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SUMMARY

The purpose of the Trajectory Reconstruction and Apalysis Method (TRAM) project
is to develop software which provides the Western Space and Missile Center
(WSMC) with an improved Best Estimate of Trajectory (BET) analysis capability.
Data from on-board and land based sensors have noise content of varying degrees.
In order to derive information from this noisy data optimally, the TRAM program
must be computationally quite complex and require significant computer time
when run on IBM 360/65 or an equivalent machine. Because of this, algorithms

| which economize the computation have been developed.

The vehicle trajectory and transition matrix computation consume an appreciable
portion of the filtering and smoothing process of TRAM and, consequently,
efficient methods to compute these quantities were needed and developed.
However, prior to implementing these efficient algorithms in the software code
a 'standard' set of algorithms that do not degrade the accuracy of the data

and preserve the accuracy of the estimation process must be constructed. The
proposed set of efficient algorithms are then compared to the standards to
insure that the efficient methods are sufficiently accurate.

This study undertakes to establish standards in two areas. The first is the
computation of the powered fiight trajectory used to compute the nominal tra-
jectory, the nominal radar off-set data and the transition matrices. The
second area in which standards are established is in the computation of the
powered flight transition matrices.

PP - g

Two integrators were used to integrate the powered flight trajectory, and sub-

sequently, values within the interval of integration were obtained by interpoia-

tion. These methods took into account a trajectory having an appreciable
acceleration component due to the thrust of powered flight and a trajectory 1
reconstructed from quantized acceleration data that limits its precision.
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The powered flight transition matrices are subdivided into several submatrices

in [2]. The present study deals only with the matrices designated by aa in
Reference [2].

The characteristic matrices, which are used in the computation of the transition
matrices, tested both the Runge-Kutta and Adams-Moulton integrators for integra-
tion accuracy. The Runge-Kutta method proved markedly better and met the accuracy
criterion. The optimal step size in this study turned out to be as large as

the one tsed in the free fall portion of TRAM. This result is demonstrated
mathematically in this technical report.

By integrating the equations at very small step sizes, one may obtain an estimate
of the accuracy of the foregoing algorithms. The results of the integrations

at larger step sizes and the results from interpolation were compared to those
resulting from integration at small step sizes. This comparison thus determines
an estimate of accuracy for both integration and interpolation.

Reference [2], B: 'cks, R. A., Trajectory Reconstruction and Analysis Methodology,

Vandenberg Air Force Base, Performance Analysis Department, Federal Electric
Corpuration, WTR Division, 1978.
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1.0 INTRODUCTION

This report is an extension of an earlier work, Reference [1], which was con-

cerned with the efficient and accurate calculation of the state and transition
matrices for the TRAM project, Reference [2]. The earlier work was concerned

with the vacuum freefall portion of the trajectory; whereas, this work is con-
cerned with the powered flight portion.

Because of the demands placed on the computer in the environment in which a
program like TRAM must be executed, there is always a great need to make the
execution as efficient as possible. In addition, the numerical algorithms must
be sufficiently precise so that the accuracy of the instrumentation and the
inherent capability of the estimation method are not degraded. This study was
undertaken to guarantee that result.

Two important differences between powered flight and freefall are that the
dynamics of the vehicle are greater in powered flight because of the thrust
forces and that information about its acceleration due to thrust is supplied
by PIGA counts. However, the PIGA counts are quantized so that their accuracy
is limited and they are available only at discrete times. This is in contrast
to freefall where the information about the trajectory supplied by the differ-
ential eguations of motion is always continuous.

Because the dynamics are greater and the differential equations are discontinu-
ous, it is clear that it will be more difficuit and costly to obtain the
required accuracy in powered flight. Therefore, the numerical methods developed
for powered flight must be able to handle the greater dynamics and to make the
optimum use of the data available.

The transition matrix composition differs in powered flight from free fall,

Reference [2]. It is necessary to include terms related to the inertial

Reference [1], Thompson, G. T., Computation of State Vector and Transition
Matrix for TRAM, Vandenberg Air Force Base, Federal Electric Corporation, WIR
Division, 1977.

Reference [2], Brooks, R. A., Trajectory Reconstruction and Analysis Methodology,

Vandenberq Air Force Base, Performance Analysis Department, fFederal Electric
Corporation, WIR Division, 1978.




measuring unit in the state vector. These terms are static; nevertheless,
they ao affect position and velocity and the transition matrix must reflect
this. Tnis report is concerned only with the part of the transition matrix
which is associated with the dynamic states of position and velocity. The
part associated with the IMU static states will be treated elsewhere.




PROBLEM STATEMENT

2.1 The Trajectory Equations

In both the freefall and powered flight segments of the trajectory the estima-
tion is mechanized around a nominal trajectory which can be obtained by inte-
grating the equations of motion. The nominal trajectory is used to compute a
nominal variation offset, the transition matrices, and it is used to compute
the total state vector.

