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1. INTRODUCTION

The growing embphasis on energy conservation has led to accelerated research

on the development of efficient equipment for heat exchange processes. Today,

a large share of this research is directed toward techniques for augmenting heat

transfer [1.1-1.3]. The ultimate purpose of such techniques may be to improve

the thermodynamic performance of future or existing heat exchangers, to reduce

their size, thereby reducing capital and operating costs, and possibly, to prevent

excessive temperatures and failure in systems where the heat generation rates

are difficult to tolerate.

The task of evaluating the merit of a proposed augmentation technique may

be as important as developing the technique itself. Experts agree that evaluating

the impact of these techniques is a difficult problem [1.1-1.3), partly due to

their (Ireat diversity and partly due to the absence of a common conceptual basis

for evaluation. The present study was motivated by the real need for a univer-

sal, thermodynamically solid, basis for comparing the worth of all augmentation

techniques.

In general, the objective of all heat transfer augmentation techniques is

to enhance the thermal performance by increasing the surface heat transfer

coefficient relative to the heat transfer coefficient which characterizes the

standard (untouched) surface. At the same time, the increase in heat transfer

coefficient should be accompanied by only a small increase in the fluid pumping

power loss needed for the heat exchange job. These objectives underlie the

fundamental trade-off in the development of any heat exchange equipment, namely,

a design modification which improves the thermal contact will most likely cause

0 parallel increase in the mechanical power dissipated in the apparatus, for

example the power needed for pumping the working fluid through the passages of

a heat exchariqer. Given this trade-off, it is important to know in advance
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which augmentation technique will realistically lead to an improved overall

performance. In addition to finding out whether an improvement is feasible,

it is important to know, in quantitative thermodynamic terms, the size of

the improvement.

This report summarizes the main results of a two-year study of the impact

of heat transfer augmentation on the thermodynamic performance of heat exchange

equipment. The study relied on the concept of thermodynamic irreversibility

and entropy generation as fundamental criterion for evaluating and, eventually,

minimizing the waste of usable energy (exergy) in energy systems. The extreme

importance of this thermodynamic concept in the world of energy engineering

was summarized most recently at the 1979 Second Law of Thermodynamics Workshop

[1.41. It has also been shown [1.3,1.5,1.6] that the ultimate function of all

augmentation techniques is to inhibit the production of entropy, thus paving

the road toward thermodynamically efficient equipment for heat exchange.

The work summarized in this report is organized into three distinct parts.

The first part (section 2) contains a fundamental investigation of the entropy

generation mechanism in elementary heat transfer configurations. This tutorial

section establishes the foundation for the second law analysis of actual aug-

mentation techniques, reported in sections 3 and 4. Section 3 describes in

quantitative terms the irreversibility minimization potential of some of the

most common techniques, namely, swirl-flow devices and roughened surfaces.

Section 4 considers the entropy generation penalty associated with the use of

extended surfaces (fins) in convective heat transfer. This section shows

also how the fin geometry can be chosen such that the fin performs its heat

transfer duty with minimum generation of entropy.

Due to space limitations, the present report reviews only a segment of

the research undertaken during this two-year study. For a complete and detailed
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account of all the topics covered by this study, the reader is encou. aged to

consult References [1.7-1.121.
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2. ENTROPY GENERATION IN CONVECTIVE HEAT TRANSFER

2.1 Local Rate of Entropy Generation

Considor the two-dimensional infinitesimal fluid e.ement dxdy shown

schematically in Fig. 2.1. The fluid element is part of a considerably more

complex convective heat transfer picture. However, for the scope of this

study, we regard the element as an open thermodynamic system subjected to mass

fluxes, energy transfer and entropy transfer interactions through a fixed con-

trol surface. The element size is small enough so that the thermodynamic state

of the fluid inside the element may be regarded as uniform (independent of

position). However, the thermodynamic state of the small fluid element may

change with time.

For this study, we limit our attention to incompressible fluids without

internal heat generation. In such cases, the expression for the volumetric rate

of entropy generation reduces to [2.1]:

krI)\ I+ (O\21 +/v L1 X 2+ av y 2] ( av Dvy)

S11 =.)J 2 [( + (2.1)

A.; wo might have expected, the irreversibility indicator S" contains two addi-

tivw parts, one due to conduction in the presence on non-zero temperature

gradients, the other accounting for viscous dissipation of mechanical power

througiout the flow. In the second term of equation (2.1), the factor in

brackets represents the viscous dissipation function V for two-dimensional

compiessible flow.

The local entropy generation rate formula (2.1) can be derived in straight-

forward fashion by performing an entropy transfer accounting around the

infinitesimally small element illustrated in Fig. 2.1. The entropy transfer
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q,+ dq,
vy+ dv,

y+dy -- -

Y v,+dv,

V,

i I

x x+dx

Pig. 2.1. Entropy generation analysis for an infinitesimal element dxdy in
convective heat transfer.

N,- 1/2 NS -, NS-

IO
1 U r 10 -0

Pr. 1O1

1/4

RB.P, Pr -

EcI~ / idt Re,

0 0.5 Io' o" ,o
B 100*

Fig. 2.2. Left: entropy generation profiles Ns,,, inside a smooth tube with

constant wall heat flux in laminar flow. Right: optimum Reynolds
number and corresponding minimum entropy generation number for
forced convection heat transfer in a round tube.
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to and from the (dxdy) system is associated with heat transfer, q and
X

aly s wll as with mass fluxes, pv and pv y In the interest of brevity

we do not show this derivation, urging the reader to consult any irreversible

thermodynamics book for additional details. Alternate versions of formula

(2.1) corresponding to coordinate systems other than the two-dimensional carte-

sian system of Fig. 2.1 may be found in [2.2].

In many heat transfer problems it is often possible and convenluet to

ln(,qlt(:t th, viscous dissipation term 1A) in the equation for envrgy conservation.

I o 3O U 0 2

PC V ~-,x+ vt-) k+ (.

This is particularly the case in heat transfer through gases at subsonic velo-

cities. The dimensionless group which expresses the magnitude of the dissipation

,riorgy te2rm relative to the conduction energy term in (2.2) is [2.3]

U*2  v
Ec Pr = ( * (2.3)

P

where: u* and 0* are the characteristic fluid velocity and temperature

differcnce for the convective heat transfer problem. Thus, in many engineering

problems, we find Ec Pr << 1 .

Consider now the same question relative to expression (2.1). Under what

conditions is the viscous dissipation contribution to S"' negligible? If we

rtegard expression (2.1) as the sum S" S.' + S11. then, in
conductive viscous

an order of magnitude sense,

viscous Ec Pr
(2.4)

S"conductive)=
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lIert', i - I*/T* , where T* is thte absolute temperature characteristic to

tIt' |,ru!hm at hand. The dimensionl.ss temperature difference, q , is always

an important dimensionless parameter in second law analyses of heat transfer

problems. With the exception of applications at cryogenic temperatures, the

temperature difference number t is generally much smaller than unity,

I - 1 .

it is now clear that the energy argument by which viscous dissipation is

n,:glected in (2.2), i.e., Ec Pr - I, has no bearing on the question of

nt-,jliyible viscous contribution to the local rate of irreversibility production.

It is then possible to encounter situations where, although the energy equation

can b,! simplified according to Ec Pr - 1 , S.' is in fact dominated by

viscous effects. This is the limit in which T is very small, small enough

so that Elc Pr/T > 1

Below we examine a series of important convective heat transfer configura-

Lions in an ,ffort to illustrate the coupling of viscous and conductive effects

in the makeup of S"' . In the process we will study the spatial distribution

uf irrever:;ibility, pointing out those flow features which act as concentrators

(sources) of entropy generation S'".

2.2 Forced Convection in a Round Tube

Laminar Flow. Consider the Poiscuille flow through a round tube with uni-

Corm heat flux q" around its circumference (see insert in the left side of

1F.ig. 2.2). The velocity and temperature profiles for this flow are particularly

simPJl [2.21:

x x,max r°
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q'Ir 0 x r 2l r~. .. . + (2.6)
k x O r/4rJ0

with

. r.. dP \ o 0 x'max Pe . (2.7,8)

x,max
0

The equation for S"' in the cylindrical geometry of Fig. 2.2 is

: Lr+2_J ++ (r2 2.9)

which yields

kT (2R - R 3 ) 2 + + Tm2a R r (2.10)kT2 LPe 2 J -T 2 ,R-r
0 0

Equation (2.10) is the entropy generation profile in the pipe cross-section.

Togother with the velocity and temperature profiles, the entropy generation

profile completes the thermodynamic description of the convective heat transfer

phenomenon.

It is convenient to nondimensionalize expression (2.10) and define the

local entropy generation number

kT 2 16 4 Ec Pr (211
N S ' (2R - R 3 ) 2 + 16 + " (2.11)

Ii r we made the assumption that the temperature variation over the pipe

cross-section is negligible compared with the absolute temperature, hence

T n' T whcere T is a characteristic (reference) absolute temperature. The

irreversibility figure NS, depends on radial position, on Pe and on the

L....... .
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(jrou Ec Pr/T which, as discussed in the preceding section, determines the

rlitive importance of viscous effects. The Puclet number Pe governs the

importance of irreversibility associated with conduction in the axial direction.

