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A-i "TIME SERIES MODEL IDENTIFICATION

AND PREDICTION VARIANCE HORIZON

Emanuel Parzen
Institute of Statistics
Texas A A M University

SAn approach to time series modelling is described; it
classifies the time series into one of three memory
types (called no memory, short memory, and long memory),
and then finds a whitening filter. When the time series
is short memory one would like to identify the whitening
filter type as AR, MA, or ARMA before parameter estim-
ation. A new tool is introduced which can be used to
diagnose both the memory type of aftime series, and
the whitening cilter type of a short memory time series.
It is called prediction variance horizon function, -a ..

is defined by PVH(h) = i - a 2 where or is e nor-
h ,h,m

malized mean square prediction errorof-nfinite memory
prediction h steps ahead.CI6 classify the model type of
a time series, one uses the shape of PVH and the value

- .-,off the horizon HOR (defined as the smallest value of h
k_-l skr :o which-PVH(h) 0.05). The analysis of a real time

•-series, called Trteze, is described.

0. TIME SERIES MODEL TYPES: NO MEMORY, SHORT MEMORY, AND
LONG MEMORY

A stationary Caussian time series Y(t), with zero means,

with covariance function R(v) = E[Y(t)Y(t+v)] and correlation

function Q(v) = R(v),'R(O) can be represented in general

Y(t) = S(t) + Z(t)

S(t) - F {A cos L t + B. sin L t1

ZWt - Ok ck(t-k)

k=O

* Supported in part by the Office of Naval Research, Con. 10001(4-7R-C-05o9.
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for suitable periods Tj, constants ak, and uncorrelated random

variables Aj, Bj, c(t) . Thus Y(t) is a sum of a scheme of

hidden periodicities and an MA(-) scheme. From a single real-

2
ization of the time series one can hope to estimate 6k and a

the variance of e(t); however one can only estimate the values

of A. and B. in that realization, and not their distribution

as random variables.

Both S(t) and Z(t) are stationary time series. When model-

ing Y(t) by an ARMA (p,q) one is assuming that only the com-

ponent Z(t) is present. The ARIMA model introduced by Box

and Jenkins (1976) can be regarded as an approach to modeling

Y(t) when seasonal or periodic components S(t) are present

(and also when trend terms are present). This paper proposes

that while general models for seasonal and trend components

cannot be defined, one can develop general diagnostics for

their presence. Consequently, one is able to distinguish be-

tween stationary time series like Z(t) which can be approxi-

mately modeled by an ARMA(p,q), and those whose models require

terms like S(t).

Parzen (1979),.(1980) proposes.that the basic strategy of

time series model identification is to determine a whitening

filter in such a way that time series decomposition filters

can be obtained as interpretations of the whitening filter. A

whitening filter is one which transforms the time series to

white noise:

Time Series - Whitening i White noise, denoted

Y(t) Filter (t) or Y* (t)

It is closely related to a prediction filter which generates
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a predictor, Y1'(t) since YV(t) = Y(t) - YOM:

Time series - Prediction One-step ahead infinite

Y(t) Filter memory prediction or

forecast, denoted

Y1 (t) or YU(tlt-l)

To identify the whitening filter of a time series, determine

its model memory type, and identify an iterative model for

the time series:

IDENTIFY TIME SERIES MEMORY TYPE

No Memory Short Memory Long Memory

(White Noise) (Stationary) (Non-stationary)

(Unpredictable) (Partially (Predictable)

Predictable)

Stop Identify Identify

"Gentle"
Whitening Filter ransformation

as AR(p), MA(q), to Short Memory

or ARMA(p,q) Time Series

Estimate Model Y by

Parameters Whitening Filter

No Memory No Memory

Residuals E Residuals e

This paper describes various ways to define the three

time series types, using (1) correlations, (2) spectral den-

sities, (3) innovation variances, (4) spectral distribution
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functions, (5) prediction variance horizon fu'nLction, and (6

S-PLAY diagnostics. The various approaches do not lead to

equivalent definitions; they are intended to illustrate the

qualitative conclusions we seek to form about models obeyed

by an empirical time series.

