UNCLASSIFIED	ELECT JAN 8 TR-37	RON-RIC	FINSTE	RANES.	STUDIE	SOFA	STEREOC	NO001	LY NOVE 4-75-C-	L SE	icius	
40 40 4094338	92 10 - 2											
							END DATE FILMED 2 81					
							Unc					

OFFICE OF NAVAL RESEARCH

CONTRACT NO. N00014-75-C-0305

TECHNICAL REPORT NO. 37 V

Electron-Rich Carboranes. Studies of a Stereochemically Novel System, $(CH_3^{\cap})_4 C_4 B_7 H_9$, an 11-Vertex Arachno Cluster.

David C./Finster and Russell N./Grimes

Department of Chemistry, University of Virginia Charlottesville, Va. 22901

Prepared for Publication in

Journal of the American Chemical Society

]] Jan**umer, 19**81

147

30 00

JAN 3 0 1981

B

30E

14

TH-==

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for public release; distribution unlimited

81 1

401147

Electron-Rich Carboranes. Studies of a Stereochemically Novel

System, (CH₃)₄C₄B₇H₉, an ll-Vertex Arachno Cluster¹

David C. Finster and Russell N. Grimes* Contribution from the Department of Chemistry University of Virginia Charlottesville, VA 22901

Abstract. The controlled degradation of $(CH_3)_A C_A B_B H_B$ (I) in 95% ethanol in air gives $(CH_3)_4C_4B_7H_9$ (II). Electrophilic bromination of II produces $11-Br-(CH_3)_4C_4B_7H_8$ (III), which is shown in an X-ray diffraction study to have an open cage structure with a bridging -CH(CH₃)- group across the open face; compounds II and III can be described as 11-vertex arachno cages. Deprotonation of II with NaH in THF generates the monoanion $(CH_3)_A C_A B_7 H_{B_1}^{F}$ (IV) from which the CH proton on the bridging group has been removed. protonation of IV gives a new isomer of $(CH_3)_A C_A B_7 H_q$ (V), whose $\frac{11}{12}$ B and $\frac{1}{12}$ H FT NMR spectra indicate a substantially different cage geometry from that of II. The molecular structures of II-V and pathways for their interconversion are discussed in light of NMR, ir, mass spectroscopic, and X-ray evidence. Crystal data for III: $BrC_8B_7H_{20}$; mol wt 271.84, space group $P\vec{l}$, Z = 2; a = 7.764(3), b = 8.352(5), c = 12.317(6)A; $\alpha = 94.53(5), \beta = 95.41(5), \gamma = 120.51(5), \gamma = 6784; R = 0.057$ for 1404 independent reflections having $F_0^{42} > 3\Gamma(F_0^2)$.

The high-yield preparation² of the tetracarbon carborane $(CH_3)_4C_4B_8H_8$ (I) has opened up new, intriguing avenues in boron cage synthesis, and a variety of 11- to 14-vertex metallacarboranes has been obtained³ by insertion of transition metals into I, both directly and via the carborane dianion $(CH_3)_4C_4B_8H_8^{2-}$. Compound I is an "electron-rich"⁴ nido cage, with 28 skeletal bonding electrons compared to the requirement⁵ of 26 for a closo (icosa-hedral) 12-vertex polyhedron, and consequently adopts a distorted cage geometry; moreover, many of the metallacarboranes derived from I also have unusual, often unique, cage structures.^{3,6} Most of our attention has been directed to the structural consequences of metal insertion into I. However, a recent study⁷ did examine the introduction of additional electrons to I, forming the 12-vertex, 30-electron $(CH_3)_4C_4B_8H_8^{2-}$ dianion which has a more open (arachno) structure than I itself.

Clearly other aspects of the chemistry of I merit attention as well, and in parallel with the properties of the well-known icosahedral $C_2B_{10}H_{12}$ carboranes,⁸ it was of interest to explore the degradation of I to smaller cage systems. The present investigation was concerned with the conversion of I to a C_4B_7 species and the quite unexpected stereochemistry which was uncovered in the course of events.

Results and Discussion

Cage Degradation of $(CH_3)_4C_4B_8H_8$. The carborane $(CH_3)_4C_4B_8H_8$ (I) is a white, air-stable solid, m.p. 138°C, which is remarkably

-2-

volatile at room temperature (in contrast to the $C_2B_{10}B_{12}$ carboranes, which are essentially nonvolatile).² The distorted-icosahedral solid-state structure of I (Figure 1, isomer A) was determined crystallographically several years ago,⁹ and recently the cage structural parameters were more precisely established from an X-ray study of the B(4)-ferrocenyl derivative which was shown to have the same framework geometry.¹⁰ In solution, isomer A exists in equilibrium with a second isomer (B, Figure 1) which has not been isolated; on removal of solvent the mixture reverts entirely to A. The geometry depicted for B has been proposed⁷ from ¹¹B and ¹H FT NMR observations and by consideration of the known structures of metal complexes derived from I and its dianion. This behavior is very different from that of $1, 2-C_2B_{10}B_{12}$, which is non-fluxional in solution and isomerizes only above 400°C, and then irreversibly.⁸

In light of the well-known degradation of $1,2-C_2B_{10}H_{12}$ to $C_2B_9H_{12}^{-}$ by the action of Lewis bases,^{11a},^b imilar behavior was expected for I. Compound I does not react with $(C_2H_5)_3N$ or tetrahydrofuran (THF) in the absence of air, but it does undergo slow, controlled degradation over several hours in 95% ethanol at room temperature/ in air, forming a new carborane, $(CH_3)_4C_4B_7H_9$ (II). Compound II, a white, airstable solid, m.p. (dec.)190°C, has been isolated in 40-60% yields. The presence of water is evidently essential in this reaction, since I is unreactive toward dry ethanol or methanol; in 95% aqueous THF in air, I decomposes to uncharacterizable products, as is also the case when I is treated with $(C_2H_5)_3N$ in air.

-3-

The degradation of I can be written as

 $(CH_3)_4C_4B_8H_8 + 3H_2O \longrightarrow (CH_3)_4C_4B_7H_9 + B(OH)_3 + H_2$ which is analogous to the conversion of $C_2B_9H_{11}$ to $C_2B_7H_{13}^{11c}$, but the actual stoichiometry may be more complex than the equation suggests. Carborane II is identical to a product, previously unreported, which was obtained¹² in low yield in the reaction of Na⁺ [(CH_3)_2C_2^{-} B_4H_5]⁻ with FeCl₂ at room temperature (see Experimental Section).

Structural Characterization of II. Compound II was initially formulated as $(CH_3)_A C_A B_7 H_7$ on the basis of its chemical ionization (CI) and electron impact (EI) mass spectra, which exhibit sharp cutoffs at m/e 193 (M+1) and 192, respectively (Figure 2). Other than small peaks attributable to ¹³C-containing ions, there are no significant EI intensities above m/e 192, implying the absence of "extra" (e.g., B-H-B bridging) hydrogen atoms. Nonetheless, subsequent work established that two extra hydrogens are indeed present, and II is in fact $(CH_3)_4 C_4 B_7 H_q$ (MW 194). This conclusion was derived from FT NMR and ir spectra of II and its B-bromo derivative (III) (Figures 3 and 4; Tables I-III), the mass spectrum of III (Figure 2), and an X-ray crystal structure determination on III, described below. Hence the low intensities of m/e 193 and 194 peaks in the mass spectra of II are attributed to extremely facile loss of two hydrogen atoms in the heated sources of the spectrometers, such that only the spectra of $(CH_3)_4 C_4 B_7 H_7$ are observed. In the bromo derivative, the loss of hydrogen is not complete and the expected parent peaks are, in fact, present.

Bromination of II. Treatment of II with Br_2 in carbon disulfide solution over AlCl₃ produced a monobromo derivative, (CH₃)₄C₄B₇H₈Br (III), which was isolated in 50% yield as a colorless,

-4-

air-stable solid (m.p. $225^{\circ}C$). From the close similarity of the ¹¹B and ¹H FT NMR spectra of II and III (Figures 3 and 4), it is apparent that these species have the same cage geometry and that III is in fact a bromo-substituted derivative of II (see discussion below). The cage structure of III was subsequently established from an X-ray study of III as follows.

Crystal Structure of 11-Br-(CH₃) C₄B₇H₈ (III). The molecular geometry is illustrated in Figures 5 and 6, with relevant data listed in Tables IV-VII. The cage framework consists of an open C_3B_7 basket with a "handle" formed by a bridging -CH(CH3) - group across the opening. The three skeletal carbon atoms occupy vertices on the open rim, and all four nonmethyl carbons retain a contiguous relationship. The bromine atom is attached to B(11), adjacent to the bridging carbon [C(7)], and the two "extra" hydrogens are located on C(7) and in a B-H-B bridge as shown. There are no unusual B-B or B-C bond distances (Table V) but the two framework C-C bonds [C(2)-C(3)] and C(7)-C(8) are relatively long for interactions between low-coordinate skeletal.carbon atoms.¹³ The bridging hydrogen, H(910) is only 1.99 A from the methylenic hydrogen, H(7), or 0.4 A less than the typical van der Waals H-H separation; as a consequence of this crowding, the B-H-B bridge is unsymmetrical and skewed toward B(10).

