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Institute for Management Science and Engineering

Program in Logistics

KALMAN FILTER TECHNIQUES FOR CONTROL
OF REPEATED ECONOMIC SURVEYS#*

by

Wray Smith
Zeev Barzily

1. Introduction and Background

Statistical data from household surveys and administrative
records are widely used in formulas to allocate grant-in-aid funds or
other governmental benefits to state and local jurisdictions. A review
of U.S. programs appears in Gonzalez (1978). An explicit tradeoff be-
tween data collection costs in repeated surveys and an imputed cost of
misallocation of resources due to the use of imprecise survey data in
setting allocation levels was considered in Smith and Zalkind (1978) as
a scalar problem in deterministic inventory theory. The present paper
places such problems in a control theory framework accommodating vector
linear models of nonstationary economic processes measured by noisy
multi-item repeated surveys. Optimal rules are found for control of a

sequence of surveys, where there is a fixed charge plus unit costs of

*An earlier version of this paper was presented at the 2nd
Economics and Control Conference, Princeton University, Princeton,
New Jersey, June 2-4, 1980.
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surveying and an imputed quadratic loss associated with the imprecision

of the resulting state estimates of the observed economic process.

In this paper we analyze one model in which the number of com-
pleted interviews in a survey is equal to the designated number of
interviews and two models in which the number of completed interviews is
a random variable. The models are analyzed with the aid of an equiva-
lent sample size form of the Kalman filter that was derived in Smith
(1979). A rcelated inventory analysis of single-item repeated surveys
under random-yield sampling is set forth in Smith and Zalkind (1980).
Methods for time series analysis of repeated surveys are presented in
Scott and Smith (1974). Problems of the choice of loss function for
misallocation error are of practical importance, but they are not
treated in the precent paper, nor are problems of "distributive equity"
in allocations across states or local jurisdictions, as discussed in
Spencer (1979). In the models of this paper, we are estimating (track-
ing but not controlling) the state of the observed economic process,
and we are controlling the survey measurement subsystem; see Meier,
Peschon, and Dressler (1967). Also see Aoki and Li (1968), which dis-
cusses control problems with cost for observation, although not treating

the fixed-plus-variable cost structure of the present paper.

2. Formulation of the Models

In this section we formulate the models to be discussed in the
present paper, In the first two models (Sections 3 and 4) we are inter-
ested in the evolution of f(j) , a multivariate socioeconomic process
(v.g., money income or proportion of a population in poverty), through
discrete time points j , j=0,1,2,... . Here f(j) is an mx1 state
vector, and we assume that it evolves according to the vector random
walk

X(JH) = x()) + w(iHD) D

where w(j) - N(0,Q) . That is, w(j) has a multivariate normal dis-
tribution with a zero mean vector and known process disturbance

covariance matrix Q . Surveys of the process x(j) are taken once

-2 -
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every T units of time at k =T , 27, 3T, ..., rT, ... . (In one of
our stochastic models, T may vary.) We also assume that x(0) -~
N(E[x(0)] , C(0)) , where E[x(0)] and C(0) are known.

At each survey time nd(k) individuals are sampled, but only

N(k) completed interviews are obtained. We assume that P[N(k)>1] =1

The difference . nd(k) - N(k) 1is due to refusals to respond or incom-

plete observations. We assume that y(k) , the m-dimensional survey
measurement, 1s represented by the survey equation
N(k)
y(k) = x(k) + (1/N(k)) ) u, (k) , (2)
- - i=0 ~

where each ui(k) is an m X1 vector that is distributed normally

with a zero mean and measurement noise covariance matrix R . The ma-

-~

trix R 1is assumed to be known, time invariant, symmetric, and positive

definite. Both w(j) and the ui(k) are assumed to be serially uncor-
related.

We may find the best linear estimate of x(rT+j) , given
E[x(0)]) , C(0) , and the r measurements yr = (y(T), y(2T), ...,
y(rT)) , as a linear combination of the observations yr . We define

the estimation error xe(k+jlk) as
xE(kti k) = x(k+i) - K(k+j[k) ,
where
x(cti [l = E(x(k+) [y"] .

We also define the j-step-ahead estimation error covariance matrix
C(k+j|k) as the conditional expectation of the outer product of the

j-step-ahead estimation error vector given the r measurements; namely,

Cletglie) = ExS(ktg k) (x% (ki kD)) (3)

e e -y
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We now state a general optimal filter theorem for the vector
random walk models. Related proofs and derivations of Kalman-type fil-
ters for vector models may be found in Jazwinski (1970), Melsa and

Cohn (1978), or Sage and White (1977).

