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ABSTRACT

This report is one of a series on the geometrical and
topological properties of three-dimensional digital images.
In this report, we define the genus of a subset of a three-
dimensional array and show that the properties of this
digital genus are consistent with those of the genus in
ordinary (continuous) topology. Since the approach here is
different than that normally used in two dimensions, we also
present the two-dimensional case. The derivation of the
three-dimensional genus allows us to make explicit what is
meant by a hole in an object (e.g., the hole in a ring).
We also give algorithms for computing the three-dimensional
digital genus and discuss the importance of three-dimensional
genus in contrast with the two-dimensional genus.
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1. Tntroduction

The analysis of three-dimensional (3D) imaaes has become

of increasinq interest (see, for example, (1-6]) with the

rapid growth of computed tomography, in which discrete 3D

representations of solid objects are reconstructed from sets

of projections. This report, in which we define (and give

algorithms for computing) the genus of a binary 3D image

(as might be obtained by applying a threshold to an image

produced by computed tomography), is one of a series [7-10]

on the geometry and topology of 3D arrays.

Geometrical and topological properties of digital arrays

play an important role in image analysis and recognition.

While for two-dimensional (2D) images the genus of a digital

image is not a particularly useful property per se, it is of

theoretical interest. For example, there is a well developed

theory [11,12] of the topological properties (e.g., connected-

ness, objects, holes) of 2D digital images which combine with

various geometric concepts (e.g., arcs, curves) to form the

basis of a consistent representation scheme that underlies

many image analysis tasks such as object extraction and detec-

tion, thinning, and skeletonization.

We assume some familiarity with the notions of connected-

ness, objects, holes, etc., as in [11,12] for 2D digital

images. Connectedness is a relation defined on binary valued

points of a digital array which partitions the array into



objects (connected components of points with image value

1) and non-objects (connected components of points with

image value 0), of which all but a single (unique) background

component are holes. Simple algorithms may be given for

labeling (and counting) objects and holes.

The genus of a 2D digital image may be defined to be the

number of objects minus the number of holes in the image.

While counting objects only or holes only is necessarily a

global operation [131 there exist counting functions of local

patterns Of points which determine the genus of the image (11-

15]. When 4-connectedness (see below, Section 3) is used for

the l's (a subset S) of the image, we have

G4 (S) = (1)

where

= number of l's in the image

*2 = number of lx2 blocks of l's in the image (in all orien-
tations)

3 = number of 2x2 blocks of l's in the image

and when 8-connectedness is used for S we have

GB(S) - Yi-(Y2+Y3) Y4-Y5 (2)

where

91 = number of l's in the image
1

Y2 = number of times the pattern 11 or 1 occurs in the image
=3 number of times the pattern 11 orl1 occurs in the image

Y4 - number of times the pattern 1 1, 1, 1 1, or 1

occurs in the image
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5 number of times the pattern 1 1 occurs in the image

For 3D digital images we may define connectedness (see

below, Section 4) as a relation on binary valued points of a

digital array in a fashion analogous to the 2D definition,

except that we call all but the background components of O's

cavities rather than holes [7,8]. The reason for this change

in nomenclature will soon become evident.

In [15] it was argued that for 6-connected sets of l's

(see below) in a 3D digital image the analog of Eq. 1 is

G6(S) = *i-V2+ 3-V4

where

- number of l's in the image

- number of lXlx2 blocks of l's in the image (in all orien-tations)

*3 = number of lx2x2 blocks of l's in the image (in all orien-
tations)

4 = number of 2x2x2 blocks of l's in the image

and (as we shall see) the analog of Eg. 2 for 26-connected sets ia

G26 (S) = Yi-T2+Y3-T4+95-T6+Y7-98

where the i are as defined in Appendix A.

Consider the 3D array 03) (x,y,z) constructed from a 2D

array Z(2)(x,y) by

E (3) (x,Yz) E { (2) (xy) if z=z0

0 otherwise



where E has 0 objects and H holes. It is easy to see that

with G4 and G8 defined on Z(2), and G6 and G26 defined on

. we have G4=G6 and G8=G26 , and that the image E(3) has no

cavities. Thus, although cavities are the 3D analog of 2D

holes as defined by the connectedness relations, the functions

G6 and G26 do not give the number of 3D objects minus the num-

ber of 3D cavities. In the simple construction above, we

see that G6 and G26 are also affected by what are intuitively

3D holes, i.e., holes in a sheet.

In 3D the genus is sometimes defined [14,15] to be the

number of objects minus the number of holes plus the number of

cavities. Since for 3D digital images the topological con-

cepts of object and cavity are well understood (in particular,

algorithms similar to those for 2D images can be given for count-

ing them) a definition of genus would define the number of

holes, and conversely. What we desire is some evidence to

support the assertion of either definition as being consistent

with the corresponding ordinary topological notion.

Even in ordinary topology it is difficult to characterize

holes. A hole may be thought of as a property of a boundary

surface (separating binary regions) which makes it topologically

equivalent to a torus; an object with H holes has a surface

topologically equivalent to an H-holes torus. In another

approach, an object is defined to have no holes if every

simple closed curve in the object is continuously deformable

within the object to a single point (see [7] where this approach



is used for digital images; for the present purposes we

need a stronger statement, since we will in general be deal-

ing with objects that may have many holes).

We see from these remarks that the concept of a hole is

different from those of objects and cavities; we cannot

point to or label the points which constitute a hole. Indeed,

the points of objects and cavities cover the space, so that

a hole is a property of these collections of points. Thus,

when considering an object (and its cavities) we shall here

try only to understand what is meant by the number of holes

in the object, and not what is meant by a hole.