The $C_4 B_7$ cage geometry in III (and II) can usefully be described in several ways. The molecule may be viewed as a 13-vertex closo polyhedron¹⁴ from which two nonadjacent vertices have been removed (Figure 7), which precisely fits the definition of an

-5-

arachno cage as a closo system with two missing vertices.¹⁷ Compounds II ll-vertex

and III are the first known carboranes with this geometry, although arachno- $[(C_6H_5)_3P]_2MC_2B_8H_{11}$ (M = Cu, Ag, Au) complexes are known.¹⁶Since II and III contain 28 skeletal electrons in an 11-vertex framework (based on contributions of three from each C-CH₃ unit, two from each BH, and one from each "extra" hydrogen), they are (2n + 6)-electron systems in conformity⁵ with the observed arachno geometry. If one compares II with the 11-vertex closo system $C_2B_9H_{11}$, a 24-electron (2n + 2) cage, the introduction of four skeletal electrons (as in II) is seen to produce cage-opening via lengthening of the four interactions between the apex atom [C(7)] and vertices 2, 3, 9, and 10.

Alternatively, one may regard the $-CH(CH_3)$ - bridge as "outside" the cage and linked via two localized electron-pair bonds to the remaining $(CH_3)_3C_3B_7H_8$ molety, which is itself isoelectronic and isostructural with $B_{10}H_{14}$. In this sense, II and III would qualify as the first three-carbon analogues of $B_{10}H_{14}$.

<u>NMR Spectra of II and III</u>. As noted above, the ¹¹B and ¹H FT NMR spectra of the two species are closely similar, and they are entirely consistent with the crystallographically determined structure. The resonance at δ -7.3 in III is assigned to B(11)-Br since no coupling to a terminal proton is observed; there is no indication in either spectrum of the presence of more than one isomer.

The ¹H spectra (Figure 4) exhibit four nonequivalent methyl resonances, one of which is split into a doublet; this clearly arises from coupling of the methyl protons on C(M7) to the proton H(7). From the fact that C(2) and C(3) occupy similar coordination sites,

-6-

the closely spaced low-field methyl peaks can be cautiously assigned to the protons on C(M2) and C(M3), with the remaining resonance arising from the methyl group on C(M8).

The signal associated with the unique C-H proton H(7) proved elusive. Although its presence is clearly demonstrated by the splitting of the geminal methyl proton peak as noted, the C-H peak itself is not observable under normal conditions owing to its broad linewidth arising from unresolved coupling to (1) the adjacent methyl protons (giving a quartet with J = 6 Hz), (2) the ¹¹B(11) nucleus (doublet, J = 10 to 30 Hz), and (3) the proton H(11) (doublet, J = 1 to 10 Hz). However, with the aid of a triple resonance experiment¹⁸ (broadband ¹¹B decoupling plus singlefrequency homonuclear decoupling), the collapse of the C(M7) doublet was observed by systematically positioning the homonuclear decoupler at frequencies in the expected range of H(7) (δ 3 to 1.5). When the desired collapse was achieved, the H(7) resonance was observed (Table II), coincident with a methyl resonance in both C_6D_6 and $CDCl_3$ solution. A similar experiment without ¹¹B irradiation in CDCl, produced collapse of the methyl doublet only under comparatively high power (6 mG) decoupling, which is consistent with the expectation that H(7) should resonate over a wide range in the absence of B decoupling. The observation of the H(7) peak at δ 2.3 in III (and the corresponding resonance at \$2.45 in V, an isomer of II discussed below) reinforces these conclusions.

The chemical shift of H(7) may be compared with similar protons residing on bridging "methylenic" carbon atoms in other species; thus,

-7-

in $R_2C_2B_{10}H_{11}$ (R = C₆H₅ or CH₃) (Figure 8, A) the shifts are $\checkmark 4.77$ and 3.55, respectively.¹⁹ In the former species, some deshielding undoubtedly occurs from the geminal phenyl group. In another carborane of this type,²⁰ (n⁵-C₅H₅)Co(C₅H₄)⁺-(CH₃)₄C₄B₈H₈⁻ (Figure 8,B) the bridging CH proton was not observed (though it was crystallographically located⁷), nor was the proton resonance arising from the geminal methyl group split into a doublet; this suggests tautomerization of the proton and/or fluxionality at rates faster than the reciprocal of the coupling constant.

Deprotonation of II and Conversion to a New Isomer. The treatment of $(CH_3)_4C_4B_7H_9$ (II) with excess sodium hydride in THF produced one mole equivalent of H_2 and generated a $(CH_3)_4C_4B_7H_8^-$ monoanion (IV) as expected. However, re-protonation of this anion with HCl surprisingly failed to regenerate II, giving instead a different isomer (V) which was isolated in 27% yield as a white air-stable solid, m.p. $140^{\circ}C$.

The FT NMR spectra of IV and V indicate that both species have substantially different cage structures from II and III, and moreover that IV and V differ from each other. It is evident that deprotonation of II occurs at the bridging CH, and not the B-H-B bridge, since in the ¹H NMR spectrum of IV, all four CH₃ resonances are singlets and the B-H-B

signal is still present. This result is not unexpected, since deprotonation of $(CH_3)_2C_2B_7H_{11}$ also involves methylenic rather than BHB bridging protons.^{11c,21} Also, Williams²² has suggested a decreasing order of acidity as NH, SH> endo CH> BHB for arachno carboranes.

-8-

Removal of the CH proton in IV leaves the bridging carbon coordinately unsaturated, an unstable arrangement which probably induces movement of the bridging CH_3C : unit toward the B-H-B proton as shown in Figure 9. It would then seem reasonable for the bridging hydrogen to move to a new location between B(10) and B(11) as shown, thereby allowing C(7) to bond to B(9) and B(10) and hence achieve incorporation into the cage, as depicted in the suggested stable structure for the anion (IV). The geometry shown for IV is consistent with the ¹H and ¹¹B FT NMR and ir data, and represents a significantly altered cage geometry in comparison to the original species, II.

The re-protonation of IV could conceivably follow any of four paths: (1) regeneration of II, (2) reversal of the CH, and H positions on C(7) relative to II, (3) protonation of the B(9)-B(10) edge in IV to form a second B-H-B bridge, causing C(7) to move into the framework between C(8) and B(9), or (4) entry of the proton at C(7) to form a ---CH(CH₂)-- bridge between C(8) and B(9), as shown in Figure 9(V). Possibility (1) is eliminated since II is not observed as a product, and (2) is effectively ruled out by the gross differences in the ¹¹B NMR spectra of II and V; mere interchange of the CH₂ and H ligands on C(7) in II would not produce major Pathway (3) is eliminated by the changes in the boron spectrum. appearance of a CH signal at \S 2.45, the observation of an area 1 B-H-B resonance in V, and the fact that one of the methyl signals in the ¹H spectrum is split into a doublet, indicating the presence of a $-CH(CH_3)$ - bridge. The fourth possibility, however, is supported by the data and is depicted as

-9-

structure V in Figure 9. We emphasize that the geometries given for IV and V are not established, but represent likely arrangements consistent with available evidence.

Conclusions

The degradation of $(CH_3)_4C_4B_8H_8$ (I) to $(CH_3)_4C_4B_7H_9$ (II) is illustrated in Figure 10. From comparison of the established structures of I and II, we envision that the boron removed is B(12), with C(7) accepting a proton and moving into the bridging position as shown; the second proton enters the B(9)-B(10) edge to form a B-H-B bridge. The base attack at B(12) indicates that this atom and its counterpart B(1) are the most electrophilic sites in I, consistent with their locations adjacent to two framework carbon atoms. This observation corroborates earlier indications²³ that the attack of $C_2H_5O^-$ on I to form $B,B'-(C_2H_5O)_2-(CH_3)_4C_4B_8H_6$ occurs at B(1) and B(12);²⁴ it also follows the pattern set by 1,2- $C_2B_{10}H_{12}$, where the favored sites for base attack are B(3) and B(6), the borons adjacent to two carbon atoms.^{11a,b}

The preference for a carbon-bridged structure in II, with placement of a proton on C(7) and movement of that atom out of the cage, is reasonable in that it permits C(7) to achieve a "normal" tetrahedral environment and also allows the remaining framework carbon atoms to adopt low-coordinate vertices on the open face. A similar argument was previously applied⁷ to the $(CH_3)_4C_4B_8H_9^-$ ion (Fig. 8B).

