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1. INTRODUCTION

The growing emphasis on energy conservation has led to accelerated research
on the development of efficient equipment for heat exchange processes. Today,

a large share of this research is directed toward technigues for augmenting heat
transfer [1.1-1.3). The ultimate purpose of such techniques may be to improve

the thermodynamic performance of future or existing heat exchangers, to reduce
their size, thereby reducing capital and operating costs, and possibly, to prevent
excessive temperatures and failure in systems where the heat generation rates

are difficult to tolerate.

The task of evaluating the merit of a proposed augmentation technique may
be as important as developing the technique itself. Experts agree that evaluating
the impact of these techniques is a difficult problem [1.1-1.3], partly due to
their great diversity and partly due to the absence of a common conceptual basis
for evaluation. The present study was motivated by the real need for a univer-
sal, thermodynamically solid, basis for comparing the worth of all augmentation
techniques.

In general, the objective of all heat transfer augmentation techniques is
to cnhance the thermal performance by increasing the surface heat transfer
coefficient relative to the heat transfer coefficient which characterizes the
standard (untouched) surface. At the same time, the increase in heat transfer
coefficient should be accompanied by only a small increase in the fluid pumping
power loss needed for the heat exchange job. These objectives underlie the
fundamental trade-off in the development of any heat exchange equipment, namely,
a design modification which improves the thermal contact will most likely cause
a parallel increase in the mechanical power dissipated in the apparatus, for
example the power needed for pumping the working fluid through the passages of

a heat exchanger. Given this trade~off, it is important to know in advance




which augmentation technique will realistically lead to an improved overall
performance. In addition to finding out whether an improvement is feasible,
it is important to know, in quantitative thermodynamic terms, the size of
the improvement.

This report summarizes the main results of a two-year study of the impact
of heat transfer augmentation on the thermodynamic performance of heat exchange

equipment. The study relied on the concept of thermodynamic irreversibility

and _entropy generation as fundamental criterion for evaluating and, eventually,

minimizing the waste of usable energy (exergy) in energy systems. The extreme
importance of this thermodynamic concept in the world of energy engineering
was summarized most recently at the 1979 Second Law of Thermodynamics Workshop
{1.4]. 1t has also been shown [1.3,1.5,1.6] that the ultimate function of all
augmentation techniques is to inhibit the production of entropy, thus paving
the road toward thermodynamically efficient equipment for heat exchange.

The work summarized in this report is organized into three distinct parts.
The first part (section 2} contains a fundamental investigation of the entropy
generation mechanism in elementary heat transfer configurations. This tutorial
section establishes the foundation for the second law analysis of actual aug-
mentation techniques, reported in sections 3 and 4. Section 3 describes in
quantitative terms the irreversibility minimization potential of some of the
most common techniques, namely, swirl-flow devices and roughened surfaces.
Section 4 considers the entropy generation penalty associated with the use of
extended surfaces (fins) in convective heat transfer. This section shows
also how the fin geometry can be chosen such that the fin performs its heat
transfer duty with minimum generation of entropy.

Due to space limitations, the present report reviews only a segment of

the research undertaken during this two-year study. For a complete and detailed




account of all the topics covered by this study, the reader is encouraged to

consult References [1.7-1.12].
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2. ENTROPY GENERATION IN CONVECTIVE HEAT TRANSFER

2.1 Local Rate of Entropy Generation

Consider the two-dimensional infinitesimal fluid e. ement dxdy shown
schematically in Fig, 2.1. The fluid element is part of a considerably more
complex convective heat transfer picture. However, for the scope of this
study, we regard the element as an open thermodynamic system subjected to mass
tluxes, energy transfer and entropy transfer interactions through a fixed con-

! trol surface. The element size is small enocugh so that the thermodynamic state
of the fluid inside the element may be regarded as uniform (independent of
position). However, the thermodynamic state of the small fluid element may

change with time.

For this study, we limit our attention to incompressible fluids without
intcrnal heat generation. In such cases, the expression for the volumetric rate

of entropy generation reduces to [2.1]:

; v \2 v \2 v v\
: S R 9_61)2 u x Y X,y
' 5% = Tz-[(3x> * (Sy N ax * Ay * Ay * ax (2.1)

As wo might have expected, the irreversibility indicator §"™ contains two addi-

tive parts, one due to conduction in the presence on non-zero temperature
gradients, the other accounting for viscous dissipation of mechanical power
throughout the flow. 1In the second term of equation (2.1), the factor in
brackets represents the viscous dissipation function ¢ for two-dimensional
compressible flow.

The local entropy generation rate formula (2.1) can be derived in straight-
forward fashion by performing an entropy transfer accounting around the

infinitesimally small element illustrated in Fig. 2.1. The entropy transfer
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Fig. 2.1. Entropy generation analysis for an infinitesimal element dxdy in
convective heat transfer.
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I'ig. 2..2. Left: entropy generation profiles Nsm inside a smooth tube with

constant wall heat flux in laminar flow. Right: optimum Reynolds

number and corresponding minimum entropy generation number for
forced convection heat transfer in a round tube.
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to and from the (dxdy) system is associated with heat transfer, g and
X

qy , as well as with mass fluxes, pvx and pvy . In the 1interest of brevity
we do not show this derivation, urging the reader to consult any irreversible
thermodynamics book for additional details. Alternate versions of formula

(2.1) corresponding to coordinate systems other than the two-dimensional carte-

sian system of Fig. 2.1 may be found in [2.2].
In many heat transfer problems it is often possible and convenient to

neglect the viscous dissipation term ¢ in the equation for encrgy conservation.

( 30 J4
pc vVoT— + v ~—*)
i x ax y Jy

This 1s particularly the case in heat transfer through gases at subsonic velo-

citiecs. The dimensionless group which expresses the magnitude of the dissipation

eneryy term relative to the conduction energy term in (2.2) is [2.3]

K¢ Pr = - (2.3)

where u* and 6* are the characteristic fluid velocity and temperature
difference for the convective heat transfer problem. Thus, in many engineering
prol:lems, we find Ec Pr << 1.

consider now the same question relative to expression (2.1). Under what
conditions is the viscous dissipation contribution to $'"' negligible? If we
regard expression (2.1) as the sum 8" = g™ + s' . then, in

conductive viscous

an order of magnitude sense,

e
viscous Ec Pr
of ——YE2EPUS = - (2.4)
e T

conductive




Here, 1 - 9*%/T* , where T*  1s the absolute temperature characteristic to

the problem at hand. The dimensionless temperature difference, 71 , is always

an important dimensionless parameter in second law analyses of heat transfer
problems.  With the exception of applications at cryogenic temperatures, the

temperature difference number 1 1s generally much smaller than unity,

It is now clear that the energy argument by which viscous dissipation is
neglected in (2,2), i.e., Ec Pr << 1, has no bearing on the gquestion of
negligible viscous contribution to the local rate of irreversibility production.
It is then possible to encounter situations where, although the energy cquation
can be simplified according to Ec Pr << 1, S"™ is in fact dominated by
viscous effects. This is the limit in which 1 1is very small, small c¢nough
s0 that FEec Pr/t > 1.

Below we examine a series of important convective heat transfer configura-
tions in an ~ffort to illustrate the coupling of viscous and conductive effects
in the makecup of S™. In the process we will study the spatial distribution
of irrever=ibility, pointing out those flow features which act as concentrators

{(sources) of entropy generation S'™.

2.2 Forced Convection in a Round Tube

Laminar Flow. Consider the Poiscuille flow through a round tube with uni-

form heat flux g around its circumference (see insert in the left side of

I'ig. 2.2). The velocity and temperature profiles for this flow are particularly

simple {2.2):




(2.6)
o Yo x,max
=2 (- = — = — =2 = pe. 2.
Vx, max 4 ( dx) ! r o € (2.7.8)

The cquation for 8™ in the cylindrical geometry of Fig. 2.2 is

x [[a6} 30 \2 u 3"x2
> ’?[(5?) +('a?) o\ oz (2.9)

which yields

1

2
Il2 uv
w o 2 _ 32 , 16 ___X,max o _ X
s™ = [(ZR RS+ 55| + e 2 R R=7 (2.10) :
[e] (o] 1

Equation (2.10) is the entropy generation profile in the pipe cross-section.
Together with the velocity and temperature profiles, the entropy generation
profile completes the thermodynamic description of the convective heat transferx

phenomenon. j

It is convenient to nondimensionalize expression (2.10) and define the

local entropy generation number ES”
kT 2 !
=gm —S - (2R - R3)2 4+ 18 , S ECPr .o
Nsm S 7;3r ( R%)“ + pa? p R4 . (2.11)

Here we made the assumption that the temperature variation over the pipe
cross-scction is negligible compared with the absolute temperature, hence
T =T where T is a characteristic (reference) absolute temperature. The

O

irreversibility figure NS"’ depends on radial position, on Pe and on the :




group Ec Pr/1 which, as discussed in the preceding section, determines the
relative importance of viscous effects. The Peclet number Pe governs the
importance of irreversibility associated with conduction in the axial direction.
We see that for Pe < 4  the axial conduction contribution dominates the radial
conduction effect.