We begin by postulating the well-known Euler-Schlaefli

relation as a fundamentally true statement of dimensional

connectedness. This equation describes a relationship between

the numbers of elements of different dimensionality in an

interlinked system of these elements given the geometrical

constraints of Euclidean space. This theory of interlinked

systems of elements (structures) requires that these structures

have, in effect, no holes (i.e., are singly connected). We

have chosen this starting point because the process of extend-

ing the concepts of singly connected structures to more complex

(multiply connected) structures furthers an understanding of

what is meant by the definition of digital genus (number of

holes), and not because multiply connected structures are not

also well understood.



The approach taken here is constructive. That is, a

structure is described by specifying the elements(of differ-

ent dimensionalities) that constitute it. We proceed by

making two associations: one from points of an image to

structures, and one from components (objects, holes(2D), cavi-

ties(3D)) to elements of the structures. Even for 2D digital

images, this approach is essentially different than the expo-

sition of genus found in [11,12,13]. Thus, following the

introduction of structures and the Euler-Schlaefli identity

(Section 2) we illustrate this technique by presenting a deri-

vation of genus for 2D digital images (Section 3) before

developing the genus (number of holes) of a 3D digital image

(Section 4). In Section 5, we give an algorithm for computing

the 3D digital genus of an image.

Some early work on topology of 3D digital arrays is

found in [14,15], and several theoretical papers [16,17] also

consider generalizations to higher dimensions. More recently

[18-20] discuss the topology of surfaces of 3D objects.



2. Space Structures

The theory of structures given here is from the excellent

book by Loeb [21]. In general a structure is an underlying

pattern of interaction between things. When a structure is

confined to a Euclidean space, geometrical constraints are

imposed on the structure, which allow us to write various

quantitative expressions of spatial order. The well known

Euler-Schlaefli equation

J E i-)1N = 1 + (-i) j
E (-1) 'N
i=0

describes the relationship between the numbers of elements of

different dimensionality in a multidimensional singly connected

structure confined to Euclidean space. Here N. is the number1

of elements of dimensionality i and j is the dimensionality

of the structure. [In two dimensions we write this as the

more familiar Euler invariant for any planar graph,

V-E+F = 2

where

V = N0 = number of vertices

E = N = number of edges

F = N2 = number of faces.]

We note that in this identity the infinite region surrounding

the structure is considered an element of dimensionality N.

Some remarks about the use of this identity are necessary.

First, dimensionality refers to numbers of degrees of freedom.



A point confined to move inside a cube or sphere may move

in three mutually perpendicular independent directions. A

point confined to the surface of a cube or of a sphere (even

though not flat) has only two independent directions of motion.

Similarly, a line or curve has dimensionality 1 and a point

has dimensionality zero.

Next, this identity applies only to structures that are

singly connected. A structure is multiply connected if

there are two or more curves between any two points which

cannot be brought into alignment by continuous deformation

(cf. the definition of the class of objects with no holes

in [7]). This has a profound effect on the way we must view

structures. Consider, for example, the 2D structure

A
The singly connected restriction forces us to view the region

surrounded by the vertices and edges as a face of the structure

(the exterior is also considered a face). Just as an edge is

commonly used to represent an independent relation between two

vertices in a graph, the face in the above structure represents an

independent relation between each vertex and the other two.

In the 3D structure (tetrahedron)

we are left a choice: The (3D) structure consists of 4 vertices,

6 edges together with either 3 faces and 1 "background" cell



(structured element of dimensionality 3), so that the struc-

ture is cup-like, or 4 faces so as to create a surface that

divides the three-dimensional space into an enclosed cell

and all the space outside it.

Additionally, we shall require that the following closure

postulate be satisfied: at least two edges join at every

vertex, and at least two faces meet at every edge. Thus we

exclude tree graphs from consideration as structures (although

it is possible by adopting a peculiar vantage point to view

tree graphs as structures [21,pp.8,9]), and in structures

like that above the choice of structures is removed. Never-

theless, we are left with a choice in structures such as

Either there are ten faces and two cells or eleven faces and

three cells.



3. 2D Digital Images

A 2D digital image E is a 2D lattice of points defined

by pairs of Cartesian coordinates (x,y) which we may take to

be integer valued. A binary 2D digital image is a 2D digital

image whose points have values 0 or 1. The geometrical and

topological concepts presented here may be found in [11,12].

We will consider two types of neighbors of a point p=(x,y):

(a) the neighbors (u,v) such that Ix-ul + ly-vi = i,

which we call edge neighbors of p;

(b) the neighbors (u,v) such that Ix-ui = 1 and ly-vi = 1,

which we call corner neighbors of p.

The four edge neighbors of p are said to be 4-adjacent to p,

and the eight edge and corner neighbors of 1 are said to be

8-adjacent to p.

A path from p to q is a sequence of points p=p0 ,... q

of E such that pi is adjacent to pi-l' 1- i £ n, and any point

alone is a path of length zero. In general, for any :-on-empty

subset S of Z we speak of (4 or 8)-paths in S depending on the

type of adjacency used.

Let S be a subset of points of L and to avoid special cases

assume that S does not meet the border of Z. We say that p and

q are connected in S if there is a path from p to q in S. Readily,

connectivity is an equivalence relation, and the equivalence clas-

ses under this relation are called components (or objects) of S.

Note that these are each two definitions in one, depending on the

type of adjacency used, 4- or 8-.



Similarly we can consider components of the complement

S of S. Evidently exactly one of these components contains the

border of E; we call this component the background of S. All

other components of S (if any) are called holes in S. To avoid

ambiguous situations, we will require that opposite types of

connectedness be used for S and S. Simple algorithms have been

given to label and count components of S and S 1ii.

