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ABSTRACT
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1. 1Introduction

The analysis of three-dimensional (3D) images has become
of increasina interest (see, for example, [1-6]) with the
rapid growth of computed tomography, in which discrete 3D
representations of solid objects are reconstructed from sets
of projections. This report, in which we define (and give
algorithms for computing) the genus of a binary 3D image
(as might be obtained by applying a threshold to an image
produced by computed tomography), is one of a series [7-10]
on the geometry and topology of 3D arrays.

Geometrical and topological properties of digital arrays
play an important role in image analysis and recognition.
While for two-dimensional (2D) images the genus of a digital
image is not a particularly useful property per se, it is of
theoretical interest. For example, there is a well developed
theory [11,12] of the topological properties (e.g., connected-
ness, objects, holes) of 2D digital images which combine with
various geometric concepts (e.g., arcs, curves) to form the
basis of a consistent representation scheme that underlies
many image analysis tasks such as object extraction and detec-
tion, thinning, and skeletonization.

We assume some familiarity with the notions of connected-
ness, objects, holes, etc., as in [11,12] for 2D digital
images. Connectedness is a relation defined on binary valued

points of a digital array which partitions the array into




objects (connected components of points with image value
1) and non-objects (connected components of points with
image value 0), of which all but a single (unigque) background
component are holes. Simple algorithms may be given fér
labeling (and counting) objects and holes.

The genus of a 2D digital image may be defined to be the
number of objects minus the number of holes in the image.
While counting objects only or holes only is necessarily a

global operation [13] there exist counting functions of local

e

patterns Of points which determine the genus of the image [1l1l-
15]. When 4-connectedness (see below, Section 3) is used for

the 1l's (a subset S) of the image, we have

f Gy(8) = Yy=v,+i, (1)
where
wl = number of 1l's in the image
wz = number of 1x2 blocks of 1's in the image (in all orien-
3 tations)
w3 = number of 2x2 blocks of 1's in the image 5
and when B8-connectedness is used for S we have
Gg(S) = ¢1=(@y+@3)+¢,=¢g (2)
where
9, = number of 1's in the image L J
Vz = number of times the pattern 1l or 1 occurs in the image
¢y = number of times the pattern ll orll occurs in the image
¢4 = number of times the pattern { 1, ' i, 1 }, or i '
occurs in the image 5




11
= number of times the pattern 1 1 occurs in the image
g

For 3D digital images we may define connectedness (see
i below, Section 4) as a relation on binary valued points of a
digital array in a fashion analogous to the 2D definition,

except that we call all but the background components of 0's

cavities rather than holes [7,8). The reason for this change

in nomenclature will soon become evident.

N ==

In [15] it was argued that for 6-connected sets of l's

(see below) in a 3D digital image the analog of Eg. 1 is

GG(S) = Wl‘w2+¢3“w4

where
wl = number of 1's in the image

wz = number of 1x1x2 blocks of 1's in the image (in all orien-
tations)

by = number of 1x2x2 blocks of 1's in the image (in all orien-
tations)

= number of 2x2x2 blocks of 1's in the image

<
-
|

and (as we shall see) the analog of Eg. 2 for 26-connected sets is
G26 (S) = @19 +P3= 94t 0595+ P~y
where the ¢i are as defined in Appendix A.
Consider the 3D array 2(3)(x,y:z) constructed from a 2D
! array 2(2)(X'Y) by

£ (2) (x,y) if z=z
2(3)(XIle) =
0 otherwise




where 2(2) has O objects and H holes. It is easy to see that

with G4 and G8 defined on 2(2), and G6 and G defined on

£ (3)

26
, we have G4=G6 and G8=G26' and that the image 2(3) has no
cavities. Thus, although cavities are the 3D analog of 2D

holes as defined by the connectedness relations, the functions

G6 and G26 do not give the number of 3D objects minus the num-

ber of 3D cavities. In the simple construction above, we
see that Gg and G26 are also affected by what are intuitively 3
3D holes, i.e., holes in a sheet. ;

In 3D the genus is sometimes defined (14,15] to be the i
number of objects minus the number of holes plus the number of
cavities. Since for 3D digital images the topological con-
cepts of object and cavity are well understood (in particular,
algorithms similar to those for 2D images can be given for count-
ing them) a definition of genus would define the number of
holes, and convefsely. What we desire is some evidence to
support the assertion of either definition as being consistent
with the corresponding ordinary topological notion.

Even in ordinary topology it is difficult to characterize
holes. A hole may be thought of as a property of a boundary . ;
surface (separating binary regions) which makes it topologically
equivalent to a torus; an object with H holes has a surface

topologically equivalent to an H-holes torus. In another

approach, an object is defined to have no holes if every 3

simple closed curve in the object is continuously deformable

within the object to a single point (see [7] where this approach




is used for digital images; for the present purposes we

need a stronger statement, since we will in general be deal-
ing with objects that may have many holes).

We see from these remarks that the concept of a hole is
different from those of objects and cavities; we cannot
point to or label the points which constitute a hole. Indeed,
the points of objects ard cavities cover the space, so that
a hole is a property of these collections of points. Thus,
when considering an object (and its cavities) we shall here
try only to understand what is meant by the number of holes
in the object, and not what is meant by a hole.

