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ABSTRACT A
It is well known that parallel computers can be used

very effectively for image processing at the pixel level, by

assigning a processor to each pixel or block of pixels, and
passing information as necessary between processors whose
blocks are adjacent. This paper discusses the use of paral-

lel computers for processing images at the region level,
assigning a processor to each region and passing information
between processors whose regions are related. The basic

difference between the pixel and region levels is that the
regions (e.g., obtained by segmenting the given image) and
relationships differ from image to image, and even for a

given image, they do not remain fixed during processing. Thus
one cannot use the standard type of cellular parallelism,, in which the set of processors and interprocessor connections

remain fixed, for processing at the region level. Recon-
figurable cellular computers, in which the set of processors~that each processor can communicate with can change during

a computation, are more appropriate. A class of such computers
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, such a computer could initially configure itself to represent a

given decomposition of an image into regions, and dynamically
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1. Introduction

The use of parallel, "cellular" computers for image pro-

cessing at the pixel level was proposed over 20 years ago [1].

In this approach, the image is divided into blocks of pixels

......... or vn into single pixels, if enough processors are availa-

* " ble) a a.d:" rocessor is assigned to each block. Local

ope atioaspcin the image can then be performed very efficiently

in parallel, with information being passed as necessary be-

tween p,;gessors whose blocks are adjacent. (Parallelism
can also be used in other types of operations, such as discrete

1:transforms or geometric operations; but local operations are

probably the most common.) Computers embodying this approach,

using. many thousands of processors, are gradually beginning

to appear [2-5].

Pixel-level processing is the primary type of computation

employed in image-to-image operations ("image processing" in

the strict sense), and is also heavily used in the early

stages of image analysis (also known as scene analysis, "image

understanding", computer vision, or pictorial pattern recog-

nition), where the goal is a description of the image, not a

processed version of it. The cellular computer architecture

is very well suited for such computations, since the images

being processed are usually all of the same size, and the

array structure of an image remains fixed throughout proces-

sing (except possibly for some losses of information at the

.... .. ' 1 ,8 .. , ... . ,l~r ll III I



borders). Thus, pixel-level image processing can be very

efficiently performed by a cellular computer in which the

interprocessor connections constitute a hardwired array

structure.

The situation at the later stages of image analysis

is rather different. Here the image is segmented into

regions, and additional processing takes place at the region

level, rather than the pixel level. Typically, the regions

are represented by the nodes of a graph or similar data

structure, and relationships between regions (e.g., adjacency)

are represented by the arcs of the graph. Processing at

the region level might then involve merging or splitting

of regions, or matching configurations of regions between two

images or with models. Some general examples of region-level

processing will be given in Section 4; for an extensive treat-

ment of the subject, see [6].

Since region-level processing can involve combinatorial

searches of graphs, it can be somewhat time consuming; the

number of regions is much smaller than the original number

of pixels, but it is still non-negligible (e.g., it may be

several hundred). Thus the use of parallelism is desirable

even at the region level. One way of achieving parallelism

is to use a graph-structured cellular computer or "cellular

graph", [7] in which a processor is assigned to each node

(= region), and processors corresponding to related nodes

are connected to each other. Note that the number of proces-

sors that would typically be required, e.g. several hundred,

is easily achievable at reasonable cost.



An important difference between the pixel and region

levels of processing is that the graph structures arising at

the region level vary from image to image, and even for a

single image, they do not remain fixed during processing (e.g.,

regions may merge or split). Thus one cannot use a fixed-

structure cellular graph; rather, some type of reconfigurable

cellular graph is needed. Instead of processors that are

hardwired into a particular graph structure, one should think

in terms of processors that have lists of "addressees" with whom

they can communicate, and where these lists can change in

the course of a computation. On such "reconfigurable cellular

computers" see [8-10].

Section 2 of this paper reviews the concept of a recon-

figurable cellular computer; it discusses in particular why

it may be desirable to keep the size of the address lists

bounded, and what this restriction implies about the nature

of the reconfiguration process. Section 3 reviews various

types of region-level image descriptions, such as adjacency

graphs, boundary segment graphs, and quadtrees, and shows how

such graphs could be created by a reconfiguration process

starting from an array-structured cellular processor in which4the given image is initially stored. Section 4 illustrates

how a reconfigurable cellular computer would be used in region-

level image analysis, particularly for such tasks as region

merging and matching of region configurations.

