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ABSTRACT

This numerical study considers the effect of a zero order density gradient

on the development of Langmuir wave collapse in two dimensions. Two different

situations are considered: 1) an initial soliton is pertubed in a direction

transverse to the density gradient, and 2) the plasma is resonantly driven by

an external pump electric field in the presence of transverse density fluctua-

tions. The principal finding is that the density gradient can inhibit the devel-

opment of Langmuir collapse for both the initial soliton and the externally

driven cases. Over the limited parameter space surveyed it is found that col-

lapse occurs for values of the scaled gradient parameter g(5 2.5; where g =

(9/8) 4M/m) /L), M is the ion mass, m the electron mass, the Debye

length, and L the gradient scale length. For larger values of g collapse is
/I

not observed.
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I. Introduction

The dynamics of the two dimensional collapse of Langmuir waves in uniform

plasmas has been extensively investigated over the past few years.1 -4 The col-

lapse process consists of the unbounded localization of the high frequency

electric field of a Langmuir wave inside a density cavity of ever increasing

depth and decreasing spatial extent. The density cavity is nonlinearly genera-

ted by the ponderomotive force produced by the high frequency field. As is well

known, in one dimensional plasmas the collapse process does not occur. In

this case, a steady state can be obtained in which the dispersion (i.e., the

finite group velocity of the wave) exactly balances the nonlinear localization,

and a soliton is formed. However, in two dimensions the dispersion is not

sufficiently strong to overcome the nonlinearity, and a secular growth of the

field with the accompanying density cavity occurs. Since the collapse process

arises due to a fluid nonlinearity, i.e., a rearrangement of the electric

field energy in wave number space, in an actual plasma the secular growth is

limited by kinetic processes (e.g., Landau damping) not retained in the simp-

lified fluid description. Therefore, a possible fate of the collapse process

is to transfer the electric field energy of an extended Langmuir wave into

5,6kinetic energy of the plasma ions and electrons. Consequently, it is of

interest to find under what conditions the collapse process occurs and what

limitations must be overcome for its onset.

Although several studies have been made of the propagation properties

7-10of Langmuir solitons in a one dimensional density gradient, to our know-

ledge, all previous theoretical and numerical studies of two dimensional

collapse have considered zero order uniform plasmas. 3 ,1 1- 1 8 While this is an

interesting simple environment in which to study the basic process, its

I7
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applicability to a laboratory plasma is not ensured because such plasmas al-

ways have a finite density gradient. The present numerical study is concerned

with some aspects of the effect of a density gradient on the collapse process,

and the delineation of the threshold conditions required for the experimental

observation 19of this process.

An important and useful feature associated with the density gradient is

that it permits the linear generation of localized electric fields at selected

points along the density gradient. This excitation can be experimentally at-

tained by applying an external pump field at a frequency w equal to the local

plasma frequency w of the selected location along the gradient. The external
p

pump drives the local plasma resonance and creates a large localized field

which provides a controllable initial condition for the experimental investiga-

tion of Langmuir wave collapse. In addition, the consideration of tangmuir wave

collapse in a nonuniform plasma and in the presence of an external pump is of

interest in connection with the rippling of the resonance absorption surface in

laser fusion targets and possibly in future ionosphere modification experiments.

An important effect encountered in a nonuniform plasma is the intrinsic

convection of the Langmuir wave energy down the density gradient. 7Near the

w = w ppoint this convection occurs at a speed roughly given by (3/2) v 3D)

where v is the electron thermal velocity, %D is the Debye wavenumber and L is
the scale length of the gradient. This linear process provides a spreading

effect which reduces the effect of the nonlinearity and can prevent the two-

dimensional collapse. Therefore, it is of interest to find the threshold con-

dition, i.e., the critical density scale length L required for the onset of

collapse. The present study focuses on this issue for two cases: 1) a pure

soliton initial condition, and 2) an externally driven plasma. For the typical

numerical cases studied it is found that the collapse process does not occur
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for values of the scaled gradient length parameter g > 2.5; where, g - (9/8)

(/m) 3 / 2 (X D/L), M is the ion mass, m the electron mass, and XD the Debye length.