Let us illustrate how the concept of time series memory

type changes our ways of describing time series models. Con-

sider the model

g2 (L)Y(t) = h2 (L)c(t)

where L is the lag operator defined by LkY(t) = Y(t-k)

g2 (L) = I-1.97L + L, h2 (L) = I-1.65L + .64L2

A researcher might describe this as an ARMA(2,2) model, even

though g2 (L) has roots on the unit circle; g2 (L) is approxi-

mately second differencing I-2L + L2  If g2 (L) were in fact

second differencing, some researchers would describe the model

as ARIMA(0,2,2). This paper proposes that more insight is

obtained by writing the model as an iterated model

g2 (L)Y(t) Y(t) , Transform long memory Y to

short memory Y

Y(t) = h2 (L)E(t) , Transform short memory Y to

no memory E.

The classification of a sample {Y(t) , t = 1, 2, ..., T)

will be based on various diagnostics, derived from basic

sample statistics which constitute a generalized harmonic

analysis; thus, the first step in the empirical analysis of a

sample {Y(t), t - 1, 2, ..., T) is the calculation of: (1)

the sample spectral density function f (X), -0.5 < A < 0.5



def ined

T2
y Y(t) exp(2riAt)(2

- ( t= T
y (t)t=l

(2) the sample spectral distribution function F(A), 0 <.A < 0.5,

defined by

F(X) = 2f 0 f(V') dX'
I

(3) the sample correlation function p(v), v = 0, 1, ... , T-l,

defined by

T-v
[ Y(t)Y(t+v)

~(v) = t=l

Sy2 (t)
t=l

0.5L0.5 e2 ~ f(A)dX

Usually the forpgoing quantities are computed for the
T

mean-detrended time series Y(t)-?, Y = (l/T) I Y(t). When
t=1

the time series has a strong trend component, a better de-

trending procedure is non-stationary subset autoregression

which yields ARARMA models [Parzen (1981)]

1. MEMORY TYPE BY CORRELATION FUNCTIONS

The sample correlation function (v) of a time series has

the same mathematical properties as the correlation function

p(v) of a zero mean covariance stationary time series Y(t).
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In terms of p(v), the definition of the three time series

memory types is:

No Memory Short Memory Long Memory

X IP(v)I 0 0 < X lp(v)l < - I IP(v) =
v=1 v=l v=l

Within short memory time series there are three types

whose classification in terms of correlation functions is as

follows:

MA(q) p(v) = 0 for v > q (note MA(0) is white noise);

AR(p) There exist a,, ... , ap such that

p(v) + al0(v-l)+...+ app (V-p) = 0, v > 0

ARMA(p,q) There exist a, ... , ap such that

p(v) + aiP(v-l)+...+ap0 (v-p) 0, v > q

pv

Examples of AR and ARMA are: AR(l) p(v) a v v > 0

p(v) -. ap(v-l) = 0, v > 0 : ARMA(l,l) p(v) = ya , v > 0

p(v) - ap(v-l) = 0 , v > 1 , where 0 < y < 1

Within long memory stationary time series some types are:

sin2TrBv
WHITE BANDLIMITED NOISE p(v) = si2Bv

PERIODIC P(v) = Cos

PERIODIC PLUS t!HITE
2 iT

NOISE P(v) = ycospV , v > 0

The long memory time series Y(t) = A cos -t + N(t) can
p
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be transformed to a short memory time series by forming

Y(t) = (I-pL+L2)Y(t) where -P - 2 cos(2u/p) ; we call this

operation second-order quasi-differencing.

The definition in terms of correlations is intended only

to introduce the three time series memory types. It is not

our final definition, as correlations do not provide adequate

means of identifying time series models.

2. MEMORY TYPE BY SPECTRAL LOG RANGE

The spectral density function f(X), -0.5 < X < 0.5 , of a

stationary short memory time series is defined as the Fourier

transform of P(v)

f(X) = e 2 i v p(v) , -0.5 < X < 0.5

The spectral log range, and its memory types are defined

by

SPLR = log max f(X)min f (7X

No Memory Short Memory Long Memory

SPLR = 0 0 < SPLR < - SPLR =

To extend this definition to stationary time series whose

correlation function p(v) is not summable define, for any

TTO,

1 T ?Ti j 21TiXkfT(X) = , e e p(j-k)



which is a non-negative function by the non-negative definite

property of p(v) 1 Next

fT() = Iv< e iv (i--l ) p(v)