The left side of Fig. 2.2 displays a family of entropy generation profiles
in the pipe cross-section, for cases where the axial conduction effect is
ncegligible (Pe >> 4). The value of Ec Pr/t increases gradually to the point
where viscous ceffects dominate NS” . In all cases, the pipe wall region acts as
a strong concentrator of irreversibility. When Ec Pr/t = 0, the maximum N

/2

occurs inside the fluid at R = (2/3)l , the same place where due to the wall

S m

curvature effect the maximum radial temperature gradient is located. As viscous

offoects take over, the point of highest N migrates toward the wall and, for

S ne
e Pr/t > 1/4, it coincides with the wall.

The rate of entropy generation over the entire tube cross-section is

obtainced by integrating expression (2.10),

S' = 2m roz J S RdR. (2.12)

Neglecting axial conduction, Pe >> 4, result (2.12) can be written as

.11 g'? 8 um?
5T Z8n k12 T 7w Tp2 r ¥ (2.13)

Here m is the mass flow rate through the tube, while q' is the heat transfer
rate per unit length, 2nroq" . Once more, the irreversibility production §'

appears as the sum of two effects, heat transfer in the direction of a finite

tenperature gradient and fluid friction. It should be noted that the heat transfer




contribution to §', the first term in equation (2.13), is fixed as soon as
the heat transfer rate per unit length gq' (the heat transfer duty of the
tube) is specified. We return to this observation later in this section when
(< we address the question of optimum tube radius for minimum irreversibility

'

and fixed (g

Turbulent Flow. Exact analytical solutions for the turbulent veclocity

g and temperature fields in the tube cross-section are not available. Thereforce,
one cannot evaluate the rate of entropy generation at any point in the pipe
cross-section, as done through equation (2.10) for laminar flow. However, one
can still evaluatce the rate of entropy generation averaged over the tube cross-
scction by using the integral result developed by Bejan [2.4]) for irreversibility

in a duct of arbitrary geometry.

Using the present notation for forced convection through a tube, the

integral result is [2.4]

2 *3 !

1l q m~ £ i

"n Nu kT2 T 02T r 5 ' (2.14) t
o i

which shows how S' can be evaluated based on average heat transfer (Nu) and
fluid friction (f) information. As one might expect, the laminar flow expres-
sion (2.13) is only a special case of the more general result (2.14) since,

in laminar flow, Nu = 48/11 and f =8 7 y ro/ﬁ. Unlike in laminar flow,
the heat transfer contribution to S' 1is not necessarily constant when the
heat transfer duty q' 1is specified.

Optimum Tube Radius for Minimum Irreversibility. 1In an application in

which the heat transfer duty gq' and the mass flow m are already specified,
it is possible to select an optimum tube radius which insures the minimum rate

of entropy gencration in the heat transfer device. This design optimization

'
t
13
i
)




..ll_

procedure is described best by placing the irreversibility rate oxpression

(2.14) in dimensionless form. We define the entropy gencration number N,

as the ratio §'/s! , wherce S' is the actual entropy generation
AT,laminar

rate given by (2.14) and SAT,laminar is the first term appearing in (2.13).

we commented varlier that S . is constant when the heat transfer
AT, laminar

' assumes the role of characteristic

rate is specified, hence,

Sl
AT, laminar

rate of cntropy generation in the system of interest.,

The entropy generation number is therefore

a8 -1 34 ¢ o -2
N‘;. =-l—1-Nu +‘7§—f Re” Bo , (2.15%)

showing that the duct irreversibility depends primarily on two dimensionless
groups, the Reynolds number based on tube diameter Re and the "duty"

parameter Bo'

Re = ; B = g'm — (2.16,17)

CIE " o 5/

1272 (kpy /2

with «', m and working fluid specified, the task of finding the optimum radius
for minimum §" 1is equivalent to minimizing the NS' expression (2.15) with
respect to Re, subject to a specified constant Bo' This procedure is
straightforward, therefore only the final results are given here.

FFor laminar flow, using Nu = 48/11 and f = 16/Re 1in expression (2.15),

the minimization procedure yields

Rcopt =0 ; NS' = 1 (2.18,1v)

In engincering terms, this result implies that the selected tube radius r
o
must be large enough so that the rate of entropy generation is strongly

dominated by the contribution duc to heat transfer across a finite temperaturc




difterence.  In other words, based on expression (2.19),

R 'Y
24 -d
== — Re“B << ]

11 o . (2.20)

I'or turbulent flow, the N

st

. 0.8 -0.2 .
Substituting Nu = 0.023 Pro 4Rv and f = 0.046 Re into (2.1%) and

expression (2.15) has a unique minimum.

differentiating with respect to Re yields

~0.¢ -0.358
ke = 2oy pe 007y (2.21)
opt (8]

and

-0. -0.206
NP L o6 pr 0038y °

. (2.22)
el O

Expressions (2.21, 22) have been summarized in the right hand side of Fig. 2.2
for two discrete values of Prandtl number. As the aggregate duty paramcter

15 1ncreases, we see that the optimum tube radius decreases (Re ¢ increasces)
o}

. . min
and the ninimum cntropy genceration numher NS decreases also.

2o boundary Layer Over Flat Plate

Laminar Flow over Isothermal Plate. Consider now the development of

laminar momentum and thermal boundary layers along a flat plate. The situation
i shown schematically in the horizontal plance of the isometric drawing of
Fig. 2.3, At some distance from the solid wall the fluid velocity and temperature
are uni form, - , and T - The wall temperature is constant, To.
The study of the velocity and temperature ficlds in the vicinity of the

i-late constituted the subject of numerous investigations (2.5]. The purpose

of this section is to cxamine the distribution of entropy generation in the

boundary layer. VFor this we rely on solutions available in the literature for
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vx(x,y) and 0(x,y) in laminar flow.

The task of covaluating the entropy generation profile

greatly if we restrict the discussion to the case

Blasius-Pohlhausen solution [2.6] reduces to

1l
The similarity variable n equals y[vx m/(vx)]

’

function tabulated by Howarth [2.7].

Pr

’

associated with velocity and temperature gradients in

kom7vx N , . L

"o — ! " A ny o

S T ?vx (£ T vx (£")
o o

The loucal entropy generation number is

LY S (1w B )UED?
s k 6 v T Re
o x,uu x

whoere  Re 1s defined as v X/V .
X X,

Pr

1

while

@ eyt oty o8

S"™ 1is simplified

for which the

(2.23,24)

f{(n) 1is the

Neglecting the irreversibility terms

X direction, we find

]

The complex dependence of S™ on both x and vy

The threo-dimensional display was done in terms of (x vx -

{y v o/V) in the horizontal plane, and Nsm
!

dircction.

boundary layer. Regarding the y dependence of N

rate is highest rcaching a peak at the solid wall.

of 8" 1is as 1/x,
solution S blows up at the origin.

Ec pPr/t.

g™ 4

is

’

(2.26)

shown in Fig. 2.3.

/v) and
/(1 + EcPr/1) in the vertical

It is evident that the irreversibility effects are limited to the

the entropy generation

The longitudinal variation

The viscous effect again scales up as

indicating that like all gradients in this boundary layer

i bl bt s b T L ke M 4 YR

R A bk oe S5 TH 0 1+ KL 1 B e A e
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fiow direction

Fig. 2.3. Fntropy generation surface for laminar boundary layer flow and
heat transfer along a flat plate.
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Integrating (2.25) across the boundary layer we can calculate the rate

of cntropy generation per unit area of flat plate,

£ . kv 6 ?
o = J X,® ® <l + Ec Pr ) Rex-l/2 (2.27)
[¢]

" = | =
s" dy = 0.25 “To? -

with the corresponding entropy generation number defined as

vTO? Ec Pr -1/2
= " = + ———— . .
NS" S ka mO::y 0.25 (l - ) Rex (2.28)

! tinally, by analogy with the Nusselt number nomenclature for boundary

layer heat transfer, we integrate (2.27) in the x direction to find the

total rat. of cntropy generation produced by boundary layer flow and heat

transfer over a length L

L 2
X6
@ ~ 1
F — (1 + Echr )Re /2 (2.29)
(o)

oy =4
4
I
N
o
x
I
<
-
O

whh e Rv[ = vx A The overall entropy gencration number based on S' is
'I‘?
8] Ec Pr 172
* :b" —~ = L + ———— . .)
dd, Ko 2 0.50 (l ;. )ReL (2.30)

It 13 wortihs mentioning that in general the Prandtl number will have an

additional vffect on the relative importance of viscous and conductive effects

1 thse constitutien of 8™, 8" and S'. It is easy to show that when Pr # 1

the viscous etfects scale as

5\ 1
e br (hZ):_EF Pr /3
{ T
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where § and 6§ are the velocity and temperature boundary layer thicknesses.
. . , . 1/3

In writing (2.31) we made use of the approximation G/GT ~ Pr . The

significance of (2.31) is that when the two thicknesses are not equal, the

thinner layer exhibits larger gradients thereby enhancing its contribution to

the total S™ figure. According to (2.31), viscous effects are more likely to

play a role in low Prandtl number fluids where § << GT.