The manuscript is organized as follows. In Sec. II the mathematical

model is reviewed and the geometry of the problem is described. Section III

discusses the results for the pure soliton initial condition, while in Sec.

IV the behavior in the presence of an external pump is presented. A discus-

sion of the results is given in Sec. V.
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II. Mathematical Model

In the present investigation the behavior of the plasma is described by

the warm fluid approximation,1 i.e., wave-particle interactions (e.g., Landau

damping, ion acceleration) are neglected. These kinetic effects are not im-

portant during the early stage of the collapse process of interest to this

study. In the late stage of the collapse process strong energy absorption

occurs due to electron transit time damping. The description of such an effect

is beyond the scope of this work. In addition, high frequency electron non-

linearities, such as second harmonic generation, are neglected because they

give rise to oscillations which are not normal modes of the plasma. Also,

corrections to the ion acoustic wave due to ion nonlinearities are not included.

The high frequency electric field E is described through a modulational

representation

.. --- C. )

where x is the spatial direction along the density gradient and y is perpendic-

ular to x. The time dependence of the complex vector amplitude I is assumed to

be slow compared to a plasma period, i.e.,

_EC' (2)

so that only the first order time derivative is retained in the two-dimensional

evolution equation

W bt E XX(VEY (OL ? 1 (3)

where n refers to the nonlinearly generated low frequency density fluctuation,

and n is the plasma density at the point w= w along the gradient.o p
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The external pump field E of frequency w is assumed to be of the
p,h

capacitor type (i.e., near field) and is represented by

where E Pis the constant strength and x is the unit vector in the x direction.

The zero order density profile is taken to be linear, with characteristic

scale length L, i.e.,

02 L

The density fluctuations are determined self-consistently from the two-

dimensional linearized ion-acoustic wave equation in which the ponderomotive

force due to the high frequency field plays the role of a source, i.e.,

where c sis the ion sound speed, and T the electron temperature.

The coupled equations (3) and (6) form the mathematical description of

the problem. It should be noted that in this formulation the full vector

character of the electric field is retained, as well as the effect of ion

inertia.

In scaling the physical variables appearing in Eqs. (3) and (6) one

encounters two choices: (1) scaling according to the Airy-like scaling

associated with the density gradient, 7or 2) scale according to the slow

time response of the ions as is done in the collapse studies in uniform

plasmas. 1,3,11-18 In this work we have chosen the latter scheme in order

to retain contact with the previous collapse literature as well as with

the resu.lts obtained with the earlier version 3of the computer code used

to solve Eqs. (3) and (6).
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Using the scaled variables x/x, n = Y/Xs, t t/s =/E

N n/n where

A% t

results in the scaled equations

0 ('8)

) (9)

in which two lumped parameters appear. The parameter g given by

measures the relative sharpness of the density gradient, while the parameter

p defined by

describes the strength of the external pump.

It is clear from the definitions in Eqs. (10) and (11) that the present

choice of scaling is optimum for long scale length profiles, (i.e., weak

nonuniformity) and small external pumps. When L is decreased and/or Ep

is increased a more appropriate scaling for this problem is the Airy-like scal-

2ing. In the Airy scaling one still has two lumped parameters, p and V , which

uniquely determine the behavior of the system. The parameter p = (kDL) 2 E 2/12n TL 0_o
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measures the degree of nonlinearity, while V' = (4/3)(M/m)(kL// ) -

accounts for the relative role of ion inertia in the formation of the density

cavities. In transforming these parameters from one scaling to the other ob-

tains p - (32/9)( /g)2 , V = (4/3) g1/3. From this relationship it is seen

that for large values of g and i the Airy scaling is more convenient becausep

both p and V can remain of order unity. For values of g and 8p of order unity,

the two descriptions are equally useful, while for g very small (i.e., uniform

plasmas) the scaling given in Eq. (7) is more appropriate. In either choice of

description, it should be stressed that the real physical problem has three

independent parameters, (M/m), (kDL) and E /n T; however, the response of the
p 0

system has an internal self-similarity governed only by the two lumped parameters

(g,8p ) or equivalently (p, V).