Optimal Filter Theorem for Vector Random Walk Models. The optimal (min-
imum variance) filter for the discrete system (1), (2) consists of dii-
ference equations for the conditional mean Q(k+jik) and the vsrtimation

error covariance matrix C(k+jlk) , for T=1,2,...,T

between surveys,

x(ktjlk) = x(k|k) , for k=T,2T,... , and j=1,...,T ,
Clbjk) = C(k]k) + 3Q 3 “
at surveys
x(kfk) = x(k|k-T) + K(k) [y(k) - &(k[k-T)] ,
Clk[k) = [I-K()] C(k|k-T) , >
where K(k) is the Kalman gain
K(k) = CCk|k-T) [CCk|k-T) +BGR)IT (6)

and B(k) 1is the sample noise covariance matrix obtained from R by

dividing each of its elements by N(k) . The second equations in (4)

and (5) are called the error covariance equations.

The first two models differ in the number of observations ob-
tained. In Model A we assume that the number of observations in each

survey is a known constant nd(k) =n In other words,

4"
PIN()=n,] = 1.

Model B assumes that a constant scalar designated sample size ny is

to be used for all survey times, that the obtained sample size is a

random variable with expectation Gnd , where 0<8<1 1is known, and

that the inter-survey intervals T are nonvarying.
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The third model (Model C) involves a continuous-—timne procesy--
a Brownian motion process. Here we assume that the sample sizes ob- {
tained are i.i.d. random variables and we allow the intersurvey periods
to vary as a function of the sample sizes obtained. The remaining as-

sumptions and the analysis parallel those of the first two models.

in all three models we are interested in determining @ (k) ,

orony o, the designated sample size to be used at time kK . we “otor-
L

mine the nd(k) that minimizes a cost per unit time function . . Ve
define J by

J = E[(l/T)(c0+clnd(k)+c2N(k)) + Lavg] , ()

wher> ¢ is the fited start-up cost of ordering a survey, ¢y is a
v

unit cost per designated item-interview (for m items), and ¢, is thc

2 1

addirional unit cost per obtained item-interview. Letting a; be a

loss weighting coefficient set by the decision maker, L is defined by
av /

T-1

ave a, trace [(1/T) jzo C(k+j k)]

(ol
i}

(8)

a, trace [§(k|k) + ((T-1)/2)Q]

e LWg is an imputed loss attributed to the use of survey estimates

of the state of the process and is proportional to the sum of the esti-
mat fun error variances. By (6), C(klk) is dependent on the realiza-

tion of N(k) through K(k)

5. Model A

We specify for Model A that there is a sequence of m-item surveys
of one homogeneous population with obtained sample sizes N(k) = nd(k) .

The filter gain K(k) of (6) may be written as

K() = Clktk=T) [C(k[k=T) + R/n ()17 .
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let us now introduce the concept of eguivalert cwnile oizc and show how
the error covariance equations in the optimal filter theorem may be use~
fully analyzed using this concept. Let the matrix §O(k+jik) be de-
fined by

N = B el ’Y2 =00, 0,11 (9)
/2 1/2 . . ) .
where R A = R . The ralman gain may then be wriiteid as
K(ky = ri/2 CITSS R12 p1/2 NG (k=T K20 o, o)

and thus we obtain a recursive relation in No(k}k) s

Ry(kik) = 0 ()T + Ny (k=T |k-T) [54-T5‘1/2 0 x1/2

N (-Tl-1)) 7L (1)

If only one item is surveyed (m=1), then Q and R (and K) are sca-

lars, the matrix No(kik—T) is replaced by the scalar No(klk-T) , and

K(k) = n, @) / [No(klk—T) + 0, ()]
and
No(klk) = n(k) + No(klk-T) .

This development leads to equivalent sample size relations to replace
the error variance equations in the optimal filter theorem for the

scalar case of Model A:
LCelween surveys,

. -1 -
Ng(kti k) = NyCk[k) [1+ QR N (k[W)] L

AL surseys,
_ . -1 -1
No(k{k) = n,(k) + No(k-T)k-r) {1+ TQR No(k—T[k—T)]

Here No(k+j|k) is the equivalent sample size remaining at time k+j

’

j time units after ordering new stock., If the system is in steady

state, NU(klk-T) or No(k+T’k) may be interpreted in inventory terms

as the "reorder point.'" Since nd(k) is the sample size of the survey

-6 -
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conducted at time k |, we .., iiterpret No(k;k) as rhe slze ol a4 sur-

vev ..at would be required to obtain the same degree¢ of precision of
estimate at time k as that provided by an optimally combined data set

of size ng(k) + No(k,k—T) .

Figure 1 depicts the pattern of deterministic decay ana replen-

ishment of equivaleant sample size for the scalar casc 0.

