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SUMMARY

The purpose of the Trajectory Reconstruction and Analysis Method (TRAM) project

is to develop software which provides the Western Space and Missile Center

(WSMC) with an improved Best Estimate of Trajectory (BET) analysis capability.

Data from on-board and land based sensors have noise content of varying degrees.

In order to derive information from this noisy data optimally, the TRAM program

must be computationally quite complex and require significant computer time

when run on IBM 360/65 or an equivalent machine. Because of this, algorithms

which economize the computation have been developed.

The vehicle trajectory and transition matrix computation consume an appreciable

portion of the filtering and smoothing process of TRAM and, consequently,

efficient methods to compute these quantities were needed and developed.

However, prior to implementing these efficient algorithms in the software code

a 'standard' set of algorithms that do not degrade the accuracy of the data

and preserve the accuracy of the estimation process must be constructed. The

proposed set of efficient algorithms are then compared to the standards to

insure that the efficient methods are sufficiently accurate.

This study undertakes to establish standards in two areas. The first is the
computation of the powered flight trajectory used to compute the nominal tra-

jectory, the nominal radar off-set data and the transition matrices. The

second area in which standards are established is in the computation of thetpowered flight transition matrices.

Two integrators were used to integrate the powered flight trajectory, and sub-

sequently, values within the interval of integration were obtained by interpola-

tion. These methods took into account a trajectory having an appreciable

acceleration component due to the thrust of powered flight and a trajectory

reconstructed from quantized acceleration data that limits its precision,
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The powered flight transition matrices are subdivided into several submatrices

in [2]. The present study deals only with the matrices desiqnated by 0aa in

Reference [2].

The characteristic matrices, which are used in the computation of the transition

matrices, tested both the Runge-Kutta and Adams-Moulton integrators for integra-

tion accuracy. The Runge-Kutta method proved markedly better and met the accuracy

criterion. The optimal step size in this study turned out to be as large as

the one used in the free fall portion of TRAM. This result is demonstrated

mathematically in this technical report.

By integrating the equations at very small step sizes, one may obtain an estimate

of the accuracy of the foregoing algorithms. The results of the integrations

at larger step sizes and the results from interpolation were compared to those

resulting from integration at small step sizes. This comparison thus determines

an estimate of accuracy for both integration and interpolation.

Reference [2], B: 'ks, R. A., Trajectory Reconstruction and Analysis Methodology,
Vandenberg Air Force Base, Performance Analysis Department, Federal Electric
Cororation, WTR Division, 1978.
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1.0 INTRODUCTION

This report is an extension of an earlier work, Reference [1], which was con-

cerned with the efficient and accurate calculation of the state and transition

matrices for the TRAM project, Reference [2]. The earlier work was concerned

with the vacuum freefall portion of the trajectory; whereas, this work is con-

cerned with the powered flight portion.

Because of the demands placed on the computer in the environment in which a

program like TRAM must be executed, there is always a great need to make the

execution as efficient as possible. In addition, the numerical algorithms must

be sufficiently precise so that the accuracy of the instrumentation and the

inherent capability of the estimation method are not degraded. This study was

undertaken to guarantee that result.

Two important differences between powered flight and freefall are that the

dynamics of the vehicle are greater in powered flight because of the thrust

forces and that information about its acceleration due to thrust is supplied

by PIGA counts. However, the PIGA counts are quantized so that their accuracy

is limited and they are available only at discrete times. This is in contrast

to freefall where the information about the trajectory supplied by the differ-

ential equations of motion is always continuous.

Because the dynamics are greater and the differential equations are discontinu-

ous, it is clear that it will be more difficult and costly to obtain the

required accuracy in powered flight. Therefore, the numerical methods developed

for powered flight must be able to handle the greater dynamics and to make the

optimum use of the data available.

The transition matrix composition differs in powered flight from free fall,

Reference [2]. It is necessary to include terms related to the inertial

Reference [1]. Thompson, G. T., Computation of State Vector and Transition
Matrix for TRAM, Vandenberg Air Force Base, Federal Electric Corporation, WTR
Division, 1977.

Reference [2], Brooks, R. A., Trajectory Reconstruction arid Analysis Methodology,
Vandenberg Air Force Base, Performance Analysis Department, Federal Electric
Corporation, WTR Division, 1978.
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measuring unit in the state vector. These terms are static- nevertheless,

they ao affect position and velocity and the transition matrix must reflect

this. This report is concerned only with the part of the transition matrix

which is associated with the dynamic states of position and velocity. The

part associated with the IMU static states will be treated elsewhere.

2I



2.0 PROBLEM STATEMENT

2.1 The Trajectory Equations

In both the freefall and powered flight segments of the trajectory the estima-

tion is mechanized around a nominal trajectory which can be obtained by inte-

grating the equations of motion. The nominal trajectory is used to compute a

nominal variation offset, the transition matrices, and it is used to compute

the total state vector.

