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I. Introduction and Background

Statistical data from household surveys and administrative

records are widely used in formulas to allocate grant-in-aid funds or

other governmental benefits to state and local jurisdictions. A review

of U.S. programs appears in Gonzalez (1978). An explicit tradeoff be-

tween data collection costs in repeated surveys and an imputed cost of

misallocation of resources due to the use of imprecise survey data in

setting allocation levels was considered in Smith and Zalkind (1978) as

a scalar problem in deterministic inventory theory. The present paper

places such problems in a control theory framework accommodating vector

linear models of nonstationary economic processes measured by noisy

multi-item repeated surveys. Optimal rules are found for control of a

sequence of surveys, where there is a fixed charge plus unit costs of

*An earlier version of this paper was presented at the 2nd

Economics and Control Conference, Princeton University, Princeton,
New Jersey, June 2-4, 1980.
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surveying and an imputed quadratic loss associated with the imprecision

of the reSulting state estimates of the observed economic process.

In this paper we analyze one model in which the number of com-

pleted interviews in a survey is equal to the designated number of

interviews and two models in which the number of completed interviews is

a random variable. The models are analyzed with the aid of an equiva-

lent sample size form of the Kalman filter that was derived in Smith

(1979). A related inventory analysis of single-item repeated surveys

under random-yield sampling is set forth in Smith and Zalkind (1980).

Methods for time series analysis of repeated surveys are presented in

ScLtt and Smith (1974). Problems of the choice of loss function for

misallocation error are of practical importance, but they are not

treated in the present paper, nor are problems of "distributive equity"

in allocations across states or local jurisdictions, as discussed in

Spencer (1979). In the models of this paper, we are estimating (track-

ing but not controlling) the state of the observed economic process,

and we are controlling the survey measurement subsystem; see Meier,

Peschon, and Dressier (1967). Also see Aoki and Li (1968), which dis-

cusses control problems with cost for observation, although not treating

the fixed-plus-variable cost structure of the present paper.

2. Formulation of the Models

In this section we formulate the models to be discussed in the

present paper. In the first two models (Sections 3 and 4) we are inter-

e ted in the evolution of x(j) , a multivariate socioeconomic process

(e.g., money income or proportion of a population in poverty), through

discrete time points j , j=0,l,2,.... Here x(j) is an mx 1 state

vector, and we assume that it evolves according to the vector random

walk

x(j+l) - x(j) + w(J+l) , (1)

where w(j) - N(O,Q) . That is, w(j) has a multivariate normal dis-

tribution with a zero mean vector and known process disturbance

covarlance matrix Q . Surveys of the process x(j) are taken once

-2-
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every T units of time at k = T , 2T, 3T, ... , rT, .... (In one of

our stochastic models, T may vary.) We also assume that x(0)

N(E[x(O)] , C(O)) , where E[x(O)J and C(O) are known.

At each survey time nd(k) individuals are sampled, but only

N(k) completed interviews are obtained. We assume that P[N(k)> 1] = 1

The difference n d(k) - N(k) is due to refusals to respond or incom-

plete observations. We assume that y(k) , the m-dimensional survey

measurement, is represented by the survey equation

N(k)
y(k) = x(k) + (i/N(k)) Y ti(k) , (2)

i=0

where each u.(k) is an m xl vector that is distributed normally

with a zero mean and measurement noise covariance matrix R . The ma-

trix R is assumed to be known, time invariant, symmetric, and positive

definite. Both w(j) and the u.(k) are assumed to be serially uncor-

related.

