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ABSTRACT

This numerical study considers the effect of a zero order density gradient
on the development of Langmuir wave collapse in two dimensions. Two different
situations are considered: 1) an initial soliton is pertubed in a direction
transverse to the density gradient, and 2) the plasma is resonantly driven by
an external pump electric field in the presence of transverse density fluctua-
tions.

opment of Langmuir collapse for both the initial soliton and the externally

driven cases. Over the limited parameter space surveyed it is found that col-

lapse occurs for values of the scaled gradient parameter g@’ 2.5; where g = \

- .
(9/8) (M/m)sj\zQ‘g/L), M is the ion mass, m the electron mass,@ the Debye

\

)
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The principal finding is that the density gradient can inhibit the devel-

length, and L the gradient scale length. For larger values of g collapse is /
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not observed. | L /,’
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I. Introduction

The dynamics of the two dimensional collapse of Langmuir waves in uniform
plasmas has been extensively investigated over the past few years.l_4 The col-
lapse process consists of the unbounded localization of the high frequency
electric field of a Langmuir wave inside a density cavity of ever increasing
depth and decreasing spatial extent. The density cavity 1s nonlinearly genera-
ted by the ponderomotive force produced by the high frequency field. As is well
known, in one dimensional plasmas the collapse process does not occur. In
this case, a steady state can be obtained in which the dispersion (i.e., the
finite group velocity of the wave) exactly balances the nonlinear localization,
and a soliton is formed. However, in two dimensions the dispersion is not
sufficiently strong to overcome the nonlinearity, and a secular growth of the
field with the accompanying density cavity occurs. Since the collapse process
arises due to a fluid nonlinearity, i.e., a rearrangement of the electric
field energy in wave number space, in an actual plasma the secular growth is
limited by kinetic processes (e.g., Landau damping) not retained in the simp-
lified fluid description. Therefore, a possible fate of the collapse process
is to transfer the electric field energy of an extended Langmuir wave into

3,

kinetic energy of the plasma ions and electrons. Consequently, it is of

interest to find under what conditions the collapse process occurs and what
limitations must be overcome for its onset.

Although several studies have been made of the propagation properties

of Langmuir solitons in a one dimensional density gradient,7-10 to our know-

ledge, all previous theoretical and numerical studies of two dimensional

3,11-18

collapse have considered zero order uniform plasmas. While this is an

interesting simple environment in which to study the basic process, its
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applicability to a laboratory plasma is not ensured because such plasmas al-
ways have a finite density gradient. The present numerical study is concerned
with some aspects of the effect of a density gradient on the collapse process,
and the delineation of the threshold conditions required for the experimental
observ:-n:ion]'9 of this process.

An important and useful feature associated with the demsity gradient is
that it permits the linear generation of localized electric fields at selected
points along the density gradient. This excitation can be experimentally at-
tained by applying an external pump field at a frequency  equal to the local
plasma frequency u$ of the selected location along the gradient. The external
pump drives the local plasma resonance and creates a large localized field
which provides a controllable initial condition for the experimental investiga-
tion of Langmuir wave collapse. In addition, the consideration of Langmuir wave
collapse in a nonuniform plasma and in the presence of an extermal pump is of
interest in connection with the rippliﬁg of the resonance absorption surface in
laser fusion targets and possibly in future ionosphere modification experiments.

An important effect encountered in a nonuniform plasma is the intrinsic
convection of the Langmuir wave energy down the density gradient.7 Near the
w = wppoint this convection occurs at a speed roughly given by (3/2) ;'(3I<DL)-1/3
where v is the electron thermal velocity, kD is the Debye wavenumber and L is
the scale length of the gradient. This linear process provides a spreading
effect which reduces the effect of the nonlinearity and can prevent the twoe
dimensional collapse. Therefore, it is of interest to find the threshold con-
dition, i.e.,, the critical demsity scale length L required for the onset of
collapse. The present study focuses on this issue for two cases: 1) a pure
soliton initial condition, and 2) an externally driven plasma. For the typical

numerical cases studied it is found that the collapse process does not occur




for values of the scaled gradient length parameter g > 2.5; where, g = (9/8)

3/2

M/m) (XD/L), M is the ion mass, m the electron mass, and AD the Debye length.

The manuscript is organized as follows. In Sec. II the mathematical
model is reviewed and the geometry of the problem is described. Section III
discusses the results for the pure soliton initial condition, while in Sec.