The equations of motion are expressed formally as:

P=V

= AG(P) + AR(P, V) + AT(t) (2.1)

where P and V are three component vectors of position and velocity respective-
ly; AG is the acceleration due to gravity; AR is the apparent acceleration due

to the rotation of the earth, and AT is the acceleration due to thrust. Gravity,

as is indicated, is a function of position. The acceleration due to the rota-

tion of the earth is a function of both position and velocity. Thrust acceler-

ation is a function of time alone. During freefall AT is identically zero.

During powered flight it is determined from the PIGA data telemetered every

0.03 seconds. The accuracy of the solution of equation set (2.1) is investi-

gated in this report.

2.2 The Transition Matrices

Let x be a six component vector whose first three components are position and

whose last three components are velocity. Then equations (2.1) can be written

x f(x, t)

Further, let

3



F(t) a f

x Tx(x, t)

Then the transition mAtf- -,Lisfies the differential equation

$(t, t ) F(t)eF(t, t ) (2.2)

where 4(to, to ) I

and I is the identity matrix.

The transition matrix will have an order which is equal in general to the size

of the state vector. However, in this study it will only have an order of six,

because this study is only concerned with the part of the transition matrix

associated with the dynamic states of position and velocity. Ihe accuracy

with which equation set (2.2) can be solved is investigated in this report.

2.3 Integration Accuracy

The solution of the differential equation

x = f(x, t)

x(O) x

can be expressed

x C(t) xT(t) + rR(t) + T(t)

where

x c(t) the computed value of x,

XT(t) is the true value,

4



LR(t) is the round-off error,

and T (t) is the truncation error.

T (t) results from the computer's use of an approximation to the derivative.

LR results because of the finite word length of the computer.

Let -=R + t;T' then the following graph is representative of the total error

F. at a fixed time as a function of the step size h.

h

I

Il.1-.



In Figure 1 h is the integration step size. This figure indicates that, in

general, there exists an optimum h at which the total error has a minimum. If

the step size is increased from the optimum, then the total error increases
because cT increases, even though k'R decreases. If the step size is decreased

from the optimum, then the round-off error causes the total error to increase

even though the truncation error decreases. The determination of an optimum h

is the purpose of this study. Clearly, it is desirable to use as large a value

of h as possible for which the total error is within allowable bounds, because

larger the values of h result in smaller execution times.

2.4 Polynominal Interpolation

Both the trajectory and transition matrices will be needed at arbitrary points.

Normally, and specifically for the cases under- consideration here, the integra-

tion of the differential equations is much more expensive than evaluating in-

terpolating polynominals. It i therefore more efficient to integrate the

respective differential equations over as large an interval as possible, and

then interpolate for values within these intervals.

Since, after integrating the differential equations, the function and its

derivative are readily available at both ends of the interval, spline poly-

nomials are obvious choices as interpolators because the spline function and

its derivatives must be continuous at the interval mesh points. However,

whatever choice is made, the interpolator must contribute errors which are

significantly less then the error of the integrator. The determination of the

error of interpolation is one purpose of this study.

6



3.0 ANALYSIS

3.1 Analysis Of The Equations Of Motion

3.1.1 Formulation Of The Equations Of Motion

There were two approaches made in formulating the equations of motion. The

first is designated as Set I. It is that set given in Se~tion 2.0

= V

= AG(P, V) + AR(P, V) + AF(t) . (3.0)

The AG(P, V) term is a simple gravity model including a J and a D term. AR(PV)
is the acceleration present because the equations are expressed in a rotating

coordinate system. It includes the centrifugal and centripital terms.

AF(t) is the acceleration due to thrust. It is computed from the PIGA counts,

counts from a pendulous integrating gyroscopic accelerometer. Since the PIGA

counts give the change of velocity over the minor cycle, all that needs to be

done to determine the average acceleration over the minor cycle is to divide

the change in velocity by the length of the minor cycle, 0.03 seconds. The

PIGA counts are converted from counts to feet per second by multiplying by the

quantization factor of 0.12, and the results are transformed from the instrumen-

tation coordinate system to the earth centered rotating coordinate system in

which the equations of motion are integrated.

The AF term is discontinuous, and theretore adds to the difficulty of integrating

(3.0) with as much accuracy as desired, so an alternate approach was formulated.

It is designated as Set II.

First the position and velocity resulting from thrust is calculated.

t
VF(t) f 0  AF((j)do (3.1)

7



t
PF(t) f .0 V F()dT

Then primed variables are introduced

A V - v (3.2)

PI - P

With these variables the differential equations of motion are written as:

V.

V = A(P' + PF) + AR(P' + PF' V' + VF) (3.3)

Finally, the total position and velocity are computed by

V V, + VF (3.4)

P P , + Pv

From (3.3) it is seen that the discontinuous term is not present in the dif-

ferential equations. This formulation will aid in the determination of the

solution accurately.

The terms VF aind P F are calculated directly from the PIGA data, and so the

method fo doing this needs to be set forth explicitly.

Since the PIGA cornts represent changes in velocity, it is natural to represent

the counts for a )or cycle as AV. Therefore,

n
',/ (t, ) ,.V .

because VF(O) - 0.

