DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRES--ETC(U) JAN 81 R B HURWITZ. L B CROOK DYNSROC/SPD-0833-06 NL AD-A094 342 UNCLASSIFIED 1 0=2 4D A 0948582

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

AD A 094 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRESENTING THE R/V ATHENA WITH AND WITHOUT THE BASS DYNAMOMETER BOAL

N

ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRESENTING THE R/V ATHENA WITH AND WITHOUT THE BASS DYNAMOMETER BOAT.

bу

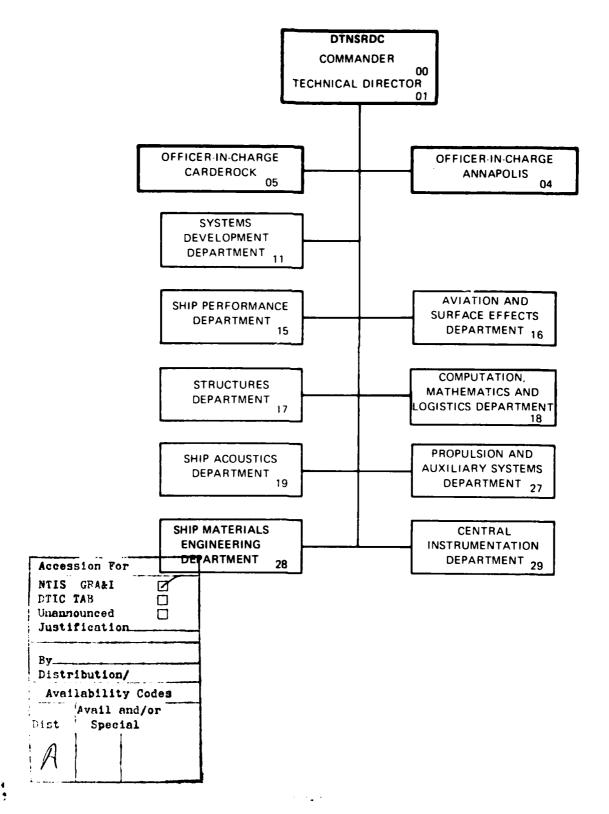
Rae B. Hurwitz and L. Bruce/Crook

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

DTIC ELECT: FEB 2 1981

Ship Performance Department Departmental Report

JANUARY 1981


DTNSRDC/SPD-0833-06

NDW-DTNSRDC 5602/30 (2-80)

81 2 2

U 68

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2 GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
DTNSRDC/SPD-0833-06	7D AL 44 347			
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
ANALYSIS OF EXPERIMENTAL DATA FOR	MODEL 5365	Final		
REPRESENTING THE R/V ATHENA WITH	AND WITHOUT THE	6 PERFORMING ORG. REPORT NUMBER		
BASS DYNAMOMETER BOAT		B. PERFORMING ONG. REPORT NUMBER		
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(#)		
RAE B. HURWITZ and L. BRUCE CROOK		NOO167-78-C-0089		
	Ì	· ·		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
DAVID TAYLOR NAVAL SHIP R & D CEN	men	PROGRAM ELEMENT 63508N		
BETHESDA, MARYLAND 20084	IEK	TASK AREA S0379001 TASK 1997		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT CALE		
NAVAL SFA SYSTEMS COMMAND (NAVSEA	05R)	JANUARY 1981		
WASHINGTON, D.C. 20362	· .	13 NUMBER OF PAGES		
		171 + XVI 15. SECURITY CLASS. (of this report)		
14 MONITORING AGENCY NAME & ADDRESS(If differen	f from Conffolling Office)	(5. SECURITY CEASS. [of Inte report)		
		Unclassified		
	ı	154. DECLASSIFICATION DOWNGRADING SCHEDULE		
16 DISTRIBUTION STATEMENT (of this Report)				
Approved for public release: Di		• • • •		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	m Report)		
18 SUPPLEMENTARY NOTES				
19 KEY WORDS (Continue on reverse side if necessary an	d Identify by black sumbers			
Wake survey; R/V ATHENA; Wake scr	een; Inclined flo	ow; Bass dynamometer boat		
		i		
		(
ABSTRACT (Continue on reverse side if necessary and	identify by block number)			
This report describes a series of overall project of the David Ta				
Center (DTNSRDC) to adapt controllable pitch propellers to the needs of high				
speed combatant ships. The first set of experiments was conducted on a model				
of the R/V ATHENA with and withour				
second set repeated the first, examounted aft of the model. The th				
moder, the th	iru set was a sei	ries of fuedfized wake (over)		
S FORM SAME				

distribution experiments, in which the model was removed and the pitot rake was mounted upstream of the Bass Boat. The effect of an operating port propeller on the mean starboard wake distribution and the harmonic content of the wake was small. The presence of the Bass Boat behind the ATHENA model, however, affects both the mean values and the harmonic content of the wake. Finally, one idealized mean wake distribution was shown to be weakly dependent on speed, and the harmonic content of wakes at two different speeds differed by less than three percent.

- 9. SHIP PERFORMANCE DEPARTMENT
- 10. Work Unit Number 1524-641

TABLE OF CONTENTS

F	age
LIST OF FIGURES	iv
LIST OF TABLES	ix
NOTATION	xiii
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	2
EXPERIMENTAL PROCEDURE	3
ACCURACY ASSESSMENT	7
PRESENTATION AND DISCUSSION OF RESULTS	7
CONCLUSIONS	14
TEFFERENCES	16
APPENDIX A - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 3 AND 9	. 31
APPENDIX B - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 10	. 61
APPENDIX C - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 11	. 77
APPENDIX D - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 12	. 93
APPENDIX E - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 13	.109
APPENDIX F - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 14	.125
APPENDIX G - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 15	.141
APPENDIX H - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 16	.157

LIST OF FIGURES

		Page
1 -	Rake Arrangement Sketch Showing Five Spherical Head Pitot Tubes with Five Holes Each	17
2 ~	Rake Arrangement Photographs Showing Installation in Starboard Shaft of Model 5365 During Experiments 3 and 9 Without Port Propeller	18
3 -	Sketch Illustrating Location of Wake Survey Experimental Radii on Model 5365 Afterbody Sections Representing the R/V ATHENA	19
4 -	Rake Arrangement Photograph Showing Closeup Profile View of Installation in Starboard Shaft of Model 5365 Without Port Propeller	20
5 -	Rake Arrangement Photograph Showing Closeup Quartering View of Installation in the Starboard Shaft of Model 5365 Without Port Propeller	21
6 -	Rake Arrangement Photograph Showing Installation in Bass Dynamometer Boat, Model 5271, Mounted Behind Starboard Shaft of Model 5365 With and Without Port Propeller as During Experiments 11 and 12	22
7 -	Rake Arrangement Photograph Showing Bass Dynamometer Boat Mounted for 20 Degree (0.349 radian) Inclined Idealized Flow Wake Experiment 13	23
8 -	Wake Screen Photograph Showing Downstream View at Spherical Head Pitot Tubes Used for Idealized Flow Experiment 14	24
9 -	Schematic of Wake Screen Wire Sections and Sizes Used for Idealized Flow Experiment 14	25
10 ~	Wake Screen Photograph Showing Upstream View Into the Flow for Idealized Flow Experiment 14	26
11 -	Bass Dynamometer Boat Mounted Behind the Wake Screen Photograph Showing Arrangement of Pitot Tubes for Idealized Flow Experiment 14	27
12 -	Bass Dynamometer Boat Mounted for 10 Degree (0.174 radian) Inclined Idealized Flow Wake Photograph Showing Spacer Block Used for Experiments 15 and 16	28
A-1	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiments 3 and 9	32

		Page
A-2 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiments 3 and 9	33
A-3 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiments 3 and 9	34
A-4 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiments 3 and 9	35
A-5 -	Radial Distribution of the Mean Velocity Component Ratios for Experiment 3	36
A-6 -	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 3	37
A-7 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 9	38
A-8 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 9	39
A-9 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 9	40
A-10 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 9	41
A-11 -	Radial Distribution of the Mean Velocity Component Ratios for Experiment 9	42
A-12 -	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 9	43
B-1 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456	
	for Experiment 10	62
B-2 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 10	63
		U.J

			Page
B-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 10	64
B-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio ≈ 0.963 for Experiment 10	65
B-5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 10	66
B-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 10	67
C-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 11	78
C-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 11	79
C-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 11	80
C-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 11	81
C-5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 11	82
C-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 11	83
D-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 12	94
D-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 12	95
D-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 12	96

			Page
D-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 12	97
D-5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 12	98
D-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 12	99
E-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 13	110
E-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 13	111
E-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 13	112
E-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 13	113
E-5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 13	114
E-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 13	115
F-1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 14	126
F-2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 14	127
F-3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 14	128
F-4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 14	129

			Page
F-5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 14	130
F-6	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 14	131
G-1 ·	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 15	
G-2 -	_	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 15	
G-3 -	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 15	
G-4 -	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 15	145
G-5 -	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 15	146
G-6 -	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 15	147
н-1 -	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 16	158
H-2 -		Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 16	159
н-3 -	_	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 16	160
H-4 -	_	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 16	161
Н-5 -	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 16	162
н-6		Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 16	163

LIST OF TABLES

			Page
1	_	Ship and Model Characteristics, R/V ATHENA Represented by Model 5365	29
2	-	Experimental Program	30
A-1	-	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 3	44
A-2	_	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 3	45
A-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 3	46
A-4	_	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 3	47
A- 5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 3	49
A-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 3	50
A- 7	_	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 9	52
A-8	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 9	53
A-9	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 9	54
A-10	_	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 9	55
A-11	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 9	57
A-12	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 9	58
B-1	-	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 10	68
B-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 10	69

LIST OF TABLES (Continued)

		Pa	ge
B-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 10	70
B-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 10	71
B-5		Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 10	73
B-6	_ -	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 10	74
C-1	-	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 11	84
C-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 11	85
C-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 11	86
C-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 11	87
C-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 11	89
C-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 11	90
D-1	_	Input Data for Harmonic Analysis for R/V ATHENA, Model 5365, Experiment 121	.00
D-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 121	.01
D-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 12	.02
D-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 12	.03
D-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 12	.05
D-6	-	Harmonic Analyses of Tangential Velocity Component Ratios	06

LIST OF TABLES (Continued)

		· · · · ·	Page
E-1	-	Input Data for Harmonic Analysis for R/V ATHENA with Bass Dynamometer Boat, Experiment 13	116
E-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 13	117
E-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 13	118
E-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 13	119
E-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 13	121
E-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 13	122
F-1	-	Input Data for Harmonic Analysis for R/V ATHENA with Bass Dynamometer Boat, Experiment 14	132
F-2	_	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 14	133
F- 3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 14	134
F-4	_	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 14	135
F-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 14	137
F-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 14	138
G-1	_	Input Data for Harmonic Analysis for R/V ATHENA with Bass Dynamometer Boat, Experiment 15	148
G-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 15	149
G-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 15	150

LIST OF TABLES (Continued)

	Page
G-4 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 15	151
G-5 - Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 15	153
G-6 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 15	. 154
H-1 - Input Data for Harmonic Analysis for R/V ATHENA with Bass Dynamometer Boat, Experiment 16	. 164
H-2 - Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 16	. 165
H-3 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 16	. 166
H-4 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 16	. 167
H-5 - Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 16	. 169
H-6 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 16	. 170

NOTATION

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
A_{N}	COS COEF	The cosine coefficient of the Nth harmonic*
B _N	SIN COEF	The sine coefficient of the Nth harmonic*
D		Propeller diameter
J _V		Apparent advance coefficient $J_{V} = \frac{V}{nD}$ (dimensionless)
N	N	Harmonic number
n		Propeller revolutions
r/R or x	R a dius or RAD.	Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R)
V	v	Actual model or ship velocity
$V_{\mathbf{b}}(\mathbf{x}, \boldsymbol{\theta})$		Resultant inflow velocity to blade for a given point
$\overline{V}_{l_{i}}(x)$		Mean resultant inflow velocity to blade for a given radius
$V_{\mathbf{r}}(\mathbf{x}, \boldsymbol{\theta})$	VR	Radial component of the fluid velocity for a given point (positive toward the shaft centerline)
$\overline{\mathbb{V}}_{\mathbf{r}}(\mathbf{x})$		Mean radial velocity component for a given radius
$V_{\mathbf{r}}(\mathbf{x},\theta)/V$	VR/V	Radial velocity component ratio for a given point
$\overline{V}_{\mathbf{r}}(\mathbf{x})/V$	VRBAR	Mean radial velocity component ratio for a given radius
Υ _t (x,θ)	VT	Tangential component of the fluid velocity for a given point (positive in a counterclockwise direction looking forward)

^{*}See footnote on the following page

	MOTATION (CONCING	EU)
$\overline{V}_{t}(x)$	***	Mean tangential velocity component for a given radius
$v_{t}^{(x,\theta)/V}$	VT/V	Tangential velocity component ratio for a given point
$\overline{V}_{t}(x)/V$	VTBAR	Mean tangential velocity component ratio for a given radius
$(\widetilde{V}_{t}(\mathbf{x})/V)_{N}$	AMPLITUDE	Amplitude (B for single screw symmetric; C_N^N otherwise) of Nth
		harmonic of the tangential velocity component ratio for a given radius?
$v_{\mathbf{x}}^{(\mathbf{x},\mathbf{x})}$	VX	Longitudinal (normal to the plane of survey) component of the fluid velocity for a given point (positive in the astern direction)
$\overline{v}_{\mathbf{x}}(\mathbf{x})$		Mean longitudinal velocity com- ponent for a given radius
$V_{\mathbf{x}}(\mathbf{x}, \mathbf{\theta})/V$	VX/V	Longitudinal velocity component ratio for a given point
$\overline{v}_{\mathbf{x}}(\mathbf{x})/v$	VXBAR	Mean longitudinal velocity component ratio for a given radius
$(\widetilde{\mathbf{v}}_{\mathbf{x}}(\mathbf{x})/\mathbf{v})_{\mathbf{N}}$	AMPI.ITUDE	Amplitude (A _N for single screw symmetric; C _N otherwise) of Nth harmonic of the longitudinal velocity component ratio for a given radius*
ϕ_{N}	PHASE ANGLE	Phase Angle of Nth harmonic*

*The harmonic amplitudes of any circumferential velocity distribution $\ f\left(\theta\right)$ are the coefficients of the Fourier Series:

$$f(\theta) = A_0 + \sum_{N=1}^{N} A_N \cos(N\theta) + \sum_{N=1}^{N} B_N \sin(N\theta)$$

$$= A_0 + \sum_{N=1}^{N} C_N \sin(N\theta + \phi_N)$$

NOTATION (Continued)

1-w(x)

1-WX

Volumetric mean velocity ratio from the hub to a given radius

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \sqrt{(\overline{V}_{x_c}(x)/V) \cdot x \cdot dx} \\ \frac{r_{hub}/R}{(r/R)^2 - (r_{hub}/R)^2} \end{bmatrix}$$

where
$$\overline{V}_{\mathbf{c}}(\mathbf{x}) = \int_{0}^{\infty} \left[\frac{V_{\mathbf{c}}(\mathbf{x}, \hat{\boldsymbol{\theta}})}{2^{\frac{1}{12}} V} \right] d\hat{\boldsymbol{\theta}}$$

and $v_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)/v) = (v_{\mathbf{x}}(\mathbf{x},\theta)/v) - (v_{\mathbf{t}}(\mathbf{x},\theta)/v) \text{ tan } (\theta(\mathbf{x},\theta))$

1-wv(x)

1-MAX

Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction)

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \sqrt{(\overline{v}_{x}(x)/V) \cdot x \cdot dx} \\ r_{hub}/R \\ \hline (r/R)^{2} - (r_{hub}/R)^{2} \end{bmatrix}$$

 $\beta(\mathbf{x},\theta)$

Advance angle in degrees for a given point

 $\vec{\beta}(\mathbf{x})$

BBAR

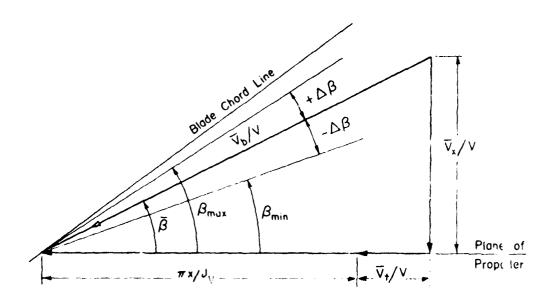
Mean advance angle in degrees for a given radius

+ A B

BPOS

Variation of the maximum advance angle from the mean for a given radius

NOTATION (Continued)


- A B

BNEG

Variation of the minimum advance angle from the mean for a given radius

Angle in Degrees

Position angle (angular coordinate) in degrees

VELOCITY DIAGRAM OF BETA ANGLES

ENGLISH/SI EQUIVALENTS

ENGL1SH		SI
1	inch	25.400 millimeters [0.0254 m (meters)]
1	toot	0.3048 m (meters)
1	foot per second	0.3048 m/sec (meters per second)
1	knot	0.5144 m/sec (meters per second)
1	pound (force)	4.4480 N (Newtons)
l	degree (angle)	0.01745 rad (radians)
1	horsepower	0.7457 kW (kilowatts)
1	long ton	1.016 metric tons or 1016 kilograms
1	inch water (60°F)	248.8 pa (pascals)

xvi

ABSTRACT

This report describes a series of model experiments conducted as part of the overall project of the David Taylor Naval Ship R&D Center (DTNSRDC) to adapt controllable pitch propellers to the needs of high speed combatant ships. The first set of experiments was conducted on a model of the R/V ATHENA, with and without the port propeller operating. The second set of experiments repeated the first, except that the Bass Dynamometer Boat was mounted aft of the model. The third set was a series of idealized wake distribution experiments, in which the model was removed and the pitot rake was mounted upstream of the Bass Boat. The effect of an operating port propeller on the mean starboard wake distribution was small. The presence of the Bass Boat behind the ATHENA model, however, affects both the mean values and the harmonic content of the wake. Finally, one idealized mean wake distribution was shown to be weakly dependent on speed, and the harmonic content of wakes at two different speeds differed by less than three percent.

ADMINISTRATIVE INFORMATION

The experimental program was initiated and funded by the Naval Sea Systems Command (NAVSEA 05R) under Task Area S0379001. This work was performed at the David Taylor Naval Ship R&D Center (DTNSRDC) under work unit number 1524-641. The preliminary data analysis was performed by Chi Associates, Inc. (CAI) under contract to DTNSRDC.

INTRODUCTION

As part of its overall project to adapt controllable pitch propellers to the needs of high speed combatant ships, the David Taylor Naval Ship Research and Development Center (DTNSRDC) conducted a full-scale wake survey aboard the R/V ATHENA in September 1977 as reported by Day et al. The specific goal of this project was to obtain propeller disk velocity component ratios in the wake of a full-scale ship. In addition, propeller blade loading experiments have been completed for the R/V ATHENA.

Subsequent to the full-scale wake trials, a series of wake surveys were conducted on a model of the R/V ATHENA. These experiments were designed to evaluate the model wake at one propeller location, both with and without the other propeller operating. In addition, wake survey experiments were conducted with and without the Bass Dynamometer Boat mounted aft of the model. The Bass Dynamometer Boat was used in the blade loading experiments to drive the propeller and dynamometry systems from behind the model. The wake information was necessary to account for the effect of the Bass Boat on the flow into the propeller in the analysis of the blade loading experiments. Several idealized wake distributions were measured, and will be used for blade loading calculations for a propeller operating in an idealized wake. An idealized wake is the breaking down of a wake field into a purely longitudinally dominated wake by a wake screen or a purely tangentially dominated wake by inclining the flow angle. The blade loading calculations for the R/V ATHENA will be compared with experimental force measurements on a model propeller to help determine the validity of the load calculation method and will be reported later.

References are listed on page 16.

EXPERIMENTAL PROCEDURE

The experiments described in this report measured the propeller disk velocity components under a variety of operating conditions. In the first set of experiments (Experiments 3, 9 and 10), wake measurements were obtained from the starboard propeller plane of the model with, and without the port propeller operating. In the second set (Experiments 11 and 12), measurements were taken with the model followed by the Bass Dynamometer Boat, with and without the port propeller operating. The third set of experiments (Experiments 13 through 16) consisted of idealized wake surveys. The ATHENA model was removed, and a pitot tube rake was mounted ahead of the Bass Dynamometer Boat. These experiments were run behind a screen which provided an idealized wake distribution.

DTNSRDC Model 5365, representing the R/V ATHENA (PG-94), was constructed to a linear ratio of 8.250, in accordance with model specifications of the Mayal Sea Systems Command (NAVSEA 05R). Model and ship characteristics are presented in Table 1. The model was fitted with shafts and struts, a centerline skeg, and stabilizer fins. Model rudders were not included. DTSSRDC pitot tube rake number 7 was mounted in the model through the starboard shafting. Differential pressure gauges were used to measure the velocities in the plane of the propeller at four radial locations. A sketch of the pitot rake on the model is shown in Figure 1. The rake as fitted to Model 5365, including the five-hole spherical pitot tubes, is shown in Figure 2.

The DTNSRDC Bass Dynamometer Boat (Model 5271) was employed in all but the first three experiments. It was mounted in the same location in which it had previously been run to study unsteady propeller blade

forces behind a model, and was later mounted behind the pitot rake and wake screen.

The experimental program, as it pertains to this report, is described in Table 2. The experiments being discussed are 3 and 9 through 16. All the other experiments (1, 2, and 4 through 8) are discussed in another report by Hurwitz and Crook². Experiment 3 was a conventional wake survey experiment which measured the Model 5365 starboard wake without the port propeller operating in the initial setup. Experiment 9 repeated this test to verify that the model conditions were essentially unchanged in the second setup from the original. For Experiment 10, with the port propeller operating, the model conditions from Experiments 3 and 9 were duplicated.

Experiments 11 and 12 were again conventional wake surveys, with the pitot tube rake mounted from inside the starboard shaft; but the Bass Dynamometer Boat was attached downstream of the ATHENA model. Experiment 11 was conducted without the port propeller, and Experiment 12 with the port propeller operating. A sketch of the experimental radii taken with the pitot tube arrangement behind the hull sections is shown in Figure 3. Figures 4 and 5 are profile and quartering photographs of the pitot tube rake and the ATHENA model. Figure 6 shows the experimental setup during Experiments 11 and 12.

Experiments 13 through 16 were conducted to create idealized wakes. Data from these wake surveys were required to perform calculations of unsteady blade loads for comparison with experimental results. Experiment 13 modeled an uniform flow with the rake inclined at 20 degrees (0.349 radian), as shown in Figure 7. Experiment 14 was performed to measure the flow behind a one-cycle wake screen with the bass dynamometer boat

and rake both at zero degree inclination. Figures 8 through 10 show the wake screen used, and Figures 11 and 12 show the experimental setups. Finally, Experiments 15 and 16 were uniform flow surveys at ten degrees (0.175 radian) inclination of the bass dynamometer boat and rake at model speeds corresponding to full-scale speeds of 17.2 and 8.6 knots (8.8 and 4.4 m/s), respectively. Also the single cycle wake screen was removed during Experiments 15 and 16.

The full-scale propeller disk was 6 feet (1.83 meters) in diameter. The radii at which measurements were made, expressed as ratios of the propeller radius (r/R), were 0.456, 0.633, 0.781, and 0.963. The plane in which the velocity measurements were taken was the starboard propeller plane located 146.2 feet (44.56 meters) aft of the forward perpendicular. The ATHENA displacement was 263 tons (267 metric tons), and the model trim was locked at a speed corresponding to a 20 knot (10.3 meter/second) ship speed, with the pitot rake in the zero degree position.

The wake measurement system consisted of a pitot tube rake and four differential pressure gages. The rake has five 5-hole spherical pitot tubes mounted in a common housing. Measurements were not made using the innermost pitot tube because of the flow interference between the pitot tube and the propeller hub. Figure 1 shows the arrangement of the rake and the pitot tubes. A description of the use and the calibration of 5-hole tubes is given by Hadler and Cheng.

The carriage computer integrated the four pressure signals from each pitot tube, the model speed, and the angular position of the rake, over a 5-second period. Digital voltmeters and frequency counters monitored the computer values. The computer collected the pressure data for each of the

four pitot tubes. The rake was then rotated to a new angle, and the procedure was repeated until data were obtained throughout the entire rotation of the rake in the propeller disc.

Velocity component ratios were computed from the pressure data using established computer programs. The circumferential distributions of the longitudinal, tangential, and radial velocity component ratios were plotted for each radial location. Plots of the data were generated by a Control Data Corporation (CDC) Computer using a CALCOMP Plotter. Data were checked for random errors and agreement with previous experiments. Interpolation of the velocity component ratios in the radial and circumferential directions was made. This process yielded interpolated data every 2.5 degrees (0.044 radians) for four experimental radii, and for additional selected radii (interpolated radii). The mean longitudinal, tangential, and radial velocity component ratios; the volumetric mean wake; and the mean and extreme values of the advance angles were computed and are presented in this report. The advance angles were calculated using an advance coefficient, J_{v} , of 0.739. Explanation of this terminology and a diagram showing the relationship among the velocity vectors, the advance coefficient. and the advance angles are presented in the "Notation" section of this report.

Harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios were computed for the experimental data. The harmonic content was determined by Fourier series analysis. The results of the harmonic analyses are presented as amplitudes and phase angles of a sine series.

ACCURACY ASSESSMENT

The instrumentation accuracy and the repeatability of wake survey experiments have been discussed in detail by Hadler and Cheng, ³ and Day ⁴. The mean velocity component ratios and the harmonic amplitudes of these ratios all repeat within one percent of the model velocity. The accuracy of the entire velocity survey measurement system was also determined to be one percent of the model velocity, except in flow regions where steep velocity gradients occur, such as behind a shaft strut. In these high gradient regions, the accuracy was shown to be much less. These error bounds were derived for wake surveys calculated at model speeds of at least four knots, with the accuracy decreasing at lower speeds.

All data comparisons which follow will be referenced to the model velocity. Since the accuracy is on the order of one percent of the model velocity, higher order harmonics, whose amplitudes tend to be less than one percent of model velocity, cannot be considered to be as accurate as the mean values and lower order harmonics. The small higher order harmonics do not make a significant contribution to the reproduction of the velocity component ratios, though they do contribute to moments and forces calculated from the wake harmonics.

PRESENTATION AND DISCUSSION OF RESULTS

EXPERIMENTS 3, 9, AND 10 - EFFECT OF OPERATING PORT PROPELLER ON CONVENTIONAL WAKE SURVEYS

Experiments 3, 9, and 10 were conventional wake surveys of the starboard propeller plane of the R/V ATHENA (Model 5365). Experiment 3 was conducted without the port propeller operating, Experiment 9 was a check of Experiment 3, and Experiment 10 was identical to Experiment 3, except that the port propeller was operating.

A listing of the input data for Experiment 3 (without the port propeller operating) is presented in Table A-1, of Appendix A. The circumferential distribution of the longitudinal, tangential, and radial velocity component ratios from Experiment 3 are shown in graphical form for each pitot tube radius in Figures A-1 through A-4. Included in these figures are the data from Experiment 9, which agree with the data for Experiment 3. The mean longitudinal (VXBAR), tangential (VTBAR), and radial (VRBAR) velocity component ratios, and the volumetric mean wake (1-WX) are presented in Table A-2. These quantities, except the radial mean, are presented graphically in Figure A-5.

The calculated mean values of the advance angle (BBAR), and the extreme variations (BPOS and BNEG) are shown in Figure A-6 and Table A-2. Tables A 3 through A-6 present the harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii.

The results are presented in a similar form for Experiment 10 (with the port propeller operating). The circumferential distributions of the velocity component ratios are presented in Appendix B as Figures B-1 through B-4, the input data are listed in Table B-1, and mean values are presented in Figures B-5 and B-6, and Table B-2. The results of the harmonic analyses are presented in Tables B-3 through B-6.

When the results from Experiments 3 and 10 are compared, only small differences are seen. The mean values for the input radii of longitudinal,

tangential, and radial velocity listed in Tables A-2 and B-2 agree in most cases to within one percent of the freestream velocity. The circumferential mean values from Experiment 3 are not consistently higher or lower than those from Experiment 10.

The results of the harmonic analyses compare just as favorably. For example, at the input radii, the amplitudes of all harmonics of the longitudinal, tang atial, and radial velocity component ratios differ by less than one percent of freestream. The phase angles, however, are different at several radii. The good agreement of the data, all within experimental accuracy, for Experiments 3 and 10, indicates only a small effect on the starboard wake is realized when the port propeller is operating.

EXPERIMENTS 11 AND 12 - EFFECT OF OPERATING PORT PROPELLER IN FRONT OF BASS DYNAMOMETER BOAT MOUNTED DOWNSTREAM

Experiments 11 and 12 were conventional wake surveys on the starboard propeller plane of the R/V ATHENA (Model 5365), with the Bass Dynamometer Boat (Model 5271) mounted downstream. This setup physically modeled the unsteady blade force experiments mentioned previously. Experiment 11 was conducted without the port propeller operating, and Experiment 12 was identical to Experiment 11, except that the port propeller was operating.

The circumferential distribution of the longitudinal, tangential, and radial velocity component ratios for Experiment 11 are shown graphically for each pitot tube radius in Appendix C as Figures C-1 through C-4. A listing of the input data is presented in Table C-1. The mean longitudinal, tangential, and radial velocity component ratios and the volumetric mean wake are presented in Figure C-5 and Table C-2.

The calculated mean and extreme values of the advance angles are also shown in Table C-2 and in Figure C-6. Tables C-3 through C-6 present the results of harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii.

The results are presented in a similar form for Experiment 12. The circumferential distributions of the velocity component ratios are presented in Figures D-1 through D-4, the input data is listed in Table D-1, and the mean values are presented in Figures D-5 and D-6, and in Table D-2. The harmonic analyses are presented in Tables D-3 through D-6.

When the results from Experiments 11 and 12 are compared, only small differences are seen. The mean values of the longitudinal, tangential, and radial velocity component ratios for the input radii all agree to within one percent of freestream. At each radius, the longitudinal mean velocity component ratio is slightly higher with the port propeller operating (Experiment 12). However, the values are so hearly the same that no conclusions can be drawn regarding the trend.

The results of the harmonic analyses also compare favorably. For example, at the input radii, the amplitudes of the first harmonic of the longitudinal velocity component ratios differ less than one percent of freestream. The phase angles, however, are different for several of the radii. The harmonics of the tangential velocity component ratios also show good agreement, with the differences being very small compared to free-stream with good phase angle agreement. These results further verify the earlier conclusions that with the port propeller operating only a small effect on the starboard wake distribution is realized.

EXPERIMENTS 9 AND 11 - EFFECT OF BASS DYNAMOMETER BOAT MOUNTED DOWNSTREAM

The results already presented from Experiments 9 and 11 can be compared to determine the effect of the Bass Dynamometer Boat on the ATHENA model wake. The differences are very significant. The mean values of the longitudinal velocity component ratios in Tables A-2 and C-2 showed differences of 10 to 20 percent of the model velocity. The longitudinal velocity component ratios were always smaller with the Bass Dynamometer Boat behind the ATHENA model, as expected. The tangential and radial mean ratios also changed, though no consistent trend was evident.

The harmonics of the longitudinal velocity component ratios showed some differences. For example, the amplitude of the first harmonic is slightly less when the Bass Boat is present; however, the fifth harmonic shows the opposite trend, that is, slightly higher when the Bass Boat is present. The tangential harmonics differ only slightly. For example, the amplitudes of the first harmonic taken with the Bass Boat differed by about 2 percent of freestream when compared to the amplitudes of the first harmonic without the Bass Boat.

EXPERIMENT 13 - IDEALIZED WAKE SURVEY AT LARGE INFLOW ANGLE

Experiment 13 was an idealized wake survey conducted with the Bass

Dynamometer Boat downstream of only the pitot tube rake, that is, no ATHENA model was present for this experiment or single cycle wake screen. The rake inclination to the direction of travel was 20 degrees (0.349 radians).

The circumferential distribution of the longitudinal, tangential, and radial component ratios for Experiment 13 are shown graphically for each pitot tube radius in Figures E-1 through E-4. A listing of the input data

is presented in Table E-1. The mean longitudinal, tangential, and radial velocity component ratios and the volumetric mean wake are presented in Table E-2 and Figure E-5.

The calculated mean and extreme values of the advance angles are shown in Figure E-6 and Table E-2. Tables E-2 through E-6 present the results of harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios.

The mean values presented in Table E-2 are not uniform for all radii, though all differences are less than three percent of model velocity. The circumferential mean values of velocity components for this experiment indicate that the Bass Dynamometer Boat not only retards the flow, but also has a small effect on the radial distribution of the flow.

ENPERIMENT 14 - IDEALIZED WAKE SURVEY WITHOUT ANY INFLOW ANGLE BEHIND A WAKE SCREEN

Experiment 14 was an idealized wake survey conducted with the Bass Dynamometer Boat mounted at zero degree inclination downstream of a one-cycle wake screen. The results are presented in a form similar to Experiment 13. The circumferential velocity component distributions are presented in Figures F-1 through F-4, the input data are listed in Table F-1, and the mean values are presented in Figures F-5 and F-6 and Table F-2. The results of harmonic analyses are presented in Tables F-3 through F-6.

The circumferential distributions shown in Figures F-1 through F-4 indicate that the wake screen did indeed produce a one-cycle wake with a peak-to-peak variation to longitudinal velocity component ratio of about 0.3. Table F-2 indicates that the mean longitudinal velocity component

ratio is about 0.63. The longitudinal harmonics presented in Table F-3 indicate that even though the wake has only one cycle the higher harmonics are still significant.

EXPERIMENTS 15 AND 16 - EFFECT OF SPEED ON IDEALIZED WAKE SURVEY

Experiments 15 and 16 were idealized wake surveys conducted with only the Bass Dynamometer Boat downstream of the pitot tube rake. There was no single cycle wake screen during these experiments. The rake inclination to the direction of travel was ten degrees for both experiments. Experiment 16 was identical to Experiment 15, except that the towing speed of Experiment 16 was one-half that of Experiment 15.

The circumferential distribution of the longitudinal, tangential, and radial velocity component ratios for Experiment 15 are shown in Figures G-1 through G-4. A listing of the input data is presented in Table G-1. The mean longitudinal, tangential, and radial velocity component ratios and the volumetric mean wake are presented in Table G-2 and Figure G-5.

The calculated mean and extreme values of the advance angles are shown in Figure G-6 and Table G-2. Tables G-3 through G-6 present the results of harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii.

The results are presented in similar form for Experiment 16. The circumferential velocity component distributions are presented in Figures H-1 through H-4, the input data are listed in Table H-1, and the mean values are presented in Figures H-5 and H-6 and in Table H-2. The results of harmonic analyses are presented in Tables H-3 through H-6.

When the results from Experiments 15 and 16 are compared, only small differences are noted. The differences between mean values presented in Tables G-2 and H-2 are not significant with a maximum difference of about one percent of model velocity in the longitudinal mean, and a maximum difference in the tangential and radial means of less than one percent. The harmonics do not compare as favorably as the mean values, although the amplitudes of the first harmonic of the tangential velocity component ratios at the input radii differ by less than three percent of model velocity. The amplitudes of the first harmonic for the longitudinal ratios are in better agreement with the maximum difference being less than one percent of model velocity. These small differences indicate this idealized wake is only weakly dependent on speed.

CONCLUSIONS

- (1) The effect due to the port propeller operating on the starboard mean wake distribution is small. This effect was illustrated twice and established no noticeable trends in the mean velocity component ratios.
- (2) The Bass Dynamometer Boat mounted aft of the R/V ATHENA very significantly affects the mean longitudinal velocity component ratios. These mean longitudinal velocity component ratios with and without the Bass Dynamometer Boat differ by 10 to 20 percent. The results of the harmonic analyses show smaller trends. The radial distribution of the flow is also slightly influenced.
- (3) The Bass Dynamometer Boat affects each radius differently due to the bass dynamometer blunt bow causing greater flow obstruction when at a 20 degree inclination.

- (4) When a single cycle wake screen is mounted upstream of the Bass Dynamometer Boat, both at zero inclined angle, the wake screen affects the peak to peak fluctuations in the longitudinal velocity component ratios. These peak to peak fluctuation ranges are half the total mean longitudinal velocity component ratio values. The single cycle wake screen affects the higher harmonics significantly.
- (5) The idealized flow wake surveys show a weak dependence upon velocity when the Bass Dynamometer Boat and rake are mounted at a ten degree angle of inclination to the free surface without any single cycle wake screen present.

REFERENCES

- 1. Day, W. G., Jr., A. M. Reed, R. B. Hurwitz, "Full-Scale Propeller Disk Wake Survey and Boundary Layer Velocity Profile Measurements on the 154-Foot Ship R/V ATHENA," DTNSRDC Ship Performance Department Report DTNSRDC/SPD-0833-01 (Sep 1980).
- 2. Hurwitz, R. B. and L. B. Crook, "Analysis of Wake Survey Experimental Data for Model 5365 Representing the R/V ATHENA in the DTNSRDC Towing Tank," DTNSRDC Ship Performance Department Report DTNSRDC/SPD-0833-04 (Oct 1980).
- 3. Hadler, J. B. and H. M. Cheng, "Analysis of Experimental Wake Data in Way of Propeller Plane of Single- and Twin- Screw Ship Models," Trans. Soc. Naval Arch. and Mar. Eng., Vol. 73, pp. 287-414 (1965).
- 4. Day, W. G., Jr., "Effect of Speed on the Wake in Way of the Propeller Plane for the DD 963 Class Destroyer Represented by Model 5265-1B," NSRDC Ship Performance Department Report SPD-311-37 (Jun 1975).

