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The linear properties and saturation mechanisms of the lower-hybrid drift
instability have been investigated using a one-dimensional particle-hybrid simu-
lation. For low drift velocities ( v, <<y, ), ion trapping and current relaxation
{ v,~0) are compeling processes for stabilization. If the relative electron-ion
drift velocity is kept constant in time, ion trapping causes the end of instability
growth; if this drift is allowed to decrease consistent with momentum balance,
then saturation is due to current relaxation.
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LOWER-HYBRID DRIFT INSTABILITY SATURATION

MECHANISMS IN ONE-DIMENSIONAL SIMULATIONS

Yu-dwan Chen and C.K. Birdsall

Electronics Research Laboratory

University of California, Berkeley, CA. 94720

1. INTRODUCTION

The lower-hybrid drift instability' may play an important role in the dynamics of plasma
experiments, such as #-pinches and field-reversed configurations. According to the linear
theory and experiments, during the implosion phase of a theta—pinch this instability is fesponsi-
ble for the flute observed in the current sheath region’™* . Two dimensional particle simula-
tions of this instability with a finite plasma beta value for large drift velocities were performed
by Winske and Liewer' . During the post-implosion phase, it is considered to be the dominant
instability®” . If this instability saturates at high levels, it will contribute to anomalous tran-
sport, and influence the resistivity, for example. Saturation mechanisms of the lower-hybrid
drift in.%mbilil_\' durin'g the post-implosion phase is the main concern of this paper.

In the post-implosion region, the difference of the cross-field velocity, v, = v, — v, . is
less than the ion thermal velocity, v, = (T/m)' 7 . Anomalous transport coefficients in this
region were derived from quasilinear theory”™® . For low-beta plasmas, Davidson® predicted that
current retaxation L v, — 0.) and plateau formation ( 8/,/8v, — 0. ) in the ion velocity distri-
hution are generally competing processes for stabilization. If the initial drift velocity v, is very
small. then it is energetically favorable for stabilization to occur through formation of the pla-
teau.  Otherwise, plateau formation will not have been completed when the cross-field current

relaxes to zern. Electron resonance broadening has also been considered as a possible satura-
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tion mechanism for high-beta plasmas’'" .

In this paper, one-dimensional particle-hybrid simulation studies of the lower-hybrid drift
instability are presented. Our simulation model is a slab with a constant density gradient; the
ions are unmagnetized particles, shiclded by strongly magnetized clectrons through the linear
electron charge density susceptibility, x.. lons are initially in a steady equilibrium state with
the ion diamagnetic drift velocity cancelled by the ExB drift, corresponding to electrostatically
confined tons. At small amplitudes, our simulations show good agreement with linear theory,
such as the tinear growth rate, the mode frequency. and the influence of finite beta effects asso-

ciated with the nonresonant V B, electron orbit modifications'' '

Ignoring effects of finite
beta, it is found that the end of wave growth is due 1o ion trapping when both the density gra-
dient and the cross-field current velocity v, are kepl constant in time. When 1, is allowed to

vary in time, our simulations show that stabilization of the wave occurs through current relaxa-

ltion.

In Section 11. A, a brief review of the linear theory of the lower-hybrid drift instability is
given, A description of the simulation method is presented in Section I1.B. We solve the linear
dispersion relation of our simulation modrel ( with a multibeaming system ) numerically. Com-
parisons of observed linear properties of the growing waves with linear theory are made and
given in Section [l Investigation of various saturation processes ts presented in Section V.
At low drift velocities, ion trapping causes the end of wave growth when drift velocities are
kept constant in time. It is found that the saturation level predicted by quasilinear theory is the
saturation level of the most unstable mode for ion trapping. A detailed explanation is given in
Section HILA. An analytic formula for the saturated field energy spectrum in k space for ion
trapping when v, <<y, is derived. Section LB is devoted to a description of how current
relaxation can stabilize the instability. The simulation method for allowing v, to vary in time is
also described. Simulated saturation levels agree fairly well with the predictions of quasilinear

theory. Conclusions are given in Section V.
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. LINEAR THEORY AND SIMULATION MODEL

S A. Review of Linear Theory
Our model is a slab with a constant density gradient in the y direction (Fig. 1). The elec-
2 tron drift across the magnetic field B, 2 with mean fluid velocity

Vo= oo th

where v, is the Ex B drift velocitly, and

Vo om om e —i)—:ln(u ) !

is the electron diamagnetic drift velocity, w,, is the electron cyclotron frequency. m, is the elec-

tron mass. I is the electron temperature and nly) = n,=n_is the density. There is no net

ion current in the x direction, i.e.,

v, =y 4o =0 (3)

o

which is a consequence of the ion pressure force being balanced by the ambipolar electric force

in the v direction. v- s the ion diamagnetic drift velocity as given

Vo = ~———~i.lnn . (4)
where [ . m . w are the ion temperature, mass and cyclotron frequency, respectively. The
clectrostatic simulations were performed with E, and displacement only in the x direction.