We see that for Pe < 4 the axial conduction contribution dominates the radial

conduction effect.

The left side of Fig. 2.2 displays a family of entropy generation profiles

in the pipe cross-section, for cases where the axial conduction effect is

negligible (Pc >> 4). The value of Ec Pr/T increases gradually to the point

where' viscous effects dominate NS,. . In all cases, the pipe wall region acts as

a strong concentrator of irreversibility. When Ec Pr/T = 0 , the maximum NS.,

1/2
occurs inside the fluid at R = (2/3)1 , the same place where due to the wall

curvature effect the maximum radial temperature gradient is located. As viscous

effects take over, the point of highest NS, migrates toward the wall and, for

Ec Pr/i > 1/4 , it coincides with the wall.

The rate of entropy generation over the entire tube cross-section is

obtained by integrating expression (2.10),

1

S' =  27 r 2  S.' R d R. (2.12)

0

Neglecting axial conduction, Pe >> 4 , result (2.12) can be written as

. 11 q
2  8 pfn

2

487 kT 2 +T Tp2 r 4 (2.13)
0

Here m is the mass flow rate through the tube, while q' is the heat transfer

rate per unit length, 21Tr q" . Once more, the irreversibility production S'

appears as the sum of two effects, heat transfer in the direction of a finite

temperature gradient and fluid friction. It should be noted that the heat transfer

jI
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contribution to S', the first term in equation (2.13) , is fixed as soon as

the heat transfer rate per unit length q' (the heat transfer duty of the

tube) is specified. We return to this observation later in this section when

we address the question of optimum tube radius for minimum irreversibility

and fixed qj'

Turbulent Flow. Exact analytical solutions for the turbulent velocity

and temperature fields in the tube cross-section are not available. Therefore,

one cannot evaluate the rate of entropy generation at any point in the pipe

cross-section, as done through equation (2.10) for laminar flow. However, one

can still evaluate the rate of entropy generation averaged over the tube cross-

scction by using the integral result developed by Bejan [2.4] for irreversibility

in a duct of arbitrary geometry.

Using the present notation for forced convection through a tube, the

intogral result is [2.4]

S'1 q' im3

irN iT 2 T r 5 (2.14)
0

which shows how S' can be evaluated based on average heat transfer (Nu) and

fluid friction (f) information. As one might expect, the laminar flow expres-

sion (2.13) is only a special case of the more general result (2.14) since,

in laminar flow, Nu = 48/11 and f = 8 Tr p r 0/1n. Unlike in laminar flow,

the itat transfer contribution to S' is not necessarily constant when the

hecat transfer duty q' is specified.

Optimumn Tube Radius for Minimum Irreversibility. In an application in

which the heat transfer duty q' and the mass flow ih are already specified,

it is possible to select an optimum tube radius which insures the minimum rate

of entropy generation in the heat transfer device. This design optimization



procedure. is described best by placigiq the irrevrsiLbility rate- exiress.;L;

(2.14) in dimensionless form. We define the entroey erdtion nuber .1N

as tie ratio S'/S T,laminar where S' is the actual entropy generation

ratec given by (2.14) and S' is the first tc:rm appearing in (2.13).AT,lair

We commented earlier that S' is constant when the heat transferAT, laminar

rate q' is specified, hence, S' assumes the role of characteristic' T, laminar

rate of entropy generation in the system of interest.

The! entropy generation number is therefore

48 -I 3Tr -2
N = - Nu - f R& B ' (2.15)

s 11 22 0

showing that th( duct irreversibility depends primarily on two dimensionl, ss

groups, thet Reynolds number based on tube diameter Re and the "duty"

parameter B ,

o m

Re = ;B =2q'1/(2.16,i7)
p ro o 5/2 (kT) 112

With q' , zn and working fluid specified, the task of finding the optimum radius

for minimum S" is equivalent to minimizing the N expression (2.15) with

respect to Re , subject to a specified constant B a This procedure is

straightforward, therefore only the final results are given here.

For laminar flow, using Nu = 48/11 and f = 16/Re in expression (2.15),

the minimization procedure yields

min
Reop t = 0 ; NS, = 1 (2.18,1)

In ,-ngineering terms, this result implies that the selected tube radius r
0

must be large enough so that the rate of entropy generation is strongly

dominated by the contribution due to heat transfer across a finite temperature
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dift,2r.nc, . In other words, based on expression (2.15)

Re"B - 1 (2.20)
0

For turbulent flow, the N expression (2. 1,) has a unique minimum.S'
0.4 0.8 -0.2

.;ulstLtuting Nu = O.023 Pr Rt. and f = 0.046 Re into (2.15) and

diflfrmntiatnq with respect to Re yields

-0.071 -0.358Re = 2. U23 Pr B (2.21)
opt o

mmn -0.343 -0.2o6
Ns 12b Pr B . (2.22)

0

|xj'ri,sions (2.-1, 22) ilaV been summarized in the right hand side of Fig. 2.2

fo, two di.;cr-ete values of Prandtl number. As the aggregate duty parameter

b Incra.: , we :.e that the optimum tube radius decreases (Re increases)~opt
min

trid th,.. riinimum entropy generation number NS  decreases also.

.oundary Lay,.r Over Flat Plate

laminar Flow over Isothermal Plate. Consider now the development of

laminar mom,,ntum anol thermal boundary layers along a flat plate. The situation

i.; shown schi-maticji Ly in the horizontal plane- of the isometric drawing of

.ij. 2.3. At some di atance, from the solid wall the fluid velocity and temperature

ar, uni form, - and T . The wall temperature is constant, T

Tht :;tudy of the velocity and temperature fields in the vicinity of the

I late constituted the subject of numerous investigations (2.51. The purpose

of this s, ction is to examine the distribution of entropy generation in the

bounlary layr. For this we rely on solutions available in the literature for
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v (x,y) aknd 0(x,y) in laminar flow.
x

The task of evaluating the entropy generation profile S"' is simplified

greatly if we restrict the discussion to the case Pr 1 for which the

Blasius-1'ohlhausen solution [2.6] reduces to

v) x df= x d (2.23,24)

1/2
Th similarity variablu n equals y[vx,./(vx)] , while f(g) is the

function tabulated by Howarth [2.7]. Neglecting the irreversibility terms

associated with velocity and temperature gradients in x direction, we find

k0 2 v Wv 3

xV (f,) 2  + Tx (f.)' (2.25)T ?Vx T Vx
0 0

The local entropy generation number is

N" k. v ( + Ec Pr) Pr = 1, (2.26)
x

wh 'r. Pux is defined as vx, x/v.

Th complex dependence of S.. on both x and y is shown in Fig. 2.3.

The thr, ,-dimensional display was done in terms of (x v M/v) and

(y vx, /v) in the horizontal plane, and NS,,,/(1 + EcPr/') in the vertical

dircction. It is evident that the irreversibility effects are limited to the

boundary layer. Regarding the y dependence of NS, , the entropy generation

rate is highest reaching a peak at the solid wall. The longitudinal variation

of ',"' is as 1/x , indicating that like all gradients in this boundary layer

s;olution S.' blows up at the origin. The viscous effect again scales up as

Ec Pr/ I

" - .... .. . . .. ..:. .',, L;.. . . ,.. L, u...-. . . .. '.
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I + Ec Pr/r

4 00

solid
wall

60

flow direction

Fig. 2.3. Entropy generation surface for laminar boundary layer flow arid
heat transfer along a flat plate.

-to,

too

10 Re"P R p

/A

10 i0e Id 10 to' '0
H 9

I t. 24.Optimum Reynolds number arid corrospondinq minimum entropy qjenerat ion
number. Left: boundary layer flow ov'or a flat plate. Riqht:
sinie cylinder in gaseous cross-flow.



Integrating (2.25) across the boundary layer we can calculate the rate

of ,ntropy goneration per unit area of flat plate,

kv 02 P

S, S" dy = 0.125 kXO + Ec Pr Re 1 1 2  (2.27)VT x
Uo00

with the corresponding entropy generation number defined as

VT 2NS=S.. o Ec Pr I  - 1/2

Nkv 0.25 (1 + T Re . (2.28)

Finally, by analogy with the Nusselt number nomenclature for boundary

layerL' heat transfer, we integrate (2.27) in the x direction to find the

total ratr of ontropy generation produced by boundary layer flow and heat

tr.nsfer ovc r a lngth L

K k0 2

S' L " dx = 0.50 -k-2 1 + Ec Pr Re 1/2 (2.29)-F - ( T L ( . 9

00

wh. r , H.1  v L/v . The overall entropy generation number based on S' is

= 0.50 ~~ Ec Pr e /2

0.ie I + R (2.30)

It i!:; worti, mt.ntioning that in general the Prandtl number will have an

,idit ion aa effe-ct on th, relative importance of viscous and conductive effects

in t.h, constitutiri of S" , S" and S' It is easy to show that when Pr 1

ii, vi!;.:cu. te fects scale as

1.'_C_ Pr T Ec P
(2.31)

]T



-16-

where 6 and 6 are the velocity and temperature boundary layer thicknesses.T

In writing (2.31) we made use of the approximation 6/6T  PrI  . The

significance of (2.31) is that when the two thicknesses are not equal, the

thinner layer exhibits larger gradients thereby enhancing its contribution to

the total S"' figure. According to (2.31), viscous effects are more likely to

play a role in low Prandtl number fluids where 6 << 6T .