We begin by postulating the well-known Euler-Schlaefli
relation as a fundamentally true statement of dimensional
connectedness. This equation describes a relationship between
the numbers of elements of different dimensionality in an
interlinked system of these elements given the geometrical
constraints of Euclidean space. This theory of interlinked
systems of elements (structures) requires that these structures
have, in effect, no holes (i.e., are singly connected). We
have chosen this starting point because the process of extend-
ing the concepts of singly connected structures to more complex
(multiply connected) structures furthers an understanding of
what is meant by the definition of digital genus (number of

holes), and not because multiply connected structures are not

also well understood.




The approach taken here is constructive. That is, a

structure is described by specifying the elements (of differ-
ent dimensionalities) that constitute it. We proceed by
making two associations: one from points of an image to
structures, and one from components (objects, holes (2D), cavi-
ties (3D)) to elements of the structures. Even for 2D digital
images, this approach is essentially different than the expo-
sition of genus found in [11,12,13]}. Thus, following the
introduction of structures and the Euler-Schlaefli identity
(Section 2) we illustrate this technique by presenting a deri-
vation of genus for 2D digital images (Section 3) before
developing the genus (number of holes) of a 3D digital image
(Section 4). 1In Section 5, we give an algorithm for computing
the 3D digital genus of an image.

Some early work on topology of 3D digital arrays is
found in [14,15], and several theoretical papers [16,17] also
consider generalizations to higher dimensions. More recently

[18-20] discuss the topology of surfaces of 3D objects.
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2. Space Structures

The theory of structures given here is from the excellent
book by Loeb [21]. In general a structure is an underlying
pattern of interaction between things. When a structure is
confined to a Euclidean space, geometrical constraints are
imposed on the structure, which allow us to write various
quantitative expressions of spatial order. The well known

Euler-Schlaefli equation

(-l)iNi =1 + (-l)j
-0

describes the relationship between the numbers of elements of
different dimensionality in a multidimensional singly connected
structure confined to Euclidean space. Here Ni is the number
of elements of dimensionality i and j is the dimensionality
of the structure. [In two dimensions we write this as the
more familiar Euler invariant for any planar graph,

V-E+F = 2
where

v

]
2
1

number of vertices
E = Nl = number of edges
F = N, = number of faces.]
We note that in this identity the infinite region surrounding
the structure is considered an element of dimensionality Nj'
Some remarks about the use of this identity are necessary.

First, dimensionality refers to numbers of degrees of freedom.




A poini confined to move inside a cube or sphere may move

in three mutually perpendicular independent directions. A
point confined to the surface of a cube or of a sphere (even
though not flat) has only two independent directions of motion.

Similarly, a line or curve has dimensionality 1 and a point

has dimensionality zero.

Next, this identity applies only to structures that are

singly connected. A structure is multiply connected if
there are two or more curves between any two points which
cannot be brought into alignment by continuous deformation
(cf. the definition of the class of objects with no holes

in [7]). This has a profound effect on the way we must view

structures. Consider, for example, the 2D structure

A
The singly connected restriction forces us to view the region
surrounded by the vertices and edges as a face of the structure
(the exterior is also considered a face). Just as an edge is
commonly used to represent an independent relation between two ) 1
vertices in a graph, the face in the above structure represents an _ ]
independent relation between each vertex and the other two.

In the 3D structure (tetrahedron)

24

we are left a choice: The (3D) structure consists of 4 vertices, ]

6 edges together with either 3 faces and 1 "background" cell




(structured element of dimensionality 3), so that the struc-
ture is cup-like, or 4 faces so as to create a surface that
divides the three-dimensional space into an enclosed cell
and all the space outside it.

Additionally, we shall require that the following closure
postulate be satisfied: at least two edges join at every
vertex, and at least two faces meet at every edge. Thus we
exclude tree graphs from consideration as structures (although
it is possible by adopting a peculiar vantage point to view
tree graphs as structures [21,pp.8,9]), and in structures
like that above the choice of structures is removed. Never-

theless, we are left with a choice in structures such as

A

Either there are ten faces and two cells or eleven faces and

three cells.




3. 2D Digital Images

A 2D digital image I is a 2D lattice of points defined

by pairs of Cartesian coordinates (x,y) which we may take to

be integer valued. A binary 2D digital image is a 2D digital

image whose points have values 0 or 1. The geometrical and

topological concepts presented here may be found in (11,12].
We will consider two types of neighbors of a point p=(x,y):
(a) the neighbors (u,v) such that |x-u| + |y-v| =1,

which we call edge neighbors of p;

(b) the neighbors (u,v) such that |x-u|l =1 and |y-v] = 1,

3 which we call corner neighbors of p. d

The four edge neighbors of p are said to be 4-adjacent to p,

and the eight edge and corner neighbors of 1 are said to be !

8-adjacent to p. !
A path from p to g is a sequence of points P=Pgr--+rP,=d ]

of I such that i is adjacent to p.

i-1" 1 £3i sn, and any point

alone is a path of length zero. 1In general, for any :‘on-empty
subset S of I we speak of (4 or 8)-paths in S depending on the T
type of adjacency used.

Let S be a subset of points of I and to avoid special cases

assume that S does not meet the border of . We say that p and

q are connected in S if there is a path from p to q in S. Readily, ﬁ
connectivity is an equivalence relation, and the equivalence clas-
ses under this relation are called components (or objects) of S.

Note that these are each two definitions in one, depending on the

type of adjacency used, 4- or 8-.




Similarly we can consider components of the complement
S of s. Evidently exactly one of these components contains the
border of I; we call this component the background of S. All
other components of S (if any) are called holes in S. To avoid
ambiguous situations, we will require that opposite types of
connectedness be used for S and §. Simple algorithms have been
qiven to label and count components of S and S [11].