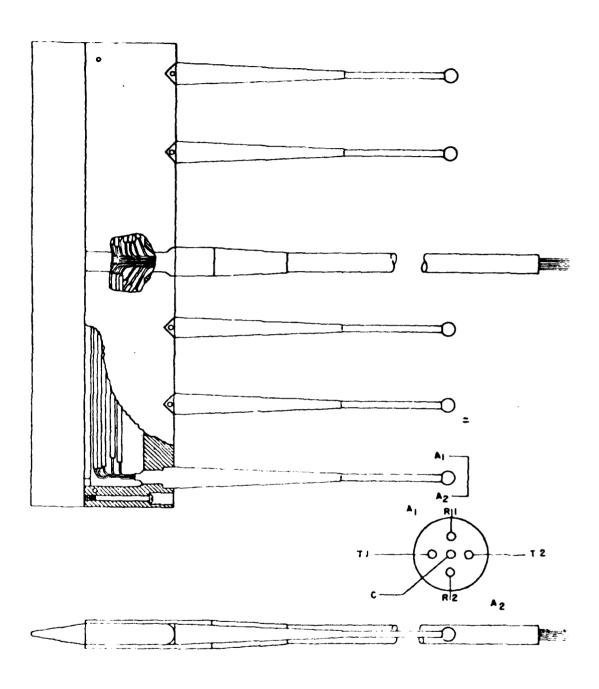


Figure 1 - Rake Arrangement Sketch Showing Five Spherical Head Pitot Tubes with Five Holes Each

PSD 0604-5-78-2

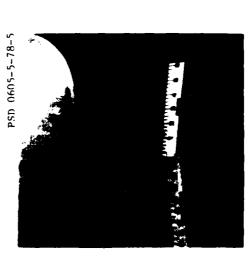


Figure 2 - Rake Arrangement Photographs Showing Installation in Starboard Shaft of Model 5365 During Experiments 3 and 9 Without Port Propeller

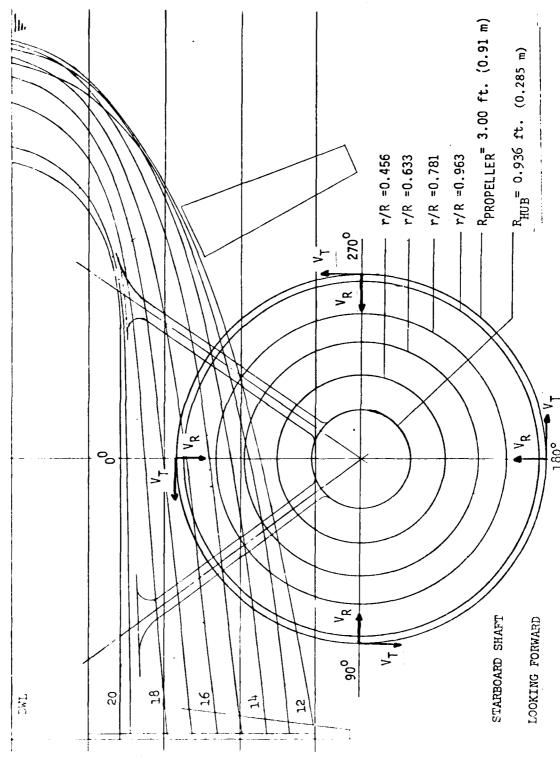


Figure 3 - Sketch Illustrating Location of Wake Survey Experimental Radii on Model 5365 Afterbody Sections Representing the R/V ATHENA

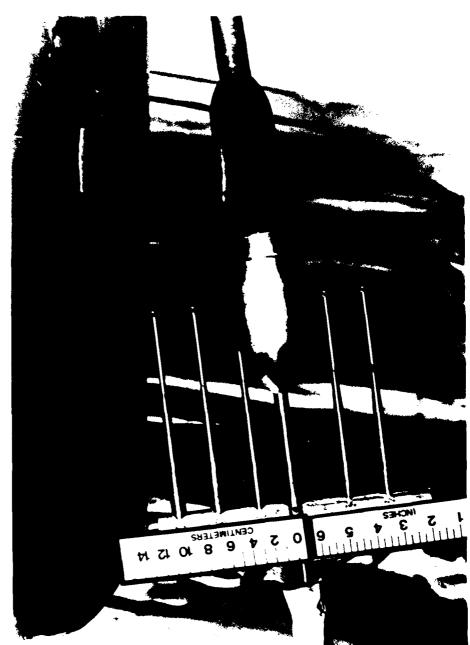


Figure 4 - Rake Arrangement Photograph Showing Closeup Profile View of Installation in Starboard Shaft of Model 5355 Without Port Propeller

Figure 3 - Rake Arrangement Photograph Showing Closeup Quartering View of Installation in the Starboard Shaft of Model 5365 Without Port Propeller

PSD 0603-5-78-3

FSD 0604-5-78-1

Figure 6 - Fige Arrangement Photograph Showing Installation in Bass Dynamometer Boat, Model 5271, Mounted Behind Starboard Shaft of Model 5365 With and Without Port Propeller as During Experiments II and 12

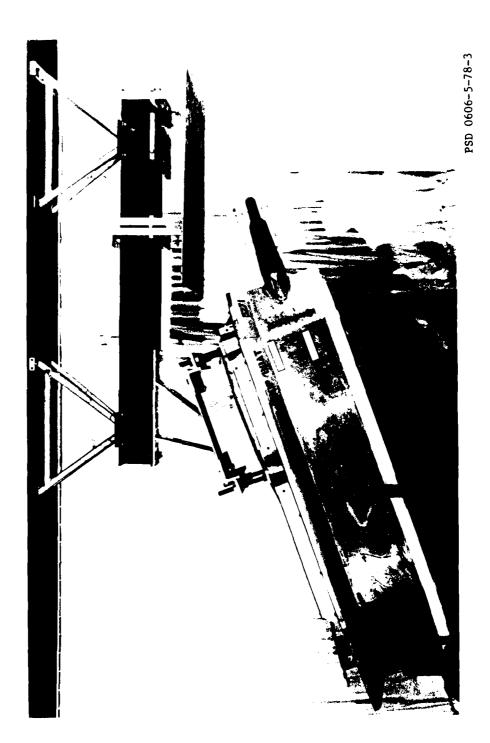
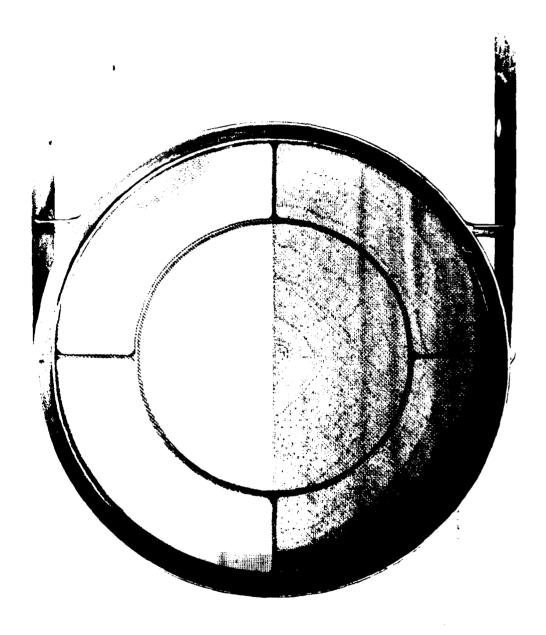
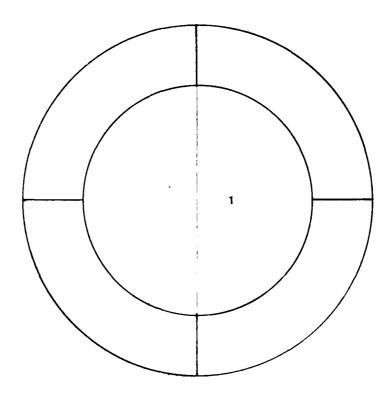




Figure 7 - Rake Arrangement Photograph Showing Bass Dynamometer Boat Mounted for 20 Degree (0.349 radian) Inclined Idealized Flow Wake Experiment 13

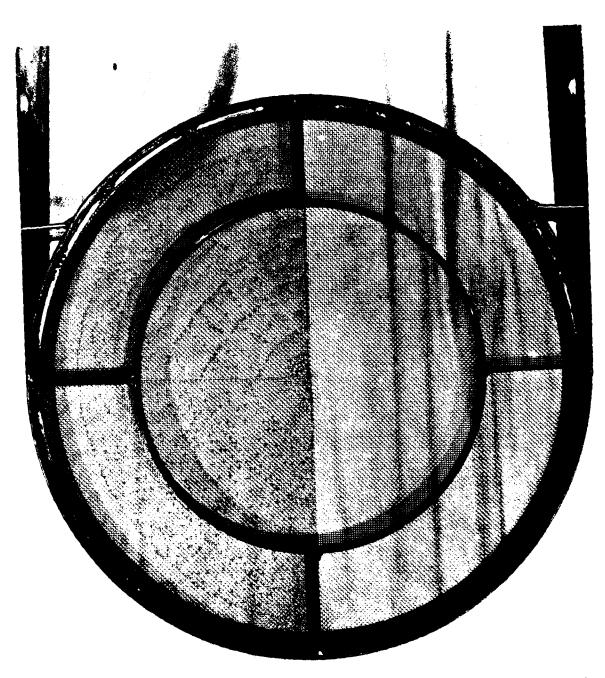

PSD 0607-5-78-1

Figure 8 - Wake Screen Photograph Showing Downstream View at Spherical Head Pitot Tubes Used for Idealized Flow Experiment 14

	SCREE	N SIZE
REGION	WIRES PER INCH	DIAMETER (inches)
SUPPORT (ALL)	16	0.009
1	20	0.011

Figure 9 - Schematic of Wake Screen Wire Sections and Sizes Used for Idealized Flow Experiment 14

PSD 0604-5-78-11

Figure 10 - Wake Screen Phototgraph Showing Upstream View Into the Flow for Idealized Flow Experiment 14

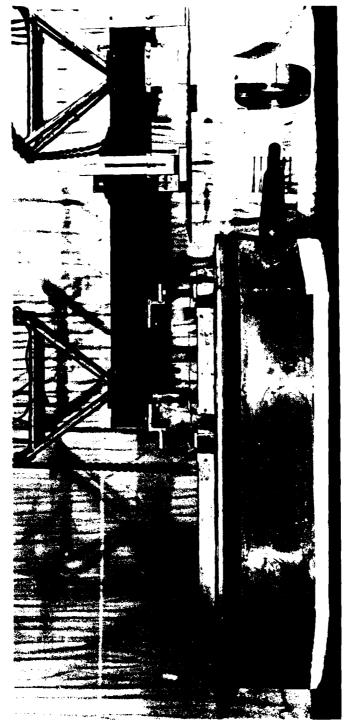


Figure 11 - Bass Dynamometer Boat Mounted Behind the Wake Screen Photograph Showing Arrangement of Pitot Tubes for Idealized Flow Experiment 14

27

Figure 12 - Bass Dynamometer Boat Mounted for 10 Degree (0.174 radian) Inclined Idealized Flow Wake Photograph Showing Spacer Block Used for Experiments 15 and 16

TABLE I

Ship and Model Characteristics

R/V ATHENA Represented by Model 5365

	Ship	Model
Length Between Perpendiculars	154.0 ft (46.9m)	18.6 ft (5.7m)
Length Overall	164.5 ft (50.1m)	19.9 ft (6.1m)
Maximum Beam	24.0 ft (7.3 m)	2.9 ft (0.9m)
Displacement	263 tons (267.3 tonnes)	1020 lbs (462.6 kg)
Wetted Surface	$3413 \text{ ft}^2 (317.1 \text{ m}^2)$	$50.15 \text{ ft}^2 (4.659 \text{ m}^2)$
Draft	5.63 ft (1.72 m)	0.682 ft (0.208 m)
Trim by Stern	0.59 ft (0.18 m)	0.071 ft (0.022 m)
Propeller Diameter	6.0 ft (1.8 m)	8.73 in (22.2 cm)
Linear Scale Ratio	8.25	1.0

Propulsion: Twin screw, controllable pitch, 4 blades each

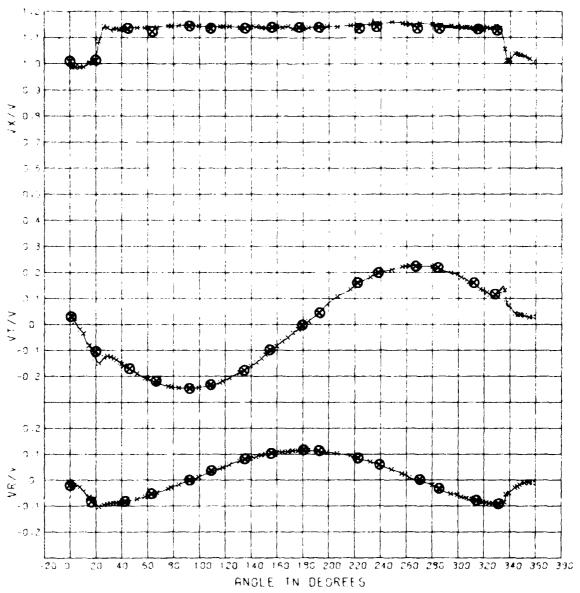
Appendages: Twin stabilizers, main shafts and V-struts, twin rudders,

centerline skeg

APPENDIX A

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS

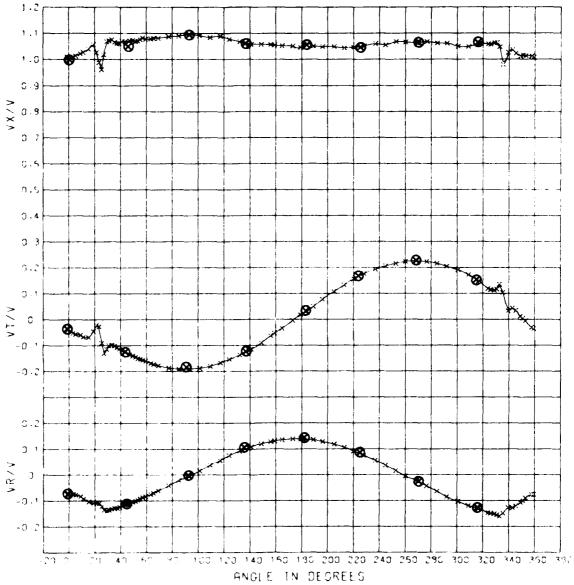
FOR EXPERIMENTS 3 AND 9


Table 2

EXPERIMENTAL PROGRAM

Port Propeller Operating	ОП	yes	ои	yes	Ou	ou	no	ou
Wake	ou	ou	ou	ou	ou	yes	ou	ou
Dynamometer Boat	ou	no	yes	yes	yes	yes	yes	yes
Athena Model	yes	yes	yes	yes	no	no	ou	ОП
Shaft Inclination	*	*	*	*	20°	0)	100	100
Equivalent Ship Speed in Knots (m/s)	20.0 (10.3)	20.0 (10.3)	20.0 (10.3)	20.0 (10.3)	11.5 (5.9)	12.9 (6.6)	17.2 (8.8)	8.6 (4.4)
Experiment Number	3,9	10	11	12	13	14	15	16

* Model trim set at equivalent ship speed twenty knots (10.3 meters/second)


APPENDIX A VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS 3 AND 9

VE. OCTTY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 $0.456\ \text{RAD}$.

Figure A-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiments 3 and 9

x : Experiment 3 **③** : Experiment 9

VERBELT COMPONENT RATIOS FOR MODEL 5355 CORRELATION WITH R/V ATHENA 3 $0.633\,\text{RAD}_{\star}$

Figure A-2 - Circumferential Distribution of the Longitudinal, Fangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiments 3 and 9

x : Experiment 3 **③** : Experiment 9

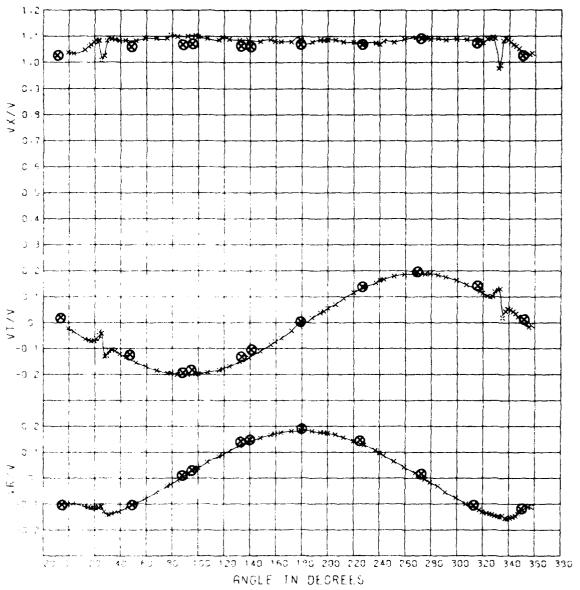
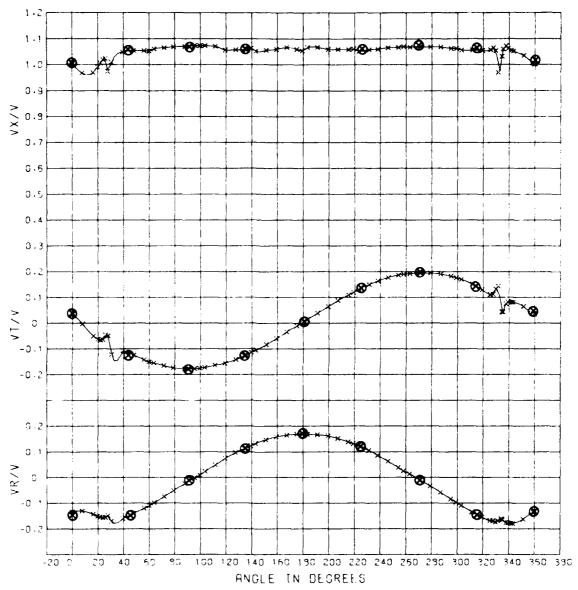



FIGURE COMPONENT RATIOS FOR MODEL 5065 CORRELATION WITH R/V ATHENA 3 O 791 RAD.

Figure A-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiments 3 and 9

x : Experiment 3
S : Experiment 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3. 0.363 RAD.

Figure A-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiments 3 and 9

x : Experiment 3 **③** : Experiment 9

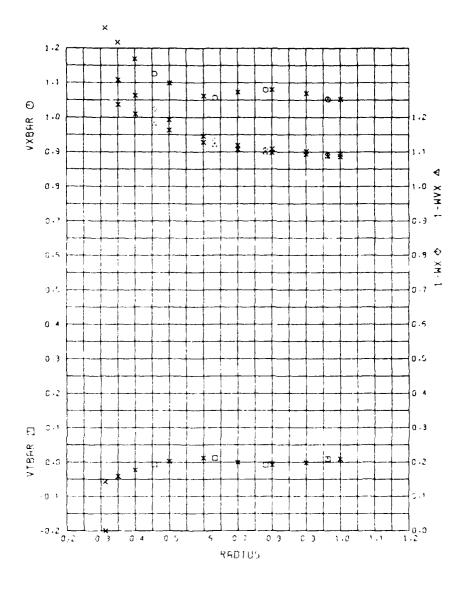


Figure A-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 3

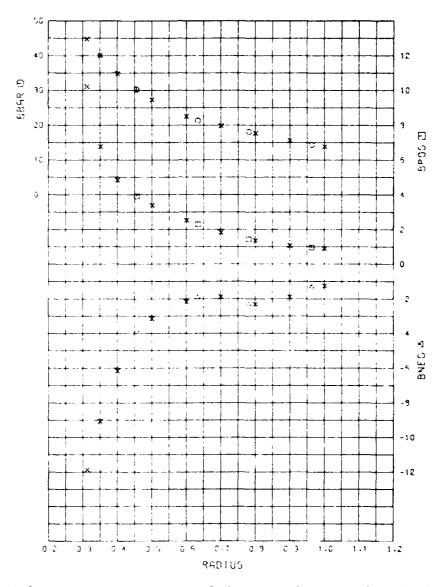
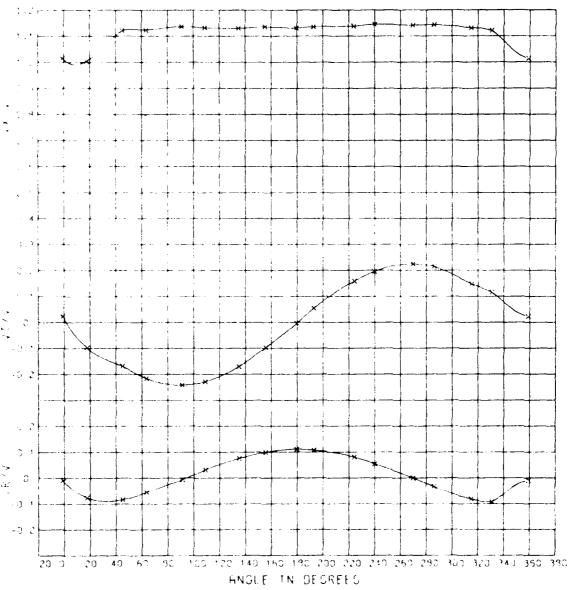
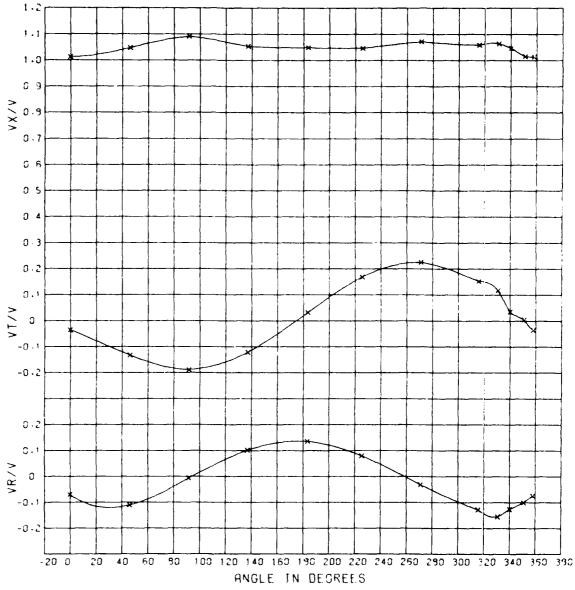




Figure A-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment $\bf 3$

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 0 0.455 RHQ.

Figure A-7 - Circumterential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 9

VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9
0.633 RAD.

Figure A-8 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 9

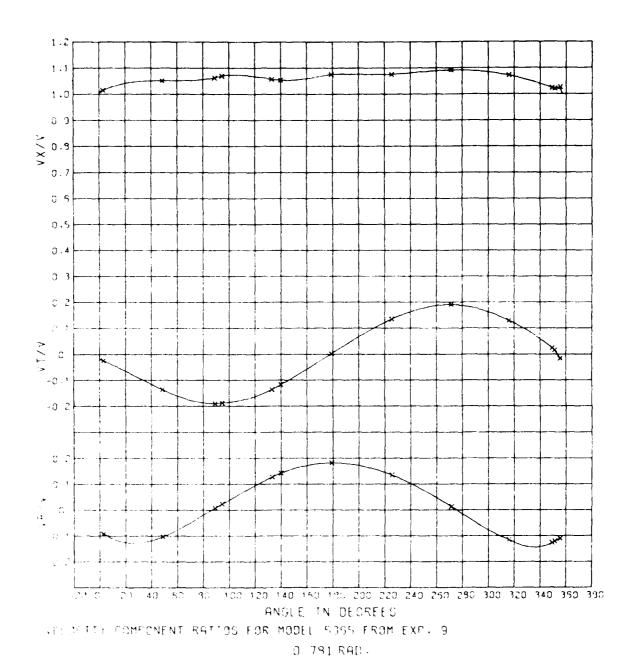
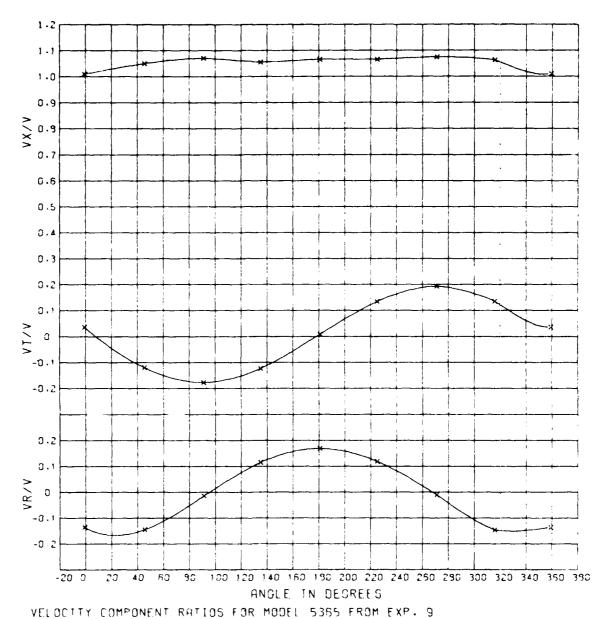



Figure A-9 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 9

0.963 RAD.

Figure A-10 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 9

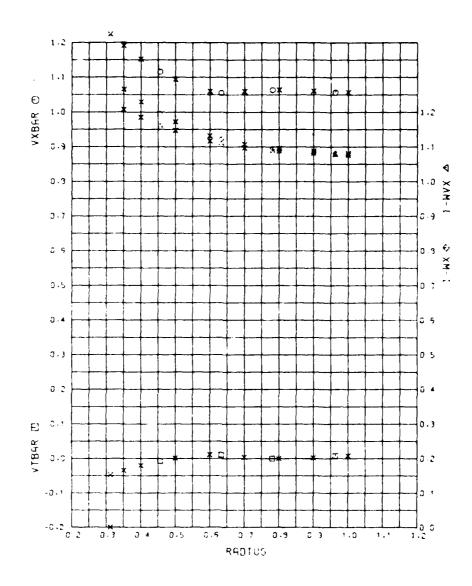


Figure A-11 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 9 $\,$

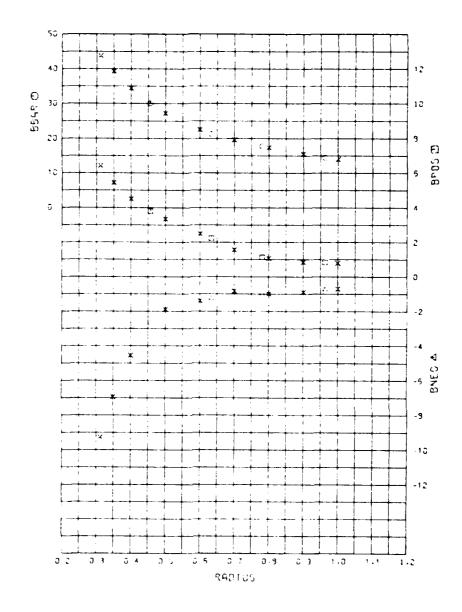


Figure A-12 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 9 $\,$

TABLE A-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,
MODEL 5365, EXPERIMENT 3

									PUTGER	781			##01U3 =	44.7	
	******	5 5						41617	41/4	41/4	40/4	A NGC E	VE/V	V1 /V	¥=/¥
14617	W1/V	4179	40/4	A MGL F	PADIUS =	417V	44/4		1.038	071	161 699	7.7	1.653	.634	134
1.7	- 94 7	. 877	617	-2.4	1.614	039	674	11.6	1.043	041	189	19.4	. 96 8	-, 143	138
1.4	. 944	.017	014	-:;	1.007	8 16	076	15.0	1.451	248	111	17.4	. 471	144	*.148
7.4	. 444	614	577	1.1	1.007	842	0/5	15.5	1.841	867	115	19.4	. 947	-,855 -,864	158
11.0	. 99 1	877	848	5.8	1.81%	646	977	17.6	1.878	072 078	115	81.8	1.005	666	154
13.4	. 998	845	844	11.2	1.071	867	013	21.0	1.045	142		23.4	1.119	044	155
M.F	1-002	167	074	11.7	1.819		193	21.8	1.090	~ 3	119	27.a 25.a	1.419	144	157
17.5	1.006	FAG 897	063	19.8	1.054	844	18A 185	23.4	1.878	638	113	27.8	. 473	849	146
19.4	1.000	176	041	21.4	1.076	071	140	8.1	1.117	641	1 09	79 . S	1.646	113	166 174
19.0	1.817	178	- 147	21.1	. 984	027	189	75.3 27.8	1.001	177	113	19.4	1.052	167	168
21.0	1.314	198	184	27.8	1.818	131	1 3 9	27.7	1.024	1 39	138	79.4 57.5	1.844	-,187	159 168
27.0	1.144	117	847	24.3 11.4	1.064	~.114	134	79.3	1.847	174	142	45.4	1.854	147	174
m	1.117	177	692	13.2	1.671	L00 094	136	33.7	1,049	110	147	55.5	1.093	154	110
11.4	1.127	176	691	96.1	1.865	161	**179	14.7	1.006	111	134	61.8 71.7 79.8	1.861	-,144	875
M.7	1.114	- 1 11		17.3 14.8	1.841	184	128	19.2 43.8	1.844	171 133	17A 117	79.4	1.044	178	041
17.7	1.137	145		74.8	1 - 8 4 3	114	174	41.4	1.842	154	199	47.9	1.155	176 17F	~ . 851 ~ . 824
19.4	1.127	137	448	41.1	1.871	110	119	59.4	1.892	149	841	94.6	1.075	177	~ . 662
	1.178	199		47.0	1-872	-, 134	169	67.8	1.897	104	015	187.5	1.873	175	. 674
51.4	1.174	1 56	075	14.3 51.5	1.473	148	105	74.4	1.091	195	438	1 11 . 3	1.078	165	. 648
55.6	1.134		. 165	41.1	1.878	144	182	43.4	1.184	196	474	119.0	1.054	156	. 975
47.4	1.144	- 210	**2	55.4	1.876	151	893	91.9	1.181	246	- 417	177.4	1.858	191	. 196
74.4	1.101	277	844	17.6	1.047	157	844	94.8	1.443	: 99	. 839	1 5.4	1.858	174	. 115
7.5	1.144	741	129	44.4	1.875	161		187.8	1.091	197	. 967	139.4	1.041	114	.134
41.4	1.147	767	817	49.3	1.879	189	074	115.9	1.007	143	. 844	151.2	1.056	6 9 7	.167
44.8	1.144	245		44.6	1.041	170	148	123.4	1.049	169	. 185	159.2	1.555	868	-156
197.9	1.142	744	.013	77.7 85.0	1.887	147	841	137.8	1.644	157	-175	199.3	1.061	# 34	- 164
1 14. 4	1.143	276	. 845	93.7	1.044	191	071	1 . 7 . 4	1.821	134	. 1 14	179.4	1.651	818	.178
117.8	1.144	218	. 844	101.0	1.841	198	. 014	195.9	1.048		- 144	143.3	1.04		.100
1 11 . 0	1-146	146	. 64.6	109.1	1.044	141	. 830	154.3	1.040	674	.172	191.0	1.067		. 144
1.79.7	1-1-1	154		174.8	1.877	154	. 474	177.0	1.101	0 12	. 141	199.4	1.844		.167
119.4	1.162	166	. 846	177.0.	1.858	-,114	. 143	179.0	1.046	885	. 163	287.4	1.060		-153
157.4	1-140	131	. 196	139.7	1.145	114	. 185	179.7	1.004	116	. 107	214.2	1.842	.110	- 139 - 138
151.6	1.119	114	- 186	140.4	1.058	115	- 109	190.5	1.079	. 619	- 197	223.2	1.097	1 32	.125
199.6	1.143		. 104	194.0	1.858	041	- 120	197.0	1.845	. 0 4 4	. 176	731.1 734.4	1.854	150	. 186 . 685
161,9	1-1-6		. 184	114.6	1.855	853	- 131	199.4	1.887	. 857	. 173	734.4	1.062	.163	. 846
1/1.4	1.145	011	. 111	177.0	1.852	034	- 1 19	7 6 5.4	1.046	. 849	. 16R	744.8	1.806	. 177	.063
176.7	1.148	019	. 114	179.1	1.845		. 139	719.4	1.674	. 116	. 144	254.8	1.067	. 186	. 826
174.7	1.116	004	. 119	140.9	1.854	. 0 7 2	-178	2 24 . E	1.073	.137	- 170	267.4	1.064	. 197	. 614
144.0	1.148	.012	.114	194.8	1.046	. 6 7 6	. 179	739.9	1.472	,143	. 198	270.9 278.4	1.069	.1%	611
147.8	1.141	.849	. 11 J	286-9	1.044	.107	-110	741.8	1.077	.162	. 007	274.4	1.160	.1%	834
7 96 . 6	1.141	. 104	. 141	284.9 212.4	1.043	. 1 37	. 119	259.4	1.8**	.174	.043	746.6	1.440	. 198 . LBP	85A 884
716.5	1.148	. 1 14	. 194	770.0	1.146	.156	. 991	299.0	1.044	.145	. 542	298.4	1.083 1.647	.176	- , 697
277.8	1.151	. 101	. 80 h	274.4 276.7	1.041	. 176	. 974	247.7	1.895	.144	- 819	311.4	1.834	. 1 69	189
7 36 . 6	1.151	. 99	. 644	7 34 . 7	1.844	- 1 97	. 898	774.4	1.048	. 1 47	017	319.1	1.056	. 141	135
755.6	1.144	.718	. 847	744.6	1.855	.706	. 617	789.8 791.8	1.847	.176	811	319.7	1.053	. 1 10	154
754.0	1.151	. 774	. 971	748.8	1.766	. 221	004	299.8	1.847	.161	875	175.8	1.055	.111	167
267.5	1.157	. 224	005	268,5 276,5	1.043	. 279	827	744,4	1.867	.163	~ . 876 ~ . 188	264.4	1.865	. 117	169
279.6	1.147	. 271	817	264.5	1.862	.714	064	317.8	1.061	. 1 29	121	379.4	1.054	. 1 11	174
788.4	1-196	.214	671	297.4	1.041	. 204	. 116	31 7. 9 3 19. 7	1.000	.114	176	3 33 . 7	. 978	. 1 4 3	178
744.3	1.144	. 198	847	100.4	1.04	-191	103 170	121.1	1.874	.114	- 111	334.4	1.066		- , 164
999.4 187.1	1.117	.147	- 656	31 4 . 7	1.855	-144	1 70	127.3	1.859	.199	134	337.4	1.855	.863	177
164.7	1.161	. 1 **	64.6	374.8	1.894	.178	144	129.6	1.091	.101	14P	319.1	1.041	100.	178
384.7	1-114	.149		574.8	1.843	.117	151	331.7	.975	. 1 24	148	348.8	1.892	.001	104
111.9	1.138	. 159	075	1 70 . F	1.044	-117	144	111.1	1.847	.131	149	391.3	1.639	. 6 64	163
114 - 1	1.147	- 1 58	179	314.0	. 99 9	. 111	197	117.5	1.891		~. 196	359.8	1.002	. 6 34	135 139
114.0	1.115	. 1 30	887 484	314.0	1.994	. 874	148	370.4	1.441	.443	146	359.0	1.001	. 0 34	134
117.8	1.174	- 1 32	844	334.4	1.047	. 8.39	174	341.7	1.878	.051	154	399.4	1.003	.834	134
177.1	1 - 1 11	.175	845	147.9	1.816	. 8 59	175	341.7	1.979	.847	143				
170.0	1.111	-119	148	344.5	1.818		117	144.2	1.441	.433	147				
174.0	1.114	.117	111	144.6	1.011	.017	187	167.4	1-001	. 8 17	147				
170.6	1.144	. 111	191	391.0	1.014	. 101	181 898	147.7	1.855	. 677	100				
101.4	1.114	. 170	897	357.1	1.010	477	***	744.4	1.077	017	111				
7 46 . F	1.875	. 1 19	011	394.8 189.1	1.814	674	876	147.4	1.034	-,010 -,073	111				
117.0	t - #11	. 4 4 1	844	344.1	1.00	617	874		•••						
140.0	1.876	. 857	- , 84 1												
161.9	1.619	. 647	824												
107.7	1.874	. 8 17	674												
147.7	1.014		610												
981.8 191.7	1-071	. 6 79													
146.8	1.818	.816	010												
14 7 . 4	1.814	. 679	011												
,,,,	. ***	179	61 9												

TABLE A-2 - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 3

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 3 FROPELLER DIAWLTER 5.00 FEET

-		NO. 1	600.	008	1.086	1.093	13.87	06.	95.00	-1.26	334.30
o))		700	900.	1.093	1.101	15.61	1.06	95.00	-1.90	336.50
c a			500.1	.015	1.048	1.108	17.65	1.35	95.00	-2.32	332.30
(0)	000: 000: 000: 000: 000: 000: 000: 000	9 6		. 007	1.107	σ <u>.</u>	19.82	1.82	95.00	-1.88	
.1		7000		600	1.128	1.146	22.51	2.52	92.50	-2.17 -1.88	22.00
1		n :	N 000	000.1	φ <u>±</u> -	: -	27.41	3.33	03. g	-6.17 - :::	2
	, 6	60	۵. ا	. 0 23	1.216	1.263	34.87	4 .8.3	85.00	-6.17))
, ()	0 1	· ·	2	.041	1.237	1.308	40.05	6.77	22.50	-9.67	
د د	N 0	0.00	, eb. 1	.056	000.0	000.0	44.74	10.21	22.50	-11.67))
200	06.	0 0	, ,	008	1.086	1.093	14.38	. 95	95.00	232 50 0 00	336.30
9	0 0	2 6	20	ក	94	7	10	~	0	- 0	
		-) 	•	-		18.0	1.4	95.0	-2.31	3.76.
(:	101.	000:-		o. 890		1.1355 1.10	21.25 18.09	53		-1.91 -2.3	2
000000000000000000000000000000000000000		2	7	0. 800008 ·	. 1, 180 1,119 1,0		<u>\$</u>	53	. 50	÷ 6	232.00

¹⁵ CIRCUMPERENTIAL MEAN LONGITUDINAL VELOCITY.
15 CIRCUMPERENTIAL MEAN TANGENTIAL VELOCITY.
15 CIRCUMPERINTIAL MEAN RADIAL VELOCITY.
15 CONCUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORPUTION.
15 VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORPUTION.
15 VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORPUTION.
15 VARIATION PUTABLY THE MAXIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS).
15 VARIATION PUTABLY THE MINIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS).
15 VARIATION PUTABLY THE MINIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS).
15 VARIATION PUTABLY THE MINIMUM AND MEAN ADVANCE ANGLES DUTA BETA MINUS). VXBAP VTBAR VRBAR 1-%-K