L.t A,B be subsets of E. We say that A surrounds B if

any path from (a point of) B to (a point of) the border of

Z must meet (contain a point of) A. From [12] we have

Theorem i. Any S surrounds its holes and is surrounded by its

background.

Theorem 2. The adjacency graph of S (the graph whose nodes

are components of S and S and whose edges are defined by adjacency

of components of S and S) isa directed tree rooted at the back-

ground component of S under the relation of surroundedness.

These two facts are significant in developing an algorithm

to compute the genus of a set S (or S) of a digital ima,,e.

Namely, we can count the components of S as objects and

count each set that is surrounded by a component of S as a

hole to compute the genus. Thus it suffices to consider the

genus of a single component of S and its complement.

With every point of a digital image we may associate a pixel

(or "cell"), which is a square region defined by four corners

and four edges which are shared with the pixels of neighboring

points. We associate the binary value of each point with the



face of tae pixel.

The genus G(S) of a set is the number o(S) of objects

(components of S) minus the number H(S) of holes in S. Thus,

the component labeling and counting algorithms may be used to

determine the genus of a set S. While the labeling/counting

algorithms are global and sequential in nature, they have

been used to demonstrate the existence of local parallel

counting functions that determine the genus by an induction

on the number of points in S[121; given any n point object

for which the local counting functions agree with the global

counting algorithms, it can be shown that adding a point to

the image will have the same effect on both.

We will see later that this approach cannot be used for

3D digital images. In 3D we can present algorithms to label

and count objects (components of S) and cavities (non-

background components of S), but not holes; a hole is not some-

thing to which we can assign a label in the same sense that

we label objects or cavities.

Consider the genus G(S) of the complement S of S in a 2D

digital image. We see (from the adjacency tree) that every

object in S is a hole in S (i.e., O(S) = H(S)) and that every

object of S except the background is a hole in S (i.e., O(S)-l

= H(S)). We thus have

0(S) - H(S) = H(S) - 0(S) + 1

or

G(S) + G(S) = 1

Since we use opposite types of connectedness for S and §, we

see that the digital genus we define for each type of connected-

ness must satisfy G4 (S) + Gs(S) = 1 and G8 (S) + G4 (S) = .



We first consider the genus of a single 8-component

CQS. Consider the graph whose vertices are corners of pixels

in S and whose edges are edges of these pixels, e.g., from

the image

111
1 12.

we obtain the graph

S1C, 1 01

(Clearly every such graph is connected and planar.) Viewing

the graph as a structure we can identify (specify) three

distinct types of faces:

a) faces arising from pixels in C

S) faces arising from components of i surrounded by C

') the "background" face arising from the component of

not surrounded by C.

Clearly, every pixel of C becomes a face of the graph by

construction. The single component of C which surrounds C is

associated with the "background" face of the structure. Every

other component D6E is surrounded by C. Define an adjacency

relation between the component D and the pixels of the D-border

of C, and we see that we may associate each component D with the face

of the structure adjacent to the faces arising from the pixels of

the D-border of C. The face associated with each D is unique since

the D-border of C surrounds D. In general faces of type (a) are

.- 77



n-gons with na 4. We can now write

V-E+F -V-E+(#a + #8 + #Y) 2

or

1-# = V-E+#a

where #a, #8, #y are the numbers of these types of faces

in the structure.

Now #8 is the number of faces resulting from components

of C surrounded by C, i.e., holes in C. As we have seen,

it is sufficient to sum the number of holes in each CQS to

determine the number of holes in S. Thus, if we sum V, E,

and #a over the structure of every component CQS we have

O(S)-H(S) = V-E+#oL

where O(S) is the number of objects and H(S) is the number of

holes in S.

We now consider computing V-E+#a directly from the digi-

tal image E. Clearly #a is just the number of pixels with

image value 1. Similarly, it is not hard to see that

V - 41+ 1 - 2Y2  Y 3 +  4 - Y5

E - 4 1  2

so that

V-E+#i 1 - (2 +3) + Y4 - 5

where

Y1 = namber of points in S

I2 = number of times the pattern 1 1 or 1 occurs in the image

I3 = number of times the pattern 1 or 1 occurs in the image
1 11 1 11

I4 = number of times the pattern 1 1 or 1 or 1 1 or 1

occurs in the image



11[

T5 - number of times the pattern 1 1 occurs in the image.

We thus have

G8 (S) - O(S) - H(S) Y i(T2+93)+T

as the genus of S when we use 8-connectivity for S.

Several approaches suggest themselves for dealing with the

4-connected case. For example, we have already noted that

G(S)+G(S)= 1. Consider the structure of E as per the construc-

tion above. It is easy to see that for an mxn array of points

we count V' E' and F' of this structure as

V1 = (n+l)(m+l)

E' = 2mn+m+n

F' = nm+l

so that

V'-E'+F' = 2

Counting directly from the image as before we can write

V' = 4 1-2(2-Y 3+Y4- (P5 +43+2m+2n

E' = 4Yl- 2+ 2+2m+2n

F' = +1

so that

V'-E'+F' = [Y1-(Y2+Y3)+Y4- 5]+[ i- 2+3]+1 = 2

where

*1 = number of points in

= number of times the pattern 0 or 0 0 occurs in the image

2 = number of times the pattern 0 8 occurs in the image
Thus, we have G8 (S)+[ 1 - 2 +" 3 ] = 1, so that G4 (S)J- I- 2+* 3 . We

shall see that for 3D digital images this approach requires

an additional assumption.