The equations of motion are expressed formally as:

<s
|

AG(P) + AR(P’ V) + AT(t) (2.1)

where P and V are three component vectors of position and velocity respective-

ly; AG is the acceleration due to gravity; AR is the apparent acceleration due

to the rctation of the earth, and A, is the acceleration due to thrust. Gravity,

T
as is indicated, is a function of position. The acceleration due to the rota-

tion of the earth is a function of both position and velocity. Thrust acceler-
ation is a function of time alone. During freefall AT is identically zero.
During powered flight it is determined from the PIGA data telemetered every
0.03 seconds. The accuracy of the solution of equation set (2.1) is investi-
gated in this report.

2.2 The Transition Matrices

Let x be a six component vector whose first three components are position and

whose last three components are velocity. Then equations (2.1) can be written
X = f(x, t)

Further, let




D

Then the transition mat-* _auvisfies the differential equation

B, t) = F(US(L, t)

where o(t , t ) = 1
o' o

and I is the identity matrix.

The transition matrix will have an order which is equal in general to the size
of the state vector. However, in this study it will only have an order of six,
because this study is only concerned with the part of the transition matrix
associated with the dynamic states of position and velocity. The accuracy

with which equation set (2.2) can be solved is investigated in this report.

2.3 Integration Accuracy

The solution of the differential equation
x = f(x, t)
x(0) = X5

can be expressed

Xt(t) = xT(t) + RR(t) + LT(t)

where

xc(t\ 5 the computed value of x,

xT(L) 1s the true value,

(2.2)

el o ok ooy PPy A B




LR(t) is the round-off error,

aT(t) is the truncation error.

LT(t) results from the computer's use of an approximation to the derivative.

R results because of the finite word length of the computer.

Let & = £r + £ then the following graph is representative of the total error
£ at a fixed time as a function of the step size h.
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In Figure 1 h is the integration step size. This figure indicates that, in
general, there exists an optimum h at which the total error has a minimum. If
the step size is increased from the optimum, then the total error increases
because g increases, even though tR decreases. If the step size is decreased
from the optimum, then the round-off error causes the total error to increase
even though the truncation error decreases. The determination of an optimum h
is the purpose of this study. Clearly, it is desirable to use as large a value
of h as possible for which the total error 15 within allowable bounds, because

larger the values of h result in smaller execution times.

2.4 Polynominal Interpolation

Both the trajectory and transition matrices will be needed at arbitrary points.
Normally, and specifically for the cases under consideration here, the integra-
tion of the ditferential equations is much more expensive than evaluating in-
terpolating polynominals. It ic therefore more efficient to integrate the
respective differential equations over as large an interval as possible, and

then interpolate for values within these intervals.

Since, after integrating the differential equations, the function and its
derivative are readily available at both ends of the interval, spline poly-
nomials are obvious choices as interpolators because the spline function and

its derivatives must be continucus at the interval mesh points. However,

whatever choice is made, the interpolator must contribute errors which are
significantly less then the error of the integrator. The determination of the

error of interpolation is one purpose of this study.
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3.0 ANALYSIS
. 3.1 Analysis Of The Equations Of Motion
3.1.1 Formulation Of The Equations Of Motion

There were two approaches made in formulating the equations of motion. The
first is designated as Set I. It is that set given in Se:tion 2.0

O
1]
<<

<<
il

AG(P, V) + AR(P, V) + AF(t) . (3.0)

The AG(P, V) term is a simple gravity model including a J and a D term. AR(P,V)

is the acceleration present because the equations are expressed in a rotating

coordinate system. It includes the centrifugal and centripital terms.

AF(t) is the acceleration due to thrust. It is computed from the PIGA counts,
counts from a pendulous integrating gyroscopic accelerometer. Since the PIGA
counts give the change of velocity over the minor cycle, all that needs to be
done to determine the average acceleration over the minor cycle is to divide

the change in velocity by the length of the minor cycle, 0.03 seconds. The

PIGA counts are converted from counts to feet per second by multiplying by the
quantization factor of 0.12, and the results are transformed from the instrumen-
tation coordinate system to the earth centered rotating coordinate system in

which the equations of motion are integrated.

The AF term is discontinuous, and theretore adds to the difficulty of integrating
(3.0) with as much accuracy as desired, so an alternate approach was formulated.
It is designated as Set II

First the position and velocity resulting from thrust is calculated.

t
VF(t) = fo AF(U)dU (3.1)




t
PF(t) = fo VF(t)dr

Then primed variables are introduced

viooS oy -y (3.2)

'
-

pr S po-p

1
el

With these variables the differential equations of motion are written as:

pl - VI

\'/n

H

AG(P + PF) + AR(P + PF‘ Vi o+ VF) . (3.3)
Finally, the total position and velocity are computed by

v o= V' + VF (3.4)

P = P+ PV

From (3.3) it is seen that the discontinuous term is not present in the dif-

ferential equations. This formulation will aid in the determination of the
solution accurately.

The terms VF and PF are calculated directly from the PIGA data, and so the

method for doing this needs to be set forth explicitly.