Laminar and Turbulent Flow over Constant Heat Flux Plate. To study the

gneration of entropy in a turbulent boundary layer one has to rely on an integral

method which takes into account the heat transfer and fluid friction characteristics

of the flow in an overall manner, as Nusselt number and friction factor informa-

tion. Consider, for example, a flat plate of negligible thickness suspended in

a uniform flow field, parallel to the flow velocity v . The heat flux q"

over the plate surface is uniform. Consider also a control surface which sur-

rounds the plate of finite length L at a large enough distance through portions

of ,xternal flow in which the fluid motion is nearly uniform and the temperature

nearly constant, T . Regardless of whether the boundary layer is turbulent or

laminar, the entropy generation rate in one half of the control volume (i.e.,

for one side of the plate) is given by

L 3L"2 dx V qx

t = ' fx dx (2.32)
x

0 0

where h and Cf are the local heat transfer coefficient and skin frictionx f,x

coefficient,

h T( -s -- 2 T 2 (2.33,34)
x T W)- T. f'x Pv'Co t

S,-- *t ,
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In the above definitions T (x) is the wall temperature, T the wail shear
0 0

stress and q" the uniform heat flux. Note that unlike equation (2.29) in the

preceding sub-section where we considered the laminar boundary layer over an

isothermal flat plate, the S' expression (2.32) refers to a uniform heat

flux situation.

Expression (2.32) is the result of an entropy flux accounting around the

control volume, analysis omitted here due to space limitations. Like all

entropy generation results for forced convection heat transfer, S' consists

of two additive parts, one due to heat transfer across the [T (x) - T.1

temperature difference, the other being associated with the total friction drag

force exerted by the fluid on the plate. Below, we use result (2.32) to deter-

mine the optimum plate length L which yields the minimum rate of entropy

generation in a heat transfer application in which the uniform flow velocity

vx= and the total heat flux q' =JL q" dx are specified. We do this by

first substituting appropriate correlations for h and C f, into expression

(2.32) and solving the equation aS'/aL = 0.

For laminar flow, the local skin friction coefficient is Cf,x = 0.664 Rex -1/2

1r/3 1/2
while the local heat transfer coefficient is given by h xx/h = 0.332 Pr Re

x x

[2.8]. Writing q' = q"L for the total heat transfer rate from plate to fluid

over the plate length L, the entropy generation number NS, becomes

kTM2 -1/3 -1/2 1/2 -2
NS, = S q -- = 2.008 Pr Re + 0.664 Re L  B (2.35)

lHr(, Re and B are the Reynolds number based on L and the "duty"

parameter, respectively,

v L

Re , B= Bq (2.36,37)
L (kT)1

X,_



-18-

Thue optimum plate length Re yielding the minimum rate of entropy genera-
L,opt

tion at constant q' and v isX, o

- 1/3 2 min - 1/6 - 1
ReL,op t = 3.024 Pr B , NS n = 2.309 Pr B (2.38,39)

For turbulent flow we use a similar set of correlations for friction and

heat transfer Cf x = 0.0576 Re x-l/5 and hx x/k = 0.0296 Pr1 / 3 Rex 0.8 [15].

We also assume that the laminar layer which precedes the turbulent boundary

laye.r is much shorter than the plate length L. Substituting these correla-

tions into the entropy generation result (2.32) yields

kT 2
k2 -1/3 8/5 -8/5 -2

NS, = S' q,- = 28.15 Pr Re L  + 0.036 Re L  B (2.40)

/= 64.31 Pr - 2 4  5/4 min -1/6 -i

Re NS , = 2.013 Pr B (2.41,42)

The optimum plate length and the resulting minimum entropy generation

number prescribed by these equations are shown on the left side of Fig. 2.4.

The discontinuity illustrated by dashed lines corresponds to the transition

region, cases in which the laminar and turbulent portions of the boundary

layer are of comparable lengths. The trends are similar to those presented in

the right graph of Fig. 2.2: the higher the duty parameter B , the higher the

optimum Reynolds number (plate length) and the lower the minimum entropy

jeneration number. In other words, if the total heat transfer rate q' is

constant and the flow velocity increases, the optimum plate length decreases

and the minimum attainable entropy generation rate increases.

These conclusions are applicable to the optimization of local flow geometry

in jlate-fin surfaces for compact heat exchangers, as shown in Chapter 4 of this

report.



2.4 Single CylLnde.r in Cross-Flow

The heat transfer between a cylindrical surface and a fluid flow normal

to the cylinder axis is one of the most frequent heat transfer configurations

--ncountcred in actual engineering equipment for heat exchange processes. It

is appropriate to examine here the thermodynamic irreversibility introduced

by this configuration. Due to inherent similarities with the plate of finite

length in parallel boundary layer flow, example concluded in the preceding

section, the case o' a single cylinder in cross-flow will be summarized very

briefly and only the key analytical results will be given.

Consider a cylinder of diameter D with uniform surface heat flux q"

in a cross-flow of uniform velocity v and temperature T An entropy

genration analysis of the flow region affected by heat and momentum transfer

from the cylinder yields the total entropy generation rate

v F
- [T(k) - T ] dX + X' D (2.43)

T 2 T

In this expression, q is the curvilinear coordinate around the cylindrical

surfaco and T(Z) is the local surface temperature. It is again assumed that

thie teomperature differences are much smaller than the characteristic absolute

temprature of the medium (T(Z) - T'] << T . FD is the force (drag) per

unit length e xerted by flow on cylinder, force calculated from drag coefficient

exp(rimental information, CDFJD i

C - D/ (2.44)
D pV ' 2/2

Replacing th, line integral in (2.43) with the average wall-fluid temperature

diffterenc2 times TiD, and expressing the average temperature difference in terms
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of tie average Nusselt number, T(Z) - T - q"D/(k Nu) , yields,

sR e q-2 1 + 1 CReV . (2.45)-akT - Nu 2 D  T

Here, we used the drag coefficient to replace F in equation (2.43). WeD

also wrote q' = iDq" for the total heat transfer rate per unit length of

cylinders. Finally, expression (2.45) is put in dimensionless form defining

th entropy generation number

kT-2 1 1 -2
NS, S' --- = - + - C Re B , (2.46)

wh,.re B is a duty parameter which has the same form as in equation (2.37).

As in the heat transfer configurations examined earlier, we can use the

entropy generation numbt-r formula (2.46) to determine which flow geometry

(cylinder diameter D) is bcst for minimizing the thermodynamic losses associated

with th, heat transfer process. For an application in which q', v and

th(- fluid are known, the optimization procedure amounts to minimizing expression

(2.46) with respect to Re, subject to constant B . The results of this

optimization procedure are shown as Reopt and N on the right side of
opt St

Fig. 2.4, a plot qualitatively similar to the left graph obtained for a flat

Piatu. The right graph of Fig. 2.4 was constructed based on equation (2.46)

coul,:d with Ihilp.rt's average Nusselt number correlation for gas flow (2.91

and with Eisner's presentation of drag coefficient [2.10].

2.') Laminar Forced Convection in the Entrancc Region of a Flat Rectangular Duct

A frequent flow configuration which embodies the characteristics of the

tirst two flow examplcs discussed here is sketched in the insert of Fig. 2.5.

In th, ,ntranck2 region of a parallel-plate duct, temperature and velocity boundary
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layors deve lop simultaneously along both walls, gradually filling tie duct ,Ind

ieadingj to the well-known fully-developed laminar regime. Thor(, have oeer many

studies of the heat transfer arid velocity problems associated with this basic

configuration, as indicated recently by Bhatti and Savery (2.11]. In this

section wt, address the irreversibility problem, once again relying on published

olutions for the temperature and velocity field in the duct.

Sparrow [2.12] analyzed the boundary layer development in the entrance

region using the Karman-Pohlhausen integral technique. The Sparrow solution

is unique, considering its simplicity versus the good agreement between its pre-

dictions and experimental findings. In what follows we use this solution

n11,i the f;"' formula (2.1) to illustrate the distribution of irreversibility

i the chuinnel.

The ultimate goal of the irreversibility analysis is to discover how the

thermodynamic losses due to entrance effects compare with similar losses in the

Lully-developed section of the duct. In other words, what length of fully-

de'veloped flow is guilty of generating as much entropy as the entire entrance

region? The, answr to this question is simplified substantially if, in addition

to using Sparrow's analytical solution, we focus on the T - 0 limit in which the

viscous effects totally dominate the rate of entropy generation in the channel

(se'2 the, discussion following equation (2.4)). Consequently, to calculate S"'

w( n,,d only the velocity solution which is

v V V*(2 - 2) (2.47)

with

= y/6 , 6/a 3(1 - V1  (2.48,49)

i .... P
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V* = V/V , x* XV (2.50,51)
0

As shown on Fig. 2.5, V is the uniform fluid velocity at x =0 , while V

and 6 are the centerline velocity and boundary layer thickness, respectively.