Thus, let us proceed as before by constructing a structure

which corresponds to a 4-component C of S. The construction
01

is similar except that for the configuration 1 0 (and its

reflection) we construct the subgraph

i.e., there are two vertices at the center of the configuration.

The proof that we can identify three distinct types of faces of

the structure(a-y) stands without change, and we obtain

O(S) - H(S) = V-E+#a

We can count V and E directly from the image as

V = 4*1 - 2*2 + *3

E = 4*1 - *2

so that

V-E+#a =i-l2+*3

where the *i are as before but for image values of 1. We thus have

G4 (S) = O(S)-H(S) = i-l2+*3

Even with the complication of the additional vertex for a pair

of diagonal l's the calculations of the preceding paragraph stand

without change, so that we could in principle define the genus

G8 (S) of the complement in terms of G4 (S) by considering the

structure corresponding to E.

Before discussing the genus of a 3D digital image in the next

section we should point out that the structures used here for 2D

digital images are by no means the only structures we can use



for defining genus. For example, it is not hard to see that

G4  *1i-2+ 3 may be interpreted as counting vertices, edges,

and faces on a graph whose vertices are points of the image

and whose edges are defined by 4-connectivity, although a some-

what different association must be made between faces of the

graph and subsets of the digital image. Note that when the edges

of such a graph are defined by 8-connectivity the "structure"

becomes three-dimensional. For 3D digital images this kind of

graph will lead to an efficient algorithm for computing the genus.



4. Digital Binary Images in Three Dimensions

A three-dimensional digital image Z is a three-dimensional

lattice of points defined by triples of Cartesian coordinates

(x,y,z) which we may take to be integer valued. A binary 3D

digital image is a digital image whose points have values 0 or

1. In this section we review the concepts of adjacency, connected-

ness, and components of points in E as developed in (7,8,10].

We will consider two types of neighbors of a point p =

(x,y,z):

(a) the neighbors (u,v,w) such that (x-uI+ly-vl+jz-wl = 1,

which we call 6-neighbors of p

(b) the neighbors (u,v,w) such that max[ix-ul, ly-vJ, Iz-wI] = 1,

which we call the 26-neighbors of p.

The 6-neighbors are said to be 6-adjacent to p, and the 26-neighbors

26-adjacent to p.

A path from p to q in E is a sequence of points p=p0 ,...,Pn=q

of E such that pi is adjacent to pi_,, l&i&n. Any point alone

is a path of length zero. In general, for any non-empty subset

S of E we speak of (6- or 26-) paths in S depending on the type

of adjacency used.

Let S be a subset of points of E, and to avoid special cases

assume that S does not meet the border of E2. We say that p and

q are connected in S if there is a path from p to q in S. Readily,

connectivity is an equivalence relation, and the equivalence clas-

ses under this relation are called components of S (or object3).

Note that these are two definitions in one, depending on the type

of adjacency used.



Similarly, we can consider components of the complement

of S. Evidently exactly one of these components contains the

border of E; we call this component the background of S. All

other components of S (if any) are called cavities in S. To

avoid ambiguous situations we will require that opposite types

of adjacency be used for S and S. Simple algorithms can be given

for labeling and counting distinct components of S and S [15,7].

The genus G(S) of a set S in a 3D digital image is the number

O(S) of objects plus the number C(S) of cavities in S minus the

number H(S) of holes in S. As already mentioned the definition

of hole is not simple, and in particular holes cannot be labeled

to facilitate counting them, as can be done with objects and

cavities.

Let A, B be subsets of E. We say that A surrounds B if any

path from (a point of) B to (a point of) the border of E must meet

(contain a point of) A. As in 2D we have [ 7 ]

Theorem 3. Any S surrounds its cavities and is surrounded by

its background.

Theorem 4. The adjacency graph of S (the graph whose nodes are

components of S and S and whose edges are defined by adjacency

of components of S and S) is a directed tree rooted at the back-

ground component of S under the relation of surroundedness.

With every pont of a digital image we may associate a voxel,

usually a cubic region defined by 8 corners, twelve edges, and

six faces which are shared with the voxels of neighboring points.

We thus associate the binary value of each point with the cell

(or volume) of the voxel.

~m. - ..



For any 3D structure the Euler-Schlaefli equation is

V-E+F-Q = 0

where

V = number of vertices

E = number of edges

F = number of faces

Q = number of cells (including the background).

From a 3D digital image we may construct a structure from any

single 27-component BQS whose vertices are corners of voxels

with image value 1, whose edges are edges of these voxels, and

whose faces are faces of these voxels. In analogy with the 2D

development we can identify three types of cells:

(a') cells arising from voxels of B

(I') cells arising from components of B surrounded by B

(6') the "background" cell arising from the component of

not surrounded by B.

In general, cells of type a' are polyhedrons with eight or more

vertices. The details of this association are similar to those

in the 2D proof.

This done, we find that the resulting structure is not neces-

sarily singly connected. As a simple example consider the structure

resulting from the digital image

0110

1001

0110

which is



Some additional structural elements are required to make this

structure singly connected (cf. the "missing faces" of the

2D development above).

In general, for the structure derived as above from any

digital component BQS we may compute V-E+F (#a+#8+#y) although

this sum need not equal zero since the structure need not be

singly connected. We define the number of holes in the object

as the amount by which this sum differs from zero,

H(B) E -V + E - F +(#a+#+#y)

Noting that # is the number of cavities C(B) in any component

BQS and that #y = 1 (for the background) we have

I+C(B)-H(B) = V-E+F-#a

so that we may sum V,E,F,# over every component BQS in the image

to obtain

O(S)-H(S)+C(S) = V-E+F-#a

where O(S) is the number of objects in the image, C(S) is the

total number of cavities in these objects, and H(S) is the total

number of holes in these objects. [We are tacitly assuming that

H(S) = ZH(B), where the summation is over the components B of S.