Since the PIGA conts represent changes in velocity, it is natural to represent

the counts far a - aor cycle as AVi. Therefore,

A'XV

LI i

\/§ (Y,”) =

because VF(O) = 0.
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The position due to thrust is approximated by integrating velocity by the

trapezoidal rule.
PeCt ) = Pa(t 1)+ B(VE(t)) *+ Ve(t 1))(.03)
Pe(0) = 0
The integration step size is the minor cycle time of 0.03 seconds.
AF(tn) is computed by
AF(tn) = AVn/0.03
By the use of the above formulas AF(tn), VF(tn) and PF(tn) n=20,1,2....

can be computed. The values at any time can be found by interpolating, as

follows:

AF(t) AF(ti) , t., <t <t

1 - i+]
VE(L) = V(e *+ (b= tOAL) st b
2 .
- - 1 - < <
Pe(t) = Pe(to) + (b = tVe(ty) + 5(t = ) A(t)  t, <t < to

The results of the interpolation are multiplied by the scale factor to change
them from counts to feet per seconds, and then they are transformed from the

instrumentation coordinate system to the earth centered rotating system.

3.1.2 Integration Of The Equations Of Motion

The methods chosen to integrate the equations of motion are well known,
Reference [3]. Two methods were selected, the modified Euler and the
classical fourth order Runge-Kutta method. They were chosen because of their

stability and because they are one-step methods.

Reference [3], Bellman, Richard, Introduction to Matrix Analysis, New York:
McGraw Hill Book Company, 1960.
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One-step methods have the advantage that only information within the interval
of integration is used and the function and its derivatives, up to the order
of the method, need to be continuous within the interval. Multi-step methods
require information from several steps and the function and its derivatives,
up to the order of the method, need be continuous over all the intervals used.
Unfortunately, the later condition is not met in powered flight because the

accelerations are discontinuous from one minor cycle to another.

The equations of motion were formulated in two different ways and the two

methods of integration were used on both formulations.
The modified Euler method is as follows:

Given the difterential equations

! y = f(y, ) (3.5)
|
Y(to) Y,
where y is the unknown variable, in general a vector, and specified at some ¥

nitial time; then by the modified Fuler method

] f N
Vel Yo t Ry t) LY
Vool T et 30t )yt )
n+l n 2 ntel' "n+j n' n
where h s the <tep size of the inteyration Phel is conaidered to be the
predictec¢ value nf the function y by tael Ypel is the corrected value  tron
(3.6) 1t 1s _ieir that the values of y at one step are completely determined
| py values at the -cending step.  This method 1s said to be a second arder

~etnod pecause ! were 3 polynominal in t ot no higher degree than twa, then
the mcdified Fu method would integrate the differential equations exact’y

1f the arithmet ere done in infinite precision.

any function y which has 4 third derivdathive, the truncation error incurred

vy using this method s yiven by

10




3
e = o v (3.7)

where { lies somewhere within the interval of integration.

The second method used was the classical fourth order Runge-Kutta method. [t
is as follows:

Given the equations of (3.5), the solution is determined by

Yne1 T Ypt %[k1 *ky t kgt k) (3.8)
where

kl = hf(yn, tn)

ky = hf(y, +lsk;, t +%h)

ky = hf(y + %k, t_ + %h)

kg = hf(y, *+ kg, t +h)

This method is fourth order because if y were a poiynomial of degree no higher
than four, then (3.8) would give the answer exactly at any time if the arithmetic
were carried out in infinite precision.

Its truncation error is difficult to determine, which is one of the weaknesses
of the method; however, for any function which has a fifth derivative, there
exists a positive constant ¢, such that

5
ep < ch (3.9)

where h is the step size.

With the truncation error, or the upper bound for it, expressed as it is, it
is possible to formulate an approach which will determine an upper bound for

the total error incurred in integrating the trajectory. Figure 1 shows that

11
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if the step size is taken large enough, the truncation error is much larger
than the round-off error. In this case ¢ ~ £1- The approach was to run the
program at such a step size to a fixed time and then cut the size in half and
rerun the program to the same time. By subtracting the two results a very good
estimate was obtained of the error incurred by using the larger step size.

The equations are as follows:

xc(t, h) = xT(t) + eT(t, h) + LR(t, h)
The computed value at time t for a given step size h is equal to the true value
xT(t) plus the truncation error and round-off error for the step size. However,

we have assumed that, at the step size chosen, the round-off error is much

smaller than the truncation error. uR(t, h) < < LT(t, h). Tnerefore,
xc(t, h) ~ xT(t) + LT(t. h) . (3.9)

Now, in both the modified Euler and in the Runge-Kutta methods, the truncation

error is expressed as
&T(t, h)i = Cih
where k = 3 for the modified Euler method, and 5 for Runge-Kutta method. The

subscript i indicates that the error term applies only to making a single step.