A.



2. Reconfigurable cellular computers

Abstractly, a cellular computer can be modeled by a

graph whose set of nodes is the set of processors, and where

two nodes are joined by an arc iff the corresponding proces-

sors can communicate directly. We will assume that communication

is two-way, so that the graph is undirected. We will also

assume that the graph is connected.

In a non-reconfigurable cellular computer [71, the graph

structure remains fixed throughout a computation; thus we

can regard those pairs of nodes that are joined by arcs as

being hardwired together. In the reconfigurable case [8-10],

on the other hand, the graph structure may change during a

computation, and it is more appropriate to think of each

processor as having an "addressee list" specifying those pro-

cessors with which it can currently communicate. The physi-

cal realization of the communication process will not be

discussed here, but it should be pointed out that the ZMOB

system (111, a collection of 256 microprocessors that com-

municate via a fast bus, can simulate a reconfigurable

cellular computer having up to 256 nodes.

*In [10] it is argued that it may be useful to require

the addressee lists of the processors in a reconfigurable

cellular processor always to remain small, and in any case

of bounded size. This helps to prevent the amounts of I/O

that the processors must do at a given stage of thei '
1.!
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computation from becoming extremely unequal, which would

tend to impair the efficient parallel use of the processors.

The use of bounded addressee lists, say all of (about) the

same length k, also makes it reasonably efficient to imple-

ment the communication process by means of a shift-register

bus, as in [11]. For example, suppose that the computation

is divided into stages, during each of which each processor

does approximately the same amount of computation. At the

end of each stage, each processor then sends (and receives)

£ messages via the bus; delivery of all these messages

(assuming them to be of the same size) is completed in £

"turns" of the bus, and the next computation stage can begin.

Thus by using addressee lists that are all of the same size,

we can maintain a high degree of parallelism in the inter-

processor communication process.

Of course, the requirement of bounded addressee lists

is not appropriate for all computational tasks. However,

as we shall see in Sections 3 and 4, it is appropriate in

many types of region-level image analysis, where the computa-

tional tasks can in fact be divided evenly among the processors

and broken up into stages, and where the interprocessor com-

munications required at each stage involve the passing of

information from each processor to a small set of the others.

It should be realized that when we limit the addressee

lists to bounded size, irrespective of the total number of

processors, we are making it impossible for most pairs of



processors to communicate directly. If it is necessary for

two arbitrary processors to communicate, they must do so by

passing messages through a sequence of intermediate proces-

sors, and the number of such "relay" stages required can be

as high as the diameter of the graph [10]. Evidently, we

should not insist that the lists be of bounded size unless

the number of processors with which a given processor will

need to communicate directly does in fact remain bounded at

every stage of the computation. As we shall see in Sections

3 and 4, this is indeed often true.

Another problem with bounded addressee lists is how to

insure that they remain bounded when they are being changed.

If two processors can currently address one another, it is

easy for them to agree to drop one another from their lists

and then to do so simultaneously. But if they cannot address

one another, it is less obvious how to get them to add each

other to their lists. The approach to this problem discussed

in [8-101 is as follows: If processors A and C have a common

neighbor B, and A wants to add C to its list, A informs B;

B checks with C; and if they agree, B tells them to add

each other simultaneously (and to drop B, if desired). If

Fthey do not have a common neighbor, say C is at distance £

from A in the graph, A can use the scheme just desribed to

add to its list a processor at distance Z-2 from C, so that

A's distance from C is now Z-1; by repeating this process,
I I
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A can thus eventually add C to its list. As we shall see

in Section 4, list changes often do involve pairs of pro-

cessors that have common neighbors, so that these changes

can in fact be carried out quite efficiently in parallel.

In summary, the model of computation that will be used

in this paper assumes a collection of processors whose inter-

connections, at any given stage, define a graph of bounded

degree - i.e., each processor can communicate directly with

a small set of others, defined by its addressee list. We

further assume that additions to the addressee lists are

carried out stepwise, by way of common neighbors, as

described above. We will now show how this model can be used

to set up interconnection structures representing the region

relationships in a given region-level image description, and

to modify these structures in the course of region-level pro-

cessing.