(1-1vi 0.5 21fi v
(i- )P(v) f-0.5 eT (A) dA

We study the limits of these equations when T P . When

o(v) is summable, fT() P f(X) >_ 0 . Otherwise, p(v) is the

limit of Fourier transforms of non-negative functions, and

therefore there exists a spectral distribution function F(A),

-0.5 < X < 0.5 , such that

0.5

S_0.5 e2 Ti v 
dF(X)

It could be argued that in practice we are estimating not fT()

but

FT(A) = f-0.5 f ') dA' -P F(A)

The general defini.tion of spectral log range is

maxfM

SPLR lim loc, T(A)
S =-0 0 min- (

X T (X)

3. MEMORY TYPE BY PREDICTION VARIANCE

The time series memory type depends on the amount of var-

iation in the spectral density f(A), which can be captured in

a single criterion such as the following:
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2 0.5
= ex 0.5 log f(A)dA (1)

eP-f-0.5

0.5
Note that f(A) is normalized so that L0.5 f(A)dA = 1 Then

0 < a2 < I since by Jensen's inequality

2 0.5 0
o < exp{-log L0.5 f(A)dX} = e = 1

If f(x) = 1 identically (no memory or white noise time series)

then a2 = 1 If f(X) approaches zero (long memory time series),

then a2 = 0 Otherwise (short memory time series), 0 < a2 < 1.

It is shown in the prediction theory of stationary time series

that a 2 defined by (1) equals the infinite memory one-step

ahead mean square prediction error; we call a2 the innovation

variance. The classification of time series memory type in

terms of a2 is:

No Memory Short Memory Long Memory
2 2
S=1 0<0 < 2 0

To determine the value of y 2 one. uses the fact that

2 lim 2
M--+ m

2.
where a is the finite memory m one-step ahead mean square pre-m

2
diction error. To compute am we solve for a, ... am the

Yule-Walker equations

I(v) + al(V-) . . + amp(v-m) = 0 , v = 1, 2, ... , m;

then a m 1 + alp(l) + + amp(m)te m 1 m.
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The coefficients al, .. c determine a prediction error

time series

Y(t) gm(L)Y(t), gm(z) = + i z + + amz m

autoregressive spectral density estimator of order m

f () a2 Igm ( e 2Ti) 1-2 ,0 < X < 0. 5 •f ( ) = 2m  . . ..A

and autoregressive spectral distribution function estimator of

order m

F = 2f' fm(A')d' , 0 < A < 0.5

From estimated correlations (v) , one solves

(v) + &m(1)$(v-l) + ... + (m) (v-m) = 0, v = ... ,

1 m(1)(1) + a + m(m) P(m) for successive orders

m = 1, 2, ... (using fast algorithms); one forms transfer func-

tions gm(z) = 1 + &m(l)z + ... + &m(m)zm

^ ^2To choose an order m such that oa = one computes order
m

determining functions, such as AIC or CAT, whose absolute min-

imum and relative -inimum are used to determine orders m of

autoregressive estimators to be considered as "optimal".

Akaike information criterion is [see Akaike (1979)]

AIC(m) = log &2 + 2m
m T

An alternative version of criterion is given by Hannan and

Quinn (1979).

Parzen CAT (Criterion Autoregressive Transfer Function) is

a measure of the overall mean square relative error of gm as

an estimator of g,.., the AR(-) transfer function [see Parzen

(1974),(1977)] . To define CAT let 62 - T o2 which is called
_J hc scle
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an unbiased estimator of a Then

J

Tm

For order 0, define AIC = 0, CAT = -1 However if one

wants to increase one's probability of correctly detecting

white noise, one might adopt definitions such as CAT(0)

- j) , AIC(O) - T

In practice, identical conclusions are usually implied by

these two criterion functions. The best order m^ is defined as

the order at which the criterion function is minimized (if im=O,

the time series is considered to be white noise or no memory).