We may find the best linear estimate of x(rT+j) , given

E[x(O)] , C(0) , and the r measurements yr = (y(T), y(2T),

r
y(rT)) , as a linear combination of the observations y . We define

the estimation error x e(k+jlk) as

x e(k+jlk) = x(k+j) - (k+jjk)

where

x(k+j k) = E[x(k+j)fyrl

We also define the j-step-ahead estimation error covariance matrix

C(k+jlk) as the conditional expectation of the outer product of the

j-step-ahead estimation error vector given the r measurements; namely,

C(k+jlk) = E[xe(k+jlk) (xe(k+jIk))'] (3)

-3-
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We now state a general optimal filter theorem for the vector

random walk models. Related proofs and derivations of Kalman-type fil-

ters for vector models may be found in Jazwinski (1970), Melsa and

Cohn (1978), or Sage and White (1977).

Optimal Filter Theorem for Vector Random Walk odclc. The optimal (min-

imum variance) filter for the discrete system (1), (2) consists of dil-

ference equations for the conditional mean x(k+jlk) and the ustmation

error covariance matrix C(k+jlk) , for T=1,2,...,T m~ max

ho tweoen aurvco,

(k+jjk) =x(kjk) , for k=T,2T,... , and j=l,...,T

(4)
(:(k+jlk) = C(klk) + jQ

at EUrveyr'

x(kjk) = x(klk-T) + K(k) [y(k)- (kjk-T)]

(5)
C(klk) = [I- K(k)] C(kjk-T)

where K(k) is the Kalman gain

K(k) = C(kjk-T) [C(klk-T)+B(k)]-  (6)

and B(k) is the sample noise covariance matrix obtained from R by

dividing each of its elements by N(k) . The second equations in (4)

and (5) are called the error covariaorc equations.

The first two models differ in the number of observations ob-

tained. In Model A we assume that the number of observations in each

survey is a known constant n d(k) = n . In other words,

PdN(k) = nd I

Model B assumes that a constant scalar designated sample size nd is

to be used for all survey times, that the obtained sample size is a

random variable with expectation Ond , where 0< 0< 1 is known, and

that the inter-survey intervals T are nonvarying.

-4-
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Che third model (,odel C) involves a continuous-time procksf---

a Brownian motion process. Here we assume that the sample sizes ob-

tained are i.i.d. random variables and we allow the intersurvey periods

to vary as a function of the sample sizes obtained. The remaining as-

sumptions and the analysis parallel those of the first two models.

li all three models we are interested in determining ( ,

or nd , the designated sample size to be used at time K . io Lv:-

mitne tih nd(k) that minimizes a cost per unit time function e

define J by

J = E[(l/T)(c0+c1nd(k)+c2N(k)) + L avg]

wher:, k, is the fl.ced start-up cost of ordering a survey, c. is a

unit cost per designated item-interview (for m items), and c is t;.(

additional unit cost per obtained item-interview. Letting a I be a

loss weighting coefficient set by the decision maker, L is defined byavg

T-1
Lavg = a trace [(lI/T) I C(k+jlk)]

j=0 (8)

= aI trace [C(klk) + ((T-I)/2)Q]

lIhe Ig is an imputed loss attributed to the use of survey estimates
avg

,,f the state of the process and is proportional to the sum of the esti-

at ion error variances. By (6), C(klk) is dependent on the realiza-

tion of N(k) through K(k)

3. Model A

We specify for Model A that there is a sequence of m-item surveys

of one homogeneous population with obtained sample sizes N(k) = nd(k)

The filter gain K(k) of (6) may be written as

K(k) = C(k~k-T) [C(klk-T) + R/nd(k)]-i

-5-



let uis now introduce the concept of " ,.;rvc;t and show how

the error covariance equations in the optimal filter theorem may be use-

fully analyzed using this concept. Let the matrix N0 (k+j k) be de-

fined by

No(k+jik) R 1/2 C-1(k+jik ) R1/2 , j=O, .... .1 ,P (9)

1/2 1/2
where I= . The Kalman gain may then !L writ UL Z :

1/2  -i1 1/2 1/2 -1 1/2

N 0) I,(Kik-T) R [R N_ (kik-T) R -i i/ni

and thus we obtain a recursive relation in No(kik)