For the function V *(x*), Sparrow reports a differential equation which,

integrated, yields

x, = -L (9V-, - 2 16 Zn VI,) (2.52)
10 Vl1

TLhe ontrance region extends to x* = 0.1038, corresponding to VI* = 3/2 as

for [plane Poiseuille flow.

Using equation (2.1) and leaving out the conductive contribution we obtain

4p V2

S T6 2 0V 1 2(1 . 2 (2.53)

and, j it(yrating across the duct,

a[
8 o

3 2 = 0 V *2 (2.54)

0

Fromn (2.54) we find that in the fully-developed section of the duct (FD) the

rate of entropy generation per unit area of duct wall is

PV 2

S" = 6 - 2  (2.55)
ID Ta

Viq. 2.', niows th,' variation of S"/S" with axial position along the duct.

A!; exp-ct'd, the irrevrsibility effects are most intense near x = 0 . However,

a:; x* incr ases, S" rapidly approaches the fully-developed entropy generation

-il
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level SFD a good distance before the end of the entrance region, x* = 0.1038.

The total irreversibility associated with entrance effects is estimated

integrating expression (2.54) from x* = 0 to x* = 0.1038. The result of

this operation is

S pa (2.56)
15 T

where p is the fluid density. Similarly, the total rate of entropy generation

over a fully-developed stretch of length LFD is

2
S' = 6 L (2.57)FD Ta FD

Comparing results (2.56) and (2.57), we conclude that the fully-developed equivalent

of the entire entrance region is a fully-developed section of length LFD given

by

LFD l
FD 11 Re = 0.00764 Re , (2.58)

D 1440 D D

where D is the hydraulic diameter 4a , while ReD = V D/v . It is time now

to compare the irreversibility-equivalent length LFD with the physical extent

of the entrance region, L E . Setting x* = 0.1038 and x = LE  in expression

(2.51) we find that familiar result

L
E 0.00649 Re (2.59)
D D

Therefore, from (2.58,59), the irreversibility contributed by the entrance

region is roughly equal to (actually, only about 18% higher than) the irreversibility

estimated assuming fully-developed flow over a duct length equal to the entrance
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length. This conclusion is important in practical irreversibility calculations,

as it is considerably easier to treat the entire duct as in the fully-developud

regime.

References

2.1 Kestin, J., A Course in Thermodynamics, Vol. II, Blaisdell, Waltham,
Massa e isetts, 1968, p. 433.

2.2 Bird, R.B., Stewart, W.E. and Lightfoot, E.N., Transport Phenomena,
Wiley, New York, 1960.

2.3 Kestin, J. and Richardson, P.D., Int. J. Heat Mass Transfer, Vol. 6,

1963, p. 147.

2.4 Bejan, A., Int. J. Heat Mass Transfer, Vol. 21, 1978, p. 655.

2.5 Schlichting, H., Boundary Layer Theory, 6th Edition, McGraw-Hill,
New York, 1968.

2.6 Pohlhausen, E.Z., Zeitschrift fur angewandte Mathematik und Mechanik,

Vol. 1, 1921, p. 115.

2.7 Howarth, L., Proceedings of the Royal Society of London, Series A.

Vol. 164, 1938, p. 547.

2.8 Rohsenow, W.M. and Choi, H.Y., Heat, Mass and Momentum Transfer, Prentice-
Hfall, Englewood Cliffs, 1961, pp. 39, 148.

2.9 Hilpjrrt, R., Forsch. Geb. Ingenieur, Vol. 4, 1933, p. 215.

2.10l Eisner, F., 3rd Int. Cong. App. Mech., Stockholm, 1930, also in Rohsenow,

W.M. and Choi, H.Y., Op. Cit., p. 79.

2.11 Bhatti, M.S. and Savery, C.W., ASME Journal of Heat Transfer, Vol. 100,

Aug. 1978, p. 539.

2.12 Sparrow, E.M., NACA TN 3331, 1955.



-26-

Nomenclature

d half-thickness of flat duct

A B , B duty parameters
0

c specific heat at constant pressure

CD drag coefficient

Cf, x  local skin friction coefficient

D hydraulic diameter

Ec Eckert number

f function, equation (2.26); friction factor, equation (2.14)

FD drag force

h local heat transfer coefficient
x

k thermal conductivity

L entrance region lengthE

LFD length of irreversibility-equivalent fully developed section

mass flow rate

Ns... , NS , , NS, entropy generation number

Nu Nusselt number

P pressure

Pr Prandtl number

q"., q', q heat transfer interaction, (W/m2 ], [W/m], (W]

r radial position

r tube radius0

< dimensionless radial position

F e Reynolds number

specific entropy

S.1 , S", s' rate of entropy generation, (W/m3K], [W/m 2K], [W/mK]
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S", rate of entropy generation in the fully-developed region
FD

t time

T absolute temperature

T reference temperature
0

u specific internal energy

v ,v velocity componentsx y

V entrance velocity
0

V centerline velocity
0

Vl* dimensionless centerline velocity

x horizontal coordinate

x* dimensionless coordinate

y vertical coordinate

a thermal diffusivity

S velocity boundary layer thickness

Sthermal boundary layer thickness

dimensionless coordinate across flat duct

ci similarity variable in boundary layer flow over flat plate

0 temperature difference, T - T
0

0 extreme temperature difference, T - T

Pviscosity

v kinematic viscosity

p fluid density

Tratio of characteristic temperature difference divided by

the absolute temperature

T wall shear stress

viscous dissipation function
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3. TIlE IMPACT OF HEAT TRANSFER AUGMl-NTATTON ON ENTROPY GENERATION

3.1 Entropy Generation Analysis

Consider a heat-exchanger passage of length dx , heat transfer per unit

lenIth q' , and mass flowrate m . The passage geometry is described in terms

of the hydraulic diameter D and flow cross sectional area A . The rate of

entropy generation per unit length is [3.11

S= q'AT + ( d P ) (3.1)- T2  + pT (_ dx .i

where the first term represents the irreversibility rate due to heat transfer

across the wall-fluid temperature difference, ST' while the second term is

the irreversibility rate attributed to fluid friction, S' . Implicit in' AP

writing Eq. (3.1) is the assumption that the wall-fluid AT is considerably

imaller than the local (wall, fluid) absolute temperature. This is i qood

assumption, especially in heat exchangers operatinq above room temperature.

An important dimensionless parameter in the second law analys.; al c(n-

vective heat transfer is the irreversibility distribution ratio

= S' /S' (3.2)AP "AT"

The parameter 4 describes the relative importance of fluid friction in the

total irreversibility of a flow passaqe. Like S' p and S T' the irreversi-

bility distribution ratio 4 is a local parameter.

The impact of an augmentation technique on the irreversibility of a given

neat exchanger passage can be evaluated by calculating the entropy generation

rate in the "augmented" passage, S' , and comparing it with the entropy
a
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,gencraition tate in the original (unauqmented) passage, S' It is convenient

to leti riv the augmentation entropy generation number N as the ratio

N =s/s'. (3.3)
SI a1 O

Augmentat ion techniques yielding values of N less than unity are thermo-S ,a

,iynaiicaily advantaqeous since, in addition to enhancing heat transfer, they

IeduC<' the aLIte of entropy generation in the apparatus.* It is easy to show

thit when (1' and df are the same before and after augmentation, the entropy

licznLration number can be rewritten as

N (NT +4 oNp)/(l + ), (3.4)

where

NT  (St/St) (D/D (3.5)

N -(f /f ) (D /D ) (A /A )2 (3 )
P a o o a o a

Re (D A /D /A )Re (3.7)
a a o o a o

In these expressions, St , f , Re , D and A are the Stanton number, friction

facter, and Reynolds number, hydraulic diameter and flow cross sectional area,

* ror example, in the regenerative heat exchanger for a Brayton cycle heat

rIlille a low NS,a means less dissipation of available work in the power cycle.
Among the physical parameters affected directly are the stream-to-stream tempera-
tinie Aitference and] the two pressure drops on either side of the heat transfer
.4,irface. As the heat exchanger entropy generation decreases, the pressure drop
cr0ss the turbine increases, resembling more closely the pressure rise provided

by the compressor. Consequently, the turbine power output increases. At the
ame time, the inlet temperature to the combustion chamber (heater) increases,

hence, the specific fuel consumption decreases. We see that the reduction in
ektropy generation in the counterflow heat exchanger (reduction indicated by
N. 1) can be measured directly as an increase in energy conversion efficiency.

I5 

a
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respectively. Equation (3.4) shows that, when the reference passage is

dominated by heat transfer irreversibility (4o -* 0) , the augmentation

number N reduces to N which is proportional to the ratio of heat trans-S,a T

fer coefficients (reference/augmented). In general, however, the augmentation

entropy generation number N is a function of the ratio of heat transferS,a

coefficients and the friction factor ratio.

In what follows, we use Eq.s (3.4)-(3.6) to evaluate the relative change

in irreversibility introduced by each of the augmentation techniques of

Fiq. 3.1. We obtain this result by using published heat transfer (St) and

LAuid friction (f) information on each of these flow geometries.