II
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3. Building region-level representations

Suppose an image has been input to an array-structured

cellular computer, and as a result of processing at the

pixel level, the image has been segmented into regions. We

assume that the regions are identified by labels, i.e.,

that a unique label is associated with each region, and

every pixel in that region has been given that label.

We now want to process the image at the region level,

e.g., to carry out region merging operations, or to find con-

figurations of regions that match a given configuration.

These types of processing no longer need to make use of the

pixel array; they are more efficiently carried out on a

graph structure in which, e.g., the nodes represent regions,

labeled with the values of various region properties that

will be used in the processing, and the arcs represent rela-

tionships between pairs of regions. Thus such region-level

processing can be implemented in parallel on a cellular com-

puter having the given graph structure, as we will see in

the next section.

In this section, we show how to "construct" cellular

computers having various useful types of graph structures

by reconfiguring the original array structure. The graph

structures for which we do this include the region adjacency

graph and the region boundary segment graph (see below for

their precise definitions); it should be pointed out that the

adjacency graph need not have bounded degree. We also show

A



how to construct cellular computers in which the nodes do

not correspond to regions, but rather to "maximal blocks"

belonging to the regions, such as those used in run length

and quadtree regions representations; these structures too

can be used for efficient processing of region information.

'7
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3.1 The adjacency graph

Given a segmentation of an image into connected regions,

the adjacency graph is defined as having nodes corresponding

to the regions, with two nodes joined by an arc iff the

corresponding regions are adjacent. Note that some nodes

in this graph may have very high degree, on the order of

the image area (consider a large region that has many tiny

holes); thus our preferred assumption of bounded degree cannot

be assured. In spite of this, we treat the case of the

adjacency graph here because it is such a basic relational

region representation.

We now describe how to construct a graph-structured cellu-

lar computer having the adjacency graph of the given segmen-

tation as its graph structure. A simple method of doing this

would be as follows: We assign the labels of the regions

as "addresses" to a new set of processors, one per label. We

also determine that the set of adjacent pairs (i,j) of region

labels, i.e. pirs such that a pixel having label i is

adjacent to a pixel having label j. and we give the processor

having label i the address list fjl(i,j) is a pair). The

problem with this simple approach is that to extract the

set of label pairs (and for that matter, the set of labels)

from the array of processors containing the segmented image,

we must read them out in sequence; this requires an amount

of time proportional to the image diameter (the labels or/

pairs must be shifted out of the array) and to the number

of labels and pzirs. In the following paragraphs we describe

a more complicated method of constructing the desired

'V . I II I I I I I - -
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adjacency-graph-structured cellular computer by recon-

figuring the given array of processors itself. The process

is carried out for all the regions simultaneously, and for

each region, it takes time proportional to the region's

perimeter or intrinsic diameter.

We first identify a unique processor associated with each

region - e.g., its "northwest corner" (i.e., the processor

containing the leftmost of the uppermost pixels in the

region). This can be done as follows: Each processor whose

north and west neighbors are not in the region sends a message,

containing its coordinates, around the region border on which

it lies. If the message reaches a processor having a higher

y coordinate, or the same y coordinate and a lower x coordi-

nate, it is erased. Evidently, the only message that can

get all the way around its border without being erased is

the one that originated at the true northwest corner, which

is on the outer border. The time required for this process

is proportional to the (outer) perimeter of the region. Note

that the process can be carried out for all regions simul-

taneously.*

*A somewhat more complicated process, described in (2], uses
messages whose size remains fixed no matter how large the array,
rather than messages that contain coordinates. If we use mes-
sages that need not stay inside the given region, we can iden-
tify the northwest corner of a region in time proportional to
the diameter of the region's circumscribed rectangle, which
may be much smaller than the region's perimeter. However, it
is hard to do this efficiently for all regions at once, since
many messages may have to pass through a jiven pixel simul-4 taneously.
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Now that we have identified a unique "corner" proces-

sor in each region, we can use it as the region's represen-

tative in the adjacency-graph-structured computer; but we

need to give it the addresses of the processors represent-

ing the regions adjacent to the given one. We can "broadcast"

their addresses to it as follows: Each corner processor

"propagates" its address throughout its region (passing it

as a message from processor to processor as long as they

have the same label), and also propagates it into the adja-

cent regions, marking it as soon as it crosses the region

border so that it cannot cross a border again. The addresses

that reach a corner processor as a result of this propagation

are just the addresses of the corner processors of the adja-

cent regions. The propagation takes time proportional to

the sum of the two regions' intrinsic diameters. When mes-

sages meet one another in the course of the propagation pro-

cess, they can be sorted (e.g., in lexicographic order) and

duplicates discarded; but a processor may still have to trans-

mit as many messages as there are regions adjacent to its

region, so that the propagation time is also proportional to

this number.