^{1-8×} 8842 8700 dveg 1-814

TABLE A-

,	VE LOC 114 CO	COMPONENT OPROPELLER	RATICS FOR DIAVETER	00.6 6.60	5365 FEET	LORRELATION	W11H H/V	ATHENA 3
HARMONIC	HARMONIC ANALYSES	OF LONGI	LONGI TUDIMAL N	V: LOCITY	COMPOSENT	RATIOS	((() () ()	
HARMONIC	+- H	N	'n	4	S	9	7	æ
RADIUS = .456 AMPLITUDE = FHASE ANGLE =	,0367	.0358	.0234	. 0150 267.3	.0143	.0099 263.6	.0050 244.1	. 0026 195. 5
RADIUS = .633 AMPLITUDE = FHASE ANGLE =	3 . 0150 a 323.3	.0224 268.9	.007.8 2:5.5	010 010 010	, 605.6 202.2	.0013 288.8	. 00 10 6. 21	.0027
RADIUS = .781 AMPLITUDE = EMASE ANGLE =	1 	.0147	2. 4.3	\$200° \$200°	. 062a 258. J	.0040 278.0	.0007	,0012
HADIUS = .963 AMPLITUDE = PHASE ANGLE =	3 .0187 * 261.6	.0193	.0152	.0067	.0083	.0070	.0058	.0038
HARMONIC	ANALYSES	OF LONG!	LONGI TUDITAL	K410000A	COMPOSENT	RATIOS	(v ×v)	
HARMON I C	ئ	0	11	1.2	13	44	35	16
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	6 .0044 130.7	.0058 130.5	# 1001 # 1001 # 1001	. 0057 3. 057	.00%4 126.8	.0630 154.0	. 0009 1.951	. 9019 296. 1
##DIUS = .633 ATPLITUDE = PR4SE #WGLE =	3 .c03.4 = 73.2	.0021	5100. 144.1	62.0. 9.344	.0033	.0032	. 003. 2.2.5	.0034 271.8
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	= .9007 = 267.1	.0027	. 0019 205.2	, C016 2-3-3	. 00 t8 296. 0	. 0027 274.4	.0628 319.3	.0003
PADIUS963 A'APLITUDE . PHASE ANGLE .	3 .0027 = 165.9	.0026	10012 1941.8	.0026	. 0020 205.3	298.0	.0010	.0014

TABLE A-4 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPEREMENT 3

V.E.	VELBUITY COM	COMPONENT A	RATIOS FO- DIAMETER -	4 700EL 7 6.00	5355 C3	CORRELATION	V B H I W	V ATHENA . 739
HARMONIC	ANALYSES C	OF LONGII	LONGITUDIAL V	¥1177	COMPLYENT	IT RATIOS	(7.>/)	
HAPMONIC =	-	7	, ~	·•	S	٩	7	æ
RADIUS = .312 AMPLITUDE = FHANE ANGLE =	2.15.6	. 0499 275.9	2 3	64 m 13 m 13 m	.02°8 272.0	.0265	. 0155 2.5.2	201.0
#AD105 = .350 #AD1120E = EMASE #MOLE =	.0730	.0459	275.1	\$ C 1 7 7 1 6	.0224	.0213	.6122	. 010. 4.102
RADIUS = ,400 AMPLITUDE = PHASE ANGLE =	.0537	.0409	.0343 273.6	. C281 21 B.3	270.5	.0153 262.9	. 0045 239.1	200-1
PADIUS = .500 APPLITUDE PHASE ANGLE =	.0269	.0320	20172	0 t	.0110 268.0	. 9865 254.9	.0023	. 6005 154. 0
RADIUS = .600 AMPLITUSE = FMASE ANGLE =	.0167	.0246 269.9	.00x2 254.7	20038 204.2	, 00HB 253.9	.0019	.0009	.0025 31.6
PADIUS = ,700 AMPLITUDE = PHASE ANGLE =	312.2	.0177	.0040 264.3	3.000 3.000 3.000	.0039 268.t	.0032	.0006	.0008
PADIUS = ,800 AMPLITUDE = : FHASE ANGLE =	.0106 284.5	.0144	. 00 % 266.6	.0023 303.6	.0029 251.8	.00.10	0100.	.0015
9ADIUS = .900 AMPLITODE = PYASE ANGLE =	.0145 265.7	.0159	244.5	.0029 8.815	.0051 220.H	.0046	.0036 175.6	.0031 180.9
PADIUS - 1.000 ATPLITODE	0167	.0193	2010. 204.9	15 17 25 15 11 15 15 15 15 15 15	. 0683 213. 7	.0070	.0058 175.5	.0038

**

TABLE A-4 (Continued)

>	VELOCITI / COMP	COMPONENT	RATIOS FOR MODEL DIATETER : 6.00	4 MODEL		8365 CORMELATION FEET	WITH R/V	ATHE . 739
HARMON 1 C	ANAL SES OF		LONGITUDINAL V- SUCITY	:.0C1TY	CONDUMENT	T RATIOS	(> × >)	
HARMONIC =	ō	0,	1.	12	13	14	15	15
RADIUS = .312 AMPLITUDE = FHASE ANGLE =	.0100	.0157	130.7	0156 178.5	.0185	.0107	.0082	.0014
RADIUS = .350 AMPLITUDE = FHASE ANGLE =	173.7	.0125	1.0.1	.0126	.0145	.0092	.0055 75.3	.0026 .3.8
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0057 150.6	.0069	130.7	.0091	.0098 120.5	.0054	.0025 88.2	2100.
PADIUS = .500 AMPLITUDE = = FHASE ANGLE =	10.00	.0042	.0002 121.8	. 0035 129.8	.0027	.0020	.0021	.0028
AADIUS = .600 AMPLITUTE = = PHASE ANGLE =	.6037 79.3	.0024	.0021	.0062 278.2	.0025	.0028 254.0	.0033	.0036 273.4
RADIUS = .700 APPLITUNE = FHASE ANGLE =	.0011	.0012	.0009 208.4	.0012	.0034	.0030	.0030 288.6	.0017
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0069 255.3	250.0	.0020 284.9	.0017	.0036 295.9	.0026	.0027	.0001
RADIUS = .900 AMPLITUDE = EHASE ANGLE =	201.1	.0026	. 6014 2 54. 6	.0022 268.9	,0020 270.9	.0021	.0012	.0010
PADIUS = ' 000 AMP.ITUDE = FHASE ANGLE =	.0027	.0026	.0012 195.8	. CC26	.0020	.0017	.0010	43.5

TIBLE A-5 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 3

.* .*	VELOCITY COMPONENT		CONDUMENT RATIOS FOR PROPERER DIATETER	1305th 6.00	5365 FEET	CORRELATION	WITH RIV	ATHENA .739
HARMON1C	ANALYSES	DF TANG	ANALYSES OF TANGENTIAL VE		OCIIV COMPONENT	. RAT105	(VT/V)	
HARMONIC =	-	6	m	7	Z.	9	7	60
RADIUS = .456 AMPLITUDE = FHASE ANGLE =	.2353	.0054	131.0	.00.0	.0046 141.6	.0036	.0034	.0031 84.2
RADIUS = .633 ACPLITODE = EMASE ANGLE =	.2069	.0088 289.5	0072	.0059	.0047	.0041	.0037	.0026 282.0
AMPLITUDE = 781 AMPLITUDE = FHASE ANGLE =	1932	. 0037 283.4	6.50°.	21.3.2	.0034 2 79.0	.0020	.0022	.0013
RADIUS963 AMPLITUDE = PHASE ANGLE =	.1868	.0031	.0026	.0042	.0044 106.3	.0044	.0027	.0012
HARMONIC	ANDLYSES	OF TANGENT; 38		- ¥1155-37	COMPONENT	. RAT105	(V1/V)	
HARROWIC =	6	10	-	<u>?</u>	13	7	15	16
RADIUS = .456 ATPLITUDE = FHASE ANGLE =	.0050	.0045	40.2	.00 51	.00.12	.0026	.0012	.00:0
##PLITUCE = .633 ##PLITUCE = :	. v625 ?97.0	.0024	20008	0008 211.8	.0016	.0030	.0030	.0034 156.5
AMBLITONE - 781 #YPLITONE = FRASE ANGLE =	.0019	.0008	. 48.6	0000	.0013	.3618	.0014	.0015
FADIUS = .963 AMPLITUDE = FHASE ANGLE =	.0002 21.5	.0008	20014	.0023 191.3	.0025	.0022	.0016 124.8	.0014

TABLE A-A - HARMONIC AMALYSFS OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 3

VELCTITY COMPONENT RATEGS FOR MODEL 5305 CORRELATION WITH R/V ATHENA 3	JA = .739
CORRELATION	
5305	134
ANDE L	6.00
1165 FOR	ALLE TER
AA	ia
VELCTIY COSPONENT	PROPELLEA

, E .	VELC, ITY COS	COMPONENT PROPELLER	RATIES FOR DIADETER	4 AMODEL 6.00	5305 FEET	CORRELATION	WITH R/V JA =	, ATHEN
HARMONIC	ALTALYSES	OF TANG	TANGENTIAL VE.	CCLITY	VE. COLTY COMPONENT	RATIOS	(V7.7V)	
MARKETT.	-	Ci	٣	3	'n	φ	7	ar.
470105312 470117006 = EMASE AMULE =	2717	0308	.6212	1,313	.0196	.0165	.0161	.0137 88.8
410115 = .350 439_1102E FMASE 3M3LE =	.2010	.0226	.0154	126.2	,0149	.0124	.0121	.0104 88.5
PADIUS = .400 AMPLITUDE = PHASE ANGLE =	.2483 178.5	.0134	, CCH7	. 6095 171.5	.0045 129.8	129.9	.0076	.0066
PADIUS500 AMPLITUNE - PHASE ANGLE -	.2273	.0027	.0013 2 52.7	1200	177.9	1,591	.0908	0010 69.3
FAG105 = .600 AMMITTOE = FAMSE ANGLE =	.2112 183.6	.0080	.00u6 2 P3.6	2051 276.5	.00.tu	.9037 268.4	.003+	. 6021
8AD195 = .700 APPLITODE = : FWASE ANGLE =	1997	.0065	.0061	275.1	.0047 279.9	.0034 268.0	.0033	.0020
FADIUS = .800 ATPLITUDE = PHASE ANGLE =	1920	.0031 280.0	29.77.1	.0023 256.8	. 0029 278.3	.0015	.0019 296.8	.0012
64010S = .900 ATMITTOSE = 5 FMASE AAGLE =	.1978 178.3	.0014	.0002 250.3	.0019 1:8.0	.0010	9100.	.0008	.0008
AMPLITUDE = 1.000 = PHASE ANGLE =	. 1868	.0031	.6526	.0040	106.3	.0044	.0027	.0012

TABLE A-6 (Continued)

332	VELOCITY COV	COMPONENT PROPELLER	RATIOS FOR MODEL DIATER & 6.00	00.6 1300#	5365 COR FEET	CORRELATION	R H H H B D	V ATHENA .
HARNDAIC	ANALYSES	OF TANGE	OF TANSENTIAL VE	00.117	COMPOVENT	RATIOS	(VT/V)	
HARNOT 1C =	ກ	0,	:	, 2	5	14	5.	16
RADIUS : .312 AVPLITUDE : :HASE ANGLE :	.0169	.0162	.0180 50.3	.0154	.0136	.0096 30.8	6.5	.0047
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0132	.0124	.0143	.0122 49.3	.0107	.0073 35.0	.0057	.0029
RADIUS400 AMPLITUDE = EHASE ANGLE =	5 169 69001	.0082	.0101	-008 -013	.0073	.0047	.0031	. 0009 315.5
SADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0027	.0025	.0037	.0030 £0.4	.0024	.0020	.0013	.0020
RADIUS = .500 ATPLITUDE = PHASE ANGLE =	.0020 306.2	.0022	.0005 3 23.2	, 600) 188. 6	.0013	.0028	.002H	.0033
#ADIUS = .700 4:PLITUDE = = PHASE ANGLE =	314.3	.0011	.0003 3 24.7	. 0004	.0013	.0323	.0021	.0025
RADIUS = .800 AMPLITUDE = EHASE ANGLE =	.0018 333.5	. 0009 .40.8	.0902	9000.	.0013	.0018	.0013	. 0013
PADIUS = .900 ACPLITUDE = PHASE ANGLE =	348.9	.0004	60066 140.3	.0013	.0017	.0019	.0013	. 0005 84.8
RADIUS = 1.000 AUPLITUDE = PHASE ANDLE =	51.6	.0008 212.2	206.4 206.4	. 6693 121.3	.0025	.0022	.0016	46.0

TABLE A-7

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHEMA, MODEL 5365, EXPERIMENT 9

	INPUT	DATA					
	RADIUS =	.456			RADIUS .	.781	
ANGLE	VX:V	VT:V	VR/V	ANGLE	VX/V	V1/V	VR/V
-1.0	1.014	.023	010	2.9	1,015	025	092
17.6	1.003	098	076	48.7	1.052	137	104
45.2	1.122	16B	084	89.1	1.063	~.190	.007
63.6	1.121	217	053	94.6	1.070	~.188	.023
63.6	1.124	216	058	133.2	1.058	~.136	.127
91.1	1.137	241	007	140.0	1.054	117	. 142
109.0	1.132	228	.031	179.0	1.075	.002	.182
135.0	1.129	170	.076	179.0	1.076	.002	, 182
155.6	1.136	097	. 099	225.5	1.075	.134	. 135
179.7	1.131	003	,111	271.4	1.092	.191	.013
193.0	1.136	.055	. 108	316.0	1.072	.128	116
224.2	1.138	. 159	. 081	349.3	1.024	.025	127
240.0	1.145	. 196	. 055	351. 3	1.020	.016	121
269. 6	1.137	. 225	.002	355.6	1.027	017	111
269.7	1.145	. 224	~.002	362.9	1.015	~.025	~.092
286.1	1,143	.215	~.034				
315.0	1,131	.148	081				
331.0	1.121	.116	093		RADIUS *		
359.0	1.014	.023	010	ANGLE	VX/V	VT/V	VR/V
361. 0	1.014	.023	010	~ . 5	1.011	.036	135
				-1.0	1.009	.036	137
	RADIUS =			45.5	1.050	120	145
ANGLE	A × . A	VT/V	VR/V	91.2	1.071	177	014
~ . 3	1.013	~.035	~.070	135.1	1.056	124	.115
46.0	1.048	~.133	-,111	180.9	1.066	.009	. 169
91.7	1.091	~.189	007	225.1	1.066	.133	,119
137.0	1.053	~.122	.102	271.0	1.074	. 193	011
137.0	1,056	~.121	. 101	316.0	1.063	.135	146
183.4	1.049	.032	.136	359.0	1.009	.036	137
225.5	1.047	.168	.080	359.5	1.011	.036	-,135
271.5	1.071	. 225	032 129	360.5	1.011	.036	135
315.7	1.059	. 152	-, 155				
330.8	1,064	.117	~.135 ~.126				
340.0	1.047	.035	~. 101				
351, 0 358, 0	1.016	.005 035	~.101 ~.074				
358.0 359.7	1.013	~.035	070				
309.7	1.013	033	070				

TABLE A-8 - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 9

Š

%T.7%

SHOW.

. 739 ₹ VELOCITY COMPONENT RATIOS FOR MODEL 5365 FROM EXP. 9 PROPELLER DIAMETEP = 6.00 FEET

1.000	1.057	800.	008	1.077	1.082	13.93	90.06	352.50
906	1.051	.002	.007	1.082	1.088	15.49	3.79 2.23 1.13 .84 6.42 5.44 4.50 3.34 2.49 1.57 1.07 .84 .79 0.00 92.50 102.50 90.00 105.00 102.50 95.00 90.00 92.50 97.50 102.50 100.00 90.00	357.50
. 800	1.064	000	.016	1.088	1.095	17.37	1.07	99. – 357.50
. 700	1.060	.004	.007	1.097	1.107	19.58	1.57	245.00
.600	1.060	.011	010	1.117	1.132	22.48	2.49	-1.40
. 500	1.094	.001	002	1.147	1.172	27.20	3.34	-1.89
.400	1.152	020	.021	1.185	1.229	34.42	4.50 95.00	-4.55 357.50
.350	1.191	034	.038	1.207	1.265	39.31	5.44	-6.94 357.50
.312	1.224	047	.054	000.0	0.000	43.73	6.42	-9.28 357.50
.963	1.057	800.	008	1.077	1.082	14.44	.84	352.50
. 781	1.064	000	.016	1.088	1.095	17.76	1.13	98 357.50
.633	1.055	110.	600	1.109	1.122	21.31	2.23	-1.26 242.50
RADIUS = .456	VXBAR = 1.116	VTBAR =007	900 =	1-WVX # 1.160	1.196	= 30.01	= 3.79 = 90.00	ENEG = -2.69 THETA = 0.00
RADIUS	VXBAR	VTBAR	VRBAR	1-WVX	XM-F	BBAR	BPOS THETA	ENEG THETA

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.
IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
IS MEAN ANGLE OF ADVANCE.
IS MEAN ANGLE OF ADVANCE.
IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VTBAR VRBAR 1-WVX 1-WVX 1-EX BBBAR BBBAR BBCG THETA

TABLE A-9 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIZENTAL

:	RADII FOR EXPERIMENT 9	TAPERENENT	6						
		VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER =	COMPONENT	RAT105 DIAMETER	FOR MODE	MODEL 5365 FROM 6.00 FEFT	₩ Exp. 9	ر م *	.739
	HARMONIC	ANALYSES	OF LONGI	TUDINAL	VELOCITY	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT	RATIOS	(\ \ \ \ \ \)	
	HARMONIC	-	2	ю	4	5	9	7	œ
	RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0379 254.5	.0328 2 56.8	.0226	.0159	.0098	.0063	.0031	.0006
	RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0079	.0222	.0093 2 19.8	.0027	.0042	.0033	.0019	.0016
	RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.0196	.0151	.9069	.0056	.0063	.0014	296.3	.0012
	RADIUS = .963 AMPLITUDE = PIIASE ANGLE =	.0165 256.5	.0167	.0095	.0029	319.7	344.8	.0009 19.9	39.5
	HARMONIC	ANALYSES	0.5	TUDINAL	LONGITUDINAL VELOCITY	COMPONENT	RATIOS	(v/xv)	
	HARMONIC	ø	0	=	12	13	4	15	16
	RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0021	.0014	.0006	.0005	.0007	.0008 133.8	.0008	.0004
	RADIUS = .633 AMPLITUDE * FMASE ANGLE *	.0013	,001 0 353.7	.0006	.0008	.0002	.0001	.0002	.0001
	RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.0013	.0007	.0007	.0005	.0008	.0004	.0005	.0004
	RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0002	200.9	.0003	318.7	3.003	.0002 340.6	25.4	.0001

TABLE A-10 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED

PADII FOR E	FOR EXPERIMENT	6 I						
>	VELOCITY COMPONENT PROPELLER D	COMPONENT RATIOS : PROPELLER DIAMETER	RATIOS SIAMETER	F0.R	MODEL 5365 FF 6.00 FEET	FROM EXP.	9 ♠∪	. 739
HARMONIC ANALYSES		DF LONGI	TUDINAL	LONGITUDINAL VELOCITY	COMPONENT	I FATIOS	(VX/V)	
HARMONIC		N	e	4	ស	9	7	ш
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.1039	.0435 265.5	.0460	.0400	.0203 235.6	.0132	.0106	.002 2 134.3
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0828	.0404	.0386 2 60.6	.0324 251.5	.0170	.0109	.0083	.0015
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0590	.0367 259.9	.0302	.0238 246.1	.0133	.0084	.00 56 169. 5	.0007 97.8
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.02 54 262.8	.0300	.0180	.0110	.0076	.0051	.0017	.0009
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0101	.0240 252.6	.0109	.0040	.0046	.0036 263.1	.0016 292.8	.0015 334.6
RADIUS = .700 AMPLITUDE * PHASE ANGLE *	.0129	.0179	.0070	.0023	.0057 266.6	.0023	.0018	.0014
RADIUS = .800 AMPLITUDE * PHASE ANGLE *	.0204	.0147	.0071	.0060	.0063	.0012 260.6	.0013 297.9	.0012
RADIUS = .900 AWPLITUDE * FHASE ANGLE *	.0197	.0150	.0095 2 76.8	.0054 339.5	.0048 291.6	.0008	.0008 330.6	304.0
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0165	.0167	.0095	.0029	.0033	344.8	9.91	39.5

TABLE A-10 (Continued)

	VELOCITY COMPONENT PROPELLER	COMPONENT PROPELLER D	RATIOS DIAMETER	FOR MODEL	- 5365 - EET	FROM EXP. 9	A	.739
HARMONIC	HARMONIC ANALYSES C	DF LONGIT	LONGITUDINAL	VELOCITY	COMPONENT	IT RATIOS	(VX/V)	
HARMONIC	en	ō	-	12	13	14	51	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0035	.0012	.0003 258.2	.0014	.0016	.0016	.0015	.0008 176.8
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0021 70.7	.0013	.0001	.0009	.0013	.0014	.0013	167.3
RADIUS = ,400 AMPLITUDE * PHASE ANGLE *	.0025	.0014	.0004	.0003	.0010	140.5	.0010	.0005
RADIUS500 AMPLITUDE	35.5	.0014	.0007	.0007	.0006	.0006	.0006	.0003
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	4100.	1100.	.0007	.0009	.0004	.0002	.0003	.0002 84.8
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	304.5	301.3	.0005	.0003	.0004	.0002 259. 5	.0002	.0002
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0013	.0007	.0008	.0006	.0008	.0004	.0005	.0004
RADIUS = .900 AMPLITUDE ** PHASE ANGLE **	.0007	.0005	.0006	.0005	.0006	.0003	.0003	.0002 283.9
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0002	.0001	.0003	318.7	310.6	.0002	.0001	.0001

TABLE A-11 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL

4E.	VELOCITY COMPONENT PROPELLER D	COMPONENT PROPELLER D	RATIOS FO	αx	MODEL 5365 FROM 6.00 FEET	M Exp.	ο ∀	.739
HARMONIC ANALYSES		OF TANGE	NTIAL VE	רסכונג נ	OF TANGENTIAL VELOCITY COMPONENT	RATIOS	(V1/V)	
HARMONIC *		7	ы	4	ß	9	۲	6 0
RADIUS ~ .456 AMPLITUDE ~ PHASE ANGLE ~	.2333	.0027	.0030	.0039	.0046	.0028	.0022	.0014
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.2047	.0105	271.3	.0063 263.9	.0048 275.6	.0039 303.8	.0037	. 0024 8.
RADIUS = .781 AMPLITUDE = PHASE ANGLE *	.1873	.0015	304.	.0021	.0022	.0020	.0011	294.9
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	178.8	39.5	.0037	.0032 51.8	. 0023 53.6	.0022 58.4	.0022	.0017 82.4
HARMONIC	HARMONIC ANALYSES OF TANGENTIAL VELOCITY	DF TANG	ENTIAL V	ELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC	65	0	Ξ	12	13	4.	51	16
RADIUS = .456 AMPLITUDE * PHASE ANGLE *	.0022	.001 6 63.1	.0014 83.8	.0011 95.8	100.	114.9	.0009	.0006
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	39.3	.0015	,0013	.0013	175.7	.0014	.0013	.0012
RADIUS = .781 AMPLITUDE = * PHASE ANGLE *	.0010	. 0008 293.1	304.5	305.1	304.1	.0005	316.8	.0005
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0013 103.3	.0008	.0005 9.86	.0004	, 0000, 888. 0	78.8	71.7	.0004 89.7

TABLE A-12 - HARMONIC ZNALYSUS OF TRIGENTIAL VELOCITY COMPONENT JATIOS AT THE INTERPOLATED RABIE FOR EXPERIMENT 9

	739
	* YO
0	
FROM EXP.	
R ROM	
5365	FEET
VELOCITY COMPONENT RATIOS FOR MODEL 5365 FI	6.00 FEET
FOR	14
105	ETER
RAT	DIAM
L N H	_ R.B.
COMPON	PROPELLER DIAMETER
¥ L	۵
VELOC	

	086	PROPELLER	DIANETER	÷ 6.00	6.00 FEET		* 4 0	.739
HARMONIC	HARMONIC ANALYSES	DF TANGE	OF TANGENTIAL VELOCITY		COMPONENT	RATIOS	(V1/V)	
HARWONIC .	-	7	Е	4	ις	9	1	90
RADIUS = .312 AMPLITUDE = * PHASE ANGLE =	.2652 174.9	. 0329 99. 5	108.7	114.2	.0190	.0154	.0139	.0050
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	176.8	.0232	.0128	.0139	.0144	.0113	.0101	.0035
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.2446	.0124	.0071	.0082	.0091	.0068	.0059	.0020
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.2253	.0031	.0035	.0033	.0028	.0011	.0008	.0017
RADIUS = .600 AMPLITUDE = PHASE ANGLE *	.2094	.0101	.0070	.0060	.0044	.0035	.0034	.0024
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	. 1954 182.8	.0056	.0059 2 83.5	.0043 264.9	.0037	.0030	.0022	.0016
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.1859	.0010	310.3	.0016	. 0019	.0018	.0009	.0011
FADIUS = .900 AMPLITUDE = PHASE ANGLE =	. 1815	.0021	.0032 355.4	.0015 39.6	.0007	8.67 79.8	.0006	.0002
RADIUS = 1.000 AMPLITUDE = PHISS ANGLE =	.1813	.0025 39.5	.0037	.0032	.0023 53.6	58.4	.0022	.0017

IABLL A-12 (Continued)

>	VELOCITY COMPONENT PROPELLER	COMPONENT PROPELLER D	RATIOS F DIAMETER	8 O	MODEL 5365 FROM 6.00 FEET	M EXP.	o >	.739
HARMONIC	ANALYSES		OF TANGENTIAL VELOCITY	- DC1 TY	COMPONENT	RATIOS	(V1/V)	
HARMONIC	6	0	-	12	13	4	15	9
PADIUS + .312 AMPLITUDE = PHASE ANGLE *	.0020	.0008	.0015 350.3	.0028	.0036 33.8	.0041	.0047	.0042 84.8
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	. 0019 109.9	.0007	.0011	.0019	.0025	.0030	.0034	.0030
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0020	.0012	.0011	.0012	.0015	.0018	.0020	.0017
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0022	.0019	.0016	.0013	.0012	.0010	.0006	.0004
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0019	.001 8 66.8	.0015	.0015	.0015	.0014 199.0	.0012	.0012
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0008	.0005 6.7	.0002	.0002	.0005	239.2	.0007	.0008
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	272.4	.0008	.0008 303.0	.0007	311.6	.0006	.0005	331.3
RADIUS = .900 AMPLITUDE * PHASE ANGLE *	207.9	. 6003	.0004	.0004	.3004	.0004	20.2	.0004
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0013	.0008	98.6	.0004 93.3	. 000 . 400 . 0	.0004	.0004	.0004 89.7

APPENDIX B

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS

FOR EXPERIMENT 10

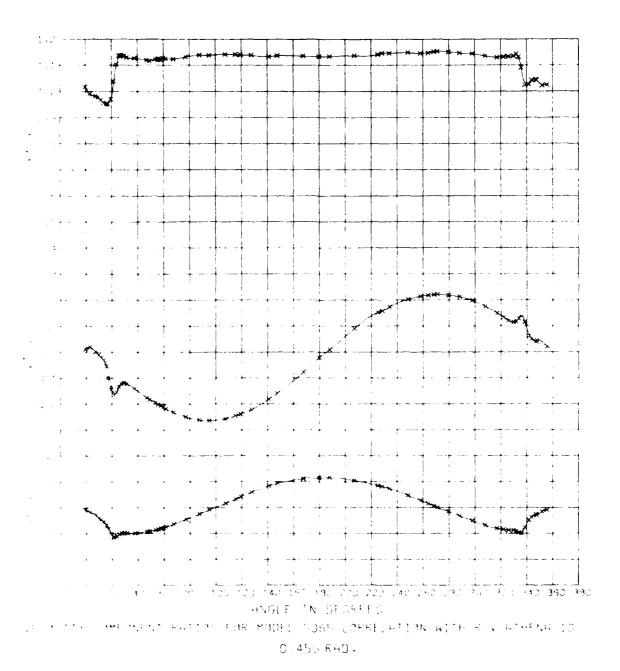
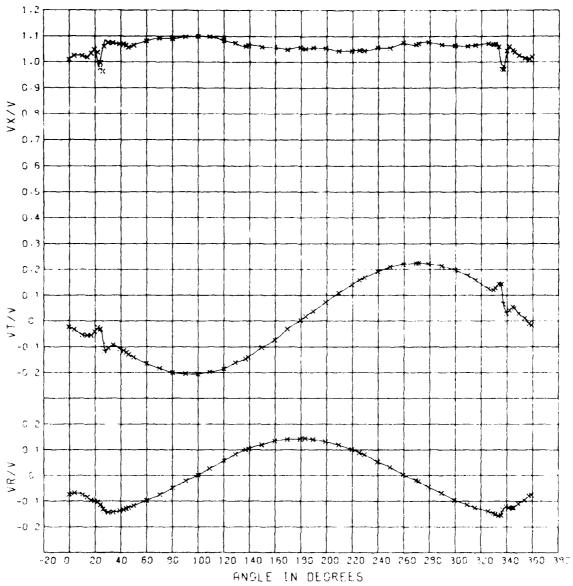



Figure 3-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 10

VELOCITY COMPONENT RATIOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 10 0 633 RAD.

Figure B-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 10

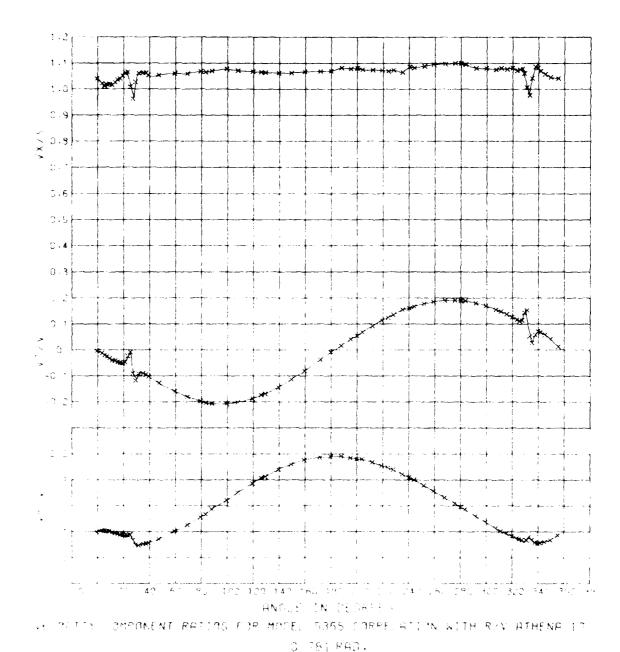
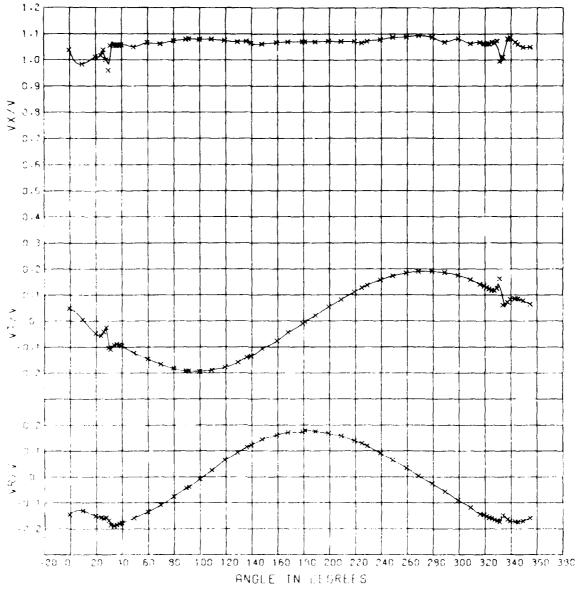



Figure 8-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment IO

VELOCITY COMPONENT RA LOS FOR MODEL 5365 CORRELATION WITH R/V ATHENA 10 $-0.963~\text{RAD}_{\odot}$

Figure 8-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 10

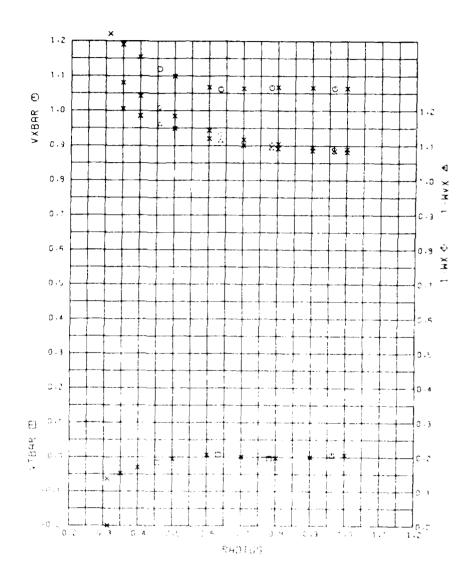


Figure B-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 10

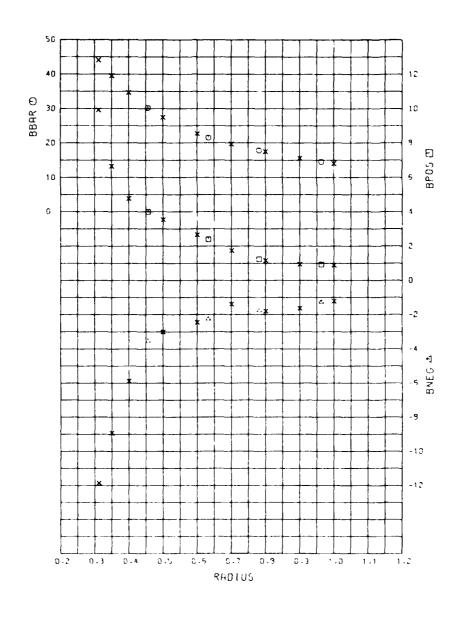


Figure $\beta - 6$ - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 10

TABLE B-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 10

	RADIUS +				#401US -				Rantus •	.741			##11US +	.963	
****	*1/*	¥1/¥	4R/ ¥	4466	41/4	¥ 17¥	44/4	ANGLE	V 1 / V	¥174	44/4	AMGLE	41/4	*1/4	4874
	4	. 017	00 9	1.5	1 - , 49	6 2 3	073	5	1 . 5 .	00*	137	9.5	1. 37	. 044	165
3 - 0	.49.	.019	610	10.0	1 - 124	655	664	3.5	1 21	513	515	19.6	1 - 17	699	130
9.5	. 47	616	1	1	1 17	055	0 4 3	7.0	1 - 10	621	897	23.7	117	057	156
11.6	. 467	020	4 - 6	17.0	1 34	056		9.1	1. 15		844	25.7	1 3 .	041	160
13.4	. 16.	0.00	054	19.0	14.44	041	131	11.3	1 . 1*	546	1 . 1	27.6	1.506	023	156
15.6	2445	1 2	0.5	22.1	1 3 5	25	- 187	15.3	1. 20	41	105	24.5	1957	627	- 158
17.4	162	0 99	642	24.3		- 0 34	115	15.3	1 35	044	117	29.7	. 467	107	15.0
: 4.5	. +1:	144	133	5 - 1	. 979	6 31	115	17.3	1 - 5	- 051	- 111	31.0	1. 55	110	166
11.6	4	165	* 111 *	26.3	. 456	0 31	114	19.7	1 **	052	11 -	35.7	1 55	6 91	169
*4.5	1.121	- 154	115	26.45	. 171	- 0 42	131	19.4	5.4	050	112	37.7	156	- , 689	7.185
27.0	1.137	151	49 9	27.0	1.754	117	139	21.1 23.2	1 - 51	025	- 11 4	19.6	1 . 57	6 97	177
27.3	1.157	119	998	36.1	1 75	105	-,165	2	1	- 669	117	49.3	1. **	124	15 8
29.6	1.13.	119	038	14.4	1. 23	- 104	145	27.2	. 16.2	4-	1 3 7	69.5	1 . 61	167	* . 134
17.5	1.12	141	198	19.0	164	- 169	-,137	29.0	1 - 27	114	151	79.4	1	167	189 876
47.0	1.114	177	*****	47.1	1. 64	115	133	31.2	1. 51	094	155	49.3	1.174	192	
-9.0	1 - 117	-, 183	071	** -1	1	177	124	55 -1	1 67	0 90	- 14 5	91.3	1 4 !	1 📆	* . 6 * 6
53.5	1.124	195	006	56.3 56.0	1 55	- 1 30	175	17.2	4 4 67	t 96	1 . 5	41.4	1 / ?	193	030
57.5	1.171	266	981	60.0	1 8 .	- 165	098	97.1	1. 57	10 5	- 111	109.0	1 75	189	- 4554
40.4	1.:27	711	2/8	70.1	1.791	1 04	015	59.4	15.59	160	099	139.1	1 81	190	. 626
51.5	1.125	219	075	5.00	1	500		69.1	1 5 9	180	874	114.0	1 7 -	178	
17.0	1 - 1 7 4	232	865	49.7	1	260	049	79.1	1 . 67	197		179-1	1 7 -	- 159	.813
4	1.141	261	025	91.0	1. 94	765	619	79.4 63.1	1 - 65	- 190		119.5	1. 6.	- 135	.123
** .:	1 - 1 38	265	55 4	100.0	149	425	.612	46.3	1. 6.	26 ?	613	1 . 6 . 3	1 61	167	.100
187.5	1.197	- 25	. 21 h	139.0	144	; 4A	.026	94.6	1. **	25*		159.3	1 67	977	-161
119.3	1.15.	1,214	.042	129.0	1	- : 60	. 04 1	119.5	1. *:	2.2		179.7	1. 64	0	.17 2
127.6	1 - 1 39	222	. 0 - 0	117.0	61	1.5	. 153	126.2	1. 6	1		141.0	1	00	.174
141.5	1.131	1.147		199.4	1 65	1 40	. 10 %	2.19.2	164	-, 364	-117	184.3	1 / .	. 021	-175
167.6	1.137	160	. 111	159.6	158	163	.119	139.5	1. 60	- , 1 44	- 1 • 0	199.2	1 - 71	. 642	-157
179.8	1.111	0.24	-115	169.4	19	0.31	. 139	159.3	1. 6.	. 601	.151	214-1	1	. 111	-111
187.4	1.131		.115	174.5	14.57	- 48 5	. 1 * 1	171.5	1. 6	. 10	. 185	224-8	1 . 5*	- 177	-179
147.4	1.135	. 664	-115	161.4	1 - 56	- 014	.1.1	179.7	1. 64	004	-144	278.4	1 - 73	. 1 37	.119
225.8	1 - 1 35	. 152	. 185	199.0			. 1 1 1	107.0	1 41	. 615	. : 4 4	294.1	174	. 157	.891
724.1	1.147	. 158		249.1	11.41	. 164	. 11 9	194.3	1	. 641	.151	759.2	1 55	184	. 634
214.8	1 - 1 96	174	. 67 2	219.5	1	- 1 - 1	4191	203.9	1 7%		.17	264.7	1 91	. 1 96	3 -
248.1	1.189	. 202	.627	229.2	1	- 154	.869	211.9	1. /5	. 2 9.2	15.5	219.1	1 87	. 191	~ . 026 ~ . 057
253.3	1.10	. 217	415	219.5	1 50	19.	.051	219.8	1. /1	.115	.144	219.2	1 82	. 176	091
249.1	1 - 1 5 -	. 276	. 00 7	2.9.2	1 54	. 204	. 452	227.4	11.77	1 15	. 13 /	32 A . A	1 - 62	. 149	~ - 114
240.7	1 - 1 4	. 220	. 04 7	759.5	1 - 75	.219	- 84 5	254.3	1. 65	. 155	-177	316.3	1	141	16 5
714.7	1.153	. 271	015	271.2	168	. 275	026	240.2	1 - 85	163	.11.4	319.2	1 - 262	. 134	* . 157
744.1	1.15	513	633	279.8	1. 11	+ 221		251.9	1 - 42	.167	. 166	32 5 . 2	1 - 1 0 3	. 124	157
237.4	1 **	. 197	451	249.2	1 60	. 734		254	1. 91		. 256	375.7	1 64	. 118	134
311.4	1 - 1 1 -	1174		299.5 389.3	1 . 61	- 197	11 *	267.4	1 97	. 1 90	.017	327.2	1 65	. 116	16 4
22	1 . 1 1	. 1 33	204	315.3	64	. 149	- 117.5	275.5	1 94	. 190	03 %	311.7	. 494	. 163	168
325.5	1 . 1 34	. 121	467	324.5	1 7 2	- 176	139	743.6	1. 96	. 187		333.7	. 160	. 4 45	145
329.0	4 **	- 115		329.5 529.5	165	171	146	221.7	1 4 .	. 1 *6	0 4 1	334.8	1 56	. 6 37	1 - 9
111.4	1-1-1	.117		311.0	1/.	.119	115	799.5	1 - 1 5 - 75	. 178		317.7	1. 41	. 672	17 4
355.	11.41	. 1 99	. 104	331.4	1 - 61	142	-,154	311.0	1	. 155	644	39.1.1	1	. 144	173
111	1 . 1 .	. 135	444	115.5	1 . 55	1.45	156	315.5	1 . 7 .	1117	- 1107	344.7	1.54		17%
349.5	1. 1.	. 0 97	45.5	317.0	. 47 .	- 1 42	-,154	319.8	1 - 1	. 126	114	349.2	1 4	.478	17 0
3.1.	1. 2.		45 9	319.5	1 . 42	. 6.74	161	323.4	1 - 1	114	176	155	1 . 51	. 663	159
3-1.	1 - 25 2	. 247	0 3 0	561.6	1 54	. 841	176	327.4	1. 78	115	- 132	159.1	1 - 17	. 648	1 . 4
3+7.2	1 . • /	. 6 . 1	127	363.4	1. • *	0.55	12 7	374.0	1. 01	. 143					
347.8	1	. 9 34	176	145.4	1	. : 44	176	311.0	1	. 157	11 1				
151.7	1127	. 0 36	0 1 6	3-9.2	1 25	75	13 9	313.0	1 4.7	. 652	119				
355.5	11.724	. 6 21	418	353.7	1. 15	-017	046	317.5	14.85	. 854	- 107				
359.0	1 17	.017	- , 11 1	347.0	1 11	- 611	076	319.6	1 41	. 071	165				
				149.3	2.1	- 1	0'5	341.4	1 7	. 855	- 14.5				
				149,	1. 39	- 621	073	349.4	1. 44.	. 641	- 1111				
								355.3	1. 41	.013	5.115				
								159.5	1. 34	0	16 ?				