! The lower-hybrid dritt instability is characterized by strongly magnetized cold electrons

and unmagnetized hot ions with

J
w << o, + 1y ( << w,

Aa® >> 10 ha <L, (5)
r >> 1.
With these inequalities, the dielectric function for cold electrons and Maxwellian ions is

expressed as

Dihw) = Dpthw) + D)k o) (6)

w) I
' =14+ -2 4 __‘IA_; e :-\/-E' — ._r“_'_,,
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The real part of the frequency is determined to zeroth order in Yic< by
w
Deho) = 1+ 2 4 ) e 0 (7)
w )= e . = )
g W k2 12). w,—ky
The solution is
w, = -T/L—,A\', = w,. (8)
K4k,
The growth rate, y=—0,/(8 Dy /dw),, , is given by
kK] A vt
”w " /
= — [ () wy,, (9)
Y ‘\/?(Hk’//\,;,)" Ko | v 0"
where
PR S (10)
Ap Nt /e,
is the wave number of the most unstable mode, and
ol ()

Wy = ===
! Vitw, Jw?
is the lower hybrid frequency.
B. Simulation Method and Linear Dispersion

In our simulation, the ions are unmagnetized. fully nonlinear, and modeled by particles.
The relative electron-ion drift velocity v, is v, = v, — v, = v, when T, >> T, . Electrons

were represented as a warm fluid with linear susceptibility x,. (A .w) which is given by

wh 1= et Wl kv (k)

(hw) =~ - (13)
x (b o b kv @~ kyy
from the local theory, where
, I
b=k’ ——
m.w,
T,
Vo dk) = ———1 (bYe ™" (14)
mw,,
9 9 1,(b) 9 1,(b)
L -z —bl-—) - ZTiInT b} —-——
x! aylnn aylnB[l bl /,,(b)) ar nT -b(1 I,,(b))

1. (h) is the modified Bessel function of the first kind of order n. The 1d Fourier transformed




S ea ol et

Poisson gquation,

[ I+, ”‘“"’]"’*(” = %/)A(I), (15)

may be wrilten as
[ '+

by replacing w with the operator /E%. Eq. (16) was used to advance ¢, (). Similar one-

wo T 1=0.e " ] g
w, b o1

'

— ki ]m(:) (16)

N

+ A-“f”‘fk.-.(k)m(n = A

/'% ~ kvg ]pA ()

dimensional hybrid simulations for the drift- cyclotron instability have been carried out by

Cohen et al. '+

Quasilinear theory”* predicts that the field fluctuations of the lower-hybrid drift instability
saturate at a very low level compared with the thermal energy for v,<<v, . In order lo
observe growth in the linear regime in our simulation, it was decided to load particles orderly in
phase space (quiet start), with a Maxwellian distribution, in order to reduce the initial fluctua-
tion level. However, the quiet start Maxwellian consists of many discrete beams which can pro-
duce multibeam instability as pointed out by Dawson'®: hence, we needed to analyze the nor-

mal modes. of the ion beams and the cold electrons with x, from Eq. (13).

The ion susceptibility, x, . is obtained from applying the linearized fluid equation of
motion and equation of continuity 1o each ion beam of zero order drift velocity ¥, and density

N, . with the well known result, for one ion beam

4N, ¢?
x, = — (7
mlw—k}):
The dielectric function is Dtk ,w) = 1 + x, + x, so that the dispersion relation D=0 for many

ion beam is.

dn N ¢’ ]
l+x, = ° e
X. m

: (18)
", : (w ~ kV))-

The dispersion relation was solved numerically by using the solver supplied by Au-Yeung

and Friedman'™ . It is found that there are two kinds of modes in the system: the lower-hybrid
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drift wave with dispersion affected very little by the discrete beams: and the multibeam instabil-
ity with growth rate comparable to that of the lower-hybrid drift instability. In Fig. 2 dispersion
curves are plotted for the lower- hybrid drift mode and the fastest growing multibeaming mode
with parameters:

N=N,=16384

mifm, = 1600.,

w,i Jw’ =1,

Ap/Av =144 |
v /v, =0.424263,

I =0,
L,/Ly = 0.and
Lu/l-l =0 .