In the address-passing scheme just described, we have not

used the concept of local exchange of addresses, but have

simply broadcast them acrcss the regions. In the following

paragraphs we describe a more complicated scheme which does



use local exchange, and which also uses a spanning tree for

each region, and a border-following process to initiate the

messages, in order to greatly reduce the number of messages

that are initiated, and thus reduce the amount of sorting

involved in passing them.

We begin by constructing a spanning tree for each region,

rooted at its "corner" processor. To this end, the corner

broadcasts a signal throughout its region, and when each

processor receives the signal, it notes the neighbor from

which it was received, resolving ties according to some spe-

cified rule. It is easily seen that this process defines

a spanning tree for the region, where the "father" of each

processor is the unique neighbor (or tie-winner) from which

it received the signal. Such trees are constructed for all

the regions simultaneously. The time required for this con-

struction is proportional to the intrinsic diameter of the

region.

To exchange addresses between adjacent regions, the

northwest corner N of each region R passes its address (i.e.,

its coordinates) around the outer border B of R on which it

lies - i.e., N exchanges addresses with a neighbor along the

border, then with a neighbor of that neighbor (dropping the

original neighbor), and so on. As each processor along B

receives the address, it checks its neighbors that do not lie

in R. As we move around B, these neighbors lie in a sequence



of regions adjacent to R. Each time we come to a new such

region, say at neighbor Ni, N exchanges addresses with N.

(and does not drop it). Thus, when we have gone com-

pletely around B, N has exchanged adresses with a pixel Ni

in each region Ri that is adjacent to R along B (note that

some of those R.'s may be the same, since a region may touch1

R in several places). At the same time, we can begin to

pass these addresses up the spanning trees of the Ri 's - i.e.,

N exchanges addresses with N .'s father (and drops Ni), then

with the father's father, and so on until the root of R.'s1

spanning tree is reached. Note that if there are several Ni's

in the same region, we will reach the root along several

different paths; the duplicate addresses can be discarded.

As a result of the process just described, each N has

exchanged addresses with the northwest corners of all the

regions that meet R along its outer border B. Let R' be

a region that meets R along a hole border of R; this implies

that R meets R' along the outer border of R', so that N has

also exchanged addresses with the northwest corner of R'.

Thus when this process has been carried out (in parallell)

for every N, addresses have been exchanged between every

pair of northwest corners whose regions are adjacent, so the

desired adjacency graph has been constructed. Note that if

R and R' are both adjacent along their outer borders, they

will exchange addresses at least twice, but we can discard

the duplicates.



While constructing the adjacency graph, it is straight-

forward to compute various properties of each region R and

store them in N. For example, to computer the area of R,

each node of the spanning tree adds the numbers computed by

its sons (or counts itself as 1, if it is a leaf node) and

passes them up the tree to its father; when this process is

complete, the root (i.e., N) has computed the total number

of nodes, i.e., the area. Similarly, N can compute the sum

of the gray levels of the pixels in R, and divide it by

the area to obtain the mean gray level. As another example,

N can compute the perimeter of R, defined as the number of

border pixels, by having each border pixel mark itself and

then counting only the marked pixels.

Property values associated with pairs of regions can

also be computed and stored; for example, N can compute the

length of border which its region R has in common with each

of the adjacent regions R', and store that value together

with the address of the northwest corner of R'. To do this,

we modify the address - passing scheme described above to

make Ni the last neighbor along each border segment, rather

1 0than the first. It is then easy to keep a count of the

border pixels along that segment (i.e., since the previous

Ni was found), and let both N and Ni store that count when

they exchange addresses. If R' is adjacent to R along several

segments, all of their counts will reach the root of theI

4
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spanning tree of R', where they can be summed to obtain

the total count. Similarly, N can compute the sum (and

hence the average) of the absolute gray level differences

around its borders ("border strength").