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 10 1 TABLE B-2

0 4 2 1 1 1	1.000	1.064	. 605	610	1.081	1.089	14.02	88. 00.36	-1.22 332.50
4 1 A 1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	000	1.066	100.1	900.	1.085	1.095	15.56	.94 97.56	-1.63
10% ±11H	0000	1.007	400.1	.016	1.001	1.104	17.43	1.16	-1.60 332.50
4 1 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ن ۵۵٪.	1.064	000:-	800.	1.101	1,117	19.61	†0 -0 -0 -0 -0	332.50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.600	1.00.1	300.	100°-	1.120	1.143	22.63	100.00	-2.46 335.60
VELDAL V COMPONENT PATIL. TO TO SOUS CONSELATION ALTH ROY ATHENA 10 FRED. FROM LINE AND THEN AND FELL TO FELL TO SOUR THE SOURCE SOLD TO SOURCE SOUR SOURCE	y u	-75		CY	; ; •=	# # *		. 00 2.39 1.24 .93 4.91 6.65 4.97 . 7 2.13 1.74 1.16 .94 .88	
200 E 4 100 100 100 100 100 100 100 100 100 10	a.	2	1.0.1		1.135	1.242	34.4.3	4 90.	9.00 10.00 1
707708EN	.350	1.193	0.48	.035	1.205	1.290	39.56	6.65 22.50	-8.93 5.00
	. 12	1331	۳ ٠٠٠	?	0.00	00000	4.1, 01	ē ?	-14,27
y T	(ac ;	: 00:	300.	610	1.582	1.095	14.54	70 70 90	332.50
1	T.	1.066	+.004	0.10	1.032	104	17.e2	1.24	322.50
12:67:52:40	(, , ,	1.5.7	200		5.	1.133	21.46	2.39	726 355.60
, C	٤.	20	- 516	5	19. 1	50 : · ·			1 5 5 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		-		:	٠.	:	3 5 5		

114 JUST. ACCOMPENDATE, WEAK EQUALITY CONTROL SELECTIVE ACCOMPENDATE TO STATE ACCOMPENDATE ACCOUNTY.

RECOMPENDATE THE TRANSPORT VELOCITY OF TAXABLE ACCOUNTY.

A CONTROL OF A WAS TO CONTROL OF TAXABLE ACCOUNTY.

A CONTROL OF A CANAGE.

A CONTROL OF TAXABLE ACCOUNTY OF ACCOUNTY ACCOUNTY.

A CANADA TO CONTROL OF TAXABLE ACCOUNTY.

A CANADA TO CONTROL OF AC

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 10 TABLE B-3

1	in pe			- 70				
			.;			0	2.2	
•		^,			••	٥	•	÷
		.0348 263.2			0.120	253.9	.0070 2.0.2	0 a 0 a
2 add 1 add		- 9224 259+9		10 m 10 m 10 m 10 m 10 m	2.55	.0032 274.8	. 3007. 307.5	(a) (V)
	3 : <i>(</i> >	ጠ ጠ ጠ (1 ක) (1 ක)	**************************************		21.00	. 0018 243.8	. 6921 133.2	7 ·
5 B 277 C 27 C 27 C 27 C 27 C 27 C 27 C 2	* 80 * 30 * 50 * 50 * 50 * 50 * 50 * 50 * 50 * 5	2.0 0.8 0.8	2		2.007.2	.005 .005 .44.6	٠٠٠ ١٥٠٠ ١٥٠٤	역 G 7 : 12 % 보호
H4F V 33, 10	A Same Control	1000				70 E 7 E		
	c	0		14		·,	3.	ī.
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	त्त्र त १८	5 °C 0 °C 0 °C			÷ ;	40 54	51.5	
0.00		3 6 6 -				75 (D)	 	(2)
# 0	15 (5) 14 - 1 2 - 24 25 2 - 2	.0007 200.5		> 7. > 6.	0 0 0 0 0 0	60 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	3 F 0 7 0 7	30 m 3 3 4 0 4 3
5. 331C27 3. 331C27 3. 321C27 3. 321C27	5.633	0.00% 0.00%			·	8 8 6 7 6 7 7	0. x 00	. 7 3 3 3 3

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 10 TABLE B-4

PREDITIY CONTRACTOR	COMPONENT PROPELLER C	RENT RATION FO	000 S	5355 FEET	CORRELATION	G H114	V ATHENA 10
		ر بران د		رد		7	v
. 1133 236.3	.0458 265.9	.0423 200.5	0.43 0.03 0.03	.0272	.0248	.0187	.0143
6959 239.6	.0428	.03% 208.8	* C1	.0235 251.4	.0206	.0151	.0112
.0593	.0370	2, 10, 2	. 9 2 03 . 59. 5	.0192	.0157	.0109	.0.77
.0246	.0316	.0175 234.1	. 0122 285.1	.0122 250.4	.0083	.0046	.0025
.0138 527.5	.0253 260.5	250.5	.0031 244.3	.0073	.0040	.0012	. 0000 349.8
.6039 .88.7	259 0	200.2	00.00.	.0047 243.9	.0024	.0007	. ୧୯୦୭ ଅଟି: ଜ
. 010. 24.3	.0140		5.50°	.6047	.0019	.0624	.0017
. 620a 256.2	.0155 255.4	22. 4	.0053	.0063 205.3	ანენ. 196. 8	.0010 154.8	. (037 101.9
. 01d5 946.8	.0196	22.5	0	211.1	.0051 189.6	100.1	167.0 167.0

(ABLE 8-4 (Continued)

•

7. ATH 10 1000 · 90. 40. .007: 60.7 . 6625 308. 1 . 56.39 292.1 .0019 291.9 .0001 .00% 97.2 4000. 4 TO LEGIS CHAREATION ATTHE .20°. 87°. 3.05 4.05 4.05 35...38 . 56.30 81.0 .0030 0020 285. A 2 . 3 . 3 20012 .0020 242.5 7) 111 CON CHENT RATIOS 5.1.1 30075 .0021 83.9 .0016 296.3 .0025 283.3 .0027 .0023 .0026 • 1 . 0.27 1 • 9. 9 . 01 ° 0 1 0 0 · 9 0 · 9 10101 41021 5040 94.3 354.9 .0.25 256.3 . 0017 224. 5 23.14 23.14.6 2.0.0 107.17 000 % . 0.984 214. 163.3 100 103.1 .001 2101 200 : 3 0.1.1.1 1,510s 114.8 9.00 j 3, 3, 16 14, 7, 3 .:030 2 / 3 2.000 Attaches to 05 (010110); 13 . 0108 143.8 .0097 138.0 .004 130.4 ,0042 210.3 .0002 .0020 1£0.4 .0034 . 0032 199.0 0 2.3 1,271 .002.1 0000 202 3.1 137.6 10027 .003; 103.9 in G 2007.00 100.00 1 3000 - 20 430105 = 1,000 3.00_7100E 6847E A50_E 000. . . . н 11.11.11.11.11 ۲. ##01.0 = .3 ##011.00E :P#SF #131E 3 1 2 3 6 7 1 2 1 B - 2 10 1 0 1 1

•

···. .

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE B-5

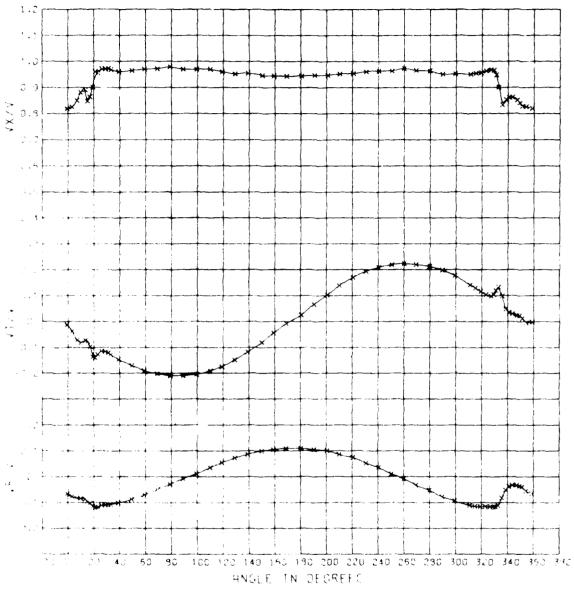
*

KADIL F	FOR EXPER	EXFERIMENT	01					
		COTPONCYT A	DIAT	10	53+5 (3PPE FELT	PELATION	E TO	J AT. 124 10
) [* C e V · ·	577 17.5	3777 30	A STATE OF STATE	ر. 	200 00000	24T105		
) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	·	₹	÷	٠;	ທ	÷ο	7	ಐ
0000 - 00000 0000 0000 0000 0000 0000		. 000-3 54-8	80		. 6538 139.7	.0037	0000. 03.00	# 0 . 0 t
37 V 30 V 4 V 30 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V	715	3000 + 30	0 (2) 17 • (N	• •	.0041 241.8	.0029	.0027 283.2	, 00019 642, 1
440105 = .781 47941:00E = =	989 989 1	.0059	3.6		.001.283.0	.6007 255.3	. 00 . 2 2 . 5 . 5 . 5	1 : t < C : + C : t : C : t : C : t :
0000. # 000000 #000000000000000000000000	2007 2007 2008	.0071 68.4	.a 	(A) (A)	0.00. 0.00.	.0035	2003. 4.601	0 10 0 10 0 10
OINOURKH	ANGLISES	OF	TANDENTE		COMPONENT	T RATIOS	(× T ×)	
1 0 1 2 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Ö	õ		<u></u>	en En	 .1	3.5	<u> </u>
957 - 377 - 777 -	.0048 30.1	.005.7			03/52 ·	.0035 359.3	.0022 340.J	- C - C - C
4.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 61.000 41.000	.0008 292.8	2 2	<u>0.0</u>	.0020	.0335	00000.	.0033 163.7
1 H B B B B B B B B B B B B B B B B B B	: 0 :: :::	.001 18:.8			# 300 m	.6020	.0012	.0006 247.2
8 3000 1000 8 3000 1000 8 3000 11 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10	. 0013 7.63.7	.00013	7. T		.001.	0.001.	. :000 221.8	. 0000 s 2 u b . 0

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 10 TABLE 8-6

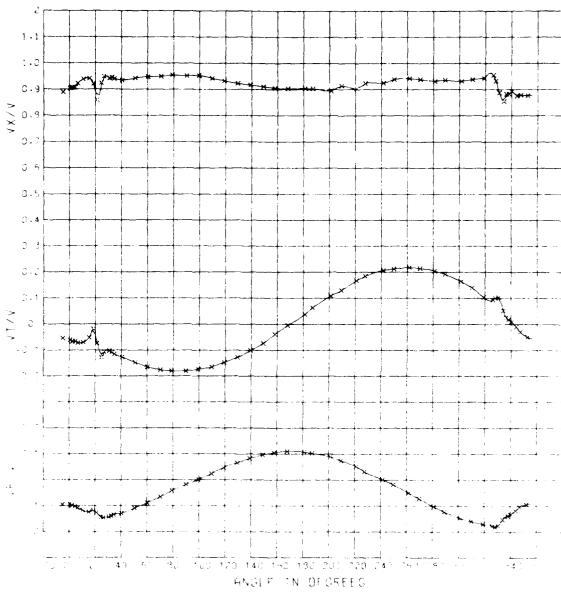
-1	: .
The state of the s	• :
٠.	

-							•:	•
							•	
		۲۰		•	s	-Ω-	-	٢
					5. <u>\$</u>	.0156	.0123	0.5
		50 50 50 50			123.7	120.1	. 00. 1. 10	
		87.6E	+ 2 + 		0.00 0.00 0.00 0.00	.0076	. 300°.	T-00:
	2.	- 5% 15 - 1 13 - 1 13 - 1	* O4	+ t 	.0016 9.181	.0016 163.9	.0007	
		310.2	* *** **		ar t-	0 C C C C C C C C C C C C C C C C C C C	5.537	
	: 1 : .	000. 0.000.			E000.	0.00	6 1 6 2 7 3 7 4	7 0 0 0 0 0 7
		28.2	- 59		3 C. F W W. C.	1 0 0 1 0 1	100 mm 10	0.00
	17 (1) 13 (4) 1 (4) 1 (5)		. 13	1 · · · · · · · · · · · · · · · · · · ·	103.	0. 0. 0. 0.		100.
1.000 1.000	1.3.1.7.	.00°1 88.4		:		.003 5	0. 0. 0. 0. 0.	5.6


TABLE B-6 (Continued)

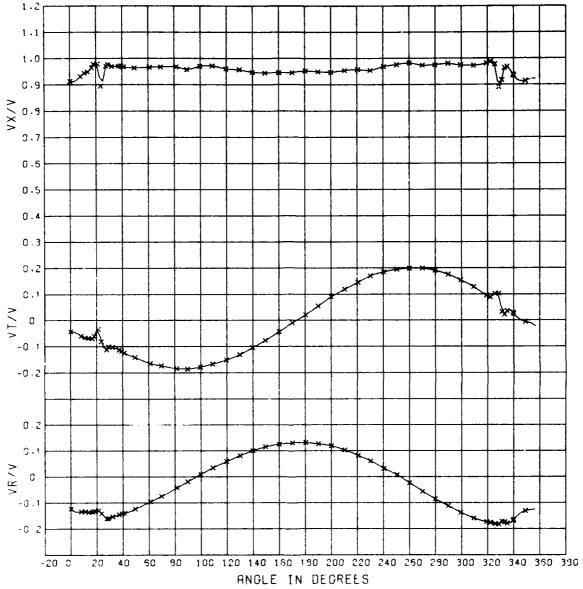
*				19		5	4 1 7 4 5 7	H. F.
						821108	·	
	Ŧ	Q F				7	<u>ئ</u> •	÷
		÷ ;		1.	1610.	0.4		2 + 2 + 5 + 5 + 1
		9.4 		•		. 0124 448.7	3 · · · · · · · · · · · · · · · · · · ·	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		000	:		3.50°	.0078 8.1.6	\$. \$. \$. \$.	
			• .	•	80000 00000	.0012 28.6	7.73.	
	28.0	5 7 6 2 6 5 + 6		• •	7 O	© 6. 000. 000. 000. 000. 000. 000. 000. 0		
		2.2.5			7. "T	20. 34 01.		. 14 . () . ()
	1.00.	.0012 176.8		•	m ::	6:00.	11.2.1	1. 7 .3
	100 100 1.36	147.3		1 m = 1 m =	E 3.	4 N 0 T 0 T	3 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	3 · · · · · · · · · · · · · · · · · · ·
	7.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00	117.7	. ÷		153.3	0.000.	2.1.50	၈၀ ၁၈ ၀၈ ၁၈ ၁၈

APPENDIX C

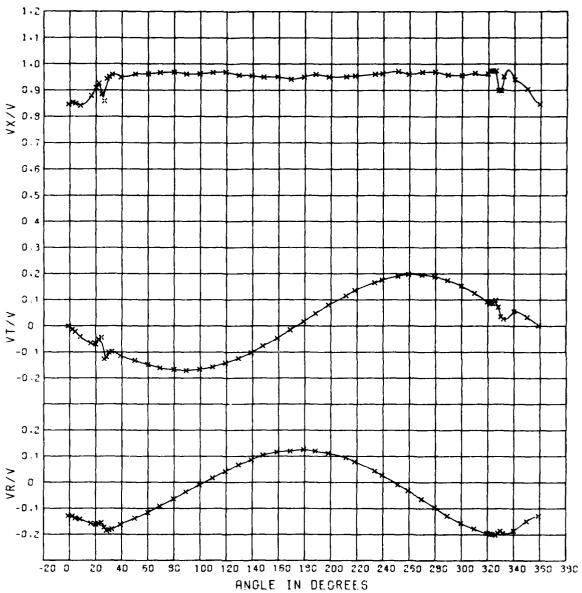

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS

FOR EXPERIMENT 11

POLICITIES INFONENT RHITIGG FOR MODEL GUSS WITH BAGG BOAT GEHIND WZO PRII. GL456 RAO.


Figure C-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 tor Experiment 11

IF, IN ITY LOMPSMENT RATIOS FOR MODEL 5355 WITH SHOP BYHIT FRUIT, μ is said 0.837 RAD.


Figure C-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 11

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10 ANALYSIS OF WAKE SURVEY EXPERIMENTAL DATA FOR MODEL 5365 REPRES--ETC(U) JAN 81 R B HURWITZ- L B CROOK DYNSROC/SPO-0833-06 NI AD-A094 342 UNCLASSIFIED 2 0.2 4P- A 094342 END 2-81 DTIC

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND W/O PRII 0.781~RAD

Figure C-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 11

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND W/O PR11 0.963 RAD.

Figure C-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 11

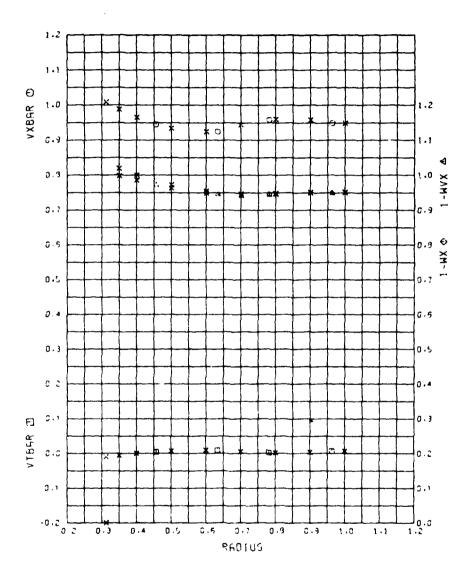


Figure C-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 11

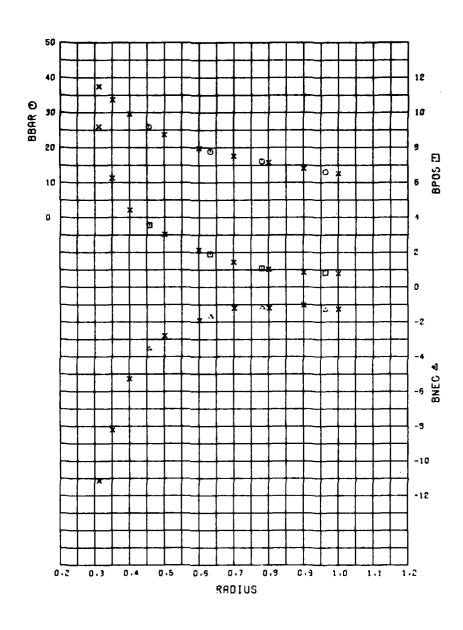


Figure C-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 11

TABLE C-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA,

MODEL 5365, EXPERIMENT 11

ANGLE	ATLA -	**54	VR/V	ANGLE	RACTUS				RADIUS .	.781			4401UE -		
9	. 419	013	058	-5.0	V17V	0%	VR/V 895	ANGLE	AXAA	4174	AK \A	-1.8	VE/V	4174	VR/V
1.1	. 925	6 36	877	.5	984	001	2 94	1.1	.913	843 866	123	3.3	. 154	881 814	129 130
7.1 18.8	.450	877 883	007	2.4	- 986	866	8 99	41.0	.943	867	133	4.3	. 050	422	127
18.5	. 983	841	10	4.5 6.5	.987	667	184	13.0	. 948	966	135		. 062	041	141
13.5	.895	871	004	10.6	. 939	072 070	107	14.8	. 950	869	1 37	16.4 20.2	.879	866 878	158 161
15.1	. 487	073	098	14.6	. 443	062	129	17.1	. 966 . 963	676 669	1 % 1 %	22.2	. 927	653	159
17.1	. 164	077 097	103	16.6	. 140	~. 843	123	10.0	. 974	866	133	24.4	. 401	046	151
19.3	.961	1.37	116	20.4	. 922	48 48	117	£1.1	. 979	033	-129	24.4	. 891	842	156
71.0	.96'	148	110	88.0	. 455	113	1 35	22.9 24.6	.097	837	128	20.2	.944	127	173 104
23.2 23.2	.981	133	124	24.6	. 925	129	149	27.0	.768	122	162	20.3	. 944	119	184
26.0	.973	114	112	26.5 26.5	. 944	183	145	20.0	. 975	163	161	36.0	. 954	100	102
29.0	. 469	117	116	30.7	.942	112 163	146	29.8 32.8	.977	181 183	160	10 .4 22 .4	. 94 9	102 090	103
29.6	.971	116	110	12.6	. 963	106	140	17.1	-970	113	153 145	19.0	.956	115	162
13.2	.068	122 128	100	32.4	. 146	110	1 30	39.1	- 971	119	141	10 .0	. 961	133	1 30
39.1	. 961	147	165	40.3	. 941	116 120	139	*1.1	. 964	129	148	41.1 47.1	. 962	146 166	116
19.0	. 964	170	6 6 6	50.5	. 943	146	149	49.3 61.0	. 964 . 967	147	123	79.7	.969	167	891 865
17.1	.969	198 202	871 850	60.2	. 94.0	165	049	69.6	. 966	173	074	49.1	. 962	171	037
79.6	. 979	289	0 29	78.4	. 958 . 955	174	066	41.4	. 161	184	042	99.4	. 963	167	010
47.4	.970	710		10.1	.992	166 161	642	99.7	. 958	186	019	109.3	.468 .976	157	.817 .842
19.4	.970	205	-611	99.6	. 954	175	.001	107.0	.972	179	.009	129.2	. 954	120	.067
114.6	.960	174	.835 .854	119.6	. 943	169	.424	119.6	960	152	.059	139.0	. 996	102	.847
129.8	. 953	149	.171	129.3	. 924	144	.047	129.4	. 958	132	.441	148.8	. 952	876 846	-104
179.8	. 956	110	-486	139.2	. 914	-, 101	.003	139.7	.947	195 677	.188 .115	168.9	.943	815	-116
159.0	. 947	001	.899	149.1	.917	673	.097	149.9	.942	677	.115	179.8	. 950	- 016	-125
160.8	. 944	100	.169	150.0	.986	636 684	.184	168.0	. 946	644	.124	198.8	. 961	. 647	-120
100.5	.961	. 823	-110	101.1	. 104	. 6 36	.110	178-1	.941	618 611	.1 32 .1 30	211.3	.952	. 115	.111 . 89 4
198.4	.947	. 827	-100	107.1	. 484	. 864	.187	100.2	.951	. 621	.131	210.0	. 955	.135	.079
201.6	948	- 182	-105	201.2	. 4 9 4	- 169	.020	146.3	.955	22	-1 32	233.1	. 162	. 166	.844
210.0	. 993	- 1 39	- 3 86	221.0	.90	. 130	.075	198.8 208.8	. 949	. 855	-127	239.8 251.2	.964	. 176	- 467 - 469
228.5 238.5	. 954	- 170	.074	227.4	. 925	. 186	. 1 12	214.5	. 954	.119	-119	259.0	961	. 197	033
248.2	.984	. 193 . 209	.052	241.4 249.7	. 925	. 707	-662	228.5	. 958	. 145		269.4	.969	- 195	865
250.3	. 964	.219	.310	261.5	. 443	.212 .218	819 058	6.963	. 954	- 176	.461	279.3	.978	. 100	0 97
258.3 259.8	. 966	. 220	.010	249.4	. 939	. 215	477	248.3 258.3	. 969	. 184	.833 .807	299.5	. 956	. 174 . 153	129
249.6	. 464	. 224	000	281.0	. 933	. 205	103	259.9	. 982	198	0 24	789.6	. 105	.125	176
279.6	. 463	. 213	053	207.0	.936	- 192	123	269.9	.973	- 199	054	319.6	. 963	. 893	195
299.5	. 951	. 1 98	676	301.4	. 932	. 1 64	127	279.6	. 975	. 199 - 175	0 06	321.9 323.7	.974	. 8 67	197 199
299.2 311.6	. 957	.177	891	399.9	.419	- 146	159	299.3	.973	. 153	112	329.7	. 974	.196	202
315.1	. 955	.129	111	319.0	. 964	. 184	169	309.2	.972	- 128	159	327.7	. 891	. 029	107
319.2	. 954	.118	116	327.4	.933	. 101	176	319.1 322.0	. 901	. 6 95	174	327.6 329.6	. 987	. 116	200
319.2	. 959 . 964	. 115	116	329.9	.911	-117	181	325.0	.983	. 888	177	129.7	. 497	. 6 3 3	1 86
327.0	. 967	. 104	116	331.0	. 852	. 8 95	171	326.8	. 972	-111	102	331.7	. 952	. 626	194
1.956	.967	. 185	117	134.2	. 450	. 847	153	324.0	. 693	. 102	101	319.9 349.9	. 741	. 855 . 833	165
338.9 332.9	. 96.6	. 178	117	139.9	. 883	1125	148	120.9 130.9	.8 0 8 .916	- 184 - 832	144	359.0	. 947	. 001	149
337.4	. 981	. 114	113	340.0	.067	. 610	1 36	132.9	. 963	. 623	175	362.2	. 454	014	1 30
336.8	. 124	. 4 64	071	340.3	. 691	. 611 . 667	133 131	334.9	, 164	. 6 36	179				
110.0	. 966	. 447	051	344.8	. 876	819	*.114	340.0	.944	. 825	176				
391.0	.942	. 647	852	347.0	. 879	4 30	105	340.0	. 933	. 625	165				
342.9	. 661	.12	039	392.3 355.6	. #74	844	094	348.9	. 919	006	1 31				
344.8	. 864	. 8 27	0 31	360.5	984	661	695 895	344.8	. 913	143	153				
347.8	.852	- 024	033												
351.0	. 429	. 024	0 36												
394.6	.427	006	616												
350.8 359.1	-476	010	164												
36 3 . 1	.819	. 613 636	464												

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT II ı TABLE C-2

VERGCITY CONFONCAL PARTIES FOR MICCL 5365 WITH BASS BOAT BEHIND W/O PRIT PROPELLER DIAMETER = 6.00 FEET

1.000	.949	.007	040	.950	. 952	12.56	.78 77.50	-1.27
.900	.958	.004	033	.949	.951	14.04	. H 77	-1.04
. 800	096.	.002	027	.946	.948	15.74	1.03	-1.20
. 700	.945	.005	028	.943	.947	17.58	1.44	330.00
.600			031	.948	. 954		2.14	-1.89 332.50
. 500		.007	•		.972	23.64	\$.03 00.00	-2.80 335.00
.400	306.	300	800·	.985	1.001	29.56	4.43	0.00
.350	886.	005			610.	33.67	6.25	-8.15 0.00
.312	1.009	010	.040	0.000	0.000	37.46	9.18	0.00
£96.	.949	.007	040	948	.950	13.02	.83	-1.31 357.50
.781	.958	.003	026	.943	.946	16.08	1.99	-1.18 327.50
.633	.925	600.	033	.945	056.	18.90	1.91	-1.67
RADIUS = .456	945	= .004	007	176. =	≥ .984	= 25.93	3.56	= -3.53
RADIUS	VXBAR	VTBAR	VRBAR	¥ > ₹ - ₽	1 - N X	8848	8893 1867A	BNEG THETA

was manifestation and the state of the state

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
IS SIRCUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL COPRECTION.
IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANSENTIAL COPRECTION.
IS SEAN ANGLE OF ADVANCE.
IS SEAN ANGLE OF ADVANCE.
IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).
IS VARIATION DETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPGS OR BNEG OLCURS. VXBAR VTBAR VRBAR 1-WV×

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 11 TABLE C-3

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND W/O PRIT PROPELLER DIAMETER = 6.00 FEET

HARMONIC ANALYSES
.0233 .0347 283.6 283.5
.0083 .0237 37.0 278.5
.0036 .0178 196.3 276.8
.0184 .0255 263.7 263.7
ANALYSES OF LONGITUDINAL
01
.0020 .0035 156.6 128.6
.0028 .0034 58.3 88.3
.0007 .0018 299.5 91.4
.0041 .0015 190.2 241.9

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 11 TABLE C-4

VELOCITY COMPONENT RATIOS FOR MUDEL 5365 WITH BASS BOAT BEHIND W/O PRIT PROPELLER DIAMETRY = 6.00 FFET

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V)

-	HARMONIC	11	-	8	ຠ	•;	ເກ	9	7	9
-	RADIUS = AMPLITUDE PHASE ANGLE	.312 E =	.0732	.0472	.0446	.032	.0317	.0267	.0202 269.8	.0148
	RADIUS = AMPLITUDE PHASE ANGLE	. 350 	.0573	.0436 286.5	.0364 230.0	.0322	.0263	.0217	.0155	.0104
	RADIUS = AMPLITUDE PHASE ANGLE	. 400	.0393	.0392	.0278 2 30.8	. 6242	.0203	.0163	.0104	.0055
	RADIUS = AMPLITUDE PHASE ANGLE	. 500 # #	.0141	.0316 282.24	.0143	286.5	.0123	.0090	.00.4 333.5	.0023
	RADIUS = .6 AMPLITUDE PHASE ANGLE	.600 E #	.0079 19.9	.0254 279.3	. 66n8 2 93. 1	.0053	.0087	.0064	.0051	.0047
	RADIUS = .7 AMPLITUDE PHASE ANGLE	. 700 E =	.0033	.0158 279.2	304.5	.00% 323.3	.0073	.0049	.0021	.0018
	RADIUS = .6 AMPLITUDE PHASE ANGLE	. 800 # #	.0046	.0178	.0078 290.7	.00. 305.9	. 6070 283.7	.0027	.0021	261.1
_ , _	RADIUS AMPLITEGE PHATE AMILE	. 900	.0118	.0209	. 610 :	000	.0094 251.4	.0036 254.4	.003H	. 0036 2-11-4
	RADIUS 1.000 AMPLITUDE = PHASE ANGLE =	000	.0184	. 0255 263.7	.0143 248.8	245.5	.0125	.0365	.0001	.0042

TABLE C-4 (Continued)

	VELOCITY COUPONENT RATION FOR PROPELLER DIRMETER :	OPELLER	RATION DIAMETER		MTJEL 5365 WI 6.00 FEET	WITH BASS I	BOAT BEHING KYD	14.0 W/O PR
HARGONIC	HARMONIC ANALYSES	OF LONG!	TUBINAL	VELGCITY	LONGITUDINAL VELCCITY COMPONENT	T RATIOS	(////)	
HARMONIC	Gn	0	:	12	13	4	1.5	1.6
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0094	.0000 179.8	. 005A	.006.3	138.8	.0074	.0059	.0052
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0068 204.7	.0049	,0049 159.5	.0072	140.2	.0051	.0035	.0028
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0040	.0040	.00.43	.0053 161.3	.0061	.0025	.0014	.0022
RADIUS = .500 AMPLITUDE = = PHASE ANGLE =	.0018	.0035	.0027	.0030	206.6	.0015	.0035	.0052 312.5
RADIUS = .600 AMPLITUCE = PHASE ANGLE =	.0028	91.9	.0017	.00:0	.003 0 288.9	.0033	.0047	317.8
RADIUS = ,700 AMPLITUDE = PHASE ANGLE =	30.0	.0028 88.3	.0001 176.3	.0016 269.1	.0030	.0025	.0025	. 0018 298.9
RADIUS = .800 AMPLITUDE = PHASE AMJLE =	.0008	.0015 83.3	.0015 263. H	.0027	.0023	.0017	.0007	.0014
RADIUS900 AMPLITUDE = PHASE ANGLE =	.0024	.0004	.0620	306.8	.0011	.0016	.0007 355.8	.0012
RADIUS = 1.000 AMPLITUDE = = PHASE ANGLE =	.0041	.0015	.0031	.0026 323.0	.0009 351.8	335.0	337.4	.0013

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 11 t TABLE C-5

HARRONIC	HARDONIC ANALYSES	OF TANGE	INTIAL V	ELOCITY	OF TANGENTIAL VELOCITY COMPONENT RATIOS	RATIOS	(V1/V)	
HARRONIC =	-	n	n	•1	ທ	9	7	ອກ
RADIUS = .456 AMPLITINE =	.2175	.0025	.0019	6:00.	. 0022	.0041	6100.	8000
PHASE ANGLE .	187.3	305.7	205.8	204.7	186.1	205.1	207.7	214.4
RADIUS633	40	0110	0 200	Ç	6900	1.1.00	90.00	4600
PHASE ANGLE =	130.1	3005.5	3000	307.0	314.3	313.2	317.4	331.0
RADIUS781 AMPLITUDE = PHASE ANGLE =	.1884	.0100	.0054	314.2	.0021	.0016	.0015	.0014
RADIUS = .963 AMPLITUDE = = PHASE ANGLE =	.1799	.0077	.0033	.0029 87.7	.0036	.0031	.0029	.0025
HARRONIC	. ANALYSES		ENTIAL V	ELOCITY	OF TANGENTIAL VELOCITY COMPONENT	RATIOS	(V1/V)	
HARMONIC =	6	0	=	2	5	4	15	15
RADIUS = ,456 AMPLITUDE = PHASE ANGLE =	.0019	.0023	.0032	.0025	.0027	.0015	.0017	.0018
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0030 339.4	.0034	.0013 15.5	.0005	.0016 158.0	.0024	.0031	.0028 199.4

.0008 156.5

201.7

.0022

.0020

1.90.1

.000ë 150.4

.0004

.0004

RADIUS = .781 AMPLITUDE = PHASE ANGLE = 336.9

313.0

.0016

.0016

.3023

.0524

.0018

.0025

RADIUS = .963 AMPLITUDE = PHASE ANGLE =

HARMONIC ANALYSES OF TAMGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 11 9-0 ET

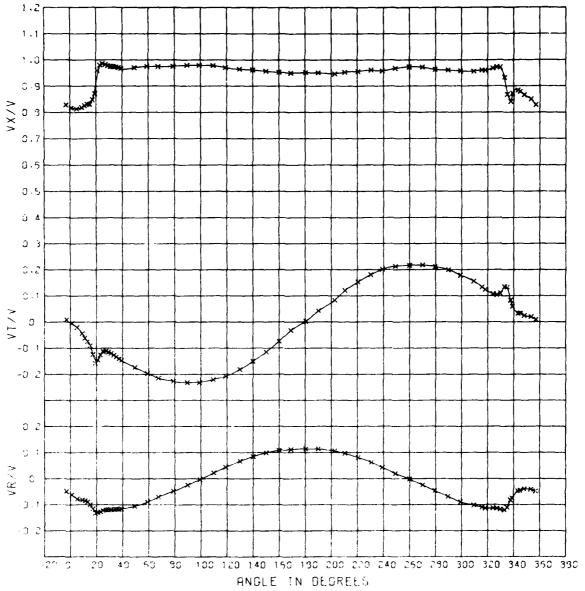
PR11

>	VELOCITY COMPONENT PROPELLER C	CGNPONENT PROPELLER D	RATIOS F DIAVETER	FOR #5251	RODEL SOBS WI 6.00 FECT	WITH BASS	BOAT BEH JA =	BEHIND W/O
DINDUNA	ANALYSES	OF TANGE	TANGENTIAL VELOCITY		COMPONENT	RATICS	(V1/V)	
HARMONIC	-	6	n	4	J	9	7	Σ.
RADIUS 312 AMELLICOL PHASE ANGLE =	181.5	114.4	. e 170 135.2	6.107	0.651	171.7	150.4	101.7
RADIUS 350 AMPLITUBL = PHASE ASSIL =	.2335	.0132	.0119	.0146 192.0	.0129	.0127	.0048 152.8	0000
RADIUS : .400 AMPLITUDE = = PHASE ANGLE =	.2254	.0050	147.0	.0092 178.0	.6671 155.7	.0080	.00.45 159.8	10041
RADIUS = .500 AMPLITUSE = PHASE ANGLE =	.2120	.0371	.0033 279.8	.0035	281.0	.0027	.0020	.co18
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	190.1	.0133	.0074	301.5 301.5	.0058	.0041	.00.47	.0043 330.2
RADIUS = ,700 AMPLITUDE = PHASE ANGLE =	.1936 188.9	.0119	.0007	.0051 308.3	.0044 313.4	.0032	.0034 319.8	.0031
RADIUS = .800 AMPLITUM = = PHASE ANGLE ==	. 1873	.0097	334.0	.0030	317.1	.0012	.0011	319.1
RADIUS900 AMPLITUDE = PHA :E ANGLE =	.1824	.0083	.0038 1.0	36.3	.0016	.0013	.0013	.0012 11:3.6
RADIUS = 1.000 AMPLITUDE '= PHASE ANGLE *	.1799	.0077	.0033	.0029 87.7	.0036	.0031	.0029	.0025

Y.