IV the behavior in the presence of an external pump is presented., A discus-

sion of the results is given in Sec. V.




II. Mathematical Model

In the present investigation the behavior of the plasma is described by
the warm fluid apprcximation,l i.e., wave-particle interactions (e.g., Landau
damping, ion acceleration) are neglected. These kinetic effects are not im-
portant during the early stage of the collapse process of interest to this
study. In the late stage of the collapse process strong energy absorption
occurs due to electron transit time damping. The description of such an effect
is bevond the scope of this work. In addition, high frequency electron non-
linearities, such as second harmonic generation, are neglected because they
give rise to oscillations which are not normal modes of the plasma. Also,

corrections to the ion acoustic wave due to ion nonlinearities are not included.

The high frequency electric field Eh is described through a modulational
representation
L — - .

E, = E(x)v&;t)MF(-tUP‘t\ +c.c. 1)
where x is the spatial direction along the density gradient and y is perpendic-
ular to x. The time dependence of the complex vector amplitude E is assumed to
be slow compared to a plasma period, i.e.,

3:'5\<< w;,‘\'g“\ (2)

At
so that only the first order time derivative is retained in the two-~dimensional

evolution equation

LYE * EY. (& X\VE-E, Ll=o0o
V'{%§E+3)‘JV(VE) (7 + t) ?l 3)

where n refers to the nonlinearly generated low frequency density fluctuation,

and n, is the plasma density at the point wp = » along the gradient,




The external pump field E

o,h of frequency w is assumed to be of the
»

capacitor type (i.e., near field) and is represented by
E E, atp(-iwt) &
- -L X 4)
LN ¢

where Ep is the constant strength and x is the unit vector in the x direction.
The zero order density profile is taken to be linear, with characteristic

scale length L, i.e.,

2
We — _ X
| .Zﬁi '1:‘ (5)

The density fluctuations are determined self-consistently from the two-
dimensional linearized ion-acoustic wave equation in which the ponderomotive

force due to the high frequency field plays the role of a source, i,e.,

L e (.’!':\: Vz(@ﬁ\ 6)
cg t* Mo T E

where cs is the ion sound speed, and T the electron temperature.

The coupled equations (3) and (6) form the mathematical description of
the problem. It should be noted that in this formulatiom the full vector
character of the electric field is retained, as well as the effect of ion :
inertia.

In scaling the physical variables appearing in Eqs. (3) and (6) one

encounters two choices: (1) scaling according to the Airy-like scaling
7
associated with the density gradient, or 2) scale according to the slow

time response of the ions as is done in the collapse studies in uniform
1,3,11-18

plasmas. In this work we have chosen the latter scheme in order
to retain contact with the previous collapse literature as well as with
the results obtained with the earlier version3 of the computer code used

to solve Eqs. (3) and (6).




Using the scaled variables £ = x/xs, n= y/xs, T = t/ts, é'= E/Es,

N = n/ns, where

X = (3/7_)(Mlm\"" S (3/2) (M Im) w;‘

2, Va2 (7
M = (#13) (m/m) Mo E = (64Tmme /3

results in the scaled equations

7§02 Trvle®) - (agni - eekl=o

3T
(i _vi) N = U EV 9)
W

in which two lumped parameters appear. The parameter g given by

9 = (213) (M/m)‘b/z (d»/L) (10)

measures the relative sharpness of the density gradient, while the parameter

ep defined by

5‘, = Y_(‘&\""/ 16] (M /M‘)‘% [E} / (41r4toT\"‘] (11)

describes the strength of the external pump.
It is clear from the definitions in Egqs. (10) and (11) that the present
choice of scaling is optimum for long scale length profiles, (i.e., weak

nonuniformity) and small external pumps. When L is decreased and/or Ep

is increased a more appropriate scaling for this problem is the Airy-like scal-

ing. In the Airy scaling one still has two lumped parameters, p and V2, which

uniquely determine the behavior of the system. The parameter p = (kDL)2 Ei/lanoT
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measures the degree of nonlinearity, while V2 = (A/3)(M/m)(kDL//§)
accounts for the relative role of ion inertia in the formation of the density
cavities. In transforming these parameters from one scaling to the other ob-
tains p = (32/9)(EL/8)2’ vV = 4/3) g1/3. From this relationship it is seen
that for large values of g amiep the Airy scaling is more convenient because
both p and V can remain of order unity. For values of g and.EF,of order unity,
the two descriptions are equally useful, while for g very small (i.e., uniform
plasmas) the scaling given in Eq. (7) is more appropriate. In either choice of
description, it should be stressed that the real physical problem has three
independent parameters, (M/m), (kDL) and Ei/noT; however, the response of the
system has an internal self-similarity governed only by the two lumped parameters
(g,@p) or equivalently (p, V).