I

f



3.2 The border segment graph

In this subsection we show how to construct a more

complicated type of graph in which the nodes represent bor-

der segments along which pairs of regions meet, and pairs

of nodes representing consecutive or adjacent border seg-

ments are joined by arcs. We will regard a border as being

composed of "cracks" between adjacent pairs of pixels, so

that the border belongs to neither of the two regions. Of

course, each "crack" is in fact represented by the processor

associated with one of the two pixels meeting at it (e.g.,

the one above a horizontal crack, or to the left of a vertical

crack); but to simplify the discussion, we will regard the

cracks as having processors associated with them directly.

Since a crack is adjacent to only three other cracks at each

end, a border segment cannot be consecutive with more than

six other border segments, so that the graph of border seg-

ment adjacencies always has bounded degree, unlike the region

adjacency graph.

Along each border of a region R, the region is adjacent

to a sequence of (one or more) other regions. If R is adjacent

to only one other region, we can regard, e.g., the "northwest

corner" horizontal crack on the border, identified as in

Section 3.1, as the "head crack" of that border with respect

to both R and the other region. If R is adjacent to two or

more regions, along a sequence of border segments, we regard

'1
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the first crack along each segment (say in the sequence for

which R is on the right) as the head crack of that segment

with respect to R; and similarly, the last crack becomes

the head crack with respect to the other region. Each head

crack can identify itself in a bounded amount of time by

locally examining its neighbors along the border. We then

pass its address around the border so that it shares addres-

ses with the head cracks of the preceding and following seg-

ments. Since the head crack of a segment is at a border

branch point, i.e., a place where three or four regions meet,

it can also share addresses with the head cracks of the other

border segments that branch from it. This process is carried

out in parallel for all the branch points; it takes time

proportional to the maximal branch length. Note that it is

much simpler and faster than the process of constructing the

region adjacency graph, but of course it yields a structure

that has many more nodes.

We can label the head crack of each border segment with

the ordered pair of labels of the regions that meet at the

crack, and can also store at it the length of the segment (or

even its "crack code", if space permits). If we want to

associate a unique processor with each region border, we can

identify the "northwest corner" horizontal crack of the

border, as above, and distinctively mark the head crack of the

border segment that contains it. Since we know which is the
1

A.



outer border of each region (it is the one for which the

region is on the right when we follow the border clockwise),

we can use a special distinctive mark for that border; this

associates a unique processor with each region. This process,

carried out in parallel for each region, takes time propor-

tional to the (outer) perimeter of the region. Note, however,

that this structure does not provide connections between

the processors that represent adjacent regions, or even between

the processors that represent different borders of the same

region, since these borders do not meet.

6L
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3.3 The run graph

Each row of a segmented image consists of successive runs

(= maximal sequences) of pixels belonging to the various

regions. A run on a given row is preceded and followed by

runs belonging to different regions on its own row (except

at the ends of the row), and is also adjacent to one or more

runs belonging to the same or different regions on the adja-

cent rows. The run graph has nodes corresponding to the

runs and arcs corresponding to pairs of adjacent runs. Note

that it need not have bounded degree; a run can be adjacent

to a number of other runs proportional to its length.

Construction of the run graph is quite straightforward.

Each left run end identifies itself, and sends messages left-

ward along the run on its left, and rightward along its own

run, to exchange addresses with the left ends of the runs

preceding and following it. As the rightward-moving message

passes left run ends on the rows above and below, addresses

are also exchanged with these. Messages are also sent left-

ward on the rows above and below (starting from just above and

below the left end) to find the left ends of the leftmost

runs adjacent to the given run on these rows. The time required

by this process, which is carried out in parallel for all the

runs, is proportional to the maximum run length. Of course,

the left end can also store the length of its run, as well as

its label.



In the run-graph-structured cellular computer represent-

ing a segmented image, the northwest run of each region can

identify itself, and the northwest runs of adjacent regions

can exchange addresses, using procedures similar to those

described in Section 3.1. Similarly, the northwest run of

each region can store various properties of the region, much

as in Section 3.1. The propagation process involved may

be somewhat faster, since messages pass from run to run

rather than from pixel to pixel, but in the worst case, they

still take time proportional to the region diameters.