Laminar and Turbulent Flow over Constant Heat Flux Plate. To study the

gencration of entropy in a turbulent boundary layer one has to rely on an integral
method which takes into account the heat transfer and fluid friction characteristics
of the flow in an overall manner, as Nusselt number and friction factor informa-
tion. Consider, for example, a flat plate of negligible thickness suspended in

a uniform flow field, parallel to the flow velocity Vx,W' The heat flux g"

over the plate surface is uniform. Consider also a control surface which sur-
rounds the plate of finite length L at a large enough distance through portions

of c¢xternal flow in which the fluid motion is nearly uniform and the temperature
nearly constant, T, - Regardless of whether the boundary layer is turbulent or

laminar, the entropy generation rate in one half of the control volume (i.e.,

for one side of the plate) is given by

L ov 3 L
"2
. q dx X,®
T2 e —_ t — .
S T f h > T I cf,x dx , (2.32)
-] X w©
0 0
where hx and Cf x are the local heat transfer coefficient and skin friction
’
coefficient,
" 2 To
= ——i—_— =
b T -7, Se,x " ov. 2 (2.33,34)
o X, ®




o aa

i
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In the above definitions To(x) is the wall temperature, To the wall shear
stress and q" the uniform heat flux. Note that unlike equation (2.29) in the
preceding sub-section where we considered the laminar boundary layer over an
1sothcermal flat plate, the S' expression (2.32) refers to a uniform heat

flux situation.

Expression (2.32) is the result of an entropy flux accounting around the
control volume, analysis omitted here due to space limitations. Like all
entropy generation results for forced convection heat transfer, S' consists
of two additive parts, one due to heat transfer across the [To(x) - Tm]
temperature difference, the other being associated with the total friction drag
force exerted by the fluid on the plate. Below, we use result (2.32) to deter-
mine the optimum plate length L which yields the minimum rate of entropy
gencration in a heat transfer application in which the uniform flow velocity
v and the total heat flux g =‘[3q" dx are specified. We do this by

X,

first substituting appropriate correlations for hX and Cf x into expression
’

(2.32) and solving the equation 3S'/3L = O.

For laminar flow, the local skin friction coefficient is Cf x 0.664 Re ~1/2
’ X
. . . . _ 1/3 1/2
while the local heat transfer coefficient is given by hxx/h = 0.332 Pr Rex
[2.8]. Writing gq' = q"L for the total heat transfer rate from plate to fluid

over the plate length L, the entropy generation number NS' becomes

2
kT, /3. -1/2

Ng, = S' 7 = 2.008 Pr Re + 0.664 ReLl/2 -2

S B 7. (2.35)

Here, Re and B are the Reynolds number based on L and the "duty"”

4

parameter, respectively,

L x> - g
Re, - B . (2.36,37)

Iy i 2 4 R £ 18~ £8 IR o7 e ot 2o



The optimum plate length ReL opt yielding the minimum rate of entropy genera-
[

tion at constant q' and v_ is
14

- 2 i - -
P Re = 3.024 pr Y3 B2, N™MP_ 5 300 pr /O 7L (2.38,39)
L,opt

For turbulent flow we use a similar set of correlations for friction and

heat transfer Cf x = 0.0576 Rex—l/5 and hx x/k = 0.0296 Prl/3 Rexo'8 [157.
’

We also assume that the laminar layer which precedes the turbulent boundary

layer is much shorter than the plate length I, . Substituting these correla-

tions into the entropy generation result (2.32) yields

kT 2
w -1/3 8/5 -8/5 _ -2
Ng, = 8' 77 = 28.15 Pr Re + 0.036 Re B ", (2.40)
-5/24 _5/4 i - -
Re = 64.31 pr /24 B4, 0 L) 013 570 g7 (2.41,42)
L,opt S
a The optimum plate length and the resulting minimum entropy generation

number prescribed by these equations are shown on the left side of Fig. 2.4.
The discontinuity illustrated by dashed lines corresponds to the transition
region, cases in which the laminar and turbulent portions of the boundary

laycr are of comparable lengths. The trends are similar to those presented in
the right graph of Fig. 2.2: the higher the duty parameter B, the higher the
optimum Reynolds number (plate length) and the lower the minimum entropy
jeneration number. In other words, if the total heat transfer rate gq' is

constant and the flow velocity increases, the optimum plate length decreases

and the minimum attainable entropy generation rate increases.
Thesce conclusions are applicable to the optimization of local flow geometry

in plate-fin surfaces for compact heat exchangers, as shown in Chapter 4 of this

report.
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encounterced in actual engineering equipment for heat exchange processes.

by this configuration.

in a cross~flow of uniform velocity vX - and temperature T,
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2.4 Single Cylinder in Cross-Flow

The heat transfer between a cylindrical surface and a fluid flow normal

to the cylinder axis is one of the most frequent heat transfer configurations

1t

is appropriate to c¢xamine here the thermodynamic irreversibility introduced

Due to inherent similarities with the plate of finite

length in parallel boundary layer flow, example concluded in the preceding

section, the case o7 a single cylinder in cross-flow will be summarized very

bricefly and only the key analytical results will be given.

Consider a cylinder of diameter D with uniform surface heat flux g"

An entropy

1

generation analysis of the flow region affected by heat and momentum transfer

from the cylinder yields the total entropy generation rate

v F
P _ x®D
' 713 f [r(2) - T 1 di + T } (2.43)

In this expression, f 1is the curvilinear coordinate around the cylindrical

surface and T(2) 1is the local surface temperature. It is again assumed that

the temperature differences are much smaller than the characteristic absolute

tempoerature of the medium  [(T(2) - Tm] << Tw’ FD is the force (drag) per

unit length exerted by flow on cylinder, force calculated from drag coefficient
exporimental information, CD,

F_/D
o’

C. = —————
D v 2/2
PV /

(2.44)

Replacing the line integral in (2.43) with the average wall-fluid temperature

difterence times 0D,

and expressing the average temperature difference in terms




the average Nusselt number, T(l)av - T = gq"D/{(k Nu) , vyields,

q'? 1 1 M w
' = —+ = Re —— . 2.45
s TkT_2 Nu | 2 Cp Re T (2.45)

Here, we used the drag coefficient to replace FD in equation (2.43), We
also wrote ' = wDg" for the total heat transfer rate per unit length of
cylinders. Finally, expression (2.45) is put in dimensionless form defining

the entropy generation number

kT -2
= §' — = = R 2.
Ngoe =8 7 "o P2 Re B (2.46)

where B 1s a duty parameter which has the same form as in equation (2.37).

As in the heat transfer configurations examined earlier, we can use the
entropy generation number formula (2.46) to determine which flow geometry
(cylinder diameter D) is best for minimizing the thermodynamic losses associated
with th heat transfer process. For an application in which q', vx » and

’
the fluid arce known, the optimization procedure amounts to minimizing expression
(2.46) with respect to Re, subject to constant B. The results of this
optimization procedure are shown as Reopt and Ng%n on the right side of
Fig. 2.4, a plot qualitatively similar to the left graph obtained for a flat
plate.  The right graph of Fig. 2.4 was constructed based on cquation (2.46)

coupled with Hilpert's average Nusselt number correlation for gas flow [2.9]

and with Fisner's presentation of drag coefficient [2.10].

2.5 Laminar Forced Convection in the Entrance Region of a Flat Rectangular Duct

A frequent flow configuration which embodies the characteristics of the
tirst two flow examples discussed here is sketched in the insert of Fig. 2.5.

In the contrance region of a parallel-plate duct, temperature and velocity boundary




layers develop simultaneously along both walls, gradually filling the duct and

Leading to the well-known fully-developed laminar regime. There have boeon many
studies of the heat transfer and velocity problems associated with this basic

configuration, as indicated recently by Bhatti and Savery {2.11]. In this
scction we address the irreversibility problem, once again relying on published
olutions for the temperature and velocity field in the duct.

Sparrow [2.12] analyzed the boundary layer development in the entrance
region using the Karman-Pohlhausen integral technique. The Sparrow solution
is unique, considering its simplicity versus the good agreement between its pre-
dictions and cxperimental findings. In what follows we use this solution
and the  $"' formula (2.1) to illustrate the distribution of irreversibility
in the channel.

The ultimate goal of the irreversibility analysis is to discover how the
thermodynamic losses due to entrance cffects compare with similar losses in the
tully-developed section of the duct. 1In other words, what length of fully-
developed flow is quilty of generating as much entropy as the entire entrance
region?  The answar to this question is simplified substantially if, in addition
to using Sparrow's analytical solution, we focus on the T - 0 1limit in which the
viscous cffects totally dominate the rate of entropy generation in the channel
{sce: the discussion following equation (2.4)). Consequently, to calculate S™

we need only the velocity solution which is

= _ g2
Ve = VOVl*(2£ £4) (2.47)

with

£=y/6, &/a = 3(1 - Vl*_l) (2.48,49)

>
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Vr =y v, xro= 2 (2.50,51)

As shown on Fig. 2.5, V0 is the uniform fluid velocity at x = 0, while Vl

and 6 are the centerline velocity and boundary layer thickness, respectively.
lFor the function Vl*(x*), Sparrow reports a differential equation which,

integrated, yields

- 16 4n Vl*> (2.52)

The ontrance region extends to x* = 0.1038, corresponding to Vl* = 3/2 as

for planc Poisecuille flow.

