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i, i - P ) Emanuel Parzen
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Texas A & M University

\\TslAn approach to time series modelling is described; it
classifies the time series into one of three memory
types (called no memory, short memory, and long memory),
and then finds a whitening filter. When the time series
is short memory one would like to identify the whitening
filter type as AR, MA, or ARMA before parameter estim-
ation. A new frool is introduced which can be used to
diagnose both the memory type of aftime series,é and
the whitening “ilter type of a short memory time series.
It is called prediction variance horizon function, and .
is defined by PVH(h) =1 - oﬁ(n , wWhere oﬁ . is e nor-
malized mean square prediction error of-infinite memory
prediction h steps ahead . §Tc classify the model type of
a time series, one uses the shape of PVH and the value

'“‘““‘\\%f the horizon HOR (defined as the smallest value of h
Yar o 2¥or which BPVH(hY¥4 0.05). The analysis of a real time

series, called Freeze, 1is described.§§:\

J. TIME SERIES MODEZIL TYPES: NO MEMORY, SHORT MEMORY, AND
LONG MEMORY .
A stationary Caussian time series Y(t), with zero means,
with covariance function R(v) = E[Y(£)Y(t+v)] and correlation

function p(v) = R(v)/R(0) can be represented in general

Y(t) = S(t) + z{v) ,

S(t) = % {A., cos 2n t + B. sin %1 t} ,

j 3 ' J f

[~}

Z(t) = § Bpe(t-k)

k=0
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for suitable periods Tj, constants Bk, and uncorrélated random
variables Aj' Bj’ e(t) . Thus Y(t) is a sum of a scheme of
hidden periodicities and an MA(») scheme. From a single real-
ization of the time series one can hope to estimate Bk and 02,
the variance of e(t); however one can only estimate the values
of Aj and Bj in that realization, and not their digtribution
as random variables.

Both S(t) and 7.(t) are stationary time series. When model-
ing Y(t) by an ARMA (p,q) one is assuming that only the com-
ponent Z(t) is present. The ARIMA model introduced by Box

and Jenkins (1976) can be regarded as an approach to modeling

Y(t) when seasonal or periodic components S(t) are present

(and also when trend terms are present). This paper proposes i
that while general models for seasonal and trend components
cannot be defined, one can develop general diagnostics for
their presence. Consequently, one is able to distinguish be-
tween stationary time series like Z(t) which can be approxi-

mately modeled by an ARMA(p,q), and those whose models require

ekt

terms like S(t). §
Parzen (1979) ,(1980) proposes_ that the basic strategy of - |
time series model identification is to determine a whitening
filter in such a wav that time series decomposition filters
can be obtained as interpretations of the whitening filter. A i
whitening filter is one which transforms the time series to

white noise:

Time Series —{ Whitening — White noise, denoted
Y(t) Filter e(t) or YV(t)

It is closely related to a prediction filter which generates
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. a predictor, Y"(t) since YV(t) = Y(t) - YM(t):

Time series —| Prediction — One-step ahead infinite
Y(t) Filter

memory prediction or

forecast, denoted
YH(t) or YM(t|et-1)

To identify the whitening filter of a time series, determine
its model memory type, and identify an <terative model for

the time series:

IDENTIFY TIME SERIES MEMORY TYPE

No Memory Short Memory Long Memory 1
(White Noise) (Stationary) (Non-stationary) L
(Unpredictable) (Partially (Predictable) 1
Predictable) ) i

Stop Identify Identify

"Gentle"

hhitening Filter Transformation

fas AR(p), MA(q),

to Short lMemory

~

or ARMA(p,q) Time Series Y
- Estimate Model Y by
Parameters Whiitening Filter
No Memory No Memory

Residuals ¢

Residuals €

This paper describes various ways to define the three

time series types, using (1) correlations, (2) spectral den-

sities, (3) innovation variances, (4) spectral distribution
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functions, (5) prediction variance horizon fuwuction, and (0,
S-PLAY diagnostics. The various approaches do not lead to
equivalent definitions; they are intended to illustrate the
qualitative conclusions we seek to form about models obeyed
by an empirical time series.