N .
SrGatis G

Returining to tne case where Q and K are macrices, usiog (b)),

(5), aca (4) in (7) we obtain

| trace ]Nal(k;k)gﬁ-((T“J)/V)Q]

I

N i< )y, T 1/T ( b
J(\O(l.k);J) (1/1){co+-clmnd k)] a

(1/T) [CO + < trace [yo(k|k) - No(k—T[k—T) .

(1+ 'I‘QR_ 1§() (k=T k=1) )“l] |

+ a, trace [gal(klk)34'((T—l)/2)Ql

The optimal pair (né(k) , T*) or, equivalently, (Ng(kik),T*) , can

easily be determined, since for our survey systems there always exists

a T, denoted Tmax , beyond which it is not possible to lengthen the

intersurvey interval T without violating 1 < trace[NO(k+T|k)] . Thas
we calculate (ng(k), T*%) by setting T at successive integer values,
r:l’z""’qux and computing the value of the sample size nd(k) which

minimizes J for each T . We then adopt the T corresponding to the

minimum of J over T

[t can be shown that when k is large the error covariance ma-
trices C(k|k), C(k+U|k+T), ... , will approach a limit, say C . Equiv-

alently, No(klk) will approach a steady-state matrix N, . If the

system is nearing steady state, then C(k!k—T) will also approach a

limit. From the covariance equation in (4), we then have
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Clkik=T) = €+ 1Q .

The steady-state Kalman gain K will be

K = (C+T1Q (C+1Q+ 1~</nd)'l ,
so that
C = (I-K) (C+TQ
‘That is,
Q= K(C + 1Q)
= (C+ TQ) (C+ TQ + R/nd)‘l (C+ 14,
oY

o Q—l C+T

O

- (@) R = 0. (13)

We solve (13) for ( , obtaining

¢ = —ag+ Y rame R gV w aPmnt? L aw

A numerical example of Model A

Suppose for m=2 the cost coefficients are

o 6 — eg _ 3 9
¢y = $10° , ¢, = $67.50 , c, = 0, and a = 2x10°

and the @ and R noise covariance matrices have the following numer-

ical ¢entries:

.00005  .00004 0.10 0.05
Q = and R = .

. 00004 .00007 0.05 0.25
- -1/2
Let D be the matrix of eigenvalues of Q 1/2 R Q 172 y
. 3140 -1978 1889 0

[2—1/2 R Q'l/2 = ]; then D = .

' ' -1978 5018 h 0 6269
We can construct an orthogonal matrix V whose columns are normalized
cigenvectors of Q—l/2 R Q_l/2 , so that Q-l/2 R Q-l/2 =VDV' ., We

-9 -
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will also have need of the matrix S = V' QV . ¥For the numerical
values above,
L8453 -.5344 .00009184 .00002619
vV = and S =
) .5344 .8453 " .00002619 .00002816
3
’ We will find it convenient to make the change of variarle « =
'i'/nd , where O ¢ i, is the sample size at each survey Lime. wu .SSuURo

the loss function appropriate to the end-use allocation formui: is a

quadratic loss

T-1

t lavg = @ trace (/) jzo (C+jQ)

Using (14) we obtain

1/2

3 = a, trace [-0/2 + (zb+ (T2/) )2 vrovy |
avg 1 < N - N

where we have used the property that trace[ABC] = trace[BCA] , that if

U is an orthogonal matrix that diagonalizes the matrix A , then U

Al/Z

. : . _ ' (172 /2.,
also diagonalizes , or if A = UBU' , then A = UB ', and

that trace{A] = trace[U'AU] = trace[B] ; see, for example, Bellman
(1970).

We may now write our cost function J for the two-item repeated

survey problem with scalar sample size n, and sampling interval T as

[
I

(/m [co+-c trace [—9/24-((T/nd)U+-(T2/4)l)]/2 Si

mnd] + a; S

1

/2

/2, . 2,01
+s,22 ,2+1 /4)

‘ 2,01
00/1 +c, m/z + a lsll(zdll4 T°/4) )

1 1 (2 d
- (q11+q22)/2] .