The fact that only one isomer of II is formed in the degradation implies a single stereospecific process. Similarly,

-10-

electrophilic bromination of II produces only one detectable isomer (though it is possible others may have formed in low yield), with attack occurring at B(11). This site is perhaps surprising, since in the $C_2B_{10}H_{12}$ isomers electrophilic halogenation takes place preferentially at the boron atoms most distant from carbon.⁸ Thus, in II one might have expected attack at B(5) or B(10); the fact that it occurs at B(11) indicates that the charge distribution in II is not controlled by simple inductive effects alone.

Finally, the formation of a new isomer of $(CH_3)_4C_4B_7H_9$ (V) on deprotonation of II followed by treatment with HCl implies that V is thermodynamically favored over II (if it is assumed that facile kinetic pathways from the anion IV to both II and V are available). If the proposed structure for V is correct, the preference for V is understandable from the viewpoint that it is less strained than II and closer to icosahedral-fragment geometry. Further development of these ideas will depend on continuing chemical and structural investigations in this area.

-11-

Experimental Section

<u>Materials</u>. Tetra-C-methyltetracarbadodecacarborane(12), $[(CH_3)_4C_4E_8H_8, (1)]$, was prepared from the complex $[(CH_3)_2C_2L_4H_4]_2Feh_2$ as described elsewhere.² Tetrahydrofuran (THF) was aried over LiAlH₄ prior to use. NaH (Alfa, 50% in mineral oil) was washed with pentane prior to use. Thin layer chromatography (TLC) was conducted on precoated plates of silica gel F-254 (Brinkmann Instruments, Inc.) All solvents were reagent grade.

Instrumentation. ¹¹B (32 MHz) and ¹H (100 MHz) pulse Fourier transform NMR spectra were recorded on a JEOL PS-100P spectrometer interfaced to a JEOL-Texas Instruments EC-100 computer system. Broadband heternuclear decoupling was employed. 90-Mz ¹H NMk spectra and some single-frequency homonuclear decoupling experiments were performed on a Varian EM-390 NMR spectrometer. Unit-resolution mass spectra (EI) were obtained on a Hitachi Perkin-Elmer RNU-6E mass spectrometer. Highresolution (CI) mass measurements were conducted on an AEI MS-962 double-focusing instrument equipped with an SkI chemical ionization source. Infrared spectra were recorded on a Beckman IK-8 instrument.

Synthesis of $(CH_3)_4 C_4 B_7 H_9$ (II) from $(CH_3)_4 C_4 B_8 H_8$ (I). In a typical reaction, 219 mg of I (1.07 mmol) was dissolved slowly in 25 ml 95% ethanol and

-12-

stirred in air. The progress of the reaction was monitored by spot TLC analysis in hexane (compound I $R_f = 0.45$) until no I was observed (about 12 hours.) The ethanol was removed by rotovap, with some warming of the flask. The residue was extracted with hexane, the solution filtered through 1 cm silica gel and the eluent was rotary-evaporated nearly to dryness. kesidual solvent was removed by blowing dry N₂ over the white solid to give 98.8 mg (CH₃)₄C₄B₇H₉ (II, 0.51 mmol, 48% yield, R_f = 0.55 in hexane). The yield of II varied from 40-60%. The remaining residue in the flask was primarily E(OH)₃ (45 mg, 68% yield), identified by ir and melting point. Similar reactions using lower and higher concentrations of H₂O in ethanol gave lower yields.

The following experiments represent attempts at increasing the yield of the reaction and determining the role of H_2O and solvent in the reaction.

 $(CH_3)_4C_4b_8h_8$ in absolute ethanol: 89 mg of I was dissolved in 15 ml absolute ethanol (dried over molecular sieves) and stirred in vacuo for 8 hours. Spot TLC analysis showed only I. Subsequent work-up gave 87 mg of I (98% recovery).

* * *

 $(CH_3)_4 C_4 B_8 H_8$ in methanol: 10 mg of I was dissolved in about 10 ml methanol (dried over molecular sieves) and stirred in vacuo for 4 hours. Spot TLC analysis showed only I. The reaction vessel was then opened to the air and stirred for 12 hours, allowing the methanol to absorb water from the air and slowly evaporate. The residue in the

-13-

flask was purified by TLC to give 4 mg of II (40% yield).

 $(CH_3)_4C_4B_8H_8$ in triethylamine: 10 mg of I was dissolved in 10 ml $(C_2H_5)_3N$ (dried over BaO and P_2O_5) and stirred in vacuo for 4 hours. Spot TLC analysis indicated only a trace of I. The $(C_2H_5)_3N$ was removed by rotovap and the residue was purified by TLC to give about 1 mg of I.

 $(CH_3)_4C_4B_8H_8$ in 5% H_2O in THF: 10 mg of I was dissolved in about 10 ml of 5% H_2O in THF and stirred in the air. Spot TLC analysis indicated only I after 15 minutes. After 6 hours, spot TLC showed neither I nor II.

 $(CH_3)_4C_4B_7H_9$ in 95% ethanol: 30.1 mg of I was dissolved slowly in 15 ml 95% ethanol and stirred for 8 hours in air. The ethanol was removed at 30-35 °C using a rotary evaporator and the white residue was purified by TLC to give 22.8 mg II (75% recovery).

<u>Direct Synthesis of II from $(CH_3)_2C_2B_4H_5$ Ion.</u>¹² A THF solution of Na⁺[(CH₃)₂C₂B₄H₅]⁻, prepared from 5.12 mmol of $(CH_3)_2C_2B_4H_6$ and 5.85 mmol of NaH, was filtered under vacuum onto anhydrous FeCl₂ at -196 °C. <u>This mixture was allowed to come to room temperature</u>, in contrast to previous preparations² of [(CH₃)₂C₂B₄H₄]FeH₂ in which the temperature was held below -30 °C. After 1hr the THF was removed under vacuum and CH₂Cl₂ was added. The solution was stirred in air for 1 hr and the products were separated and purified via column and thin layer chromatography. In addition to previously reported compounds,² II was isolated in low yield. Mass measurement: calcd for ${}^{12}C_8{}^{11}B_7{}^{1}H_{20}{}^+$ (M + 1), 193.2217, found 193.2223. The ir and FT NMR spectra were identical with those in Tables I-III.

-14-

Bromination of $(CH_3)_4C_4B_7H_9$. Under a nitrogen atmosphere, a 25 ml three-neck round bottom flask was charged with 41.6 mg AlCl₃ (0.313 mmol, 1.3 equivalents, freshly sublimed in vacuo) and a magnetic stirbar. One port was affixed with ahN_2 inlet to maintain an overpressure of N_2 and a second port was affixed with a tip-in sidearm containing 46.0 mg of II (0.239 mmol, 1.0 equivalents) dissolved in 5 ml of CS_2 (dried over $CaCl_2$ and over P_2O_5). A 10.0 ml aliquot (0.29 mmol Br_2) of a solution of 116.5 mg br_2 in 25.0 ml CS_2 was put in a pressure-equalizing dropping funnel under a N_2 flow at the third port. The Br_2 solution was

-14a-

added to the AlCl₃, with no apparent reaction, and the carborane was tipped into the reaction vessel. After 1 hour of stirring at room temperature with no apparent reaction the funnel was replaced by a reflux condenser and the solution was slowly refluxed for 5 hours, under N₂, giving a brownish-red solution and some light and dark precipitates. The reactor was then exposed to the air, the CS₂ removed using a rotary evaporator, and the residue was dissolved in CH₂Cl₂ and filtered through 1 cm silica gel and a glass frit. The CH₂Cl₂ solution was rotovapped to give a cream-colored residue. TLC in 30% CH₂Cl₂/hexane (R_f = 0.6) gave 32.5 ng of 11-Br-(CH₃)₄C₄B₇H₈ (III, 0.119 mmol, 50% yield).

Deprotonation of II. Synthesis of $(CH_3)_4C_4E_7H_9$ (V). A of II (0.19 mmol), 23 mg NaH (1.0 mmol), and 37-mg sample a stirbar were placed in a tip-in sidearm flask which was evacuated and 15 ml dry ThF was added by distillation in vacuo. The flask was slowly warmed to 23 °C, vigorous bubbling (H₂ evolution) occuring below 0 °C. After stirring for 30 min (h $_{\rm o}$ evolution ceased) the solution was frozen, but H_2 pumped away (not measured, see below) and after warming to 23 °C the solution was filtered in vacuo into a lower flask containing a stirbar. (The sidearm flask containing residual NaH was removed under an N_{2} atmosphere and the port was plugged with a stopper.) The solution was frozen and 2.8 mmol hCl was transferred as a gas onto the frozen solution. The solution was then warmed to 23°C and stirred for 3 hr. The system was covered with N_2 , exposed to the air, and the THF

-15-

removed by rotary evaporator. The white residue was purified by TLC in hexanes to give $(CH_3)_4C_4E_7H_9$ (V, 10 mg, 27% yield, $h_f = 0.45$) and a trace of an unidentified white compound at $R_f = 0.60$. The mass spectrum of V is closely similar to that of II, except that significant intensity is observed in the parent peaks at m/e 193 and 194, indicating that loss of 2H from V is less facile than from II (vide supra).