Let us illustrate how the concept of time series memory
type changes our ways of describing time series models.' Con-

sider the model
82 (LY(t) = hz(L) e(t)

where L is the lag operator defined by LkY(t) = Y(t-k) ,
gy(L) = 1-1.97L + 1.2 |, h,(L) = I-1.65L + .64L% .

A researcher might describe this as an ARMA(Z,Z) model, even

though gz(L) has roots on the unit circle; g,(L) is approxi-

mately second differencing I-2L + L2 . If go(L) were in fact

second differencing, some researchers would describe the model

as ARIMA(0,2,2). This paper proposes that more insight is

obtainéd by writing the model as an iterated model

gz(L)Y(t) = ?(t) , Transform long memory Y to
short memory Y ,
Y(t) = hZ(L)e(t) , Transform short memory Y to

no memory e.

The classification of a sample {Y(t) , t =1, 2, ..., T}
will be based on various diagnostics, derived from basic
sample statistics which constitute a generalized harmonic
analysis; thus, the first step in the empirical analysis of a

sample {Y(t), t =1, 2, ..., T} is the calculation of: (1)

the sample spectral density function £ (1), -0.5 < A < 0.5
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defined

T 2
ZlY(t) exp(2riit)

fO) = L

T
7 Y2
t=1

(2) the sample sbectral distribution function ?(A); 0 <A <0.5,

defined by

.
F(O) = 2fg £ dr'

(3) the sample correlation function B(V), v=20,1, ..., T-1,
defined by
T-v
) Y(E)Y(t+v)
b(v) = EL 7
2
I Y°(t)
t=1
0.5 .
- 2ridv %
[.o5 ¢ f£(x)dx .

Usually the foregoing quantities are computed for the
mean-detrended time series Y(t)-Y, ¥ = (1/T) % Y(t). When
the time series has a strong trend component?-; better de-
trending procedure is non-stationary subset autoregression

which yields ARARMA models [Parzen (1981))

1. MEMORY TYPE BY CORRELATION FUNCTIONS

The sample correlation function p(v) of a time series has
the same mathematical properties as the correlation function

o(v) of a zero mean covariance stationary time series Y(t).

L




. In terms of p(v), the definition of the three time series

memory types is:

No Memory Short Memory Long Memory
I letv)| =0 0 < J lo(v)|<e I o] = =]
v=1 v=1 v=1

Within short memory time series there are three types
whose classification in terms of correlation functions is as

follows:

MA(q) p(v) = 0 for v > q (note MA(0) is white noise);

AR(p) There exist Oy onns ap such that
p(v) + alo(v-1)+...+ app(v—p) =0, v>0;

ARMA(p,q) There exist 0y, - ap such that

p(v) + alp(v-l)+,..+upp(v-p) =0, v>gq

Examples of AR and ARMA are: AR(l) op(v) = @y, v>0

.
» 3

p(v) -.ap(v-1) =0, v >0 : ARMA(1,1) op(v) = Yuv , v>0 ;
p(v) - ap(v-1)

0, v>1, where 0 < y < 1

Within long memory stationary time series some types are:

WHITE BANDLIMITED NOISE p(v) = §%%%€BV ;

PERIODIC 0 (v) cos%}v ,

PERIODIC PLUS THITE
NOISE po(v)

]
<
0
o]
w

|5
<
<
v
o

The long memory time series Y(t) = A cos %}t + N(t) can
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be transformed to a short memory time series by forming
Y(t) = (I—¢L+L2)Y(t) where ¢ = 2 cos(2u/p) ; we call this

operation second-order quasi-differencing.