This additive property of holes of components is justified by the

fact (14] that genus is a local set property, viz. G(A)+G(B) =

G(AQB)+G(AUB) for objects A and B.]

Remark: The definition of number of holes above may be related

to the Euler-Poincare characteristic for finite complexes [22].

The structure corresponding to a digital component is a complex

K-L where L is a subcomplex of a simplicial complex K. Intuitively,



the sum V-E+F-(#a+#8+#Y) differs from zero by some amount

v-e+f-g, where these are computed on K-L and L, respectively.

Viewed in this fashion the number of holes is the sum v-e+f-g

for any structural elements added to the structure resulting

from a digital image which will make it singly connected.

We now consider computing V-E+F-# directly from the digi-

tal image. Although more laborious than the 2D case, we can

show that

G 27 (S) =O (S)-H (S) +C(S) Y =I-Y2 +Y3-Y4+Y5- Y6+ 7-Y8

where

i= # [i]

Y2 = #12]+#[3]+#[4]

Y3 = #[51+#[6]+#[71

Y4 = # [ 8]+ # [9]+#[ 1 0 ] +# [ 1 1]+# [12]+# [ 13]+ # [ 1 4]

Y5 = #[151+# [16]+# [17]

q6 = # [ 18]+# [ 19] + # 20]

Y = #[21]

Y8 # [22]

and by # [n] we mean the number of times the configuration n of

Appendix A occurs in the picture (in all orientations).

As in the 2D case one way of proceeding to the 6-connected

case is to note that for the structure corresponding to E we have

V'-E'+F'-Q' = 0, and that counting directly from the image we have

V'-E'+F'-Q' = (Y1 -Y2 -4 Y5 Y62+ 35 +Y7-Y8)- i+2q 3+ 4+i = 0

or

( i- 2+ 3-4)-G 27(S) = 1



where the count patterns of O's as follows:

i= #*[i]

02 = # [21

= #[8]

J4 = # [201

Now, every object of S is a cavity in S (i.e., O(S)=C(S))

and every object of S except the background is a cavity of S

l.e., O(S)-I=C(S)). If we make the assumption that H(S)=H(S) we

have O(S)+C(S)-H(S) C(S) +O(S)-l-H(S) or G(S)-G(S)=l. Thus from

the above equation we can define G6 (S)= - 1 i 2+ 3-p 4. Because we

need this additional assumption, we consider it safer to base the

definition of genus for 6-connectivity on a structure correspond-

ing to a 6-connected object.

The construction of the structure for a 6-connected object

is similar to that above, except that for configurations such
0 1

as 1 0 and

1st plane 2nd plane

0 1 0 0
0 0 1 0

we use the structures

so that each 6-component forms a distinct structure. (We are

glossing over the details of this construction; the essential

point is that a vertex is not shared unless the voxels are con-

nected inside a 2x2x2 neighborhood containing the two voxels.)



Again, we identify some of the cells of the structure with

components of the complement, and define the number of holes as

the amount by which the sum V-E+F-(#+#8+#y) differs from zero

(or as the net contribution to the sum V-E+F-Q needed to make

the structure simply connected i.e., V-E+F-(#a+#a+#y)+H = 0).

For any single component BQS we have

I+C(B) - H(B) = V-E+F-#a

so that for O(S) components of a digital image we can determine

O(S)-H(S)+C(S) = V-E+F-#

by summing V,E,F and #a over the entire image. Counting directly

from the image we find

V = 8 1-42+2

E = 12 i-4 2+*3

F = 61- 2

#=i

so that
G 6 (S) =0(S) -H (S) +C (S) = I- 2+ 3- 413 4

where the i are defined as before but for patterns of l's in Z.

Once again, we find that (with the additional assumption H(S)=H(S))

we can in principle define the genus of the complement in terms

of G6 (S) by considering the structure corresponding to Z.

From the definitions of G27 amd G6 based on structure we see

that G27 (S)-G 6 (S) = 1 and G6 (S)-G 27 (S) = 1 from counting elements

in the structure corresponding to E. Thus, we have shown that

H(S)=H(S) since O(S)=C(S) and 0(S)-l=C(S).



5. An Algorithm to Compute G(S)

The equations

G6 (S) = i- 2+3- 4

G 27(S)- I- 92+ 3-T4+c5-6+7-T8

define the genus of a 3D digital image but are not algorithms

for computing the genus. An algorithm for computing G6 (S)

is not difficult to devise, since the patterns of points of S

Eor i and i4 occur in an orientation independent fashion and

the patterns for V2 and 3 occur in three different orienta-

tions each. Thus it is sufficient to test for occurrences of

nine distinct patterns in the digital image. For G27 (S), how-

ever, there are 22 distinct patterns, many of which occur in

many orientations.

In this section we give an algorithm for computing G27 (S).

The development of this algorithm is understood in terms of

a graph defined by the 27-connectivity relation on the points

of S in E. We point out that the graph used here is not simi-

lar to the structures used to define the genus, but is analo-

gous to the alternative structure for 2D images mentioned at

the end of Section 3. The ci may be given the following

interpretation. Consider a graph <S,E(S)> whose vertices

are points of S and whose edges are defined by the 26-connecti-

vity relation. Then i is the number of vertices and c2 the num-

ber of edges of <S,E(S)>. In general, since every point in a

2x2x2 cube is 26-adjacent to every other point in the 2x2x2



cube, p . is the number of distinct £-cliques in <S,E(S)>

that are containedin a2x2x2 cube of points on the lattice.