1-2 Twisted Tape Inserts

The use of twisted tape inserts to auqment both laminar and turbulent con-

vective heat transfer is one of the most common in-tube augmentation techniques.

This technique is also well-documented. For example, Lopina and Bergles [3.2]

rasoured the heat transfer and fluid-friction characteristics of a tightly

inserted uninsulated tape in turbulent flow. The tape was inserted in a straight

tube and thu assembly was redrawn, with tape in place. This operation forced

the tape to slightly penetrate the interior surface of the tube. The geometry

of the auqmented arranqement is shown schematically in Fig. 3.1(a). The

tuxperimentai results for St and f agree to within 10% with the publisheda a

work of other experimenters.

Fiqure 3.2 illustrates the augmentation entropy generation number for

twJn ted tape inserts in turbulent flow, based on the data of Lopina and Bergles

..1. On this basis, we obtain

y = 2.45, NT  0.49/(l + 0.89 Re -0.1) , Np = 2.33 ; (3.8)

T o p



-32-

10

-2.45

- 5.08 _

N 01 00

le0 Re.

Fiq. 3.2. Augmentation entropy generation number for twisted tape inserts.
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-~ 104
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Fig. 3.3. Augmentation entropy generation number for helix-shaped tubes.
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y = 5.08 , N T=0.44/(. + 1.3 Re 0 , .1 N = 3.13; (3.9)

al so

D /D 0.61 , A /A 1

In this example, the geometry of Fig. 3.1(a) is the augmented design, vis-a-

vis the smooth straight tube which is used as reference.

It is evident from Fig. 3.2 that the parameter which influences N a

the most is the irreversibility distribution ratio 4) . Thus, whenever 4

is less than approx. 0.25, the use of twisted tape inserts will lead to a

reduction in thermodynamic irreversibility. The greatest reduction occurs

when 4)0 = 0 , i.e., when the fluid friction contribution to S' is totally

negligible and N Sabecomes proportional to the ratio of heat transfer

coefficients, [see Eq. (3.5)]. It is important to note that the critical value

of 4)0 above which the augmentation technique will actually increase the rate

of entropy generation, 4)0c 0.25 , corresponds to a heat exchanger passage

in which the fluid friction contribution amounts to only 20% of S'. There-

fore, even in c ases clearly dominated by heat transfer irreversibility (4)0 < 1)

it is important to evaluate the total entropy generation rate and the change

induced in it by the implementation of a proposed augmentation technique,

before deciding whether heat transfer augmentation is thermodynamically advantageous.

Figure 3.2 shows also that other parameters, such as Re 0and y , are

not nearly as important in affecting the value of Ns ,a* in particular, the

augmentation entropy generation number is almost independent of the reference

Reyno~lds number, Re 0. This behaviour follows from the fact that the measured

Re dependence of St aand f aif functionally the same as that of St0

and f (see Refs. [3.2] and [3.3]).
0
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Thu twist ratio y has a visible effect on the entropy generation rate;

for example, when p approaches zero a tighter twist (y = 2.45) is preferable.0

On the other hand, for values of other than in the o -+ 0 limit, i.e.,

when the fluid friction irreversibility begins to play a role, a looser twist

is more advantageous (y = 5.08). In fact, using a more extensive collection

of experimental data, it may be possible to determine the required twist ratio

y which, for a given o ' is capable of lowering NS' a below a predetermined

value.

3.3 Helical Tubes

Another heat transfer augmentation feature common in advanced heat exchanger

design is the use of spiraled tubes. In this configuration the swirl flow

induced in the stream filling the tube is the result of centrifugal forces.

As shown in Fig. 3.1(b), the geometry is described by the ratio A = R/r.

Figure 3.3 was constructed by using the heat-transfer and fluid-friction

measurements reported by Seban and McLaughlin [3.41,

NT= (A2 /Re ) 0"05 , Np = (Reo / 2)0"05 , D a/D = 1 , A a/A = 1.

(3.10)

in Fig. 3.3, we show the augmentation entropy generation number in turbulent

flow for only two geometries, A = 17 and A = 104 . For brevity, the

analysis leading from the Seban and McLaughlin correlations [3.4] to Eq. (3.10)

is not shown. However, the reader can find an outline of this analysis in

Ref. [3.3].

The chief conclusion to be drawn from Fig. 3.3 is that shaping the tube

as a helix has only a minor effect on the rate of entropy generation in the

tute. In the limit 0 , the irreversibility is reduced to roughly 50% of
0

_____________________ '
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the original (reference) value. In Lhe opposite extreme, when fluid friction

dominates, (i -* ) , entropy generation number is of order one. This means0

that the coiling ot the tube has little effect on the overall pressure drop

across the tube. Consequently, for a wide range of values of 0 the use
0

of helical tubes leads to a reduction in entropy generation.

3.4 Propeller Inserts

A swirl flow promoting technique similar to twisted tape inserts is shown

schematically in Fig. 3.1(c). This augmentation technique consists of a sequence

of propellers placed rigidly inside a circular duct.

In this section we evaluate the augmentation entropy generation number

corresponding to the air experiments reported by Koch [3.5]. The propeller-

shaped inserts investigated by Koch were fabricated by making six radial cuts

(almost to the center) in a 50 mm diameter disc. The resulting blades were

twisted to approx. a 450 angle. A brass rod was then inserted through the

center of each disc and the rod and discs assembly was soldered, maintaining

a disc-to-disc spacing L' . The solid assembly was then inserted in a straight

tube and secured in place to prevent rotation.

Using Koch's data [3.5] we derive the following extreme values of the

augmentation entropy generation number, N and N
T P

0.15 -0.009
L' 49 mm, NT = 0.035 Re , (L'/D I)N = 59.8 Re , D /D = 0.66To 0 P o a o

(3.11)

0.114 -0.011
L' 98 mm, NT  0.078 Re 0 (L'/Do = 2)Np = 32.4 Reo , D a/D = 0.80;

(3.12)

0.085 0.094
L' = 325 mm, N = 0.153 Re , (L'/D = 6.5)N = 8.6 Re , D /D = 0.93;

o( o P o a o

(3. 13)

_ __ __ _4
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F'it). 3.4. Augmentationl entropy generation number for propeller-shaped 
inserts.
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Fiql. 3.5. Augmentation entropy generation number for internal straight 
fins.



-37-

0.085 0.11
L' = 980 mm , N T  0.21 Re , (L'/D = 19.6)Np = 3.83 Re , D a/Do = 0. 98

(3.14)

where A = A
a 0

Figure 3.4 shows the augmentation entropy generation number for three values

of irreversibility distribution ratio, o= 0, 1, -. As in the preceding examples,

the dependence of NS,a on Re is weak. However, the maximum reduction in

entropy generation is more substantial than in the first two examples. For a

relatively dense sequence of propellers, L' = 49 mm , in the limit o -* 0 the
0

entropy generation rate is reduced by as much as a factor of ten. Figure 3.4 also

shows that, depending on L' , the reference irreversibility distribution ratio

0 must be less than 0.05 if propeller inserts are to be effective in conserving0

available work.

3.5 Internally Finned Tubes

Figure 3.1(d) shows schematically a round tube covered internally with straight

or spiraled fins. This augmented tube geometry has been studied extensively. For

example, Bergles et al. [3.6] and Carnavos [3.7] have measured the heat transfer

and fluid friction characteristics of approximately thirty straight and spiraled

internally finned geometries. Empirical formulae generated by Carnavos [3.7]

correlate within 10% the bulk of the existing experimental information.

In this section, we use the Carnavos correlations to examine the relationship

between internal finning and entropy generation. A first objective is to determine

the difference between straight and spiraled fins of otherwise similar geometry.

The effect of fin density and twist ratio is also illustrated.

Figure 3.5 shows the change in entropy generation rate due to straight internal

fins in turbulent flow, for the two extremes 4o 0, Three different geometries
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have been considered, n =6, 10, 12, where n is the number of fins. The re-

suits of the entropy generation analysis which led to Fig. 3.5 can be summarized

as follows [3.3]:

for n =6 , N T 0.097 Re 0.2, NP 7.35 Re 0 , . D I D o 0.74 , A I A o= 0.94

(3.15)

0.2 -0.1
for n = 10 , N T 0.089 Re 0 NP 9.45 Re , D a/D o 0. 61 ,A I A o=0. 91

(3.16)

0.2 -0.1
for n =12, N T 0.084 Re 0 NP 10. 6 Re 0 D I D o 0. 57 , A a/A 0= 0.89

(3.17)

It is evident that, almost independently of n , the reduction in entropy genera-

tion is small even in the limit 4)--0 , particularly as the Reynolds number

increases. The change in entropy generation rate is more pronounced as the number

of fins increases.

Greater reductions in entropy generation are achieved when the internal fins

are twisted, thereby inducing a swirl motion in the core of the tube cross section.

in Fig. 3.6, we show the augmentation entropy generation number corresponding to a

finned tube with n = 10 and the values of twist ratio, y = 5.62 and y = 9.27.

in general, the augmentation entropy generation number is given by Eq. (3.4)

combined with

N T= 0.052 Re 0 .7y 0.7, NP 15.2 Re 0 - .3Y ., D a/D o= 0.61, A a/A o= 0.91.