The definition in terms of correlations is intended only

to introduce the three time series memory types. It is not

our final definition, as correlations do not provide adequate

means of identifying time series models.

2. MEMORY TYPE BY SPECTRAL LOG RANGE

The spectral density function £(1), -0.5 < x < 0.5, of a

stationary short memory time series is defined as the Fourier

transform of p(v)

£(A) = § g~ 2midv p(v) , -0.5 < x < 0.5

= - 00

The spectral log range, and its memory types are defined

by
SPLR = log L“-l-‘.;:l‘—ff.%))- ,
No Memory Short Memory Long Memory
SPLR = 0 0 < SPLR < o SPLR = o

To extend this definition to stationary time series whose

correlation function p(v) is not summable define, for any

T >0,

T ) s .
fT(X) - ]’I.‘_ % e ZWlAJ eZTTl)\k Q(j"k)
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which is a non-negative function by the non-negative definite
property of p(v) . llext

£L (V) = e 2 vy vn

vler

05,
a-Bbowy = 7 370 2V £ ) an

We study the limits of these equations when T — «. When
p(v) is summable, fT(A) — £()) > 0 . Otherwise, p(v) is the
limit of Fourier transforms of non-negative functions, and
therefore there exists a spectral distribution function F(}),

~0.5 < x < 0.5, such that

: 0.5 2niiv
p(v) = f—O.S e dF (1))

It could be argued that in practice we are estimating not fT(A)

but \
FT(A) = I-O.S fT(A') drx' — FQ)

The general definition of spectral log range is

max
sPLR = Lim 1oq 2 T
T > min
v Er(d)

3. MEMORY TYPE BY PREDICTION VARIANCE

The time series memory type depends on the amount of var-
iation in the spectral density f(3), which can be captured in

a single criterion such as the following:

PR
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0.5
o = exp-J_y g log £(M)dr . (1)

0.5
Note that f()) is normalized so that f—O 5 £(A)dx =1 . Then

0 < oi < 1 since by Jensen's inequality

) 0.5 0
< exp{-log I-O.S f(A)dr} = e =1

Q
A

If £(00) = 1 identically (no memory or white noise time series)
then of =1 . If £(0) approaches zero (long memory time series),
then 03 = 0 . Otherwise (short memory time series), 0 < oi < 1.

It is shown in the prediction theory of stationary time series
that oi defined by (1) equals the infinite memory one-step
ahead mean square pnrediction error; we call oi the innovation
variance. The classification of time series memory type in

terms of oi is:

No Memory Short Memory Long Memory
oi =1 0 < oi <1 oi =0

To determine the value of oi , one. uses the fact that

2 _ lim 2
g = a
] m— o m

where oi is the finite memory m one-step ahead mean square pre-
diction error. To compute oé we solve for Qg vees Op the

Yule-Walker equations

p(v) + alp(v-l) + ... + amo(v-m) =0, v=1, 2, ..., m;

then oi =1 4 alo(l) + ... + amo(m)
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The coefficients Ay ey O determine a prediction error

time series

m

Y(t) = Bu(LY(E), g (2) =1+ o0z + ... +az ;

autoregressive spectral density estimator of order m

2

2nixg (-2
m 18pe” I, 0 <x < 0.5

fm(k) =9

and autoregressive spectral distribution function estimator of

order m i
- A ' '
Fm(A) = 2]0 fm(A yax' , 0 < x < 0.5
From estimated correlations B(V) , one solves
p(v) + a (Lp(v-1) + ... + o (Mo(v-m) =0, v=1, ..., m,
3; =1 + &m(l)ﬁ(l) + ... + &m(m)ﬁ(m) for successive orders
m=1, 2, ... (using fast algorithms); one forms transfer func-
tions ém(z) =1+ &m(l)z + ...+ &m(m)zm }

To choose an order m such that Sé = Gi one computes order
determining functions, such as AIC or CAT, whose absolute min-
imum and relative minimum are used to determine orders m of
autoregressive estimators to be considered as "optimal'.