It can be shown that .I 1is convex in ny given T and convex in T

given ng - In practice, (né,T*) will be found in a region in which

J is convex in (nd,T) . Fixing T successively at 7T=1,2,...,10




years, wo solve  odf/uz = 0 lor 2z, and hence tar oo, - /e, by G

d
numerical scarch procedure. We then compute J 71or each T using the

minimizing ny and pick the 71 and ny combination with lowest aver-

age annual cost .J . For the given cost coefficients, numerical results

are displayed in Figure 2. Th=2 T and n, combination for which the

avecage cost ls mininized s V=3 yedars ané a2 5,70, e, wWa i

"
g = S875,473  per vear. As rigure 2 makes clear, Uic GVeTage (ool cdrve:
is rather flat in the neignborhood of the optimal T* uand cypircally i
survey administrator will not incur major additional costs by cnoosing
T+ 1 or 7% - 1 instead of T* . It may also be scen that sampling
too frequently is relatively more costly than sampling too seldom, as-
suming the correctness of the underlying random walk process model for
the socioeconomic variables. An administrator who is concerned that

the underlying process parameters may take unexpected jumps or exhibit
turning points, which are not modeled by the simple time-invariant ran-
dom walk models, would presumabl, opt for sampling more frequently than

the optimal interval found by this method.

I/

4. Model B

In this section we present a steady-state analysis of a vector

random yield model in which a fixed scalar designated sample size Ny

is used for all survey times, and T remains constant. In the use of a
fixed order size, the development resembles the treatment of random
supply in the inventory literature, but in our present analysis we have
level-dependent deterministic decay rather than the independent stochas-
tic demands of Karlin (1958). The stochastic nature of N(k) enters
the steady-state analysis in the case of a fixed n only through the

d
expected obtained sample size,

E[N(k)] = 9 n, -

e
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aoa random vield model) an ordering rule that requires ue to
order a fixed amounu @t every survey time is an "open loop" approacih in
the svnse that not all of the information available or to become avail-
able from the evolving history of the survey system is used in choosing

the sampling interval T and the designated sample size ny In the

apes Tad case treated here, we do not sccommedate the geaerel coase ondel

randon. viedd saapling where U omay vary stochasticoelov. olcer chae e

Ay TR TON N PR TR UL ron T hevoweS, baa o U g
T U S CIUE U & N5 Y RERDPSNNE & SUTATCRERUN ¢ S I O R
¥ . (9% - l
\,‘,)
SRR (rlwa)"n.l + a, trace [RIC(kRY ) + (Co=0p/2 0
) 2 o i .

Netso thai Uer kY rs pow saoochastically dependent ou Nk

.

Siece we asoume that the stochascic system is in steady stote, wo
- . . . . Lt . .
forine o, 0 s Gk 2 Uk Dok-1Y 0 oas the conditional oxpedova »roror

covaridne e

C o= BiC(k]k) |, ng» To Q0 Ry,

where is 4 known constant and nd = nd(k) tor all ® . Siace G

and R are positive definite, so are C and ¢ . For scalar sample

Slae 0y the € we seek is found by methods similar to those employed

tn Section 3 for Model A, which is a fixed-yield vector model with

ccalar sample size. The Kalman relations must now be expressed in the

a4 rcidatrons among expected error covariances, expected Kalman

A, and expected obtained sample size. We now have

Co= o= K| €+ TO)Y

e

- . -1
K= (C+ 1Q) [C+ TQ + E{IR/NK) ]| . ﬂ

chiis leads to the matrix equat ion
CQUC 4+ TC - TREL/NK] = 0. (16)

Ihis equation is of the form of Equation (13) except that it involves

expectations rather than deterministic quantities.

- 137 -
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Solving (l6) for ¢ we obtain, strictly paralleling (l4),

/2 ~-1/2

T E(/NGT QT2 R g 1z

C = -(T/2) Q + 91/2 ( + (T2/4)£]l/2 Q

so that, since E[g+—((T—1)/2)Q] = § + ((T-I)IZ)Q , We may substitute

the value of C found above into the cost function J given by (15).

The solution procedures tor Model A may then be appliced to {1iau gn?,T*;.

. Noder O

Model € is an extension of random-yield Model B. We coasider
here a scalar process which evolves in continuous time t with survey

measurements taken at time points k=1,2,... . Here we allow the

tk s

intersurvey periods k=1 to vary as a tunc-

T ol (T = - ;
o KL (M= gm0
tion of the obtained sample size N(tk_l) . We assume that the scalar
process is represented by the linear stochastic differential equation

dx(t) = x(t)dt + dB(t) , ty Nt (17)

where x(t) 1is a unidimensional Brownian motion process with

E[(dB8(t))?] = Q dt .

