960 | . 879 | -864 | 179.8 | . 698 | . 002 | . 6 96 | | 164.6 | . * 9 3 | | .867 | 232.8 | . 875 | . 195 | -917 | 214.6 | . 484 | . 167 | | 194.9 | . 699 | . 8 29 | .0 98 | | 167.6 | . 485 | ~ , 135
~ , 130 | .878 | 241.6 | | - 169 | 001 | 227.0 | . 984 | -123 | . 9 35 | 194.1 | . 985 | . 849 | .184 | | 171.0 | . 4 84 | 12 | | 258.6 | . 4 93 | .181 | 415
833 | 236.8 | .989 | -136 | .019 | 281.3 | . 989 | . 183 | .166 | | 172.4 | . 695 | 614 | ,447 | 744.0 | . 981 | .197 | | 254.4 | .903 | . 157 | 017 | 217. | | . 102 | .854 | | 173.4 | . 489 | 619 | -872 | 277.0 | . 491 | . 191 | 173 | 263.0 | . 986 | - 161 | 6 37 | 222.9 | . 892 | , 121 | .856 | | 174.6 | . 119 | 816 | .474 | 284.8 | . 194 | . 179 | 892 | 277.4 | . 985 | . 163 | 050 | 229.6 | . 982 | , 133 | -041 | | 179.8 | . 897 | I ft | .800 | 298.4 | . 1 99 | - 162 | 189 | 208.5 | . 925 | . 155 | 873 | 237.0 | .980 | . 154 | .819 | | 199.7 | 197 | . 627 | .044 | 313.0 | . 9 95 | . 129 | 127 | 201.0 | . 493 | 161 | 075 | 250.5 | . 8 97 | . 154 | -111 | | 262.6 | . 4 9 9 | . 871 | .462 | 318.5 | . 961 | . 119 | 131 | 301.8
300.2 | . 927 | - 131 | 115 | 247.0 | . 995 | .171 | 823 | | 289.8 | . 986 | . 192 | .455 | 111.0 | . 141 | 187 | 141 | 117.1 | . 915 | . 1 4 8 | 1 39 | 273.3 | . 984 | . 171 | 057 | | 216.8 | . 0 94 | . 112 | | 344 0 | . 101 | . 857 | 144 | 371.0 | . 414 | | 149 | 276.9 | . 986 | . 164 | 873 | | 4.155 | . 447
. 844 | . 125 | .443 | 347.4 | . 166 | 1 30 | 147 | 126.1 | . 919 | - 8 57 | 158 | 268.5 | . 988 | - 166 | 070 | | 231.2 | .986 | . 1 6 9 | .4 29 | 358.6 | .947 | . 484 | 146 | 115.1 | . 938 | - 848 | 150 | 294.4 | . 960 | . 161 | 093 | | 210.0 | . 984 | . 164 | | 354.8
364.8 | . 965 | . 987
. 981 | 144 | 345.3 | . 971 | . 0 32 | 167 | 296.8 | . 985 | - 151
- 143 | 187 | | 247.4 | . 4 9 9 | . 174 | | 364 | . *** | | | 363.3 | . 937 | | 171 | 302.3 | . 981 | .15 | .121 | | 244.4 | 1983 | - 176 | .011 | | | | | | | | | 369.6 | . 101 | . 12% | 1 34 | | 252.4 | .589 | . 1 62
. 1 50 | .444 | | | | | | | | | 316.8 | . 983 | - 111 | 145 | | 244.4 | . 315 | . 1 54 | 118 | | | | | | | | | 323.4 | . 986 | . 893 | 157 | | 274. | 913 | . 1 60 | 6 33 | | | | | | | | | *76.6 | . 412 | . 657 | 161 | | 274.5 | . 984 | . 1 🧠 | 037 | | | | | | | | | 246.3 | . 931 | 142 | 174 | | 714.6 | . 420 | 179 | 648 | | | | | | | | | 352.4 | . 930 | . 927 | 175 | | 298.3
291.0 | . 914 | . 176 | 050 | | | | | | | | | 356.4 | . 420 | | 178 | | 293.4 | . 400 | . 173 | 659 | | | | | | | | | 399.4 | . 424 | 112