-1/2 -1/2 -No(klk) = nd(k)I + N 0 (k-Tlk-T) [1+TR
-  Q P-  IN (k-Tjk-T)]-. (11)

d - -0 -0

If only one item is surveyed (m=l), then Q and R (and K) are sca-

Lars, the matrix N0 (kik-T) is replaced by the scalar N0 (klk-T) , and

K(k) = nd(k) / [N0(klk-T) + nd (k)]

and
N0 (klk) = nd(k) + N0 (klk-T)

'This development leads to equivalent sample size relations to replace

the error variance equations in the optimal filter theorem for the

scalar case of Model A:

N (k+jlk) = N 0 (kjk) [1 + jQR -I N (klk)]-

N0 (kfk) = nd(k) + N0(k-Tjk-T) [1 + TQR- 1 N 0(k-Tjk-T) -1

Here No(k+j k) is the equivalent sample size remaining at time k+j

. time units after orcering new stock. If the system is in steady

state, N0 (klk-T) or N0 (k+Tlk) may be interpreted in inventory terms

as the "reorder point." Since n d(k) is the sample size of the survey

.6-



coducted at time k ,, ..1 iIterpret N0 (k k) !J! ,I ze 'Ur-

VyV would be required to obtain the same degree of precision of

estimate at time k as that provided by an optimally combined data set

of size nd(k) + No(klk-T)

Figure 1 depicts the pattern of deterministic doe&i, .io n ril -

isnent of equivalent sample size for the scalar

kLwturi,ing to toe case where Q and N ar , rurcc., ,:if )

(5), ai-mu (9) in (7) we obtain

.( k:k),T) = (1/T)[c+clmnd(k)] I- a1 trace IN- (k k)R+ ((T-1),'2)Q,

= (lI/T) [c0 + c1 trace [N0 (kik) - 0(k-T k-'T)

T- NC

(12)

4 a trace [Nol(klk)R+ ((T-1)/2)Qj

The optimal pair (n*(k) , T*) or, equivalently, (N*(k k),T*) , can

easily be determined, since for our survey systems there always exists

a T , denoted T , beyond which it is not possible to lengthen themax

intersurvey interval T without violating 1 K trace[N 0 (k+Tlk)] Thus

we calculate (n*(k), T*) by setting T at successive integer values,

C1, 2 T FI and computing the value of the sample size nd(k) which""" max

minimizes .1 for each T . We then adopt the 'T corresponding to the

minimum of J over T

it can be shown that when k is large the error covariance ma-

trices C(kjk), C(k+Tjk+T), , will approach a limit, say C . Equiv-

alently, N0 (klk) will approach a steady-state matrix N If the

system is nearing steady state, then C(klk-T) will also approach a

limit. From the covariance equation in (4), we then have

-7-
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C(k k-r) - C + TQ

The steady-state Kalman gain K will be

K = (C + TQ) (C + TQ + R/n

so that
C = (I -K) (C + TQ)

Chat is,

TrQ = K(C I 'TO)

(C + TQ) (C + TQ + R/n d) (Ct +C,

or

C Q C + T C- (T/n) R =3)

We solve (13) for C , obtaining

c: = -(T/2)Q + Q112 f(T/n)Q-1/2 R Q-l/2 + (1 2/4)1]1/2 Q 12 (14)

A numerical example of Model A

Suppose for m=2 the cost coefficients are

c 0 = $106 , c = $6/.50 , c2 = 0 , and a, 2x109

and the Q and R noise covariance matrices have the following numer-

ical entries:

[ .00005 .000041 ~01 .5
.00004 .00007 JL0.05 0.25

Let I) be the matrix of eigenvalues of Q- -2 ,

-1/2 1/2 3140 -19781 [1889 01
501 1 then D = 2

1-1978 5018 0 0269 I
We can construct an orthogonal matrix V whose columns are normalized

cigenvectors of Q- /2 R Q , so that Q-/2 R Q-1/2 = V D V' We

-9-



will A.1, ha Lve need of the matrix S V' Q v . Four the numerical

values above,

[.8453 and4S [.00009184 .0000z619]

.5344 .8453 L.00002619 .00002816j

1e wi 1 find it convenient to make the chinge o4 varia'!, I .

i/1. , wherc' 0i d is the sample size at each uvxy LLT. .