'1
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3.4 The quadtree

A segmented image of size 2n by 2n can be decomposed

into blocks, each entirely contained within a single region,

by the following recursive subdivision procedure: If the

region consists of a single region, we are done; if not,

we decompose it into quadrants and repeat the process for

each quadrant; and so on. We can represent the results of

this procedure by a tree of degree 4 (a "quadtree") as

follows: The root of the tree represents the whole image;

whenever we split a block into quadrants, we give that block's

tree node four sons; when we do not split a block, we give

its node the label of the region to which the block belongs.

This tree is called the quadtree of the given segmented image;

note that it is a graph of bounded degree (% 5).

We now briefly describe how to construct a quadtree-

structured computer corresponding to (the quadtree of) a

given segmented image; for further details see [12]. The

center row and column (e.g., rounded down) of the image are

marked, and the center pixel identifies itself as the root

node of the tree. The pixels in each quadrant propagate

their labels to the center pixel (labels shift in the appro-

priate two directions, and a:-e stopped by the marked row

and column). If it receives only one label from each quad-

rant. and these labels are all the same, the tree construction

is finished. Otherwise, the center row, column and pixel of

each quadrant identify themselves, and the center pixel ex-

4changes addresses with the center pixel of the image, so that

................................ that
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it becomes one of the root node's sons. The process is

now repeated in parallel for each quadrant that needs to

be subdivided (not all its pixels have the same label). The

propagation processes at the kt h stage take time proportional to

2 n -k  so that the total propagation time is proportional to

2 + 2n-
I + 2n, the image diameter.

If desired, in the process of constructing the quadtree,

we can establish links between nodes whose blocks are spa-

tially adjacent. We do this by linking each center pixel

to the center pixels of its neighboring quadrants; if a qua-

drant is found to have more than one label, these links are

passed to its appropriate sons (e.g., the link to its east

neighbor is passed to its northeast and southeast sons). If

the northwest corner of each region has identified itself,

the quadtree node whose block contains that corner can also

identify itself, and that node can compute and store various

properties of the region, as before.

4
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4. Re~jion-l velproces sing

4.1 Region merging

Many standard region merging procedures can be carried

out using a graph representation of the segmented image;

merging decisions are made on the basis of the properties

stored at adjacent pairs of nodes, and when a pair is merged, the

properties of the new node are computed from the properties

of the pair, without the need to refer back to the pixel data.

Thus if the graph representation is embodied in a cellular

computer, merging decisions and property updating can be com-

puted in parallel. When region merging is controlled by a

model for the types of regions expected in the image, compu-

tation of merge merits may be a major task, involving a vari-

ety of conditional probability computations, and it becomes

especially important to carry out this task in parallel. Note

that when merges are made in parallel, one should not merge

a pair of nodes unless they have mutually chosen to merge

with each other; othe.,rwise, node A might merge with B, and

at the same time B might merge with C (etc.).

As an example of how region merging might be performed,

consider the adjacency graph of the regions, and suppose that

4 each node has stored the area, perimeter, and average gray

level of its region, as well as the length and strength of

its common border with each adjacent region. We can thus

compute, for each pair of neighboring regions, a merge cost

based on the difference between their average gray levels,

AL



on the strength of their common border, and on the ratio

of their common border to total perimeter [13]. if two

regions, say R and R', have mutually lowest merge costs,

we merge them by picking one of them, say R, to represent

the merged region. The neighbors of R' then exchange

addresses with R, and R' is dropped. At the same time,

the properties of the merged region are computed from those

of R and R': the areas add; the average gray levels are

averaged, with weights proportional to the areas; the peri-

meters are added and the length of common border is subtract-

ed from the sum. This is done in parallel for all pairs of

mutually best neighbors. It takes O(constant) time, since

it involves exchanges of information only between neighbors,

and does not require propagation of information around the

graph.

Region merging can also be carried out efficiently using

the border segment graph. If the two region meet only once,

their common border segment is dropped, and the remaining parts

of that border for each of them are linked together into a

single border. If they meet more than once, two or more bor-

ders get created out of the remaining parts; the details

i 01 will not be given here.

Another important example of region merging involves

quadtree approximations to an image. Given an image, we mea-

sure its inhomogeneity, e.g., its gray level standard deviation;
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if this is higher than some threshold, we divide the image

into quadrants and repeat the process for each quadrant.