L,=1/@8nn/dy), Ly = 1/(8InB,/dy) , and L, = 1/(BInT/8)) are the scale lengths of the
density, magnetic field and temperature, respectively. AN, is the number of beams, which was
taken as the number of particles because in the quiet start Maxwellian loading, each particle was

given a different velocity, in order 1o minimize the multi-beaming instability.

HI. SIMULATION RESULTS AT LINEAR STAGE

The corresponding simulation results for the mode number M = 3 are shown in Fig. 3
(the mode energy history plot) and Fig. 4 (the power spectrum vs. frequency plot at various
times). where the mode number M is defined as M=kL/ 27 . Typical paramelers used are the
number of spatial grids NG = 64, the time step w,, A7 = 0.2, the length L = 44.43 A, . All
the results presented in this section are from single mode simulation, i.e., only one Fourier
component of electric potential was used to push ion particles. Figure 4 shows a well defined
lower-hybrid drifi frequency at w/w,, = 0.136 as well as many multibeam mode frequencies.
As lime goes on, the lower-hybrid drift wave grows faster than the multibeam modes do, and
cventually becomes dominant.  We measured the lower-hybrid drift mode peak values at

different times, and calculated its linear growth rate. The simulation frequencies and growth

rates are shown in Fig. 2; they agree with the prediction very well,




S7.

In general. the growth rate for a given mode number M increases as v, /v, increases. Fig-

ure N presents mode energy history plots for (a) vp/v, =0.57 and (b) 0.85, respectively. The

growth rates can be casily measured from the slopes of Figs. 5a and 5b. The dependence of the

lincar mode frequeney observed in the simulation on v, /v, and comparison of these results

4 with hncar theory (Eq. 18) for the mode number M =S5 are given in Fig. 6. Mode § is approxi-
mately the most unstable mode for the parameters we used.

The addition of fintte beta alters the growth rates. The beta value is given by

B=-2L/1l,as 1 = 0. In Fig. 7. dispersion curves are plotted for v, /v, =1.1314. (L)

L Ly =0 _and (0 L,/Ly=-040 where the negative sign means the gradients of density

and  magnetic field have opposite  directions.  Figure 8 gives dispersion curves for

voov o= 18886 L (@) L/ Ly=0 . and (b) [

-

/Ly = ~0.36. Figs. 7 and 8 show that the lower-
hybrid drift waves at small mode number M are stabilized by the finite beta effects associated
with the nonresonant VB, electron orbit modification (the term-proportional o
(1B (88,91 in Eq. (6) ) as predicted by Davidson et al.''" ¥ . Note that except in the limit
of /I —0. . they predicted that there is a critical value 2., for the local plasma beta such that

the lower-hy brid drift instability is completely stabilized tor 8>8. .
V. SATURATION MECHANISMS

We have studied several saturation mechanisms of the lower-hybrid drift instability in an

umform magnetic field. Simulation results show that the instability is stabilized by ion trapping

when both the density gradient and the relative electron-ion drift velocity v, are kept constant
in tine because of external circunts for example. [t is found that the saturation level predicted
by yuasilinear theory ™ is the saturation level of the mosl unstable mode via ion trapping.
Allowing the electron cross-field drift velocity v, to vary in time, the wave stops growing at a

much lower level as the current relaxes.
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A. lon Trapping

In our simulations, the potential ¢, (1) was advanced by solving Eq. (16). Constant
values of v, . which drive the tower-hybrid dnft instability, were studied first. In single mode
stmulation for the most unstable modes, there are oscillations of the wave energy at the trap-
ping frequeney w. (Fig. Sa and 3b) just atter the time saturation and g vortex-like structure
emerges 10 the ion phase space plots after saturation (Fig. Ya and 9b) for v, /v =0.57 and 0.85.
The end of wave growth was accomplished by ton trapping.  All of the phase space pictures are

presented in the wave frame. v—v., r=constant . where v, was calculated from linear theory. It

»
is noted that vortices in Fig. 9a und 9b at small vclocities are not due to the multibecam instabil-
ity. because those vortices would appear at large velocities.

We compared these saturation levels with the quasilinear theory as given by Davidson®
under the assumption that the spectrum is strongly peaked about the fastest growing mode, for
v, <Cv, . Fig. 10a shows that the simulation data are in agreement with the guasilinear saturation
level €, given by his Eq. (48)

v ) nl

== T TS TS
‘[ V2 ]-Hu,; ,/(u‘j

~: - (19}
4
There is a factor of <2 difference in v in our version of Davidson’s cquations because of our
differing definition of 7. 7'=m v, .