5

TABLE C-6 (Continued)


VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHTWO W/O PART PROPELLER DIAMETER 3 6.00 FEET

	ž	מיייים אי	r))) (ا ا ا		t 7	h
DINOMARH	ANALYSES	OF TANGE	TANGENTIAL VE	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC =	თ	0	11	Çi	13	14	3.	
RADIUS = .312 AMPLITODE = PHASE ANGLE =	.0077	.0095	.00%	.0069 83.4	.0065	.0066	.0038 46.6	21.4
RADIUS = .350 ATPLIJUDE = : PHANCE ANGLE =	.0054	.0068 108.3	.005. 83.	7.00	.0054 68.0	.0045	59.7	.0005 53.7
AMPLITODE = .400 = PHASE AVGLE =	.0030 96.6	0040	,0543 75.3	.0046 73.4	.0040	.0028	90016	197.8
RADIUS = .500 AMPLITUDE = PH45E ANGLE =	.0022 d.8	.0025 6.3	.0025	. 00.00 . 00.00 . 00.00	0.000.	.0013	.0023	.0024 199.5
RAPIUS = .600 AMPLITODE = PHASE ANGUE =	.0031	6035 335.9	.0615	.0005	.0015	.0022	.0031 183.5	.0029
RADIUS = .700 AMPLITUSS = PHASE ANGLE =	.0013 348.9	.0614	.0056 .45.5	.00:2	0019	.0025	.0025	.0018
AAD1US = .800 ADD11701 = PHASE AVGLE =	.0007	.0007	.000.7	000 000 1	.0000	.0021	.0015	.000 1.8.1
RADIUS900 AMPLITUDE = FHACE ANGLE =	.0020 165.8	,0017 (72.9	192.2	(A) (C)	30 m 0 m 0 m	. 00 8 . 5 9 . 5	.0007	4 0000 4 4
AMPLITUDE = 1.000	.0025	194.1	.0024	(A (C)	. 6 0 0 0 0 0 0 0 0	252.5 252.5	9000.	.0008 3.6.9

APPENDIX D


VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS

FOR EXPERIMENT 12

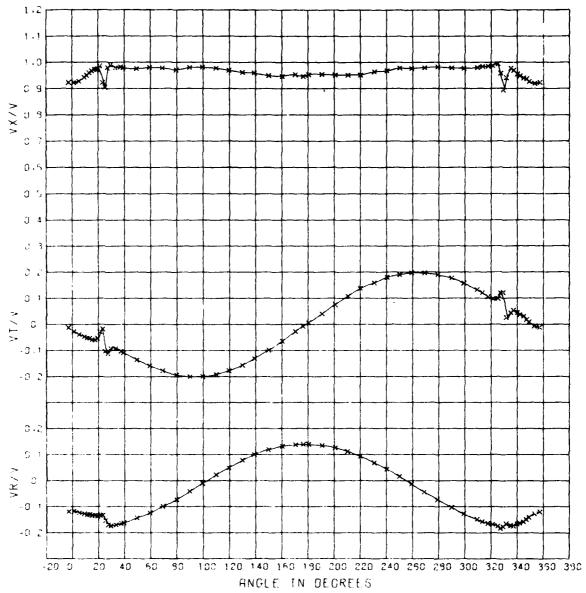

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 $0.456~{\rm RAD}_{\odot}$

Figure D-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 12


VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 0.633 RAD.

Figure D-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 12

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WERDP 12 0.781 RAD.

Figure D-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 12

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 $0.963~\text{RAD}_{\odot}$

Figure D-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 12

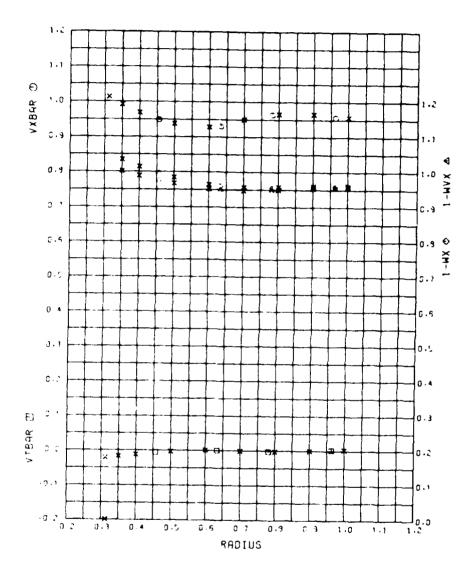


Figure D-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 12

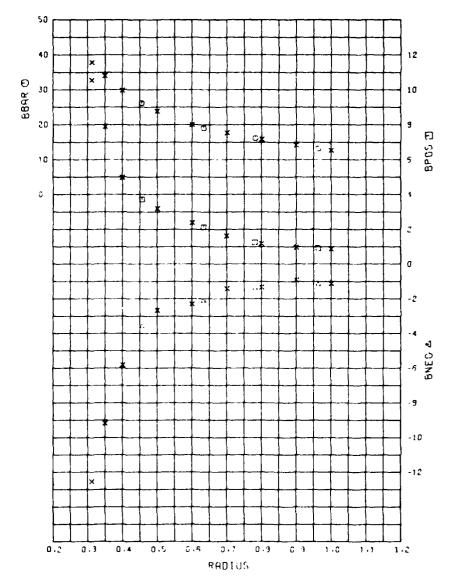


Figure D-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 12

TABLE D-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA, MODEL 5365, EXPERIMENT 12

	RAF1U5 -														
AMELE	VX/4	91/8	VR/V	AMELE	RACIUS :	* .633 *1/*	V# / V	ANGLE	RAPIUS :	.781 V1/V	VR / V	AMGLE	##C1US .	.963 VT/V	48/4
-3.0	. 824	. 449	8 44	-5.0	. 696	645	4 44	-2.9	.023	-,013	1 20	-4.6	414		148
1.1	.414	. 605	063	.4		- 846	0 67	1.1	. 923	027	117	-44	. 844	. 619	1 35
	. 414	156.	870	7.0	.920	8 75	110	5.1	.928	-, 839	124	4.3	. 877	061	1 35
11.8	.426	162	005	16.0	. 930	154	117	11.1	. 943	647	127	12.0	. 163	8 21	141
13.5	. 433	* . 875	8 8 9	10.0	.927	845	110	13.2	.950	852 051	1 31 1 31	16.2	. 996	844 854	149
15.1	. 0 31	6 96	1 8 9	4. 05	. 884	181	127	15.2	. 367	059	1 34	10.3	984	457	161
17.2	.444	. 157	111	4.85	. 0 04	* . 129	175	17.3	. 974	-, 164	- ,1 36	24.4	. 976	863	161
21.0	. 965	-, 144	131	4.55	. 038	9 85	1+3	19.0	. 981	952	1 35	20.5	. 41#	661	144
23.2	. 987	176	1 24	24.4 24.0	.910	123	153	19.2	.963	854	1 39	22.4 24.4	. 934	050	166
29.8	. 4.00	115	151	20.6	. 459	- 195	197	21.3	.945	-, 855	- · 1 37	26.0	.975	0%	163
27.1	.983	112	120	30.6	. 949	095	156	23.3	. 423	617	1 37	28.5	. 940	114	1 %
31.2	974	116	120	18.9	. 990	~ . 9 96	194	25.3	. 905	163	154	30.3	. 975	891	1 98
33.3	. 476	~ . 127	119	14.3 36.6	. 956	-193	172	27.3	. 978	111	170	32.5	. 968	087	- 1 96
35.2	. 473	133	114	10.0	. 948	110	158	29.3	.949	093	174	34.8 56.8	. 969	6 90	197
17.3	.971	141	110	42.0	. * * *	170	142	33.3	. 974	693	171	34.0	. 957	101	140
39.2	. 767	~. 147	116	.4.1	. 954	1 38	1 35	37.2	.982	101	165	46.4	. 96 9	114	1 71
49.4	. 170	173	166	30.5		146	129	39.3	. 979	189	162	54.3	. 947	135	156
59.6	. 975	197	0 90	61.1	:32	123 169	145	49.4 59.3	.975	- 134	144	1.50	. 964	146	1 4 4
67.5	. 476	215	674	70.3	. 956	106	7	69.0	. 978	159 178	124	70.0	.970	-, 151	1 61
79.8 89.7	. 474	~. 227 ~. 232	649	79.8	. 467	* 1 194	063	79.5	.978	194	074	77.0	.973	177	100
11.1	. 179	231	001	19.9	. 165	1.194	0 36	89.7	. 981	2 64	841	74.7	. 972	179	895
189.7	. 974	221	.0 22	99.8 99.8	. 964	197	012	199.4	. 991	204	6 10	95.7	. 976	185	077
119.0	. • 70	284	.400	109.0	954	196	012	119.6	. 978	178	.023	103.0	.974	189 187	0 31 0 25
129.8	. 764	101	.064	119.5	.452	176	. 6 38	129.9	. 962	157	.079	149.0	. 97h	183	001
194.0	. 997	151	.885	129.3	. 934	157	.063	139.6	. 959	130	.101	117.2	.977	174	.025
199.9	94.1	0 76	.100	119.1	.927	129	.003	169.9	. 969	* . 199	.119	119-1	.971	178	. 0 31
169.8	.955	8 32	.112	156.9	. 762	~ . 1 60	.110	160 -2	.957	865	.132	132.8	.967	1 47	.073
186.4	. 952	. 861	.41.8	149.1	911	627	:117	176.2	946	627 897	.1 57	141.0	. 98 9	127	.684
190.0	. 993	. 843	.115	179.8	. 40 3	. 813	.110	100.4	.952	. 005	.1 39	147.0	. 951	100	-107
4.506		. 607	.106	109.2	-113	. 847	.114	100.4	. 954	. 667	.148	156 .8	. 951	876	-119
218.4	. 997	. 170	.897	209.0	. 985	-80a -117	.182	198.b 208.7	.954	. 848	.1 35	150.0	. 954 , 458	668	.121
4. 055	. 956	. 153	.041	214.2	. 985	150	.067	210.5	. 952	. 100	.127	172.9	. 956	847	.127
230.5 239.0	. 961	. 101	.043	229.4	. 916	.175	.841	550.0	.952	. 1 30	.093	178.9	454	. 901	
200.0	. 947	. 213	.626	279.4	. 916	. 174	.842	238.6	. 964	. 159	.165	101-0	. 457		-1 34
259.0	.471	.217	8 6 2	219.3	.912	- 195	.016	240.2 250.0	. 967	- 140	.044	119.8	. 956	. 0.35	-1 30
264.8	. 975	. 215		259,1	. 9 34	. 713	010	259.4	.97A	. 190 . 197	.611	197.8	. 951	. 862	.123
279.6 289.6	. 96 1	. 212	8 % ?	269.8	. 935	. 214	846	269.8	986	. 197	4	205.1	. 456	.607	.113
299.2	. 958	. 179	849	279.0	. 934	. 208	0*4	279.0	. 987	. 190	073	213.1	. 95 9	. 110	.100
304.3	. 996	196	102	249.0 249.0	.441	-177	114	209.7	.979	. 177	103	219-1	.963	. 127	.043
315.6	. 954	. 1 37	184	100.0	.992	.145	153	309.4	.980	. 15A . 15g	129	220.2	. 968	. 132	.063
314.8	941	. 131	164	317.6	. 934	1.20	164	313.3	190	. 121	158	237.2	475	. 165	.041
310.8	. *6:	. 12%	111	371.0	. 939	- 107	167	317.2	. 981	. 100	164	219.2	.973	. 169	.837
327.0	. 977	. 107	110	329.0	. 946	- 186	171	310.0	. 9 96	. 107	165	245.2 251.3	. 974	. 179	.010
324.2	.471	. 185	117	330.0	.937	.118	179	321.2	. 996	. # 97 . 8 98	168	259.1	. 969	.189	006
338.6	. 96 9	.114	110	371.0	. 44.	-115	179	327.1	. 957	.119	163	261.2	. 974	. 191	4 39
115.9	. 433 . 868	.135	111	113.9	. 265	. 866	155	329.1	. 8 94	. 171	177	269.0	. 976	. 194	455
337.1	. # 34	. 184	.695	335.9 337.9	. 107	. 6 29	148	351.1	. 010	. 0 33	165	277.0	. 989	- 191	002
330.0	. ***	. 862	678	339.0	. 910	. 8 2 7 . 8 3 1	141	335.8	.973	.020	167	279.3	. 963 . 967	. 190	009
338.4 343.1	. 473	. 564	079	344.1	. #41	. 616	129	317.4	.969	. 054	- 175	293.0	959	178	1 32
344.7	. 884	. 6 33	6 %	166.1	. 446	867	11*	348.4	. 055	. 6 44	1 66	293.0	. 961	. 170	1 32
344.8	. 166	1824	050	352.1 199.0	.005	825	499	342.0		. 6 37	164	299.3	. 445	. 157	148
393.1	. 291	. 120	0 .2	344.5	. 694	845	040	144.9 346.9	. 939	. 0 31	- 150	301.0	. 967	. 152	153
357.6	.424	. 884	449		••••			347.8	914	.017	169	389.5	. 964	. 1 31	171
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.019	005	06)					3.9.8	. 926		142	317.5	440	- 106	147
								357.1	.919	687	178	319.5	. 971	. 180	189
								361.1	.921	613	126	323.7	.964	. 093	191
								••••	. 461	*****	117	325.0	. 971	. 191	197
												327.7	.92?	. 129	192
												331.7	.972	. 027	100
												333.7	. 981 . 966	. 844	187
												337.7	. 976	. 209	197
												339.8	. 967	. 867	104
												319.0	. 96.9	. 964	186
												343.0	. 951 . 936	. 661	175
												351.0	,925	.043	169
												356.6	.919	.136	140
												368 -1			1 35

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 12 1 TABLE D-2

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 PROPELLER DIAMETER = 6.00 FEET

1.000	. 957	.003	043	986.	. 961	12.67	.87	7.50
006.	996.	000	035	. 954	.960	14.16	.71 2.14 1.25 .92 10.55 7.89 4.97 3.19 2.38 1.63 1.18 .96 .87 .50 82.50 95.00 95.00 97.50 102.50	327.50
. 800	996.	003	028	. 950	. 958	15.86	1.18	-1.34
.700	.950	1.001	029	.947	926.	17.71	1.63	330.00
.600	.928	.001	031	.952	.964	19.99	2.38	332.50
. 500	. 938	003	018	.967	934	23.84	3.19	535.00
.400	696.	012	.005	.988	1.014	29.82	4.97	5.82
.350	. 992	017	.021	1.002	1.035	33.98	7.89	9.19 5.00
.312	1.013	022	.035	0.000	0.000	37.82	10.55	12.54
.963	.957	.003	043	.954	696.	13.14	102.50	7.50
. 781	. 964	002	027	. 948	. 955	16.20	1.25	330.00
.633	.930	.001	033	.949	096.	19.05	2.14	-2.13
RADIUS = .456	- 949	900 =	600 =	£ .975	166. =	= 26.15	3.71 = 92.50	= -3.59
RADIUS	VXBAR	VTBAR	VRBAR	1 - W < X	XX-L	8848	BPOSTHETA	BNEG

IS CIRCUMFERENTIAL MEAN LONSITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE WAXIMUM AND MEAN ADVANCE ANGLES IDELTA BETA MINUS).

IS VARIATION BETWEEN THE WINIMUM AND MEAN ADVANCE ANGLES IDELTA BETA MINUS).

IS ANGLE IN DEGREES AT AHICH CORRESPONDING BPOS OR BNEG OCCURS. BBAR BPOS BNEG THETA

ĺ

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 12 TABLE D-3

.0247 .0352 285.3 274.5 .0132 .0254 16.3 271.1	m	4				
		r	S	9	7	80
	276.0	.0181	.0171	.0121	.0064	.0039
	.0061	.0039 300.8	.0061	.0034 22.8	.0023	.0021
	.0070	.0054	.0072	.0025	.0014	.0018
.0123 .0217 268.4 261.6	.0101	.0097	.0106	.0077	.0056	.0046
ANALYSES OF LONG!	LONGI TUDI NAL	VELOCITY	COMPONENT	T RATIOS	(VX/V)	
01	Ξ	12	13	14	15	16
.0054 .0061 191.3 151.6	.0076	.0067	.0048	.0022	.0004	.0019
.0032 .0023 73.7 56.3	.0010	.0009 5.8	.0021	.0039	.0036	.0045 294.8
.0009 .0013 261.2 216.8	.0012	.0029	.0031	.0032	.0015	.0011
.0028 .0024 193.3 211.3	.0005	.0001	. 0004	.0011 339.8	.0013 69.5	.0006
		. 0023 56.3 . 0013 216.8	.0023 .0010 56.3 .0010 .0013 .0012 216.8 282.3 .0024 .0005	.0013 .0010 .0009 56.3 67.6 5.8 .0013 .0012 .0029 216.8 282.3 300.4 .0024 .0005 .0001	.0023 .0010 .0009 .0021 56.3 .67.6 5.8 326.9 .0013 .0012 .0029 .0031 216.8 282.3 300.4 315.0 .0024 .0005 .0001 .0004 211.3 247.2 221.6 216.9	.0023 .0010 .0009 .0021 .0039 56.3 67.6 5.8 326.9 304.7 .0013 .0012 .0029 .0031 .0032 216.8 282.3 300.4 315.0 306.3 .0024 .0005 .0001 .0004 .0011 211.3 247.2 221.6 216.9 339.8

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 12 TABLE D-4

VELOCITY COMPONENT RATIOS FOR MODEL 5365 WITH BASS BOAT BEHIND WPROP 12 PROPELLER DIAMETER = 6.00 FEET

(VX/V)
RATIOS
COMPONENT
VELOCITY
HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS
9
ANALYSES
HARMONIC

HARMONIC =	-	α	m	4	ហ	9	1	80
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0712	.0440	.0458 2 75.8	.0430	.0390	.0373 259.6	.0236	.0146
RADIUS = .350 AMPLITUDE = PHASE ANGLE =	.0560	.0416	.0382 2 75.8	.0353	.0321	.0294	.0182 266.8	.0112
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0391	.0385	.0293	.0264	.0242	.0203	.0120	.0074
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0174	.0327	.0156 2 76.3	.0128	.0127	.0071	.0030	.0017
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0133	.0271	.0076 2 78.6	.0051 290.8	.0070	.0029	.0018	.0016
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0071	.0207	.0067 2 88.6	.0051	.0067	.0031 354.8	.0011	.0023
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0018	.0174	.0070	.0054	.0073	.0025	.0015	.0015
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0059 249.6	.0186	.0079	.0065	.0088	.0046	.0033	.0018
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0123	.0217	.0101	.0097	.0106	.0077	.0056	.0046

Contraction Contraction or the

TABLE D-4 (Continued)

12 40H

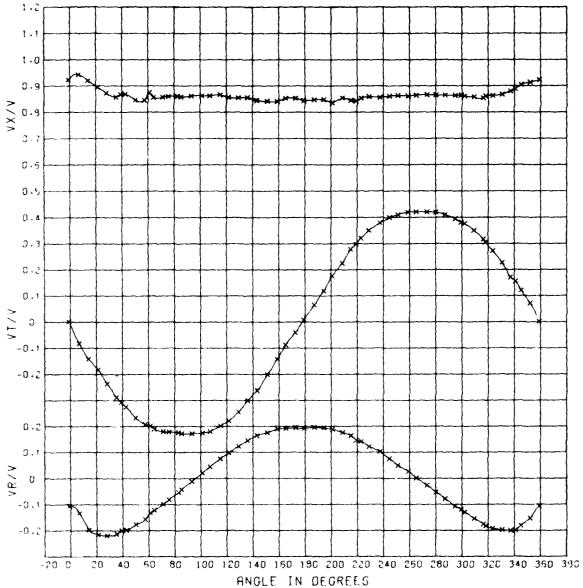
	VELOCITY COMPONENT PROPELLER O	COMPONENT PROPELLER	C RATIOS F DIAMETER	ir t "	MODEL 5365 WITH 6.00 FEET	BASS	BOAT BEHIND WPRD JA = ,739	074W CN1
HARMONIC	HARMONIC ANALYSES	DE LONGE	TUDINAL	LONGITUDINAL VELCCITY	COMPONENT	RATIOS	(\ \ \ \ \ \ \	
HARMONIC =	6	10		5	13	14	2.	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0199	.0184	161.3	.0171	,0152	.0123	.0080	.0083
RADIUS = .350 AMPLITUDE = = PHASE ANGLE =	212.5	.0144	.0155	.0140	.0120	.0091	.0055	.0054
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0099	.0099 164.6	.0114	.0102	.0084	.0055	,0027	.0025
RADIUS 500 AMPLITUDE PHASE ANGLE	.0031	.0040	.0051	.0043	.0025 145.5	.0006	.0015 298.5	.0031
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0031	.0025	102.1	.0007	.0013	.0033	.0034 306.6	.0046
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0010	.0005	.0005	.0021	.0029	.0037	.0026	.0024
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0012	.0015	279.9	.0029	.0030	.0030	.0013 302.8	13.6
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0022	.0024	270.0	.0018	.0016	.0019	,0005 34.5	.0010
RADIUS = 1,000 AMPLITUDE = PHASE ANGLE =	.0028	.0024	.0005	.0001	.0004	.00tt 339.8	.0013 69.5	.0006

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 12 TABLE D-5

>	VELOCITY COMPONEST PROPELLER D	COMPONEST PROPELLER D	RATIOS IAMETER	<u>د</u> ۳	MODEL 5365 WI 6.00 FEET	TH BASS	BOAT BEH	WITH BASS BOAT BEHIND WPROP 12 JA = .739
HARMONIC	ANALYSES	OF TANGE	TANGENTIAL VELOCITY	ELOCITY	COMPONENT	RATIOS	(V1/V)	
HARMONIC	-	Ø	က	4	ហ	9	7	œ
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.2264	.0041	.0017	.0055	.0019	.0046	.0014	.0020
RADIUS = ,633 AMPLITUDE = PHASE ANGLE =	.2044	319.9	.00°5 2 98.6	.0061	.0060	.0049	.0045	.0032 309.8
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.1937	.0122	.0065	.0029	.0017	.0015	.0013	.0008 287.4
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.1865	.0096 6.5	.0028	.0033	.0041	.0033	.0021	.0018
HARMONIC	ANALYSES	OF TANGE	TANGENTIAL VELOCITY	ELOCITY	COMPONENT	RATIOS	(V1/V)	
HARMONIC =	6	10		12	£.	14	15	16
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0033	.0038	.0050	.0051	.0047	.0030	.0019 81.0	.0009 233.6
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0027	.0015	.0012	.0015	.0023 203.8	.0030	.0032	.0029
RADIUS = .781 AMPLITUDE = PHASE ANGLE =	.0010	.0004	.0006	.0013	.0014	.0017	.0010	.0006 202.9
RADIUS = ,963 AMPLITUDE = PHASE ANGLE =	.0010	.0010	.0012	.0010	.0013	.0007	.0009	.0002 357.8

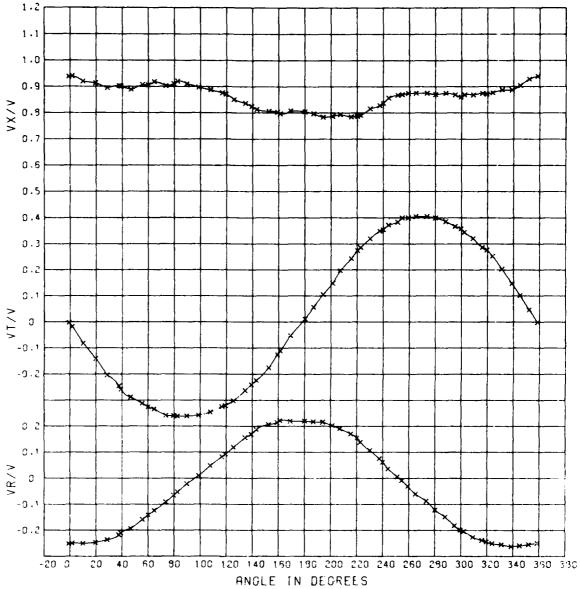
HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 12 TABLE D-6

∨ E	ELCCITY COMPOSEST PROPELLER D	7.00.00 0.00.00 0.00.00	RATIOS F DIATETER	08 W00E - 6.00	. 5365 FEET	AITH BASS	BOAT BEHIND JA = 77	140 48808 12 .739
HARTONIC	ANALYSES	OF TANGE	ANGENT: AL VE	Y11001	COMPONENT	RATIOS	(V1/V)	
HARMONIC =	-	8	m	4	ທ	9	7	80
RADIUS = .312 AMPLITUSE = PHASE ANGLE =	176.9	.0234	.0174	.0226	.0167	.0203	.0134	.0123
RADIOS = .350 AMPLITUDE = PHASE ANGLE =	.2453	99.69 99.6	.0121	.6170	.0118	.0152	.0095	.0090
AADIUS = .400 AYPLITUDE = = PHASE ANGLE =	.2358	.0077	.00£1	.6107	.0063	.0095 148.6	.0052	.0053
PADIUS = .500 ATPLITUDE = PHASE ATGLE =	.2200	.0072	.0034	.0035	.0024	.0026	.0013	.0008 14.5
AMPLITOSE = BHASE ANGLE =	.2078	.0132	.0079	.0056 288.2	.0058	.0045	.0042	.0030
AMPLITUDE = PHASE ANGLE =	. 1990	.0129	313.2	.0048 242.3	.0041	.0033 283.5	.0030	.0021
AADIUS = .800 AAPLITUDE = = PHASE ANGLE =	.1926	.0121	.0062 332.7	.0024	.0012	.0011	301.0	.0006
RADIUS = .900 AMPLITUDE = = PHASE ANGLE =	.1883	.0109 3.2	.0043 353.4	.0010	.0020	.0018	.0010	.0010
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.1865	.0096 6.5	.0028	.0033	.0041	.0033 132.8	.0021	.0018


TABLE D-6 (Continued)

	16		.0033	341.5	. 0018	. 0029	0.661	205.5	351.9	. 0002 1 357.8
V/TV)	15	43.8	.0077	.0045	.0014	.0030	.0020	.0008	.0006	.0009
RATIOS	4	.0132 35.3	36.9	.0063	.0012	194.4	.0023	.0016	.0010	.0007
COMPONENT	13	.0163	.0127	.0085	.0024	.0018	.0018	.0013	.0012	.0013 197.8
	12	.0159	.0126	.0097 49.3	.0023 52.8	.0008	.001.3	.0013	10011	.0010
	=	.0150	.0119 54.1	.0083	.0029	.0008 2 91.6	.0008 246.0	.0007	.0009	.0012
OF TANG	0	.0124	.0097 ē9.3	.0066	.0022	.0014	.0007	.0005	.0009	0010
ANALYSES	თ	.0115	.0088	.0058	.0023	.0026	.0020	.0008	.0003	0105. 119.2
	#	. 312 . E	. 350 . E =	. 400 	. 500 . E	.600	. 700 .E =	.800	.900 = LE =	1.000 LE =
H	HARMONIC	RADIUS = AMPLITUDE PHASE ANG	RADIUS = AMPLITUDE PHASE ANG	RADIUS = AMPLITUDE PHASE A.G	RADIUS = AMPLITUDE PHASE ANG	RADIUS = AVPLITUDE PHASE ANG	RADIUS = AMPLITUDE PHASE ANG	RADIUS = AMPLITUDE PHASE ANG	RADIUS = AMPLITUDE PHASE ANG	RADIUS = 1. AMPLITUDE PHASE ANGLE
	TANGENTIAL VELOCITY COMPONENT	ARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V)	ONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 .312 = .0115 .0124 .0150 .0159 .0163 .0132 .0105 = 80.3 71.7 55.3 48.9 53.4 35.3 43.8	ARTONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 .312 .312 GLE = .0115 .0124 .0150 .0159 .0163 .0132 .0105 GLE = 80.3 71.7 55.3 48.9 53.4 35.3 43.8 .350 E = 76.5 69.3 54.1 49.0 54.6 36.9 46.7	-312	## OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 312 312 = .0115 .0124 .0150 .0159 .0163 .0132 .0105 = 80.3 71.7 55.3 48.9 53.4 35.3 43.8 350 - 360 = .0088 .0097 .0119 .0126 .0127 .0100 .0077 = 76.5 69.3 54.1 49.0 54.6 36.9 46.7 400 = .0058 .0066 .0083 .0097 .0085 .0063 .0045 = 68.4 64.6 51.7 49.3 57.2 40.5 54.1 550 - 0023 .0022 .0029 .0023 .0024 .0012 .0014 = 18.8 37.9 39.5 52.8 77.2 86.3 144.6	## OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 312 312 = 0115 .0124 .0150 .0159 .0163 .0132 .0105 = 80.3 71.7 55.3 48.9 53.4 35.3 43.8 350 350	- 312	## 100 10 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15	SOUNCE ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V)

APPENDIX E


VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS

FOR EXPERIMENT 13

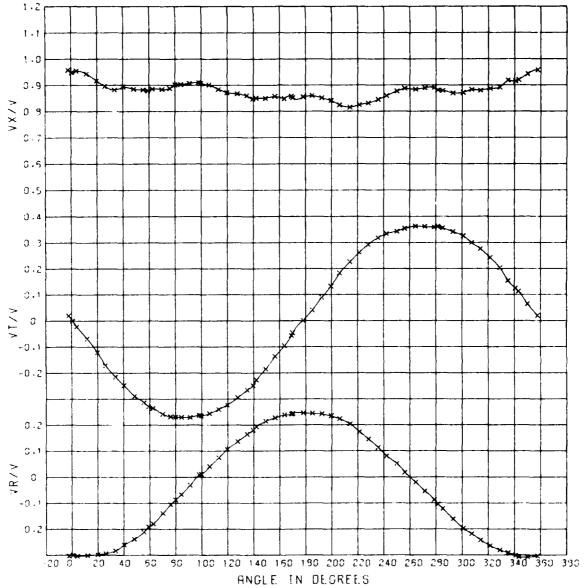

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13 0.456 RAD.

Figure E-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 13

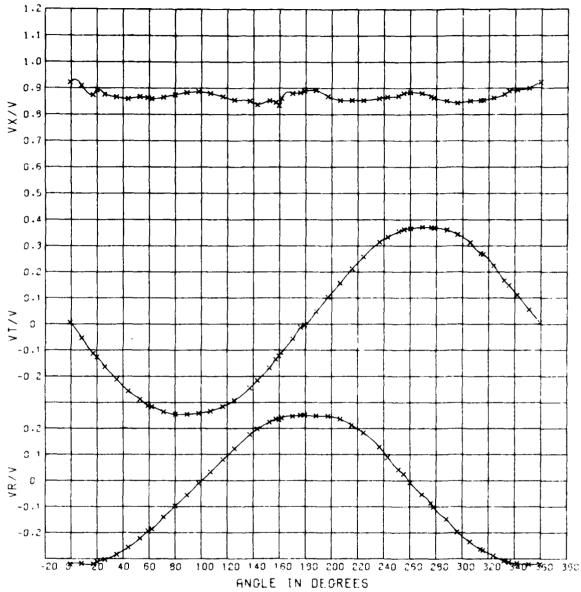

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13 $0.633\,\mathrm{RAD}_{\odot}$

Figure E-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 13

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13 $-0.781\;\mathrm{RAD}_{\odot}$

Figure E-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 13

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 200 INC 4KTS13 0.363 RAD.