The parameter space surveyed in the present numerical study has concen-

trated in the region where the scaling given in Eq. (7) is useful, i.e.,

both g and 6 are of order unity. However, the values of the parameters chosen

differ significantly from those of a recent experiment 1designed to study two-

dimensional resonantly enhanced electric fields. The laboratory gradient scale

length g and the pump field&p are larger than 100 in the present units, there-

fore our numerical results are not strictly applicable to such an experiment.

To describe this experiment one should consider a third scaling, i.e., to the

ion time scale, t = (m/M) /2T, and corresponding scalings of space, density

and fields.

The numerical method applied to Eqs. (8) and (9) uses the spectral rep-

resentation for the derivatives, and computes the nonlinear terms at each time

step from a Fourier transform to configuration space. The system is periodic

in the y-direction. To accommodate the inhomogenity term - gl within the

6-~~--



periodic Fourier method the system is extended the in x-direction by its mirror

image, and periodicity is enforced in the doubled system. Typical computational

parameters are 32 grid points in y and 32 in x, (64 grid points in the doubled

system) with grid spacings AE 0.25, An = 0.25, and time step 0.02. in the late

stages of the computation nonzero values of 112and N are sometimes found at the

lower boundary in xc, thus indicating a finite leakage from the mirror image of

the system. It has been found that this leakage does not appreciably change the

results, as evidenced by comparisons with calculations in which a damping term at

the lower boundary is included in Eq. (8).
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III. Undriven Solitons

Before proceeding to investigate the behavior of Langmuir wave collapse

arising from the resonant excitation by an external pump, it is useful to

determine first the effect of a density gradient on the collapse process ex-

perienced by an initial one dimensional soliton. For this purpose the elec-

tric field at t = 0 is

EA" fiK (K V X (12)

The density perturbation is given by

N[, (13)

and 3N/gt = 0 as in previous numerical studies.3 ,1 5  In Eqs. (12) and (13)

-1
< represents the width of the soliton, 6 the depth of the transverse modu-

lation, and k the scaled transverse wavenumber of the modulation. The fieldy

given by Eq. (12) correponds to a stationary soliton in a one-dimensional

plasma without a density gradient, when the nonlinearly modified density is

N = - The growth in the transverse direction is triggered by perturbing

this value of N by the expression shown in Eq. (13).

An analytical one-dimensional exact solution of Eqs. (8) and (9) does

9
not seem to exist. However, if ion inertia is ignored, i.e., setting N =

- 1EI2 in Eq. S, a linear density gradient can be transformed away by going

10to an accelerating reference frame, and in this case Eqs. (12) and (13) are the

the correct initial conditions.

The effect of the density gradient has been examined by solving Eqs. (8)

and (9) for different values of the scaled gradient parameter g. It is

found that for K = 2, 6 = 0.1, and k = 27r/16, collapse occurs for g ! 2.5
Y

and its general features are quite analogous to the results obtained for a
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uniform plasma. The typical spatial patterns are shown in Fig. 1 for the case

g = 1 and a time T = 1.75. In these three dimensional plots, the top part
-.

represents the two dimensional ( ,n) dependence of 1I 2 , while the bottom rep-

resents the perturbed density. The development of the transverse modulation

is evident in this figure, in which the maximum value of 1i2 is 40.7 and the

deepest portion of the density cavity is N = -24.0. It should be remembered,

however, that the spatial dependence of the total density in the plasma is

given by N + g , so that the cavity seen at the bottom of Fig. 1 is part of a

sloping density profile, not shown in this presentation. Notice also the

small regions of positive density changes adjacent to the collapsing peak, and

the corresponding reduction of 1612.

As the value of g is increased, it is found that the time required to

observe collapse patterns of the type shown in Fig. 1 increases rapidly.