L:ot A,B be subsets of Z. We say that A surrounds B if
any path from (a point of) B to (a point of) the border of
I must meet (contain a point of) A. From [12] we have
Theorem 1. Any S surrounds its holes and is surrounded by its
background.
Theorem 2. The adjacency graph of S (the graph whose nodes
are components of S and S and whose edges are defined by adjacency
of components of S and S) is a directed tree rooted at the back-

ground component of § under the relation of surroundedness.

These two facts are significant in developing an algcrithm
to compute the genus of a set S (or S) of a digital imaje.
Namely, we can count the components of S as objects and
count each set that is surrounded by a component of S as a
hole to compute the genus. Thus it suffices to consider the
genus of a single component of S and its complement.

With every point of a digital image we may associate a pixel
(or "cell"), which 1is a square region defined by four corners

and four edges which are shared with the pixels of neighboring

points. We associate the binary value of each point with the
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face of tue pixel.

The genus G(S) of a set is the number 0(S) of objects
(components of S) minus the number H(S) of holes in S. Thus,
the component labeling and counting algorithms may be used to
determine the genus of a set S. While the labeling/counting
algorithms are global and sequential in nature, they have
been used to demonstrate the existence of local parallel
counting functions that determine the genus by an induction
on the number of points in S{12]; given any n point object
for which the local counting functions agree with the global
counting algorithms, it can be shown that adding a point to
the image will have the same effect on both.

We will see later that this approach cannot be used for
3D digital images. 1In 3D we can present algorithms to label
and count objects (components of S) and cavities (non-
background components of S), but not holes; a hole is not some-
thing to which we can assign a label in the same sense that
we label objects or cavities.

Consider the genus G(S) of the complement S of S in a 2D
digital image. We see (from the adjacency tree) that every
object in S is a hole in § (i.e., O(S) = H(S)) and that every
object of S except the background is a hole in S (i.e., O(5)-1

= H(S)). We thus have

0(S) - H(S) H(S) - 0(S) + 1

or

G(S) + G(S) =1
Since we use opposite types of connectedness for S and S, we

see that the digital genus we define for each type of connected-

ness must satisfy G,(s) + G8(§) = 1 and Gg(S) + G4(§) = 1.




We first consider the genus of a single 8-component
CsS. Consider the graph whose vertices are corners of pixels
in S and whose edges are edges of these pixels, e.g., from

the image

111
11
111
we obtain the graph
o] of
i
a |8 Y
(Clearly every such graph is connected and planar.) Viewing

the graph as a structure we can identify (specify) three
distinct types of faces:

a) faces arising from pixels in C

B) faces arising from components of T surrounded by C

Y) the "background" face arising from the component of C

not surrounded by C.

Clearly, every pixel of C becomes a face of the graph by
construction. The single component of C which surrounds C is
associated with the "background" face of the structure. Every
other component D«C is surrounded by C. Define an adjacency
relation between the component D and the pixels of the D-border
of C, and we see that we may associate each component D with the face
of the structure adjacent to the faces arising from the pixels of

the D-border of C. The face associated with each D is unique since

the D-border cf C surrounds D. In general faces of type (B) are

e e




n~gons with nz 4. We can now write

V-E+F = V-E+(#a + #8 + #Y} = 2
or

1-#8 = V-E+#a
where #a, #8, #y are the numbers of these types of faces
in the structure.

Now #B is the number of faces resulting from components
of C surrounded by C, i.e., holes in C. As we have seen,
it is sufficient to sum the number of holes in each C&S to
determine the number of holes in S. Thus, if we sum V, E,
and #a over the structure of every component C<S we have

0(S)-H(S) = V-E+#a
where 0O(S) is the number of objects and H(S) is the number of
holes in S§.

We now consider computing V-E+#a directly from the digi-
tal image I. Clearly #o is just the number of pixels with
image value 1. Similarly, it is not hard to see that

vV = 4¢1 - 2W2 - W3 + ¢4 - @5

E = 4%, - v

1 2

so that

V-E+#a = A (v2+v3) + W4 - YS

where
Y= number of points in §

1
¥, = number of times the pattern 1 1 or 1 occurs in the image

¥3 = number of times the pattern l1 or l1 occurs in the image

] 1 11 1 11
¥, = number of times the pattern 1 1 or l orllorl

occurs in the image

sonibich
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P = number of times the pattern 1 1 occurs in the image.

We thus have

Gs(S) = 0(S) - H(S) = Wl-(W2+¢3)+¢4-?5

as the genus of S when we use 8-connectivity for S.