Akaike information criterion is [see Akaike (1979)]

_ ~2 2m ;
AIC(m) = log o + T 1

An alternative version of criterion is given by Hannan and
Quinn (1979).
Parzen CAT (Criterion Autoregressive Transfer Function) is i

a measure of the overall mean square relative error of By as

an estimator of g_, the AR(») transfer function [see Parzen

(1974) , (1977)) . To define CAT let 8? - ng a§ which is called




an unbiased estimator of 0§ Then

laj - Om -

e~

CAT(m) = *
J
For order 0, define AIC = 0, CAT = -1 . However if one
wants to increase one's probability of correctly detecting

3 white noise, one might adopt definitions such as CAT(Of

] : _ 1 _ 1
k = -(1+p) , AIC(0) = -3 . {
In practice, identical conclusions are usually implied by #

these two criterion functions. The best order m is defined as

the order at which the criterion function is minimized (if m=0,

the time series is considered to be white noise or no memory).
The second best order m(2) is defined as the order at which
the smallest relative minimum occurs which is not a global

minimum. The approximating autoregressive scheme chosen by
2

. . . . . ~2
an order determining criterion, yields an estimate o of o

which provides a preliminary diagnostic of the memory type of

a time series. An ad hoc rule is:

No Memory ' Short Memory Long Memory
~2 4 ' . ~2 8

» - =
o~ > 1 T otherwise Oy < 7

Nonstationary autoregressive schemes: A parallel approach

to model identification is to fit autoregressive schemes which

may be non-stationary. One minimizes

: TO0Y(E) + a(1)Y(E-1) + ... + a(m)Y(t-m)}?
; t=m+l
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to form estimators a(l), ..., a(m) . Then form the squariance
T ~ ~ 2
S = ) {Y(t) + a(1)Y(t-1) + ... + a(m)Y(t-m)}
m t=m+1

and estimate oz(representing normalized mean square error) by

)
O = Tom S/T tzl YO (t)
If 8; is near zero, which might be interpreted as indicating

a model which fits the data well, one instead concludes that

the time series is non-stationary and/or long memory, and one
needs to model the residuals ?(t) = Y(t) + a(1)Y(t-2) + .

+ a(mY(t-m) . 1If Sé is near 1, one concludes that the time
series is nearly white noise, and the coefficients all), ...,

&(m) are themselves undoubtedly not signifiéantly different

from zero.

4 .. MEMORY TYPE BY SPECTRAL DISTRIBUTION FUNCTION

A quick diagnosis of the memory type of a time series can
be obtained from the graph of the sample spectral distribution
function F(A), 0 <12 <0.5, which together with o(v) is com-

puted as the first step in our approach to time series analysis:

No Memory Short Memory Long Memory
F Uniform F otherwise F has sharp
jumps

Spectral distribution functions play an important role in

NN WS P
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. judging the goodness of fit of a model. The mathematical fit
of a model to data can be judged by the fit of a "smooth"

function representing the model to a "wiggly'" function repre-

senting the data. Spectral distribution functions are, in my
opinion, ideal representing functions.

The orders selected by the minimum of an autoregressive
criterion function should be regarded as hypotheses; one tests
them by how well their autoregressive spectral distribution

i function fits the raw spectral distribution function, as mea-

sured by

-~ A R . ) N ~
FOI-F) = [ylonlg (2™ |72-E(w)tdu = [o{E(w-E(w)}du.