8



The position due to thrust is approximated by integrating velocity by the

trapezoidal rule.

PF(tn) = PF(t n-) + (VF (t n) + VF(tn1))(.03)

P F (0) 0 0

The integration step size is the minor cycle time of 0.03 seconds.

AF(tn) is computed by

AF(t n) = AVn/O.03

By the use of the above formulas AF(tn), VF(t n) and PF(tn) n = 0, 1, 2 ....

can be computed. The values at any time can be found by interpolating, as

follows:

A F(t) = A F(ti) t i  < t ' tit 1

VF(t) = VF(ti) + (t - ti )AF (ti) t i " t I ti+I

p F(t) = PF(ti) + (t - ti)VF(ti) + (t - ti) 2AF(ti) ti , t ti+1

The results of the interpolation are multiplied by the scale factor to change

them from counts to feet per seconds, and then they are transformed from the

instrumentation coordinate system to the earth centered rotating system.

3.1.2 Integration Of The Equations Of Motion

The methods chosen to integrate the equationb of motion are well Known,

Reference [3]. Two methods were selected, the modified Euler and the

classical fourth order Runge-Kutta method. They were chosen because of their

stability and because they are one-step methods.

Reference [3], Bellman, Richard, Introduction to Matrix Analysis, New York
McGraw Hill Book Company, 1960.

9



One-step methods have the advantage that only information within the interval

of integration is used and the function and its derivatives, up to the order

of the method, need to be continuous within the interval. Multi-step methods

require information from several steps and the function and its derivatives,

up to the order of the method, need be continuous over all the intervals used.

Unfortunately, the later condition is not met in powered flight because the

accelerations are discontinuous from one minor, cycle to another.

The equations of motion were formulated in two different ways and the two

methods of integration were used on bottl formulations.

The modified Euler' method is as follows:

Given the difterential equations

y f(y, t) (3.5)

Y(to) yo

where y is the ujnknown variable, in general a vector, and specified at some

initia) time; then by the modified Euler method

P * Yn + hf(y t ) ( 

h n~i' tn41 ) t f(y' tn

where h , the ,tpp size of the integration P1+ is con',idered to be th-

predictet: ,ilue of the function y by tn+1 Yn+I is tne corrected value

(3.6) it ,s n' that the values of y at one step are completely determinpd

by values at tr . 'ecdincj step. This mpthod is said to be a second order

-ptno, because were a polynominal in t of no higher degree than two, ther,

.ne modified Et: method would integrate the differential equations exact)

if the arithmet i.e done in infinite precision.

any funct ion y which ha,, a third dprivat)ve, the truncation error incurred

Ljy using this method i,, gliven by

10)



h y(3)() (3.7)

where C lies somewhere within the interval of integration.

The second method used was the classical fourth order Runge-Kutta method. It

is as follows:

Given the equations of (3.5), the solution is determined by

Yn+ Yn+ [k + k +k +k 4] (3.8)

where

kI = hf(y n, t n )

k2 = hf(y n + k1, tn + h)

k3 = hf(yn + k2, tn + h)

k4  hf(y n + k3, tn + h)

This method is fourth order because if y were a polynomial of degree no higher

than four, then (3.8) would give the answer exactly at any time if the arithmetic

were carried out in infinite precision.

Its truncation error is difficult to determine, which is one of the weaknesses

of the method; however, for any function which has a fifth derivative, there

exists a positive constant c, such that

T < ch5  (3.9)

where h is the step size.

With thp truncation error, or the upper bound for it, expressed as it is, it

is possible to formulate an dpproach which will determine an upper bound for

the total error incurred in integrating the trajectory. Figure I shows that

11
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if the step size is taken large enough, the truncation error is much larger

than the round-off error. In this case c. - i:T' The approach was to run the

program at such a step size to a fixed time and then cut the size in half and

rerun the program to the same time. By subtracting the two results a very good

estimate was obtained of the error incurred by using the larger step size.

The equations are as follows:

Xc (t, h) t, h) *.R(t, h)

The computed value at time t for a given step size h is equal to the true value

xT(t) plus the truncation error and round-off error for the step size. However,

we have assumed that, at the step size chosen, the round-off error is much

smaller than the truncation error. f (t, h) < 1 (t, h). Tnerefore,

X c(t, h) - xT t)  + I.T (t, h) .(3.9)

Now, in both the modified Euler and in the Runge-Kutta methods, the truncation

error is expressed as

CT (t, h)i  cihk

where k = 3 for the modified Euler method, and 5 for Runge-Kutta method. The

suoscript i indicates that the error term applies only to making a single step.