In a similar experiment, 60 mg II (0.31 mmol) was deprotonated with 37 mg NaH (1.5 mmol). H₂ evolved was measured to be 0.33 mmol (106% of theory). The salt was filtered into an empty flask and the THF was removed in vacuo. In a dry box under an atmosphere of N₂ the salt was dissolved in CL_3CN and filtered into an NMR tube (capped and wrapped with parafilm) for NMR analysis. Subsequent exposure to air indicated slow decomposition of the salt to an insoluble (in CL_3CN) white solid. Before decomposition was complete, the CL_3CN was removed by a stream of N₂ and the white residue was dissolved in 5 ml 95% ethanol and 1 ml 0.3M aqueous hCl. After stirring in air for 1 hr, the EtOH/H₂O was removed by rotary evaporator. TLC analysis showed only a trace of unidentified material at $R_f = 0.35$ in hexane.

X-ray Structure Determination on

1

<u>11-Br-(Ch₃)₄C₄B₇H₈, (III). Single crystals of III were grown by slow evaporation from CDCl₃ at 10^oC. One crystal was mounted on a glass fiber in an arbitrary orientation and examined by preliminary precession photographs which indicated acceptable crystal quality. Crystal data follow: $BrC_8b_7h_{20}$; molecular weight 271.84; space group</u>

-16-

P1, Z = 2; a = 7.764(3), b = 8.352(5), c = 12.317(6) Å, d = 94.53(5), $\beta = 95.41(5)$, $\delta = 120.51(5)$, V = 678 Å³, (MoK*) = 31.8 cm⁻¹, $\rho(calcd) = 1.34$ g cm⁻³. Crystal dimensions (mm from centroid): - (100) 0.35, (010) 0.23, (010) 0.23, (110) 0.24, (110) 0.24, (001) 0.055, (001) 0.055.

For this crystal the Enraf-Nonius program SEARCH was used to obtain 25 accurately centered reflections which were then used in the program INDEX to obtain an orientation matrix for data collection and to provide appproximate cell dimensions. hefined cell dimensions and their estimated standard deviations were obtained from 28 accurately centered reflections. The mosaicity of the crystal was examined by the ω scan technique and judged to be satisfactory. The space group was chosen based on systematic absences and chemical and spectroscopic information. Successful solution and refinement of the structure confirmed the choice of space group.

<u>Collection and Reduction of the Data.</u> Diffraction data were collected at 295°K on an Enraf-Nonius four-circle CAD-4 diffractometer controlled by a PDP8/M computer using MoK« radiation from a highly oriented graphite crystal monochrometer. The θ -2 θ scan technique was used to record the intensities of all reflections for which $1.4^{\circ} < 2\theta < 48^{\circ}$. Scan widths were calculated from the formula SW = (A+Btan θ), where A is estimated from the mosaicity of the crystal and B compensates for the increase in the width of the peak due to $k_{\alpha 1}-k_{\alpha 2}$ splitting. The values of A and B were 0.60 and

-17-

0.15, respectively. The calculated scan angle was extended at each side by 25% for background determination (BG1 and BG2). The net count (NC) was then calculated as NC = TOT-2(BG1+BG2), where TOT is the estimated peak-intensity.

The intensities of four standard reflections, at 100 reflection intervals, showed no greater fluctuations during the data collection than those expected from Poisson statistics. The raw intensity data were corrected for Lorentz-polarization effects and then for absorption, (minimum transmission factor 0.46, maximum 0.78), resulting in 2038 reflections of which 1404 had $F_0^2 > 3\sigma(F_0^2)$, where (F_0^2) was estimated from counting statistics ($\varrho = 0.03$).²⁶ Only these latter data were used in the final refinement of the structural parameters.

Solution and Refinement of the Structure. Full-matrix least squares refinement was based on F, and the function minimized was w($|F_o| - |F_c|$)². The weights w were taken as $[2F_o/\sigma(F_o^2)]^2$, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes. The atomic scattering factors for nonhydrogens atoms were taken from Cromer and Waber²⁷ and those for hydrogen from Stewart, et al.²⁸ The effects of anomolous dispersion for all non-hydrogen atoms were included in F using the values of Cromer and Ibers²⁹ for $\Delta f'$ and $\Delta f''$.

The position of the Er atom was determined from a three-dimensional Patterson function calculated from all the

-18-

intensity data. The intensity data were phased sufficiently well by these positional coordinates that difference Fourier syntheses revealed most of the non-hydrogen atoms, the remaining non-hydrogen atoms being inserted in calculated positions. Most of the cage hydrogen atoms were found from a Fourier difference map after introducing anisotropic thermal parameters for all non-hydrogen atoms. At least one hydrogen on each methyl group was found; the remaining hydrogen positions were calculated and inserted. The hydrogen atoms were included in the refinement for three cycles and thereafter held fixed. A final Fourier difference map was featureless. The error in an observation of unit weight was 1.96, and the largest parameter shift in the last cycle of refinement was 0.25 times the estimated standard deviation.

The model converged with R = 0.057 and R_w = 0.063, where $\kappa = \sum ||F_o| - |F_c||/\sum |F_o|$ and $k_w = (\sum w(|F_o| - |F_c|)^2/\sum w |F_o|^2)^{1/2}$. Tables of observed and calculated structure factors are available (see paragraph at end of paper on supplementary material.) The computing system and programs are described elsewhere.³⁰

<u>Acknowledgments</u>. This work was supported by the Office of Naval Research and the National Science Foundation, Grant CHE 79-09948. We are grateful to Mr. William Hutton for assistance in recording the NMR spectra and to Professor Ekk Sinn for assistance in the X-ray structure determination.

<u>Supplementary Material Available</u>: Listing of observed and calculated structure factors (6 pages). Ordering information is given on any current masthead page.

-19-

References and Notes

- Based in part on a Ph.D. dissertation (University of Virginia, 1980) by D.C.F.
- (2) Maxwell, W.M.; Miller, V.R.; Grimes, R.N. <u>Inorg. Chem.</u> 1976, <u>15</u>, 1343.
- Grimes, R.N.; Sinn, E.; Pipal, J.R. Inorg. Chem. 1980, 19, 2087, and references therein.
- (4) This term is used in a relative descriptive sense, to indicate the presence of excess skeletal electrons beyond the 2n + 2normally required to fill the n + 1 bonding molecular orbitals in a closo n-vertex polyhedron.⁵
- (5) (a) Wade, K. <u>Adv. Inorg. Chem. Radiochem.</u> <u>1976</u>, <u>18</u>, 1; (b) Mingos,
 D.M.P. <u>Nature (London), Phys. Sci.</u> <u>1972</u>, <u>236</u>, 99; (c) Rudolph,
 R.W. <u>Acc. Chem. Res.</u> <u>1976</u>, <u>9</u>, 446.
- (6) Grimes, R.N. Acc. Chem. Res. 1978, 11, 420.
- (7) Grimes, R.N.; Pipal, J.R.; Sinn, E. J. Am. Chem. Soc. <u>1979</u>, <u>101</u>, 4172.
- (8) Beall, H. in "Boron Hydride Chemistry"; Muetterties, E.L.,Ed.; Academic Press: New York, 1975.
- (9) Freyberg, D.P.; Weiss, R.; Sinn, E.; Grimes, R.N. <u>Inorg. Chem</u>. 1977, <u>16</u>, 1847.
- (10) Grimes, R.N.; Maxwell, W.M.; Maynard, R.B.; Sinn, E. Inorg. Chem. 1980, 19, 0000.
- (11) (a) Wiesboeck, R.A.; Hawthorne, M.F. J. Am. Chem. Soc. 1964,
 <u>86</u>, 1642; (b) Zakharkin, L.I.; Kalinin, V.N. <u>Dokl. Akad. Nauk</u>
 <u>SSSR</u> 1965, <u>163</u>, 110. (c) Tebbe, F.N.; Garrett, P.M.; Hawthorne,
 M.F. J. Am. Chem. Soc. 1968, <u>90</u>, 869.

-20-

(12) Weiss, R.; Grimes, R.N., unpublished results.