In addition, the residuals of the autoregressive filter are

tested for whiteness by examining

A . . \ = .
o Lle (2710 12E ) -11au = [y E@-E@ 4y
‘m £

5. MEMORY TYPE AND ARMA TYPE BY PREDICTION VARIANCE HORIZON

An extremely useful functien for identification of a time
series model type before parameter estimation is the predietion
variance horizon PVH(h), h =1, 2, ... . It is defined in terms
of the normalized mean square prediction error of infinite

memory prediction h steps ahead:

Oﬁ,m= ELIY (el )]+ E1Y2(E) 1, Yo(e+h|E) = Y(£)-Y*(t+n]b),

Y'(t+h|t) = E[(Y(t+h) |Y(t), Y(t-1), ...]
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A formula for oﬁ - is obtained by introducing the MA(») repre- i

sentation of Y(t): Y(t) = e(t) + Ble(t—l) + ... . Then
2 _ 2 2 2
Oh’m - Ow{l + 81 + o o » + Bh_l}

The graph of oﬁ - increases monotonically from oi at h =1 to

1 as h tends to ¥ . We define

PVH(h) = 1 - o2

h,°°’ h=lv 2;

and define horizon HOR to be the smallest values of h for which

PVH(h) < 0.05 (whence ol _

The infinite moving average coefficients By are estimated

> .95) . !

by inverting the transfer function gm(z) of an approximating

autoregressive scheme to obtain, for k = 1, 2,

=0Q . ' a

.+ akBO ‘

aglp + ayBy g -

The value of the horizon HOR, and the shape of PVH, can be
used to determine: (1) the memory type of a time series, and
(2) if it is short memory, whether its model should be AR, MA,
or ARMA. A long horizon indicates a long memory time series.

As an example, suppose one fits an AR(l): Y(t)-pY(t-1)=e(t);

1 the time series is considered long memory since

62 =1 - %20, PVH(R) = p2P

when o

, HOR = (log .05)/2 log p = = .

I+

When o 0 , the time series is considered no memory. When
0 < p <1, the time series is considered short memory.
The classification of memory type by prediction horizon

HOR is:

No Memory Short Memory Long Memory

HOR = 0 0 < HOR < HOR £ o |
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By HOR # «, we mean HOR is comparatively large: experiments

lead us to conclude that one should compare HOR with the order
ORD of the approximating autoregressive scheme. Let HOR/ORD
denote the ratio of HOR to ORD; identify time series as
follows: If HOR/ORD < 1 , then MA(qQ), with q < HOR-1. If
HOR/ORD > 4(say); and PVH dccays slowly, then long -memory. If
PVH declines smoothly and exponentially, then an AR(p) i; in-
dicated. If PVH has ''bends'’, then ARMA. If PVH has many
level stretches with period 1, then an ARMA model is indicated
of the form

14+6) L#g, L4 48 19

Y(t) = e(t)

I-a LT
T

The final identification of the orders p and gq should be by

parameter estimation or by use of S-arrays.

6. MEMORY TYPE AND ARMA TYPE BY S-ARRAYS

Gray, Kelley, and McIntire (1§78) define a double sequence

* * , * * b
S-Array: Sm(-q). Cee Sm(-l), Sp(0), s (1), ..., Sm(q),
m=1, 2, ..., p, whose constancy patterns are in 1-1 corres-

pondence with ARMA schemes, and more generally with character-

istics of sequences satisfying

o(v) + alp(v-l) + ... + app(v—p) =0, v>q.

(n)

The generalized partial correlation is defined by L

"am(m) »
where am{m) is the value of the last autoregressive coefficient

in an ARMA(m,n) scheme obtained by solving higher order Yule

.- ,



Walker equations

p(j) + am(l)p(j-1)+...+ am(m)p(j-m) =0, =m+1,... nim,
Woodward and Gray (1980) show that
In ()| = |5, (n)/S;(-(n+1))| , n =0, 1,

The display which we call S-PLAY combines various statisti-
%
cal diagnostics with a new way of displaying S -arrays. For
frequency )} (equal to 0 or 0.5) S-PLAY displays for each auto-

regressive order p = 1, 2,

~

. . 2
\Y Innovation variance np

PL Partial correlation |np(0)|

-AIC The value of -AIC(p)

SPEC  Autoregressive spectral estimator fp(x) at

frequency X.
GSP1, GSP2 G-spectral estimators at frequency A

P2D Minimum value of 2nd differences of generalized
: (n) _ 2 (n+1)+TT (n+2)

. P
value of n at which minimum attained is printed as

value of symbol M. 1If one adopts p as autoregres-
sive order, one might consider M as moving average

partial correlations np

order.