However, when the step size is halved, then

c. k

1 ~ 2k

assuming the Ot, '-ivatives are nearly constant in the interval. Since two

steps nePd t . bp t -en to integrate to the same place as in the larqe step,
.nt truncation ,rror for the smaller step at time t is approximated by

c. h 1, k
Sk-i

12



k T(t, h)i  (3.10)

Now the computed value at half the step size is equal to

Xc (t, h/2) xT(t) + CT(t, h/2) (3.11)

By subtracting (3.11) from (3.9) it follows

Xc(t, h) - Xc(t, h/2) - &T(t, h) - ET(t, h/2)

Since from (3.10) it was shown that the truncation error at each step for the

half step integration is a fraction of the error at the full step, the total

truncation error up to time t is mainly that from the larger step size.

Therefore

Xc(t, h) - Xc (t, h/2) T(t, h) . (3.12)

The above approach is only valid when the truncation error needs to be

determined to an order of magnitude. It is not possible to make a precise

determination in this manner. It is also clear that the assumptions are better

met by the higher order Runge-Kutta method.

For the above approach to give meaningful results, the size of the step and

the half-step must be large enough so that the truncation error is the dominant

term. This fact is verified if, for a smaller value of h and half its value,

closer agreement is obtain in the computed values. If the round-off is becoming

the larger term, for smaller values of h the differences should be about the same

or become larger.

It is clear from comparing the number of times the right hand side of the dif-

ferential equation has to be evaluated in (3.6) and (3.8) that the Runge-Kutta

method will take longer than the modified Euler method. The amount of work is

doubled for the Runge-Kutta; however, because the Runge-Kutta permits larger

step sizes, this method turns out to be the most economical in obtaining the

high accuracy desired.

13



3.1.3 Spline Polynomials For The Trajectory

The error caused by interpolation needs to be controlled as carefully as the

error from numerical integration. The manner for determining the error is

rather straight forward. After the coefficients of the interpolating polynomial

have been determined, it is tested by integrating over the interval of inter-

polation with a very short step size. The integrated values are, consequently,

very accurate. The interpolated values from the polynomial are compared to

them.

The algorithms for determining the coefficients of the polynomials and the

programs to do this are given in Reference [1]. For the trajectory, it is

possible to use both cubic and quintic splines. The cubic spline is determined

by using position and velocity at each end of the interpolating interval. The

quintic spline is determined by using position, velocity and acceleration at

each end of the interval.

The polynomials are normalized to interpolate over in interval (0, 1). This

improves the round-off error appreciably. With the position, velocity and

acceleration at each end of the interval the normalized polynomial coefficients

are determined in the following manner.

Let

Po = PO

v°  v°  h

a a •h0 0

a = a1

Reference [1], Thompson, G. T., Computation of State Vector and Transition
Matrix for TRAM, Vandenberg Air Force Base, Federal Electric Corporation, WTR
Division, 1977.

14



where po, v0 and a are the position, velocity and acceleration at the beginning

of the interval, and PI'v I and aI are position, velocity and acceleration at
the end of the interval. Each of these quantities is a vector with three

elements, h is the length of the interval, h t1 - to.

Then the coefficients for the cubic polynomial are determined as follows:

c 3  I + 0 - 2(pI - PO)  (3.13)

c2  PI -P o - vo -c 3

c I = v0

0o PO

The polynomial is then

2 3
P(t) = c0 + c1t + c2 t2 + c3t3

and is computed for each of the three components of the vector.

The quintic polynomial coefficients are determined by the following algorithm.

a p-p 0  - a /2 (3.14)al ~~ = l"P o 0

a2 v1 -v ° a

a 3  =(a 1 - ao)/2

d5 a3 -3a 2 + 6a1

i5



d 4 ~a 2  3a1 I 2d 5

d 3 a 1 -d4  d 5

d ~ v0

d
0 P

The polynomial is

+dt 2 3 d 54

q(t) =d0+d1t+ d 2t + d3 t + d5 t

Since the polynomials are normalized, position and velocity at any time

t, t 0 t < t 11are obtained from the cubic by these equations

P(t) P(u(t)) (3. 15)

v(t) p'(u(t))/h

w h e r e 0 _ u ( t ) (t , - t 0) / h < 1

When the quintic spline is used, the position and velocity for any time t

given by

v(t)j q'(tu(t))/h

where

o < u(t) (t - t 0)/h I



3.2.1 Mathematical Formulation Of The Transition Matrices

The natnematical treatment of the transition matrices is given in Reference [23.

The transition matrices are related to the fundamental matrices by the equation

(t, s) = Y( t) -1(s) (3.17)

and the fundamental matrices satisfy the differential equation

(t) =  F(t)41(t) t' < t < t"l (3.18)

4(t') = I

where T is the identity matrix and F(t) is given by (2.2).

The inverse of If(t), 4- (t) also satisfies a differential equation

(t)  = Y - Z(t)F(t)

1(0) I

P- (t) may be found by integrating the differential equations or by finding

Y(t) and inverting it.

In this study only those terms of the transition matrix which are associated wittl

position and velocity are considered. This means the F(t) above is equal to

Faa (t) and Y(t) is equal to 41aa of Section 6.3. The subscripts are dropped

to simplify notation.

it should be pointed out that this is apparently the simplest part of the tran-

sition matrix to compute. 'ab of Section 6.3 evidently presents some significant

problems. How these problems are handled will appear in another report.