Several approaches suggest themselves for dealing with the
4~connected case. For example, we have already noted that
G(S)+G(S)= 1. Consider the structure of I as per the construc-
tion above. 1t is easy to see that for an mxn array of points
we count V', E', and F' of this structure as

vl

(n+l) (m+1)
E' = 2mn+m+n
F' = nm+l

so that
V'=E'+F' = 2

Counting directly from the image as before we can write

vt = 4@1-2¢2-¢3+¢4-¢5+w3+2m+2n
E' = 4¢1-92+w2+2m+2n
F' = vl+wl+1

so that

V'-E'4F"' = [wl-(¢2+W3)+¢4-¢5]+[wl-w2+w3]+1 = 2

where
¥, = number of points in s
0
wz = number of times the pattern 0 or 0 0 occurs in the image

0
w3 = number of times the pattern 8 0 occurs in the image
Thus, we have G8(S)+[w1-w2+w3] = 1, so that G4(S)=w1-w2+w3. We
shall see that for 3D digital images this approach requires

an additional assumption.

i




i
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Thus, let us proceed as before by constructing a structure
which corresponds to a 4-component C of S. The construction
01
is similar except that for the configuration 1 0 (and its

reflection) we construct the subgraph

i.e., there are two vertices at the center of the configuration.
The proof that we can identify three distinct types of faces of
the structure (o~y) stands without change, and we obtain

0(S) - H(S) = V-E+#a

We can count V and E directly from the image as

Vo= 4y - 20, + Vg
E=4¥ -V,
#a=wl

so that

V-E+#a = wl-w2+w3
where the wi are as before but for image values of 1. We thus have
G4(s) = O(S)-H(s) = wl—w2+w3
Even with the complication of the additional vertex for a pair
of diagonal l's the calculations of the preceding paragraph stand
without change, so that we could in principle define the genus
G8(§) of the complement in terms of G4(S) by considering the
structure corresponding to L.
Before discussing the genus of a 3D digital image in the next
section we should point out that the structures used here for 2D

digital images are by no means the only structures we can use




for defining genus. For example, it is not hard to see that

G, = wl-w2+w3 may be interpreted as counting vertices, edges,

4
and faces on a graph whose vertices are points of the image

and whose edges are defined by 4-connectivity, although a some-
what different association must be made between faces of the
graph and subsets of the digital image. Note that when the edges

of such a graph are defined by B-connectivity the "structure"

becomes three-dimensional. For 3D digital images this kind of

graph will lead to an efficient algorithm for computing the genus.
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4. Digital Binary Images in Three Dimensions

A three-dimensional digital image I is a three-dimensional
lattice of points defined by triples of Cartesian coordinates
(x,y,2z) which we may take to be integer valued. A binary 3D
digital image is a digital image whose points have values 0 or
1. 1In this section we review the concepts of adjacency, connected-
ness, and components of points in I as developed in [7,8,10].‘

We will consider two types of neighbors of a point p =
(x,y,2):

(a) the neighbors (u,v,w) such that |x-u|+|y-v|+|z-w| = 1,

which we call 6é-neighbors of p

(b) the neighbors (u,v,w) such that max[|x-u|, |y-v|, |z-w|] = 1, ]

which we call the 26-neighbors of p.

The 6-neighbors are said to be 6-adjacent to p, and the 26-neighbors

26-adjacent to p.

A path from p to q in I is a sequence of points P=Pgr-«+/P,=q
of I such that P; is adjacent to Pij-1’ lsisn. Any point alone
is a path of length zero. 1In general, for any non-empty subset
S of I we speak of (6~ or 26-) paths in S depending on the type
of adjacency used.

Let S be a subset of points of I, and to avoid special cases
assume that S does not meet the border of . We say that p and
q are connected in S if there is a path from p to q in S. Readily,
connectivity is an equivalence relation, and the equivalence clas-

ses under this relation are called components of S (or objects).

T REmams i

Note that these are two definitions in one, depending on the type

of adjacency used.

L e—




Similarly, we can consider components of the complement

S of S. Evidently exactly one of these components contains the
border of 1I; we call this component the background of S. All
other components of S (if any) are called cavities in S. To
avoid ambiguous situations we will require that opposite types

of adjacency be used for S and S. Simple algorithms can be given
for labeling and counting distinct components of S and S [15,7].

The genus G(S) of a set S in a 3D digital image is the number
0(S) of objects plus the number C(S) of cavities in S minus the
number H(S) of holes in S. As already mentioned the definition
of hole is not simple, and in particular holes cannot be labeled
to facilitate counting them, as can be done with objects and
cavities.

Let A, B be subsets of L. We say that A surrounds B if any
path from (a point of) B to (a point of) the border of I must meet
(contain a point of) A. As in 2D we have [ 7 1]

Theorem 3. Any S surrounds its cavities and is surrounded by
its background.

Theorem 4. The adjacency graph of S (the graph whose nodes are
components of S and S and whose edges are defined by adjacency
of components of S and S) is a directed tree rooted at the back-
ground component of S under the relation of surroundedness.

With every pont of a digital image we may associate a voxel,
usually a cubic region defined by 8 corners, twelve edges, and
six faces which are shared with the voxels of neighboring points.

We thus associate the binary value of each point with the cell

(or volume) of the voxel.




it T i Sy ot
i el s ool i~ R L W T s M . R

For any 3D structure the Euler-Schlaefli equation is
V=-E+F-Q = 0
where

v

number of vertices

E = number of edges

F = number of faces ;

Q = number of cells (including the background).
From a 3D digitgl image we may construct a structure from any
single 27-component B<S whose vertices are corners of voxels
with image value 1, whose edges are edges of these voxels, and
whose faces are faces of these voxels. In analogy with the 2D ,“
development we can identify three types of cells:

(0.') cells arising from voxels of B

(8') cells arising from components of B surrounded by B

(6') the "background" cell arising from the component of B

not surrounded by B.

In general, cells of type B' are polyhedrons with eight or more
vertices. The details of this association are similar to those
in the 2D proof.

This done, we find that the resulting structure is not neces-
sarily singly connected. As a simple example consider the structure

resulting from the digital image

0110

1001

0110
which is
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Some additional structural elements are required to make this
structure singly connected (cf. the "missing faces" of the
2D development above).