Using egquation (2.1) and leaving out the conductive contribution we obtain

ap V2

57 V- 6?2 (2.53)

a2 2 B
S T8

and, integrating across the duct,

i wv 2

3 Tg’ vl*z. (2.54)

From (2.54) we find that in the fully-developed section of the duct (FD) the

rate of entropy gencration per unit area of duct wall is

pv 2
st =6 —— (2.55)
D Ta )
ig. 2.5 shows the variation of S"/S;D with axial position along the duct.

As expected, the irreversibility effects are most intense near x = 0., However,

as  x* lincreases, S" rapidly approaches the fully-developed entropy generation
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level S;D a good distance before the end of the entrance region, x* = 0.1038.
The total irreversibility associated with entrance cffects is estimated
integrating expression (2.54) from x* = 0 to x* = 0.1038. The result of

this operation is

3
pa Vv
11 [e)
T 9 2.
S 15 T (2.56)

where p 1is the fluid density. Similarly, the total rate of entropy generation

over a fully-developed stretch of length LFD is
uv
SFD =6 Ta LFD . (2.57)

Comparing results (2.56) and (2.57), we conclude that the fully-developed equivalent

of the entire entrance region is a fully-developed section of length LF given

by

LFD 11

—B-= 1420 ReD = 0.00764 ReD . (2.58)
where D is the hydraulic diameter 4a, while ReD = VOD/v . It is time now

to compare the irreversibility-equivalent length LFD with the physical extent
of the entrance region, LE. Setting x* = 0.1038 and x = L in expression

(2.51) we find that familiar result

L
E

— = 0.00 > 2,
D 0 649 ReD (2.59)
Therefore, from (2.58,59), the irreversibility contributed by the entrance

region is roughly equal to (actually, only about 18% higher than) the irreversibility

estimated assuming fully-developed flow over a duct length equal to the entrance
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- length. This conclusion is important in practical irreversibility calculations,
! as it is considerably easier to trcat the entire duct as in the fully-developed
regime.
«
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Nomenclature

a half-thickness of flat duct
£ Bo, B duty parameters

Cp specific heat at constant pressure

CD drag cocfficient

Cf,x local skin friction coefficient

D hydraulic diameter

Ec Eckert number

£ function, equation (2.26); friction factor, equation (2.14)

FD drag force

hx local heat transfer coefficient

k thermal conductivity

LE entrance region length

LFD length of irreversibility-equivalent fully developed secction
4 m mass flow rate

NS-... s N, +N entropy generation number

s' S
Nu Nusselt number
p pressure
Pr Prandtl number
g, q', g heat transfer interaction, [W/m?], [W/m}, [W]
r radial position
. tube radius
K dimensionless radial position
. RO Reynolds number
' 3 specific entropy
s" ., s", s' rate of entropy generation, (W/m3K), [W/m2K], [W/mK]

— . .
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Sll
FD

vy

rate of entropy generation in the fully—develébed region
time

absolute temperature

reference temperature

specific internal energy

velocity components

entrance velocity

centerline velocity

dimensionless centerline velocity

horizontal coordinate

dimensionless coordinate

vertical coordinate

thermal diffusivity

velocity boundary layer thickness

thermal boundary layer thickness

dimensionless coordinate across flat duct

similarity variable in boundary layer flow over flat plate
temperature difference, T - 'I‘o
extreme temperature difference, T, - T
viscosity

kinematic viscosity

fluid density

ratio of characteristic temperature difference divided by
the absolute temperature

wall shear stress

viscous dissipation function




3. THE IMPACT OF HEAT TRANSFER AUGMENTATION ON ENTROPY GENERATION

3.1 Entropy Generation Analysis

Consider a heat-exchanger passage of length dx , heat transfer per unit
length q', and mass flowrate m . The passage geometry is described in terms
of the hydraulic diameter D and flow cross sectional area A . The rate of
entropy generation per unit length is [3.1]

q'AT m ( dP)
- 2 4 - = b
S T2 oT dx (3.1)
where the first term represents the irreversibility rate due to heat transfer
across the wall-fluid temperature difference, S!_, while the second temm is

AT
the irreversibility rate attributed to fluid friction, SAP . Implicit in
writing Eq. (3.1) is the assumption that the wall-fluid AT 1is considerably
smaller than the local (wall, fluid) absolute temperature. This is a1 qgood
assumption, especially in heat exchangers operating above room temperature.

An important dimensionless parameter in the second law analysis ot con-

vective heat transfer is the irreversibility distribution ratio

b= st /8, .2
¢ = Spp/Uar (3.2)

The parameter ¢ describes the relative importance of fluid friction in the
total irreversibility of a flow passage. Like SAP and SAT , the irreversi-
bility distribution ratio ¢ 1is a local parameter.

The impact of an augmentation technique on the irreversibility of a given

heat exchanger passage can be evaluated by calculating the entropy generation

rate in the "augmented" passage, S; , and comparing it with the entropy
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gueneration rate in the original (unaugmented) passage, S' . It i1s convenient
o

to det ine the augmentation entropy dgeneration number ES as the ratio
— _— a

N . = S§'/s' . (3.3)
5,4 a [§]

Augment ation techniques yielding values of Ng a less than unity are thermo-
s

dynamically advantageous since, in addition to enhancing heat transter, they

reduce the rate of entropy generation in the apparatus.* It is easy to show

that when ' and m are the same before and after augmentation, the entropy

gquneration number can be rewritten as

NS'a = (N,P + ¢ONP)/(1 + ¢O) ' (3.4)
where
N, = (StO/Sta) (Da/Do) ' (3.5)
N_ = (F /f )(D /D )(A /A2, (3.0)
r a @] o a o a
Re = (D A /D /A )Re . (3.7)
d a o o a o

In these expressions, St, f, Re, D and A are the Stanton number, friction

factor, and Reynolds number, hydraulic diameter and flow cross sectional area,

* bor example, in the regenerative heat exchanger for a Brayton cycle heat
engine a low Ng 5 means less dissipation of available work in the power cycle.
Among the physical parameters affected directly are the stream-to-stream tempera-
tiure ditference and the two pressure drops on either side of the heat transfer
surface. As the heat exchanger entropy generation decreases, the pressure drop
wross the turbine increases, resembling more closely the pressure rise provided
by the compressor. Consequently, the turbine power output increases. At the
same time, the inlet temperature to the combustion chamber (heater) increases,
hence, the specitic fuel consumption decreases. We see that the reduction in
entropy generation in the counterflow heat exchanger (reduction indicated by

N, 5 1) can be measured directly as an increase in energy conversion efficiency.
RIFE
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O, = 1.D. of tube
< p -pnch(I80°)

o

hellx tube

2r =1.D. of tube
2R =diameter of helix
L' =coil spacing

a
Y

D, =1.D. of tube

LU =propeiler spacing

o5

—~‘Do

Do = ID. of tube
b =interfin spacing
e =fin heght

d

I'ty. 3.1. s~hematic of four swirl flow-promoting techniques for heat-transfer
augmentation.
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respectively. Equation (3.4) shows that, when the reference passage is

dominated by heat transfer irreversibility (¢o + 0) , the augmentation

number reduces to NT which is proportional to the ratio of heat trans-

N
S,a
fer coefficients (reference/augmented). 1In general, however, the augmentation

entropy generation number is a function of the ratio of heat transfer

N
Sr,a
coefficients and the friction factor ratio.
In what follows, we use Eq.s (3.4)-(3.6) to evaluate the relative change
in irreversibility introduced by each of the augmentation techniques of

Fig. 3.1. We obtain this result by using published heat transfer (St) and

fluid friction (f) information on each of these flow geometries.