It is necessary 1o cxplain why the simulations shows that nonlinear saturation was due to
jon trapping but the saturation levels agreed with Davidson's quasilinear theory. In deriving
the saturation level €. € Eq. 19). Davidson began with an energy conservation equation and the
only real invocation ol quasilinear theory seemis 1o be the specification that saturation occurs
when the distribution function has been “flattened” around the mode phase velocity. Such
flattening could in principle be duc to a varicty of causes besides the usual quasilinear diffusion,
for example, trapping.  Equating the ficld energy to the ion kinetic energy change due to
“flattening” gives his Eq. 146),

N

W e 4 v, .
(1+ ~')f 4+ S )e {1—e0) = ——p= | —=—1| nl . (20
w I I TN N1

e

P R
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Fo caleulate the lett side of the ubove equation, Doc il o0 assumed that the spectrum s
suliciently peaked about & =17 ‘Lu¢ wavenumber corresponding 1o maximum growth for the
it Cquibibiium conditions) that 1+A /A =2 is a good approximation i the integrand in Eq.

0 This was equivalent to a single mode assumption. Eq. €19} was then obtained.
Fhe trapping frequency is given by

PR N (20
1

where

Is the electric potential - Using Eg. (19), we obtain

14 . <y
w. = (A.,,r,cu_,,)I Bl = = . (22}

Using y from Eq. (9) at A=4... Eg. (22) can be rewritten as

! Iy P4
I D T B T R (23)

- e
Y. BN 3 V2 vy

1.975‘ .
-
. the

When vy <v

S
/

trapping trequency is larger than the growth rate and hence larger then the
bundwidth dw=y as well. Therelore, ion trapping will be the saturation mechanism when the
fastest growing mode is dominant, and € in Eq (19) will be the saturation level due to ion
trapping. Comparison ot Fq. (23) with the observed trapping frequencies tas in Fig. 11 indi-
cates fairly good agreement for cases in which vy <.

Finally, multi-mode simulations have been performed. i.¢.. all possible modes are exaited
at t=0_ Typically. parameters used were the same as those for the single-mode run. The
fastest growing mode tended to reach the same saturation level no matter whether only @ single
mode was kept or all modes were included i the simulations. In the wave frame of the most
unstable mode. the 1on phase space plot has 4 vortex formation about v, =0 afler saturation for

’

(/v =087 a0 shown in big 1200 The Jength of the plasma was L=27 | and the number of
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erids was NG =64, Furthermore, a dip appears at the approximate wave phase velocity in the
1on distribution curve in Fig. 12b. The ion phase space and the distribution curve are presented
m Figs. 13a and 13b tor v, /v, =0.85. The corresponding ion phase space picture for =4,
and NG =128 is given in Fig. 14, showing that trapping still occurred for @ finer mode spacing,
viz. when XA was reduced o half, e, AAA, =0.07. Figs. 12, 13 and 14 show the dominant
mode at saturation 1o be AA,, =1/2 . which is the fastest growing mode.

In general. trapping tends to flatten the local vetocity distribution. centered on the wave

phase velocity, over o small resonant runge € v

i Vup Vv, )0 IFrom Eg. (8), the phase

velocity of the lower-hybrid drift instabitity,

b= R (24)
are well separated for different mode numbers k, and are much less than the ion thermal velo-
city for v, < <y, . Theretore, cach mode traps independently and flattens a different fraction
of the ion velocity distribution for the resonant velocity range 0<y <y, Hence, Eg. (200 1s
replaced by

N { S

w, €, 1 ] vy
N (
V.

I
()
-

| EEARY | S =

a),:, nl s - 45\/,2_71" ]+/\3//\,S

for the saturation level of each discrete mode due to ion trapping. Comparison of the simula-
tuon saturation ficld encrgy spectrum with kg, (25) is given in Figs. 15a and 15b for single-
mode and many-mode runs, respectively. The co-gxistence of the multibeam modes causes the
large error bars shown in Fig. 15 However there still is fairly good agreement between simula-
tion and theory. Both simulation data and the theoretical curves for small A/A,,. are not plotted
because, following kg, (81, the real part of mode frequency is less than the ion cyclotron fre-
quencey for small A7k, . and the lower-hyvbrid drift mode turns into an ion drift cyelotron
mode: our theory and simulations do not extend into that region.,

Yrapping wis also observed by Winske and Liewer” in thetr 2d particle simulations with v,

farge than v For v, > >0 they estimated that ion trapping required

ch

!

260
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anomalous transport.