(3.18)

Provided the irreversibility distribution ratio 0 0 is small enough, the reduction

in entropy qeneration rate increases as y decreases, i.e., as the fin twist



-39-

10

5.62
--- - 927

..... - - 0.51.0

0

0 .1 , , , , , . . , 1

10 104 Re. 0=

Fig. 3.6. Augmentation entropy generation number for internal spiraled fins.
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Fig. 3.7. Comparison of four swirl promoters based on irreversibility minimiza-
tion potential in a 0 =0.1 application; IF=internal straight fins

0

(n=10); ISF=internal spiraled fins (n=10,y=9.27); TT=twisted tape
(y=5 .08); H=helical tube (X=30).
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Fiq. 3.8. Comparison of four swirl promoters based on irreversibility minimization

potential in a 4 =0.25 application; IF=internal straight fins (n=10);

ISF=internal spiraled fins (n=10, y=9.27); TTtwisted tape (y=5.08);

11helical tube (X=30).
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becomes tighter. This conclusion is qualitatively similar to the one encountered

earlier in the analysis of twisted tape inserts.

comparing the curves of Fig. 3.6 with the n = 10 curves of Fig. 3.5, we

conclude that the twist of internal fins can have a significant effect on the

available work conservation potential of the finning technique. For example,

in the limit , 0 , the spiraled fin irreversibility is about 50% less than0

in the case of straight fins.

An important observation is that the spiraled fins entropy-generation number

N (pIo Re , y) , given by Eqs. (3.4) and (3.18), is not a monotonic function
S'a o 0

of twist ratio y . In fact, when the heat exchanger passage is specified (i.e.,

0co and Re are fixed), one can determine the optimum twist ratio yopt

yielding the largest reduction in entropy generation rate (minimum N ) . Setting

N ;,a/)y =0 and 3N /3y > 0, we obtain
S~a S,a

2.13 -0.64
Yopt = 9.4 x 104 ,02 Re - (3.19)

uot example, in an application in which 'o = 0.2 and Re = 10, the optimum

min
twist ratio is y 8.4 , yielding the minimum N = 0.868. If, in the

opt S,a

same application, heat transfer is augmented using fins with twist ratios

Y ; y opt say y = 5 or y = 15 , the entropy generation reduction is inferior

and NS, a  0.875 and a = 0.876 , respectively.

3.6 Internally Roughened Tubes

Finally, we illustrate the evaluation procedure in the case of "in-tube

roughness) which is one :f the most common and amply documented heat transfer

auqmentation techniques. In this case the augmentation entropy generation number

(3.4) assumes the simpler form
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St /f St\
N -+ -- -(.0
S'a St 1 + f t, (320

since, in almost all rough-tube designs, D a =D 0and A a=A 0 Consequently,

the Reynolds number in the augmented (rough) tube is equal to the Reynolds

number in the reference (smooth) tube. The entropy generation number for in-

tube roughness emerges as a weighted function of the Stanton number ratio and

the friction factor ratio. The two ratios are weighted according to the irrever-

sibility distribution parameter 4o I in other words, with respect to the

irreversible mode of operation of the heat exchanger duct (fluid friction vs.

heat transfer).

Figure 3.9 shows the entropy generation number as a function of Re and
0

r he figure was constructed for Pr = 0.72 using the data of Refs. [3.8,3.91

for sand grain (f a, St a) and the correlation of Refs. [3.10,3.11] for smooth

tubes (f , St 0). It is evident that the ability of sand-grain roughened walls

to reduce irreversibility depends on 0 and Re 0. The effect of roughness

height e/D on entropy generation increases steadily as the Reynolds number

increases. As one might expect, the change in N Sais more pronounced in the

case of larger e/D.

From an engineering standpoint, it is important to know under what conditions

the wall-roughening leads to a reduction in entropy generation. In Fig. 3.10

we plotted the marginal curves (Re 0) resulting from setting N Sa=1 in

equation (3.20). Below each curve, roughening the wall will decrease the irrever-

sibility rate. Above each curve, wall-roughening will increase the rate of

entropy generation.

Figures 3.11-3.14 show the augmentation entropy generation number N Saand

marginal curves 0 (Re 0) for repeated ribs of the type sketched in the insert

of Fig. 3.11. This geometry is characterized by two aspect ratios, the rib
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Fiq. 3.10. Critical irreversibility distribution ratio 0 for sand-grain
roughness.
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Fig. 3.12. Critical irreversibility distribution ratio 0 for repeated
rib roughness; effect of rib height e/D 0
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height e/D and the rib spacing P/e. The graphs were constructed for

Pr - 0.72 using the friction factor and Stanton number correlations of Webb,

et al. [3.121. There are obvious similarities between these plots and Figs. 3.9

and 3.10 for sand-grain roughness. The more significant difference is that,

with Re and e/D fixed, Figs. 3.12 and 3.14 yield marginal irreversibility0

distribution ratios po about four times less than Fig. 3.10. In other words,

repeated ribs of a given height (e/D)1 correspond to sand-grain roughness with

,raiin height significantly greater than (e/D) 1

The effect of rib spacing (P/e) is summarized in Figs. 3.13, 3.14. We

find that the rib spacing has a relatively weaker effect on entropy generation

than the rib height (Figs. 3.11, 3.12). Furthermore, the change induced in the

entropy generation number decreases steadily as the rib spacing increases. This

trend is in agreement with the effect of decreasing e/D for sand grain

(Fi . 3.9); increasing the rib spacing while keeping the rib height constant is

equivalent to gradually smoothing out the tube surface.

An important observation concerns the minima in the NS, a  curves, Figs. 3.11,

1.13, particularly in the 0 range in which the use of repeated ribs leads to0

a reduction in irreversibility. For a given heat exchanger duct ( o' Re ) it is

possibl, to determine a priori the optimum rib geometry which yields the maximum

i,,Jhictjo in the rate of entropy generation. For example, in Fig. 3.15 we

repot the optimum rib height (e/D) for cases where the relative spacing isopt

rixtd, Pu 10. Note that the irreversibility distribution ratio 4 has a
0

man ked offect nn the optimum rib heiqht for minimum N , despite the factS,a

that numerically ) is very small.

1. 1 ther heat transfer augmentation techniques

In thi . shater we reviewed the impact of heat transfer augmentation on

,ntr-,y j(ir.tt on in the case of a Limited number of augmentation techniques.
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0.01.

#0 .04 .03 M2 01 0

Pi'q. 3.L5. Optimum rib height for minimum exergy destruction.

vor a considerably more complete study the reader should consult the thesis

by Ouellette [3.3]. In addition to the techniques highlighted in this

chapter, Ouellette's thesis analyzes the entropy generation due to

I - extended surfaces

- internal fins

- mesh inserts

1I - roughened surfaces

- thread-type roughness

- screen roughness

wire-wound roughness

III - displaced enhancement devices

- suspended discs

- suspended rings

IV - compound techniques

- twisted tape with fin effect

- internally spiraled fins

The analytical results of Ouellette's study are summarized here in Tables 3.1-3.5.
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4. EXTENDED 'ULWACES (WtNS) POR MINIMUM ENTROPY GENERATION

4.1 Entropy generation due to heat transfer from a single fin

The entropy generation associated with a fin in cross-flow can be evaluated

based on the general model presented in Fig. 4.1. Consider, then, a solid body

of arbitrary shape and surface area A , suspended in a uniform stream of free-

stream velocity U and temperature T.. Imagine also a stream tube (control

surface) surrounding the solid body, the radius of this tube being considerably

larger than the characteristic linear dimension of the body. Since the fluid

outside and immediately inside the tube surface belongs to the free stream U_,

T , the stream tube surface can be regarded as adiabatic and shear-free.

The equations describing the conservation of mass, conservation of energy

and generation of entropy in the stream tube are

mIN m OUT mihIN+ if q"d - ihOUT 0 (4.1,4.2)

A

S ms -ns - SL do (4.3)
qen OUT IN jj T

A

In these equations q" and q"/T W  represent the heat flux and entropy flux

from the body to the external fluid. Combining equations (4.1)-(4.3) with the

1
canonical equation dh T + - dP , we can express the rate of entropy

ds P

qeiivrdLion cs

s lf J d-- P (4.4)
gen T W p T (POUT IN

A

Recognizing that m =p A_ U and F D A(P - PO) , the entropy generation

-- --- -
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qE8

Fiq. 4.1. Schematic of a general fin in a convective heat transfer arrangement.



-56-

rate can finally be written as

qgen = , TW )do + - F U . (4.5)

A

In order to calculate the total rate of entropy generation due to a single

fin, it is necessary to recognize that expression (4.5) sums up only the entropy

generated in the space surrounding the fin surface. It is easy to see that

since the is not an isothermal body, entropy will also be generated internally.

In accordance with the second law of thermodynamics applied to the fin shown

in the bottom half of Fig. 4.1, the entropy generated inside a single fin is

(Se) =F do (4.6)
gen internal W TB

where qR and TB  represent the base heat transfer and absolute temperature.