For large values of g, the initial soliton moves rapidly down the density gra-

dient and the transverse perturbation does not have a chance to affect its

evolution, i.e., the soliton outruns the transverse modulation. To quantify

this behavior it is useful to plot the time evolution of the peak amplitude

of the electric field 161 for different values of the scaled gradient para-

meter g, as shown in Fig. 2. In this figure one observes a continuous tran-

ition from a collapse case (g = 0) with an asymptotic collapse time T c 1.5

to a nearly constant behavior for g = 4. For the various cases that we have

run it appears that the value of g i 2.5 sets the threshold scale for col-

lapse, at least for the perpendicular instability growth rate determined by

6 and the perpendicular wavenumber k = 2/16. Computations with other per-Y

pendicular wavenumbers seem to confirm the obvious generalization: collapse
2

occurs when the streaming of Ifi into the perturbed density cavity exceeds

the convection of j12 due to the density gradient (see further Section V.)

i.
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IV. Resonant Pumping

Having established that the collapse of a one dimensional soliton can be

quenched by a finite density gradient above a certain threshold value, we pro-

ceed to examine the behavior of a plasma in which the field structure is self-

consistently determined by an external uniform pump. The pump gives rise to

a resonant electric field at w = w (x) whose peak amplitude is limited, in thep

small amplitude regime, by the convection of a Langmuir wave down the density

gradient. In the one dimensional case, as the amplitude of the pump is increased,

density cavities are generated. These cavities give rise to the transient en-

hancement and localization of the field. However, due to the steady convection

down the gradient, the field localization is temporary. Consequently, in this

environment one obtains a continuous generation of cavities and localized fields.
7

One of the issues of interest in this problem is whether or not the re-

generative one dimensional localized structures can break-up in the transverse

direction, and what the threshold conditions are for this process to occur.

In a limited survey of the large parameter space defined by this problem we

have found that it is possible to obtain a two-dimensional collapse which

arises naturally out of the Airy-like patterns associated with resonant pumping.

An example of such a collapse is illustrated in Fig. 3. This figure shows

the two dimensional spatial dependence of the electric field !Ip2 at T - 3.75.

The external pump is turned on suddenly at T = 0 with a value of&p 1.5

and the two dimensional collapse is stimulated by providing the plasma with

an initial density perturbation given by N(T = 0)-scos(ky1)cos(kX1'(i.e., a

density bowl with 6 = 0.4, k = 2v/16 and k = 7/8 and again with N/aT - 0.y x

It should be noted that in Fig. 3 the cold plasma resonance is located

at -s 0 and that the first peak to its left is not the result of collapse,

but rather the typical Airy peak. This peak experiences a weak transverse
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modulation, but no major redistribution of the field energy occurs. Instead, for

the parameters chosen the collapse occurred on a secondary peak which at a previous

time had its origin at the w point ( - 0), but which propagated down the gra-P

dient in the manner described at the beginning of this section. The perturbed

density associated with the field of Fig. 3 is shown in Fig. 4. A deep cavity

of depth N = -19.4 coincides with the peak of the electric field. An interesting

feature seen in this picture is the appearance of density compressions between

the collapse peak and the normal Airy-like patterns. These are due to the expul-

sion of ion density from the regions of high electric field, and in particular

from the collapse region.

Figure 5 displays the spatial dependence of the total electric field

and the scaled density profile N + gE along the% direction (i.e., in the gradient

direction) for a cut along wi = 0 corresponding to the transverse location of the

peak electric field at T - 3.75. This figure clearly shows the usual flattening

of the profile just to the left of the ± = w resonance, and the new feature as-p

sociated with collapse at -4.0.

To complement the display in Fig. 5 we exhibit the transverse dependence (i.e.,

along y) in Fig. 6. The two curves shown correspond to constant E cuts passing

through the peaks of the total field (solid curve) and the n component of the

field 1 2 (dashed curve). Because of the n-symmetry of the collapse, the peak

of A I2 cannot occur in the same location as the peak of I E2, instead it is

located where the derivatives of i are large, i.e., to the side of the col-

lapsing soliton. From Fig. 6 it is clear that the peak value of the F component

of the field is considerably larger than the peak value of the n component. How-

ever, because these two peaks do not coincide spatially it is possible to find

regions in which the two components attain comparable levels. This feature

should be kept in mind when interpreting experiments which rely on electron

deflection techniques to measure the development of the transverse modulation.
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Finally, Fig. 7 exhibits the time evolution of the peak electric field, m

and the deepest density cavity N . For early times (T < 2.5) the growth in the

peak electric field is associated with the resonant pumping. During this stage

the field pattern is essentially one dimensional. However, for T > 2.5 one ob-

serves the rapid development of the collapsing field shown in Fig. 3.