Reference [2], Brooks, R. A., Trajectory Reconstruction and Analysis Methodology,
Vandenberg Air Force Base, Performance Analysis Department, Federal Electric
Corporation, WTR Division, 1978.
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3.2.2 Integration Of ]he Iranstion Matrices

The problem is how to integrate (3. 18) acCUrately and efficiently and then to

explore what accuracies, car) be realized with the chosen methods. It is important

to note that most of the integration time will be spent in the integration of

fundamental matri res simpi' because of tn~iir ,ize. For whatever methods are

chosen, a standard with which to compare them is necessary in order to maintain

the desired accuracy. Ine iniverse of P(t ) wi i Ibe inteqrateu the same way 41(t)

is.

The inteuration of tne fundamental matrices for free fall was examined,

Reference [1]. The elements of the matr ices are the same. The only difference

is the more dynamic and discontinuous powered 'light trajectory. From the

mathematics, it appears tthese differences would make only second order changes.

The equations to show this, follow

Ft )4 ( t

Where I is a 6*6 1identx Tvat Ti x. 'Whate, er ) ntegrator i s c hosen, ronw wi I I i t

performs de) )I ri !(-w we, i h e 0' l,,pri\,at vs' ot T wit, n rsppct to t oehave.

The F(t)y(t) term qive- a cile as to what might be expected from the integrators.

F(t) is a ma- -)e Iith term can be denoted as q. .(t); therefore

From the definit ri of FMt -t is clear that it is an explicit function of the

positir- ann el'ocity, which art, funct inns of time. As a matter of fact t does

not appear explicitly in F(t); therefore, it. mray De written as

Reference [1), Thompson, G. T. , Lc~jffiutation of State Vector and Transition
Matrix fcr TRALM, Vandenberg Air Force Basev, Federal Electric Corporation,
WTR Division, 1977.



F(t) = (gij(x(t))) i, j = 1, .. ,6

Then

F(t) = (gi(x(t)))

But

g..(x(t)) = ax *]"t

The term x(t) was discussed in Section 3.1.2, where it was noted that the powered

flight trajectory had greater dynamics and that the AF(t) term in these dif-

ferential equations was discontinuous. In this expression, however, each term

in x(t) is multipled by coefficients that are either zero or very small. For

= 1, 2, 3 the coefficients are identically zero, and for i = 4, 5, 6 the terms
-12

are bounded by 10 in absolute value. As a result the greater dynamics and

the discontinuities in x(t) will have a second order effect on the integration

of the characteristic equation.

For the term F(t)Y(t), with the use of the Schwartz inequality

H (t)m(t) 11 < 11 axiT x (t) I P fI q(t) H- axT

where o  indicates the norm, Reference [3], but since

I il < 0-12axT

I (t) I < 105

41'(t) I

Reference (3], Bellman, RicLtrd, Introduction to Matrix Analysis, pages 161 and
162 , New York: McGraw Hill Book Company, 1960.
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then

H F(t)4+(t) fl 01 2  0 0

Similarly, we can see by inspection that higher partials of gi(t) will be

smaller still. The hiqher derivdtiVe' of y(t) are discontinuous but the dis-

continuities are multiplied by very small partials, and as a result, it is

expected that rather large step sizes might be used in the integration of W(t).

The second term in 'l(t) is F(t)F(t){'(t).

since lF KH q f - 1and this term i , contiruous, it presents no

difficulty in the integration of 4 (t).

Toe methods of integration chosen were the fourth order Adams-Moulton and Runge-

Kutta methods. The Rurge-Kutta does not differ conceptionaliy from the way in

which it was discussed in Section 3.1.2, although the differential equations

are different and the application is somewhat differvnt. The explicit algorithm

is given by (3.8).

The Adams-Moulton method is discussed in detail in Reference [4]. By it the

solution of (3.5) is as follows:

Ynl Y (55f(y n' t ) - '9t(y n-l' tn-

3 7 f(Yn- 2 ' tn- 2 ) - 9 f(yn-3' n-3))

hV hT (9f(y Y, + t +"f (y r ,' tn )/" n 24 n~l' tn~I ,

Sf(y n- t ) * f(yn-2' t n- ))

where h is the egration step size and f(Yn' t ) is the value of the derivative

of y at tr.

.eference [4], Lapidas, Leon and seinfiled, John H., Numerical Solution of
Ordinary Differential Equations, New York: Academic Press, Inc., 1971.
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Several past values of the function are used, and if the method is to be effectVe,

it must have high order derivates that are continuous in the interval from tn3

to t n+ . In integrating from tn to tn+ 1 the method first computes a predicted

value yn+1 at tn+1, and then the derivative, evaluated at tn+1 with yn+1' is

used to compute the corrected value yn+1 at tn+l .

Since to step from tn to t n+ only two evaluations of the differential equations

are required, this method is nearly twice as fast as the Runge-Kutta method

which requires four.