Figure E-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 13

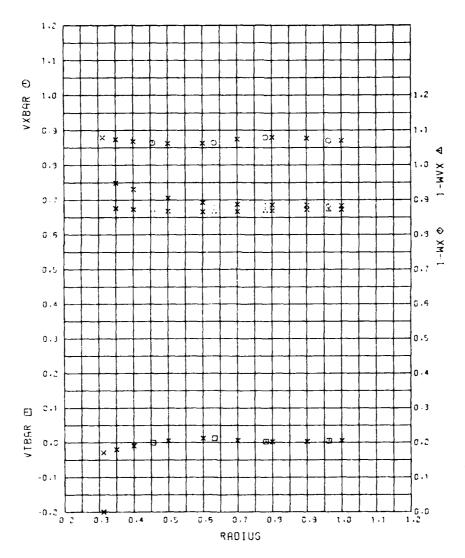


Figure E-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 13

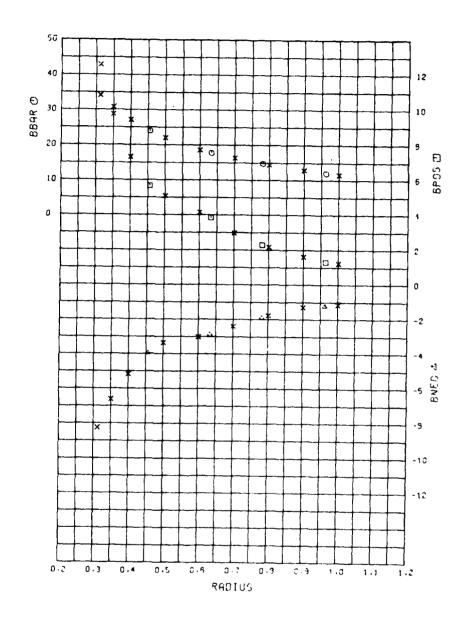


Figure E-6 - Radial Distribution of the Mean Advance Angles and Advance Angle Variations for Experiment 13

TABLE E -1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 13

	estius .				#AFIUS =	. 6 3 3			RACIUS .	.7A3	VR/V	MELE	***** -	.963 VT/V	98/ V
44618	.923	. 881	186	486LP -1.0	V1/V	41/V	25E	446LE -2.4	. 957	. 8 29	306	8	150.	. 600	361
	. 04.1	107	1 1)	1.3	. 939	010	254		944	891	104	1.0	. 161		310
11.4	. +24	192	1 98	10.0	. 920	802	251	•	. 454	022	30 3	17.6	. 073	114	321
21-1	. 4 96	103	716	19.4	. 914	1 - 1	.247	17.0	. 943	864	102	21.0	. 194	176	312
	7 1	2 36	2 20	24.3	. 8 95	294	237	14.5	. 926	116	2 90	26.6	. 874	164	36 1
14.4	457	788 788	213	37.3	. 44.1	246	214	20.5	. 487	177	294	35.6 44.6	. 159	213	257
14.8	. 464 . 864	. 176	200	79.3 16.4	. 991 . 448	244 244	210	26.8 11.6	. 441	210	744	53.5	. 667	200	227
40.0	. 446	10/	176	11.6	. 107	313	159	33.3	. 894	254	244	55.6	. 063	111	1 91
37.2		. 197	157	59.9	. 486	- , 326	142	50.2	. 0 94	244	240	67.6	. 860	316	186
61.8	. 875	198	1 31		. 919	134	124	48.1	. 865	789	+ . 2 3 9	71.4	. 467	119	141
64.0	. 445	416	175	73.5	. 98 *	359	91	44.4	. 062	114	711	71.4	. 161	333	146
71.4	. 4 5 7	+58	8 9 9	79.6	. 911	166	166	11.0	. 665	139	192	44.4 44.4	. 875	- , 344 - , 346	097
74.4		427	461	42.4	350,	361 361	852	62.5	. 404	156	1 38	****	. 8 8 7	342	856 818
47.6		• 27	001	11.6	.911	350	.010	74.4	. 487	366	- 196	197.9		-, 333	.033
97.0	. 861	70	012	107.6	. 007	144	.444	79.0	.90?	369	6 97	114.5	. 867	316	.000
191.6	. 46 1		.8 81	116.5	. 476)24	.005	64.5	. 481	-,379	067	129.4	. 899	292	.123
107.0	467	429	.845	119.3	. 471	171	.073	91.0	. 407	371	0 31	137-3	. 057	244	.177
114.8	. 464	- , 347	.076	124.4	. 851	101	.114	94.8	. 910	363	.869	143.4	. 016	718	.201
121.0	.457	107	-4.93	134.3	. 637	243	-136	99.6	.987	354	.011	197.3	. 459	113	.197
122.2	. 454	-, 375	.167	139-1	,413	261	.176	186.0		164	.075	157.2	. 444	136	.236
136.8	. 456	-, 100	-199	152.3	. 887	176	.297	119.0	. 003	325	-100	119.4	. 825	123	.235
163.0	. * * *	267	.164	190.9	. 483	- 175	.215	120.5	.459	323	-109	159.4	. 8 6 3	120	. 2 34
191.0	. 992	207	.176	161.5	.797	111	.777	127.6	. 467	2 00	. 1 37	161.4	. 467	110	.241
150.0	. ***	1 63	-191	199.8	. 487	457	.220	134.0	. 460	265	-165	178 - 8		8 54	.247
199.2	. * * 1	141	-100	179.0	. 485	. 865		129.0	, 467	248	-140	176.0	. 867	013	.250
164.0	.443	007	-1 92	140.5	. 4 8 4	-017	.2 20	142.8	. 850	227	.196	100.0	. 643	884 . 848	.251
177.6		- , 841	.194	195.6	.741	.057	.216	156.4	. 457	- 136	.724	197.4		. 184	.740
100.9	. 497	. 100	-196	201.1	7.07	. 199	.203	163.6	,447	- 196	.739	296.4	. 053	. 197	.237
199.2	. 447	. 171	.195	267.0	.796	. 197	.191	149.0	. 451	854	.243	215.4	. 853	. 212	.213
788.5	. 4 5.7	. 171	.187	215.4	. 7 85	. 244	.1/1	169.0	. 161	857	-439	824.7	. 443	. 290	.104
261.6	. 434	. 141	-198	550 -1	.767	. 274	.155	170.0	. #52	-, 847	.244	216.6	. 861	. 315	.129
	. 444	. 276	-176	4.555	. 798	, 284	.134	170.8	. 857	. 00 3 00 ?	.245	251.0	. 866	. 375	.649.
714.8 219.0	. 441	, 77A	.144	227.5	.416	. 128 . 344	.070	105.0	. 86 2	. 642	.267	255.0	, 001	. 363	.025
227.9			.141	239.9	. 4 37	. 154	.001	103.1	. 454	. 1 14	.243	240.0	. 005	. 144	
229.0	444	. 151	11 27	244.8	457	. 177	. 8 34	197.4	. 890		.242	249.8		. 371	054
257.1	. 454	. 179	.167	241.0	. 464	. 3#1	.88%	199.5	. 461	. 1 17	. 234	276.4	. 169	. 370	- 114
2	. **1	. 488	.075	291.4	. 161	. 365	-112	206 -6	. 474	. 183	-224	270.0	, 864	. 378	162
251.0	. 16.3	. +13	.644	794.4	. 070		009 038	213.4	. 415	. 226	-283 -173	207.8 290.0	. 451 . 843	. 361	1 49
755.5	. 461	. 479	.001	4. P. P. S	. 875	. 488	1 61	220.0	8.51	. 293	-196	305.4	. 452	. 114	2 3 4
273.2	. 444	. 621	. 0 24	273.5	. 475		007	235.5		- 316	-113	314.0	.453	. 271	264
290.8	. 444	20	053	1.00.4	. 470		122	142.8	.459	. 113	-9 66	319.0	. 854	. 268	260
24".0	. ***	- 417	876	247.4	. #74	. 396		249.9	.476	. 343	.841	321.9	. 162	. 224	249
294.4	. ** *	. 14	187	795.4	. 469	. 367	183	246.0	. 467	. 194	*18.	377.4 115.6	, 474	. 147	-,300 -,313
299.3	. 461	. 341 . 376	120	7.99.5	. 46.0	, 348 , 144	199	254.2	. 483	. 367	170	351.0	. 893	311.	313
189.1	. 461	. 176	174	307.5	. 86.5	. 321	226	278.6	. 0 90	. 350	0 07	350.0		. 895	321
314.7	44.1	. 317	174	316.4		. 2 86	2 19	201.7	, net	. 361	100	359.2	. 427	. 884	381
354.4	460	. 354	143	319.4	. 971	. 276	245	245.8	. * * *	. 346	152	366.0	. 181	- , 8%	310
323.4	. 46.2	. 272	192	323.6	. 477	. 747	291	292.9	. * * *	- 342					
110.6	467	. 227	1 98	131.0	. (0 0	. 284	? 5 5	100.0	. 8 6 7	- 131	- 196				
337.0	.414	. 171	200	111.1	. 484	. 191	261	381.2	. 84C . 497	. 321	198				
146.6	. 484	. 144	199	339.2	. 181	. 101	760	114.0	479	. 276	-,247				
357.0	. 11.3	. 072	191	152.4	979		755	121.0		. 244	2 64				
199.6	. 471	. 201	188	394.0	. 441	. 061	744	321.4	. 189	. 2 4					
300.0	961	902	133	394.6	. 937	961	242	320.0	. 891	. 204	201				
				361.5	. 434	018	256	115.0	- 111	- 154	2 9 1				
								3.5.6	. 914	. 113	301				
								176.0	. 941		107				
								357.6	997	. 070	304				
								***	466	- 861	- 100				

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 13 ŧ TABLE E-2

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ALONE 20D INC 4KTS13	
INC	739
200	JA = 739
ALONE	47
BOAT	
BASS	
5271	FEET
MODEL	6.00 FEET
Υ IL	.,
ATIOS	PROPELLER DIAMETER
α	5

1.000	.870	.005	044	.872	.883	11.55	1.23 97.50	-1.16
006.	.877	.003	042	.872	.885	12.90	.67 3.84 2.30 1.31 12.57 9.75 7.31 5.08 4.15 2.97 2.18 1.62 1.2 50 85.00 95.00 97.50 110.00 105.00 105.00 طفيوي 85.00 85.00 95.00 95.00 97.5	-1.30
.800	. 880	.002	039	.869	.886	14.50	2.18	-1.77
. 700	.874	900.	037	.866	.487	16.33	2.97	-2.40
.600	.863	.012	032	.866	.893	18.60	4.15 85.00	-3.02
.500	. 8n2	.005	910.1	848.	905.	22.62	0.08 d0.00	-3.36
.400	.868	600	.001	.873	.931	27.17	7.31	-5.17
.350	.874	020	.013	878.	.949	30.74	9.75	-6.63 290.00
.312	.879	029	.024	0.000	0.000	34.09	12.57	-8.26 315.00
.963	.870	.005	044	.871	83	11.98	97.50	-1.23
.781	.880	.003	039	.863	.885	14.82	2.30	-1.89 217.50
.633	.864	.012	035	.865	068.	17.73	3.84	-2.87
RADIUS = .456	w,	000	1.011	ů.	. 920	= 24.02	5.67	= -3.96
RADIUS	VXBAR =	VIBAR	√£8 A ₽	# X 7 X 1 L	× × · ·	ваия	800 000 000 000 000 000 000 000 000 000	BAEG THETA

IS CIRCUMERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMERENTIAL MEAN WAKE VELOCITY.

IS VILUMETRIC MEAN WAKE VELOCITY WITH TANSENTIAL CORECTION.

IS VARIATION BETWEEN THE VALIVOY AND MEAN ADVANCE ANDLES DELTA BETA MINUS).

IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES. CELTA BETA MINUS).

IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES.

IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES.

IS VARIATION BETWEEN THE VILIMOY AND MEAN ADVANCE ANDLES.

HARMONIC ANALYSES OF LONGITIDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPLAINENT 13 TABLE E-3

ო	
4K 751	
?	ரு ரே t -
200	**
ALCNE	φ:€1- : ¥1)
4 () (i)	
.√ .11 .21	
(- (A)	6.00 FEET
ا۔ بین 	0
:-	4
, ,-	.1
41 (T	• •
; ;	P4 F2 ER 01A(: 1.4
;• ,	1
JECCCITY IN CHENT WATER FOR THE BOTH BANK BOAT ALONE 200 INC. 4KTS13	O.

	L			2			, (
JIN TRAM	ANA YSES	15.77 40	DAST TUBBLE	*	COTP 3161	* RATIOS	(* × ^)	
भ ेर्डिक्स भ		0	1	••	άì	۵۰	7	T
0.000 = 0.000 cm	0209	, 6087 8.89	. 0. c.		000 1- 0	0.00° 0.00° 0.00°	. 0023	400
		:	!					•
63	. 057 5	(- (-	၅ ်	•		.6057	8:00.	.0016
PHASE ANDLE =	<u>.</u>	272.4	£ . £		251.7	6E.8	87.9	134.4
<u>ن</u> ب	0.1	0000	2113	50 64 13		4600,	.0041	6600.
177	75	rvi I =	· •	ič. Ģ	254.8	64.00	112,2	ci.
96	9800.	4 HCO.	0 0 0 0	100 X	.6052	. 5033	.0013	4.0
	-1	てい	164,5	າ ໜີ	249.4		64.7	43.4
DINONWAL	. ANALYSES	0F 10N01	CONSITUDITAL	V1100.1V	COTPONEN	T RATIOS	17 773	
HARMONIC =	6 7	51	11	5	13	4 -	15	9,
### 456 # 456 # #################################	0018	.0010 38.8	13.2	 0.0 0.0 0.0 0.0	. 000 500 500 500 500 500 500 500 500 500	.0021 280.5	.0013 226.0	. 0000 355. 0
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.0020	.0024 132.8	.0008 161.3	.0025	357.6	.0005 50.6	.0020	.0019 145.4
RADIU: .781 AYPLIIUOE = PHASE ANGLE =	.0012	.0017	. 0002 261.3	328.2	.0007	.6011	.0014	.0014 162.5
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0010	.0004	.0018 8J.0	000.	.0027 90.8	.0026 49.3	.0023 79.8	30.5

·-. .

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 15 1 TABLE E-4

	VELCCITY COMPONENT PROPELLER O	COMPONENT RATION ROPELLER DIATETER	847125 1476164	¥	#325L 5271 BA 6.00 FEET	BASS BOAT	ALONE 205) INC 4KTS13
OINGREE	ANALYSES	0F LONG! F	LONGITUDI::4,	VELDOITY COMPONENT	COMPONEN	T RATIOS	(A/XA) 9	
HARMONIC =	-	2	m	ব	Ŋ	9	7	80
RADIUS = .312 AMPLITUDE = = PHASE ANGLE =	.0656	.0698 95.3	.0239 85.3	.0173	.0161	.0049	.0041	.0078
RADIUS = .350 AMPLITUSE = EMASE ANGLE =	. 6400	.0502 .09	6210 64.7	0. 64. 64.	. 0129 69.2	.0048	.0036 25.8	.0056
PADDICS = .4000 PHADELTCOE	. C139	.0282	.0177 8.2.8	62.0	.0092 69.3	.0051	.0030	.0032 35.0
00000000000000000000000000000000000000	. 6356 79.2	.0331 2 92.6	.0128 82.0	6. 158 5. 158	.0034	.0058	.0019 36.6	. 0011
0400105 - 1600 AMPLITURE = PHASE ATOLE =	.0556	274.6	.0163 81.1	.0143 166.4	.0003	.0059 68.6	.0016	.0016
AMPLITOUS = 700 PHASE AMULE =	.0483	.0089	6.18 9.18	.0182 97.7	.0012	.0044	.0033	.0024 57.8
RADIUS = .800 AMPLITUDE = PHASE ::301E =	.0340	.0063	.0116 86.0	.0205	.0020	.0032	.0041	.0041
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0187	.0077	0.00. @0.00.	.0203	.0037	.0029	.0028	. 0043 66. 9
RADIUS = 1.000 ATPLITUSE = = PHASE ATSLE =	.0086	.0084 68.6	.00%2 10 · .5	® m ⊕ in O 5	.0052	.0033 92.4	.0013	.0043 93.4

TABLE E-4 (Continued)

1

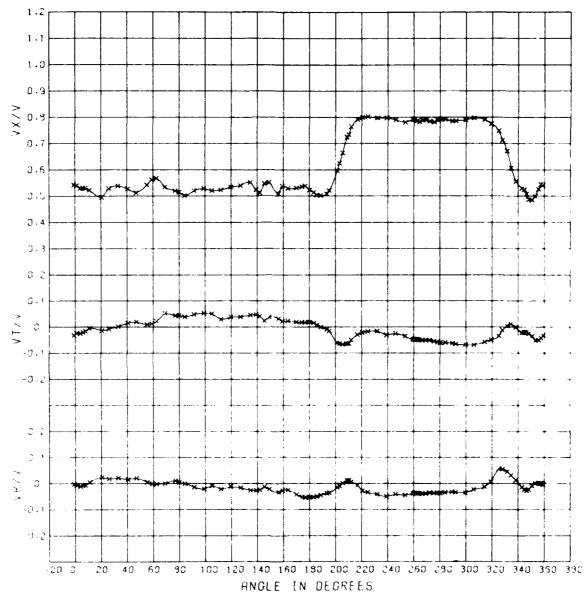
-

VELOCITY COMPONENT RATION FOR WOTEL 5271 BANS BOAT ALONE 205 140 4KTS13 PROPELLER DIAMETER - 6.00 FEET .0057 332.8 334.5 .0024 338.6 .0017 .0018 .0013 .0004 30.5 .0004 (× ×) .0004 .0001 .0020 .0012 .0029 79.8 .0007 .0016 .0023 223.8 .0012 VELCETTY COMPONENT RATIOS .0026 .0058 .0046 266.6 .0033 .6013 .0004 .0007 149.8 .0011 .0014 78.2 .0016 .0010 208.3 .0005 339.2 .0012 .0003 .0008 .0018 .0027 <u>س</u> 302.2 .0085 301.9 301.4 .0006 .0026 359.7 .0028 327.5 340.1 .0012 5 .0078 5.4 .0061 5.6 .0042 8.7 20.9 .0005 ,0004 213.3 .0001 280.5 .0008 72.6 80.08 HARTIONIC ANALYSES OF LONGITUDITAL .0085 331.5 334.6 .0330 .0014 .0026 .0001 .0019 .0015 .0004 ç 327.6 344.1 .0017 31.3 .0020 .0010 .0017 .0011 181.0 RADIUS = .500 AMPLITUDE = PHASE ANGLE = PADIUS = .600 AMPLITUDE = = PHASE ANGLE = RADIUS = .700 AMPLITUDE = PHASE ANGLE = RADIUS = .800 AMPLITUDE = PHASE ANGLE = RADIUS = .900 AMPLITUDE = PHASE ANGLE = RADIUS = 1.000 AMPLITUDE = PHASE ANGLE = RADIUS = .312 AMPLITUDE = PHASE ANGLE = RADIUS = .350 AMPLITUDE = PHASE ANGLE = RADIUS = .400 AMPLITUDE = PHASE ANGLE HARMONIC

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE E-5

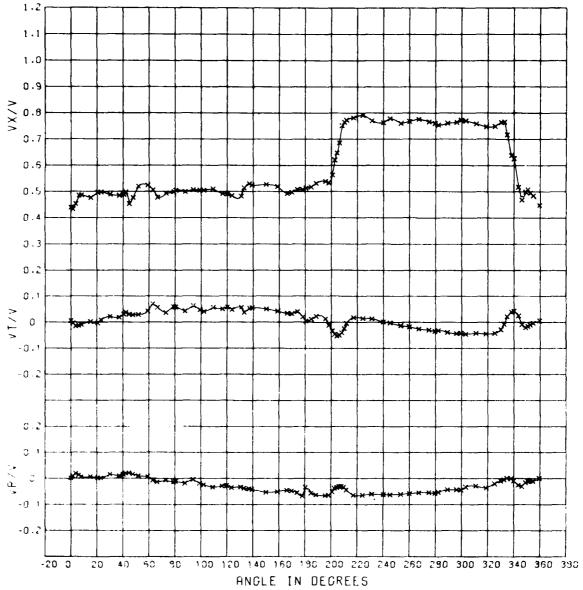
1	w) .>>	.0011Y		3 1 0	90019	FEE		יין אַרטוּר (אַרַאַרָּאַרְאַרָּאַרָּאַרָּאַרָּאַרָּאַרָּאַרָאַרָּאַרָּ	0 140 4KTS13
56 - 4438	01.4000	S	LL.	,	¥1100	COMPONENT	RATIOS	(VT/V)	
56 181.9 150.6 146.5 183.2 20.9 207.7 184.0 181.9 150.6 146.5 183.2 20.9 207.7 184.0 181.4 245.8 170.9 176.4 318.5 201.9 346.2 181.4 245.8 170.9 176.4 318.5 201.9 346.2 180.8 3747 .0062 .0054 .00013 .0044 .0011 .0022 180.8 246.0 210.7 .0013 .0041 .0018 .0005 180.2 246.0 210.7 .11.6 352.0 122.6 84.0 150.1 11 12 1 15 150.1 10.1 10.1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	9	٠٦	ü	S	ø	7	6 0
= 181.9 150.6 185.5 183.2 20.9 207.7 184.0	(i)	. 4438	.0074	01.10	0900	.0043	.0026	. 0012	.0030
33 39.99		181.9	150.6	185.5	183.2	20.9	207.7	184.0	1.0.0
# 181.4 245.8 170.9 176.4 318.5 201.9 346.2	8ADIUS = .633						6	· · · · · · · · · · · · · · · · · · ·	i c
### 180.8	AMPLITUDE = PHASE ANGLE =	181	245.8	₩ ₩ 3 0 3 2 1	.0024 176.4	318.5	201.9	346.2	. 630 . 63 . 63
180.8 193.9 175.4 523.2 11.4 158.1 12.1 163 180.8 93.9 175.4 523.2 11.4 158.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 1	. 78	t t	0	• • •	(0	•	6	1
63 186.2 246.0 210.7 111.6 352.0 122.6 84.0 5NIC ANALYSES OF TANGENTIAL VEUDCITY COMPONENT RATIOS (VT/V) 19 10 11 12 13 14 15 156 10016 .0020 .0016 .0015 .0014 .0006 .0011 147.9 189.9 175.9 209.2 142.3 166.1 174.4 1335.4 187.7 101.3 176.0 76.8 325.2 218.8 166.1 174.4 181 .0012 .0007 .0009 .0005 .0017 .0005 .0007 1 352.5 281.2 285.1 151.4 275.0 225.2 250.3 163.1 .0005 .0009 .0004 .0005 .0006 1 352.5 281.2 285.1 151.4 275.0 225.2 250.3	111	180.8	. 00 . 00 . 00 . 00 . 00 . 00 . 00 . 0	: 17 5 -0 5 -0 5 -5	233.2	11.4	158.1	12.1	. 6000 44. 3
MIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) = 9 10 11 12 13 14 15 56	ڡۣ	.3649	.0081 246.0	- 0 0 0 0 0	0 + 0 + 0 = 0 =	.0041	.0018	.0000 84.0	.0006 125.6
56 10016 .0020 .0016 .0014 .0006 .0011 147.9 189.9 175.9 209.2 142.3 166.1 174.4 33 .0015 .0007 .0009 .0005 .0010 .0011 .0010 335.4 187.7 101.3 176.0 76.8 325.2 218.8 81 .0012 .0002 .0014 .0009 .0017 .0005 .0007 352.5 281.2 245.1 151.4 275.0 225.2 250.3 63 .0005 .0009 .0014 .0004 .0005 .0006	OLVOURAL OLVOVIO	ANALYSES	u O	ر _	, 3C114	COMPONENT		(\ \ \ \ \ \)	
56 147.9 189.9 175.9 239.2 142.3 166.1 174.4 33 33 34 35.4 187.7 101.3 176.0 76.8 325.2 218.8 81 35.5 2 281.2 245.1 151.4 275.0 225.2 250.3 63 36.005 .0005 .0009 .0004 .0005 .0006		б	0	-	2	13	4		16
= .0016 .0020 .0016 .0015 .0014 .0006 .0011 = 147.9 189.9 176.9 209.2 142.3 166.1 174.4 330015 .0007 .0009 .0005 .0010 .0011 .0010 = 335.4 187.7 101.3 176.0 76.8 325.2 218.8 810012 .0002 .0014 .0009 .0017 .0005 .0007 = 352.5 281.2 245.1 151.4 275.0 225.2 250.3 630005 .0009 .0014 .0004 .0005 .0006									
33 . 0015 . 0007 . 0009 . 0005 . 0010 . 0011 . 0010 . 0015 . 0007 . 0009 . 0005 . 0010 . 0011 . 0010 . 0010 . 0012 . 0007 . 0009 . 0009 . 0017 . 0005 . 0007 = 352.5 281.2 285.1 151.4 275.0 225.2 250.3 63 . 0005 . 0009 . 0007 . 0008 . 0006 . 0005 . 0006 . 0007 . 0006 . 0005 . 0006 .	· ·	00100.	00500.	9190.	000 8000 8000	4100.	9000.	.001	.0006
335.4 187.7 101.3 176.0 76.8 325.2 218.8 81	1)		•	
81 81 80 825.2 218.8 81 80 825.2 218.8 81 80 81 825.2 218.8 83 83 83 83 84 85.2 2005 .0007 85 85 85 86 86 86 86 86 86 86 86 86 86	⊒C	.0015	.0007	\$000°	9000	00100.	.0011	. 0010	.0010
63 10005 10005 10009 10017 10005 10007 10005 10007 10005 10007 10005 100	3101F	335.4	187.7	101.3	176.0	76.8	325.2	218.8	320.5
= .0012 .0009 .0017 .0005 .0007 = 352.5 281.2 245.1 151.4 275.0 225.2 250.3 = 352.5 281.2 245.1 151.4 275.0 225.2 250.3 = 352.5 281.2 245.1 151.4 275.0 2005 .0006 = .0009 .0004 .0009 .00	. 78				,			1	
63 .0005 .0009 .0004 .0005 .0006 = .0005 .0006 = .0009	m -1 m	352.5	281.2	2000 2000 1000	0 4 0 5 0 6 0 6	275.0	.0005	.0007 250.3	.0009 225.6
	PADIUS = .963 AMPLITUDE = = PHASE ANGLE =	000 000	9000.	9 * 9 *	, t	.000	.0005	.0006	.0005

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 13 TABLE 11-6


TODEL 5271 BASS BOAT ALONE 200 INC 4KTS13

3	ELDC11Y CO	CCMPCLENT ACRELLER D	T 841105 F	* 755EL 5271 * 6.00 FEET		BASS BOAT	ALONE 201 JA =	20D INC 4K
OIVOURT	ANALYSES	OF TANGE	ANGENTIAL VEL	PCITY	COMPONENT	r RATIOS	(V1/V)	
HARMONIC =	*	7	ю	4	ហ	9	7	œ
RADIUS = .312 AMPLITUDE = =	.5114	.0408	.0229 4.851	.0062	.0136	.0061	.0081	73.7
m	. 4913	.0242	180.1	. 0059 193.0	.0105	.0050	.0059	.0063
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.4674	.0166 114.8	.0170 182.6	.0055	.0071	.0038	.0035	.0046
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.4277	.0067 205.6	81.0. 87.81	. 000 .100 .100 .200	.0028	.0019 209.8	.0004 289.6	.0020
PADIUS = .600 AYPLITUDE = PHASE ANGLE =	.3989	.0108	.0082	.0030	319.9	.0008 209.3	.0023	.0003 159.3
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.3831	.0022 166.3	.0355 180.9	.0008 239.5	.0031	.0008	.0025	.0005
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.3731	.0065 98.8	.0051	.0014	.0046	.0012	.0021	.0007
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.3669	.0023	.0032	.0008	.0047	.0015	.0011	.0006 79.3
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.3649	.0081	.0021	.0013	♣ 0041 352.0	.0018	.0005	.0006

TABLE E-6 (Continued)


3>	VELOCITY COMPONENT RATIOS FOR PROPELLER DIAMETER =	OPELLER O	RATIOS F STAMETER		MGDEL 5271 37 6.00 FEET	BASS BCAT	ALONE 20D JA =	D INC 4K1
HARMONIC	ANALYSES	DF TANGE	TANGENTIAL VE	ELOCITY (COMPONENT	F RATIOS	(V1/V)	
HARMONIC =	თ	10	:	12	13	4	51	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.0067	.0032	.0044	.0032	.0039	.0045 158.6	.0017	.0043
RADIUS = .350 A:PLITUDE = PHASE ANGLE =	.0051	.0029	.0034	.0026	.0028	.0032	.0014	.0031
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0033	.0024 192.0	.0024	.0620	.0018	.0018	.0012	.0017
PADIUS = .500 ATPLITUDE = PHASE ANGLE =	.0005	.0016	.0013	.0011	.0014	.0002	.0010	.0001
PADIUS = .600 ATPLITUDE = PHASE ANGLE =	.0012	.0009	.0010	.0006	.0013	.0010	.0010	.0009
AADIOS = .700 AMPLITUDE = PHASE ANGLE =	.0014	.0003	.0001	.0008	.0007	.0005	.0009	.0007
PADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0012 354.8	.0002	.0004	.0009	.0018	.0005	.0007	.0009
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0008	.0003	.0001	.0009	.0011	.0006	.0003 319.8	.0004
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0005	.0009	9000.	.0008 182.0	.0004	.0005	.0006	.0005

• APPENDIX F VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 14

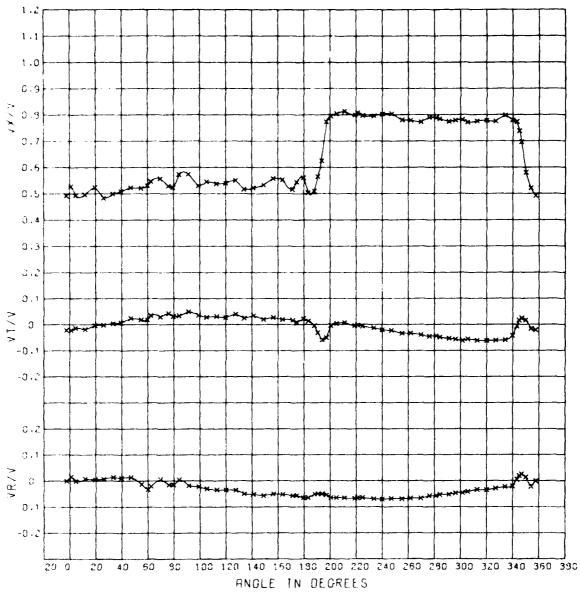

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 0.456 RAD.

Figure F-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 14

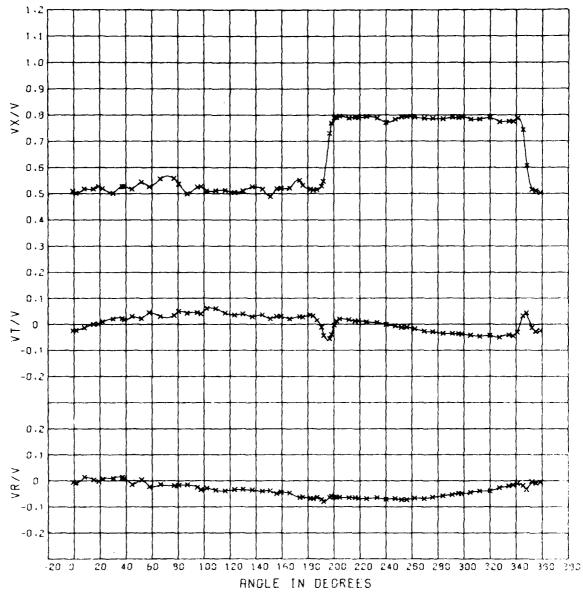

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 $0.633\,\mathrm{RAD}$.

Figure F-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 14

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 0.781 RAD.

Figure F-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 14

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY DINC 4.5KTSW014 0.963 RAD.

Figure F-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 14

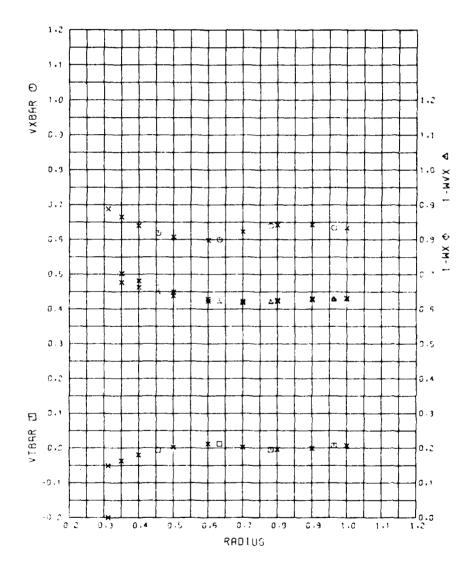


Figure F-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 14

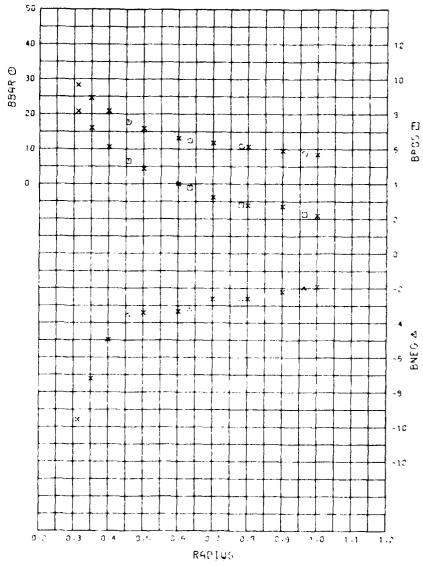


Figure F-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 14

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHEMA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 14

TABLE F-1

													#ADIUS .	.963	
ARGET	4474 4474	.446 VT/V	VR / V	ANGLE	RACTUS +	. 6 3 3 V 1 /V	V# /V	44616	##01US -	.781 V77V 827	WR / V	AMELE	V1/V	¥1/V	ph/1
1.0		0 31	0:1	1.1		. 886	.007	- 2 . 6	1492		001	-1.0	-549	021	106
	.544	874	035	1.5	.433	664	.000	1.0	. 576	822	007	1.3	.510	613	010
1.1	1131	- 625	011	3.3	. 451	815	.6 21	11.0	. 4 97	819		15.0	.417	604	.614
* :	. * 1;	0 26	487	6.6	. 4 85	013	4613	19.0	. 525	- , 667 - , 102		10.8	.519	. 661 . 618	003
11.0	. 5 5 2	8 14 80h	- 006	15.0	. 4 86	010	.006	20.2		867	.007	34 .4	. 101	. 622	.010
28.5	. 94	814	.0 24	20.6	. 496	004	.007	33.4	. 4 9 A		.414	37.8	.528	. 023	.013
26.0	.179	189	-314	23.6	. 4 9 8		.001	39.0	.510	. 887 . 886	.009	30.5	.527	.617	.001
11.6	. 4.14	. 861	518.	30 .0 37 .0	. 485	. 622	.616	37.3	. 523		.014	71.6	. 545	.823	.004
40 4	? .	. 0 16	-017	40.3	. 4 8 9	. 0 31	.015	55.6	.581	. 619	013	58.8	. 526	. 145	8 2 3
• 7 • 8		. 6 20	-671	. 7 . 1	. 4 9 9	. # 36	.819	59.8	.431	. 619	033	77.0	.557	. 6 M	815
11.1		. 3 10	001	47.5	. 4 5 3	. 0 31	.017	69.5	.557	. 6 33	.114	48.5	. 534	. 856	016
82.5	21.64	. 8 27		91.4	. 5 26	. 8 30	.018	76.8	.529	. 8 43 . 8 31	815	17.1	. 4 9 9	. 841	816 825
69.8	. 5.76		568	59.8 63.0	.574	. 842	.006	79.6 83.9	.575	. 6 34	815	97.4	. 520	. 001	8 35
	11	. 845	.00%	66.3	. 474	. 856	013	91.2	. 474	. 858	619	1.501	.589	- 061	629
44.7	. 501	. 8 79	- 4 6 8	75.0	. 491	. 6.36	116	91.4	.530	. 6 35 . 6 36	023	114.0	.517	. 864 . 843	0 36 0 39
41.4	77.21	. 0 5 3	014	14.6	. 444	.854	613	105.0	. 546	.17	6 36	123.5	.504	.13	034 011
104.0	. 5.2.	. 351		47.0	. 4 99	. 842	018	117.6	. 5 34	. 0 37	6 35	130.0	.411	. 844	011 014
112.4		. 0 / 9	8 2 2	11.1	.587	. 863	884	119.4	.538	. 1 24	4 34 4 17	137.8	.526	. 6 32 - 6 27	4 37
119.6	.516	. 0 39	017	197.1		841	0 25	127.3	. 551	. 144	4 36	145.0	. 5 5 7	. 8 37	144
134.5		. 444	8 26	189.2	. 589	. 657	0 33	134.0	-516	. 6 25	656	191.0	.466	. 621	0 38
114.2	.576	. 0 . 4	0 25	116.3	. 4 91	. 050	829 827	104.9	.527	. 0.35	057	156.8	.521	. 6 31	
145.4	544	. 024	6 1 3	173.5	. * 5*	. 844	0 35	156.2	.550	. 927	0 50	144.0	.521	. 621	6 46
149.8	. 542	. 5 39	8 2 2	130.6	. 442	. 857	6 33	163.4	. 520	. 020 . 027	852	173.8	.552	. 1 29 . 1 20	064
150.7		. 032	0 3 3	133.8	.51%	. 0 38	8 38 8 48	178.6 172.8	.513	. 011	055	102.0	.517	. 1 % 12 1 .	060
163.4	. 1.74	. 024	825	139.1	-525	. 0 55	047	174.2	.537	. 0 68	156	114.0	.515	. 6 52	169
170.0	5.31	. 019	041	150 -8	.471	.451	051	174.2	.576	. 8 11 . 8 21	858	147.6	.532	. 816	463
178.2	. 5 34	.014		150.0	. 586	. 843	452	100.0	.547	. 125	864	191.6	.528	023	474
177.0		.619	855	166.8	. 491	. 6 34	145	183.3	.510	814	865	197.0	.727	042 058	101
148.8		.019	055	199.6	. 5 6 8	. 6 32	8 4 7	100.0	.510	- , 6 31	058	197.2	. 7 39	853	8 6 6
113.3	- 17	. 016	457	170.0	. 500	0.50	467	193.0	. 565	648	051	174.5	.764	230	050
185.8	-547	. 010	48.52	100.0	. 500	. 012	869	194.8	.687	071 051	051	200.2	.749	003 .013	063 664
190.0	-1 8 L	. 90 -	8 4 5	148.8	.526	804 .812	057	4.085	. 7 94		865	284.4	. 796	. 920	863
191.1	. 584	084	0 34	100.2	3.2	. 123	061	784.0	. 205	- 584	464	211.0	.748	. 010	166
195.1	,471 ,573	047	037 071	198.4	. 539	011	166	211.0 219.8	. 486	- 017	667	216.6 218.8	. 790	. 110	467
787.8	. 114	065	010	200.4	.562	8 35	052 051	221.0	. 888	66 2	066	225.0	.795	. 809	
281.0	. + 2 •	0 64	015	200.4	. 565	8 31	051	224.0	.797	447	065	233.2	.789	. 667 661	865
784.4 786.2	, 1 & 1 , m Ar	- 164	055	282.5	.571	846	4 37 8 35	211.6	. 982	613	071	248.6 247.6	.783	006	000
204.5	. 7 1 *	965	.017	204.2	. 6 85	656	+ . 8 31	247.8	. 484	021	8 6 8	252.0	.793	812	072
299.3	. 731	0%	-610	288.0	.751	140	4 31	295.1 201.8	.779	6 11	869	296.8 267.1	.794	011	072
210.2 212.3	. * * 1	063	.017	289.8 211-5	. 777	- 114	4 64	242.4	. 775	0 33	867	249.4	. 787	027	060
216.4	. 791	0 10	007	217.8	.781	. 619	164	4.9.6	.777	. 044	067	274.8	.787	120	863
220.1	, 194	021	0 28	224.1	.792	.015	464	276.8 261.2	.790	845	858	203.8 201.8	.791	635 635	858
724.4 731.5	. 40.	- 61*	0 - 2	231.6	.761	. 001	067	243.9	. '84	8 4 7	854	295.8	.789	636	444
219.8	, 798	0 71	050	234.8		007	041	291.4	. 774 . 778	857	857	298.3 384.8	.793 786	937 941	849
244.8	91	-, 0 25	041	753.1 759.6	.767	813 816	866	381 -1	. 7 90	861	4 + 6	312.0	.703	844	8 39
244.4	791	644	8 17	268.8	. *67	318	859	369.3	.771	8 %	0 47	319.9	.798	843 849	4 39 8 27
259.4	. 194	651 846	019	267.8	.746	- , 626	854	312.5 319.6	.775	861 861	8 35	327.1	775	14	0 20
262.3	7.85	044	0 30	279.4	761	- 1 %	856	320.0	. , , , ,	661	8 35	337.0	.774	145	017
264.1		564	0 54	202.5	. 744	0 3L	013	326.8	. 775	961 959	630	316.8	.777	0 %	016
265.9 267.8	.730	050	- 641	284.8	.764	839	043	314.6	777	-, 144	6 21	345.2	.743	. 0 33	010
769.3	. : 9 .	651	8 19	299.4	. 777	14	4 * *	348.0	.781		071	344.0	.619	. 843	0 35
272.0	744	651	4 16	303.0	.769	644	6 33	343.8	.773	807	.009	392.4	.515	816	443
276.4		- , 656	8 18	318.9 318.1	.746	003	0 37	346.6	. 697	. 617	.027	1.000	.500	124	009
2 * 4 . 6		654	3 37	319.2	.767	447	117	144.6	. 5 80	017	023	359.8	.583	023	616
279.5	,791	061	0 34 0 36	329.3	.744	647	476	393.4	.521	627	001	361.4			
243.9	. 793	061	0 35	332.5	. 765	8 64	8 6 4	361.4	. 474	022	.814				
284.7	. 7 85	467	8 12	334.3	.733	.013	.447								
797.8 799.3	. 186	-,866	0 Jh 0 36	334.0	.702	. 6 37	- 111								
249.9	. 7 94	865	0 35	339.4	. 627	. 143	109								
384.8	. 197	- 069	821	141.4	-517	. 175	- ,426								
319.1	.792	657	.007	346.0		010	816								
319-1 129-1	744	675	.057	158.6	. 494	014	010								
371.6	.711	012	.055	357.6	. 4 9 4	- , 814 - , 886	011								
314.0	. 4 2 4	.017	. 1 36	155.8	. 474	987	017								
334.0	. 444	. 8 1 1	.029	199.8	. 4 5 4	. 804	861								
337.6 114.9	. 449	861	.016	340 .0	.44"	. 986	.117								
342.9	.479	423	* .014												
347.4	.575	071	014												
3.4.4	. 5 8 5	679													
140.0		076	023												
340.1	19	19	016												
151.0	94	657	.001												
344.4	. 4 76	-,449	.007												
133.4	. 444	6 11	061												
144 4	3.41														

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 14 TABLE F-2

VELOCITY COMPONENT MATIOS FOR MODEL 5271 BASS BOAT ONLY OING 4.5ATSWOTA PROPELLER DIAMETER = 6.00 FEET

1.000	.634	.007	037	.630	.632	8.46	300.00	150.00
006.	.643	1.001	037	.627	.630	g.53	5.32 3.77 2.81 2.27 8.17 7.21 6.12 4.87 4.00 3.23 2.77 2.71 2.19 7.50 222.50 210.00 300.62 282.50 282.50 282.50 300.00 222.50 335.00 200.00	27.50
.800	.643	005	035	.622	.625	10.70	2.77 335.00	-2.61 27.50
.700	.623	.002	033	.618	.622	11.81	3.23	-2.61 357.50
.600	865.	.012	028	.623	.629	13.13	300.008	00.00
. 500	.608	. 002	610	.638	.649	£4.55	T- (7)	0 1- 0 1- 0 0 1 00
.400	.640	1.020	007	.662	.691	20.45	6.12 282.90	-4,47 187,50
.350	.665	037	000.	.676	.702	24.62	7.21	187.50
.312	.688	051	.007	0.000	0.00.0	28.34	8.17	-9.59 187.50
.963	. 534	.007	037	.627	. 629	8.78	300,00	-2.00 150.00
.781	.640	005	035	619.	.622	10.92	210.00	-2.64 27.50
.633	.600	.012	030	.620	.625	12.51	3.77	-3.25
456	- 619	900'- =	014	647	= ,663	= 17.76	= 5.32 =307.50	= -3.55
RADIUS = .456	VXBAR	VTBAR	VRBAR =014	X > 3 - 1	1 - W X	8848	8 P C S T H E T A A A	BNEG THETA

1

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELDCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAKE LECCITY WITH TANGENTIAL CORRECTION.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE CORRESPONDING BODY OR SNELL DICLAS.