In the presence of external pumping the collapse process can also be quenched

for g z 2.5. In this regime one finds essentially the continuous generation of

peaks and density cavities along the density gradient, as obtained in an earlier

7
one dimensional study.
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V. Discussion

The principal result obtained in this study is that a density gradient

can inhibit the development of two dimensional Langmuir wave collapse. The

inhibition occurs for initial soliton-like conditions, as well as for the ex-

ternal resonant pumping case. Although the parameter space surveyed has been

limited to the neighborhood of g j 4, 6 < 2, and initial field levels
Il ( _ 0)12 < 8, it is expected that a gradient threshold condition also

exists in the large parameter space not sampled. For our parameters the col-

lapse occurs for density length scales such that g ! 2.5.

To obtain a semi-quantitative description for the reason behind the thres-

hold, it should be realized that a necessary (but not sufficient) condition

for the development of collapse is that the convection down the density grad-

ient should not outrun the transverse growth of the modulation. Mathematically,

this implies that Vc < vm, where vC = (3/2)v(XD/3L)l/3 represents the intrinsic

convection speed down the gradient. For a rapidly growing transverse modula-

tion, the transverse speed vm is determined by the growth rate y, i.e., v -m m

ym/k , where k is the transverse wavenumber. For initial conditions resembling
m y y

the cases investigated, the growth rate of the modulation is essentially given by3'12

I ooTT -5

which gives rise to the threshold condition

/r2T >':D /0(15)

This estimate shows that for a fixed L the initial field must be above a
-9.

certain level, or alternatively, for a fixed IE (T - 0)1 there is a minimum

value of L below which collapse does not occur. Using the definition for g

and the scaling described in Eq. (7), the threshold condition in Eq. (15) can

be simply put in the form
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< ( 4)(16)

For the typical initial amplitude used in the soliton study, 1.1 - /8, hence

predicting a threshold value of g= 1.5.

To obtain the threshold condition in the presence of an external pump

E, the electric field I in Eq. (15) should be identified with the reso-

nantly enhanced field inside the plasma, i.e., it (1.7) (kDL/v) 2 / 3 E 0

Solving now for the condition required on L leads to the expression

( 3/L )- EQ (17)

which can be satisfied for typical laboratory parameters. Clearly, Eqs. (15)

and (17) are simple scaling arguments to be used in making rough comparisons.

In order to obtain a rigorous theshold a considerably more elaborate analysis

is required.
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FIGURE CAPTIONS

Fig. I Two dimensional spatial dependence of the scaled electric field energy

density 1I12 (top) and scaled density chauge N (bottom) for g = 1.0
4.

at T - 1.75. The peak values are C12 - 40.7 and N - -24.0.
m

Fig. 2 Time evolution of the peak amplitude of the scaled electric field

ItI2 for different values of the scaled density gradient; g = 0 cor-

responds to a uniform plasma.

Fig. 3 Two dimensional spatial dependence of the electric field energy den-

sity IJt2 obtained in the presence of an external pump 1.5 at

T - 3.65 and g - 1.5

Fig. 4 Density perturbation corresponding to Figure 3.

Fig. 5 Spatial dependence of the electric field energy density 1jj2 along

the zero order density gradient for the case of Fig. 3. The dashed

curve corresponds to the scaled density profile.

Fig. 6 Spatial dependence in the direction transverse to the density gradient.

-I2 is the total energy density andlI I2 is the contribution of the

, component. Curves are obtained along constant I values passing

through the respective maximum.

Fig. 7 Time evolution of the peak amplitude of the scaled electric field

ItI2 and deepest scaled density cavity in the presence of an external

pumpe 1.5, g = 1.5. pi
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