- (13) Pipal, J.R.; Grimes, R.N. Inorg. Chem. 1978, 17, 10.
- (14) Closo metallacarboranes of 13 vertices have been structurally characterized, 15a and the same geometry (corresponding to that shown in Fig. 7) has been calculated $^{15b, c}$ for $B_{13}H_{13}^{2-}$.
- (15)(a)Churchill, M.R.; DeBoer, B.G. Inorg. Chem. 1974, 13, 1411;
 - (b) Brown, L.D.; Lipscomb, W.N. <u>Inorg. Chem</u>. <u>1977</u>, <u>16</u>, 2989;
 - (C) Bicerano, J.; Marynick, D.S.; Lipscomb, W.N. ibid. 1978, 17, 3443;
- (16) Colquhoun, H.M.; Greenhough, T.J.; Wallbridge, M.G.H. J. Chem. Soc., Chem. Commun., 1980, 192.
- (17) Williams, R.E. Inorg. Chem. 1971, 10, 210.
- (18) Miller, V.R.; Grimes, R.N. Inorg. Chem. 1977, 16, 15.
- (19)(a)Dunks, G.B.; Wiersema, R.J.; Hawthorne, M.F. <u>J. Am. Chem. Soc</u>. 1973, <u>95</u>, 3174; (b) Tolpin, E.I.; Lipscomb, W.N. <u>Inorg. Chem.</u> 1973, <u>12</u>, 2257.
- (20) Maxwell, W.M.; Grimes, R.N. Inorg. Chem. 1979, 18, 2174.
- (21) Voet, D.; Lipscomb, W.N. Inorg. Chem. 1967, 6, 113.
- (22) Williams, R.E. Adv. Inorg. Chem. Radiochem. 1976, 18, 67.
- (23) Maxwell, W.M.; Wong, K-S.; Grimes, R.N. <u>Inorg. Chem</u>. <u>1977</u>, <u>16</u>, 3094.
- (24) NMR data²³ show that the diethoxy species is symmetrically substituted, but there are four pairs of equivalent boron vertices on $(CH_3)_4C_4B_8H_8$ at which such substitution could occur. However, the fact that the ethoxy group on an analogous cobaltacarborane, $(n^5-C_5H_5)Co(CH_3)_4C_4B_7H_7$ (isomer I), is located at $B(12)^{25}$ is taken as support for 1,12 disubstitution on $(CH_3)_4C_4B_8H_8$ itself.

-21-

- (25) Pipal, J.R.; Grimes, R.N. J. Am. Chem. Soc. 1978, 100, 3083.
- (26) Corfield, P.W.R.; Doedens, R.J.; Ibers, J.A., <u>Inorg. Chem.</u>, <u>1967</u>, <u>6</u>, 197.
- (27) Cromer, D.T.; Waber, J.T., "International Tables for X-ray Crystallography," Vol. IV, the Kynoch Press, Birmingham, England, 1974.
- (28) Stewart, R.F.; Davidson, E.R.; Simpson, W.T.; <u>J. Chem. Phys.</u>, 1965, <u>42</u>, 3175.
- (29) Cromer, D.T.; Ibers, J.A., ref. 27.

(30) Freyberg, D.P.; Mockler, G.M.; Sinn, E., <u>J. Chem. Soc.</u>, <u>Dalton Trans. 1976</u>, 447.

Tabla	т	20 1	Miller	$11_{\rm D}$	ст	N:M D	Lata 6	£
lable	1.	32.1	MHZ	<u></u> В	F 1	NMR	Lata.	

Compound	Chemical	Shift, ppm ^b	Rel area
<u></u>	(J,	Hz.)	—— <u>—</u> —————————————————————————————————
II, (CH ₃) ₄ C ₄ B ₇ H ₉	b.7	(128)	1
	2.9	(181)	2
	-3.3	(156)	1
	-7.3	(150)	1
	-11.1	(180)	1
	-41.7	(156)	1
III, (CH ₃), C ₁ B ₇ H ₈ Br	8.4	(156)	1
	0.5	(166)	2
	-2.2	(150)	1
	-7.3		1
	-8.6	(182)	1
	-41.7	(156)	× 1
ιν ^с , Na ⁺ (CH ₃) _L C _L B ₇ H ₈ ⁻	7.6	(116)	1
	2.7	(132)	1
	-4.3	(147)	2
	-17.1	(122)	1
	-26.8	(146)	2

(Continued)

ۍ ا

7

-23-

v, (CH ₃) _L C _L B ₇ H ₉ , Second Isomer	4.4	(147)	3	
	-7.8	d	1	
	-10.5	d	1	
	-12.0	d	1	
	-40.3	(156)	1	

^a Spectra obtained in $CDCl_3$, except where otherwise noted. ^b $BF_3 \cdot O(C_2H_5)_2 = 0$, positive shifts downfield. ^c Spectrum obtained in CD_3CN . ^d J_{BH} coupling obscured

by peak overlap.

-24-

	Tab!	le II. 100	MHZ H NMR D)ata	
Compound	Chemical	shifts, 8,	in ppm ^a		
(solvent)	CH ₃ (area 3)	CH ₃ (7) ^b (area 3)	H(7) (area 1)	BHB (area l)	BH (area)
II(CDC1 ₃)	2.02 1.95 1.30	1.08	2.04	-1.65 [°]	3.7(1) 2.9(1) 2.5(1) 2.4(2) 1.3(1) 0.4(1)
II(C ₆ D ₆)	1.81 1.39 0.89	0.87	1.8	-1.57 ^C	3.8(1) 3.5(1) 3.0(3) 2.5(1) 1.6(1)
III(CDCl ₃)	2.01 1.95 1.33	1,09	2.3	-1.3 ^C	3.7(1) 3.6(1) 3.1(1) 2.9(1) 2.6(1) 1.6(1) 0.4(1)
IV (CD ₃ CN)	1.98 1.55 1.05 0.99			-1.53 ^d	e
V(CDC1 ₃)	1.97 1.90 1.15	1.22	2.45	f	e
v(c ₆ d ₆)	1.73 1.29 0.71	0.97	2,2	-1,65 [°]	e

^aShifts referenced to $(CH_{3})_{4}$ Si. ^bDoublet due to coupling to CH(7), $J_{HH} \cong 6$ Hz. ^CDoublet of doublets, apparent 1:2:1 triplet, $J_{HH} =$ 10 Hz. ^dApparent 1:3:3:1 quartet(?), $J_{HH} =$ 10 Hz. ^eBH protons not readily distinguished. ^fSpectrum obtained without ¹¹Bdecoupling; bridge hydrogens not observed.

-25-

Table III. Ir Lata, (cm⁻¹, KBr pellet.)

-26-

 $(CH_3)_4 C_4 B_7 H_9$, II

2960s, 2930s, 2880s, 2600sh, 2560s, 2480s, 1950wbr, 1620wbr, 1565wbr, 1440s, 1395m, 1385s, 1365s, 1340w, 1250m, 1220w, 1150m, 1100m, 1080m, 1025s, 1005m, 980s, 910s, 800s, 780s, 720, 700m, 680w.

$11-\mathrm{Br}-(\mathrm{CH}_3)_4\mathrm{C}_4\mathrm{B}_7\mathrm{H}_8$, III

2960s, 2920s, 2860s, 2570sbr, 1950wbr, 1725wbr, 1560wbr, 1440s, 1395m, 1385s, 1365s, 1340m, 1260s, 1230m, 1195m, 1155m, 1070sbr, 1020sbr, 1000sh, 990m, 980m, 935m, 910m, 880sh, 855s, 795sbr, 725m, 700w, 695w, 660w, 625m.

 $(CH_3)_4C_4B_7H_9$; Second Isomer, V

:

2960s, 2930s, 2870m, 2830m, 2590sbr, 2480s, 1975wbr, 1530wbr, 1550wbr, 1460sh, 1450s, 1380s, 1320w, 1250w, 1230w, 1160w, 1120w, 1070s, 1040w, 1005s, 985s, 910s, 810s, 780w, 760w, 720s, 700m, 665w, 640w.

s = strong, m = medium, w = weak, br = broad, sh = shoulder.

POSITIONAL AND THERMAL PAPAMETERS AND THEIP ESTIMATED STANDARD DEVIATIONS FOR 11-Br-(3H3)₁G₁B7Hg (111)^a

Ì

;;;

: : :

「「「「「「「「「「「」」」」」

TABLE IV.