L1e loss funcLion appcoprite Uo the end-use a]lociitLon ,:rnuii im

quadratic loss

T-1
a = a trace [(l/T) , (C-,jQ)avg j=0

iusing (]4) we obtain

avg a1 trace [-Q/2 + (zD+ (T2/A))1i/V

where we have used the property that trace[ABC] = trace[BCAJ , that if

11 is an orthogonal matrix that diagonalizes the matrix A , then U
alodaoaie 1/2 A1/ 2  U1/2'

lso diagonalizes A 1 , or if A = UBU' , then A 1 = UB .' , and

that trace[A] = trace[U'AU] = trace[B] ; see, for example, Bellman

(1970).

We may now write our cost function J for the two-item repeated

survey problem with scalar sample size nd  and sampling interval T as

JI = (I/T) [c0+clnn + a1 trace j-Q/2+ ((T/nd)1)+ T2 /4)1)1/2 S1
=~ 1Ii' O d + a1 d ( /)) 5

= c(/T + cI m/z + a [S 1 1 (zdt+T 2 /4)l/2 +s 22(Zd22+T2 /4)1/2

- (ql 1+q 2 2 ) / 2]

It can be shown that .1 is convex in nd given T and convex in T

given nd . In practice, (n*,T*) will be found irn a region in which

,J is convex in (nd,T) . Fixing T successively at T=1,2,...,1O

- 10-
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numerical search procedure. We then compute .1 for each F using the

minimizing nd and pick the '' and nd combination with lowcst aver-

age annual cost .1 . For the given cost coefficients, numerical results

are displayed in Figure 2. The T and nd combination for which th.

Cot"',Q i'.sL imilmizcl '3 YLars ant - .

47i per year. , r', .,;ure 2 makes ciear, i., a, , . car .

is ra'her flat in cite nci;;iaborhood of the optimal T* ana ry dC7oa 11

survey administrator will not incur major additional co-ts i'y cLoosing

'1* 4 1 or T* - I instead of T* . It may also be seen that sampling

too frequently is relatively more costly than sampling too seldom, as-

suming the correctness of the underlying random walk process model for

the socioeconomic variables. An administrator who is concerned that

the underlying process parameters may take unexpected jumps or exhibit

turning points, which are not modeled by the simple time-invariant ran-

dom walk models, would presumabl opt for sampling more frequently than

the optimal interval found by this method.

4. Model B

In this section we present a steady-state analysis of a vector

random yield model in which a fixed scalar designated sample size nd

is used for all survey times, and T remains constant. In the use of a

fixed order size, the development resembles the treatment of random

supply in the inventory literature, but in our present analysis we have

level-dependent deterministic decay rather than the independent stochas-

tic demands of Karlin (1958). The stochastic nature of N(k) enters

the steady-state analysis in the case of a fixed nd only through the

expected obtained sample size,

E[N(k)] = 0 nd

- 11-
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1, :1 raIlmi iie 1A mod1t , aI orde ring ruIt that r, q li rL, u t

)rd,.r I xi.d kniotL 1. evate-y survey t ime is a "open loop" approaci -i

(he s4 nst. that not all of the information available or to become avail-

able from the evolving history of the survey system is used in choosin,;

the sampling interval T and the designated sample size n d In the

lpI ia rc: tc d iivreo, w ' do 11ot VI ccoi, '.at th. 21 C .- .,-

2' , + a tr Lace IlU ( k ) * ((.- )/2

,, :[t,, ,_ i 2,) , ic ; ,, t iC. vl\, dependtC )Ii N(k)