However, when the step size is halved, then

“i ok
n.(t, h/2). = — h
i 1 k
2
assuming the ktr “e-jvatives are nearly constant in the interval. Since two

steps need tu be t xen to integrate to the same place as in the large step,

.ne truncation error for the smaller step at time t 1s approximated by

12
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1 eq(t, h); . (3.10)

Now the computed value at half the step size is equal to

xc(t, h/2) = xT(t) + eT(t, h/2) . (3.11)
By subtracting (3.11) from (3.9) it follows

xc(t, h) - xc(t, h/2) = aT(t, h) - aT(t, h/2) .
Since from (3.10) it was shown that the truncation error at each step for the
half step integration is a fraction of the error at the full step, the total

truncation error up to time t is mainly that from the larger step size.
! Therefore

e

xc(t, h) - xc(t, h/2) cT(t, h) . (3.12)
The above approach is onlty valid when the truncation error needs to be
determined to an order of magnitude. It is not possible to make a precise
determination in this manner. It is also clear that the assumptions are better
met by the higher order Runge-Kutta method.

For the above approach to give meaningful results, the size of the step and
the half-step must be large enough so that the truncation error is the dominant
term. This fact is verified if, for a smaller value of h and half its value,

closer agreement is obtain in the computed values. If the round-off is becoming
the larger term, for smaller values of h the differences should be about the same

or become larger.

It is clear from comparing the number of times the right hand side of the dif-
ferential equation has to be evaluated in (3.6) and (3.8) that the Runge-Kutta
method will take longer than the modified Euler method. The amount of work is
doubled for the Runge-Kutta; however, because the Runge-Kutta permits larger
step sizes, this method turns out to be the most economical in obtaining the

high accuracy desired.
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3.1.3 Spline Polynomials For The Trajectory

The error caused by interpolation needs to be controlled as carefully as the
error from numerical integration. The manner for determining the error is
rather straight forward. After the coefficients of the interpolating polynomial
have been determined, it is tested by integrating over the interval of inter-
polation with a very short step size. The integrated values are, consequently,
very accurate. The interpolated values from the polynomial are compared to
them.

The algorithms for determining the coefficients of the polynomials and the
programs to do this are given in Reference [1]. For the trajectory, it is
possible to use both cubic and quintic splines. The cubic spline is determined
by using position and velocity at each end of the interpolating interval. The
quintic spline is determined by using position, velocity and acceleration at
each end of the interval.

The polynomials are normalized to interpolate over in interval (0, 1). This
improves the round-off error appreciably. With the position, velocity and
acceleration at each end of the interval the normalized polynomial coefficients
are determined in the following manner.

Let .
Po = Py
;o = VY h
;o = a, h2
;1 = oVt h
;1 = a3 h2

Reference [1], Thompson, G. T., Computation of State Vector and Transition
Matrix for TRAM, Vandenberg Air Force Base, Federal Electric Corporation, WTR
Division, 1977.

14




where p., v and a  are the position, velocity and acceleration at the beginning

of the interval, and P1r Vg and a; are position, velocity and acceleration at
the end of the interval. Each of these guantities is a vector with three

elements. h is the length of the interval, h = tl -t

Then the coefficients for the cubic polynomial are determined as follows:

~ ~ ~

c; = vy +v, - 2py - py) (3.13)
€2 ~ 51 ) bo ) ;o T3

€1 ~ ~o

CO - ~0

The polynomial is then
- . 2 3
p(t) = Co + clt + czt + c3t

and is computed for each of the three components of the vector.

The quintic polynomial coefficients are determined by the following algorithm.

a, = Py By -V, - a2 (3.14)
3, = ViVt 3,

a; = (;1 - ;0)/2

d5 = ay- 352 + 6a1

i5




The polynomial is

2 a3+ dth s dt®

a(t) = dj +djt +d, 3 4 5

1
Since the polynomials are normalized, position and velocity at any time

t, to <t < t,, are obtained from the cubic by these equations

1‘
p(t) = pu(t)) (3.15)
v(t) = p'(u(t))/h

where
0 < u(t) = (t - to)/h <1

When the quintic spline is used, the position and velocity for any time t s

given by
p(t) = (u(t)) (3.16)

Q' (u(t))/h
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3.2. 1 Mathematical Formulation Of The Transition Matrices

The matnematical treatment of the transition matrices is given in Reference [2].

The transition matrices are related to the fundamental matrices by the equation
o(t, s) = w(tw i(s) (3.17)

and the fundamental matrices satisfy the differential equation
Y(t) = F(L¥(t) t' <t <t (3.18)
y(t') = 1

where I is the identity matrix and F(t) is given by (2.2).

The inverse of ¥(t), W-l(t) also satisfies a differential equation

iy = iR

t

wloy =1
W-l(t) may be found by integrating the differential equations or by finding
¥(t) and inverting it.

In this <tudy only those terms of the transition matrix which are associated with
position and velocity are considered. This means the F(t) above is equal to
Faa(t) and ¥(t) is egual to waa of Section 6.3. The subscripts are dropped

to simplify notation.

It should be pointed out that this is apparently the simplest part of the tran-

sition matrix to compute. Wab of Section 6.3 evidently presents some significant

problems. How these problems are handled will appear in another report.