This method is known to be very stable and the truncation error for the predictor

and corrector is given by

T 251 h5 [5]

Tp 720

T -19 5hy[5]T c 720h

The corrector, as is always the case, is more accurate. Both error terms depend

upon the fifth power of the step size and the fifth derivative of the function

being integrated.

The first three values of the variable after, the initial conditions have to be

obtained by other means before this method can be used for the first time.

These initial three values were obtained by the Runge-Kutta method.

3.2.3 Interpolators For The Transition Matrices

Two interpolators were used. One was the cubic spline described in Section

3.1.3. The other, was a interpolator which uses the function and the derivative

at three points. This is not a spline interpolator in the correct sense but

it is similar to one. The quintic spline described in Section 3.1.3 was not

used because the second derivative of the fundamental matrices are needed for

it and these are difficult and very costly to compute.
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The cubic spline has already been discussed, but the quintic interpolator needs

to be expressed explicitly. What is given are three values of a function and

its derivative at equally spaced points. So then these values are given

(t 1 ), '(t 1 ), -P(t 2 ), I(t 2 ), 1,(t3), 'V(t3), h, h = t3 - 1

Compute first

rI  = 2 '{ - qJ{t 1 ) ( 2

r h V V

r2 hY'(tI) + h4'(t 2 )

r3  - h '(t ) - Yf(t2 ) + 11(t3

r 4  - hy'(t ) + h(t

Then compute

a0

a, h4,'(t )

,a2  16r - Sr + r 3 - 4

a 32r - 6r r - 4a

3 1 3 4 2

a4  32r - r 4- 3a 3  7a?

a 5  A 4 - A 3 - a

Then tle po Iyrw-

2 3 4 5
p(u) aIu a d2u + a3 + a4 u + au, 0 < u I

u (t t)/h
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s on ynom la1 , nor'mal izei- over, the interva I t I r which ma~tches the fqiven,
f unctLionalI val ues and deri vot~ives at eac I end of the inrte rva I anid at the mi d-;puI HL

Tnat is,

p I(O)/o = (

P( ) -4(t 2 )

p'(/ -F P(t 2 )

p~l I(t 3)

P,(1)/h = r(t3

f Tinn the interpo iated value ot any element of the fundamental matrix tCr i t

nierivative at any value t, t t1  t < t 3, U is computed first

U= (t - t 1 )/h

antj then p(u) and p'(u)/h.

4P(t) p(u)

IF' (t) p I(u)/h
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4.0 NUMERICAL RESULTS

4.1 Computation Of The Trajectory

4.1.1 Integration Of The Trajectory

With the equations formulated as in Set I and as in Set II discussed in Section

3.1.1, both sets were integrated using the modified Euler and the Runge-Kutta

methods described in Section 3.1.2 to 200 seconds.

The only parameter varied as both sets of equations were integrated by the two

methods was the integration step size. The step size was changed in such a

way that either a minimum total error was reached (as described in Section 2.0)

or the error in position became less than 10-4 feet and simultaneously the error
-6

in velocity became less than 10 feet/second. In the numerical experimenta-

tion, the errors fell below the bounds before the minimum error was reached.

Table 1 gives the results from the various integrations. The equations are

identified as Set I or Set II; the step size and the method of integration are

indicated. The error incurred is given. The error was determined in the

manner described in Section 3.1.2. Also given is the time taken to do the

integration. h is the step size. E is the error in position, and k v is the

error in velocity.

24



TABLE I

TRAJECTORY INTEGRATION

MODIFIED EULER RuNGE-KUTTA

SET I SET 2 SET I SEI 2

T =.411 T 419

.015 e = 1.5x10-4  E 8x10- 5

P -6 P-
= 10 E 9x10 7

~v

T =218 T 231 T =346 T 351

.03 E= 6x1O -  = 5x10 -4  ,= 6x1O-6  = 7x10-6

P 4x1-06 p -6 p -5 P -8:== 9xlO 6  l.:xlO :=3x108v v v v

T 97 T =119 T =168 T =170

.06- 1 E 1- 3 E 4x10 2  = 9X10-4

U - 5x1O 5  = 2x10 -5  = 1.5xO- 5 , 5xIOb

T 94

.09 L = 3x10 3

f= 2x1O
v

* In Table 1 T has units of seconds, t. has units of feet, .V has units of

feet/second, and h has units of second.

The times given must be divided by three to give the time of the integration

at the specified step size. This is because the step size was divided by 2 to

integrate a value that was used as a standard for comparison. The integration

time at half the step size plus the integration time at the full step size is

about three times the value at the specified step size.

The cases where no data is presented in the table were not run because either

the error had become too large or too small.

4.1.2 Trajectory Interpolation

The algorithms for the cubic and quintic splines used to interpolate the traj-

ectory are given in Section 3.1.1. The equations to compute the coefficients

of the polynomials are given by (3.13) and (3.14).
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Both the cubic and quintic splines were used, but the results were so similar

that it was not meaningful to treat them separately. There was, however, a

difference in the results when the equations of motion were formulated dif-

ferently, and, of course, the results changed markedly when the step size was

changed.