The second best order mn(2) is defined as the order at which

the smallest relative minimum occurs which is not a global

minimum. The approximating autoregressive scheme chosen by

an order determining criterion, yields an estimate ;? of 2

which provides a preliminary diagnostic of the memory type of

a time series. An ad hoc rule is:

No Memory Short Memory Long Memory

2> otherwise a2 8
m T T

Nonstationary autoregressive schemes: A parallel approach

to model identification is to fit autoregressive schemes which

may be non-stationary. One minimizes

T
T{Y(t) + a(1)Y(t-l) + ... + a(m)Y(t-m)}2

t rm+l
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to form estimators a(l), ... & &(m) Then form the squariance

T2
S y {Y(t) + &(1)Y(t-l) + ... + a(m)Y(t-m)}2
m t=m+l

2
and estimate a (representing normalized mean square error) by

^2 1 T 2Wm T-i S/T I y(t)
t=l

If 0m is near zero, which might be interpreted as indicating

a model which fits the data well, one instead concludes that

the time series is non-stationary and/or long memory, and one

needs to model the residuals Y(t) = Y(t) + &(l)Y(t-2) +

+ &(m)Y(t-m) If a2 is near 1, one concludes that the timem'

series is nearly white noise, and the coefficients &(I),

&(m) are themselves undoubtedly not significantly different

from zero.

4.. MEMORY TYPE BY SPECTRAL DISTRIBUTION FUNCTION

A quick diagnosis of the memory type of a time series can

be obtained from the graph of the sample spectral distribution

function F(X), 0 < X < 0.5, which together with k(v) is com-

puted as the first step in our approach to time series analysis:

No Memory Short Memory Long Memory

Uniform F otherwise F has sharp

jumps

Spectral distribution functions play an important role in
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judging the goodness of fit of a model. The mathematical fit

of a model to data can be judged by the fit of a "smooth"

function representing the model to a "wiggly" function repre-

senting the data. Spectral distribution functions are, in my

opinion, ideal representing functions.

The orders selected by the minimum of an autoregressive

criterion function should be regarded as hypotheses; one tests

them by how well their autoregressive spectral distribution

function fits the raw spectral distribution function, as mea-

sured by

r 2 .27iu. 2

F(X)-F(X) f 0m gm~e -F u)du = f0 {f(u)-f(u)}du.

In addition, the residuals of the autoregressive filter are

tested for whiteness by examining

X ge27riu)2ju X ~)fu
f 0 {-ig(e 12 f(u)-l}du = (u)-f(u) du

af(u)

5. MEMORY TYPE AND ARMA TYPE BY PREDICTION VARIANCE HORIZON

An extremely useful function for identification of a time

series model type before parameter estimation is the prediction

variance horizon PVH(h), h = 1, 2 ..... It is defined in terms

of the normalized mean square prediction error of infinite

memory prediction h steps ahead:

a2 .E[IY(t+hltA 2I •1 E(Y2 (t)],'Y)(t+hlt) = Y(t)-Y4(t+nlt),

YO(t+hlt) = E[Y(t+h)IY(t), Y(t-1), ..
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2
A formula for 2 is obtained by introducing the MA(-) repre-

sentation of Y(t): Y(t) = E(t) + Big(t-l) + .... Then

S = 2 {i + + ... + 2 2

2 increases monotonically from a at h 1 toThe graph of 0ha 1

1 as h tends to . We define

2

PVH(h) = 1 - a2  , h = 1, 2, ...

and define horizon HOR to be the smallest values of h for which

PVH(h) < 0.05 (whence a 2  > .95)
h,c

The infinite moving average coefficients Bk are estimated

by inverting the transfer function gm(z) of an approximating

autoregressive scheme to obtain, for k = 1, 2,

c0 k + a'k-l + .. + ak0O

The value of the horizon HOR, and the shape of PVH, can be

used to determine: (i) the memory type of a time series, and

(2) if it is short memory, whether its model should be AR, MA,

or ARMA. A long horizon indicates a long memory time series.

As an example, suppose one fits an AR(l): Y(t)-pY(t-l)=E(t);

when p 1 the time series is considered long memory since

2  i -= 2 1 0 , PVH(h) p h HOR (log .05)/2 log p

When P 0 , the time series is considered no memory. When

0 < p < 1, the time series is considered short memory.

The classification of memory type by prediction horizon

HOR is:

No Memory Short Memory Long Memory

HOR ! 0 0 < HOR< HOR cc I,
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By HOR , we mean HOR is comparatively large: experiments

lead us to conclude that one should compare HOR with the order

ORD of the approximating autoregressive scheme. Let HOR/ORD

denote the ratio of HOR to ORD; identify time series as

follows: If HOR/ORD < I , then MA(q), with q < HOR-I. If

HOR/ORD > 4(say); and PVH dLcays slowly, then long.memory. If

PVH declines smoothly and exponentially, then an AR(p) is in-

dicated. If PVH has "bends", then ARMA. If PVH has many

level stretches with period T, then an ARMA model is indicated

of the form

I+t 161L+62L 2+...+ 9 L q Ct
Y(t) = g (t)

I-a LT

The final identification of the orders p and q should be by

parameter estimation or by use of S-arrays.