It should be noted that the rows of S-PLAY are the columns
of the shifted S-Array as defined by Woodward and Gray (1980).

The constancy patterns in the S-array which are character-
istic of an ARMA(p,q) are described below, as are the patterns
characteristic of long memory. S-PLAY provides diagnostics

which can be used to confirm our conclusions about a time series

model type as follows:
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No Memory Short Memory Long Memory
Infinities in ARMA(p,q) if Constant row 1
Column - 1 row p, column q, (trend)
column -(q+1) Constant row 2 |
have constant (seasonal) |

values as des-
cribed in (a)

and (b) ' ;
(a) C2 = Sp(-(q+1)) = Sp(-(q+2)) = ,,. and Cl = Sp(q) i
= Sp(q+1) = ... implies that np(q) = np(q+l) = ... ; in words, b

if one solves for the coefficients of a p-th order autoregres-

sive scheme using high lag Yule-Walker equations of lag q,
q+1, ..., one obtains the same value for the p-th coefficient

ap(p) from all of these sets of equations.

= = - i = 1
(b) -C; = Sq(p+l), Cy Sq(p+2), s (DTG Sq(p+1).
o= S, (-(aD) for i > 1, implies that i3} = nif) =...=0;
in words, if one solves (for i=1, 2, ...) for the coefficients

of a (p+i)-th order autoregressive scheme using high lag Yule-

Walker equations of lag q, one obtains value 0 for the last

coefficient a (p+i)

p+i
It should be noted that experience and judgement is re-
quired to decide when a pattern of approximate constancy exists

in an S-array of an observed time series. Further the failure

{ of such patterns to exist should be expected as most time

series are not exactly an ARMA process, but at best are approx-

imately modelled by an ARMA process.
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7. CASE STUDY OF AN EMPIRICAL TIME SERIES ANALYSIS

The time series Y, called Freeze, and graphed in Fig. 27,
represents minimum temperatures (in degrees centrigrade) over
10 day intervals (with some 11 day intervals). There are 36

values per year. The sample size T = 992.

Step 1. Autoregressive Analysis of Y

Compute sample mean Y = 5.02, sample variance R(O) = 27.4 .
For Y(t)-Y , compute sample spectral density £(n), sample cor-
relations p(v) and the sample spectral distribution function
?(A) ] B(Fig. 2) has a strictly periodic appearance, with
periodicity 36. Sore noteworthy maximum values are p(l) = .7163,
0(36) = .6765, 8(.73) = ,6314. f(Fig. 1) rises linearly except
for a sharp jump of .66 at a frequency corresponding to a period
of about 36. The character of 8 and F leadé us to suspect a

model of periodic signal S(t) plus white noise N(t):

Y(t) = S(t) + N(t) , (1)

A cos %¥t + B sin %}t , p = 36 . (2)

S(t)
A model of quasi-périodic signal S(t) would be
S(t) - ¢S(t-1) + S(t-2) = &§(t) white noise (3)

where ¢ = 2 cos 2n/p = 1.97 for p = 36 . The variance of N(:)
is approximately 30% of the variance of Y(.)
Next one solves Yule-Walker equations in S(V) for successive

orders m =1, 2, ..., M, where M is chosen in the range T/1l0

< M < 3T/4 , depending on the size of T. Here M = 80. Graphs

2
m

chooses m = 36, m(2) = 39 as best and second best orders. It

of log o , AIC, and CAT are displayed in Figs. 3, 4. CAT
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should be noted that for Freeze AIC and CAT are unusually flat
in the vicinity of their minimum order. The prediction variance
horizon (Fig. 5) indicates Freeze is a long memory time series;
the order 1 rows of S-PLAY indicate long memory; the innovation
variance 8%6 = .32 does not indicate long memory. The auto-
regressive spectral density estimator () of order 36 in Fig.
6 and second best order 39 in Fig. 8 indicates a sharp ﬁeak
at frequency 1/36 (with period 36); Fig. 7 shows that F matches
F.