This interpretation of the v£leads to a simple and effi-

cient algorithm for determining the cp k and thus G26 (S). The

following description of the algorithm is most easily under-

stood in terms of using registers to count the contribution

to each y k of each 2x2x2 neighborhood during a raster scan

of E. However, the algorithm may be executed in parallel.

Let Ki,j, k be the 2x2x2 cube (during a raster scan with

increasing values of i,j,k)

(i-l,j,k) (i,j,k)

(i-l, j-l,k) -(i, j-l,k)

(i-l,j ,k-l)- (i,j,k-l)

(i-l, j-l,k-1) (i, j-l,k-1)

Let n be the number of l's in K i,j, k  By definition, T. is

the number of distinct objects consisting of X points. Thus

(P 2(Ki,j,k)=(n). When S extends outside of Kij,k and the

2. are applied to other 2x2x2 cubes, some of the 2-point ob-

jects may be counted multiple times.

Let

nl1=#[2] ({(i-l,j,k), (i-l,j-l,k), (i-l,j,k-1), (i-l,j-l,k-l) })

E #[2] (Ki ~ k

i'~k



Kn

- #[2](K?

n 3= #[2] ({(i-l,j,k-1), (i,j,k-1) ,(i-l,j-l,k-1), (i,j-l,k-1) })

-- # [ 2 ] ( K 3 , j k
212

n12 (#[2] ({(i-l,j-l,k),(i-l,j-l,k-l)}) E #[2] (Kij1 ,k)

n1=#[2] ({ (i-l,j,k-1) , (i-l,j-l,k-1)}) - #[2] (Kl3 jk)

n 23

n23=#[2] ({ (i,j-l,k-l), (i-l,j-l,k-l) }) # #[2] (E ,j,k

123
n12 3 =#[2] ({(i-l,j-l,k-l)}) - #[21 (K.123 i,j ,k

where # [n] (X) refers to the number of times the pattern n of

Appendix A (in all orientations) occurs in X.

We can now solve for the net contribution A9(Ki,j,k ) of

K. to each cp (S). Clearly the Z point objects in Ki'i,j,k X. i'j ,k2

are counted in K il,j,k, the Z point objects in K ,k are

counted in K and the 2 point objects in K? are
ij-lk,,j,k

counted in Ki,j,k_. Thus the count (n) must be adjusted to

But now the numbers of Z point objects in K1 2  K1 3  andi,j,k, i,j,k,

K2 3  have been subtracted twice, so this must be furtheri,j,k
adjusted to

n - nl (n 2 )(n3)+(l)( 13+( 3

Finally, the 2 point objects in K123 have now been counted
i,j,k

one too many times, so the final adjustment is

Ac£ (Ki ~~)=( n) -(ni)-( n 2)-( n3) +(n12) +(n 13) +(23)- (123)

This net contribution of each 2x2x2 cube may be computed for

each cube of the image in parallel and summed.



Similarly this gives a simple expression for the net con-

tribution AG26 (Ki,j,k ) of Ki,j,k to G2 6 (S) which may be com-

puted for each K i,j,k in parallel and summed:

AG2 6 (K k) = E (-1) 2) -3)+ (n2)+ (n3)+(n23)-

(n123)]

Since the expression inside the brackets requires a significant

amount of computation, we suggest the use of a lookup table

as follows. From a 2x2x2 cube of binary points form an 8-bit

number t. Clearly the values of n, nI , n2, n3, n12 , n1 3 , n2 3,

and n12 3 may be predetermined for every 0sts255 and the values

of AG2 6 (<t>) stored in a table, where <t> is the 2x2x2 cube

of points whose 8-bit number is t. In Appendix B we list the

values of AG26 (<t>) for one method of forming the 8-bit number

t from the 8! different ways of doing this. It should be

noted that in this table -2gAG26 (<t>)f 1, and that most of the

entries are zeros, so that if necessary the size of the table

may be significantly reduced.

Of course, there is another alternative to computing the

genus of a 27-connected subset S: Namely, use the simpler

6-connected algorithm to determine the genus of S, and employ

the identity G(S)-G(S)= 1.



6. Conclusion and Vemarks

We have proposed definitions of digital image subsets based

on the association of a structure with each component of the

subset. For 2D digital image components we found that these

structures were singly connected, so that by straightforward

application of the Euler-Schlaefli identity we could compute

the genus of a collection of components. While for 3D digital

components the structures are not necessarily singly connected

we still began with the Euler-Schlaefli equation in order to

give insight as to the nature of holes in 3D images. A defi-

nition of the number of holes in a subset of a digital image

is equivalent to defining the genus of the subset since the

numbers of objects and cavities are well understood. We were

thus able to define, and give an algorithm for computing,

the genus of 3D digital image subsets.

We noted in the introduction that the 2D genus is not a

particularly useful property, particularly since it is easy

to determine the number of objects and number of holes inde-

pendently. In contrast to the mostly theoretical interest in

2D genus, the 3D genus is of more practical value. Since the

numbers of objects and cavities of a 3D image may be determined

independently, the genus may be used to determine the number

of holes in an object or objects. Clearly the number of holes

in an object is an important descriptor that should be useful

in many object recognition tasks.

We have already noted that the structures we have chosen

are not unique. While the alternative "structures" mentioned



in Sections 3 and 5 are not stt ictLy structures as defined

here, we remind the reader tha L irom a peculiar vantage point

[21, pp.8-9] these too may be viewed as structures to which

the Euler-Schlaefli equation is applicable. We shall not

pursue these alternative structures further.