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 14 LYBLE 1-3

:						() () () () () ()	t >	· ·
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4411710		1		1			
n	-	7	m	77	Ŋ	g	7	Œ
2.		,						
PHASE ANGLE =	142.7	. 6684 273.5	0.00 48.00	272.3	0.0303	.004 2 269.3	. 0230 10.2	0 · • · 0 · • · • · • · • · • · • · • ·
. 533 533								
LLI	.1568	9650		08 00	6010.	.0226	.0161	.0052
(L)	164.1	259.0	-8.7 8.7 8.0	2.3.0	357.6	263.7	354.9	341.9
. 78							;	•
PHASE ANDLE	184.2	253.5	, 07 v 0.	255.4	160.8	257.8	. 0020 359.5	. 0225 2 61.9
RADIUS = .963								
ui Co		.0428	E 40.	2345	.0139	.0249	. ООБВ	.0206
ш	179.2	276.1	0 . 0 a .	0 m n 0	161.1	267.1	344.4	253.0
HARTINIC	ANALYSES	10 PC	בייונטוינינס.	A.100004	COMPONENT	IT RATIOS	(VX/V)	
HARMS*IC =	σ	0	-	12	13	4	ស	16
RADIUS = .456								
A::DLI 7.3E =	6900.	62.01	.0145	E# 000	.0013	.0026	9000.	.0022
u: 13 27	4.	120.8	£2	D. 47.	332.1	44.2	266.5	254.1
53								
A7P.IT.OE = =	.0157	.0077		0100.	. 00.79 . rc.	0000.	.00.43	.0022
	3.2.2	7 . 80	301.3	7.76	9.77	4 ي	9.08	224.3
78	9	9	(0	•	0	Q Q	0
FHASE ANGLE =	7.1	258.8	331.9	313.1	338.2	180.5	320.7	111.4
96								
AMPLITUDE = PHASE ANGLE =	.0110	.0096	355.5	.0037	339.5	.0023	350.8	.0073
			• • • •))	•		•

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 14 TABLE F-4

1

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY OING 4.5KTSW014 PROPELLER DIAMETER = 6.00 FEET

	Ž Ž	アスログだしに はん ロー・ とんだい これ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 6.00 PEE	ר ה		u ∢	66/.
HARMONIC	ANALYSES OF		UDINAL V	LONGITUDINAL VELOCITY	COMPONENT	RATIOS	(v x, v)	
HARMONIC	-	a	ო	4	Ŋ	9	7	60
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	1301	.0683	.0114	.0375	.0243 62.6	.0205 88.5	.0244 36.0	.0219
PADIUS = .350 AMPLITUDE = PHASE ANGLE =	.1354	.0689	.0083	.0399 281.6	.0222	.0131 87.8	.0239	.0165
AADIUS = .400 AMPLITUDE = PHASE ANGLE =	1414	.0691 2 75.9	.0061 167.5	.0425 276.6	.0210	.0043	.0236	.0115
PADIUS = .500 ATPLITUDE = PHASE ANGLE =	.1506	.0673	.0049 195.1	.0483 209.6	10.0	.0100	.0221	.0075
PADIUS = .600 ATPLITUDE = PHASE ANGLE =	.1559 183.9	.0621 259.6	.0133 190.5	.0442 244.5	.0140 359.1	.0202 264.7	.0182 356.8	.0053
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.1554 184.6	.0508 268.2	.03.9	.0384 259.0	.0027	.0259 259. 2	.0077	.0135
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.1556 183.9	.0427	.0534	.0312	.0139	.0282	.0014	.0237 260.7
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	. 1589 181.5	.0407	.0520	.0314	.0167	.0271	.0024 341.4	.0248
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.1627	428	.0438 188.0	.0342	.0139	.0249 267.1	.0068 344.4	.0206

TABLE F-4 (Continued)

DINOMETH

VELOCITY COMPONENT RATILLY FOR MODEL 5271 BASS BOAT ONLY 01/C 4.5NTSW014 PROPELLER DIANTER = 6.00 FEET .0071 0007 .0032 .0029 .0057 126.2 (V × × V) .0053 .0027 178.0 .0048 176.6 .0027 284.8 .0169 .0114 340.6 HABICATO ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS .0086 206.3 .0049 203.3 .0610 39.3 39.4 .0013 .0041 .0342 319.8 .0233 320.2 .0012 132.8 .0088 131.1 .0035 . 60.51 50.3 .0119 .0059 311.2 0.00 00000 Ċ . 000.7 81.18 2.53. 2.63.69. .0130 .4-15 23°.0 3,47.5 .0167 86.3 . 0306 • 83.3 172.3 .0:03 151-2 .0122 .0098 68.2 272.1 0 .0215 80.6 .0112 .0098 .0154 .0118 .0315 86.2 RADIUS = .700 ATPLITUSE = = PHASE ATSLE = RADIUS = .312 ATPLITUDE = = FHASE ANGLE = 840145 = .350 41011405 84056 410.5 AADIUS = .400 AYALITUE = PHASE AYSLE = RADIUS = .500 ATPLITUDE = = PHASE ANGLE = A10105 = .600 A1011705 = . PHASE A1016 =

.00°39 108.6

.0073

.0034

.0131

.0025 290.8

. 00 .9 334.7

.0159

9.6

PADIJS = .800 ANPLITOSE = PHASE ANGLE =

.0087

338.2

.0035

336.4

.0074

347.9

.0154

0109

006. 11

RADIUS = .900 AMPLITUSE = : PHASE ANGLE = :

.0073

.0086 350.8

.0023

.0122

.0097 255.1

355.5

.0096

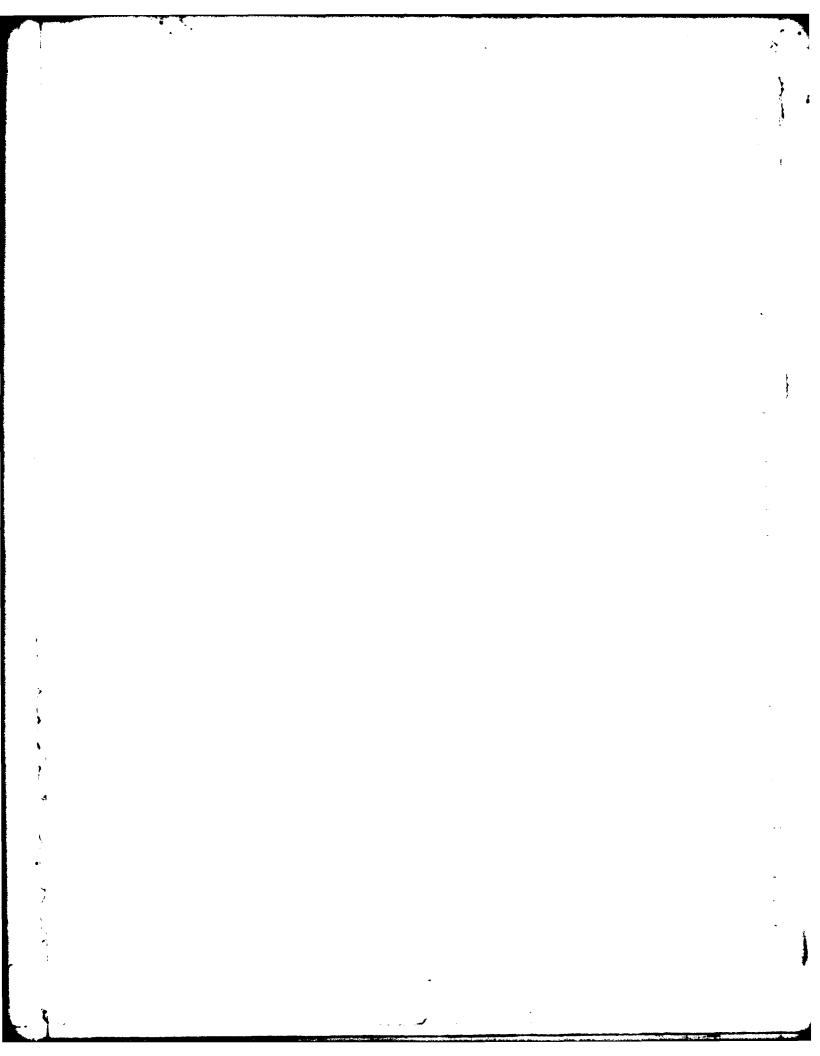
336.1

RADIUS = 1,000 AMPLITUDE = = PHASE ANGLE =

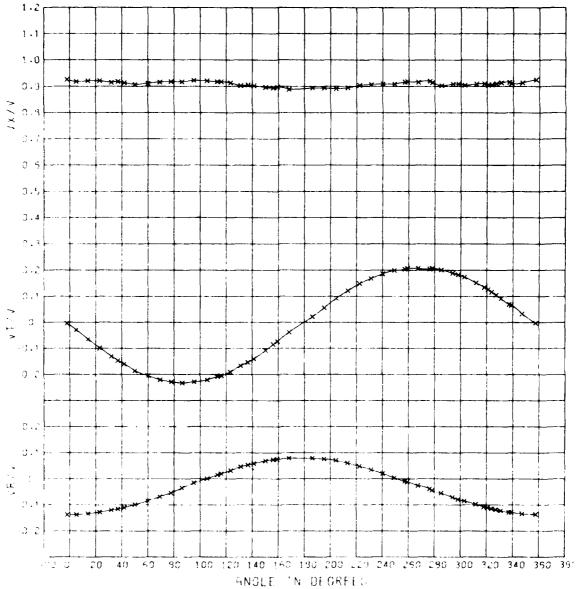
TABLE F-5

7	- HAKMOR RADII	FOR	ALYSES XVPERIY GCITY C			VELOCITY FOR VESEL	u,	AL KAI	AI.	THE EAFENIMEN
	4	0 70 13	PS. ANALYSES	TANC TANC	· .	6.00 5017	FEE	RATIOS	= AU (V/TV)	. 739
) (1) (1) (4)	11	F -r	8	า	4	ഗ	Q	7	œ
	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4. m. m. m. m.	. 0494 845.3		00°. 00°. 44°.	.0128 176.6	.0061	.0026 208.5	,0096 268.1	.0045
	# 0 4 # 0 4 # 0 4 # 0 4 # 5 4 # 5 1 # 6 4	633	.0425 340.2		ტ. ტ. ტ.	.01.3 .85.9	. 000 160 100 100	.0067	.0071	.0005 235.3
	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	78	.0428 338.5	343.3 8.83	かり の・ ひゃ ひ・	. 0056 159.1	. 0054 84.0	.0060	.0005	.0268
	00 4 00 4 00 4 00 4 00 4	က ။ ။ ရာ က	0388 33 5.6	.0093 329.1	9-0 40-7 0-0	180.1	.0020	.0083	.0007	.0056
	HAH 01:08841	PYONIC B	ANALYSES 9	OF TANGE	ANGENTIAL VE	12	COMPONENT 13	RAT105	(VT/V)	-
	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 456 	.0043 278.4	.0057	.002 29.6	.0065 338.1	.0005	.0011	.0019	. 2010
		. 633	.0062	.0042	.0015 193.8	.0057	.0047	.0031	,0057 76.8	.0022
	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.781 = LE =	.0028	.0049	.0047 255.9	.0010	.0062	.0003	.0035	. 6034 9 . 8 1
	PADIUS =	. 963 	.0057	.0049 161.8	0 t 0 t 0 t 0 t	000 000 000 000	.0048 256.2	.0038	.0070 262.5	.0026 338.6

- ANKMONIC ANALYSES OF LANGENTLAL VELOCLIN COMPONENT SATINS AT THE INTERPOLATED RADIT FOR EXPERIMENT 14 TABLE F-6

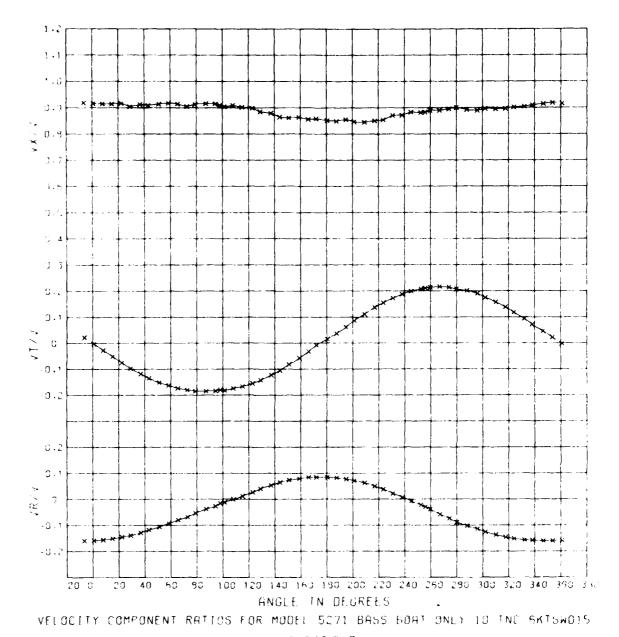

\$#C14

, L.,	0017 ¥ CO	07 C1 ≥ 07 ≥ 04 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	00.0	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+1 -1 -1 -3)	7470 X740	4.5×2×4.4
DINCHEVE	ANALYSES	CF TANSENT	E Y TEN		COMPONENT	RATIOS	(V1,V)	
B 01705841	•-	(N	m	4	Ŋ	9	7	80
ATPLITOR STATE STA	,0612 349.9	.0087 200.5	.0017	.0113	.0133	.0074	.0083	.0090
0	.0575 348.8	.0076 202.8	.00. 8:00. 1.04.	. 0.1 4.10 8.40	.0111	.0049 309.0	.0087	.0076
20004. = 20004. = 20004. = 20004. = 3004. = 3004. = 3004.	.0533	.0060	.0028 103.3	.0119	.0086 301.5	.0025	.0093	.0060
00 m m 00 m m m m m m m m m m m m m m m	.0469 343.9	.0033 229.6	0054 88.6	. 5128 181.4	.0044 285.9	.0039	.0095 264.0	.0035
000 - 000 000 000 000 000 000 000 000 0	.0431	.0026 295.8	1. 6 0. 8 0. 8	.0120	.0011	.0063	.0080	.0009
PAD5 = .700 AMPLIT.DE PHASE AMG.E =	.0430	. 0053 338.4	5 / S	.0042	.0036	.0051	.0032	.0040
PADDIOS = .800 AMPLITODE = PHASE ANGLE =	.0426	.0078	.0057 81.8	.0052	.0055 82.4	.0051 173.9	.0005	.0071
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0407 336.8	.0090 336.6	.0057 81.6	.0030	.0035	.0071	.0007	.0071
RADIUS = 1,000 AMPLITUDE = PHASE ANGLE =	.0388	.0093	.0059 82.0	.0021	.0020	.0083	.0007	.0056


TABLE F-6 (Continued)

VELDOITY COMPOSENT RATIOS FOR MODEL 5271 BASS BOAT ONLY OING 4.5KTSW014 PROPELLER DIAMETER : 6.00 FEET

		1 1	は とこれ とうしょう スプラング・イング イングラング	x	90.9	6.00 FEE		4 A D	. 739
HARNONIC		ANALYSES	OF TANGE	TANGENTIAL VE	ELOCITY	COMPONENT	RATIOS	(VI/V)	
HARMOVIC	н	თ	0	11	12	13	4	15	16
RADIUS = .3 AMPLITUDE PHASE ANGLE	8 + 2 1	.0095	.0081	.0082 357.7	.0034	.0178	.0099	.0130	.0074
RADIUS = .3 AMPLITODE PHASE ANGLE	0 " "	.0068	.0062	.0053 2.8	310.00 0.000	.0119	150.2	.0081	.0048
PADOIUS = .4	0 11 11	.0045	.0053	.0042	.0054 328.6	.0056	.0038 156.8	.0027	.0021
RADIUS = .5 ATPLITCOE PHASE ANGLE	0 " "	.0051	. 0000 5.1	.0014 65.68	. 000 000 000 000 000 000 000 000 000 00	. 0028 64.6	.0013 283.2	.0043	.6019
PADLITCOE PHASE ANGLE	0 # 11	.0063	.0052 347.8	.0012 152.5	7 / P / P / P / P / P / P / P / P / P /	0.00 0.40 0.40 0.40	312.5	.0062	.0026
RADIUS = .7 ATPLITUDE PHASE ANGLE	. 700	.0039	.0012	2:33	3:022	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2100.2	.0012	.0012 36.9
RADIUS = .8 AMPLITUDE PHASE ANGLE	8 CO	.0028	.0054	.0050	0 € 0 0 0 0	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	. 000. 800. 87. 4	.0043	.0037
RADIUS = .9 AMPLITUDE PHASE ANGLE	0 0 6	.0039	.0062	. 605.0 251.0	. 0030 158.8	, 0070 255.8	0520	.0067	.0037 359.3
RADIUS = 1.00 AMPLITUDE PHASE ANGLE	0 # #	.0057	.0049	.0050 251.7	.0029 154.9	.0048 256.2	.0038	.0070 262.5	.0026 338.6



APPENDIX G VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 15

VERDELLY COMPONENT RATIOS FOR MODEL 5271 BASO BOAT ONLY 10 INC 6KTGW015 $0.456~\mathrm{RHO}_{\odot}$

Figure G-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 15

U.533 RHD.

Figure G-2 - Circumferential Distribution of the Longitudinal, Tangential,

Figure G-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 15

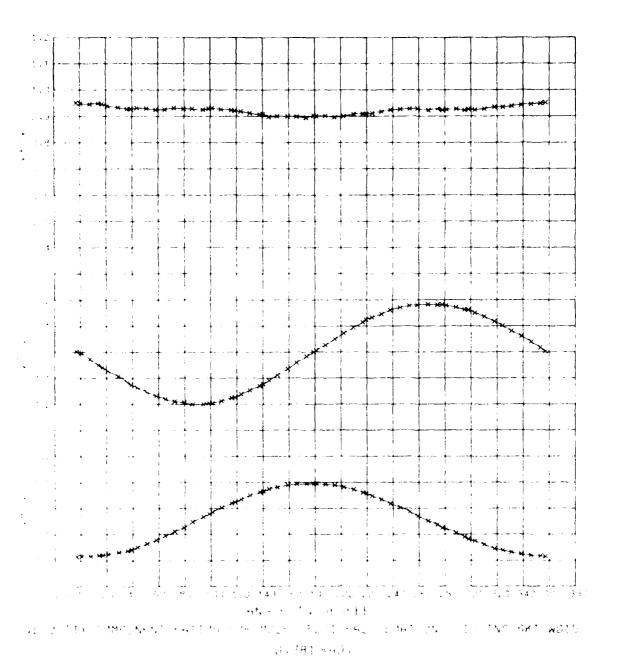
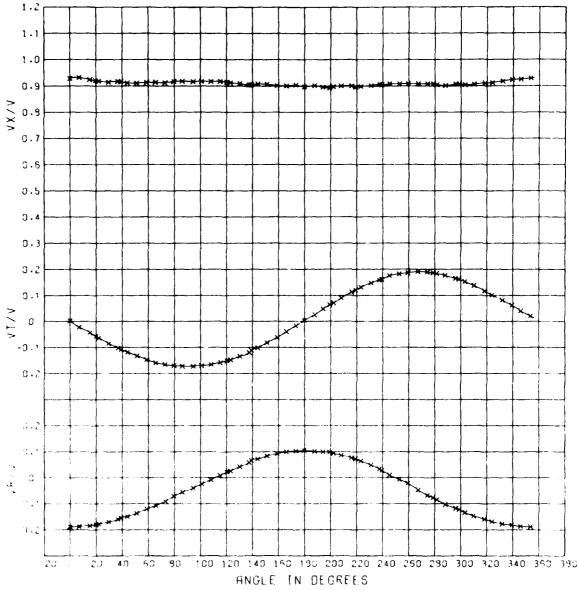



Figure G-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 15

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 6KTSW015 0.963 RAD.

Figure G-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 15

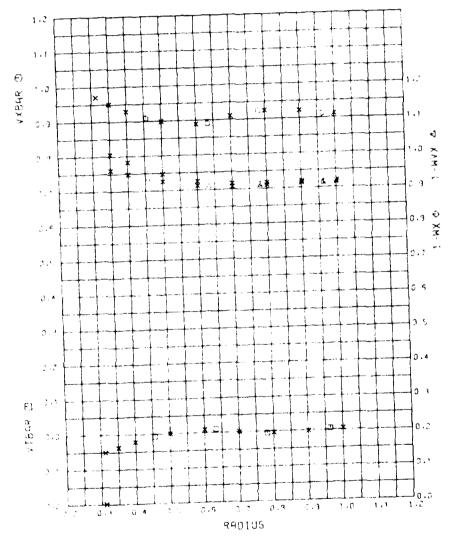


Figure G-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 15

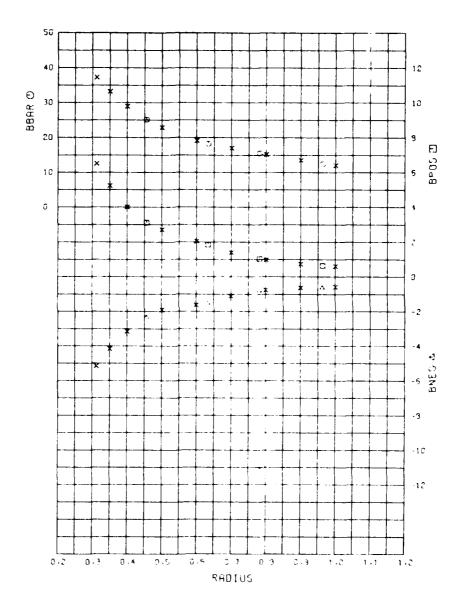


Figure G-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 15

TABLE G-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 15

	******				****										
40615	42/4	. 456 VT/V	¥8./¥	ANGLE	PACTUS .	41/4	V# / V	ANGLE	**C1U5 *	.781 V1/V	44/4		******		
-1.1	. 976	. 064	1 37	-6.5	. 919	158	168	- 1.1	. 951	- 881	184	ANGLE	AEVA	V 1 /V	44.14
5.0	. 414	6 30	1 34		. 916	002	- ,158		969	667	101	7.0	.924	027	189
14.0	. 921	865	1 34	1.1	. 915	6 24	156	7.5	. 940	627	183	7.4	. 934	750	- 187
23.6	. 921	6 99	170	15.2	.914	051	1 51	14.6	. 969	850	179	14.	. 424	143	183
32.E	.915	131	121	55.4	. 917	~ . 874	165	17.0	. 944	648	179	19.0	. 071	857	100
11.0	. 914	147	115	29.0	- 184	0 90	1 39	21.0	. 434	477	176	\$2.0	. 919	847	171
10.0	. 967	160	111	36.4	911	114	- 120	29.2	. 933	8 94	170	89.6	-91	6 85	169
59.9	. 911	205	6 4 4	41.4 91.2	. 915	139	119	16.8	.921	116	163	36.8	. 91	103	168
67.8	. 916	271		11.4	917	162	6 9 3	11.6	932	1 36	149	39.0	. 916	189	150
** -1	-917	224		69.6	. 915	173	1 00	11.1	. 929	153	1 35	94.8 51.2	.917	118	149
74.6	. 920	229	051	72.4	. 965	188	164	50.0	. 925	164	122	56.0	. 919	1 3? 1 46	1 37 1 71
16.0	. 91.7	2 33	8 54	79.4	. 911	184	853	65.8	. 925	181	185	59.2	917	- , 1 48	119
33.1	.922	229	115	47.1	. 416	185	4 34	72.4	. 932	289	044	45.6	. 914	-, 150	117
185.1	.921	221 26#	.011	94.3	- 915	163	1 26	74.9	.029	193	876	72.8	. 912	165	0 40
116.0	918	205	.016	161.4	.910	180 162	016	79.4	. 927	1 46	7 .	79-8	. 471	169	473
153.1	919	- 198	.6 32	100.0	. 101	175	-111	94.2	. 926	199	032		. 915	164	.164
131.4	. 983	166	.447	115.0	. 983	167	-013	98.6	929	197	0 21	94.3	.919	172	****
134.6	. 966	154	.451	122.9	. 496	155	.121	191.0	. 931	196	013	100.5	. 914	178	040
1.1.1	. 981	140	.254	129.9	. 885	1-1	.041	100.0	. 927	1 96	.084	101.0	919	- 170	021
198.1	. 197	107	.664	137.2	. *>9	122	.854	115.9	. 974	176	. 0 2 9	196.4		165	004
154.8	. 995	184	.075	100.0	. 865	105	.065	110.5	.921	174	.0 25	115.4	. 410	157	.009
160.1	. 489	672 630	.075	191.0	. 46.7	842 857	.076	123.1	. 919	- 162	. 6 36	128.2	.414	158	.023
100.2	. 494	. 422	.074	100.0	. 855	- 132	.876	137.5	.911	1 wb 129	.050	122.9	.913	147	.027
195.2	. 496	. 854	.076	178.0	. 454	607	.164	1.0.2	.909	123	.863	130 - 1	. 411	1 13	.0 + 3
204.2	. 891	\$92	.070	100.5	492	- 916	.885	199.6	. 697	- 189	.876	137.3	. 985	127	.059
213.2	. 194	. 121		107.5	. 44 9	. 6 36	-551	191.0	. 981	988		144.5	. 994	111	.267
217.2	. 984	. 1 48	.6 4 8	194.8	. 455	- 861	-977	159.2	.955	665	.044	151.0	904	482	.BA3
11.15	. 307	144	.035	501.0	44.7	. 887	.972	166.	. # 49	048	.093	158.8	. 982	0+7	.092
1.145	. 4 6 9	- 186	.020	2.003	. 444	-111	-063	173.5	. 194	016	.095	166.0	. 901	037	-100
257.4	. 917	. 199	010	217.8 223.5	. 440	. 137	.658 .638	179.8	.982	800	.0 95	173.2	. 984	015	.107
294.9	. 919	. 297	912	230.9	. 871	. 177	.0.63	101.0	.981	- 005 - 004	.0 95	179.0	, 494	. 00-	-105
267.2	. 910	. 207	8 25	278.1	. 477	. 186		188.6	982	. 627	.693	188.4	. 9 9 7	- 605	-164
276.1	.970	. 285	8 10	245.8	. 691	- 196	1 9 7	195.2	9.94	. 050	.089	199.4	. 902 . 996	. 624	-100
278.0	.715	. 246	845	242.6	. 487	. 208	8 2 2	202.0	.901	. 072	.082	199.0	. 493		.000
205.0	. 983	. 501	855	256.8	. * 8 1	. 218	8 2 9	204.6	. 95 #	. 4 94	.077	212.0	. 497	. 671	.094
293.8	. 484	. 189	078	259.4	.49.	. 213	039	216.0	.910	- 115	.061	208.1	. 901	. 0 90	.066
382.9	. 904	. 195	079	267.8 274.2	. 8 W.C	. 213	054	219.5	.917	- 175	-855	216.0	.90.	. 113	.477
\$11.0	91:	. 157		298.9	90.	. 200	069	511.5	.917	. 1 55	.0 35	219.6	. 194	. 1 21	.072
310.0	. 410	. 1 95	100	201.0	.491	. 201	10 5	238.8	159	. 164		223.0	. 994	-131	.064
129.4	. 485	. 176	111	295.9	. * 9.	- 1 76	115	245.6	. 476	171		237.3	.987	. 159	.033
123.6	. 967	. 117	114	365.6	. 5 96	. 175	124	297.8	. 97#	. 174	013	239.1	. 984	. 161	.028
327.8	. 414	. 185	119	319.0	. 444	- 157	1 37	258.9	.079	- 181	029	245.8	. 988	. 176	.011
310.0 317.4	.416	. 849	1177	317.4	. 447	- 1 30	- 1 46	267.1	.922	. 1 43		252.6	. 988	. 182	9 8 7
310.0	. 917	. 000	124	374.8	-987	- 114	156	274.3 278.8	. 929	- 1 62	162	250.0	. 90#	. 186	6 50
347.6	. 014	. 6 27	1 *5	370.0	909	. 171	158	241.4	. 375	· 183	875	259.8	.910	. 146	021
156.6	. + 25	0 0 3	- 1 36	346.4			168	288.6	927	-172	194	267.8 274.2	. 484	- 191	
157.9	. 476	684	1 37	343.4	. 414	. 8 77	160	299.8	. 673	-163	118	278.6	. 90 *	. 190	667
345.8	. 91 *	4 30	- , 1 36	360.4	. 916	- 1 02	156	8.685	. 426	. 161	119	261.0		. 184	865
								182.9	. 924	+ 151	176	8.105	. 981	. 177	101
								310.1	. 979	1 36	134	295.9	.987	. 165	118
								310.0	. 9 34	- 117	155	298.5	. 987	. 161	124
								111.0	. 934	. 101	160	30 3 - 1	. 984	. 153	1 35
								330.1	. 961	. 041	176	310.0	. 484	.137	2 4 8
								336.8	94.7	. 861	176	324.0	. 91 1	.117	159
								146.8	. 9 . 1	. 048	1 60	331.9		. 447	177
								353.2	. 944	- 0 17	183	339.2	. 974	. 067	187
								357.0	. 451	. 203	1 4 %	346.8	. 025	. 640	1 86
								168.4	. 444	~ - 00 7	181	353.5		. 021	1 08
												148.8	. 0 * 8		

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 15 1 TABLE G-2

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 6KTSW015 PROPELLER DIAMETER = 6.00 FEET

1.000	116.	.005	047	914	.919	12.07	.61	287.50
006.	.922	1.001	047	.914	.919	13.54	.74	63
. 800	. 924	004	047	. 910	.917	15.22	.98	267.50
.700	.910	.001	045	.907	916.	16.99	1.39	53 - 1.80 - 1.62 - 5.16 - 4.16 - 3.15 - 1.91 - 1.64 - 1.12 - 1.76 - 1.50 257.50 247.50 282.50 285.00 250.00 222.50 220.00 267.50 280.
.600	.889	600.	041	.912	.925	19.14	2.04	-1.64 222.50
.500	668.	000	033	.926	.947	22.91	2.71	-1.91
. 400	.928	022	022	.947	.982	28.93	100.001	-3.15
.350	.951	037	410.1	. 960	1.006	33.22	5.23	-4.16 282.50
.312	. 971	051	008	0.000	0.00.0	37.26	6.51	-5.16 282.50
€83.	116.	60 0.	047	212	.917	:2.52		287.50
.633 .781	. 923	004	043047	. 90a	.914	18.24 15.55	100.00 0.00 0.00	257.50
.633	068.	010.	043	606.	.921	18.24	1.85 1.03 90.00 100.00	-1.53
. 456	606.	=008	=028	± .934	. 963	= 25.21	3.11	
RADIUS = .456	VXBAR =	VTBAR =	VRBAR =	* × > M, - r	1-WX	888	B C C C C C C C C C C C C C C C C C C C	B453 = -2.34 THETA =285.00

IS CIRCUMFERENTIAL WEAR LINEIT COINAL VELOCITY.

IS CIRCUMFERENTIAL WEAR TALLINTIAL VELOCITY.

IS CIRCUMFERENTIAL WEAR TALLINTIAL VELOCITY.

IS CIRCUMFERENTIAL WEAR TELECTION.

IS JOUNTETRIC WEAR ARME TELECTION TANGENTIAL CORRECTION.