Step 2. Analysis of Autoregressive Residuals

The residuals Y(t) = g36(L)Y(t) of the AR(36) scheme yield
the conclusion that they are white noise under autoregressive

analysis (Figs. 9-16).

Step 3. Transformation of Long Memory Y to Short Memory Y

When Y has a long horizon, we seek to find a suitable

transformation, to short memory; we choose

Y(t) = g, (LIY(E) , gp(L) = 1 - 1.97L + 1.2

Its variance 42.7 is larger than éhat of Y(t), which one can
explain by the approximate calculation Var (Y(t) - 2Y(t-1)
+ Y(t-2)} = 6R(0) = 8R(1) + 2R(2) . The raw spectral distri-
bution function (Fig. 18) of Y(-) suggests high frequency
content. Its correlation function (Fig. 17) suggests a MA(2)
model since p(1) = -.6405, 0(2) = .1211 and these are the
only correlations much greater than .06* 2/v/T .

The AIC and CAT determined (Fig. 19, 20) optimal autore-

gressive approximating order for Y is m = 15 ; note that AIC

is much flatter than is CAT near the minimum 8%5 = 24

il
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PVH (Fig. 21) decreases very quickly to zero, and HOR = 3 sug-
gests MA(2) . S-PLAY does not seem to yield definite conclu-
sions, as it should not when the true model is a pure moving
average.

The model éls(L)Q(t) = g(t) yields one-step ahead prédic-
tions with average squared error 8.7 whose ratio to the var-
iance of Y(t) is .32, exactly equal to the prediction variance
of the AR(36) scheme fitted to Y(t). One can conclude that

the iterative analysis

Y 9 Y= g2Y - g = g15§ = nggZY
has resulted in an AR(17) filter with the same forecasting
(and the same spectral estimation) properties as the AR(36)
model g36(L)Y = ¢ , As a model the iteratgd AR(2), AR(15)

model has more insight than the AR(36) model.

Step 4. MA Analysis of Y

The model Y(t) = e(t) + Ble(t-l) + Bze(t—Z), an MA(2),
suggested by the prediction variance horizon function and
correlations of ?(-), needs to be-confirmed and its parameters
estimated. An alternative approach to identifying the ARMA
type is to examine the successive models for Y determined by
our subset ARMA algorithm. The first model is MA(1), the
second model is MA(2). Thereafter various ARMA models are
determined whose residual variances do not decrease much. Con-

sequently we fit Y(t) by

Y(t) = e(t) - 1.6475 e(t-1) + .6382 e(t-2)

with residual variance .26 (compared with .24 for AR(15)).

uS—
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One concludes that an overall model for Y is an ARMA(2,2) model;

estimators of its parameters are

Y(£)-1.97Y(t-1)+Y(t-2) = e(t)-1.6475e(t-1)+.6382¢(t-2) . ,

The spectral density of the MA(2) model for Y is in Fig. 23.

The spectral density of the ARMA model for Y is in .Fig. 24.

Step 5. Signal Plus Noise Interpretation of ARMA Model

While the ARMA(2,2) model may not be most satisfactory for
forecasting, or for spectral estimation, it is most satisfac-
tory for insight. It suggests that the original time series

Y(t) satisfies (1) and (3), since &8(t) + N(t) - 1.97 N(t-1)

+ N(t+2) defines an MA(2)
A question which the Freeze time series may illustrate

is the question of how well autoregressive spectral estimators
do when applied to data which is a moving average, Fig, 25 . ﬁ
displays window estimators of the spectral density of Y(t), |
using a Parzen window with truncation points 16, 32, 64; the

best of these truncation points is 32, and it agrees with the
AR(15) spectral estimator in Fig. 22. The periodogram being

smoothed is shown in Fig. 26.