Table 2 gives the results of the numerical experimentation on spline interpoat ,on

It gives the error in interpolation obtained by subtracting the very accurately

integrated values from spline interpolation. The parameters are the same as In

Table 1.

TABLE 2

SPLINE INTERPOLATION

h SET 1 SET 2

T =946 T= 1023

.03 01-8 
-

p -7 p -7
: - i0 . = 10~

v v

T =506 T 519

.06-2 
-8

p -7 P 1 -7

v v

T =249

.12 10
P 10 

-6

V

T 136

.24 . =3xi07

1 = 2.5x O 
6

v

T 73

.50 1, 3xlO 6

P -5
v

T= 39

1.0 11 = IO 4

P -5

Up 10-
v
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4 2 Cumputatioto Of T he Chra( terit i( Matrices

4 2. 1 Integration Ot The CharacteristiL Matrices

The characteristic matrices and their inverses were integrated in two ways

One was by the Runge-Kutta method and the other was by the Adams-Mou:tui. methiiu.!

wncrh were described in Sections 3. i 2 and 3 2.2. Only tne cnaractes ic

matrices associated with the dynamic terms (l aa) were integrated, Reference j

The inverses were calculated both by inteyrdtion and by invrrsion

The Aclam -Moulton integration was allowed to run over the ertire span of nte-

,jration (100 seconds) without being reinitiaiizeo, wherei&., t!re Runqe-Kutta

integration was reinitialized to the identity at every App

The standard with which the integration ot these matrnces and thex' riverset

Oy boti methods were compared to was the result of Runge-Kutta ntegrat~ons

with much smaller step sizes.

Since the point of view is different in the two different methods, the YPrj t,.

of the integrations are presented in two different tables

4.2 2 Interpolation Of The Characteristic Matriceb

The interpolation of the characteristic matrices wa a(comp'ished by cubic arid

quintic polynomials described in Section 3.2.2 When the Adams-Moulton methnoc

was used as an integrator, both the cubic spline polynomial and quintic polynor a'

wa, used. The standard used for comparison was the result of Runqe-Kutta

i-tegrdtion with small step sizes The polynomials were evaluated at the step

Donts of the Runge-Kutta integration.

When the Runge-Kutta method was used as an integrator, only the cubic 5pline

polynomial was used as an interpolator. The standard for comparison was the

output of the Runge-Kutta method small with step sizes.

Reference [2), Brooks, R. A., Trajectory Reconstruction and Analysis MethodoloLy,
Vandenberg Air Force Base, Performance Analysis Department, Federal Electric

Corporation, WTR Division, 1978.
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4.2.3 Error In The Characteristic Matr-x Computation

Tables 3 and 4 give the results of the computation of characteristic matrices

for the Adams-Moulton and Runge-Kutta methods, respectively. The error of inter-

polatioi is given for each of the methods. Both the cubic and quintic poly-

nomidls were use as interpolators. Since the resutlts were nearly the same,

only the values from the cujbic were considered.

The standard matrices were subtracted from the matrices determined by inte-

gration and by interpolation to obtain error matrices. The norms of the error

matrice were taKen to be the maximum absolute Valuje of any element of the

matrix. The norms of the error matrices are given in the tables.

In the same manner', Reference [1], the error matri es are broke'n up into tut~

parts. The tipper left nine elements are those errors whichi propagate error>

in position into position. The upper right nine elements submatrix is the

matri~x which propagates error's in velocity into position. The lower left rine

element submatv'ix propagates, error,, in position into velocity, arid the lowt''

right nine element submatrix propagates errors in velocity into velocity V.

tnirty-six element chlaracteristic error matrix is i'epresunted by foujr nUMLer

a norm for eacr of the submatrices described above.

Re" P L 'riomPsOr', G T , Computa t ion o 0 t Stte Vec tor anid T ransi t I o
*a - i or TRAM, Vandenoer(, Air Force _BaseP, Feer l Fctric korporaion, Wi

e~ ~ ~ ~ . __________________1977____



TAB iI i

ADAMS-MOrn JON INIEGRATION

FRROR MATRICES

STEP SIJZL 99 1,98 3.9u 5.04

0- 9 1.-8 0- 8 t- 7 1-8 0-b 1-7 0- b

INTEGRATION

1-11 -9 -10 -8 -i - -91
10 10 10 10i 10 u I 10 10

10- 10- 10- 1u- I AU 1 l 10- 10-

I NTERPOLATI ON

10- 1 1 -9 I 10 10- l 10-1' 10- 10 1U

TABWf 4

RUNGI-KUHTA N4,,AlION

f RROR MA R1>

),i- X2E 9 1.98 -5.9o 04

14 -13 -t 14. 11

N7EGRATION
-18 -1 -blit 14 -11) -14

io loI) ( 10 1(1I

I NTERPOLArION

10 1 141. i -,, ilu,



5.0 CONCLUSIONS

5.1 Conclusions About the Trajectory Computation

The trajectory was integrated over two hundred seconds. From Table I it is

seen that the only times that an error in position of less than 10-4 feet and

simultaneously an error in velocity of less than 10-6 feet/second was reached

were when Equation Set 1 and Set 2 were integrated at a step size of 0.03

seconds with the Runge-Kutta method and when both of these equation sets were

integrated at a step size of 0.015 seconds with modified Euler method. These

were the only satisfactory cases of all the cases run.