Another question entirely concerns the use of 6- and 26-

connectivity exclusively as complementary types of connectedness.

For example, we may define 18-connectedness between points

whose voxels are face-adjacent or edge-adjacent [see 71.

Clearly this relation is an equivalence relation whose equiv-

alence classes define components, and we can certainly construct

structures analogous to those made for 6- and 26-components.

We thus see no obstacle to the use of 6- and 18-connectivity

as complementary types in a 3D digital image. We have chosen

not to pursue this here since the use of 6- and 26-connectedness

appears more natural (e.g., the only natural distance metrics

on a 3D lattice correspond to the number of points on a shortest

6- or 26-path between two points [7]). However, 18-connectivity

appears to be equivalent to the connectedness underlyiig the

surface topology of [18,19].

We may also scrutinize the use of structures to model the

image space. For example, in computed tomography a 3D digital

image is a representation of a 3D continuous image space of

objects which are not polyhedral structures as used here. In

Appendix C we explore the relationship between G26 and G6 of a

digital image to the genus of a binary region of continuous

space. This analysis indicates that if certain digitization



requirements are met by the digital representation then G26

and G6 in fact determine the genus of the continuous space, and

that these digitization criteria may be satisfied by using a

fine enough resolution.

Finally, in Sections 4 and 5 we introduced a graph the-

oretic interpretation of the genus of subsets of E, whereby

an object is represented by a graph <S,E(s) on the lattice Z

whose edges are defined by the appropriate adjacency relation

between pairs of points of S. Thus, we may view G4, G8,

G6 , G2 6 as functions of the appropriate graph.

We noted earlier that genus is a linear set property, viz.

G (A) +G (B) =G (Ar B) +G (AU B)

(see [141 for a proof of this). Expanding our notation to

G(S)=G(<S,E(S)>) we have

G (A(i B) =G (-AU B, E(AU B) >)-G (--A, E(A) >) -G (-.B, E(B)>)

from which we see that

G(Af B)=G( ,,E(AUB)-E(A)-E(B) >)

where 0 is the empty set. This is similar to the definitions

in [81 of simple closed curves and surfaces by sets of

ordered pairs (p,q) of points pES, qtS, since these pairs

specify the edges of E(AUB)-E(A)-E(B). This approach deserves

further investigation.



Appendix A

The 256 binary assignments to a 2x2x2 neighborhood of

points in a 3D image may be grouped by symmetry into 22 dis-

tinct patterns. The pictorial display here, taken from [14],

shows voxels with image value 1 as cubes. In Sections 4 and

5 the notation #[n] refers to the numbering here of these

patterns. In patterns 15-22 only all hidden voxels have value 1.

(All zeros)

1 (=27) 2 (=f) 3 (=) 4 (=1)

5 (=1-) 6 (=1-7) 7 (=6) 8 (=15)

9 L0 -i(=iT) 12(=1-2)

13 (=-11 =-)15 (='9)16 = )



17 (=6) 18 (=5) 19 (=4) 20 (=3)

21 (=)2 2 (r



Appendix B

The values of the net contribution AG26 (Ki, j,k) of

a 2x2x2 cube Ki,3,k to the yenus G26 (S) of a subset S of a

digital image are tabulated below by a decimal index t.

The binary representation of the number t is formed from

the 2x2x2 cube of binary valued points

a _b

[-b

g ----- h

as the bit string t=abcdefgh. The point with binary value b

is considered to be (i,j,k).

Note that only 49 entries for AG2 6 (<t>) are non-zero, and

that -2:&G 2 6 (,-t>) i, so that a significant amount of compression

may be achieved if the table size is a problem.

t G (<t>) t AS (<t>)

0 0 17 0
10 16 0

1 19 0
3 0 20 0
4 0 21 0
5 0 22 0
6 0 23 0
7 24 -
8 0 25 -1
9 -1 26 -1

t0 0 27 -1
11 -1 2H 0
12 0 py 0
13 0 30 0
14 0 31 0
15 0 32 0
16 0 33 -1



t '_G (<t>) t AG (<t>)

34 0 U9 0
35 -1 90 0
36 .-1 91 0
37 -1 92 0
38 --1 93 0
39 -1 94 0
40 -1 95 0
41 -2 96 0
42 - 1 97 0
43 -'2 98 0
44 -1 99 0
45 -1 1.00 0
46 -I 101 0
47 -1 102 0
48 0 103 0
49 0 104 0
50 0 105 0
51 0 106 0
52 0 107 0
53 0 108 0
54 0 109 0
55 0 110 0
56 -1 ill 0
57 - 112 0
58 -I 113 0
59 -1 114 0
60 0 115 0
61 0 11.6 0
62 0 117 0
b0 118 0
64 0 119 0
65 0 120 )
66 0 121 0
67 0 12 2 0
6.9 0 1 23 0
69 0 124 0
70 0 125 0
71. 0 126 0
72 0 127 0
73 0 128 0
74 0 .29 .-1
75 0 130 0
76 0 131 -1
77 0 132 0
78 0 133 )
79 0 134 0
80 0 L35 0
81 0 136 o
82 0 137 1
63 0 138 0
84 0 .91.
85 0 i 4.0 0
86 0 141 0
37 0 142 0
86 0 113 0

.- . - --.:< '-.-... . ._ . .. ..