•

АТОМ	14	·-	ы	111	U22	<u> 133</u>	U12	U13	U23
4 3	0.365141)	0,23556(8)	(2)68260.0	ũ. 1673(4)	8,8556(2)	0.088575)	0,8496(2)	-0.0162(4)	-8,6123(3)
(2)	10 1025t. 6	0.7050177	0.3153(5)	0.050(3)	0.048(2)	0.058(4)	0.624(2)	0.012(3)	0 .0 07 (21
1273	0.3115 Br	0.5520.67	್ಷ ಕಾಗದ ಕ	0, B5 tr 3)	0,643(2)	0.052(3)	0.026127	0.005(3)	0.012(2)
C 1 7 :	- C. 《石油分词》中	6.6729(7)	0.1214(5)	0.0.013)	0.051-27	6.343(4)	0.043(2)	0,007(3)	0.00712.
(co - co	2.3000 G	01, 1980, G	0.2158(5)	0,052(3)	0,045(2)	0.053(4)	6.028(2)	0.017(3)	0.015:2)
	4.6571(2)	0,8768795	0.3601(6)	0.056(3)	0.075-33	0.087(5)	0.023(2)	0.008/3/	8,88443,
Č (1) Š	0.41324 GU	0,4444(8)	0.3300(6)	$\hat{\theta}_{*} (\hat{\theta} \hat{S} \hat{S} \hat{S} \hat{S})$	0.070(3)	0,072,4%	0.048+2+	-0,002(3)	0.010/31
	ŭ. 4847€18)	0.6314(8)	0.0787(6)	0.044(3)	0.000/3)	0,063+4+	0,060(2)	0.017(3)	0.011437
C+18)	0, 19,19,10)	1.0335-8)	e. 1910(6)	0.079(5)	0.055(3)	0.105/5/	0.943-03	0.035(4)	0.032(3)
B(1)	0.263(1)	0.6585(9)	0.4055(7)	0.050.37	0.051-37	0.05(5)	0.827(2)	0.009(4)	0,005 (3)
ст. Ш	0.069410	0.4701-84	0.3084(7)	0.659(3)	0,045(3)	0.071(5)	0.023(2)	0.006(4)	0.014(3)
E(S)	0.04540	0.6634(9)	0.3519(7)	0.065(4)	0.061(3)	0.063(5)	6.035(2)	0.008(4)	0,988(3)
يد مر	417-05-S	0.8577(3)	0.3481(6)	0.067(4)	0.052(3)	0.059(5)	0.030127	0.011(3)	0.005(3)
ۍ ش	2011年8月14日	0.7929(8)	0.2367(7)	0.067(3)	0,050(3)	0.073450	6.037(2)	6.012(3)	0.012(3)
B+10+	-0.555.00	n.5380-9,	0.2176(7)	0.054430	0.059(3)	0.002151	0.028 (2)	0.011(4)	0.018-3)
E(11)	0,153/11	<u>0.4889(8)</u>	<u>0.178716)</u>	0.00513	<u>0.045(3)</u>	0.054040	0.455121	0.002(3)	0.003/3/
ATOM D	X	Y	2	B, A [∠]	ATOM ^b	X	Y	2	B, A ²
H(21)	0.111.001	1.015-75	a. 385 (5)	6.11)	H(31)	0.61617	-Eta-1	51 0.17262	0 4.00
H(22)	A.571-70	0.834(7)	U.423(5)	5.(1)	H(82)	0.554(8	1.1471	7) 0.257(5	5 5. (1)
H(23)	91991 - 9-	0.868+7)	0.305(5)	6. (2)	H(83)	0.42818) 1.062 <i>C</i>	7) 0.138(5	0 6.00
H(31)	8,212,81	0.329.77	0.334(5,	6.(1)	11:41	-0.614(7	0.3304	5) 0.336(4	D 4.(])
H(32)	6.5A3(8)	0.581477	0,405(5)	7.(2)	H(5)	-0.03707	0.688	7) 0.42412	0 4.01)
H(33)	0.463-91	0.433(3)	0.266(5)	7.(2)	H(ē)	0.377(7	0.3350	 0.404(4 	0 4.00
H(71)	0.542-7-	0.647(7)	0.126(5)	5.(1)	(Z)H	0.20407	0.6780	5) 0.060(3	0 4.01
H(72)	a.552.60	0.811-85	A.051(5)	6.(2)	H(9)	0.05177	0.8350	5) 0.220(4	1.01
H(73)	J. 405.61	Ū.590 E.	0.019(4)	3.(1)	H(910)	ŋ.0n1~7	0.6570	0.154(2	1. (1),
					Hi Iŭn	-0.195+S	0.481.0	ຳ ບໍ.193ເ5) 6.(2)

. •_-

-27-

^a The form of the anisotropic thermal parameter is $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}h^2c^{*2} + 2U_{13}hka^*b^* + 2U_{13}hla^*c^* + 2U_{33}hla^*c^* + 2U_{33}hla^* + 2U_{33$

Table V.	Bond Lengths (A) in ll-Br-(CH ₃) $_{L}C_{L}B_{7}H_{8}$	(111)
B(1)-C(2)	1.692(6)	B(6)-B(11)	1.770(7)
B(1)-C(3)	1.735(6)	C(7)-C(8)	1.546(5)
B(1)-B(4)	1.773(6)	C(7)-C(11)	1.616(6)
B(1)-B(5)	1.804(7)	C(7)-C(M7)	1.517(5)
B(1)-B(6)	1.771(6)	C(7)-H(7)	0.952(3)
C(2)-C(3)	1.516(4)	C(8)-B(9)	1.846(6)
C(2)-B(6)	1.660(6)	C(8)-C(M8)	1.531(5)
C(2)-B(11)	1.698(5)	B(9)-B(10)	1.811(6)
C(2)-C(M2)	1.519(5)	B(9)-H(910)	1.301(4)
C(3)-B(4)	1.685(6)	B(10)-B(11)	1.937(6)
C(3)-C(8)	1.611(5)	B(10)-H(910)	1.236(6)
C(3)-C(M3)	1.512(5)	B(11)-Br	1.994(4)
B(4)-B(5)	1.771(7)	<pre><b-h< pre=""><pre>terminal</pre></b-h<></pre>	1.097
B(4)-C(8)	1.752(6)	C-H _{methyl} > Nonbonded Distance	0.957 es
B(4)-B(9)	1.758(7)	C(7)-C(2)	2.52
B(5)-B(6)	1.806(6)	C(7)-C(3)	2.43
B(5)-B(9)	1.781(6)	C(7)-B(9)	2.59
B(5)-B(10)	1.768(7)	C(7)-B(10)	2.70
B(o)-B(10)	1.712(6)	H(7)-H(910)	1.99

Ç ji

7

-28 -

_1+**

Table VI.	Bond	Angles	(deg) in	11-Br-(CH ₃) ₄ C ₄ B ₇ H ₈	(III)
C(2)-B(1)-C(3)	52.5(2	2)	B(1)-B(6)-B(11)	108.3(3)
C(3)-B(1)-B(4)	57.4(2	2)	C(2)-B(6)-B(5)	107.4(3)
B(4)-B(1)-B(5)	59.3(2	2)	C(2)-B(6)-B(10)	115.6(3)
B(5)-B(1)-B(6)	60.7(3	3)	C(2)-B(6)-B(11)	59.2(2)
B(6)-B(1)-B(2)	57.2(2	2)	B(5)-B(6)-B(10)	60.3(3)
B(1)-C(2)-B(3)	65.2(3	3)	B(5)-B(6)-B(11)	110.3(3)
B(1)-C(2)-B(6)	63.8(3	3)	B(10)-B(6)-B(11)	67.6(3)
B(1)-C(2)-B(11)	115.7(3	3)	C(8)-C(7)-B(11)	102.7(3)
B(1)-C(2)-C(M2)	116.8(3)	C(8)-C(7)-C(M7)	111.3(3)
C(3)-C(2)-B(6)	111.9(3	3)	C(8)-C(7)-H(7)	111.9(3)
C(3)-C(2)-B(11)	104.8(3	3)	B(11)-C(7)-C(M7)	113.5(3)
C(3)-C(2)-C(M2)	120.2(3)	B(11)-C(7)-H(7)	111.2(3)
B(6)-C(2)-B(11)	63.6(3	3)	C(M7)-C(7)-H(7)	106.3(3)
B(6)-C(2)-C(M2)	121.6(3)	C(3)-B(8)-C(4)	60.0(2)
B(11)-C(2)-C	(M2)	121.0(3)	C(3)-C(8)-C(7)	100.8(3)
B(1)-C(3)-C(2)	62.3(2	2)	C(3)-C(8)-B(9)	108.3(3)
B(1)-C(3)-B(4)	62.4(2	2)	C(3)-C(8)-C(M8)	116.9(3)
B(1)-C(3)-B(8)	114.5(3)	B(4)-B(8)-C(7)	136.1(3)
B(1)-C(3)-C(M3)	118.6(3)	B(4)-B(8)-B(9)	58.4(2)
B(2)-C(3)-C(4)	111.6(3)	B(4)-C(8)-C(M8)	107.8(3)
C(2)-C(3)-B(8)	108.7(3)	C(7)-B(8)-B(9)	99.0(3)
C(2)-C(3)-C(M3)	121.6(3)	C(7)-C(8)-C(M8)	116.0(2)
B(4)-C(3)-C(8)	64.2(2	2)	B(9)-C(8)-C(M8)	113.7(2)
B(4)-C(3)-C(M3)	118.4(3)	B(4)-B(9)-B(5)	60.0(3)
C(8)-C(3)-C(M3)	118.7(3)	B(4)-B(9)-C(8)	58.1(2)
B(1)-B(4)-C(3)	60.1(2	2)	B(4)-B(9)-B(10)	105.9(3)

(continued)

. 、_

-29-

Ē

-

ł

?