]
3

.2 Twisted Tape Inserts

The use of twisted tape inserts to augment both laminar and turbulent con-
vective heat transfer is one of the most common in-tube augmentation techniques.
This technique is also well-documented. For example, Lopina and Bergles [3.2]
measured the heat transfer and fluid-friction characteristics of a tightly
inserted uninsulated tape in turbulent flow. The tape was inserted in a straight
tube and the assembly was redrawn, with tape in place. This operation forced
the tape to slightly penetrate the interior surface of the tube. The geometry
of the augmented arrangement is shown schematically in Fig. 3.1(a). The
experimental results for Sta and fa agree to within 10% with the published
work of other experimenters.

t'igure 3.2 illustrates the augmentation entropy generation number for
twisted tape inserts in turbulent flow, based on the data of Lopina and Bergles

[*..]. on this basis, we obtain

y = 2.45, N_ = 0.49/(1 + 0.89 Reo_0°13) , N = 2.33 ; (3.8)
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Fig. 3.2. Augmentation entropy generation number for twisted tape inserts.
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Fig, 3.3. Augmentation entropy generation number for helix-shaped tubes.
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v -0.13
= 5. = 0. + 1. = 3.13; .
y =5.08, Ny =0.44/(1L + 1.3 Re_ ) . Ny = 3.1 (3.9)

also

D/D =10.61, A /A =1.
a’ o a" o

In this example, the geometry of Fig. 3.1(a) is the augmented design, vis-a-

vis the smooth straight tube which is used as reference.
It is evident from Fig. 3.2 that the parametexr which influences Ns,a

the most is the irreversibility distribution ratio ¢o. Thus, whenever ¢o

is less than approx. 0.25, the use of twisted tape inserts will lead to a

reduction in thermodynamic irreversibility. The greatest reduction occurs

when ¢O =0, 1i.e., when the fluid friction contribution to S' is totally

negligible and NS, becomes proportional to the ratio of heat transfer

coefficients, [see Eq. (3.5)]. It is important to note that the critical value

of ¢O above which the augmentation technique will actually increase the rate

of entropy generation, ¢O = 0.25, corresponds to a heat exchanger passage

in which the fluid friction contribution amounts to only 20% of S'. There-

fore, even in cases clearly dominated by heat transfer irreversibility (¢o < 1)

it is important to evaluate the total entropy generation rate and the change

induced in it by the implementation of a proposed augmentation technique,

before deciding whether heat transfer augmentation is thermodynamically advantageous.
Figure 3.2 shows also that other parameters, such as Reo and y, are

not nearly as important in affecting the value of N . In particular, the

S,a

augmentation entropy generation number is almost independent of the reference

Reynolds number, Reo . This behaviour follows from the fact that the measured
Red dependence of Sta and fa if functionally the same as that of Sto

and f = (see Refs. [3.2] and [3.3]).




The twist ratio y has a visible effect on the entropy genevation rate;
for example, when wo approaches zero a tighter twist (y = 2.45) is preferable.
On the other hand, for values of ¢o other than in the ¢o +~ 0 limit, i.e.,
when the fluid friction irreversibility begins to play a role, a looser twist
is more advantageous (y = 5.08). 1In fact, using a more extensive collection
of experimental data, it may be possible to determine the required twist ratio
y which, for a given ¢o , 1s capable of lowering NS below a predetermined

PG

value.

3.3 ilelical Tubes

Another heat transfer augmentation feature common in advanced heat exchanger
design is the use of spiraled tubes. In this confiquration the swirl flow
induced in the stream filling the tube 1s the result of centrifugal forces.
As shown in Fig. 3.1(b), the geometry is described by the ratio A = R/r.

Figure 3.3 was constructed by using the heat-transfer and fluid-friction

measurements reported by Seban and McLaughlin [3.4],

Y 0.05 - 2
N, = (A*/Re ) . N, = (Re_/A?%)

0.05
P ’

D /D = , A = .
a/ o] 1 a/Ao 1

(3.10)

In Fig. 3.3, we show the augmentation entropy generation number in turbulent
flow for only two geometries, A =17 and A = 104. For brevity, the
analysis leading from the Seban and McLaughlin correlations [3.4] to Eq. (3.10)
is not shown. However, the reader can find an outline of this analysis in
Ref. [3.3].

The chief conclusion to be drawn from Fig, 3.3 is that shaping the tube
as a helix has only a minor effect on the rate of entropy generation in the

tuke. In the limit ¢O + 0, the irreversibility is reduced to roughly 50% of




the original ({(reference) value. In the opposite extreme, when fluid friction
dominates, (¢o -+ w) , entropy generation number is of order one. This means
that the coiling of the tube has little effect on the overall pressure drop
across the tube. Consequently, for a wide range of values of ¢o the use

of helical tubes leads to a reduction in entropy generation.

3.4 Propeller Inserts

A swirl flow promoting technique similar to twisted tape inserts is shown
schematically in Fig. 3.1(c). This augmentation technique consists of a sequence
of propellers placed rigidly inside a circular duct.

In this section we evaluate the augmentation entropy generation number
corresponding to the air experiments reported by Koch [3.5]. The propeller-
shaped inserts investigated by Koch were fabricated by making six radial cuts
(almost to the center) in a 50 mm diameter disc. The resulting blades were
twisted to approx. a 45° angle. A brass rod was then inserted through the
center of cach disc and the rod and discs assembly was soldered, maintaining
a disc-to-disc spacing L' . The solid assembly was then inserted in a straight
tube and secured in place to prevent rotation.

Using Koch's data [3.5] we derive the following extreme values of the

augmentation entropy generation number, NT and NP:

0.15 -0.009

L' =49 mm, N_= 0.035 Re ° , (L'/D = 1)N_ = 59.8 Re , D/D = 0.66
T o o P o a o
(3.11)
0.114 -0.
L' =98 mm, N _ = 0.078 Re 1 , (L'/D = 2)N_ = 32.4 Re 0.011 , bD/D = 0.80;
T o (e} P o a o
(3.12)
0. .
L' = 325 mm, N_= 0.153 Re 085, (L'/D = 6.5)N_ = 8.6 Re 0.094 , D/D = 0.93;
T o o) P le} a o
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0.085 0.11
L = ' = . = 3.8 = .
L 980 mm , NT 0.21 Reo , (L /Do 19 6)NP 3.83 Re0 , Da/Do 0.98 ;

(3.14)

where Aa = AO.
Figure 3.4 shows the augmentation entropy generation number for three values
of irreversibility distribution ratio, ¢O =0, 1, «. As in the preceding examples,
the dependence of NS,a on Reo is weak. However, the maximum reduction in
entropy generation is more substantial than in the first two examples. For a
relatively dense sequence of propellers, L' = 49 mm, in the limit ¢o + 0 the
entropy generation rate is reduced by as much as a factor of ten. Figure 3.4 also
shows that, depending on L', the reference irreversibility distribution ratio

¢o must be less than 0.05 if propeller inserts are to be effective in conserving

available work.

3.5 Internally Finned Tubes

Figure 3.1(d) shows schematically a round tube covered internally with straight
or spiraled fins. This augmented tube geometry has been studied extensively. For
example, Bergles et al. [3.6] and carnavos [3.7] have measured the heat transfer
and fluid friction characteristics of approximately thirty straight and spiraled
internally finned geometries. Empirical formulae generated by Carnavos [3.7]
correlate within 10% the bulk of the existing experimental information.

In this section, we use the Carnavos correlations to examine the relationship
between internal finning and entropy generation. A first objective is to determine
the difference between straight and spiraled fins of otherwise similar geometry.

The effect of fin density and twist ratio is also illustrated.
Figure 3.5 shows the change in entropy generation rate due to straight internal

fins in turbulent flow, for the two extremes ¢° = 0, » , Three different geometries




-38~

have been considered, n = 6, 10, 12, where n is the number of fins. The re-~
sults of the entropy generation analysis which led to Fig. 3.5 can be summarized

as follows [3.3]:

for n = 6, N_ = 0.097 Re "%, N_=7.35Re '}, D /D =0.74, A/A = 0.94;
T [e} P o a o a o
(3.15)
0.2 -0.1
for n = 10, N_ = 0.089 Re , N = 9.45 Re , D/D =10.61, A /A = 0.91;
T [o} P [o} a o a o
(3.16)
0.2 -0.1
for n = 12, N = 0.084 Re , N. = 10.6 Re , D/D =0.57, A /A = 0.89.
T o P [+ a o a o
(3.17)

It is evident that, almost independently of n, the reduction in entropy genera-
tion is small even in the limit ¢O + 0, particularly as the Reynolds number
increases. The change in entropy generation rate is more pronounced as the number
of fins increases.

Greater reductions in entropy generation are achieved when the internal fins
are twisted, thereby inducing a swirl motion in the core of the tube cross section.
In Fig. 3.6, we show the augmentation entropy generation number corresponding to a
finned tube with n = 10 and the values of twist ratio, y = 5.62 and y = 9,27.

In general, the augmentation entropy generation number is given by Eq. (3.4)

combined with

O.l7y0.27 -0.13 ~-0.2

= 0.052 R = 15.2 D = 0. = 0. .
NT e0 ’ NP 1 Reo vy , a/Do 0.61, Aa/Ao 0.91

(3.18)

provided the irreversibility distribution ratio ¢o is small enough, the reduction

in entropy generation rate increases as y decreases, i.e., as the fin twist
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becomes tighter. This conclusion is gqualitatively similar to the one encountered
earlier in the analysis of twisted tape inserts.

Comparing the curves of Fig. 3.6 with the n = 10 curves of Fig. 3.5, we
conclude that the twist of internal fins can have a significant effect on the
avallable work conservation potential of the finning technigue. For example,
in the limit ¢ + 0, the spiraled fin irreversibility is about 50% less than
1n the case of straight fins.