IS JOUNTETRIC WEAR ARME TELECTION AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS JARIATION BETAFEN THE WAYNOW AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETAFEN THE WINNIMM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT AHICH CORRESPONDING BPOS OR BNEG DUCURS. 1 - W V X

HARMONIC AMALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 15 TABLE G-3 -

INC 6KTSK015	739	
0	,	•
STORY STORY TO THE GRAT BASS BOAT ONLY TO INC GKTSWO15	114 COMPONENT MALIUS FUR WICHEL SELL COLL.	DODORITED DIAMETER = 6.00 FEET
	: ii >	

>	VELCCITY COMPONENT PROPELLER C	COMPONENT PROPELLER D	RATIOS FOR DIAMETER =	MCDE1 6.00	L 5271 BASS FEET		BOAT GNLY 10	INC 6KTS
OLNOWARH	ANALYSES	OF LONGIT	LONGITUDINAL VE	VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC =		c	m	.1	ហ	9	7	œ
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.0099	,0059	.0053	.0027	291.9	,0008 305,3	351.0	.0006
PAD105 = .633 AMPLITODE = = PHASE ANGLE = =	.0304	.0.02	.00.8 83.5	.0040 102.6	.0017	.0022	.0004 280.8	21.3
RADIUS = .781 AMPLITUDE = = PHASE ANGLE = =	.0187	.0030 283.9	.0071	.0029 98.7	.0006	98.9	12.8	330.7
RADIUS = .963 AMPLITUOE = PHASE ANGLE =	.0103 62.8	.0012 147.8	.0055	107.0	.0001	102.5	.0007	.0002 175.8
HARMONIC	ANALYSES	OF LONG!	LONGITUDINAL VE	VELOCITY	COMPONENT	RATIOS	(カ/メカ)	
HARMONIC =	6	40	-	2	13	4	15	9.
RADIUS = .456 AYPLITUDE = PHASE ANGLE =	.0019	.0007 356.1	.0003	,0005 46.5	.0007	.0007 205.6	.0007	.0006
RADIUS = .633 AMPLITUDE = = PHASE ANGLE = =	.0008.	.0020	, 0009 195.5	,0003	.0010	.0004 239.8	.0011	,0009
AMPLITODE = .781 AMPLITODE = PHASE ANGLE =	.0006	.0004	270.7	.0007 294.0	20012	.0007	.0006	34.0
RADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0003	40.4	.0004 311.8	21.20.	.0005	.0005	.0004	.0006

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 15 TABLE G-4

BASS BOAT ONLY 10 INC UNTSW015	. 739
PENDOTTY COMPLYSY: RATION FOR THOSE BUTT BASS BOAT ONLY 10 1Mg UNTSWOTS	PROPERTY = 0.00 Fort

OTABOURAL	ANALYSES	520	TOD: 14.	¥1100-34	COUPGNENT	NT RATIOS	(v x / v)	
HARMONIC =	•	e.	m	17	ហ	છ	7	ω
840105 = .312 ATPLITOSE = PHASE ANGLE =	.0372		0101	0.038 3.9.0	.0035	.0064 300.8	.0024 20.8	.001
A 10 10 10 10 10 10 10 10 10 10 10 10 10	.0223	.0.588 33.1	2 ·	4.00 4.00 4.00	.0025	.0046 300.8	0019	.001
940105 = .400 47011106 = FMASE ANGLE =	2.00 0.00 0.00 0.00	.0031 328.5	- C	. 00.7* 48.8	.00.4 348.0	.0026 301.2	. 00. 8.8	129.7
940105 = .5000 477100 f 8145	.2187	5 € 3 ± 5 ± 4 ±		© (3) (3) (3) (4)	219.4	. 000 4.40t	.0065	.0003
440100600 4440114036 64468 4448	. 0299 67.0	.0.03 259.5			238.4	.0019	.0004 281.8	. 000
2001.00 - 2000 -	.024 80.0	,0064 267.6	ē,	. 0033 100.0	.0011	00.001	.0004	300.
800 8. = 0.110049 E 2001.1100449	.0177	.0024 244.3	.007.9 106.0	.00. 98.98	. CC 0 5 2 8 6 • 8	.0013 86.8	.0007	321.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0122	.2002	0.00 0.00 0.00 0.00	.0030 102.9	.0002 320.5	.000 8000 9.58	.0007 43.6	. 6003. 254.3
0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ტ ი ჰ ი ჰ	. 0012 477.8	n: 0::	00 3 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0 0 0 0	 4	. 0001 402.8	.000. .000.	.0002 175.8

TABLE G-4 (Continued)

	a.	- X	Diam's K	90.00 R			ر م ۱۱	ee./.
HARTONIC	HARRING AVALYSES	OF LONG!	LONGITUDIAN	VELOCITY	COMPONENT	11 RAT105	(\ \ \ \ \ \ \ \	
HARMONIC =	σ	10		ç.	13	14	15	16
RADIUS = .312	0300	0800	9890°	Ø + 000	.0043	. 0013	.0025	.0035
щ		63.0	33.5	305.9	207.7	141.0	84.0	3 · t &
/A %		.0042	. 3027	4.00	.0030	0.00	8100.	6200.
PHASE ANGLE =	7.86.5	53.4	38.4	2.2	203.	8.551	80.8	38.0
S = .40	•	.0021	.0018	, o 3 0 a	.0016	8000.	.0011	. 0014
PHASE ANGLE =	192.3	50.4	46.7	15.9	192.5	180.2	108.5	47.3
RADIUS = .500 AVPLITUDE = PHASE ANGLE =	.0012	.0011	.0000	.0004	.0007 89.0	.0007	.0008	.0005
AMPLITODE = .600 AMPLITODE = PHASE ANGLE =	.0008 3.39	.0020 .	.0003	.0004	.0011	.000£ 23£.9	.0011	.0009
RADIUS = .700 AMPLITUDE = = PHASE ANGLE =	.0007	.0006	.0004	.0005	.0005	.0003	.0008	.0002
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0006	.0006	.0011	.0007	.0013	.0007	.0005	.0006
RADIUS900 AMPLITUDE = PHASE ANGLE =	30.2	.0009 63.8	.0010 296.2	.0004	.0009	.0005	.0002	3.18.0
PADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0003	.0007	.0008 314.8	.0012	.0005	.0005	.0004	. 0006 293.5

HARMONIC AMALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL

*	FROPELLER DIAMETER = 6.00 FEET	DPELLER (DIAMETER	00.0 00.0 00.0	الله الديد الله الديد		4	95∵. ≈ 4 0
HAPMONIC	ANALYSES	OF TANGENTIAL	•	ELOCITY (COMPONENT	RATIOS	(VT,V)	
HARMONIC	-	8	.ე	a	.	9	7	ထ
RADIUS = .456 AMPLITUDE = PHASE ANGLE =	.2203	.0033	.0008	.0004	9.61	.0006	.0008	. 0005 201. 6
RADIUS = .633 AMPLITUDE = PHASE ANGLE =	.2005	.0040	.0005 44.0	14.8	.0012	.0004	.0008	. 0003 129.4
RADIUS = .781 AMPLITUDE = PHASE ANOLE =	.1899	.0039	.0020 12.6	.0002	.0008 31.9	.0005	.0003	.0004
RADIUS = .963 AMPLITORE = PHASE ANGLE =	1799	310.9	.0017 4.01	. 0008 88.0	.0003	.0004	.0002	. 0002 105.2
O. NO WORK AH	ANALYSES 9	OF TANGENTIAL 10	NTIBE VE	VELOCITY C	COMPONENT	RATIOS 14	(VT,V)	16
DADIUS = .456 AMPLITUDE = =	.0007	.0004	.0003 .003	302.6	312.9	.0002	298.5	.00 03
AMPLITIOE = .633	.00 06 334.6	.0004	.0003 52.8	.0007	.0003	.0003	.0003	.0005
RADIUS = .781 AND ITUDE * PHASE ANGLE =	.0302	.0003 99.8	. 0001 250.3	337.5	.0003	.0002	.0006 354.8	.000 2 287. 0
RADIUS = .963 AVPLITUDE = PHASE ANGLE =	. 0001 256.9	.0001	. 6000 270.8	.0992	, 0004 94.3	.0006	.0003	. 6002 134.5

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 15 TABLE G-6

VELOCITY COMPULENT MATION FOR MODEL SO71 BASS BOAT ONLY 10 INC BATSWO15 PROFELLER DIAMETER = 8.00 FEET

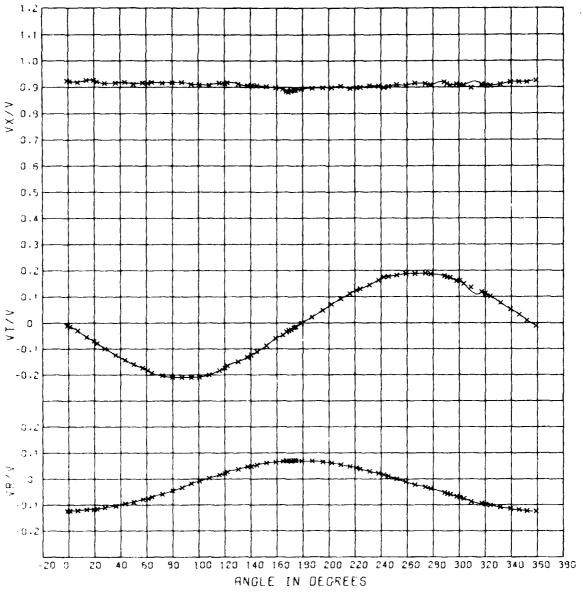
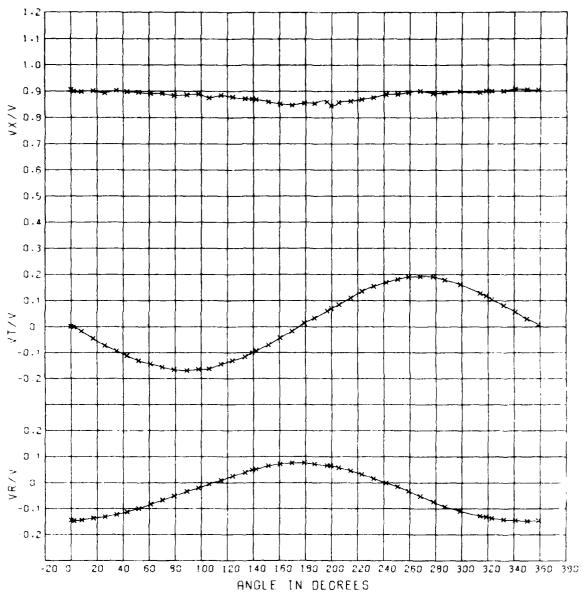

1	144**O'.:C	ANALYSES	OF TANGE	TANGENTIAL V	VELOCITY	COMPONENT	RATIOS	(V1,V)	
HARMONIC	11	***	2	ო	4	ស	9	7	œ
RADIUS = .3 AMPLITUSE PHASE ANGLE	. a.	.2422	.0223	10.3	.0045	31.2	.0008	91.9	.0016
RADIUS = AMPLITUS = PHASE ANGL	.350 * 3.1	.2359 181. 6	97.2	.0021	.0032 292.1	.0025	.0007 166.8	.0009	218.3
RADIUS = AMPLITUDE PHASE ANGL	. 400 # # 3.1	.2282	.00 93 99.6	.0014	.0017	.0022	.0007	.000a 58.7	213.1
RADIUS = . AMPLITUDE PHASE ANGLE	. 5000 11 H	.2146	210.1	.0005 48.9	.0003	.6017	.0006	32.1	.0004
RADIUS = AMPLITUDE PHASE ANJU	. 600 . E	.2036	.0039	.0005	.0012	.0013	.0005	.0008	0003
RADIUS :	7 00	. 1954 181.8	.0013	.00:4	. COCA 134.8	. 001 010 6. 10	. 25.4	.0005 5.6	.0004
RADIUS = AMPLITUDE PHASE ANGL	. 800 = =	.1887	.0041	.0621	.0303 266.4	.0007	.0004 114.9	.0002	162.1
PADIUS = AMPLITUDE PHASE ANDE	.900 = = 31	1830	31.6	16.3	16501	.0005	.0003	.0001 45.8	.0003
RADIUS = 1. AMPLITUDE PHASE AMGLE	1.000 CDE = **GLE =	1799	310.9	100.	8000. 88.0	. 0003 43.6	.0004	.0002	.0002

TABLE G-6 (Continued)

VELOCITY COMPOSENT PATUDS FOR MODEL 5271 BASS BOAT ONLY 10 INC GKTS#015 PROPELLER DIATETER = 6.00 FEET UA = .739


	or o	PACPELLER DIATETER	01A781E#		6.00 FEET		11 17	δς
HARMONIC	ANALYSES	0	TANGENTIAL VE	VELOCITY	COMPONENT	RATIOS	(V1/V)	
HARMONIC	6	10	·- •	5	13	14	15	16
RADIUS = .312 AMPLITUDE = PHASE ANGLE =	.051 6 80.3	. 88 . 88	.0501 284.9	.0029 319.5	. cco6 61.5	41.00.	.0002	.0007
RADIUS = .350 AMPLITUSE = # PHASE ANGLE #	.0012	110.3	.0001	.0021 318.3	.0304	.0010	.0001	.0004
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0009	142.8	.9032	315.1	.000 9.8	37.8	.0001	.0001
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0007	.0005	0000 0100	.0002	.0003 293.8	.0001	.0002	.0004
RADIUS = .600 AMPLITUDE = = PHASE ANGLE ==	.0007	.0305	.0003	.0006 151.9	.0003	.0003	.0003 339.8	.0005
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0003	.0003	.0001	.00C2	181.8	.0000	.0005	.0001
RACIUS = .800 AMPLITUDE = # PHASE ANGLE =	.0002	.0002	.0622	.0002	. 6003 108.3	.0002	356.6	. ceo2 289.9
RADIUS = .900 AMPLITUDE = PHASE ANGLE *	.0001	.000 69.4	.000# 202.2	0.001 346.0	.0004	.0003	.0004	275.2
AADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0001	.000 1.02	9 % 3 0 3 (- 6 K)	.0002	.000. 40.00	7.621	.0003	.0002

APPENDIX H VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENT 16

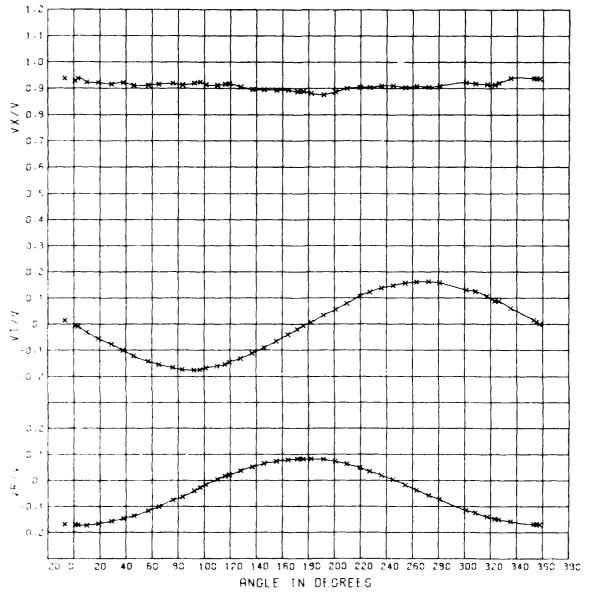

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 0.456 RAD.

Figure H-1 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.456 for Experiment 16

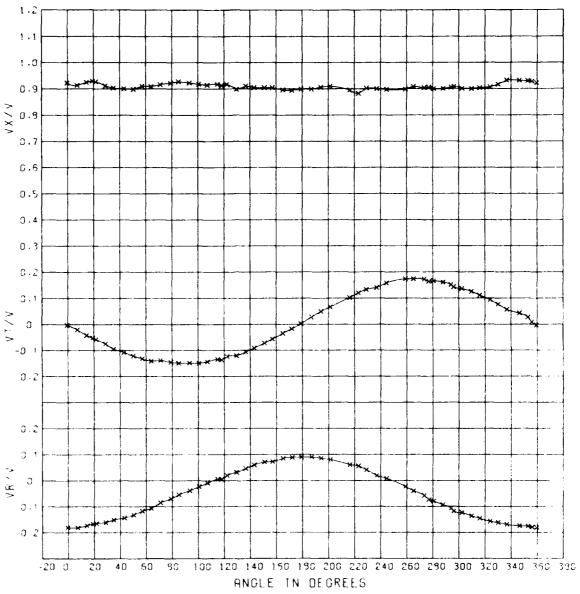

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 0.633 RAD.

Figure H-2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.633 for Experiment 16

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 $$0.781\ \text{RAD}_{\odot}$$

Figure H-3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.781 for Experiment 16

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 0.963 RAD.

Figure H-4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.963 for Experiment 16

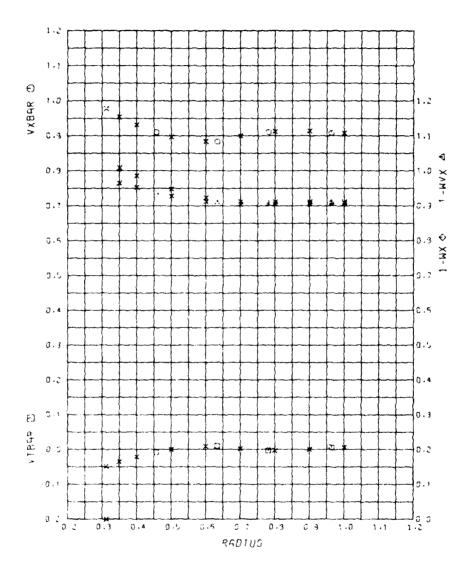


Figure H-5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 16

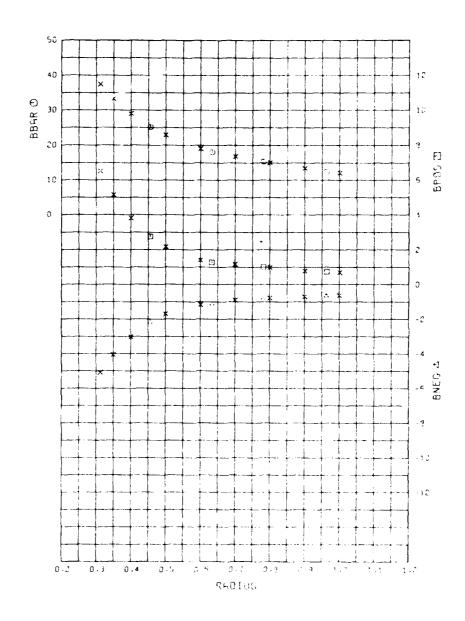


Figure H-6 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment $16\,$

TABLE H-1

INPUT DATA FOR HARMONIC ANALYSIS FOR R/V ATHENA WITH BASS DYNAMOMETER BOAT, EXPERIMENT 16

	RACIUS .	56													
ANGLE	¥1/¥	¥1.0	WE /Y	ANGLE	RECTUS .	41/4	W/Y	ARGLE	RADIUS .	¥7.00	V# /V	ANGLE	PAPILA =	,463 VI/V	VR /V
-1.6	. 424	011	124	1.0	.985	. 001	144	-6.9	, 936	. 015	169	-1.0	. 924	662	177
1 - 4	. 92 1	415	123	1.9	. 6 9 9	~. 000	1 46	1.1	. 428	006	177	•.•	.971	I B	103
7.0	. *10	130	121		. 8 9 9	~.010	1 43	3.3	. 437	~. 610	171	7,3	.913	621	1 8 1
19.5	. 927	876	117	17.0	- 981	846	- 1 36	18.0	. 423	62	173	14.4	. 924	842	173
21.9	. 920	174	116	25.9	.893	~. 872 ~. 893	131	19.8	. 427	- , 8 56	166	19.0 21.6	.929	053 057	106
20.0	915	- 199	- 110	33.7	. 990	112	112	39.0	.916	100	-158	20.1	1911	874	168
36.3	.916	120	184	52.4	. 0 95	131			.911	127	1 36	35.0	, 963	895	151
	. 914	144	~.895	41.0	.891	14	443	37.8	.917	143	* . 117	41.1	.980	180	143
58.8 57.8	-911	168 173	~	74.8	. 491	195	867	65.1	. 915	194	181	98.3	. 1 1 7	171	1 32
66.9	.914	102	075	79.6		165	051	76.1	.919	167	~ .876	57.0	.916	132	117
44.1	. 919	193	- 469	11.3	. 1 16	144	- 16 35	13.3	. 913	174	064	73.0	.988	1 40 1 30	186
72.8	. 916	203	050	186.5	.989	167	0 Z1 053	92.3 96.9	. 920	176	444	79.0	.922	145	069
79.4	. 915	570	8 % 6	115.0	. 845	14	.010	111.3	. 914	109	14	85.8	. 924	149	053
	.910	210		124.0	. 679	139		110.0	.412	161	.114	43.3	.923	144	0 19
47.4	.919	216	833	133.4	.871	1 16	.048	116.0	. 916	1 55	.816	106.5	. 918	144	123
188.1	.917	211	8 1 8	139.0	. 871	190	1849	119.4	. 917	147	-621	187.0	. 915	143	009
111.0	. 105	200	.114	147.8	, 86C	193 169	.851	128.5	. 485	113	.036	116.0	.910	13A 136	.116
119.9	.416	182	.816	191.5	. 851	043	.071	137.6	195	891	.065	122.1	917	123	.073
126.8	.915	173	.022	169.6	. 848	617	.076	155.5	. 093	164	.473	129.4	. 697	121	18 32
122.0	. 91.6	165	. 8 27	179.8	. 895	. 814	.675	164.4	. 194	144	.479	136.5	.910	187	.067
136.3	. 462	133	.937	287.8	. 154	. 9 33	.072	171-6		171	-442	143.8	. 984	891	
198.3	. 106	- 125		196.9	761	. 144	.164	176.0	. 8 8 9	- · F86	.882	153.9 157.8	. 984	877	.074
144.0	. 497	111	.854	199.5	.458	. 076 . 845	.846	191.5	.861	- 167 - 136	.443	165.8	. 696	8 35	.872
191.0	. 982	884	.861	214.5	. 66 3	. 111		4.005	. 887	. 956	. 6 7 3	172.0	. 1 94	617	.144
154.6	. 647	259		223.0	. 079	. 136	-6 32	289.5	. 960	. 879	-864	179.8	. 698	. 002	. 6 96
164.6	. * 9 3		.867	232.8	. 875	. 195	-917	214.6	. 484	. 167		194.9	. 699	. 8 29	.0 98
167.6	. 485	~ , 135 ~ , 130	.878	241.6		- 169	001	227.0	. 984	-123	. 9 35	194.1	. 985	. 849	.184
171.0	. 4 84	12		258.6	. 4 93	.181	415 833	236.8	.989	-136	.019	281.3	. 989	. 183	.166
172.4	. 695	614	,447	744.0	. 981	.197		254.4	.903	. 157	017	217.		. 102	.854
173.4	. 489	619	-872	277.0	. 491	. 191	173	263.0	. 986	- 161	6 37	222.9	. 892	, 121	.856
174.6	. 119	816	.474	284.8	. 194	. 179	892	277.4	. 985	. 163	050	229.6	. 982	, 133	-041
179.8	. 897	I ft	.800	298.4	. 1 99	- 162	189	208.5	. 925	. 155	873	237.0	.980	. 154	.819
199.7	197	. 627	.044	313.0	. 9 95	. 129	127	201.0	. 493	161	075	250.5	. 8 97	. 154	-111
262.6	. 4 9 9	. 871	.462	318.5	. 961	. 119	131	301.8 300.2	. 927	- 131	115	247.0	. 995	.171	823
289.8	. 986	. 192	.455	111.0	. 141	187	141	117.1	. 915	. 1 4 8	1 39	273.3	. 984	. 171	057
216.8	. 0 94	. 112		344 0	. 101	. 857	144	371.0	. 414		149	276.9	. 986	. 164	873
4.155	. 447 . 844	. 125	.443	347.4	. 166	1 30	147	126.1	. 919	- 8 57	158	268.5	. 988	- 166	070
231.2	.986	. 1 6 9	.4 29	358.6	.947	. 484	146	115.1	. 938	- 848	150	294.4	. 960	. 161	093
210.0	. 984	. 164		354.8 364.8	. 965	. 987 . 981	144	345.3	. 971	. 0 32	167	296.8	. 985	- 151 - 143	187
247.4	. 4 9 9	. 174		364	. ***			363.3	. 937		171	302.3	. 981	.15	.121
244.4	1983	- 176	.011									369.6	. 101	. 12%	1 34
252.4	.589	. 1 62 . 1 50	.444									316.8	. 983	- 111	145
244.4	. 315	. 1 54	118									323.4	. 986	. 893	157
274.	913	. 1 60	6 33									*76.6	. 412	. 657	161
274.5	. 984	. 1 🧠	037									246.3	. 931	142	174
714.6	. 420	179	648									352.4	. 930	. 927	175
298.3 291.0	. 914	. 176	050									356.4	. 420		178
293.4	. 400	. 173	659									399.4	. 424	112 104	177
294.1	.911	. 140	466									,,,,,	.761		183
304.0	. 181	- 1 40	076												
386.1	. 985	151	- 469												
317.2	. 91:	. 119	6 93												
383.4	. 989	. 151	074												
309.0	. 4 94	. 1 36	. 1 87												
120 .1	. 984	. 114	0 96												
379 -1	.967	. 112	499												
124.1	. 985	. 182	101												
331.6	. 918	.877	113												
339.9	.919	. 852	113												
34 6 . 9	. 128	. 6 33	118												
198.4	. *1*	. 618	122												
359.9	. 974	11	126												
361.0	. 471	815	123												

LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 16 J TABLE H-2

VELOCITY COPPOSENT RATIOS FIR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 PROPELLER DIAUETER = 6.00 FEET

1.000	806.	900.	047	806.	.912	12.04	.70	222.50
006.	.913	•	047	.907	.912	13.42	95.00	255.00
.800	.912	003	046	306.			.98	255.00
.700	899		044	506.	. 312			200.002
.600	.884	600.	039	912	.923	19.05	1,40	200.00
. 500	768.	000.	120	e (* ₹ ? ·		25.12		0000000
. 004.			020	.952	ene.	28. ⋅₽	3.31	
.350	. 955	035	013	.965	1.00g	33.3	5.16 80.00	-4.06 242.50
.312	677	048	800	000.0	0.00.0	37.38	4 6.5 2 5.16 3.31 0 80.00 80.00 82.00	-5.07 250.00
£96.	800	.006	547	905.	01.0	12.49	.74 .00	66 222.50
.781	. 911	003	046		£06.	15.34	. 00 . 00 . 00	255.00
.633	£88.	010.	1.041	606.	8:6	18.12	1.27	200.00
8451US = .456	019. =	acc =	=026	1-84X 8 33	#	= 25.22	= 2.76 = 85.00	= -2.18 =242.50
RADIUS	े र ा	VIBAR	G 48 G .	× 5 % - + + + + + + + + + + + + + + + + + +	1 - A.K.	33AR	BeOS ↑HETA	4 () + () u u () T () () ()

IS CIRCUMPERENTIAL VERN LONDITUDINAL VELOCITY.

IS CIRCUMPERENTIAL VERN TRANSMITAL VELOCITY.

IS CIRCUMPERENTIAL VERN TRANSMITAL VELOCITY.

IS CIRCUMPERIOR MENY MARE SELD ITY MITH TANDENTIAL E HYELTION.

IS VOUNTETRIC MENY MARE SELD ITY MITH TANDENTIAL COPPLITION.

IS VORN THE OF ADVANCE.

IS VARIATION BETMEEN THE VARIANCY AND MENN ADVANCE AND IN SETA BETA MINUS).

IS VARIATION BETMEEN THE VINIAL MAD MENN ADVANCE AND SELD OF TA BETA MINUS).

IS VARIATION BETMEEN THE VINIAL MAD MENN ADVANCE AND SELD OF TA BETA MINUS).

HARROTIC AVALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 16 LASLE H-3

PRICCITY COMPANY PATICS FOR YOUEL S271 BASS BOAT DNEY 10 INC 3KTSM016 and patical pati	؈	
VELCOITY USTRUCTOR THAT TO THE WOOFL 5271 BASS BOAT DARY TO THE BASS BOAT DARK TO THE BA	INC SKTSWOT	. 739
VELCOTITY CONTROL PATION FOR VOICE 5271 BASS BOAT DNKY	-0	11
VELCOTIV USPACABAT PATIUS FUR MODEL 5271 BASS 80AT BASS 80AT	> 20 20	-
VELCOTIVE COMPONENT PARTICLE FOR MODEL 5271 BASS	80AT	
VELOCITY COMPOSENT PATIONS FOR POSEL 5271	8 4 55	
TBOOK TO COLUMB TENEROUS VITOUS ACCOUNT OF BRIDGE COLUMB C	5271	11111
2.00114.02.12.10.03.44.00.03.03.03.03.03.03.03.03.03.03.03.03.		900
	1,	1
	3 . T VO	
**************************************	5.00	ar u
. E.CCIT*	,	C
	110014	a

	1007	2 as as a second of the contract of the contra	83.32 410	R = 6.00	L 5271 BA	55 BCAT	07	14C 3KT .739
OINDURAH	ANALYSES	10/07 40	:Tubina_	VE.LOC17Y	COMPONEN	T RATICS	(> ×>)	
HA97071C	-	2	m	4	ហ	9	7	89
00000000000000000000000000000000000000	.0108 74.2	.0032	.0032	.0016 21.0	.0029	.0017	.0004	.0002
CONTRACTOR OF THE CONTRACTOR O	.0220 98.3	.0068 267.2	.0045	1.0010	.0025 209.8	.0005 69.4	.0015	92.4
ANDLICS = 787	.0176	.0032	.0077	.00°±	.0023 55.6	.0037	.0006	.0033
RADIUS = .953 AMPLITUDE = PHASE ANGLE =	.0102	.0023	.0065 134.8	.0056 90.4	.0021 126.6	.0025	.0024	.0032 271.8
O 17 25 87 F	SESYTER	OF LONGI	LONGITUDINAL	7F LCC117	COTPONEN	NT RATIOS	(\(\times \(\times \(\times \) \)	
HAPMONT:	σ	0	=	ţ	13	4	15	9
A SOLICE - 456 A SOLICE - 456 A SOLICE - 450 A SOLI	.0012	.0014 294.6	.00'4 236.8	85000 85000	.0018 306.9	00010	.0012	.0012
633 20011JOHA 30071JOHA 80334AA	.0011	.0010 355.5	.0018 160.8	0000°. 0000°. 0000°.	.0014	.0018	.0010 98.8	337.1
ALLOS SULLOS AND SULLO	.0008	.0004	0:30.	.0019 48.6	.0015	.0003	.0010	.0002
PADIUS = .963 AMPLITUDE = PHASE ANGLE =	.0016 206.8	.0033 289.1	.0012 2.44.4	.0026	.0008 251.6	.0001	.0011	. 0008

- HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED TABLE H-4

) 5' a 5' b 6' c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c	7 6 6 0 6 1 7 0 7 0 7 0 7 0	0. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1	1 0 1 0 1 0	03 (~ }- (v til 0) til (i.	10 (1) (1) (2) (2)	01 1140 = 40	143 3KTSAC16 ,739
I	DIKINGKE	ANALYSES	OF LONGIN	J 44.11.CD F	¥110013	COMPONEN.	F RATIO	5 (V× V	_
1148707.	: ::	•-	0	m	ú	ហ	9	۲	æ
00 4 4 1- I 0 4 4	312	.0205 322.0	0 m 0 m 0 m	2008 2008 2008	0. 7 0. 7 0. 8 0. 8	.0118	.0007	.0024	.0049 227.8
0 4 4 1 0 0 4 4 1 0 0 0 4 1 0 0 0 0 0 0		335.4	0 + 0 + 0 0 0 +		: A	.0037 82.8	.0011	.0015 3.0	.0032 225.9
) it	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0017		+ 4/3 (3 - 1) (3 - 1)	00	ლ თ დ . დ .	0 t 0 t	.0005 356.4	223.3
4 1- 1 0 0 4 		68 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	O 0 0 1 0 2 +0	7 N	. 0 0 0 0 0 0 0	. 0023 180.9	.0316	.0009	(p 4 () () () () () ()
	9. 3.	0.00 0.00 0.00	m 18- 4 + 0 m 0 m 0 m	7 K	5.50 5.00 5.00 5.00	.0027 206.2	89.00 9.00 9.00	0 5 0 4 0 4 0 6	00
0 0 4 0 0 4 0 0 4 0 0 4	Community of the second	620 44.	. 004.8 254.7	 0.0 0.4	; o	.0007	.0026 156.3	0000. 0000. 4.4.	თ ო ი : ი : ი :
14 1 + W - 100 - 01 - 1 - 01 - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0168 86.3	.0029	121.0	 	6.25 5.7	.0037 167.3	.0007	前 O 河 · O 即 O ·
0 4 0 4 2 1 0 0 4 10 10 10 10	0 11 11		.0027 176.8	.0078 129.5	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	.0024	9,000	219.6	.0034 233.7
7 + W 7 + W 14 W 10 A 4 (- 1 0 4 W	O n n n O O O O O O O O O O O O O O O O	. 0162 63 - 9	.0029	0 8 0 8	0.0	00.0 00.0 00.0 00.0	2000 2000 2000 2000	.002	27.8
ונו וח •1	•			37 T	ų.	•-	٥	. 16. 231.	b . 291.4 21

TABLE H-4 (Continued)

,	E.OC114	2 de 10 de 1	44 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6,4 YOBEL 62 6.00 FEE	₹.	BASS BCAT	BOAT ONLY 10	INC 34754016
1) 1: 1: 1: 1:	ANALYSES (GF LONGITUDINA	,	VELCCITY	COMPONENT	I PATIOS	(A/XA)	
HARMOVIC =	თ	0		12	13	4	15	ص ا
RADIUS = .312 AMPLITUDE = = PHASE ANGLE = =	.0033 86.9	.0038 255.3	. 6033 272.3	.0021 312.8	.0048 340.9	.0066	.0026	.0041
RADIUS = .350 AYPLITCDE PHASE AYGLE	.0025	, 0030 262 - 3	.0027 265.6	312.2	.0038 335.8	.0048 80.4	.0021	.0032
A # D I U S = 400 A # P L I T C J E = 400 B H A S E A # G E E = = = = = = = = = = = = = = = = =	112.8	. 0024 0.475	. 0020 254.0	. 0010 313.2	.0027	.0027	.0016	.0022
A TOPICS . SO	.0011	.0012	. 00 c	.000. 5.4	. CO 15	.0005 322.8	.001C	.000ê 135.5
AADIUS = .660 AAPLITUS = .HASE AASE	214.9	.0011	.0006 181.8	.0007 8.98	.0014	.6017	.6010 106.6	.0003
PADIUS = .760 AMPLITUDE = PHASE ANGLE =	.0006	. 0000 2.3	.0005 20.3	00.4 00.4 1.	.0014 284.5	.0010	.0011 86.5	. CC03 344.3
RADIUS = .800 ATPLITUDE = PHASE ANGLE =	.0008	.0006	.0011 358.0	00. 82.22	301.0	.0002	9.68 89.6	.0002
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0005	.0020	331.1	.6015 109.6	.0011	.0001	.0007	.0005

.0011

.0001

.0008

.0026

.0012 298.4

.0016

PADIUS = 1.000 AMPLITUDE = PHASE ANGLE =

- HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL TABLE H-5

>	ELOCITY .	2 th m m m m m m m m m m m m m m m m m m	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0.8 0.8	EL 5271 BA O FEET	SS BOAT	ONLY 10	INC 3KTSW016
OINCHARE	ANALYSES	OF TANGENT		ELOC1TY	COMPONENT	84T 10S	(VT/V)	
n 01::0::e41		2	'n	ব	'n	9	7	æ
0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1958	700 P	.0059 9.2	1000. 1000.	.0003 135.0	.0006	.0010	.0014
A 20 0 1 2 5 6 3 3 6 6 3 3 6 6 3 3 6 6 6 3 6 6 6 6	1761	.0226 301.3	00°. 4°.6	1000 1000 1000	.0005 98.9	0100.	.0012	.0005 86.3
0.00 t t d d d d d d d d d d d d d d d d d	1654	က္မ ပင္မ မ	6 0 0 0 0 0	.6011 238.4	.0005	.000 2	.0012 330.8	.0006
AND TO SHE SEE TO BE SHE SEE TO SEE T	1607	.0045	107.0	.0023 :00.8	.0002 176.4	.0005 342.8	.0002	.0011
D1407FAH	ANALYSES	OF TANGE	ANGENTIAL VE	1,00117	COMPC'SENT	RATIOS	(VT,V)	
HARVO'IC	σ	Ö	-	č.	13	4 4	2	16
PAD105 = .456 ATPLITOE = PHASE AV3LE =	.0027	,00008 352.0	0000. 0000. 0000.	100.2	.0009	.0008	.0010 309.1	. 0009 9.9.3
### 100 CO	.0003	.0004	€ प उ उ. इ. उ. इ. उ. इ.	11 B . 8 . 8 . 8 .	. 0009 948 0.848	.0005 215.4	.0001	.0004
PAD:US = .781 AMPUTTUDE = . PHASE AVGIE = .	.0010	.0004	17. 17.	337.7	.000 23.5	.0003 83.1	. 0002	.005 238.0
896. 30010044 800110044 800444	.0012	. ୦୯୦3 ଓଡ଼ି- 1	.00:3	5.00.	.000 231.5	. 6607	. 0003 53. £3	.0002 356.8

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 16 TABLE H-6

INC 3KTSW016 . 739	
DNLY 10 INC 38	(V1/V)
BASS BOAT	IT RATIOS
VELOCITY COMPOVENT RATIOS FUR MODEL 5271 BASS BOAT ONLY 10 INC 3KTS#016 PROPELLER DIAMETER = 6.00 FEET JA = .739	CHIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V)
>	01:0

	HART	HARDONIC	ANALYSES	OF TANGE	TANGENTIAL VE	VELOCITY	COMPONENT	RATIOS	(V1/V)	
HARMO'1C	ن د اد	u	-	2	m	d	'n	9	7	8
RADIUS AMPLIT PHASE	COE ANGLE	312	182.0	90.2	.00.0 10.8	.0022	.0012	.0031	.0026	.0043
RADIUS = AMPLITUDE PHASE ANG		. 350	.2111	.0126 83.2	00000	.0015	.0007	.0022	.0020	.0034
RADIUS = AMPLITUDE PHASE ANGL	IS = . Tude : ANGLE	400	.2036	.0076 85.6	8.00. 8.0	.0007 7.135	.0003	.0013	.0014	.0024
RADIUS = AMPLITUDE PHASE ANGUE	IS = TUDE ANGLE	. 500 	.1902	38.0	.0051 ā.7	.0003 98.7	.0005	.0006	£.600 309.3	.0008
RADIUS = AMPLITUDE PHASE ANGLE	IS = . TUDE ANGLE	000	.1792	.0025	.0038	.0006 96.4	.0006 103.1	.0010	.0011	.0003
RADIUS AMPLIT PHASE	RADIUS = . AMPLITUDE PHASE AMGUE	. 700	.1705	.0019	.0033	.0007	.0002	.0006	.0013	.0006
RADIUS = AMPLITUDE PHASE AUGL		800 800 800 800	.1645	.0032	.0025	.0010	.0005	.0002	.0011	.0006
RADIUS = AMPLITUDE PHASE ANG	. 1	. 900 	.1613	.0016	37.2	.0008	.0003	.0003	.0005	.0007
RADIUS AMPLITU PHASE A	DE PGL	. 000 · #	.1607	.0045	.0010	.0023 100.8	.0002	.0005	.0002	192.2

TABLE H-6 (Continued)

VELOCITY COMPONENT RATIOS FOR MODEL 5271 BASS BOAT ONLY 10 INC 3KTSW016 PROPELLER DIAMETER = 6.00 FEET JA = .739

	•	PRO	PROPELLER D	DIAMETER	6.00	FEET		, 4D	. 739
HAPMONIC		ANALYSES	OF TANGE	TANGENTIAL VE	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC	n	თ	10	:	12	5.	14	15	16
RADIUS = .31 AMPLITUDE PHASE ANGLE	C+ 4 II	15.1	.0010	.0022	.0022	.0041	.0016	.0026	.0025
RADIUS = .350 AMPLITUDE : PHASE ANGLE	0 # #	15.1	.0010	.0018	.6019	.0031	.0013	.0021	.0020
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	0 11 11	.0041	.0009	.0014	.0016	.0019	.0010	.0015	.0014
RADIUS = .500 AMPLITUDE PHASE ANGLE	0 11 11	.0017	. 0007 8	.0006	.0010	.0005	.0007	.0006	.0007
PADIUS = .600 ATPLITUDE PHASE ANGLE	0 " "	.000 2 64.8	.0004	130.2	.0005	.0008	.0005	.0002 261.7	.0005
PADIUS = .70 AMPLITUDE PHASE ANGLE	они	4.69.4	.0002	.0003	10.1	.0007	.0001	.0001	.0002
RADIUS = .800 AMPLITUDE FHASE ANGLE	0 11 11	.0010 169.6	.0005	.0002	.0006	.0005	.0004	.0002	.0005
RADIUS = .900 AYPLITUDE PHASE ANGLE	0 11 11	.0012	.0003	.0005	.0008	.0001	.0003	.0003	.0003
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =		.0012	.0003	.0013	.0013	.0002	7.761	.0003	.0002 356.8

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