C1i,'e t . ITIIlL th tL Llt ' stoclascic sy:;Le i.,, in .tAd1V ,-tt wk-

i , , a-, - , as the colidit ional exp t . r'rotr

C(k k) n ', Q, RI

wt1.rk is a known constant and nd = nd(k) foir all ir . Since k

,,1d R are positive definite, so are C and C . For scalar sample

I Z, old d the C we seek is found by methods similar to those employed

ii Section 3 for Model A, which is a fixed-yield vector model with

.. Jar .-,,,It)1L. size. The Kalman relations must now be expressed in the

1f, it r on. among expected error covariances, expected Kal man

n1 nd i-xl.pet td obtained sample size. We now have

= I= I - K (C + TQ)

K = ((C + 112) [C + rq + LIRk/N(k)I -1

I , l .. (t. tire n tri x equaL Lion

-( ' + T C - T R EI/N(k)I 0 . (16)

I'iis equat ion is of the form of Equation (13) except that it involves

.xpcrtati ns rather than deterministic quantities.

- 13-



Solving (16) for C we obtain, strictly paralleling (14),

C = -(T/2) Q + QI/2 [T Efl/N(k)] Q-l/2 R Q-i/2 + (T2/4)11/ 2 QI/2

so that, since ELC+ ((T-1)/2)Q] C + ((T-I)/2)Q , we may substitute

the value of C found above into the cost function J given by (15).

The solution procedures tor Model A may then be appliid L,, f '0, ' tdT*;.

,. , Odci L

Modei ; is an extension of random-yield Model B. Wt.: consider

here a scalar process which evolves in continuous time t with survey

measurements taken at time points tk k=1,2,.... Here we allow the

intersurvy period ' Tk  k=l,... (T - tk) , to vary az. a unc-
k' k k- k-I.

tion of the obtained sample size N(t kl) . We assume that the scalar

process is represented by the linear stochastic differential equation

dx(t) = x(t)dt + d8(t) , t0 ' t , (17)

where x(t) is a unidimensional Brownian motion process with

EI(d-3(t)) -- Q dt

The survey equation (2) now becomes

N(tk)

y(tk) X(Lk) + (1/N(tk)) ui (t k )
i=1(18)

k=1,2 .... and to<tk< tk+l

where Y(t ) and ui(t ) are defined as before. As set forth in

.Jazwinski (1970, Theorem 7.1), the optimal filter for the system (17)

and (18) becomes the continuous-discrete filter:

d6(t~t)/dt - (tjt),

(19)
dCI(tlt)/dt 2C(tlt) + Q tk< t tk+ 1

- 14-



x(tkItk) = (tkItk) + K(tk) ly(tk) - X(tkitk)I

(20)

C(tkjtk) = [I - K(tk)] C(tkltk)

where the Kalman gain K(t ) is given by

K(tk) = C(tkt) [c(t:t ) + K - (21)

and tk represents the time instant just before the survey coiductcd

(and instantaneously processed) at tk As shown in Jawinski (1970),

if we integrate the process equation in (19) over intervals [t,tk+l ,

we may write

tk+1

X(tk+l) = X(tk) + f dC(i)
tk

= x(tk) + w(k+l,k)

where
tk+1

w(k+l,k) = f d1(r)
tk

By Jazwfnski (1970, Theorem 4.1), {w(k+l,k)} is a zero-mean, white

Caussian sequence with

E[(w(k+l,k)) 2 ] 
= (tk+l- tk)Q

and the continuous-discrete filter for Model C may be imbedded in a dis-

crete filter paralleling Models A and B. The integrated form of (19) is

(tjt) = X(tkItk) I

(22)
C(tit ) = C(tk tk) + (t-tk)Q , tk < t < k+ 1

We now analyze Model C with response rate (k) . Suppose that

the equivalent sample size on hand at time t0  is N0 (t 0 ) The

- 15 -
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4 l ot% (s tb'1 t. e ~ by ( ) t lie response ratt 101' tilt' L.ir 0 1C/T-