The survey equation (2) now becomes

N(t,)
y(e) = x(L) + A/N(t)) 121 ug(e)
B (18)
k=1,2,... and t0§ tk< tk+1 .

where y(tk) and ui(tk) are defined as before. As set forth in

Jazwinski (1970, Theorem 7.1), the optimal filter for the system (17)

and (18) becomes the continuous~discrete filter:
bnitwnen surmens,

ax(t|t)/de = x(t|t) ,
(19)
de(e]e)/dt = 20(t|t) +Q, t <t-t

K K+l °

- 14 -
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dl Surdey,

x(e lt) = x(e ) + K(e) ly(e) - x(eie)l,
_ (20)
C(tkltk) = 11 - K(t)] C(tkltk) ,
where the Kalman gain K(tk) is given by
K(t ) = c(:kit;) [c(tkgt;) + R/u(Lk)i_* , {21)

and Lk represents the time instant just before the survey couducted

(and instantaneously processed) at tk . As shown in Jazwinski (1970),

if we integrate the process equation in (19) over intervals [tk‘tk+1l ,
we may write
L+l
x(t ) = x(g ) + [ dE()
t
k
= x(tk) + w(k+1,k) ,
where
b+l
wik+l,k) = f dB(1)
x

By Jazwinski (1970, Theorem 4.1), {w(k+l,k)} is a zero-mean, white
aussian sequence with

ELet], k)] = (g, - £ )0,

and the continuous-discrete filter for Model C may be imbedded in a dis-

crete filter paralleling Models A and B. The integrated form of (19) is

x(t]t) = ﬁ(tkltk) ,
(22)
c(ele) = C(tkltk) (et )Q, ot et

We now analyzc Model C with response rate ¢(k) . Suppose that
~ v ™
is NO(CO) . The

the equivalent sample size on hand at time ty




i . ottt al Ul o, N U S
! ) 0
ot S I T T B R )nl"l' (r "t ! (2
. t : hed \ . 2
0 0 0 0y o’ STARNTRRRTEN
When N”(L {l”) just falls to a preselected value n. (the reorder
pointg ), 1 n a new survey of designated sample size nl is ordered
r ¢
[ f ) Vi Coliana L [N o . '
I [ N . 5 Yoy Al; - t\'( (vl.\-~ Lot [y . AN ’ L S
. ' oA L g oo T S T ) Lo
¥} : v i i
RETITRI S L P .\(L]/ L T .l ui e wecds, b S
voeo Lave 1 reacwal process with renewdls occurring at the ©lae points
whoro N I”) nhs just decaved to the preselectoed reorder poing
.
: .
r
We now denote by ,'(lk) the response rate for the sarvey con-
ducted at o t, . We assume that the ,t\(tk) are i.i.d. random variables
[N
“itir g known distribution and that 0 - ‘:‘(tk) ol L We thus obtain
No(t, ot = n_+ u(t,)n
()( k' k) r ( kK'd
el
FIN (1t t | = n o+ on, o,
| 0 "k k) r d
[SEETRE IR bl |
in Javentor. terms, we thus have a prohlem of < tochastic reolen-
duweent o with Jdeaipoated order size ”l , delivered order size N({k) R
<
vl aodated vquivalent sample e N()(tk’tk) . uiven the realization
o "H“k"l ) , we then have level-dependent deterministic decay from
1
T.()(lL ,lk) down to thoe reorder point nr . The time required for this
Goecay Lo take place T is found in terms of n n and 2 (t
l . k+l L] r ‘ d s ¢ k)
tor b




- i o

, . -1, L.
= {r/Q) ll/nr - (nr+-u(Lk)nd) - (24

"kt
We may also write

-1 -1
k) = 0OR n 1+ t,)n L dn . 2
K+1 ) p o Fele a1 /i g (25)
A tvpical pattera of level-dependent determinisiie Jecay and stociiaocse

replenishment is depicted in figure 3.

The average ordering cost, G (e, )) , over an interval of
avg I

\]v t "_ = Y - ‘. .>‘
feneth Ik+l Lk+l LK , s

T;l1 Ley + ey +eyolt ))ny,]

li

“nvg(h(lk))

{(i6)

_] R
QR + - i ) y
2 o, (g + e Ing) leg + (ep+eut il /7 eleon .
Since C(titk) =R / NO(t}tk) , we may write the average quadratic loss

L”Vg(Q(tk)) over the interval Tk+1 as

k+1

t
= (- o () :
PN CICRI I CIVAIS tf cCiiedr
k

which yvields

g (P = @R/2) 11/n + 1/ G+ et on) ] 7

av
I'sing (8) and (15), we obtain the cost function J as

L A R CICRO I S CICR ) I (28)

It can be verified by taking second derivatives that J 1is convex in

n_ ., 1 <n_, for fixed n, , 0<n,, and in n, , 0 < n for

r r d d d d’

fixed N | n. - If we compute the determinant of the Hessian of

v + quo , we find that for some (but not all) combinations of values

, n, , and the cost coefficients the determinant is negative.