In general, for the structure derived as above from any
digital component B<S we may compute V-E+F (#a+#B+#Yy) although
this sum need not equal zero since the structure need not be
singly connected. We define the number of holes in the object
as the amount by which this sum differs from zero,

H(B) £ =V + E = F +(#a+#B+#y)

Noting that #B is the number of cavities C(B) in any component
B&S and that #y = 1 (for the background) we have

1+C(B)-H(B) V-E+F-#a

so that we may sum V,E,F,#0 over every component B&S in the image
to obtain

0(S)-H(S)+C(S) = V-E+F-#a
where 0(S) is the number of objects in the image, C(S) is the
total number of cavities in these objects, and H(S) is the total
number of holes in these objects. [We are tacitly assuming that
H(S) = IH(B), where the summation is over the components B of S.
This additive property of holes of components is justified by the
fact {14] that genus is a local set property, viz. G(A)+G(B) =
G(ANB)+G(AUB) for objects A and B.]
Remark: The definition of number of holes above may be related
to the Euler-Poincare characteristic for finite complexes [22].

The structure corresponding to a digital component is a complex

K-L where L is a subcomplex of a simplicial complex K. Intuitively,




the sum V-E+F-(#a+#B+#y) differs from zero by some amount

v-e+f-g, where these are computed on K~L and L, respectively.
Viewed in this fashion the number of holes is the sum v-e+f-g
for any structural elements added to the structure resulting
from a digital image which will make it singly connected.

We now consider computing V-E+F-$#a directly from the digi-
tal image. Although more laborious than the 2D case, we can
show that

G27(S)=O(S)-H(S)+C(S)=@l-¢2+?3—@4+¢5-¢6+¢7—¢8

where
¥ = $#[1]
wz = #[2]+#[3]1+#[4]
¥y = #[51+#(6]1+4(7]
W4 = $[8)+#[9]+#[10]+# [11]1+#[12]+#[13]+#([14]
Ws = #[15]1+#[16]+%[17]
QG = #(18]1+#[19]1+#{20]
¢7 = $[21]
ws = $[22]

and by #([n] we mean the number of times the configuration n of
Appendix A occurs in the picture (in all orientations).

As in the 2D case one way of proceeding to the 6-connected

case is to note that for the structure corresponding to I we have

V'-E'+F'-Q' = 0, and that counting directly from the image we have

V'-E'+F'-Q"' = (91-¢2+¢3-¢4+¢5-¢6+¢7—¢8)-wl+¢2~w3+w4+l =0

or

(wl-w2+w3_w4)-G27(S) = 1




where the wi count patterns of 0's as follows:

v, = #11]
v, = #[2]
vy = #18]
b, = #120]

Now, every object of S is a cavity in § (i.e., 0(S)=C(S))
and every object of S except the background is a cavity of S
(i.e., 0(S)-1=C(S)). If we make the assumption that H(S)=H(S) we
have 0(S)+C(S)-H(S) = C(S)+0(8)-1-H(S) or G(S)-G(S)=1. Thus from
the above equation we can define G6(§)=wl-w2+w3-w4. Because we
need this additional assumption, we consider it safer to base the
definition of genus for 6-connectivity on a structure correspond-
ing to a 6-connected object.

The construction of the structure for a 6-connected object
is similar to that above, except that for configurations such

01
as 1 0 and

lst plane 2nd plane
01 00
00 l0

we use the structures
so that each 6-component forms a distinct structure. (We are
glossing over the details of this construction; the essential

point is that a vertex is not shared unless the voxels are con-

nected inside a 2x2x2 neighborhood containing the two voxels,)




Again, we identify some of the cells of the structure with
components of the complement, and define the number of holes as
the amount by which the sum V-E+F-(#a+#B+#y) differs from zero
(or as the net contribution to the sum V-E+F-Q needed to make
the structure simply connected i.e., V-E+F-(#o+#8+#Y)+H = 0).
For any single component B<S we have
1+C(B) - H(B) = V-E+F-#a
so that for O(S) components of a digital image we can determine
0(S)=-H(5)+C(S) = V-E+F-#o
by summing V,E,F and #o0 over the entire image. Counting directly

from the image we find

V = 8w1—4w2+2¢3—‘p4

E = 12w1-4w2+w3
F =6V,
fo =V,

so that

= - U R
GG(S)—O(S) H(S)+C(S)= 17 2% 377
where the wi are defined as before but for patterns of 1l's in I,
Once again, we find that (with the additional assumption H(S)=H(S))

we can in principle define the genus of the complement in terms

of G6(S) by considering the structure corresponding to I.
From the definitions of G27 amd G6 based on structure we see
that G27(§)—G6(S) = 1 and G6(§)-G27(S) = 1 from counting elements

in the structure corresponding to I. Thus, we have shown that

H(S)=H(S) since 0(S)=C(S) and 0(S)-1=C(S).




5. An Algorithm to Compute G(S)

The equations

Gg (S) = wl-w2+w3-w4

Gp7(8) =01 =9, 4030 +@g=Pet?, =Py
define the genus of a 3D digital image but are not algorithms
for computing the genus. An algorithm for computing GG(S)
is not difficult to devise, since the patterns of points of S
for wl and w4 occur in an orientation independent fashion and
the patterns for wz and w3 occur in three different orienta-
tions each. Thus it is sufficient to test for occurrences of
nine distinct patterns in the digital image. For 627(8), how-
ever, there are 22 distinct patterns, many of which occur in
many orientations.