An important observation is that the spiraled fins entropy-generation number
N (@O, Reo, y) , given by Egs. (3.4) and (3.18), is not a monotonic function
of twist ratio y. In fact, when the heat exchanger passage is specified (i.e.,

¢o and Reo are fixed), one can determine the optimum twist ratio yopt

yielding the largest reduction in entropy generation rate (minimum NS a) . Setting
r

N, /0y = 0 and BNS,a/ay > 0, we obtain

’

2.13 -0.64
= 9.4 0% . .
yopt 9 x 1 ﬁo ReO (3.19)

For example, in an application in which ¢o = 0.2 and Re0 = 10%, the optimum
. . . . . .. min .
twist ratio is vy = 8,4, yielding the minimum N = 0.868. 1f, in the
opt S,a
same application, heat transfer is augmented using fins with twist ratios
y # Yopt' say y =5 or y = 15, the entropy generation reduction is inferior

= 0.875
and NS,a and NS,a

0.876 , respectively.

3.6 Internally Roughened Tubes

Finally, we illustrate the evaluation procedure in the case of "in-tube
roughness) which is one >f the most common and amply documented heat transfer

augmentation techniques. In this case the augmentation entropy generation number

(3.4) assumes the simpler form




Sto ¢O fa Sto
= — 4 ——— —_— - — .
Ns,a ~ 5t 1+ ¢ £ st (3.20)
a o o a
since, in almost all rough-tube designs, Da = Do and Aa = AO. Consequently,

the Reynolds number in the augmented (rough) tube is equal to the Reynolds

number in the reference (smooth) tube. The entropy generation number for in-
tube roughness emerges as a weighted function of the Stanton number ratio and

the friction factor ratio. The two ratios are weighted according to the irrever-
sibility distribution parameter ¢o , in other words, with respect to the
irreversible mode of operation of the heat exchanger duct (fluid friction vs.
heat transfer).

Figure 3.9 shows the entropy generation number as a function of Reo and
¢0. The figure was constructed for Pr = 0.72 using the data of Refs. [3.8,3.9]
for sand grain (f_, St ) and the correlation of Refs. [3.10,3.11] for smooth
tubes (fO ’ Sto). It is evident that the ability of sand-grain roughened walls
to reduce irreversibility depends on ¢0 and Reo. The effect of roughness
height e/D on entropy generation increases steadily as the Reynolds number
increases. As one might expect, the change in NS,a is more pronounced in the
case of larger e/D.

From an engineering standpoint, it is important to know under what conditions
the wall-roughening leads to a reduction in entropy generation. In Fig. 3.10
we plotted the marginal curves ¢O(Re°) resulting from setting NS,a =1 in
equation (3.20). Below each curve, roughening the wall will decrease the irrever-
~ibility rate. Above each curve, wall-roughening will increase the rate of
entropy generation.

Figures 3.11-3.14 show the augmentation entropy generation number and

N
S,a

marginal curves ¢O(Re0) for repeated ribs of the type sketched in the insert

of Fig., 3.11. This geometry is characterized by two aspect ratios, the rib
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height  e/D  and the rib spacing P/e . The graphs were constructed for
Pr - 0.72 using the friction factor and Stanton number correlations of Webb,
et al. {3.12]. ‘There are obvious similarities between these plots and Figs. 3.9
and 3.10 for sand-ygyrain roughness. The more significant difference is that,
with Reo and e/D fixed, Figs. 3.12 and 3.14 yield marginal irreversibility
distribution ratios ¢O about four times less than Fig. 3.10. 1In other words,
repeated ribs of a given height (e/D)l correspond to sand-grain roughness with
grain height significantly greater than (e/D)l.

The effect of rib spacing (P/e) is summarized in Figs. 3.13, 3.14. We
find that the rib spacing has a relatively weaker effect on entropy generation
than the rib height (Figs. 3.11, 3.12). Furthermore, the change induced in the
entropy generation number decreases steadlly as the rib spacing increases. This
trend is 1n agreement with the effect of decreasing e/D for sand grain
(F15. 3.9); increasing the rib spacing while keeping the rib height constant is
equivalent to gradually smoothing out the tube surface.

An important observation concerns the minima in the curves, Figs. 3.11,

NS,a
.13, particularly in the po range in which the use of repeated ribs leads to

a reduction in irreversibility. For a given heat exchanger duct (¢0, Reo) it is
possible to determine a priori the optimum rib geometry which yields the maximum
rendinction 1n the rate of entropy generation. For example, in Fig. 3.15 we

report the optimum rib height (e/D)O for cases where the relative spacing 1is

pt

fFixed, /e = 10. Note that the irreversibility distribution ratio ¢o has a

, despite the fact

marked offect on the optimum rib height for minimum NS a
’

that numerically ¢( 1s very small.
b)

t.7 other heat transfer augmentation techniques

In thi1s chapter we reviewed the impact of heat transfer augmentation on

cntropy gencration 1n the case of a fimited number of augmentation techniques.
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tor a considerably more complete study the reader should consult the thesis

by Ouellette [3.3].

In addition to the techniques highlighted in this

chapter, Ouellette's thesis analyzes the entropy generation due to

11

v

extended surfaces

- internal fins

- mesh inserts

rougherned surfaces

- thread-type roughness

- sicreen roughness

- wire-wound roughness
displaced enhancement devices
- suspended discs

- suspended rings

compound techniques

- twisted tape with fin effect

- internally spiraled fins

The analytical results of Ouellette's study are summarized

here in Tables 3.1-3.5.
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4. EXTENDED SURFACES (P'TNS) FOR MINTMUM ENTROPY GENERATION

4.1 Entropy generation due to heat transfer from a single fin

The entropy generation associated with a fin in cross-flow can be evaluated
based on the general model presented in Fig. 4.1. Consider, then, a solid body
of arbitrary shape and surface area A, suspended in a uniform stream of free-
stream velocity U_ and temperature T, - Imagine also a stream tube (control
surface) surrounding the solid body, the radius of this tube being considerably
larger than the characteristic linear dimension of the body. Since the fluid
outside and immediately inside the tube surface belongs to the free stream u_
T, . the stream tube surface can be regarded as adiabatic and shear-free.

The equations describing the conservation of mass, conservation of energy

and generation of entropy in the stream tube are

. _ . I s _— . .
mIN mOUT , mhIN + jf q"do thUT (4.1,4.2)
A
S  =ms___ - s - g . (4.3)
gen ouT IN Tw
A

In these equations gq"  and q"/Tw represent the heat flux and entropy flux
from the body to the external fluid. Combining equations (4.1)-(4.3) with the
ds

. . 1
canonical equation dh = T + E-dP , we can express the rate of entropy

generation as

1 1 m
S = " — - — do - P - .
Sgen ” 1 (Tm Tw> st Pour ~ Py (4.4)
A
Recoqgnizing that m = p Aw Um and FD = A(PIN - POUT) , the entropy generation

PRSP Sl - o lmadedy RSN S N A
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Fig. 4.1. Schematic of a general fin in a convective heat transfer arrangement.

Fye

o tndilin ARG




rate can finally be written as

1 1 1
5 = " —_— - + — F .
bgen JJ 1 ( T, T ) do T D Us

W o
A

In order to calculate the total rate of entropy generation due to a single
fin, it is necessary to recognize that expression (4.5) sums up only the entropy
gencrated in the space surrounding the fin surface. 1t is easy to see that
since the is not an isothermal body, entropy will also be generated internally.
In accordance with the second law of thermodynamics applied to the fin shown
in the bottom half of Fig. 4.1, the entropy generated inside a single fin is

" q
s ) = fJ 4 45 - -B (4.6)

n

9€% internal J W B

where qB and TB represent the base heat transfer and absolute temperature.
The total rate of entropy generation associated with a single fin is obtained

by adding equations (4.5) and (4.6) side-by-side,
(s ) - BB, L1y (4.7)
S ; T .

In this expression UB is the base-stream temperature difference (TB - Tm),

which 1s assumed considerably smaller than the local absolute temperature,

The fin entropy generation rate, Equation (4.7), is a remarkably simple
result which demonstrates that fluid friction and inadequate thermal contact
contribute hand-in~hand to the degrading of fin thermodynamic performance.
The heat transfer contribution to (Sgen)f. is proportional to the product

in

of base heat flux times base-fluid temperature difference. Therefore, the
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heat transter entropy generation term can be minimized by reducing 6 i.e.,

B ’
by enhancing the base-stream thermal contact. In general, _his operation

requires an increase in fin size (surface area) which leads automatically to

an increase in drag and fluid friction entropy generation. Clearly, the fin
size plays an important trade-off role with respect to improving the thermo-
dynamic performance of the individual fin. In what follows we illustrate this
trade-off by showing concrete results [4.1] for entropy generation minimization

in some of the most common fins encountered in practice.