Thercefore, 1 is not convex in general. Nonethcless, in practice there

- 17 -
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1o el Sty

Lo el i (,.‘-r",n’«('i) o U oL ohe dnloerior o osoreglon o owalan o s

convex and it may be found as an iterative solution to the pair of cqua-

tions L/ 0, Sd/an =0,
I d
Casce ot Uniform &
i Lot Case oioaounidsorm D o ga b

: - = £odmin N
[ S = larivy/i o

) . -1 L
o1y = A = (b-a) tog(b/a)

-1 - .
."\nl + b o= (l/::d)(u—-‘l) Lug|(nr 1o (J),’(nr r mu,), R
~er o Lt
e AT (] + i ()
Mavy, ) f .’IV}'.\ .
- D ) )
IR A/ et At eenTen o eon o, 4+ oean i 29
W teguA g b ey 2D 0r Mg eyl (29)

7 . -1 N N
f (;all\/._) [I/:1r+(l/r1(l)(l)-:l) ]ogl(nrfhnd;/(nrJr;md;]_] .

Now o omay be minimized over (nr,nd) by standard itcerative methods
closcly paralleling those used for (s,q) inventory problems. A numer-
ical cxampic of Model € with a uniform ¢ is portrayed in Figure 4. As

rsoshown in o Smith (1980), a Markov chain set-up may also be used to tind

anooptimal rule,




i Uheberm oo (08 g, 7
; O = o000y . o= o))
i \ ayo= RS Lo = ST
. N ! .
\
- 2,00 N
- . AN
. ¥
~
. . ~ )
~ POricoivie s e T
\\ .
Coliv [N
- UL U
5690,000
$5640,000 .
) . + = slobal optimum
= (329.2, 4024.1)
b 0 i I
! expected annua
| ~ . : .
! N . cost = SH19,000
| N
l .
o) e ©
0 T
l \""'——*O o —— w
| J
( . trnjcvtor‘v of
! 000 . * conditionally
( > ) . optimal n
: d
! * . Slven n
| ) T r
, ' .
) . .
|
-~ - -
: | 250 375 500 625 750
: | !
1; S R o RS N S
. ) 11
| r
Il
f Figore 4.-=Designated sample size Ny versus reorder point .t

isocost contours for example of Model C.

- 20 ~




AOR T ML and ML

tar absery

Lah=-1/5.

Clig Loty ag

AN P O T

Mot e =t

MG L NG e and i
vditbon.
S, AL b and

using time

A M

PESCHON, and R. M. DRESSLER (1967).

EL(1965). Optimal discrete=time control witi: o ot

ation. L O P B R LRV IR T T BTN
S '
i /'(‘,, ) cL X COTLHLits G et uSee i i e e

Poderad

s, Ameriean Statisticon ) Seoci s don ) Voo -

Lo Tl L o SNV e T AT (RN S e

Lo Vo,

R . , L R

. Steady state solutions.,

ri, cds,), Chapter 14, Stanfora oniversity lress,

Calitornia.

Optimal cantrel o

T P - R
I RS SR AN e o

L osuboestems,

and . Scea
Stantord,
D150 I U DU I
M eI
AC--10 0 H28=530,
; Vigss, b b and

Do b COBN (T978) . el i s T e e .
Iy New York,
oG WHETER, T (1977). fﬁ/fwwm,A:u"‘u‘.\ oL U
Prentice-Hall, Fnglewood Cliffs, New Jorses.

Moo SMITH (1974).

Analyvsis of repeated suarveys

oot i

sories merhods.,

. b, 674-678.

AT g

A S iRt A e i e AL AR SN b SRR




DL (1968). Optimal discrete=tine conteol with

abservation, A R A T YU N AR A RV Y PR PO BRI I L ,

Lo Vo
1o 7R . s dects ol forwlas dne deta dseu
Poderal tands. I T s T
Lol iy, Ameriean Statistical Asmoccinoie
(’I‘/]”’). “'r‘ it S Spe et i o

Now Yook,

(1058) . Steady state solutions.  dn haS T T e

T e vy ] Py ecei e (KL ArTow

Seari. eds.). Chapter 14,  Stanford iiniversity

California.

PESCHON, and R. M. DRESSLER (1967). Optimal control

Goarement subsvstems. TR Unomiccce by i st o

D28=-530.

D, L. COHN (1978).  Doeeiciows o d i Tt

Secraw-tii 1, New York.

eing time series methods, dournl o}

oG, WHITE, TIL (1977) . Ot imaan

brontico=-Hall, Enpglewood Cliffs, Hew Jersew.

SO, L SMITTH (1974). Analvsis of repeated survevs

.

o

oL 69, 674-678.