In this section we give an algorithm for computing G27(S).
The development of this algorithm is understood in terms of
a graph defined by the 27-connectivity relation on the points
of $ in . We point out that the graph used here is not simi-
lar to the structures used to define the genus, but is analo-
gous to the alternative structure for 2D images mentioned at
the end of Section 3. The ®; may be given the following
interpretation. Consider a graph <S,E(S)> whose vertices
are points of S and whose edges are defined by the 26-connecti-
vity relation. Then 94 is. the number of vertices and 9, the num-
ber of edges of <S,E(S)>. In general, since every point in a

2x2x2 cube is 26-adjacent to every other point in the 2x2x2




cube, 9, is the number of distinct f-cliques in <S,E(S)>

L that are containedin a2x2x2 cube of points on the lattice.

‘ This interpretation of the w, leads to a simple and effi-~

cient algorithm for determining the o, and thus G26(S). The

following description of the algorithm is most easily under-

stood in terms of using registers to count the contribution

to each ?y of each 2x2x2 neighborhood during a raster scan

of L. However, the algorithm may be executed in parallel.
Let Ki,j,k be the 2x2x2 cube (during a raster scan with

increasing values of i,j,k)

(i-1,3,k) (i,3,k)
(i-1,3-1,k) l (i,j-l,{
(i-1,3,k-1) | (i,5,k-1)
|
(i'lrj‘I:;j;:/// (i,j-ij:I:/

Let n be the number of 1l's in Ki i,k By definition, wz is
’ ’
the number of distinct objects consisting of 2 points. Thus

@, (K. . )=(n). When S extends outside of K, and the
2 fJok L

i i, 3.k,
v, are applied to other 2x2x2 cubes, some of the f-point ob-
jects may be counted multiple times.

Let

n,=#{2] ({(i-1,3,k),(i-1,j-1,k), (i~1,3,k-1),(i-1,3-1,k-1)})

= 1
E #[zl(Ki,j,k)




n2=*[2] ({ (i-llj-llk) ’ (ilj-llk) [) (i-lrj-lrk-l) ’ (ipj"llk-l) })
- 2
= 421k )
n3=#[2]({(i—l,j,k-l),(i,j,k-l),(i-l,j-l,k-l),(i,j—l,k-l)})

$12) (K3

= 1,j,k)
ny,=#[(2]1 ({(i-1,3-1,k),(i-1,3-1,k-1)}) = #[2](K}_?j'k)
ny)3=#(2) ({ (i-1,3,k-1), (i-1,3-1,k-1)}) = #[21 (k{35 )
nyz=#121 ({(i,3-1,k-1), (i-1,3-1, k-1 }) = #121 (k3> D)
nyp3=#12] (((i-1,3-1,k-1)}) = #121(K;°] 1)

where #[n] (X) refers to the number of times the pattern n of
Appendix A (in all orientations) occurs in X.
We can now solve for the net contribution Afvg(Ki j k) of
’ ’

K to each wz(S). Clearly the 2% point objects in KL

i,j.k
2

the 2 point objects in K, . are
P ] i3,k

i,j,k
are counted in K, .
cou i-1,3.,k,

counted in K. . and the % point objects in K3
llj_llkl

. are
i,j,k

counted in K, 5,k-1° Thus the count (2) must be adjusted to
r ’
n, ,n n n

. . . 12 13
B;; now the numbers of 2 point objects in Ki,j,k, Ki,j,k,

i,9,k have been subtracted twice, so this must be further
I r

and
K
adjusted to
n n n n n n n
(2)-(£1)-(22%(23)+(112)+(213)+(223)

Finally, the ¢ point objects in Kizg " have now been counted
’ 14

one too many times, so the final adjustment is

_,n n n n n n n n
by (K, o =) -G -2 - (F3)+(F12)+ (13)+(F23) - (F123)

i, 3.k

This net contribution of each 2x2x2 cube may be computed for

each cube of the image in parallel and summed.
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{ Similarly this gives a simple expression for the net con-

tribution AG ) of K, to G, (S) which may be com-

26 X5, 5, i,9,k

puted for each K,

i,9,k in parallel and summed:
1’ 14

n
O=I DA - BN - @2 - B3+ B12)+ B13) + (B23) -

AGyg(X; 5, -

n
(1123)]
Since the expression inside the brackets requires a significant

amount of computation, we suggest the use of a lookup table ]

as follows. From a 2x2x2 cube of binary points form an 8-bit ]

number t. Clearly the values of n, Nys Nyy Ngy Dy Nygy Nogy

and n,,5 may be predetermined for every 0<t£255 and the values

of AG26(<t>) stored in a table, where <t> is the 2x2x2 cube
of points whose 8-bit number is t. In Appendix B we list the
values of AG26(<t>) for one method of forming the 8-bit number

t from the 8! different ways of doing this. It should be

L L e

noted that in this table -2sAG26(<t>)s 1, and that most of the |
entries are zeros, so that if necessary the size of the table

may be significantly reduced.

Of course, there is another alternative to computing the
genus of a 27-connected subset S: Namely, use the simpler

6-connected algorithm to determine the genus of §, and employ

the identity G(S)-G(S)= 1.