4.2 Ppin Fins

Consider first the pin fin geometry shown in Fig. 4.2(a). This geometry
is one of the simplest, because it depends on only two dimensions: the length
. and the diameter of the circular cross-section D. According to the uni-~
directional heat conduction model described in the Introduction, the relationship

between base heat flux and base-stream temperature difference is [4.2]

rl e % —— 1L
b, 7 B i mo= (%%) i ho= —— (4.8)
7 kD?m tanh (mL) W ®

substituting this expression into Equation (4.7), the total entropy generation

rate can be written as

2 2
Re
. _ 98 p v U, Re Re, G
S gen’ - ' % Re ] 2T
ge ; i
fin 1 _o Y ook v Y (A) L ® i
- T Ak > — -} —
> Ta (Ak) ° Nu ReD P tanh | 2Nu X Re g
o D .
(4.9) X
where the drag coefficient is CD = FD/(%1)Ui DL) . Since the external flow }

is assumed known, we are using the Reynolds number as dimensionless notation
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for the two dimensions of the pin fin, ReD = UwD/v, ReL = UUL/v.
In this study, we adopted the design viewpoint that the "job" of the
individual fin 1s to transfer heat at a known rate (qB) from the wall to the
' known stream, in the least irreversible manner possible (with minimum genera-

tion of entropy). Therefore, the correct entropy generation number [4.3] for

this design problem is constructed as

<y
N_. = (5 ) / *qB E
g i T 2
N 9N iy KV
(k{X)H 1
= + = R 4,
% Re 2 BCD ReL °p (4.10)
E—Nu;2 R tanh 2Nu5 <A) L
2 eD k ReD

where B is a fixed dimensionless parameter which accounts for the importance

of fluid friction irreversibility relative to heat transfer irreversibility,

B=o v kT /g, (4.11)
It the pin fin is slender, the Nusselt number and the drag coefficient can be

evaluated from results developed for a single cylinder in cross-flow [4.4]

) 3 -0.246
Nu = 0.683 ReDo 466 173 C, = 5-484 Re , 40 < Re < 103

(4.12)

The entropy generation number NS emerges as a function of five dimension-
legs groups, two pertaining to fin geometry (ReL, ReD), and three accounting
tor the working fluid and for the fin-stream convective arrangement (Pr, k/A, B).
Minimization of NS with respect to ReL is achieved in a straightforward

manner by solving Z)N,‘/E)ReL = 0. The optimum pin length calculated in this
f»]

manner 1is

A—




. ; b
k -1 ;
e, o () [(W) ] @1

opt 2Nu

The engineering significance of result (4.13) is that the optimum pin
length can be calculated immediately, provided ReD (hence, Nu and CD) is
specitied, In most cases, however, the pin diameter is a design variable which
can also be determined on the basis of entropy generation minimization. The
optimun diameter for minimum entropy generation ReD can be determined by

opt

substituting equations (4.12) and (4.13) into equation (4.10), and numerically

minimizing N_ .

w2

An alternative approach to sizing a pin fin for minimum irreversibility

consists of determining the optimum diameter ReD subject to fixed slender-
opt

ness ratio  y = ReL/ReD. This constraint stems from practical limitations
encountered in the process of manufacturing a surface covered with a large
number of fins. The entropy generation number (4.10) can be expressed as a
function of ReD and Yy . Representative results of the numerical work of
minimizing NS are shown in Fig. 4.3. The entropy generation number NS has
a clear minimum with respect to the pin diameter ReD, when Yy , B, and M
are fixcd.* The optimum pin diameter ReD,opt increases if the slenderness
ratio decreases. This general trend is summarized in the right half of Fig. 4.3,
for the range 5 <y < 15, 10—8 <B X 10_5. When the slenderness ratio is
fixed, the optimum pin diameter decreases as the fluid friction becomes more
important in the entropy generation total (i.e., as B 1increases).

Another practical design constraint worthy of consideration is the fin
volume, This constraint is forced upon the designer by the high cost of con-
struction materials such as copper. A dimensionless group which is proportional

to the volume of the pin fin is V = ReD2 ReL. The entropy generation number

' M = (k/k)S/Prl/G.
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(NS)

ample, the slenderness ratio.

behavior of the entropy gener
to the constant volume constr
ls summarized in

minimum N |

oD

value of friction parameter

n
)

increases.

In this section we focus
conducting plates parallel to
with respect to the shape and

inomany cases the fin is wide

can be expressed in terms of

\

and

another yeometric variable, for ex-

On the left side of riqg. 4.4 we show the gencral

ation number as y and B vary subject

’

N
S

aint. The optimum slenderness ratio vy for

the right half of Fig. 4.4: above a certain

B the cptimum ratio Yopr drop:s off rapidly as

4.3 ¥plate r'ins

on fin geometries which can be modeled as thin
the flow direction. Fins of this type vary widely

cross—-section of the surface swept by the flow:

at the base and narrow at the tip, in approximate

agreement with Schmidt's principle of material reduction in a fin with fixed
) P

heat transfer [4.5]. Below, we consider the minimum entropy generation design

three frequently used plate fin geometries, illustrated in Figs. 4.2(b),

Gt

(<), and (d).

v

13 =

kectangular Plate Fin. The simnlest plate fin geoometry is shown schematically

in Fig. 2(b). The minimum irreversibility design of this fin requires the
selection of three gesmetric parameters, the length L, the breadth (length
swept by fluid) L, and the plate thickness &6, where L >> b >> 8. As in

i preceding section, we are placing the study in the limit where the plate

tin 15 lender (b I); in thts limit we rely on laminar heat transfer and skin
friction results for two-dimensional flat plates [4.4]:
13
~ Yo1/3 D -k
= 0.664 - R p = - = = 1.328 Re
h .6 eb Y , Cf o Um(‘ oI, b
e et et e,




The entropy generation number for a rectangular plate fin in laminar flow be-

comes
q.? U
No= (s )/ 2=
S gen . kv T
fin w
(k/k)k‘s L
+ — g 3/4 176 + 1.328 B ReL Reb (4.15)
1.15 Re(S Reb PX tanh (mL)
where
B=p vlkT/qg? mI=llS<Z‘-)l}Prl/6R Re, V% Re. 7" (4.16
= 0 \qu' 4 . " eL eb 5 -)

From the outset we note that the plate thickness & appears only in the

heat transfer term of NS , consequently, Reé does not play a trade-off role

in the minimization of NS . Since in most practical applications § is
determined by considerations such as price, availability and machinability of

sheet metal, it makes engineering sense to regard Re6 as fixed. The minimi-

zation of NS with respect to Reb and ReL is achieved by solving the
simultaneous set of equations BNS/BReb = 0 and aNS/BReL = 0 : the optimum

guometry for minimum entropy generation is explicitly given by

-2/3 -2/3 b 1/3 -1/6_-1/6
= 0. = 0. A
Rcb,opt 0.984 B Rea , ReL,opt 0.685 (k/X) Res Pr B
(4.17)
This also means that the optimum slenderness ratio y = L/b is
Y = Re /Re = 0.690 M B% Re (4.18)
opt L b §

opt opt

1n conclusion, the optimum plate fin dimensions b and L can be




calvulated directly using equations (4.17) as soon as the base heat flux (qB),

the flow field and the sheet metal thickness (8) are known. 1t is necessary

to keep in mind that the present formulas are valid only in the laminar regime,

5 . L.
R(b < 5 x 107, and in the "slender shape" limit Yopt > 1. Similar re-
opt

sults can be developed numerically for the turbulent regime, by replacing
equations (4.14) with appropriate correlations for turbulent heat transfer and
skin rriction.

If the thermodynamic optimization of the plate fin is subjected to the
constraint of fixed material (volume) V = ReL Reb Reé, the entropy generation

numbeyr becomes

b L
M -,
N, = — +1.328 B S— g— (4.19)
* 1.15 v° tanh (nlL) n

1712 Y4/3/(M nl/6) . Figure

whevre ¢ ReL/Reb , N o= Reé/Reb and mL = 1.15 V
4.% shows the trade-off roll played by the geometric aspect ratio vy= L/b.

The optimum aspect ratio Yopt for minimum irreversibility can be determined
numerically based on calculations of the *ype illustrated in the left half of
t'ig. 4.5. The general behavior of the Yopt result is shown in the right half
of the fiqgure, for fixed V, M and n. The optimum aspect ratio Yopt reaches

4 plateau below a certain value of friction parameter B ; as B 1increases

-6 . . .
above 10 , the optimum aspect ratio Yopt decreases rapidly.

Rectangular plate fin of trapezoidal profile. A relatively more complex

plate fin geometry is represented in Fig. 4.2(c). This time the fin longitudinal
section is trapezoidal, again in the spirit of E. Schmidt's principle of material
(volume) minimization [4.5]. This geometry has another important advantage over

the rectangular shape of Fig. 4.2{(bj: the tapered profile makes trapezoidal
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fins accessible to metal-cutting operations designed to remove the fin-to-tin
material. The minimum entropy generation design of this class of fins can be
approached along the same lines as the design of rectangular fins.