B(1)-B(4)-B(5)	61.2(3)	B(5)-B(9)-C(8)	103.8(3)
B(1)-B(4)-C(8)	106.0(3)	B(5)-B(9)-B(10)	59.0(3)
B(1)-B(4)-B(9)	111.4(3)	C(8)-B(9)-B(10)	102.2(3)
C(3)-B(4)-B(5)	107.6(3)	B(10)-B(9)-H(910)	43.0(2)
C(3)-B(4)-C(8)	55.9(2)	B(5)-B(10)-B(6)	62.5(2)
C(3)-B(4)-B(9)	109.1(3)	B(5)-B(10)-B(9)	59.7(3)
B(5)-B(4)-C(8)	108.3(3)	B(5)-B(10)-B(11)	104.7(3)
B(5)-B(4)-B(9)	60.6(3)	B(6)-B(10)-B(9)	105.6(3)
C(8)-B(4)-B(9)	63.5(2)	B(6)-B(10)-B(11)	57.6(3)
B(1)-B(5)-B(4)	59.5(3)	B(9)-B(10)-B(11)	97.8(3)
B(1)-B(5)-B(ó)	58.7(2)	B(9)-B(10)-H(910)	45.9(2)
B(1)-B(5)-B(9)	109.0(3)	C(2)-B(11)-B(6)	57.1(2)
B(1)-B(5)-B(10)	108.9(3)	C(2)-B(11)-C(7)	99.1(3)
B(4)-B(5)-B(6)	101.0(3)	C(2)-C(11)-B(10)	103.2(3)
B(4)-B(5)-B(9)	59.3(3)	C(2)-B(11)-Br	116.6(2)
B(4)-B(5)-B(10)	107.2(3)	B(6)-B(11)-C(7)	130.0(3)
B(6)-B(5)-B(9)	103.3(3)	B(6)-B(11)-B(10)	54.8(2)
B(6)-B(5)-B(10)	57.2(2)	B(6)-B(11)-Br	112.6(3)
B(9)-B(5)-B(10)	61.4(3)	C(7)-B(11)-B(10)	98.7(3)
B(1)-B(6)-C(2)	59.0(2)	C(7)-B(1)-Br	117.4(3)
B(1)-B(6)-B(5)	60.5(3)	B(10)-B(11)-Br	118.6(3)
B(1)-B(6)-B(10)	113.1(3)	B(9)-H(910)-B(10)	91.1(3)

۱-

-31-

Table V	II. Sel	lected Mear	Planes	in	11-Br-((CH ₃	$A_{4}C_{4}B_{7}H_{8}$
---------	---------	-------------	--------	----	---------	------------------	------------------------

atom	o dev,A	atom	dev, A
	Plane 1: $C(2)$	(, C(3), B(4), B(5), B(6)))
C(2) C(3) B(4) B(5)	-0.0433 0.0154 0.0168 -0.0376	B(6) C(M2) C(M3) B(1)	0.0487 -0.7625 -0.6252 -1.0113
	Plane 2:	B(9), B(10), H(910)	
	0.9973x - 0.0	369y - 0.0641z = -3.2367	
B(9) B(10)	0.0000 0.0000	H(910) B(5)	0.0000 -0.0774
	Plane 3: C -0.1951x + 0.1	(8), B(9), B(10), B(11) 1642y - 0.9669z =-1.3785	
C(8) B(9) B(10) B(11)	-0.0209 0.0283 -0.0270 0.0196	C(7) H(910) C(M8) Br	0.8680 0.8776 0.4519 0.6518
	Plane 4: 0	C(2), C(3), B(8), B(11)	
	0.8563x + 0.0	770y - 0.5106z = -1.8069	
C(2) C(3) C(8) B(11)	-0.0204 0.0213 -0.0132 0.0123	C(M2) C(M3) C(M8) C(7) Br	0.7688 0.8424 0.5182 0.7342 0.8215
	Plane 5: C	(2), C(3), B(9), B(10)	
	0.3509x + 0.2	1063y - 0.9304z = -3.117	3
C(2) C(3) B(9) B(10)	0.0026 -0.0026 0.0022 -0.0022	C (M2) C (M3) H (910)	0.0001 -0.0044 0.8110

۰.

atom	o dev,A	atom	o dev,A
	Plane 6:	C(7), C(8), B(11)	
	-0.9560x + 0.	0611y - 0.2868z = 0.6159	
C(7)	0.0000	Br	-0.2629
C(8)	0.0000	B(4)	0.2066
B(11)	0.0000	B(6)	0.2177
C (M8)	-0.1187	С (М7)	-1.2010
	Plane 7: B(1), B(4), B(9), B(10), B(6)	
	0.7808x + 0.	0812y = 0.6195z = -3.5933	
B(1)	-0.0804	B(6)	0.0897
B(4)	0.0446	H(910)	0.4841
B(9)	0.0061	B(5)	-0.9712
B(10)	-0.0600		

Dihedral Angles Between Planes

planes	angle,deg	planes	angle,deg
1,2	97.62	3,4	70.16
1,3	0.36	3,5	31.94
1,4	69.82	3,6	61.71
1,5	31.59	3,7	62.61
1,6	62.06	4,5	38.40
1,7	62.27	4,6	131.88
2,3	97.97	4,7	7.60
2,4	27.89	5,6	93.56
2,5	66.07	5,7	30.80
2,6	159.60	6,7	124.32
2,7	35.38		

I

1

Ş

Figure Captions

- Figure 1. Equilibrium⁷ between $(CH_3)_4C_4B_8H_8$ isomers A (established) and B (proposed). Solid circles represent C-CH₃ groups; other vertices are BH.
- Figure 2. Mass spectroscopic parent group intensities for II $[(CH_3)_4C_4B_7H_9]$ and III $[(CH_3)_4C_4B_7H_8Br]$, with horizontal scales in units of m/e. II (a), calculated for $(CH_3)_4C_4B_7H_7$; II (b), electron-impact (EI) spectrum of II; II (c), chemical ionization (CI) spectrum in CH₄. III (a), calculated for $(CH_3)_4C_4B_7H_8Br$; III (b), EI spectrum; III (c), CI spectrum in CH₄. CI spectra exhibit cutoffs one mass unit higher than EI spectra due to protonation by methane. For both compounds, CI spectra in Ar/H₂O are similar to the spectra in CH₄ except for the appearance of M + 17 peaks arising from hydration.
- Figure 3. 32.1-MHz proton-decoupled ¹¹B FT NMR spectra of II, III, and V (CDCl₃ solution) and IV (CD₃CN). Chemical shifts and coupling constants are given in Table I.
- Figure 4. Simplified representations of the <u>H</u>-C ¹H FT NMR resonances of II, III, IV, and V. The <u>H</u>-C_{bridge} signals are shown as small broad peaks, the methyl singlets as tall lines, and the methyl doublets as shorter lines.

-33-

Figure 5. Stereoview of the molecular structure of III [11-Br- $(CH_3)_4C_4B_7H_8$], with nonhydrogen atoms shown as 50% thermal ellipsoids. Hydrogens other than H(7) and H(910) are omitted for clarity.H(7) and H(910) are depicted as spheres of arbitrary radius.

Figure 6. Unit cell packing of III.

- Figure 7. (A) Cage geometry of III depicted as an arachno fragment of a 13-vertex closo polyhedron (B).
- Figure 8. Established structures of other carborane species with bridging carbon atoms: A, $R_2C_2B_{10}H_{11}$ (R = CH₃, C_6H_5), lla, b B, (CH₃)₄C₄B₈H₉ (characterized as a cobaltocenium derivative).⁷ Framework carbon atoms and BH units are depicted as solid and open circles, respectively.
- Figure 9. Scheme for conversion of $(CH_3)_4C_4B_7H_9$ (II) to $(CH_3)_4C_4B_7H_8^-$ ion (IV) and $(CH_3)_4C_4B_7H_9$ (V), showing proposed structures of IV, V, and a possible intermediate species. Solid circles indicate framework carbon locations; other vertices are BH.
- Figure 10. Scheme for formation of $(CH_3)_4C_4B_7H_9$ (II) by degradation of $(CH_3)_4C_4B_8H_8$ (I, isomer B). Solid circles indicate framework carbon atoms.