Jlil, Iled It L . Weo ,I5Isfi thait t- (t) arc i. i.d. randiom var job [Cs

1, k

0 (t t~ k r + :,(t k)n (

ill

1-1N ( k t ) 11 +

i i j .ivclil ,r t crin - , t'~ huis li.ivc a iprohlI cm .0 Lot hasti, 1-')Ic

wi thtu ordei 'iiC 1)(I, del ivil.1ci )Jdcr N ( IN k )

(I k k * wc then have level-dependent determni 1st ic decay from

0V 1 ) down41 to t1e reordcr point n r .'the t ine requliredi for thi-s

tI. tilkt- iit kI " is fomid~ in terms oif if r 1 11d nd - t



k+ i (h/Q) I 1/nr r k d

Wc may also write

-I -1

Tk+ r r tk) ] / ;(t k)nd (25)

A tvpi p:i tera of l ve !-de,-pendent determin is1,' d,_ :,y ul L ,..

r,piLn i nL is (je) ictcd in 'igure 3.

'in- vorag., oirderi't' cost, (g((i)) , over a- intervai )I

('!,,T k+1 = tk+i Lk  , is

-avg !,(tK = T-k+l eo +  (el +c (tk))nd]

1 ._ t' )

- QR . n r 0 r + (tk)n d ) [c 0  + (c1 + c2 ;(tk)11 / )t )n d •

Si n(, ((t t) = R / N (t tk) , we may write the average quadratic loss

I.avl (q)(t)) over the interval T as
aV) k k+1

tk+1
I W(¢ t k) = (al1/T11k+l) f C( t k)d',

tk

xfhi h y l i ('ld.

avg(4(t4, = (atR/2) II/nr + 1/(I r + Y(t k )n) (27)

' ini (8) and (IS), we obtain the cost function J as

J = 1I: + l1 avg Obtk))+ (28)

it can be verified by taking second derivatives that J is convex in

1r ' I , nr 9 for fixed nd , 0 < nd , and in nd , 0 ' nd , for

f ixed n1 , I ' n . If we compute the determinant of the Hessian ofr r

+I, , we find that for some (but not all) combinations of values

nI 0 r . nd and the cost coefficients the determinant is negativc.

l l, r(f )re, .J is not convex in general. Nonetheless, in practice there

-17-
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d

)I' V( x ,lhd it I;V h 01111d A; an i terat ive -io [uti ion 11 t he pa i r ()I q(1 ui -

t iofv. H : ( il Lmd = (

+I

4X[.ise OiI lin i 1) rut 'i

A/. A = (-a) +,g)/ )/

(a -f :11 ) .1 l~) (b-a) &yJi' (n r " ); r

I V,, I
aivy. v'

1 W I A /n 1 i ,I .\ -1 ,0 - 1 0 + 2 + 1, dI

4 a I d1 I /n r (I( ) g I r i 2md 1 r + I)d(a 1lC/l_) [ '/nr (l)d(b-a)-lecgI (or k bndt(nr + 
l d 
ar])"

%,w I may h m)inimized ovewr (n rn d ) by standa rd itcratiye methods

, .- ;tIy pa rall liulg LIIase used for (sq) inventory problems. A riunler-

icral .ahllip (it- Model C with a uniform (4 is portrayed inl Figu , 4. A .,

:JiauiI inI Smitlh (1I980) , - Markov chain set-up alia' also be tscd I'a laiid

- .11
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I) c)') i 'num

.. '

$690 ,000

: 640,O00

4 ::lobi lt pimum

= (329.2 404.1)

t xp('ct +,d 3 nu;I I
N cost : S619,000

+0 --

,H( ()cond i t i ona I I,-

V1)t i 11I III

r

2035 0 7 50

TI
r

gtin 4 -- [)ceiigna ted sample ;4i?-e 11 vvrsuis reordi.r Poinmt 11

isocost contours for example of >Iodel C.
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