Fan




B N A N T L Y N N O S P TR NP
npublished technical note,

SHUTH, W.o (1680) . Sample size and timing decisionas for reocated secic

cronomic survevs.  DLoSce. dissertation, dhe Goovee dasbiicooton

Washinrton, oG,

SMIEPH, WL oand DL ZASLELND (1uso) ., Inventory anaic Ll of o aied ac
under roadom=vicld sampling,  Paper prescntod ot Anaual Yoot ine
Gl the Ameriean Sltat istteal Associalion, sool 1o g v e
seareh Mothods, Howston, August L=14, 1980,

SPERCERL B (1979) 0 Benetit-cost analysis of data uscd o ol cdaic

Punde: seperal revenue sharing,  PhoD, disscrtation, Yol

University,

o - A PRy T TG




ha T e AR SN e P e e e

THE GEORGE WASHINGTON UNIVERSITY

Program in Logistics

Distribution List for Technical Papers

The George Washington Universfty
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebowitz
Dean Henry Solomon

ONR
Chief of Naval Research
{Codes 200, 434)
Resident Representative

QPNAV
oP-40
DCNO, logistics
Navy Dept Library
NAVDATA Automation Cmd
OP-964

Naval Aviation Integrated Log Support
NARDAC Tech Library

Naval Electronics Lab Library

Naval Fac{lities Eng Cmd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Sys Cmd Library

Naval Research Braach Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Ship Eng Center
Philadelphia, Pa.
Washington, DC

Naval Ship Res & Dev Center

Naval Sea Systems Command
PMS 130611
Tech Library
Code 073

Naval Supply Systems Command
Library
Operations and Inventory Analysis

Naval War College Library
Newpore

BUPERS Tech Library
mMso
Integrated Sea Lift Study
USN Ammo Depot Earle
USN Postgrad School Monterey
Library
Dr Jack R, Borsting
Prof C. R. Jones
US Marinc Corps
Commandant
Deputy Chief of Staff, R&D
Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer
Commanding Officer
USS Francis Marion (LPA-249)
Armed Forces Industrial College
Armed Forces Staff College

Army War College Library
Carlisie Barracks

Army Cmd & Cen Staff College

Army Logistics Mgt Center
Fort Lee

Commanding Officer, USALDSRA
New Cumberland Army Depot

Army Inventory Res Ulc
Philadelphia

Alr Force Headquarters
AFADS- 3
LEXY
SAF/ALG

Griffiss Air Force Base
Reliability Analysis Center

Gunter Air Force Base
AFLMC/XR

Maxwell Air Force Base Library

Wright-Patterson Air Furce Base
Log Command
Research Sch Log
AFALD/XR

Defense Documentation Center

National Academy of Sciences
Maritime Transnortation #es Board lLibrary

National Bureau of Standards
Dr B. H. Colvin
Ur Joan Rosenblaty

National Science Foundation
NalLfonal Security Agency
Weapoa Sy<tems Evaluation Group
British Navy Staff

Nat ional befensce Hdqtrs, Uttawa
Logistics, OR Analysis bstabhlishment

American Power Jet Co
George Chernowitz

GCeneral Dynamics, Pomona

General Research Corp
br Hugh Cole
Library

Logistics Nanagement Institute
Dr Murray A. Geisler

MATHTEC
D- Eljot Feldman

Rand Corporation
f.ibrary

Carnegie-Mellon University
Dean H. A, Simon
Prot G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof M. Mesarovic
Pro! 5. Zacks

tornell University
Prol K. F. Bechhofer
Prol R, «. Conwav
Prot Andrew Schultz, Jr.

Cowles Foundatfon for Research in Economics
Prof Herbert Scarf
Frol Martin Shubik

Florida State University
Prot K. . Bradley

Harvard L. ,versity
Prot K. J. Arrow
Prot W. ¢, Cochran

Prot Arthur Schleifer, Jr,

Princeton University
Frol Ao W, Tucker
Prof ). W' Tukey
Prof Ceotfrev S. Watson

B ER A T TN R T TR NS T, FOSTRINE PR M T




Purdue University
Prof $. S. Cupta
Prof H. Rubin
Prof Andrew Whinston

Stanford University

Prof T. W. Anderson
Prof G. B, Dant2ig
Prof F. S. Hillier
Prof D. L. Iglehart
Prof Samuel Karlin
Prof G. J. Lieberman
Prof Herbert Solomon
Prof A. F. Veinott, Jr.