Reference [2], Brooks, R. A., Trajectory Reconstruction and Analysis Methodology,
Vandenberg Air Force Base, Performance Analysis Department, Federal Electric
Corporation, WIR Division, 1978.
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3.2.2 Integration Of the Transtion Matrices

The problem is how to integrate (3.18) accurately and efficiently and then to
explore what accuracies can be realized with the chosen methods. It is important
to note that most of the integration time will be spent in the integration of
fundamental matrices simply because of their vize. For whatever methods are
chosen, a standard with which to compare them 15 necessary in order to maintain
the desired accuracy. [Ihe inverse of P(U1) wiil be inteqratea the same way ¥(t)

is.

The integration of the fundamental matrices for free fall was examined,
Reference [1]. The elements ot the matrices are the same. The only difference
is the more dynamic and discontinuous powered flight trajectory. From the
mathematics, it appears these differences would make only second order changes.

The equations to show thic follow

(L) = F(L)w(t)

$¥(0)

where I is a 6«6 identiy matrix. Whatever integrator i1s chosen, how well it

performs dependc nn mow well the higher derivatives of v with respect to t behave.
W) o Lty e Frt)e(t;
TNt s FLOF(OY(L)
The ?(t)w(t) term gives a clue as to what might be expected from the integrators.

F(t) is a mat-— - the 1jth term can be denoted as gij(t); therefore
F(L) (uij(t)) PR T O

From the definit n of F(t) 3t is clear that it is an explicit function of the
positicn and .elocity, which are functions of time. As a matter of fact t does

no. appear explicitly in F(t); therefore, it may pe written as

Reference [1], Thompson, G. T., Computation of State Vector and Transition
Matrix fcr TRAM, Vandenberg Air force Base, Federal Electric Corporation,
WTR Division, 1977.
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F(t)

(g]-j(x(t))) i, j=1, ...,6

.
?
3
r
3

Then

i

F) = (gy5(x(t)))

But

3g. .
g = — ). x
9y 5(x(t)) (axT) x(1)

The term i(t) was discussea in Section 3.1.2, where it was noted that the powered
flight trajectory had greater dynamics and that the AF(t) term in these dif-
ferential equations was discontinuous. In this expression, however, each term

in i(t) is multipled by coefficients that are either zero or very small. for

i =1, 2, 3 the coefficients are jidentically zero, and for i = 4, 5, 6 the terms
are bounded by 10-12 in absolute value. As a result the greater dynamics and

the discontinuities in i(t) wil)l have a second order effect on the integration

of the characteristic equation.

For the term ?(t)W(t), with the use of the Schwartz inequality

. ag. . .
HECwee) || < | —la} I IExce) [ ey |
X

where || - || indicates the norm, Reference [3]. but since

ag. . ~
| —H || < 107%

BxT -
| Il x(t) || < 10° ;
IO R B! "‘

Reference [3], Bellman, Richard, Introduction to Matrix Analysis, pages 161 and
162 , New York: McGraw Hill Book Company, 1960.
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then

lEcow l « 1072 . 10° = 1077

Simitarly, we can see by rinspection that higher partials of gij(t) will be
smaller still. The higher derivatives of p(t) are discontinuous but the dis-
continuities are multiplied by very small partials, and as a result, it is

expected that rather large step sizes might be used in the integration of P(L).

The second term in W(t) is F(t)F(L)¥(L).

. - F
Since ljFll < 107°

difficulty in the integration of ¢(t).

CHwey i 1, and this term iy continuous, 1t presents no
i o

Tne methods of integraticn chosen were the fourth order Adams-Mculton and Runge-
Kutta methods. The Runge-Kutta does not ditfer conceptionaliy from the way in
which it was discussed in Section 3.1.2, although the differential equations

are different and the application is somewhat different. The explicit algorithm

is given by (3.8).
The Adams-Moulton method is discussed in detail in Reference [4]. By it the
solution of (3.5) is as follows:

- h o .
Yor1 T Yt o3 (55f(yn, tn) )q‘(/n-l' t )

n-1

- gf
' 37f(yn'2' tn'Z) J (yn-3‘ tn-3))

h - .
Vool TV, 4 (Qf(yn‘l, tn‘l) ¢ 13f(yn' 1n)
Sf(yn—l‘ tn'.\) ! f(yn-?‘ tn-?))
where h is the egration step size and f(yn, t”) is the value of the derivative
of y at tr.

reference {4], Lapidas, Leon and Seinfiled, John H., Numerical Solution of
Ordinary Differential Equations, New York: Academic Press, Inc., 1971.
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Several past values of the function are used, and if the method is to be effect.ve,

it must have high order derivates that are continuous in the interval from th-3

to tn+1. In integrating from tn to tn+1 the method first computes a predicted
value Yn+1 at tn+1' and then the derivative, evaluated at tn+1 with Yne1® is
used to compute the corrected value Ynel at tn+1‘

Since to step from tn to tn+1 only two evaluations of the differential equations
are required, this method is nearly twice as fast as the Runge-Kutta method

which requires four.