For ime 1=nAr>mh A1, we use a predictor-corrector scheme. We define predicted quan-

tities v, and 7, as

ok
Vi = ¥y,

and TV o= T000 29)

o

By solving Eq. t18), we obtain the predicted electric field £ and the field energy. We then

advance the particle velocities from v "2 10 vy "' by using £ and calculate the predicted total
ton kinetic energy M7 and ion momentum Py,
\ , N .
1" :/ — '”{Z ‘,/u [ B \,/rl/,*l 2 {30
A
Pr=(pP g pitt 2y (30

4

\

where P70 2= m Y vi''? . Now we define the corrector portion of the algorithm. Eq. (27)
o

vields

v = vy + CPL—P" ) nm, 32)
We substitute v} into Eq. (28) and obtain

nl” nl" um, vyt v
e 0 e 4 g g b 33
; 5t W+ = €, 3 : (33)

We then substitute v} and 77 into Eq. (15) and solve for the electric field £ and the field

energy €

Using this method, the simulations agree with the linear theory at small wave amplitudes
for various values of nth. Fig. 17 shows a field energy history plot using time varying v, and
I and v, /v, =0.85 and nh 31=100. (The results are not sensitive 1o making nih At smaller.)
As compared to Fig. 5b, the instability now saturates at a much lower level because of the
current relaxation that oceurs. By assuming that the svstem s stabilized via current relaxation,

the saturation level of the fluctuation spectrum was estimated by Davidson et al.™ ™ at

)
1 v /2

€ == ———
2 204wl Jwl)

the corresponding changes in the ion temperature and electron temperature after saturation

(34)

were given by

i
i



and

~.\ Il (()’,’ 3
A (36)

I W II/
tor 1./ < <1 and v, /v, <<t For our simulation parameters, A7 /7 and A7 /7T are about
10 " and are too smull to be observed. Comparison of simulation results for time varving o+,

and [ with that for constant v, and 7, is given in Fig 10. showing that current relaxation sta-

bilizes the instability when v, and T are dynamic: otherwise, ion trapping stabilizes the msta-

bility. For cases in which v, <<y, and v, is allowed to relax in time. the saturation level of

€ /nl is so small that it is masked by the thermal fluctuations. whose levels are cqual to
=10 7 in our simulations.  Thus, no data appears on the curve lubeled (b) in Fig. 10 for
v. v <08 . Note that in a finite beta plasma, the particle drifts and magnetic field are coupled
and, consequently, the anomalous dissipation of the particle drift energy and magnetic energy
are also linked. Theretore, the magnetic field effectively acts as a free energy source to drive

the instability. and current relaxation will not occur'™

V. CONCLUSIONS

One-dimensional particle-hvbrid simulations of the lower-hybrid drift instability in the low
doft velocity regime have been described in this paper. At small amplitudes, the simulations
agree very well with the linear theory. Saturation mechanisms have been investigated for ¢ross-
field drift velocities Tess than the ion thermal velocity . It has been shown that the lower-hy brid
drift instability s stabilized by 1on trapping if cooss-field drift velocities are kept constant in
tme because ol external circuits, for example.  An analytic tormula, which agrees very well
with simulation results, for the saturated field energy spectrum i k space for 1on trapping has

been given in See. HEA I cross-fickd dritt velocities are allowed to vary in time, growth of the

imstabilits will be stabilized through current relaxation.

i
|
'
!
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Fig ! Slab coordinates for lower-hybrid drift instability.  one dimensional simulations were

performed in the x direction only.
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corresponds (o the lower-hybrid drift instabslity .
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Complex frequency versus vy /v, for parameters Fig. 2. Simulation data are shown by

circles tw/w, ) and dots (y/w, ). The solid curves represent the LHDI dispersion

relation of Eg. (18),
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Fig. 10 Comparison of saturation field energies as functions of v /v,. fa) For constant v,
and 7 . the lower-hybrid drift instability is saturated by ion trapping. (b) For time
varying v, and 7. saturation of the instability is achieved via current relaxation.
The simulation data (dots in (a) and crosses in (b) ) are in better agreement with the

theory in (a) than in (b).




Fig. Il Comparison of simulation trapping frequencies (single-mode runs) with ion trapping

theory. Eq. (23). w,=2m/T, as shown in Fig. 5a.b.




Fig. 12 Simulation {many-mode runs) of LHDI with parameters of Fig. Sa. Displaved are (a)

the phase space in the wave frame of the mosi unstabie mode. and (b) the 100 \velo-

Vo is the phase velocity of the mos

city distribution function after saturation.

unstable mode.
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Simulation (many-mode runs) of LHDI with parameters of Fig Sb
velocity distribution function after saturation
unstable mode.
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The ion phase space in the most unstable mode frame after the saturation as

vy /v, =0.85, and Ak, =0.0707 (i.e., Ak half that of Fig. 13, but L twice that. so the

dominant mode has the same wavelength).
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