University of California, Herkeley

Prof R. E. Barlow
Prof D. Gale
Prof Jack Kiefer

Prof Rosedith Sitgreaves

University of California, Los Angeles

Prof J. R. Jackson
Prof R. R. O'Neill

University of North Carolina

Prof W. L. Smith
Prof M. R. Leadbetter

University of Pennsylvania
Prof Russell Ackoff
Prof Thomas L. Saaty

University of Texas
Prof A. Charnes

Yale University
Prof F. J. Anscombe
Prof 1. R. Savage

Prof 2, W. Birnbaum

University of Washington

Prof B. H. Bissinger

The Pennsylvania State University

Prof Seth Bonder
University of Michigan

Prof G. E. P. Box
University of Wisconsin

Dr Jerome Bracken

Institute for Nefense Analyses

Prof H. Chernoff

Mass. Institute of Technology

Prof Arthur Cohen

Rutgers - The State University

Mr Wallace M. Cohen

US General Accounting Office

Prof €. Derman
Columbia University

Prof Masao Fukushima
Kyoto University

Prof Saul [. Gass
University of Maryland

Dr Donald P. Caver
Carmel, California

Prof Amrict L. Goel
Syracuse University

Prof J, F. Hannan

Michigan State University

Prof H., O. Hartley
Texas A & M Foundation

tir Gerald F. Hein
NASA, Lewis Research Center

Prof W. M, Hirsch
Courant Institute

Dr Alan '. Hoffman
1BM, Yorktown Heights

Prof John R. Isbell
State University of New York, Amherst

Dr J. L. Jain
University of Delhi

Prof J. H. K. Kao
Polytech Institute of New York

Prof W. Kruskal
University of Chicago

Mr S. Kumar
University of Madras .

Prof C. E. Lemke
Rensselaer Polytech Institute

Prof Loynes
University of Sheffield, England

Prof Steven Nahmias
University of Pilttsburgh

Prof D. B. Owen
Southern Methodist University

Prof E. Parzen
Texas A & M University

Prof H. 0. Posten
University of Connecticut

Prof R. Remage, Jr.
University of Delaware

Prof Hans Riedwyl
University of Bern

Dr Fred Rigby
Texas Tech College ~

Mr David Rosenblatt
Washington, D. C.

Prof M. Rosenblatt
University of California, San Diego

Prof Alan J. Rowe
University of Southern California

Prof A. H. Rubenstein
Northwestern University

Dr M. E. Salveson
West Los Angeles

Prof Edward A. Silver
University of Waterloo, Canada

Prof M. J. Sobel
Georgia Inst of Technology

Prof R. M. Thrall
Rice University

Dr S. Vajda
University of Sussex, England

Prof T. M. Whitin
Wesleyan University

Prof Jacob Wolfowite
University of South Florida

Prof Max A. Woodbury
Duke University

December 1978

VAL o palke e e S e —




R S

e T

" THE GEORGE WASHINGTONTUNIVERSITY ..
= 9 'gznsnlg ElalRSlEPDLAQUE : ’ ) . Y

A VAULT FOR THE FUTURE
IN THE YEAR 2056 _
IBL YAuULY AND

-
STORY OF ENGINEERING IN THIS YEAR OF THE PLACING OF )
RDS OF THER &

'«éﬂ%inasnlnc HOPES FOR THE TOMORROWS AS WRIFIEN IN THE RECO
"FOLLOWING GOVERNMENTAL AND PROFESSIONAL ENGINEERING ORGANIZATIONS AND

i?THASE OF THIS GEORGE WASRIRGTON UNIVERSITY. . o
' . . BOARD OF COMMISSIO STRICT OF COLUMBIA .
UNITED STATES ATOM COMMLISSION ;oo
- DEPARTMENT OF TH : ED STATES OF AMERICA . ;
DEPARTMENT OF THE | . STATES OF AMERICK -
DEPARTME F TH . ' NLTED SIATES OF AMERICA
v AERONAUTICS - 3
' EPARTMENT OF COMMERCE"

e )

~
o
7]

N0xAARZ2

>Om>» >
2

z

-ZX3n
m—=m
Faxz

GINEERS .

LLURGICAL ENGINEERS:
‘%FCE‘SS\ONAL ENGINEER
ASHINGTON

m
—N e
=Z2<0

R

z_-
'mV’ﬁ'
——

»w 0Oz

m? mo-~
zZ0z

x

-
xOCq
Le=Cm
Gz €

(=]

'SOCTETY v iy

B NATIONAL AGA SCIENCESY

THE PURPOSE OF THIS VAULT IS
% - CHARLES HOOK

HiS "ENGINEERING CO
HIS NATION. AND T El

BY THE GEORG

<, l.
ING ,

"WE .BOARD OF TRUSTFE!

' ‘st @é e O
mzu NIVE

To cope with the expanding technology, our society must
be assured of a continuing supply of rigorously trained
and educated engineers. The School of Engincering and
Applied Science is completely committed to this ob-
jective.

W-ﬁ@% e

[ N,
«