This method is known to be very stable and the truncation error for the predictor
and corrector is given by

_ 251 .5 (5]
T = 72007

_ -19 .5 [5]
Te = 7300y

The corrector, as is always the case, is more accurate. Both error terms depend
upon the fifth power of the step size and the fifth derivative of the function

being integrated.

The first three values of the variable after the initial conditions have to be
obtained by other means before this method can be used for the first time.

These initial three values were ghtained by the Runge-Kutta method.

3.2.3 Interpolators For The Transition Matrices

Two interpolators were used. One was the cubic spline described in Section

3.1.3. The other was a interpolator which uses the function and the derivative
at three points. This is not a spline interpolator in the correct sense but
it is similar to one. The quintic spline described in Section 3.1.3 was not
used because the second derivative of the fundamental matrices are needed for

it and these are difficult and very costly to compute.
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The cubic spline has already been discussed, but the guintic interpolator needs

to be expressed explicitly.

Compute first

Then compute

“hen the polynces

plu)

il

its derivative at equally spaced points.

; v(t)),

What is given are three values of a function and

So then these values are given

PIOED), P, W), (), (), e

3 1

Dty - W) v ow(t,)

2 1 { 4
- hy (tl) + hW(tQ)
- hy (tl) - W(tz) + W(t3)
-t ¢ h(Ly)
W(tl)
hW'(tl)
16r1 - 8r2 + 7r3 Ty
32r1 - 6r3 + r4 - 432
32ri Tory T 333 - 7a?
".) - 1‘4 = a} - a)

1t au+ta,u *a u3 +a,u + a u5 0 <wu-<l

2 3 4 57 ¢ - 7 =
(t - tl)/h
j

22 ,
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"5 a pniynomial, pormalizea over the interva: t

to t3 which matches the given

funciional values and derivatives at each end of the interval and at the mid-puint

That is,
p(Y)

p'(G)/h

p(%) =

p'(%)/h

p(l) =

pr(1)/n

W(Ll)
= W'(tl)
W(tz)
= W'(tz)
W(t3)

= W'(t3)

"o Tinn the interpoiated value of any element of the fundamental matrix or it-

derivative at any value t, t

u = (t - tl)/h

and then p(u) and p'(u)/h.

¥(t) =

vi(t) =

p(u)

p'(u)/h

u is computed first

P IEY LU PN S




4.0 NUMERICAL RESULTS
4.1 Computation Of The Trajectory
4.1.1 Integration Of The Trajectory

With the equations formulated as in Set I and as in Set Il discussed in Section
3.1.1, both sets were integrated using the modified Euler and the Runge-Kutta
methods described in Section 3.1.2 to 200 seconds.

The only parameter varied as both sets of equations were integrated by the two
methods was the integration step size. The step size was changed in such a

way that either a minimum total error was reached (as described in Section 2.0)
or the error in position became less than 10-4 feet and simultaneously the error
in velority became less than 10-6 feet/second. In the numerical experimenta-

tion, the errors fell below the bounds before the minimum error was reached.

Table 1 gives the results from the various integrations. The equations are
identified as Set I or Set II; the step size and the method of integration are
indicated. The error incurred is given. The error was determined in the
manner described in Section 3.1.2. Also given is the time taken to do the
integration. h is the step size. Ep is the error in position, and £y is the
error in velocity.
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TABLE 1
TRAJECTORY INTEGRATION

MODIFIED EULER RUNGE-KUTTA
n SET 1 SET 2 SET 1 SET1 2
T =411 T = 419
o15) e = 1.5x107% e, = 8x10"°
e = 10-6 £ = 9)(10_7
v v
T =218 T = 231 T = 346 T = 351
03 | e =6x10"% e = 6x1074 ¢ = 6x10°° e = 7x10°°
p -6 p 6 p -5 p g
£ = 4x10 e, = 9x10 by T 1x10 £ = 3x10
T =97 T =119 T = 168 T =170
L -1 o -3 _ -2 _ -4
.06 £ =10 e =10 £ = 4x10 . = 9x10
P -5 p -5 p -5 p -6
£ = 5x10 e = 2x10 ¢ = 1.5x10 ¢ T 5x10
v v v
T =94
.09 e = 3x10°°
P -5
¢ = 2x10

* In Table 1 T has units of seconds, Cp has units of feet, £y has units of

feet/second, and h has units of second.

The times given must be divided by three to give the time of the integration

at the specified step size. This is because the step size was divided by 2 to
integrate a value that was used as a standard for comparison. The integration
time at half the step size plus the integration time at the full step size is ]

about three times the value at the specified step size.

The cases where no data is presented in the table were not run because either
the error had become too large or too small.

4.1.2 Trajectory Interpolation
The algorithms for the cubic and quintic splines used to interpolate the traj-
ectory are given in Section 3.1.1. The equations to compute the coefficients

of the polynomials are given by (3.13) and (3.14).
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Both the cubic and quintic splines were used, but the results were so similar
that it was not meaningful to treat them separately.
differance in the results when the equations of motion were formulated dif-

ferently, and, of course, the results changed markedly when the step size was

changed.