In the interest of brevity, we illustrate only a set of results abstracted
from [4.1]. The entropy generation rate depends on four geometric parameters

b’ Re6 , and o . Whether or not all four parameters may be considered
e
independent depends on specific circumstances, particularly on the constraints

ReL, Re
faced by the designer (fixed cost, volume, base area, etc.). 1In Fig. 4.6, we
show numerical results obtained in the case when b, 6e, and o are fixed
by design: the only geometric variable in this case is the fin length L
(dimension perpendicular to the wall). Choosing the optimum ReL for minimum
entropy generation is geometrically equivalent to choosing the optimum base

thickness Re(S since Re6 = Re(S + 2 ReL tan a . The left side of Fig. 4.6
B B e
shows that NS has a sharp minimum with respect to Re, . The optimum values
O
B
of base thickness Reynolds number are reported in the right half of Fig. 4.6

f for the case Re, = 100 in the range 5% < a < 10°. We find that the
e
optimum fin size (Re6 ) decreases as the fluid friction effect (B) becomes more
B

pronounced, in agreement with conclusions reached in previous examples. Further,
we see that in the o range considered, the angle o has a relatively minor

impact on the optimum fin size for minimum irreversibility.

Triangular plate fin of rectangular profile. To the thermodynamic designer,

this geometry is challenging due to the absence of convenient correlations for
heat transfer and fluid friction in the three~dimensional boundary layer flow
which, in most certainty, will cover the triangular faces of the fin. This
analytical difficulty can be partially dealt with in the limit D << L, where
the three-dimensional effects will be minor. 1In this limit, we can approximately

treat the sharp-pointed triangular plate as a flat plate in parallel flow, with

OO o e g —— [P Ty
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the special property that the length swept by the flow (y) is a function of

longitudinal position (x). It is worth pointing out that the D << L 1limit

1s in full agreement with the uni-directional heat conduction model adopted

in seotion 4.1,

The analytical path leading to the entropy generation rate formula is
similar to the method used in the earlier examples [4.1]. Again, in the
interest of brevity, we report only a number of representative results.

The entropy generation rate depends on three geometric parameters, ReD,

ReI and Re, . In Fig. 4.7, we report a sample of optimum fin size results

S
tor cases where the triangle aspect ratio a = ReL/ReD is fixed. The fin
irreversibility NS reaches a clear minimum at a specific value of fin base
width, ReD; the optimum fin size ReD depends on the relative importance

of f1luid friction irreversibility (B), on the metal-fluid combination (M), and
on the plate thickness (Red). The right hand side of Fig. 4.7 is a summary

of minimum NS results obtained for a number of common metal-fluid combinations
involving copper, aluminum, water and air. Regardless of combination, the

optimum fin size (R ) decreases as the triangular shape of the fin becomes,

e
D,opt

by desiyn, more slender.

4.4 Optimum Fin Matrix for Minimum Entropy Generation

The focus of the preceding sections was on individual fins. Thus, we
developed concrete means for selecting the geometric parameters which allow the
fin to perform its prescribed heat transfer job with minimum entropy generation.
An equally important design approach consists of focusing on an assembly of fins
and finding out which particular association (matrix, relative positioning)

allows the assembly to perform its prescribed heat transfer job with minimum

irreversibility. We illustrate this approach in this section. From the outset,
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we note that the task of determining the optimum thermodynamic association of
tins 1s made difficult by the lack of specific heat transfer and friction
data on fin matrices.

The optimum association of pin fins can be determined concretely in the
"i1sothermal fin®™ limit: in this limit the fin matrix is well-approximated by
a tube bank 1In crossflow, for which Kays and London [4.5] report extensive heat
transter and tluid friction data. Consider a two-dimensional array of staggered
tins.  The rverall dimensions, H and L, and the total heat transferred
vy the fin association, 9, are considered fixed by design. The total rate

of entropy generation in the arrangement is

5 = 6 24 NF .
gen ~ Cg¥/TST ¥ N Fp U/T, (4.20)
wihiere
v o — 82 p 2L u2c pw (4.21)
5 — ¢+ p T 2% tp :
NTDWh

Parameter N is the total number of fins populating the HxL area. For heat

transfer and draqg coefficients we have [4.6]

-2 -0. -0.
h=¢ pU_ c Pr /3 Re 0.4 , C.=2¢C ReD 18 ' (4.22)

where parameters Cf and Ch are available graphically as functions of

transversal and longitudinal pitch, Xt and Xg.

The entropy generation number NS emerges as a function of the matrix

(<., wt) and the diameter of each fin (ReD). The left side of Fig. 4.8 shows

the dependence of NS on ReD in one situation where the matrix is fixed.
Clearly, there is an optimum ReD which minimizes the total entropy generation

rate; corresponding to this optimum diameter, there is an optimum number of
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fins N to be planted on the surface under consideration. The right side of

Fig. 4.8 summarizes the results of the NS minimization procedure, for the
case where only the longitudinal pitch Xx is held constant. The optimum fin
diameter increases with the increasing transversal pitch Xt , while the
corresponding number of fins decreases.

The impact of varying the friction parameter B 1is illustrated in Fig. 4.9.
It the matrix (Xk’ Xt) is held fixed, the optimum fin diameter increases as
the friction effect becomes more proncunced. At the same time, the total number

of fins (N rresponding to Re r .
(N) co ponding D,opt decreases

References

4.1 Poulikakos, D., "Fin Geometry for Minimum Entropy Generation,'" M.S.
Thesis, Department of Mechanical Engineering, University of Colorado,
Boulder, December 1980.

4.2 Kern, D.Q. and Kraus, A.D., Extended Surface Heat Transfer, McGraw-Hill,

New York, 1972.

4.3 Bejan, A., Int. Journal of Heat and Mass Transfer, Vol. 21, p. 655, 1978.

4.4 Gebhart, B., Heat Transfer, McGraw-Hill, New York, 1971.

4.5 Schmidt, E., Zeit. d. ver Deutch Ing., Vol. 20, 1926, p. 885 and p. 947.

4.0 Kays, W.M., London, A.L., Compact Heat Exchangers, 2nd Edition, McGraw-

1Hill, New York, 1964.




Nomenclature

A cross-sectional area

I fluid friction irreversibility parameter

¢ drag coefficient
C skin friction coefficient

drag force

N enthalpy
h heat transfer coefficient
k thermal conductivity of fin material
m mass flowrate
N total number of isothermal pin fins (tubes)
NS entropy genevation number
i pressure
Pr Prandtl number
0 total heat transferred by the fin association
@{" local heat flux per unit areca
oy, heat flux through the fin base
5 entropy
en entropy generation rate
T temperature
! velocity
'” temperature excess at the fin base, TB - ’I‘OU
A thermal conductivity of tluid
" dynamic viscosity
v kinematic viscosity
0 density
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5. CONCLUSIONS

-

This final report summarized the main results and conclusions of a two-
year study of the thermodynamic implications of heat transfer augmentation
(1.6-1.12]. 1In section 2 we reviewed a number of central topics in convective
heat transfer, from the point of view of heat transfer as an entropy-producing
mechanism. We saw the close relationship which exists between the irreversi-
Li1lity due to heat transfer and the irreversibility due to fluid friction in a
aiven convective heat transfer configuration. In section 2 we developed a
number of analytical tools designed to facilitate the numerical calculation of
thermodynamic irreversibility in actual applications.

In section 3 we analyzed quantitatively the thermodynamic impact of using

a propoused heat transfer augmentation technique. We showed that a technigue's

potential for reducing the rate of entropy generation depends strongly on the

operating conditions of the heat exchanger passage in question. Specifically,

the augmentation entropy generation number depends on the operating Reynolds
number  Re  and on the irreversibility distribution ratio ¢ (the ratio of
tluld friction irreversibility divided by the irreversibility associated with
imperfect thermal contact). When the operating conditions of a certain component
are specified (Re,d), it is possible to assess the relative thermodynamic merit
of various heat transfer augmentation techniques proposed for the same applica-
tion. This comparison is done on the basis of plots NS (Re,$) as shown in
Figs, 3.2-3.14; each of these plots is the property of a well-defined heat
transter auqmentation technique.

f'inally, in section 4 we considered the entropy generation associated with

the use of extended surfaces (fins) in cross-flow. We showed that the sizing




(thermodynamic selection) ot an Individual fin always involve:r a trade-orf

berween heat transfer and luid friction irreversibilities.  Tn the cases
outlined in this report, the thermodynamic optimization of indlvidual fins
B could be carried out based on talrly simple analysis.  In general, as demon~
strated in a more detailed report [l.l?], the thermodynamic seloe-tion of
finned surtaces can e pursued numerically.  The maln conclusion of this
last phase or our study is that it 1s possible and, indced, advantageous to
cotoeptualize rinned surtaces which perform thelr prescribed heat transfer
duttes and, at the same time, generate the least amount of entropy in the
caglneering svstem in which they function.
overall, our study 1llustrates the importance of the Second Law of Thermc-
dynamics 1n the development of efficiqu(power systems. Our study shows how
to evaluate the change in therodynamic irreversibility {(entropy generation)
assouvlated with a proposed design change, and how to make the right exergy-
Saving decrsions.  Although this final report is on', a partial review of the
work made available throagh individual publications {[1.6-1.12], it is hoped

itooan alene serve as starting point for future Second Law analyses of power

svotoems,
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