-34-

UNCLASSIFIED

į

Ü

REPORT NUMBER Technical Report No. 37		BEFORE CONDI STING FORM
Technical Report No. 37	2. GOVT ACCESSION NO	3. + CIPIENT'S CATALOG NUMBER
	AD Ac442	38
. TITLE (and Sublitle)	1 10 110113	5. TYPE OF REPORT & PERIOD COVERE
Electron-Rich Carboranes. Studies	s of a	
Stereochemically Novel System. (Interim	
11-Vertex Arachno Cluster	54477	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)		5. CONTRACT OR GRANT NUMBER(e)
David C. Finster and Russell I	N. Grimes	N0001475-C-0305
PERFORMING ORGANIZATION NAME AND ADDRES	\$	10. PROGRAM ELEMENT. PROJECT, TASK
Department of Chemistry		AREA & WORK UNIT NUMBERS
University of Virginia		Nr 053-569
Charlottesville, Va. 22901		
. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Chemistry Branch, Office of Nava	l Research	January, 1981
Arlington, Virginia 22217		13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(II dillor	nt from Controlling Office)	18. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION DOWNGRADING
. SUPPLEMENTARY NOTES		
B. SUPPLEMENTARY NOTES		
SUPPLEMENTARY NOTES		
SUPPLEMENTARY NOTES		
SUPPLEMENTARY NOTES	nd identify by block number	
B. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side il necessary a	nd identify by block number,)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde il necessary e Carborane	nd identify by block number,)
R. SUPPLEMENTARY NOTES KEY WORDS (Continue on feveree elde if necessary a Carborane Electron-rich carborane	nd identify by black number,)
REY WORDS (Continue on reverse side if necessary a Carborane Electron-rich carborane Tetracarbon carborane	nd identify by block number.)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary a Carborane Electron-rich carborane Tetracarbon carborane	nd identify by block number,	5
KEY WORDS (Continue on reverse elde ll necessary e Carborane Electron-rich carborane Tetracarbon carborane	nd identify by block number, nd identify by block number))
 SUPPLEMENTARY NOTES KEY WORDS (Continue on feveree elde il necessary e Carborane Electron-rich carborane Tetracarbon carborane ABSTRACT (Continue on reveree elde il necessary ar 	nd identify by black number, nd identify by black number))
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary a Carborane Electron-rich carborane Tetracarbon carborane ABSTRACT (Continue on reverse side if necessary a See tit	nd identify by block number, nd identify by block number) he page	5
Supplementary notes KEY WORDS (Continue on reverse elde il necessary e Carborane Electron-rich carborane Tetracarbon carborane ABSTRACT (Continue on reverse elde il necessary ar See tit	nd identify by block number, nd identify by block number) le page)
 SUPPLEMENTARY NOTES KEY WORDS (Continue on feveree elde if necessary a Carborane Electron-rich carborane Tetracarbon carborane ABSTRACT (Continue on reveree elde if necessary a See tit 	nd identify by block number, nd identify by block number) ble page)

. . . .

SP472-3/A1

•

.

-

کسا ب

...

۰.

ĺ

472:GAN:716:ddc 78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copies
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C 27709	1
ONR Branch Office		Naval Ocean Systems Center	
Attn: Dr. George Sandoz		Attn: Mr. Joe McCartney	
536 S. Clark Street		San Diego, California 92152	1
Chicago, Illinois 60605	1		
•		Naval Weapons Center	
ONR Area Office		Attn: Dr. A. B. Amster,	
Attn: Scientific Dept.		Chemistry Division	_
715 Broadway		China Lake, California 93555	1
New York, New York 10003	1		
		Naval Civil Engineering Laboratory	
ONR Western Regional Office		Attn: Dr. R. W. Drisko	,
1030 East Green Street		Port Hueneme, California 93401	1
Pasadena, California 91106	L	Description of Division (Charden m	
		Department of Physics & Chemistry	
ONR Eastern/Central Regional Office		Naval Postgraduate School Montoroy, California, 020/0	1
Attn: Dr. L. H. Peebles		Moncerey, California 95940	1
Building 114, Section D			
bob Summer Street	1	Scientific Advisor	
Boston, Massachusetts 02210	Ţ	Commandant of the Marine Corne	
Director Kausi Recearch Laboratory		(Code RD-1)	
Atta Codo 6100		Washington D.C. 20380	1
Washington D.C. 20390	1	"abizingcon", 5-07 20000	-
Washington, D.C. 20070	-	Office of Naval Research	
The Assistant Secretary		Attn: Dr. Richard S. Mill r	
of the Navy (RE&S)		800 N. Ouincy Street	
Department of the Navy		Arlington, Virginia 22217	1
Room 4E736, Pentagon		2, 3	
Washington, D.C. 20350	1	Naval Ship Research and Development	
Commandar Naval Air Suctors Command		Artn. Dr. C. Rosmaiian Annlied	
Commander, Naval Air Systems Command		Chemistry Division	
Actin: code 5100 (n. Rosenwasser)		Annenolie Maryland 21401	1
Unshington D.C. 20360	1		-
Washington, D.C. 2000	•	Naval Ocean Systems Center	
Defensehnical Information Center		Attn: Dr. S. Yamamoto, Marine	
Buildin 5. Cameron Station		Sciences Division	
Alexandría, Virginia 22314	12	San Diego, California 91232	1
Dr. Fred Saalfeld		Mr. John Boyle	
Chemistry Division. Code 6100		Materials Branch	
Naval Research Laboratory		Naval Ship Engineering Center	
Washington, D.C. 20375	1	Philadelphia, Pennsylvania 19112	1
Professor M. Newcomb		Professor Richard Eisenberg	
Texas A&M University		Department of Chemistry	
Department of Chemistry		University of Rochester	
College Station, Texas 77843	1	Rochester, New York 14627	1
-		-	

SP472-3/B11

į

1

472:GAN:716:ddc 78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, 053

No.

	Copies		<u>Copies</u>
		Professor H. Abrahamson Department of Chemistry University of Oklahoma Norman, Oklahoma 73019	1
Dr. M. F. Hawthorne Department of Chemistry		Dr. M. H. Chisholm Department of Chemistry Indiana University	
University of California	1	Bloomington, Indiana 47401	1
Los Angeles, California 90024	I	broomington, indiand where	•
Dr. D. B. Brown		Dr. B. Foxman Department of Chemistry	
Department of Chemistry		Brandeis University	
University of Vermont	1	Waltham, Massachusetts 02154	1
Burlington, vermont 05401	T		-
Dr. U. P. For		Dr. T. Marks	
Chemistry Division		Department of Chemistry	
Naval Research Laboratory		Northwestern University	
Code 6130		Evanston, 111inois 60201	1
Washington, D.C. 20375	1	Dr. C. Cooffron	
-		Department of Chemistry	
Dr. J. Adcock		Pennsylvania State University	
Department of Chemistry		University Park, Pennsylvania 16802	2 1
University of Tennessee			_
Knoxville, Tennessee 3/916	L	Dr. J. Zuckerman	
Dr. A. Cowley		University of Oklahere	
Department of Chemistry		Norman Oklahoma 73019	1
University of Texas		Adruan, Okranoma 75017	•
Austin, Texas 78712	1	Professor O. T. Beachle	
Dr. W. Hatfield		Department of Chemistry	
Department of Chemistry		State University of New York	,
University of North Carolina		Bullato, New Iork 14214	L
Chapel Hill, North Carolina 27514	1	Professor P. S. Skell Department of Chemistry	
Dr. D. Courforth		The Pennsylvania State University	
Department of Chemistry		University Park, Pennsylvania 16802	1
Massachusette Institute of		•	
Technology		Professor K. M. Nicholas	
Cambridge, Massachusetts 02139	1	Department of Chemistry Boston College	
		Chestnut Hill, Massachusetta 02167	۱
Professor Ralph Rudolph		chebende hizzi, habbachabeteb vito,	•
Department of Chemistry		Professor R. Neilson	
University of Michigan		Department of Chemistry	
Ann Arbor, Michigan 48109	I	Texas Christian University Fort Worth Texas 76129	1
Mr. James Kelley		""teny tener ""te	•
DTNSRDC Code 2803		De Dudalah t Massa	
Annapolis, Maryland 21402	1	Dr. Rudolph J. Marcus	
· · ·		Ollice of Naval Research Scientific ligions Crown	
		American Embassy	
		APO San Francisco 96503	1
			-

<u>No</u>.