The parameter space surveyed in the present numerical study has concen-
trated in the region where the scaling given in Eq. (7) is useful, i.e.,
both g and e b are of order unity. However, the values of the parameters chosen
differ significantly from those of a recent experimentlghesigned to study two-
dimensional resonantly enhanced electric fields. The laboratory gradient scale
length g and the pump field@p are larger than 100 in the present units, there-
fore our numerical results are not strictly applicable to such an experiment.
To describe this experiment one should consider a third scaling, i.e., to the

ion time scale, ts = (m/M)l/2

T, and corresponding scalings of space, density
and fields.

The numerical method applied to Eqs. (8) and (9) uses the spectral rep-
resentation for the derivatives, and computes the nonlinear terms at each time

step from a Fourier transform to configuration space. The system is periodic

in the y-direction. To accommodate the inhomogenity term - gs within the




periodic Fourier method the system is extended the in x-direction by its mirror

image, and periodicity is enforced in the doubled system. Typical computational
parameters are 32 grid points in y and 32 in x, (64 grid points in the doubled
system) with grid spacings Af = 0.25, An = 0.25, and time step 0.02. 1In the late
stages of the computation nonzero values of ]EIZ and N are sometimes found at the
lower boundary in x, thus indicating a finite leakage from the mirror image of
the system, It has been found that this leakage does not appreciably change the
results, as evidenced by comparisons with calculations in which a damping term at

the lower boundary is included in Eq. (8).

b




=10~

III. Undriven Solitons

Before proceeding to investigate the behavior of Langmuir wave collapse
arising from the resonant excitation by an external pump, it is useful to
determine first the effect of a density gradient on the collapse process ex-
prerienced by an initial one dimensional soliton. For this purpose the elec-

tric field at t = 0 is

€= V2 K avdh (KXY X (12)

The density perturbation is given by

N=— 2k adh® (k) (1+ 9 m(\?m\] (13)

3,15

and 3N/3t = 0 as in previous numerical studies. In Eqs. (12) and (13)

< represents the width of the soliton, 8§ the depth of the transverse modu-
lation, and ky the scaled transverse wavenumber of the modulation. The field
given by Eq. (12) correponds to a stationary soliton in a one-dimensional
plasma without a density gradient, when the nonlinearly modified density is
N = -ﬁé}z. The growth in the transverse direction is triggered by perturbing
this value of N by the expression shown in Eq. (13).

An analytical one-dimensional exact solution of Eqs. (8) and (9) does
not seem to exist.9 However, if ion inertia is ignored, i.e., setting N =
- l-élz in Eq. ®, a linear density gradient can be transformed away by going
to an accelerating reference frame,lo and in this case Egs. (12) and (13) are
the correct initial conditions.

The effect of the density gradient has been examined by solving Eqs. (8)
and (9) for different values of the scaled gradient parameter g. It is

found that for « = 2, § = 0.1, and ky = 2n/16, collapse occurs for g s 2.5

and its general features are quite analogous to the results obtained for a

the
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uniform plasma. The typical spatial patterns are shown in Fig. 1 for the case
g =1and a time T = 1.75. 1In these three dimensional plots, the top part

-
represents the two dimensional (§,n) dependence of [E‘Z, while the bottom rep-

resents the perturbed density. The development of the transverse modulation
is evident in this figure, in which the maximum value of |g[2 is 40.7 and the
deepest portion of the density cavity is N = -24.0. It should be remembered,
; however, that the spatial dependence of the total density in the plasma is

‘ given by N + gE, so that the cavity seen at the bottom of Fig. 1 is part of a
sloping density profile, not shown in this presentation. Notice also the
small regions of positive demsity changes adjacent to the collapsing peak, and
the corresponding reduction of [Elz.

As the value of g is increased, it is found that the time required to

observe collapse patterns of the type shown in Fig. 1 increases rapidly.