104 | 177 | | 294.1 | .911 | . 140 | 466 | | | | | | | | | ,,,,, | .761 | | 183 | | 304.0 | . 181 | - 1 40 | 076 | | | | | | | | | | | | | | 386.1 | . 985 | 151 | - 469 | | | | | | | | | | | | | | 317.2 | . 91: | . 119 | 6 93 | | | | | | | | | | | | | | 383.4 | . 989 | . 151 | 074 | | | | | | | | | | | | | | 309.0 | . 4 94 | . 1 36 | . 1 87 | | | | | | | | | | | | | | 120 .1 | . 984 | . 114 | 0 96 | | | | | | | | | | | | | | 379 -1 | .967 | . 112 | 499 | | | | | | | | | | | | | | 124.1 | . 985 | . 182 | 101 | | | | | | | | | | | | | | 331.6 | . 918 | .877 | 113 | | | | | | | | | | | | | | 339.9 | .919 | . 852 | 113 | | | | | | | | | | | | | | 34 6 . 9 | . 128 | . 6 33 | 118 | | | | | | | | | | | | | | 198.4 | . *1* | . 618 | 122 | | | | | | | | | | | | | | 359.9 | . 974 | 11 | 126 | | | | | | | | | | | | | | 361.0 | . 471 | 815 | 123 | | | | | | | | | | | | | LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 16 J TABLE H-2 VELOCITY COPPOSENT RATIOS FIR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 PROPELLER DIAUETER = 6.00 FEET | 1.000 | 806. | 900. | 047 | 806. | .912 | 12.04 | .70 | 222.50 | |---------------|--------------|-------|----------|---|----------|---------|---|---| | 006. | .913 | • | 047 | .907 | .912 | 13.42 | 95.00 | 255.00 | | .800 | .912 | 003 | 046 | 306. | | | .98 | 255.00 | | .700 | 899 | | 044 | 506. | . 312 | | | 200.002 | | .600 | .884 | 600. | 039 | 912 | .923 | 19.05 | 1,40 | 200.00 | | . 500 | 768. | 000. | 120 | e (* ₹ ? · | | 25.12 | | 0000000 | | . 004. | | | 020 | .952 | ene. | 28. ⋅₽ | 3.31 | | | .350 | . 955 | 035 | 013 | .965 | 1.00g | 33.3 | 5.16
80.00 | -4.06
242.50 | | .312 | 677 | 048 | 800 | 000.0 | 0.00.0 | 37.38 | 4 6.5 2 5.16 3.31
0 80.00 80.00 82.00 | -5.07
250.00 | | £96. | 800 | .006 | 547 | 905. | 01.0 | 12.49 | .74
.00 | 66
222.50 | | .781 | . 911 | 003 | 046 | | £06. | 15.34 | . 00
. 00
. 00 | 255.00 | | .633 | £88. | 010. | 1.041 | 606. | 8:6 | 18.12 | 1.27 | 200.00 | | 8451US = .456 | 019. = | acc = | =026 | 1-84X 8 33 | # | = 25.22 | = 2.76
= 85.00 | = -2.18
=242.50 | | RADIUS | े र ा | VIBAR | G 48 G . | × 5 % - + + + + + + + + + + + + + + + + + + | 1 - A.K. | 33AR | BeOS
↑HETA | 4
() +
() u u
() T
() () () | IS CIRCUMPERENTIAL VERN LONDITUDINAL VELOCITY. IS CIRCUMPERENTIAL VERN TRANSMITAL VELOCITY. IS CIRCUMPERENTIAL VERN TRANSMITAL VELOCITY. IS CIRCUMPERIOR MENY MARE SELD ITY MITH TANDENTIAL E HYELTION. IS VOUNTETRIC MENY MARE SELD ITY MITH TANDENTIAL COPPLITION. IS VORN THE OF ADVANCE. IS VARIATION BETMEEN THE VARIANCY AND MENN ADVANCE AND IN SETA BETA MINUS). IS VARIATION BETMEEN THE VINIAL MAD MENN ADVANCE AND SELD OF TA BETA MINUS). IS VARIATION BETMEEN THE VINIAL MAD MENN ADVANCE AND SELD OF TA BETA MINUS). HARROTIC AVALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 16 LASLE H-3 | PRICCITY COMPANY PATICS FOR YOUEL S271 BASS BOAT DNEY 10 INC 3KTSM016 and patical pati | ؈ | |