Summary
The models we have fitted to Y(t) are as follows:
Steps 1,2: AR(36) 846 (L) {Y(E)-T} = e(t) , ;
Step 3: AR(2) ,AR(15) g, (L) {Y(t)-¥} = ¥(t) , .
815 (L)Y(t) = e(t)
Step &4: AR(2) ,MA(2) g, (L){Y¥(t)-¥} = Y(r) ,

Y(t) = hy(L)e(t)
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. Step 5: Y(t) = ¥ + S(t) + N(t), S(t) - 1.97S(t-1)
+ S(t-2) = §(t)

COEFFICIENTS o5 OF AR(36) MODEL Zo.Y(t-j) = e(t)

j
FOR FREEZE SERIES Y(t), t =1, ..., 992'

1-5  -0.1897 -0.0789 -0.0831L -0.0774  0.0082 ' B

6-10  -0.0457 -0.0052 -0.0385  0.0185  0.0522 |

11-15  0.0095 -0.0103  0.0337  0.0888  0.0373 ‘

16-20  0.0311  0.0400 -0.0047  0.0358  0.0230 R

21-25 -0.0196 0.0534 0.0493 0.0341 -0.0178
26-30 -0.0138 C.0234 0.0077 -0.0371 -0.0117

31-35 -0.0708 -0.0319 0.0131 -0.0722 -0.0410
36 -0.0456 Residual Variance = 0.32125

COEFFICIENTS a; AR(15) MODEL Zan(c-j) = e(t)

FOR TRANSFORMED FREEZE SERIES Y(t) = Y(t) - 1.97Y(t-1) + Y(t-2)

1-5 1.6390 . 2.0567 2.2628 2.2869 2.2303
6-10 2.0593 1.8400 1.5492 1.2572 1.0049

11-15 0.7548 0.4939 0.2857 0.1349 0.0482
Residual Variance = 0.24223

Successive Subset ARMA Models for Y(t) were:
Y(t)
Y(t) = e(t) - 1.647 e(t-1) + .638 e(t-2)
Y(t) = e(t) - 1.647 e(t-2) + .638 e(t-2) - .059 ¥(t-5),

e(t) - 1.647 e(t-1)

Residual variances are .359, .262, .259.
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8. CONCLUSIONS

The final model fitted to a time series will often be an

iterated model (with symbolic transfer functions G and g_)

Y(t) —| G |— Y(t) —| g_ |— e(t) white noise ’

where §(t) is thé results of a transformation chosen to trans-
form a long memory to a short memory one. One should always
analyze the residuals of an approximating autoregressive filter
to determine if they are white noise.

Autoregressive analysis by Yule-Walker equations yields a
stationary autoregressive scheme; a non-stationary autoregres-
sive scheme may be fit by estimating its coefficients by or-
dinary least squares. Parzen (1981) introduces the terminology
ARARMA scheme for the iterated time series model with G non-
stationary autoregressive, and g _ ARMA; an ARIMA scheme cor-
responds to a pure differencing operator for G.

A model frequently fitted to monthly economic time series

is the so-called "airline' model ({see Parzen (1979)]:
(1-L) (I-L12) ¥ (t) = (1-0,L) (1-0,,L1) e(t)

It seems doubtful that this model would be judged adequate by
the criteria proposed iﬁ this paper.

It may happen that long memory components continue to be
present even after several iterations; thus the final model

might be of the form

Y(t) — L U ¢y —] L, D (1) — e ()

The iterated filter model can be used for forecasting, for
spectral analysis, and for model interpretation.

S e e e e
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