6. Conclusion and Remarks

We have proposed definitions of digital image subsets based
on the association of a structure with each component of the
subset. For 2D digital image components we found that these
structures were singly connected, so that by straightforward ’
application of the Euler-Schlaefli identity we could compute
the genus of a collection of components. While for 3D digital

components the structures are not necessarily singly connected 1

we still began with the Euler-Schlaefli equation in order to
give insight as to the nature of holes in 3D images. A defi-
nition of the number of holes in a subset of a digital image
is equivalent to defining the genus of the subset since the
numbers of objects and cavities are well understood. We were

thus able to define, and give an algorithm for computing,

the genus of 3D digital image subsets.

We noted in the introduction that the 2D genus is not a

Joss—ar

particularly useful property, particularly since it is easy

to determine the number of objects and number of holes inde-

e e

ot

pendently. 1In contrast to the mostly theoretical interest in

—,

2D genus, the 3D genus is of more practical value. Since the
numbers of objects and cavities of a 3D image may be determined
independently, the genus may be used to determine the number

of holes in an object or objects. Clearly the number of holes
in an object is an important descriptor that should be useful
in many object recognition tasks.

We have already noted that the structures we have chosen

are not unique. While the alternative "structures" mentioned




in Sections 3 and 5 are not strictly structures as defined

here, we remind the reader that from a peculiar vantage point
[21, pp.8-9] these too may be viewed as structures to which
the Euler-Schlaefli equation is applicable. We shall not
pursue these alternative structures further.

Another gquestion entirely concerns the use of 6- and 26-
connectivity exclusively as complementary types of connectedness.
For example, we may define 18-connectedness between points
whose voxels are face-adjacent or edge-adjacent [see 7].

Clearly this relation is an equivalence relation whose equiv-
alence classes define components, and we can certainly construct
structures analogous to those made for 6- and 2¢-components.

We thus see no obstacle to the use of 6~ and 18-connectivity

as complementary types in a 3D digital image. We have chosen

not to pursue this here since the use of 6- and 26-connectedness
appears more natural (e.g., the only natural distance metrics

on a 3D lattice correspond to the number of points on a shortest
6- or 26-path between two points [7]). However, 18-connectivity
appears to be equivalent to the connectedness underlying the
surface topology of [18,19].

We may also scrutinize the use of structures to model the
image space. For example, in computed tomography a 3D digital
image is a representation of a 3D continuous image space of
objects which are not polyhedral structures as used here. 1In
Appendix C we explore the relationship between G and G, of a

26 6
digital image to the genus of a binary region of continuous

space. This analysis indicates that if certain digitization
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requirements are met by the digital representation then G26

and G6 in fact determine the genus of the continuous space, and
that these digitization criteria may be satisfied by using a
fine enough resolution.

Finally, in Sections 4 and 5 we introduced a graph the-
oretic interpretation of the genus of subsets of L, whereby
an object is represented by a graph <S,E(s)~> on the lattice
whose edges are defined by the appropriate adjacency relation

between pairs of points of S. Thus, we may view G G

4’ "8’

G G as functions of the appropriate graph.

6’ 26
We noted earlier that genus is a linear set property, viz.
G(A)+G(B)=G (A B)+G(AUB)
(see [14] for a proof of this). Expanding our notation to
G(S)=G(<S,E(S)>) we have
G(A(iB)=G(<AUB,E(AUB)>)-G(<A,E(A)>)-G(<B,E(B)>)
from which we see that
G(A(iB)=G(< g ,E(AVUB)-E(A)XE(B)>)
where @ is the empty set. This is similar to the definitions
in [8) of simple closed curves and surfaces by sets of

ordered pairs (p,q) of points p€S, ge¢S, since these pairs

specify the edges of E(AUB)-E(A)-E(B). This approach deserves

further investigation.




Aggendix A

The 256 binary assigmments to a 2x2x2 neighborhood of
points in a 3D image may be grouped by symmetry into 22 dis-
tinct patterns. The pictorial display here, taken from [14],
shows voxels with image value 1 as cubes. In Sections 4 and
5 the notation #[n] refers to the numbering here of these

patterns. In patterns 15-22 only all hidden voxels have value 1.

(All zeros)

1(=22) 2(=21) 3(=20) 4(=19)
5(=18) 6 (=17) 7(=16) 8 (=15)
o & B ®
9(=9) 10 (=I0) 11 (=1T) 12(=12)
W & & W
13(=I3) 14 (=I3) 15(=8) 16 (=7)




17 (=6) 18(=5) 19 (=%) 20(=3)

21(=2) 22(=1)
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Appendix B
The values of the net contribution AGZG(Ki,j,k
x to the genus GZG(S) of a subset S of a

) of
a 2x2x2 cube K,
1,3,
digital image are tabulated below by a decimal index t.
The binary representation of the number t is formed from

the 2x2x2 cube of binary valued points

Wi
A

as the bit string t=abcdefgh. The point with binary value b
is considered to be (i,j,k).

Note that only 49 entries for AG26(<t>) are non-zero, and 1
that -23G26(«t>)sl, so that a significant amount of compression

may be achieved if the table size is a problem.