--|---------------|---------| | VELCOITY USTRUCTOR THAT TO THE WOOFL 5271 BASS BOAT DARY TO THE DARK BA | INC SKTSWOT | . 739 | | VELCOTITY CONTROL PATION FOR VOICE 5271 BASS BOAT DNKY | -0 | 11 | | VELCOTIV USPACABAT PATIUS FUR MODEL 5271 BASS 80AT BASS 80AT | > 20
20 | - | | VELCOTIVE COMPONENT PARTICLE FOR MODEL 5271 BASS | 80AT | | | VELOCITY COMPOSENT PATIONS FOR POSEL 5271 | 8 4 55 | | | TBOOK TO COLUMB TENEROUS VITOUS ACCOUNT OF BRIDGE COLUMB C | 5271 | 11111 | | 2.00114.02.12.10.03.44.00.03.03.03.03.03.03.03.03.03.03.03.03. | | 900 | | | 1, | 1 | | | 3 . T VO | | | ************************************** | 5.00 | ar
u | | . E.CCIT* | , | C | | | *110014* | a | | | 1007 | 2 as as a second of the contract contra | 83.32 410 | R = 6.00 | L 5271 BA | 55 BCAT | 07 | 14C 3KT
.739 | |--|----------------|--|------------------|----------------------------|----------------|---------------|---------------------------------------|-----------------| | OINDURAH | ANALYSES | 10/07 40 | :Tubina_ | VE.LOC17Y | COMPONEN | T RATICS | (> ×>) | | | HA97071C | - | 2 | m | 4 | ហ | 9 | 7 | 89 | | 00000000000000000000000000000000000000 | .0108
74.2 | .0032 | .0032 | .0016
21.0 | .0029 | .0017 | .0004 | .0002 | | CONTRACTOR OF THE O | .0220
98.3 | .0068
267.2 | .0045 | 1.0010 | .0025
209.8 | .0005
69.4 | .0015 | 92.4 | | ANDLICS = 787 | .0176 | .0032 | .0077 | .00°± | .0023
55.6 | .0037 | .0006 | .0033 | | RADIUS = .953
AMPLITUDE = PHASE ANGLE = | .0102 | .0023 | .0065
134.8 | .0056
90.4 | .0021
126.6 | .0025 | .0024 | .0032
271.8 | | O 17 25 87 F | SESYTER | OF LONGI | LONGITUDINAL | 7F LCC117 | COTPONEN | NT RATIOS | (\(\times \(\times \(\times \) \) | | | HAPMONT: | σ | 0 | = | ţ | 13 | 4 | 15 | 9 | | A SOLICE - 456 A SOLICE - 456 A SOLICE - 450 SOLI | .0012 | .0014
294.6 | .00'4
236.8 | 85000
85000 | .0018
306.9 | 00010 | .0012 | .0012 | | 633
20011JOHA
30071JOHA
80334AA | .0011 | .0010
355.5 | .0018
160.8 | 0000°.
0000°.
0000°. | .0014 | .0018 | .0010
98.8 | 337.1 | | ALLOS SULLOS AND SULLO | .0008 | .0004 | 0:30. | .0019
48.6 | .0015 | .0003 | .0010 | .0002 | | PADIUS = .963
AMPLITUDE = PHASE ANGLE = | .0016
206.8 | .0033
289.1 | .0012
2.44.4 | .0026 | .0008
251.6 | .0001 | .0011 | . 0008 | - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED TABLE H-4 | | |) 5' a 5' b 6' c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c | 7 6
6 0
6 1
7 0
7 0
7 0
7 0 | 0.
- 1.
- 1.
- 1.
- 1.
- 1.
- 1.
- 1.