6. MEMORY TYPE AND ARMA TYPE BY S-ARRAYS

Gray, Kelley, and Mclntire (1978) define a double sequence
S-Array: Si (-q). S(-l) s*(O) S*(l), ... , Sn(q),

in m ' m ' in

m = 1, 2, ..., p , whose constancy patterns are in 1-1 corres-

pondence with ARMA schemes, and more generally with character-

istics of sequences satisfying

p(v) + alp(v-l) + ... + a pp(v-p) = 0 , v > q

The generalized partial correlation is defined by (n).-a (m)m m

where am (m) is the value of the last autoregressive coefficient

in an ARMA(m,n) scheme obtained by solving higher order Yule
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Walker equations

p(j) + aM(l)p(j-l)+...+ am (m)p0(j-m) = 0, j = m + i,... n+m.

Woodward and Gray (1980) show that

hIm(n)I = ISm(n)/S*(-(n+l))1 , n = 0, 1,....

The display which we call S-PLAY combines various statisti-

cal diagnostics with a new way of displaying S -arrays. For

frequency X (equal to 0 or 0.5) S-PLAY displays for each auto-

regressive order p = 1, 2,

V Innovation variance (12

p
PL Partial correlation 17 (0)1

P

-AIC The value of -AIC(p)

SPEC Autoregressive spectral estimator f (0) at

frequency X.

GSPI, GSP2 G-spectral estimators at frequency X

P2D Minimum value of 2nd differences of generalized

partial correlations Tt (n)- 2, (n+l)± , (n+2) ;

value of n at which minimum attained is printed as

value of symbol M. If one adopts p as autoregres-

sive order, one might consider M as moving average

order.

It should be noted that the rows of S-PLAY are the columns

of the shifted S-Array as defined by Woodward and Gray (1980).

The constancy patterns in the S-array which are character-

istic of an ARMA(p,q) are described below, as are the patterns

characteristic of long memory. S-PLAY provides diagnostics

which can be used to confirm our conclusions about a time series

model type as follows:
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No Memory Short Memory Long Memory

Infinities in ARMA(p,q) if Constant row 1

Column - 1 row p, column q, (trend)

column -(q+l) Constant row 2

have constant (seasonal)

values as des-

cribed in (a)

and (b)

(a) C2 = S (-(q+l)) = Sp(-(q+2)) = ... and C1 = Sp(q)

= S (q+l) = ... implies that Tp (q) = (r = ... ; in words,

if one solves for the coefficients of a p-th order autoregres-

sive scheme using high lag Yule-Walker equations of lag q,

q + i, ..., one obtains the same value for the p-th coefficient

a (p) from all of these sets of equations.
p

(b) -CI = Sq(P+l), CI 
= S q(p+2), .... (-1)1 C1 = S q(p+i),

(q) (q) .+ Sp+i(-(q+l)) for i > 1 , implies that ffp+l 7p+2 =

in words, if one solves (for i=l, 2, ...) for the coefficients

of a (p+i)-th order autoregressive scheme using high lag Yule-

Walker equations of lag q, one obtains value 0 for the last

coefficient ap+i(P+i)

It should be noted that experience and judgement is re-

quired to decide when a pattern of approximate constancy exists

in an S-array of an observed time series. Further the failure

of such patterns to exist should be expected as most time

series are not exactly an ARMA process, but at best are approx-

imately modelled by an ARMA process.
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7. CASE STUDY OF AN EMPIRICAL TIME SERIES ANALYSIS

The time series Y, called Fr eeze, and graphed in Fig. 27,

represents minimum temperatures (in degrees centrigrade) over

10 day intervals (with some 11 day intervals). There are 36

values per year. The sample size T = 992.