The total rate of entropy generation associated with a single fin is obtained

by adding equations (4.5) and (4.6) side-by-side,

(S ) BB + F U (4.7)

gen T 2  T D (4.7

In this expression 0B  is the base-stream temperature difference (TB - T_),

which is assumed considerably smaller than the local absolute temperature,

'1 or T

The fin entropy generation rate, Equation (4.7), is a remarkably simple

result which demonstrates that fluid friction and inadequate thermal contact

contribute hand-in-hand to the degrading of fin thermodynamic performance.

The heat transfer contribution to (S ) is proportional to the product
gen fin

of base heat flux times base-fluid temperature difference. Therefore, the
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heat transfer entropy generation term can be minimized by reducing (3 , i.e.,
B

by enhancinq the base-stream thermal contact. In general, this operation

requires an increase in fin size (surface area) which leads automatically to

an increase in drag and fluid friction entropy generation. Clearly, the fin

size plays an important trade-off role with respect to improving the thermo-

dynamic performance of the individual fin. In what follows we illustrate this

trade-off by showing concrete results [4.1] for entropy generation minimization

in some of the most common fins encountered in practice.

4.2 Pin Fins

Consider first the pin fin geometry shown in Fig. 4.2(a). This geometry

is; one of the simplest, because it depends on only two dimensions: the length

L and the diameter of the circular cross-section D. According to the uni-

directional heat conduction model described in the Introduction, the relationship

between base heat flux and base-stream temperature difference is [4.2j

B 4h
B ;m( ; - -h (4.8)

B kD2 m tanh(mL) W4

Substituting this expression into Equation (4.7), the total entropy generation

rate can be written as

qB2  P V2 U Re Re C
(Sg n) BL D D

gen fi uR A Re 2 Tfin -2 (Ak) Nu Re tanh 2Nu R

(4.9)

where the drag coefficient is C = F /(I-p U2 DL) . Since the external flow
D D 2

isi assumed known, we are using the Reynolds number as dimensionless notation
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for the two dimensions of the pin fin, Re D  U D/'v , Re L  U L/,,)

In this study, we adopted the design viewpoint that the "job" of the

individual fin is to transfer heat at a known rate (q B) from the wall to the

known stream, in the least irreversible manner possible (with minimum genera-

tion of entropy). Therefore, the correct entropy generation number [4.3] for

this design problem is constructed as

q' U
NS  = (-

gen fi k v T 2

(k/)1 B Re Re

A R tan[Iu + 2 CD L D 4.0
2 Nu ReD tanh I2Nu k Re

where B is a fixed dimensionless parameter which accounts for the importance

of fluid friction irreversibility relative to heat transfer irreversibility,

B = p \ 3 
k To/qB2 . (4.11)

If tu',i pin fin is slender, the Nusselt number and the drag coefficient can be

evaludted from results developed for a single cylinder in cross-flow [4.4]

0.466pr1/3 =-0.246
Nu 0.683 Re Pr , C = 5.484 Re , 40 < Re < 103

D D D D

(4.12)

The entropy generation number N emerges as a function of five dimension-S

le!;*; groups, two pertaining to fin geometry (ReL, Re D ) , and three accounting

for the working fluid and for the fin-stream convective arrangement (Pr, k/k, B).

Minimization of N with respect to Re is achieved in a straightforwardS L

mannller by solving )N S/3ReL  0. The optimum pin length calculated in this

manner is



e Lop Nu s nh-1  Re D (4.13)

,irw engyiieerink; significance of result (4.13) is that the optimum pin

Ienqth car be calculated immediately, provided Re D  (hence, Nu and C D ) is

Specitied. In most cases, however, the pin diameter is a design variable which

cid ilSO be determined on the basis of entropy generation minimization. The

opt imum diameter for minimum entropy generation Re can be determined by

substituting equations (4.12) and (4.13) into equation (4.10), and numerically

minimi-, ny N

An alternative approach to sizing a pin fin for minimum irreversibility

C<)nsistr of determining the optimum diameter Re subject to fixed slender-D
opt

nes s ratio y Re L/Re . This constraint stems from practical limitations

encountered in the process of manufacturing a surface covered with a large

number of fins. The entropy generation number (4.10) can be expressed as a

function of Re and y. Representative results of the numerical work ofD

minimizinq N are shown in Fig. 4.3. The entropy generation number N has* S US

.a cle.,r minimum with respect to the pin diameter Re , when y , B , and M

are fixed. The optimum pin diameter Re increases if the slenderness

ratio decreases. This general trend is summarized in the right half of Fig. 4.3,

-8 -5for the range 5 < y - 15, 10 < B < 10 When the slenderness ratio is

fixed, the optimum pin diameter decreases as the fluid friction becomes more

important in the entropy generation total (i.e., as B increases).

Another practical design constraint worthy of consideration is the fin

volume. This constraint is forced upon the designer by the high cost of con-

struction materials such as copper. A dimensionless group which is proportional

to the volume of the pin fin is V = Re D 2 Re . The entropy generation numberU L

* 1/6
M (k/X) /Pr
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(N S ) can be expLessed in terms of V and another qeonetric variable, for ex-

ample, the slenderness ratio. On the left side of Fig. 4.4 we show the general

behavior or the entropy generation number N , as y and B vary subjectS

to the constant volume constraint. The optimum slenderness ratio yo foropt

minimum N is summarized in the right half of Fig. 4.4: above a certain

value of friction parameter B the optimum ratio o drolps off rapidly asopt

11 increases.

4.3 Plate i'ins

[n this section we focus on fin geometries which can be modeled as thin

cr)nductinq plates parallel to the flow direction. Fins of this type vary widely

with respect to the shape and cross-section of the surface swept by the flow:

in many cases the tin is wide at the base and narrow at the tip, in approximate

agreement with Schmidt's principle of material reduction in a fin with fixed

heat tran:- fer [4.5]. below, we consider the minimum entropy generation design

ot three frequently used plate fin geometries, illustrated in Figs. 4.2(b),

(c) , and d)

Fectdngular Plate I'in. The simplest plate fin geometry is shown schematically

U .iq. 2(b). The minimum irreversibility design of this fin requires the

:selection ot th:ree ge;metric parameters, the length L , the breadth (length

:3w ,pl by fluLd) L, and the plate thickness f, where L - b >> 6. As in

ti. procudin; section, we are placing the study in the limit where the plate

tin is .lender (b - L); in this limit we rely on laminar heat transfer and skin

fri ,:tion rsults for two-dimensional flat plates [4.4]:

F

-1/3 F (
h 0.664 - Re Pr C - 1.328 Re (4.14)

b h f U bi'

. .. ..... ..
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The entropy generation number for a rectangular plate fin in laminar flow be-

comes

qB
2 

U

NS =(S en) / k B T

R (k/A) + 1.328 B Re Re (4.15)

1.15 Re Reb
3 / 4 

Pr
/ 6 

tanh (mL) L b

where

3 ) 1r/ 6  1e- / 4 R ( 6

B V k T/q, mL = 1.15 Re Re Re (4.16)
B \k) P L b 6

From the outset we note that the plate thickness 6 appears only in the

heat transfer term of NS , consequently, Re6 does not play a trade-off role

in the minimization of N . Since in most practical applications 6 is

determined by considerations such as price, availability and machinability of

sheet metal, it makes engineering sense to regard Re6 as fixed. The minimi-

zation of NS with respect to Reb and ReL  is achieved by solving the

[;multaneous set of equations DNS/3Reb = 0 and DN s/aReL = 0 : the optimum

tjcometry for minimum entropy generation is explicitly given by

RCb,opt = 0.984 B
2 / 3 

Re 6 - 2/
3
, ReL,opt = 0.685 (k/) Re 6 1/3 Pr 

1
/
6
BI

/ 6

(4.17)

This also means that the optimum slenderness ratio y = L/b is

¥opt = ReL /Reb = 0.696 M B Re 6  (4.18)

opt opt

In conclusion, the optimum plate fin dimensions b and L can be
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calculated directly using equations (4.17) as soon as the base heat flux (q ),

the flow field and the sheet metal thickness (6) are known. It is necessary

to keep in mind that the present formulas are valid only in the laminar regime,

kOt 5 x 10 5 , and in the "slender shape" limit y ot> 1 . Similar re-
op opt

sults can be developed numerically for the turbulent regime, by replacing

equations (4.14) with appropriate correlations for turbulent heat transfer and

skin triction.

If the thermodynamic optimization of the plate fin is subjected to the

constraint of fixed material (volume) V - ReL Reb Re, , the entropy generation

number becomes

N + 1.328 B (4.19)
1.15 V tanh (nL) ri

where Re L/Reb , b T = Re /Reb  and mL = 1.15 V1 /1 2 74/3/(M l1/6 Figure

4.' shows the trade-off roll played by the geometric aspect ratio y= L/b.

The optimum aspect ratio - for minimum irreversibility can be determinedopt

numerically based on calculations of ,he type illustrated in the left half of

FL(I. 4.5. The general behavior of the y result is shown in the right half

of the figure, for fixed V , M and n. The optimum aspect ratio y reachesopt

.t plateau below a certain value of friction parameter B as B increases

-6
above N i(6, the optimum aspect ratio y decreases rapidly.opt

Rectangular plate fin of trapezoidal profile. A relatively more complex

ilate fin geometry is represented in Fig. 4.2(c). This time the fin longitudinal

.;ectioui is trapezoidal, again in the spirit of E. Schmidt's principle of material

(volume) minimization [4.5]. This geometry has another important advantage over

1ho rectangular shape of Fig. 4.2(b): the tapered profile makes trapezoidal
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fins accessible to metal-cutting operations designed to remove the tin-to-fin

material. The minimum entropy (generation design of this class of fins can be

approached along the same lines as the design of rectangular fins.