- 1 | 1 0
1 0
1 0 | 03
(~ }-
(v til
0) til
(i. | 10
(1)
(1)
(2)
(2) | 01 1140
= 40 | 143 3KTSAC16
,739 | |---
--|--|---|---|--|--|--------------------------------|--------------------------|---------------------------------| | I | DIKINGKE | ANALYSES | OF LONGIN | J 44.11.CD F | ¥110013 | COMPONEN. | F RATIO | 5 (V× V | _ | | 1148707. | : :: | •- | 0 | m | ú | ហ | 9 | ۲ | æ | | 00 4
4 1- I
0 4 4 | 312 | .0205
322.0 | 0 m
0 m
0 m | 2008
2008
2008 | 0. 7
0. 7
0. 8
0. 8 | .0118 | .0007 | .0024 | .0049
227.8 | | 0 4 4 1 0 0 4 4 1 0 0 0 4 1 0 0 0 0 0 0 | | 335.4 | 0 +
0 +
0 0
0 + | | : A | .0037
82.8 | .0011 | .0015
3.0 | .0032
225.9 | |) it | O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .0017 | | + 4/3
(3 - 1)
(3 - 1) | 00 | ლ თ
დ .
დ . | 0 t
0 t | .0005
356.4 | 223.3 | | 4 1- 1
0 0 4
 | | 68 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | O 0
0 1
0 2
+0 | 7 N | . 0
0
0
0
0
0
0 | . 0023
180.9 | .0316 | .0009 | (p 4
() ()
() ()
() () | | | 9. 3. | 0.00
0.00
0.00 | m 18-
4 +
0 m
0 m
0 m | 7 K | 5.50
5.00
5.00
5.00 | .0027
206.2 | 89.00
9.00
9.00 | 0 5
0 4
0 4
0 6 | 00 | | 0 0 4
0 0 4
0 0 4
0 0 4 | Community of the second | 620
44. | . 004.8
254.7 |
0.0
0.4 | ; o | .0007 | .0026
156.3 | 0000.
0000.
4.4. | თ ო
ი :
ი :
ი : | | 14
1 + W
- 100
- 01 - 1
- 01 - 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .0168
86.3 | .0029 | 121.0 |

 | 6.25
5.7 | .0037
167.3 | .0007 | 前 O
河 ·
O 即
O · | | 0 4 0
4 2 1
0 0 4
10 10
10 10 | 0 11 11 | | .0027
176.8 | .0078
129.5 | 5.50
5.50
5.50
5.50
5.50
5.50
5.50
5.50 | .0024 | 9,000 | 219.6 | .0034
233.7 | | 7 + W
7 + W
14 W
10 A
4 (- 1
0 4 W | O n n n O O O O O O O O O O O O O O O O | . 0162
63 - 9 | .0029 | 0 8
0 8 | 0.0 | 00.0
00.0
00.0
00.0 | 2000
2000
2000
2000 | .002 | 27.8 | | ונו
וח
•1 | • | | | 37
T | ų. | •- | ٥ | . 16. 231. | b . 291.4 21 | TABLE H-4 (Continued) | , | E.OC114 | 2 de 10 1 | 44
0.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 6,4 YOBEL 62
6.00 FEE | ₹. | BASS BCAT | BOAT ONLY 10 | INC 34754016 | |---|---------------|--|--|--------------------------|----------------|----------------|----------------|-----------------| | 1)
1:
1:
1:
1: | ANALYSES (| GF LONGITUDINA | , | VELCCITY | COMPONENT | I PATIOS | (A/XA) | | | HARMOVIC = | თ | 0 | | 12 | 13 | 4 | 15 | ص ا | | RADIUS = .312 AMPLITUDE = = PHASE ANGLE = = | .0033
86.9 | .0038
255.3 | . 6033
272.3 | .0021
312.8 | .0048
340.9 | .0066 | .0026 | .0041 | | RADIUS = .350
AYPLITCDE
PHASE AYGLE | .0025 | , 0030
262 - 3 | .0027
265.6 | 312.2 | .0038
335.8 | .0048
80.4 | .0021 | .0032 | | A # D I U S = 400
A # P L I T C J E = 400
B H A S E A # G E E = = = = = = = = = = = = = = = = = | 112.8 | . 0024
0.475 | . 0020
254.0 | . 0010
313.2 | .0027 | .0027 | .0016 | .0022 | | A TOPICS . SO | .0011 | .0012 | . 00 c | .000.
5.4 | . CO 15 | .0005
322.8 | .001C | .000ê
135.5 | | AADIUS = .660
AAPLITUS = .HASE AASE | 214.9 | .0011 | .0006
181.8 | .0007
8.98 | .0014 | .6017 | .6010
106.6 | .0003 | | PADIUS = .760
AMPLITUDE = PHASE ANGLE = | .0006 | . 0000
2.3 | .0005
20.3 | 00.4
00.4
1. | .0014
284.5 | .0010 | .0011
86.5 | . CC03
344.3 | | RADIUS = .800
ATPLITUDE =
PHASE ANGLE = | .0008 | .0006 | .0011
358.0 | 00.