Step 1. Autoregressive Analysis of Y

Compute sample mean i = 5.02, sample variance R(0) = 27.4

For Y(t)-Y , compute sample spectral density f(X), sample cor-

relations p(v) and the sample spectral distribution function

F(X) 0(Fig. 2) has a strictly periodic appearance, with

periodicity 36. Sore noteworthy maximum values are P(l) = .7163,

p(36) = .6765, p(.73) = .6314. F(Fig. 1) rises linearly except

for a sharp jump of .66 at a frequency corresponding to a period

of about 36. The character of o and F leads us to suspect a

model of periodic signal S(t) plus white noise N(t):

Y(t) = S(t) + N(t) , (1)

S(t) = A cos -t + B sin t p = 36 (2)

p p

A model of quasi-periodic signal S(t) would be

S(t) - S(t-l) + S(t-2) = 6(t) white noise (3)

where = 2 cos 2fr/p = 1.97 for p = 36 . The variance of N(.)

is approximately 30% of the variance of Y(.)

Next one solves Yule-Walker equations in k(v) for successive

orders m = 1, 2, ..., M, where M is chosen in the range T/10

< M < 3T/4 , depending on the size of T. Here M = 80. Graphs

of log m2 AIC, and CAT are displayed in Figs. 3, 4. CAT

chooses m 36, m(2) = 39 as best and second best orders. It
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should be noted that for Freeze AIC and CAT are unusually flat

in the vicinity of their minimum order. The prediction variance

horizon (Fig. 5) indicates Freeze is a long memory time series;

the order I rows of S-PLAY indicate long memory; the innovation

variance a36 = .32 does not indicate long memory. The auto-

regressive spectral density estimator ?(X) of order 36 in Fig.

6 and second best order 39 in Fig. 8 indicates a sharp peak

at frequency 1/36 (with period 36); Fig. 7 shows that P matches

F.

Step 2. Analysis of Autoregressive Residual&

The residuals Y(t) = g36 (L)Y(t) of the AR(36) scheme yield

the conclusion that they are white noise under autoregressive

analysis (Figs. 9-16).

Step 3. Transformation of Long Memory Y to Short Memory Y

When Y has a long horizon, we seek to find a suitable

transformation, to short memory; we choose

2
Y(t) -g 2 (L)Y(t) , g2 (L) = I - 1.97L + L

Its variance 42.7 is larger than that of Y(t), which one can

explain by the approximate calculation Var [Y(t) - 2Y(t-l)

+ Y(t-2)] = 6R(0) = 8R(l) + 2R(2) . The raw spectral distri-

bution function (Fi2 .18) of Y(.) suggests high frequency

content. Its correlation function (Fig. 17) suggests a MA(2)

model since k(l) = -.6405, 0(2) = .1211 and these are the

only correlations much greater than .06k 2//T

The AIC and CAT determined (Fig. 19, 20) optimal autore-

gressive approximating order for Y is m 15 ; note that AIC
^2

is much flatter than is CAT near the minimum 015 .24

_'AL---Z__--------- I.--
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PVi (Fig. 21) decreases very quickly to zero, and HOR = 3 sug-

gests MA(2) S-PLAY does not seem to yield definite conclu-

sions, as it should not when the true model is a pure moving

average.

The model gl5 (L)Y(t) = £(t) yields one-step ahead predic-

tions with average squared error 8.7 whose ratio to the var-

iance of Y(t) is .32, exactly equal to the prediction variance

of the AR(36) scheme fitted to Y(t). One can conclude that

the iterative analysis

Y -- = Y -4£ = g1 5 = g1 5g2Y

has resulted in an AR(17) filter with the same forecasting

(and the same spectral estimation) properties as the AR(36)

model g3 6 (L)Y = E . As a model the iterated AR(2), AR(15)

model has more insight than the AR(36) model.

Step 4. MA Analysis of Y

The model Y(t) = (t) + 61 £(t-l) + $2 £(t-2), an MA(2),

suggested by the prediction variance horizon function and

correlations of Y(.), needs to be-confirmed and its parameters

estimated. An alternative approach to identifying the ARMA

type is to examine the successive models for Y determined by

our subset ARMA algorithm. The first model is MA(l), the

second model is MA(2). Thereafter various ARMA models are

determined whose residual variances do not decrease much. Con-

sequently we fit Y(t) by

Y(t) = e(t) - 1.6475 E(t-l) + .6382 e(t-2)

with residual variance .26 (compared with .24 for AR(15)).
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One concludes that an overall model for Y is an ARMA(2,2) model;

estimators of its parameters are

Y(t)-l.97Y(t-l)+Y(t-2) = e(t)-l.6475e(t-l)+.6382c(t-2)

The spectral density of the MA(2) model for Y is in Fig. 23.