The cases Lat were satisfactory in the spline interpolation were when Set I

was integrated and interpolated over an interval of 0.03 seconds and when Set

2 was integrated and then interpolated over intervals of 0.03, 0.06 and 0.12

seconds. When Set 2 was interpolated over an interval of 0.24 seconds, the

position accuracy fell well within the requirement but the velocity error was

slightly larger; therefore, this interval might be considered satisfactory.

5.2 Conclusions About the Characteristic Matrix Computation

Errors in the computation of the transition vector relate errors in the state

vector from one step to the next. If we bound the errors in position and

velocit.y, then the total error can be bounded by multiplying the error bound

for one step by the total number of steps taken.

ET E i Nstep

The total erro, is less than or equal to the bound for any step times the

total number of steps The bound for step i is given by

SP30
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where k is the bound for the computation error in the transition matrix for

any step and p and v are the bounds for the errors in position and velocity

for any step.

With the same approach to bounding the error for the charactersitic matrix

computation, Reference [1], the following may be stated. The errors in posi,-..,

at each step must be less than 100 feet and in velocity less than one foot per

second and since there are less than 1500 steps, errors in the characteristic

matrix computation for the two methods of integration can be bounded.

For the Adams-Moulton method the results are presented in Table 5.

TABLE 5

ADAMS-MOULTON INTEGRATION ERROR FOR TRANSITION MATRICES

STEP SIZE .99 1.98 3.96 5.04 Secs.

p .003 .02 .03 .2 Ft.

v .00003 .0003 .0003 .003 Ft./Sec.

i and r is the bound for position and velocity error due to numerical errorsIp v
in computing the transition matrix.

Since the interpolation does not contribute any further appreciable error, the

values in Table 5 can be considered the total error for this method.

From the above tabled results the following conclusions can be made. The Runge-

Kutta method at 5.04 second step size is an adequate method for computing the

transition matrix. With this method of integration the cubic spline can be

used satisfactorly to interpolate at this step size.

Reference [1], Thompson, G. T., Computation of State Vector and Transition
Matrix for TRAM, Vandenberg Air Force Base, Federal Electric Corporation, WTR
Division, 1977.
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This step size is in agreement with the analyi, which anticipated that thp

computation of the transition matrix for powered flight could be accomplished

by a procedure similar to that used in free fall.

From the tables it is apparent that the interpolation is the factor which limits

the step size for the Runge-Kutta method.

As for the Adams-Moulton method, it is clear that the accuracies obtained by

this method are not sufficiently good to warrant its use. It must be rememberea

that the integration was made over 100 seconds; whereas, in the Runge-Kutta

the integration was reinitialized every 5 seconds. Nevertheless, even when

the step size was taken to be 99 seconds the accuracy was marginal. This

method should not be abandoned, however, because it has the potential for

integrating as well as the Runge-Kutta and is twice as fast.

The disddvantage of using the Adams method is that it is necessary to use a

different starting algorithm for the first three steps that either is the Runge-

Kutta method or is as costly as the Runge-Kutta method. This means that the

integration must run at least 20 seconds before any time savings are made at

all, when a five second step size is used.

For the Runge-Kutta method of integration we have a similar table

TABLE 6

RUNGE-KUTTA INTEGRATION ERROR FOR TRANSITION MATRICES

STEP SIZE .99 1.98 3.96 5.04 Sec,.

j xlO - 9  2x10 8  2x1O 5  2x1O - 5  .

V " 5xlO -12  3x1O -I0 2x10 8  3x10 -  Ft./Sec.
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,he interpolation error appreciably degraded the computation in this case.

The total error, which is the sum of the integration arid interpolation error,

is give n in Table 7.

TABLE 7

TOTAL COMPUTATION ERROR FOR RUNGE-KUTTA

STEP SIZE .99 1.98 3.96 5.04 Secs.

3x10_7  2x1O 5  3x10_ 3x1O 4  Ft.

f, 3x10_9  2x1O_ 2x10_6  3x10_6  Ft. /Sec.
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6.0 RECOMMENDATIONS

Since the Runge-Kutta error is less and is faster than the modified Euler, the

recommended algorithms for the trajectory are the Runge-Kutta method of inte-

gration on equation Set 2 with a step size of 0.03 seconds and then inter-

polation with a cubic spline for no more than 0.24 second intervals. Because

the Runge-Kutta error is less and is faster, the recommended algorithms to

compute the characteristic matrices are the Runge-Kutta method for integration

with a step size of five seconds and then the cubic spline interpolation over

the same interval.
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