Table 7 gives the results of the numerical experimentation on spline interpoiat.oun
It gives the error in interpolation obtained by subtracting the very accurately

integrated values from spline interpolation.

Table 1.
TABLE 2
SPLINE INTERPOLATION
h SET 1 SET 2
T = 946 T = 1023
.03 e 1078 . =108
v =107 .= 10"
v
S i s-m -
T = 506 T = 519
.06 e =102 . =108
p -7 p 7
¢ = 10 . = 10
_____ .1 v _ v
T = 249
12 w107
P -6
' = 10
. e 1. v
T =136
.24 .= 3x107’
p -6
¢ = 2.5x10
) ~ v
T =73
_ -6
.50 &= 3x10
P -5
. =10
T | v
T = 39
1.0 . 107%
e = 107°
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4.2 Computation Of The (haracteristic Matrices
4 2.1 Integration Or The Characteristic Matrices

The characteristic matrices and their inverses were integrated in twou wdys
One was by the Runge-Kutta method and the other was by the Adams-Mou!tlorn melhc.!
whith were described 1n Sections 3.1 2 and 3. 2.2. Only tne character:'stic
matrices associated with the dynamic terms (waa) were inteqgrated, Reference [/

The inverses were calculated both by integration and by 1nversion

The Adams-Moulton integration was aliowed Lo run over the entire span ot nte-
gration (100 seconds) without being reinitiaiized, wheress, trhe Runge-Kutta

integratlon was reinitialized to the i1dentity at every <tep

The standard with which the integration ot these matrices and thei' nverses
by both methods were compared tu wdas the resu.t of Runge-Kutta 'ntegrat.ons

with much smaller step sizes.

Since the point of view 1s different in the two different methods. the recu t-

of the ‘ntegrations are present2d in two different tables

, 4.2 2 Interpolation Of The Characteristic Matrices

!

‘ The interpoiation of the characteristic matrices was accomplished by cubic and

' quintic polynomials described in Section 3.2 2 When the Adams-Moulton method ;

1

‘ was used As an integrator, both the cubic spline polynomial and quintic polynom & ;
was used. The standard used for comparison was the result of Runge-Kutta
integration with small step sizes. The polynomials were evaluated at the step

points of the Runge-Kutta integration.

wWhen the Runge-Kutta method was used as an integrator, only the cubic spline
polynomial was used as an interpolator. The standard for comparison was the

output of the Runge-Kutta method small with step sizes.

Reference [2), Brooks, R. A, Trajectory Reconstruction and Analysis Methodology,
Vandenberg Air force Base, Performance Analysis Department, Federal Electric
Corporation, WIR Division, 1978.
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4.2.3 trror In The Characteristic Matr x Computation

Tables 3 and 4 give the results of the computation of characteristic matrices
for the Adams-Moulton and Runge-Kutta methods respectively. The error of inter-
polation is given for each of the methods. Both the cubic and guintic poly-
nomicls were use as interpolators. Since the results were nearly the same,

only the values from the cubic were considered.

The standard matrices were subtracted from the matrices determined by inte-
gration and by interpolation to obtain error matrices. The norms of the error
matrice were taken to be the maximum absolute value of any element of the

matrix. The norms of the error matrices are given in the tables

In the same manner, Reference [1], the error matrices are broken up into *four
parts. The upper lett nine elements are those errors which propagate errors
n pos*tion 1nto position. The upper right nine elements submatrix 1s the
matrix which propagates errors in velocity into position. The lower lett nine
element submatrix propagates errors in position 1nto velocity, and the Jowe:
right nine element submatrix propagates errors in velocity into velocity The
thirty-six element characteristic error matrix is represcnted by four number . .

a norm for each of the submatrices described above.

Re*wreroe (1], thompson, G T , Computation ot State Vector and Iransitron

M4'-1x tor TRAM, vandenverq Air Force Base, federal Flectric Corporation, wik
Jt.istan, 1877
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TABLE 3
ADAMS-MOUL TON INTtGRATION

ERROR MATRICES
STEP SIZE 99 1.98 3.9 5. 04
107 108 1w w0 {w?® 1wt w0t
INTEGRATION
- - - & - - - - -
M 10 Y w8 e e et
107 w08 [ w? o bt ot 107"
INTERPOLAT 1 ON
W [ w8 e
TAB.t 4

RUNGE-KUTTA INTLLRATION

ERROR MAIRICL S
)
t sTe e HLlt 9Y 1.98 5. Y0 5. ud
- - - - -12 Q -0 [
10 14 17 13 LU 14 i0 1 ot 10 e 1
INTEGRATION '
. e . S R !
R TR L BRI TP L YRR AN TP IS TPRR L S i
- _ . . - - -2 .
S Y I I T ;
INTERPOLATION
g B SRRCINETVRR R TV TPRE L I YO '
1
- e — - — — e ey




5.0 CONCLUSIONS

5.1 Conclusions About the Trajectory Computation

The trajectory was integrated over two hundred seconds. FfFrom Tapble 1 it is
seen that the only times that an error in position of less than 10-4 feet and

simultaneously an error in velocity of less than 10.6

feet/second was reached
were when Equation Set 1 and Set 2 were integrated at a step size of 0.03

seconds with the Runge-Kutta method and when both of these equation sets were
integrated at a step size of 0.015 seconds with modified Euler method. These

were the only satisfactory cases of all the cases run.