For large values of g, the initial soliton moves rapidly down the density gra-
dient and the transverse perturbation does not have a chance to affect its

evolution, i.e., the soliton outrumns the transverse modulation. To quantify

—

this behavior it is useful to plot the time evolution of the peak amplitude

-
| & of the electric field lﬁli for different values of the scaled gradient para-

meter g, as shown in Fig. 2. In this figure one observes a continuous tran-
itjon from a collapse case (g = 0) with an asymptotic collapse time T,V 1.5
to a nearly constant behavior for g = 4. For the various cases that we have
run it appears that the value of g s 2.5 sets the threshold scale for col-

lapse, at least for the perpendicular instability growth rate determined by

§ and the perpendicular wavenumber ky = 2n/16. Computations with other per-
pendicular wavenumbers seem to confirm the obvious generalization: collapse

-
occurs when the streaming of |€| into the perturbed density cavity exceeds

>
the convection of IEIZ due to the density gradient (see further Section V.)

—————— m———
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IV. Resounant Pumping

Having established that the collapse of a one dimensional soliton can be
quenched by a finite density gradient above a certain threshold value, we pro-
ceed to examine the behavior of a plasma in which the field structure is self-
consistently determined by an external uniform pump. The pump gives rise to
a resonant electric field at w = wp(x) whose peak amplitude is limited, in the
small amplitude regime, by the convection of a Langmuir wave down the density
gradient. In the one dimensional case, as the amplitude of the pump is increased,
density cavities are generated. These cavities give rise to the transient en-
hancement and localization of the field. However, due to the steady convection
down the gradient, the field localization is temporary. Consequently, in this
environment one obtains a continuous generation of cavities and localized fields.7

One of the issues of interest in this problem is whether or not the re~
generative one dimensional localized structures can break-up in the transverse
direction, and what the threshold conditions are for this process to occur.

In a limited survey of the large parameter space defined by this problem we
have found that it is possible to obtain a two-dimensional collapse which
arises naturally out of the Airy-like patterns associated with resonant pumping.
An example of such a collapse is illustrated in Fig. 3. This figure shows

>
the two dimensional spatial dependence of the electric field lEJz at t = 3.75.
The external pump is turnmed on suddenly at t = O with a value of Sp = 1,5

and the two dimensional collapse is stimulated by providing the plasma with

an initial density perturbation given by N(¢ 0)=gcos(k§1)cos(k£‘\(i.e., a

density bowl with § = 0.4, ky = 27/16 and k. 7/8 and again with 3N/3t = O,
It should be noted that in Fig. 3 the cold plasma resonance is located
at £ = 0 and that the first peak to its left is not the result of collapse,

but rather the typical Airy peak, This peak experiences a weak transverse
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modulation, but no major redistribution of the field energy occurs. Instead, for
the parameters chosen the collapse occurred on a secondary peak which at a previous
time had its origin at the wp point (£ = 0), but which propagated down the gra-
dient in the manner described at the beginning of this section. The perturbed
density associated with the field of Fig. 3 is shown in Fig. 4. A deep cavity

of depth N = -19.4 coincides with the peak of the electric field. An interesting
feature seen in this picture is the appearance of density compressions between

the collapse peak and the normal Airy-like patiernms. These are due to the expul-
sion of ion density from the regions of high electric field, and in particular

from the collapse region.

Figure 5 displays the spatial dependence of the total electric field ]E]z
and the scaled density profile N + gf along the'ﬁ direction (i.e., in the gradient
direction) for a cut along ® = 0 corresponding to the transverse location of the
peak electric field at T = 3.75. This figure clearly shows the usual flattening
of the profile just to the left of the mp = w resonance, and the new feature as-~
sociated with collapse at £ % =4.0,

To complement the display in Fig. 5 we exhibit the transverse dependence (i.e.,
along y) in Fig. 6. The two curves shown correspond to constant £ cuts passing
through the peaks of the total field (solid curve) and the n component of the
field |& |2 (dashed curve). Because of the n-symmetry of the collapse, the peak

>
of Iiblz cannot occur in the same location as the peak of IS[Z, instead it is
located where the derivatives of é are large, i.e., to the side of the col-
lapsing soliton. From Fig. 6 it is clear that the peak value of the £ component
of the field is considerably larger than the peak value of the n compomnent. How-
ever, because these two peaks do not coincide spatially it is possible to find
regions in which the two components attain comparable levels. This feature
should be kept in mind when interpreting experiments which rely on electron

deflection techniques to measure the development of the transverse modulation,
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B Finally, Fig. 7 exhibits the time evolution of the peak electric field, |§]:
| and the deepest density cavity Nm' For early times (t < 2.5) the growth in the
peak electric field is associated with the resonant pumping. During this stage
the field pattern is essentially one dimensional. However, for t > 2.5 one ob-
serves the rapid development of the collapsing field shown in Fig. 3.