The spectral density of the ARMA model for Y is in.Fig. 24.

Step 5. Signal Plus Noise Interpretation of ARMA Model

While the ARMA(2,2) model may not be most satisfactory for

forecasting, or for spectral estimation, it is most satisfac-

tory for insight. It suggests that the original time series

Y(t) satisfies (1) and (3), since 6(t) + N(t) - 1.97 N(t-l)

+ N(t+2) defines an MA(2)

A question which the Freeze time series may illustrate

is the question of how well autoregressive spectral estimators

do when applied to data which is a moving average, Fig, 25

displays window estimators of the spectral density of Y(t),

using a Parzen window with truncation points 16, 32, 64; the

best of these truncation points is 32, and it agrees with the

AR(15) spectral estimator in Fig..22. The periodogram being

smoothed is shown in Fig. 26.

Summary

The models we have fitted to Y(t) are as follows:

Steps 1,2: AR(36) g 3 6 (L){Y(t)-?} = E(t)

Step 3: AR(2),AR(15) g2 (L){Y(t)-?} Y(t)

g 1 5 (L)Y(t) = c(t)

Step 4: AR(2),MA(2) g2 (L){Y(t)- Y(t),

Y(t) = h2 (L)E(t)
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Step 5: Y(t) ? + S(t) + N(t), S(t) - 1.97S(t-1)

+ S(t-2) = S(t)

COEFFICIENTS a j OF AR(36) MODEL EajY(t-j) = c(t)

FOR FREEZE SERIES Y(t), t = 1, ... , 992

1-5 -0.1897 -0.0789 -0.0831 -0.0774 0.0082

6-10 -0.0457 -0.0052 -0.0385 0.0185 0.0522

11-15 0.0095 -0.0103 0.0337 0.0888 0.0373

16-20 0.0311 0.0400 -0.0047 0.0358 0.0230

21-25 -0.0196 0.0534 0.0493 0.0341 -0.0178

26-30 -0.0138 0.0234 0.0077 -0.0371 -0.0117

31-35 -0.0708 -0.0319 0.0131 -0.0722 -0.0410

36 -0.0456 Residual Variance = 0.32125

COEFFICIENTS aj AR(15) MODEL EatY(t-j) = E(t)

FOR TRANSFORMED FREEZE SERIES Y(t) = Y(t) - 1.97Y(t-1) + Y(t-2)

1-5 1.6390 . 2.0567 2.2628 2.2869 2.2303

6-10 2.0593 1.8400 1.5492 1.2572 1.0049

11-15 0.7548 0.4939 0.2857 0.1349 0.0482

Residual Variance = 0.24223

Successive Subset ARMA Models for Y(t) were:

Y(t) = e(t) - 1.647 c(t-1)

Y(t) - £(t) - 1.647 c(t-1) + .638 E(t-2)

Y(t) ~e(t) - 1.647 E(t-2) + .638 c(t-2) - .059 Y(t-5),

Residual variances are .359, .262, .259.
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8. CONCLUSIONS

The final model fitted to a time series will often be an

iterated model (with symbolic transfer functions G and g.)

Y(t) (t) -- J- (t) white noise

where Y(t) is the results of a transformation chosen to trans-

form a long memory to a short memory one. One should always

analyze the residuals of an approximating autoregressive filter

to determine if they are white noise.

Autoregressive analysis by Yule-Walker equations yields a

stationary autoregressive scheme; a non-stationary autoregres-

sive scheme may be fit by estimating its coefficients by or-

dinary least squares. Parzen (1981) introduces the terminology

ARARMA scheme for the iterated time series model with G non-

stationary autoregressive, and g, ARMA; an ARIMA scheme cor-

responds to a pure differencing operator for G.

A model frequently fitted to monthly economic time series

is the so-called "airline" model [see Parzen (1979)]:

*Y1)2 12
(I-L)(I-LI2 )Y(t) = (I-0 1L)(I-01 2 L ) E(t)

It seems doubtful that this model would be judged adequate by

the criteria proposed in this paper.

It may happen that long memory components continue to be

present even after several iterations; thus the final model

might be of the form

y(t)- Y(14 t M M(2) (t) - EMt

The iterated filter model can be used for forecasting, for

spectral analysis, and for model interpretation.
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