The cases Lhat were satisfactory in the spline interpolation were when Set 1
was integrated and interpolated over an interval of 0.03 seconds and when Set
2 was integrated and then interpolated over intervals of 0.03, 0.06 and 0.12

seconds. When Set 2 was interpolated over an interval of 0.24 seconds, the
position accuracy fell well within the requirement but the velocity error was

slightly larger; therefore, this interval might be considered satisfactory.

5.2 Conclusions About the Characteristic Matrix Computation

Errors in the computation of the transition vector relate errors in the state
vector from one step to the next. [f we bound the errors in position and
velocity, then the total error can be bounded by multiplying the error bound
for one step by the total number of steps taken.

EiNstep

—
1t

The total error is less than or equal to the bound for any step times the

total number of steps  The bound for step i is given by




diiat' - RS _anad

where &o is the bound for the computation error in the transition matrix for
any step and Pe and v, are the bounds for the errors in position and velocity

for any step.

With the same approach to bounding the error for the charactersitic matrix
computation, Reference [1], the following may be stated. The errors in posit.un
at eacnh step must be less than 100 feet and in velocity less than one foot per
second and since there are less than 1500 steps, errors in the characteristic

matrix computation for the two methods of integration can be bounded.

For the Adams-Moulton method the results are presented in Table 5.

TABLE 5
ADAMS-MOULTON INTEGRATION ERROR FOR TRANSITION MATRICES

STEP SIZE .99 1.98 3.96 5.04 Secs.
ﬁp .063 .02 .03 .2 be.
£, .00003 .0003 .0003 .003 Ft./Sec.

zp and £, is the bound for position and velocity error due to numerical errors

in computing the transition matrix.

Since the interpolation does not contribute any further appreciable error, the
values in Table 5 can be considered the total error for this method.

From the above tabled results the following conclusions can be made. The Runge-
Kutta method at 5.04 second step size is an adequate method for computing the
transition matrix. With this method of integration the cubic spline can be

used satisfactorly to interpolate at this step size.

Reference [1], Thompson, G. T., Computation of State Vector and Transition
Matrix for TRAM, Vandenberqg Air Force Base, Federal Electric Corporation, WTR
Division, 1977.
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This step size is in agreement with the analysiy which anticipated that the
computation of the transition matrix for powered flight could be accomplished
by a procedure similar to that used in free fall.

From the tables it is apparent that the interpolation is the factor which limits
the step size for the Runge-Kutta method.

As for the Adams-Moulton method, it is clear that the accuracies obtained by
this method are not sufficiently good to warrant its use. It must be remembered
that the integration was made over 100 seconds; whereas, in the Runge-Kutta

the integration was reinitialized every 5 seconds. Nevertheless, even when

the step size was taken to be 99 seconds the accuracy was marginal. This
method should not be abandoned, however, because it has the potential for
integrating as well as the Runge-Kutta and is twice as fast.

The disadvantage of using the Adams method is that it is necessary to use a
different starting algorithm for the first three steps that either is the Runge-
Kutta method or 15 as costly ac the Runge-Kutta method. This means that the
integration must run at least 20 seconds before any time savings are made at

all, when a five second step size is used.

For the Runge-Kutta method of integration we have a similar table

TABLE 6
RUNGE-KUTTA INTEGRATION ERROR FOR TRANSITION MATRICES

STEP SIZE 99 1.98 3.96 5.04 Sec.
) %1072 2x1078 2x107° 2x107° Fr
> - 510712 3x10" 10 2x10”8 ax10 8 Ft./Sec.




he interpoiation error appreciably degraded the computation in this case.

The total error, which is the sum of the integration and interpolation error,

is given in Table 7.

TOTAL COMPUTATION ERROR FOR RUNGE-KUTTA

TABLE 7

STEP SIZE .99 1.98 3.96 5.04 Secs.
s 3x10”7 2x107° 3x1074 3x10”4 Ft,
‘ 3x107° 2x1077 2x107° 3x1076 Ft./Sec.
33
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6.0 RECOMMENDATIONS

Since the Runge-Kutta error is less and is faster than the modified Euler, the
recommended algorithms for the trajectory are the Runge-Kutta method of inte-
gration on equation Set 2 with a step size of 0.03 seconds and then inter-
polation with a cubic spline for no more than 0.24 second intervals. Because
the Runge-Kutta error is less and is faster, the recommended algorithms to
compute the characteristic matrices are the Runge-Kutta method for integration
with a step size of five seconds and then the cubic spline interpolation over
the same interval.