In the presence of external pumping the collapse process can also be quenched
for g 2 2.5. 1In this regime one finds essentially the continuous generation of
peaks and density cavities along the density gradient, as obtained in an earlier

one dimensional study.7




P

V. Discussion

The principal result obtained in this study is that a density gradient
can inhibit the development of two dimensional Langmuir wave collapse. The
inhibition occurs for initial soliton-like conditions, as well as for the ex-
ternal resonant pumping case. Although the parameter space surveyed has been
limited to the neighborhood of g s 4, Ep < 2, and initial field levels
|E (t = O)IZ‘i 8, it is expected that a gradient threshold condition also
exists in the large parameter space not sampled. For our parameters the col-
lapse occurs for density length scales such that g s 2.5.

To obtain a semi-quantitative description for the reason behind the thres-
hold, it should be realized that a necessary (but not sufficient) condition
for the development of collapse is that the convection down the density grad-
ient should not outrun the transverse growth of the modulation. Mathematically,
this implies that Ve < Voo where v, = (3/2);KXD/3L)1/3 represents the intrinsic
convection speed down the gradient. For a rapidly growing transverse modula-
tion, the transverse speed v is determined by the growth rate Ym? i.e,, Vo ©
Y /ky, where ky is the transverse wavenumber. For initial conditions resembling

m

the cases investigated, the growth rate of the modulation is essentially given by

gl
Y. x(0.4) (B _IE . (14)
" ) ( k’\ crn/z) m, 71"

which gives rise to the threshold comdition

v =
(G/J?\(*n/?’ﬁ)3< (0.4 %‘ 1s)

This estimate shows that for a fixed L the initial field must be above a

-5
certain level, or alternatively, for a fixed |E (r = 0)| there is a minimum
value of L below which collapse does not occur. Using the definition for g

and the scaling described in Eq. (7), the threshold condition in Eq. (1S5) can

be simply put in the form

il P b 200 el o . Aviadinfe,

3,12
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%'13 < (0.4) ré\ (16)

->
For the typical initial amplitude used in the soliton study, lel = /5, hence
< predicting 5 threshold value of g2 1.5.
To obtain the threshold condition in the presence of an external pump

E , the electric field |§1 in Eq. (15) should be identified with the reso-

nantly enhanced field inside the plasma, i.e., |€] I (1.7) (1(.01./»’3)2/3 E,.
Solving now for the condition required on L leads to the expression
(3/a ) (o) <« Eo (a7)

VavmT

which can be satisfied for typical laboratory parameters. Clearly, Eqs. (15)

and (17) are simple scaling arguments to be used in making rough comparisons.

In order to obtain a rigorous theshold a considerably more elaborate analysis

is required.
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FIGURE CAPTIONS

Two dimensional spatial dependence of the scaled electric field energy
density [EIz (top) and scaled density chamge N (bottom) for g = 1.0

at T = 1,75, The peak values are lgli = 40.7 and Nm = =24.0,

Time evolution of the peak amplitude of the scaled electric field

!E!i for different values of the scaled density gradient; g = 0 cor-
responds to a uniform plasma.

Two dimensional spatial dependence of the electric field energy den~
sity ]Ejz obtained in the presence of an external pump Ep = 1,5 at

T =3.,65and g = 1.5

Density perturbation corresponding to Figure 3.

Spatial dependence of the electric field energy density ]E]z along

the zero order density gradient for the case of Fig. 3. The dashed -
curve corresponds to the scaled density profile.

Spatial dependence in the direction transverse to the density gradient.
!EJZ is the total energy density andl&nlz is the contribution of the

n component. Curves are obtained along constant ! values passing
through the respective maximum.

Time evolution of the peak amplitude of the scaled electric field

{é!i and deapest scaled density cavity in the presence of an external

ww&p=L&g=lJ.
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