82.22 | 301.0 | .0002 | 9.68
89.6 | .0002 | | RADIUS = .900
AMPLITUDE =
PHASE ANGLE = | .0005 | .0020 | 331.1 | .6015
109.6 | .0011 | .0001 | .0007 | .0005 | .0011 .0001 .0008 .0026 .0012 298.4 .0016 PADIUS = 1.000 AMPLITUDE = PHASE ANGLE = - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE H-5 | > | ELOCITY . | 2 th m m m m m m m m m m m m m m m m m m | 0 00 00 00 00 00 00 00 00 00 00 00 00 0 | 0.8
0.8 | EL 5271 BA
O FEET | SS BOAT | ONLY 10 | INC 3KTSW016 |
--|-----------|--|---|----------------------|------------------------|----------------|------------------|-----------------| | OINCHARE | ANALYSES | OF TANGENT | | ELOC1TY | COMPONENT | 84T 10S | (VT/V) | | | n 01::0::e41 | | 2 | 'n | ব | 'n | 9 | 7 | æ | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1958 | 700 P | .0059
9.2 | 1000.
1000. | .0003
135.0 | .0006 | .0010 | .0014 | | A 20 0 1 2 5 6 3 3 6 6 3 3 6 6 3 3 6 6 6 3 6 6 6 6 | 1761 | .0226
301.3 | 00°.
4°.6 | 1000
1000
1000 | .0005
98.9 | 0100. | .0012 | .0005
86.3 | | 0.00 t t d d d d d d d d d d d d d d d d d | 1654 | က္မ
ပင္မ
မ | 6 0
0 0
0 0 | .6011
238.4 | .0005 | .000 2 | .0012
330.8 | .0006 | | AND TO SHE SEE TO BE SHE SEE TO T | 1607 | .0045 | 107.0 | .0023
:00.8 | .0002
176.4 | .0005
342.8 | .0002 | .0011 | | D1407FAH | ANALYSES | OF TANGE | ANGENTIAL VE | 1,00117 | COMPC'SENT | RATIOS | (VT,V) | | | HARVO'IC | σ | Ö | - | č. | 13 | 4 4 | 2 | 16 | | PAD105 = .456
ATPLITOE =
PHASE AV3LE = | .0027 | ,00008
352.0 | 0000.
0000.
0000. | 100.2 | .0009 | .0008 | .0010
309.1 | . 0009
9.9.3 | | ### 100 CO | .0003 | .0004 | € प
उ
उ. इ.
उ. इ.
उ. इ. | 11 B . 8 . 8 . 8 . | . 0009
948
0.848 | .0005
215.4 | .0001 | .0004 | | PAD:US = .781
AMPUTTUDE = .
PHASE AVGIE = . | .0010 | .0004 | 17.
17. | 337.7 | .000
23.5 | .0003
83.1 | . 0002 | .005
238.0 | | 896. 30010044
800110044
800444 | .0012 | . ୦୯୦3
ଓଡ଼ି- 1 | .00:3 | 5.00. | .000
231.5 | . 6607 | . 0003
53. £3 | .0002
356.8 | | | | | | | | | | | HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 16 TABLE H-6 | INC 3KTSW016 . 739 | | |--|--| | DNLY 10 INC 38 | (V1/V) | | BASS BOAT | IT RATIOS | | VELOCITY COMPOVENT RATIOS FUR MODEL 5271 BASS BOAT ONLY 10 INC 3KTS#016 PROPELLER DIAMETER = 6.00 FEET JA = .739 | CHIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) | | > | 01:0 | | | HART | HARDONIC | ANALYSES | OF TANGE | TANGENTIAL VE | VELOCITY | COMPONENT | RATIOS | (V1/V) | | |--------------------------------------|--|--------------------------|----------|---------------|---------------|----------------|----------------|--------|----------------|-------| | HARMO'1C | ن
د اد | u | - | 2 | m | d | 'n | 9 | 7 | 8 | | RADIUS
AMPLIT
PHASE | COE
ANGLE | 312 | 182.0 | 90.2 | .00.0
10.8 | .0022 | .0012 | .0031 | .0026 | .0043 | | RADIUS =
AMPLITUDE
PHASE ANG | | . 350 | .2111 | .0126
83.2 | 00000 | .0015 | .0007 | .0022 | .0020 | .0034 | | RADIUS =
AMPLITUDE
PHASE ANGL | IS = .