t AG (<t;) t _G (-t>

144 0 200 0

145 0 201 0

146 0 202 0

147 0 203 0

148 1 204 0

149 1 205 0

150 1 206 0

151 1 207 0

152 o 208 0

153 0 209 0

1.54 0 210 0

15 0 211 0

156 1 212 0
157 1 213 0

1.5G J. 214 0

159 1 215 0

11- C) 21.6 0

161 -1 217 0

162 0 218 0

163 -1 219 0

164 0 220 0

165 0 221 0

166 0 222 0

167 0 223 0

168 0 224 0

169 --1. 225 0

170 0 226 0

171 1 2)7 0

172 0 228 0

173 0 229 0

174 0 230 0

175 0 231 0

176 0 232 0

177 0 233 0

178 0 234. 0

179 0 235 0

180 1 236 0

181 1 237 0

182 1 238 0

183 1 239 0

184 0 240 0

185 0 241 0

186 0 242 0

187 0 243 0

188 1 244 0

189 1 245 0

190 1 246 0

191 1 247 0

192 0 248 0

193 0 249 0

194 0 250 0

195 0 251 0

196 0 252 0

197 0 253 0

198 0 254 0

199 0 255 0



Appendix C

In this appendix we outline an anail$sis of the relationship

between the genus of a digital image and the continuous space

it represents. Let Z* be a continuous space composed of

binary regions; the union of all regions with value 1 we call

S*, and the union of the others S. We assume that the back-

ground is a region of S*.

We wish to state the circumstances under which a digital
image E is a representation of E that preserves the toplogy

of E*. These circumstances take the form of a local digitiza-

tion requirement that we impose on E. Let N(p) be the 8-

neighbors of pZE including P when E is two-dimensional, and

let N(p) be the 26-neighbors of pEE including p when Z is

three-dimensional. Associated with p and N(p) in E* we have

p* and N*(p).

First, we will require every local binary region of E*

to have a representation in E:

(i) O(S*flN*(p))= O(SnN(p))

(ii) O(S*NN*(P))= O(SfnN(p))

For the case where E is two-dimensional this is all we

need. Let be either G4 or G8. By the definition of

(Section 3) it is not hard to see that for pES

4(S) =(S-{p})+'(SnN(p))-([SflN(p)]-{p})

Now every n point object S can be constructed from an n-l point

object S-{p} with p the eastmost of the northmost points of S.



We note that when S={pJ, O(S)=l and G(S*)=l by (i)-(ii),

and proceed by induction. By induction hypothesis G((S-{p})*)
*

O(S-{p}), and since pES, G([S*nN(p)]-p*) = 0([SfN(p)]-{p}).

Now G(S*nN*(p)) = O(S*N*(p))-H(S*nN*(p)) and by (ii) we must

have H(S*nN*(p)) = H(SnN(p)) since H(SfN(p)) = 0. That

G(S*nN*(p)) = O(S*nN*(p)) = o(SfN(p)) is easily verified by

using a program to enumerate all possible configurations of an

eastmost, northmost point's neighborhood.

The case where E is three-dimensional requires an additional

digitization requirement which ensures that any hole occurring

in a small enough neighborhood of a point in the continuous

image exhibits itself in a well defined way in the digital image.

The form of this third requirement is similar to the definition

of the class of objects with no holes suggested in [ 7 ].

We define a closed path 'r=pl,...,p m as one with pl=Pm
. A

point p. of 7 is a path end if it has exactly one neighbor

that is also a point of 7, and is a path corner if it has

exactly two neighbors on n which have a common neighbor q other

than ni" Two paths 7=pl,...,pm and 7'=pl,...,pn that lie in CQS

are strongly equivalent in the component C if

a) There exists a path end piEn such that i' is the same

as i with pi and the repetition of pi±l deleted.

b) There exists a corner piEn such that i' is the same as

i with pi replaced by q, the common neighbor of Pi-l

and Pi+l (so that m=n)



(If pi occurs several times on n we delete or divert all in-

stances of it). We call the reflexive, symmetric, transitive

closure of strong equivalence equivalence in C. We say that

n is reducible in C if it is equivalent in C to a degenerate

closed path consisting of a single point. (This definition

of equivalence of closed paths is motivated by the concept of

continuously deformable simple closed curves in continuous

space].

We can now state our third requirement as

(iii) If S*ON*(p) has a hole then there exists a closed

path in SnN(p) that is irreducible in SnN(p)

Intuitively, this means that if there is a simple closed curve

in S*nN*(p) which is not continuously deformable to a single

point without leaving S*nN*(p), then a similar phenomenon should

occur in SnN(p).

The inductive drgument that G(S*) = (S) where 4 is either

G26 or G6 is similar to that of the 2D case. For G2 6 (S) it is

easy to see that since pES, every path in SfN(p) is reducible

to p so that H(S*fN*(p) O, and that C(S*nN*(p))=o. It is easily

verified (by writing a program to test each configuration) that

for an eastmost, northmost topmost point of S, c(SN(p))=G26

(SfN(p)). For the 6-connected case it is simpler to show by

induction that G6 (§)-G 26 (S) = 1 (or G2 6 (S)-G 6 (S) = i).

We summarize these results in

Proposition C.l. If S Z* meeting requirements (i) and (ii) if

Z is two-dimensional, and meeting requirements (i)-(iii) if

-sl- -



E is three-dimensional, Lhen G (S)=G(S*) and G(S)-G(S*).

Evidently, (i) and (ii) may be achieved through the use

of a fine enough resolution. While this is not as evident

for (iii), we notice that we could choose a resolution so

fine that H(S*nN*(p))=0 so that (iii) becomes vacuous.

A second interpretation may be given to (i)-(iii); if we

define the genus of a digital picture as in Sections 3 and 4,

then (i)-(iii) define the classes of (2D and 3D) continuous

image spaces whose topology is preserved in their digital repre-

sentation.

We leave a rigorous analysis of this relationship as an

open problem.
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