Tn the interest of brevity, we illustrate only a set of results abstracted

from [4.11. The entropy generation rate depends on four geometric parameters

ReL , eb ,R,, and (a . Whether or not all four parameters may be considered
e

independent depends on specific circumstances, particularly on the constraints

taced by the designer (fixed cost, volume, base area, etc.). In Fig. 4.6, we

show numerical results obtained in the case when b , 6 , and a are fixed
e

by design: the only geometric variable in this case is the fin length L

(dimension perpendicular to the wall). Choosing the optimum Re Lfor minimum

entropy generation is geometrically equivalent to choosing the optimum base

thickness Re 6Bsince Re 6 3= Re 6e+ 2 Re Ltan a . The left side of Fig. 4.6

shows that N Shas a sharp minimum with respect to Re~ . The optimum values

of base thickness Reynolds number are reported in the right half of Fig. 4.6

for the case Re =100 in the range So < a < ILOO. we find that the
e

optimum fin size (Re6  decreases as the fluid friction effect (B) becomes more

pronounced, in agreement with conclusions reached in previous examples. Further,

we see that in the a range considered, the angle a has a relatively minor

impact on the optimum fin size for minimum irreversibility.

Triangular plate fin of rectangular profile. To the thermodynamic designer,

this geometry is challenging due to the absence of convenient correlations for

heait transfer and fluid friction in the three-dimensional boundary layer flow

which, in most certainty, will cover the triangular faces of the fin. This

analytical difficulty can be partially dealt with in the limit D << L , where

the three-dimensional effects will be minor. In this limit, we can approximately

treat the sharp-pointed triangular plate as a flat plate in parallel flow, with
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the special property that the length swept by the flow (y) is a function of

lonilitudinal position (x). It is worth pointing out that the D <1 L limit

is in full aqreoment with the uni-directional heat conduction model adopted

in -t-vt jei -4.i1.

Tho analytical path leading to the entropy generation rate formula is

similar to the method used in the earlier examples [4.1]. Again, in the

interest of brevity, we report only a number of representative results.

The entropy qeneration rate depends on three geometric parameters, Re

Re and Re . In Fig. 4.7, we report a sample of optimum fin size results

tor cases where the triangle aspect ratio a = Re L/ReD  is fixed. The fin

irreversibility N reaches a clear minimum at a specific value of fin baseS

width, Re D ; the optimum fin size Re D depends on the relative importance

of fluid friction irreversibility (B), on the metal-fluid combination (M), and

on the plate thickness (Re6 ). The right hand side of Fig. 4.7 is a summary

ot minimum NS  results obtained for a number of common metal-fluid combinations

involvinq copper, aluminum, water and air. Regardless of combination, the

optimum fin size (Re D,op t ) decreases as the triangular shape of the fin becomes,

by design, more slender.

4.4 Optimum Fin Matrix for Minimum Entropy Generation

The focus of the preceding sections was on individual fins. Thus, we

dcveloped concrete means for selecting the geometric parameters which allow the

fin to perform its prescribed heat transfer job with minimum entropy generation.

An equally important design approach consists of focusing on an assembly of fins

and finding out which particular association (matrix, relative positioning)

allows the assembly to perform its prescribed heat transfer job with minimum

irruversibility. We illustrate this approach in this section. From the outset,
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we note that the task of determining the optimum thermodynamic association of

tins Is made difficult by the lack of specific heat transfer and friction

data on fin matrices.

The optimum association of pin fins can be determined concretely in the

"i: othermal fin" limit: in this limit the fin matrix is well-approximated by

tabe bank in crossflow, for which Kays and London [4.6] report extensive heat

tra ister and tluid friction data. Consider a two-dimensional array of staggered

;ilns. The .verall dimensions, H and L , and the total heat transferred

by thu fin association, Q, are considered fixed by design. The total rate

,f enLropy generation in the arrangement is

ge = 0Q/T 2 + N F U /T (4.20)
(en S D

wvre

F U 2 C D W (4.21)
S -' D 2 D

Parameter N is the total number of fins populating the HxL area. For heat

trinsfer ind draq coefficients we have [4.6]

-2/3 -0.4 -0.18
h = Ch p U c Pr Re , CD = Cf Re , (4.22)h p D 0D

where parameters Cf and Ch  are available graphically as functions of

transvers-al and longitudinal pitch, Xt and X C

The entropy generation number NS  emerges as a function of the matrix

', Ut ) and the diameter of each fin (ReD ) . The left side of Fig. 4.8 shows

the lpendence of NS  on Re D  in one situation where the matrix is fixed.

:1.tty, the r i; an optimum Re which minimizes the total entropy generation

rate; o sr(-pondinq to this optimum diameter, there is an optimum number of
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fins N to be planted on the surface under consideration. The right : ide of

Fiq. 4. 8 summarizes the results of the NS minimization procedure, for the

case where only the longitudinal pitch X is held constant. The optimum fin

diameter increases with the increasing transversal pitch X , while thet

corresponding number of fins decreases.

The impact of varying the friction parameter B is illustrated in Fig. 4.9.

It the matrix (X , X ) is held fixed, the optimum fin diameter increases as

the friction effect becomes more proncunced. At the same time, the total number

of fins (N) corresponding to Re decreases.D,opt
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Nomenclature

A cross-sectional area

k fluid friction irreversibility parameter

C drag coefficient

C Fskin friction coefficient

drag force

erithalpy

B heat transfer coefficient

k thermal conductivity of fin material

r mass flowrate

N total number of isothermal pin fins (tubes)

N entropy generation numberS

P' pressure

Pr Prandtl number

total heat transferred by the fin association

local heat flux per unit area

heat flux through the fin base

entropy

entropy generation rate

temperature

UI velocity

temperature excess at the fin base, T - T
B B

thermal conductivity of fluid

u dynamic viscosity

v kinematic viscosity

density
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5. CONCLUSIONS

This final report summarized the main results and conclusions of a two-

yer tudy of the thermodynamic implications of heat transfer augmentation

[i.G-l.12]. In section 2 we reviewed a number of central topics in convective

he2at transfer, from the point of view of heat transfer as an entropy-producing

mechanism. we saw the close relationship which exists between the irreversi-

bility due to heat transfer and the irreversibility due to fluid friction in a

,liven convectivo heat transfer configuration. In section 2 we developed a

Inumber of analytical tools designed to facilitate the numerical calculation of

thermodynamic irreversibility in actual applications.

In section 3 we analyzed quantitatively the thermodynamic impact of using

a proposed heat transfer augmentation technique. We showed that a technique's

potential for reducing the rate of entropy generation depends strongly on the

vferatinq conditions of the heat exchanger passage in question. Specifically,

the augmentation entropy generation number depends on the operating Reynolds

umlnber Re and on the irreversibility distribution ratio (the ratio of

!iuLd friction irr eversibility divided by the irreversibility associated with

jrnecfect therma] contact). When the operating conditions of a certain component

ire specrified (Re, ), it is possible to assess the relative thermodynamic merit

of various heat transfer augmentation techniques proposed for the same applica-

tion. This comparison is done on the basis of plots N (Re, ) as shown inS

'iq. 3.2-.3.]4; each of these plots is the property of a well-defined heat

transfer aupnentation technique.

l'inally, in section 4 we considered the entropy generation associated with

the, use of extended surfaces (fins) in cross-flow. We showed that the sizing

--.... .... . . . ....
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:,e rmoJdyn, ,c :;election) ()- 1u all~tividual firn .swv/ inL'ovc,: t tr de-nff

between heat transfr 'Ind f- 1:id f iftin)I rev,-rc ibilities. !it the cases

out LLiiel in this report, the t he rmodynami c optii:.ation of nd ividual fins

cmiui be_ ca-rIe'd out bmsed on 1a1ly srimp i analysio. lr, jeiieral, as demon-

i t rated in, a more detai led repjort [1. 12] , the thermodynamic sem, tion of

jnneLj -;I -0s can '- putsind iumerical ly. The me in conclusion of this

ILst phase ot our study is that it is possible and, indeed, advantageous to

co.'eptualize finned surtaces which perforn their prescribed heat transfer

iut ice and, at the same time, Aenerate the least amount of entropy in the

tiiin ee tini system in which they function.

'voraJ I , our study illustrates the importance of the Second Law of Thermo-

,ynamics i!i the development of efficient power systems. Our study shows how

to eva] nate the change in thermodynamic irreversibility (entroqpy generation)

associaited with a proposed design change, and how to make the riq;ht exergy-

sacing dec~sioni. Although this final report is on- a partial review of the

w.>ok aleu availabic tiroorgh individual publications [1.6-1.121, it is hoped

i cmn ene ser,, as Starting point for fLture Second Law analyses of power

5':. ~ ' i
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