The result of this recursive subdivision process is a decom-

position of the image into homogeneous blocks, which can be

represented by a quadtree. Cellular computers embodying

such quadtrees can be constructed as described in Section 3.4,

except that instead of checking that all labels in a block

are the same, we compute the block's standard deviation and

check that it is below threshold. (The block computes its

mean by summing its gray levels and dividing by its area;

subtracts this mean from each gray level, squares the results,

sums them, and takes the square root - all in time proportion-

al to the block diameter.)

Adjacent blocks in a quadtree may be very similar or

even identical, so that even if they are merged, the standard

deviation remains below threshold. We can test pairs of adja-

cent blocks (which may be assumed to be linked, as indicated

at the end of Section 3.4) and merge them if they satisfy

this criterion, using a suitable priority ordering to insure

that a block does not attempt to merge with two of its

neighbors. Note that the mean of the union is the average

of the means, weighted by the block areas; and the variance

of the union can similarly be computed from the means and

variances of the blocks. This process can be repeated to

yield a final set of regions for which no further merging is

possible. Note that this final set depends on the sequence



in which the merging is done (i.e., on the priorities).

Of course, as soon as we start merging adjacent blocks,

the result is no longer a quadtree; the merging is done on

the adjacency graph of the blocks (which we have assumed

to be linked), and the quadtree links are no longer used.

Parallel merging provides an alternative approach

to constructing the adjacency graph of a segmented image,

starting from the array of processors. By repeated merging

of adjacent pairs of nodes that have the same label, we can

reduce each region to a single node, which is linked to the

nodes representing the adjacent regions. Note that during

the merging process, a node may get linked to a very large

number of other nodes by inheriting the neighbor relationships

of the nodes that have been merged with it. Note also that

we cannot do the merging for all pairs of nodes simultaneously,

since a node must not merge with more than one other node

at a time, even though it belongs to several pairs; and we

must define criteria for deciding, when two nodes merge,

which of them is discarded. As a simple example of how to

handle this, suppose that we merge nodes with their north

neighbors (or with the westmost of their north neighbors,

if they have several as a result of previous merging), pro-

vided the latter are north border nodes (i.e., have no neigh-

bors on the north with the same label), and with their west

neighbors provided they are west border nodes, with north

having priority over west if both possibilities exist. If



this is done repeatedly, the surviving node of each region will

be its northwest corner, and the time required will be propor-

tional to the intrinsic diameter of the region.

Merging can also be used to construct the adjacency graph

starting from the run graph or quadtree; e.g., we can merge

runs or quadtree blocks with their north or west neighbors

(recall that in a quadtree we can link pairs of nodes whose

blocks are neighbors) as indicated in the preceding paragraph.



4.2 "Symbolic matching"

Suppose we are given a graph representation of a seg-

mented image, with property values associated with the nodes,

and we want to detect the presence of configurations of

the regions that match a given configuration, which we assume

to be represented by a graph of the same type. If the image

graph is embodied in a cellular computer, each node can

check its neighborhood to determine whether the given config-

uration is present. For arbitrary graphs, if this is done

in parallel by all nodes, the checking processes may inter-

fere with one another; but we can initially process the graph

so as to insure that this will not happen, e.g., by coloring

the graph so that no two nodes have the same color if their

distance apart is less than the diameter of the configuration

171. Once this coloring has been done, the checking time

is proportional to the diameter of the configuration.

Rather than requiring exact matches, we can compute

mismatch measures between the configuration and the subgraphs

of the given graph, and look for below-threshold mismatches;

this too can be done in parallel by all nodes. We can also

use a "relaxation" process, applied in parallel at all nodes,

to eliminate nodes from consideration as match possibilities

if they do not have the proper sets of neighbors, or to

reduce their potential match scores if their neighbors do not

have property and relationship values close to the desired

ones [14-15].



5. Concluding remarks

Graph representations of the regions in an image contain

much less information than the original image, but it still

may be desirable to process them in parallel, e.g., in real

time situations. This can be done efficiently using graph-

structured cellular computers embodying the given graph re-

presentation. Such computers typically require only a few

hundred processors and so can be built today at reasonable

cost. This paper has described how such computers can be

configured, starting from the array of processors containing

the segmented image. It has also discussed how they can be

used to carry out various types of region merging and graph

matching tasks. As hardware realizations of graph-structured

cellular computers begin to emerge, they should find many

practical applications in real-time region-level image pro-

cessing and analysis.
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