Tude :
ANGLE | 400 | .2036 | .0076
85.6 | 8.00.
8.0 | .0007
7.135 | .0003 | .0013 | .0014 | .0024 | | RADIUS =
AMPLITUDE
PHASE ANGUE | IS =
TUDE
ANGLE | . 500
 | .1902 | 38.0 | .0051
ā.7 | .0003
98.7 | .0005 | .0006 | £.600
309.3 | .0008 | | RADIUS =
AMPLITUDE
PHASE ANGLE | IS = .
TUDE ANGLE | 000 | .1792 | .0025 | .0038 | .0006
96.4 | .0006
103.1 | .0010 | .0011 | .0003 | | RADIUS
AMPLIT
PHASE | RADIUS = .
AMPLITUDE
PHASE AMGUE | . 700 | .1705 | .0019 | .0033 | .0007 | .0002 | .0006 | .0013 | .0006 | | RADIUS =
AMPLITUDE
PHASE AUGL | | 800
800
800
800 | .1645 | .0032 | .0025 | .0010 | .0005 | .0002 | .0011 | .0006 | | RADIUS =
AMPLITUDE
PHASE ANG | . 1 | . 900
 | .1613 | .0016 | 37.2 | .0008 | .0003 | .0003 | .0005 | .0007 | | RADIUS
AMPLITU
PHASE A | DE
PGL | . 000 · # | .1607 | .0045 | .0010 | .0023
100.8 | .0002 | .0005 | .0002 | 192.2 | TABLE H-6 (Continued) VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 PROPELLER DIAMETER = 6.00 FEET JA = .739 | | • | PRO | PROPELLER D | DIAMETER | 6.00 | FEET | | , 4D | . 739 | |--|---------|-----------------------|-------------|---------------|----------|-----------|--------|----------------|----------------| | HAPMONIC | | ANALYSES | OF TANGE | TANGENTIAL VE | VELOCITY | COMPONENT | RATIOS | (VT/V) | | | HARMONIC | n | თ | 10 | : | 12 | 5. | 14 | 15 | 16 | | RADIUS = .31
AMPLITUDE
PHASE ANGLE | C+ 4 II | 15.1 | .0010 | .0022 | .0022 | .0041 | .0016 | .0026 | .0025 | | RADIUS = .350
AMPLITUDE : PHASE ANGLE | 0 # # | 15.1 | .0010 | .0018 | .6019 | .0031 | .0013 | .0021 | .0020 | | RADIUS = .400
AMPLITUDE = PHASE ANGLE = | 0 11 11 | .0041 | .0009 | .0014 | .0016 | .0019 | .0010 | .0015 | .0014 | | RADIUS = .500
AMPLITUDE
PHASE ANGLE | 0 11 11 | .0017 | . 0007
8 | .0006 | .0010 | .0005 | .0007 | .0006 | .0007 | | PADIUS = .600
ATPLITUDE
PHASE ANGLE | 0 " " | .000 2
64.8 | .0004 | 130.2 | .0005 | .0008 | .0005 | .0002
261.7 | .0005 | | PADIUS = .70
AMPLITUDE
PHASE ANGLE | они | 4.69.4 | .0002 | .0003 | 10.1 | .0007 | .0001 | .0001 | .0002 | | RADIUS = .800
AMPLITUDE
FHASE ANGLE | 0 11 11 | .0010
169.6 | .0005 | .0002 | .0006 | .0005 | .0004 | .0002 | .0005 | | RADIUS = .900
AYPLITUDE
PHASE ANGLE | 0 11 11 | .0012 | .0003 | .0005 | .0008 | .0001 | .0003 | .0003 | .0003 | | RADIUS = 1.000
AMPLITUDE =
PHASE ANGLE = | | .0012 | .0003 | .0013 | .0013 | .0002 | 7.761 | .0003 | .0002
356.8 | #### DTNSRDC ISSUES THREE TYPES OF REPORTS - 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT. - 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION. - 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.