AG (<t >) t AG (<t >)

17 ¢
18 o
19 O
20 0
21 0O
22 9]
23 0
24 -1
29 -1
26 -1
a7 -1
28 0
&y 0
30 0O

0

8]

1

ol

~O0O0ONOCUDUYN ~o I

!
CO00O0~V~0200CO~0 O

)
wr

31
32

a3 -

[Srs
(¥ I

16
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52

54
55
56
57
58
59
&0
61

62
&3
&4
65
o
67
68
69
70
71
72
73
74
75
74
77
78
79
80
81

82
83
84
BS
86
a7
38

T

NG (<t>)
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a9
90
91
Q2
93
?4
995
Qb
?7
8
P9
100
101
102
103
104
109
106
Q7
108
109
110
i1l
iz
113
114
115
116
117
118
119
120
121
122
122
124
129
126
127
128
129
130
131
132
133
1234
135
134
137
138
159
140
141
142
143
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144
145
146
147
148
149
150
191
152
193
154
{os
19564
157
1583
159
1460
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164
165
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170
171
172
173
174
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177
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Aggendix ¢

In this appendix we outlinc an anasi'sis of the relationship

between the genus of a digital image and the continuous space
it represents. Let I* be a continuous space composed of
binary regions; the union of all regions with value 1 we call
S*, and the union of the others S*. We assume that the back-
ground is a region of S*,

We wish to state the circumstances under which a digital
image I is a representation of I* that preserves the toplogy
of I*. These circumstances take the form of a local digitiza-
tion requirement that we impose on L. Let N(p) be the 8-
neighbors of p&¢f including P when I is two-dimensional, and
let N(p) be the 26-neighbors of p&I including p when I is
three-dimensional. Associated with p and N(p) in I* we have
p* and N* (p).

First, we will require every local binary region of I*
to have a representation in I:

(1) O(S*nNN*(p)) = O(SNN(p))

(i1) o(S*nN*(p)) = O(SNN(p))

For the case where I is two-dimensional this is all we

need. Let ¢ be either G, or G_. By the definition of ¢

4 8
(Section 3) it is not hard to see that for p€S
¢ (S)=¢ (s-{p})+¢ (SNN(p)) ~¢ ([SNN (p) 1-{p})

Now every n point object S can be constructed from an n-1 point

object S-{p} with p the eastmost of the northmost points of S.

il e i M55 dra
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We note that when S={p}, ¢(S)=1 and G(S*)=1 by (i)-(ii),

and proceed by induction. By induction hypothesis G((s-{pl)*)
= ¢(S-{p}), and since p€S, G([S*nN(p)]-p*) = ¢([SNN(p)]1-{p}).
Now G(S*NN*(p)) = O(S*NN*(p))-H(S*NN*(p)) and by (ii) we must
have H(S*NN* (p)) = H(SNN(p)) since H(SNN(p)) = 0. That
G(S*NN*(p}) = O(S*NN*(p)) = ¢(SNN(p)) is easily verified by
using a program to enumerate all possible configurations of an
eastmost, northmost point's neighborhood.

The case where I is three-dimensional requires an additional
digitization requirement which ensures that any hole occurring
in a small enough neighborhood of a point in the continuous
image exhibits itself in a well defined way in the digital image.
The form of this third requirement is similar to the definition
of the class of objects with no holes suggested in [ 7 ].

We define a closed path T=Pys...,P,  as one with P1=Pp- A
point P; of 7 is a path end if it has exactly one neighbor

that is also a point of 7, and is a path corner if it has

exactly two neighbors on m which have a common neighbor g other
than . Two paths m=Pyse.-sPp and n'=pl,...,p; that lie in C<S

are strongly equivalent in the component C if

a) There exists a path end p;em such that 7' is the same

as m with P; and the repetition of Pi+ deleted. 43

1 .
b) There exists a corner piEW such that 7' is the same as ;

T with P; replaced by g, the common neighbor of Pi1

and Pi41 (so that m=n)




(If p; occurs several times on ® we delete or divert all in-
stances of it). We call the reflexive, symmetric, transitive

closure of strong equivalence equivalence in C. We say that

m is reducible in C if it is equivalent in C to a degenerate
closed path consisting of a single point. [This definition
of equivalence of closed paths is motivated by the concept of
continuously deformable simple closed curves in continuous
space].

We can now state our third requirement as

(iii) If S*NIN*(p) has a hole then there exists a closed

path in SnN(p) that is irreducible in SON(p)

Intuitively, this means that if there is a simple closed curve
in s*nN*(p) which is not continuously deformable to a single
point without leaving S*NN*(p), then a similar phenomenon should
occur in SON(p).

The inductive drgument that G(S*) = ¢(S) where ¢ is either
G26 or G6 is similar to that of the 2D case. For G26(S) it is
easy to see that since p¢S, every path in SNN(p) is reducible
to p so that H(S*nN*(p)k=0, and that C(S*NN*(p))=0. It is easily
verified (by writing a program to test each configuration) that
for an eastmost, northmost, topmost point of §, O(SnN(p))=G26
(SNN(p)). For the 6-connected case it is simpler to show by
induction that G¢(5) -G, (S) = 1 (ox G, (S)-Gg(s) = 1).

We summarize these results in

Proposition C.1. If S<I* meeting requirements (i) and (ii) if

I is two-dimensional, and meeting requirements (i)-(iii) if




i is three-dimensional, then G(S)=G(S*) and G(S)=G(S*).

Evidently, (i) and (ii) may be achieved through the use
of a fine enough resolution. While this is not as evident
for (iii), we notice that we could choose a resolution so
fine that H(S*NN*(p))=0 so that (iii) becomes vacuous.

A second interpretation may be given to (i)-(iii); if we
define the genus of a digital picture as in Sections 3 and 4,
then (i)-(iii) define the classes of (2D and 3D) continuous

image spaces whose topology is preserved in their digital repre-

sentation.

We leave a rigorous analysis of this relationship as an

open problem.
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