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PERFORMANCE OF THE OPTIMUM AND SEVERAL SUBOPTIMUM
> RECEIVERS FOR THRESHOLD DETECTION OF KNOWN SIGNALS
= 3 IN ADDITIVE, WHITE, NON-GAUSSIAN NOISE
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- INTRODUCTION

3 The additive noise encountered at a receiver input is often non-Gaussian.
2 If the non-Gaussian nature of the noise is rot taken into account in the :

3 3 design of the receiver, significant performance degradation of the receiver

3 £ can be expected. The purpose of this technical report is to describe the per- ”

E : formance that can be expected from the optinmum and several suboptimum receivers

& used for detecting known threshold signals in an additive, white (i.e.,

3 statistically independent noise samples), non-Gaussian noise environment.

- The optimum receiver structure for detecting known threshold signals
= 4 in additive, white, non-Gaussian noise is the same as that which should be
" ;A . used if the noise were Gaussian, except that a zero mewory nonlinearity is
g placed betweean the receiver input and the Gaussian detector. The input- ’
£ output characteristic of the nonlinearity is given by -d/dx @n pp(x)), where K
Pn(x) is the density function of the noise alone. The measure of performance
improvement obtained by including the nonlinear device is given by the ratio
e of the signal to ncise ratio (SNR) at the receiver output with the nonlinear-
2 2 ity in the circuit to the SNR at the receiver output without the nonline-
1 . & arity. The magnitude of this inmprovement is evaluated here using Middieton's
13 = Class B Noise Model. The performance of several more easily implemented H
13 suboptimum nonlinearities, i.e., clipper, hole runcher, and hard limiter, .
'3 I are also evaluated using Middleton's model; and typical performances
- telative to the optimum are presented. Finally, the amplitude probability
‘ 2= distributions (APD's) of high level extremely low frequency (ELF) noise are
44 b - given and compared with the APD's resulting from Middleton's model. From
e these APD's and the parametric results presented, the expected performance
of the optimum and suboptimum nonlinearities is derived.
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OPTIMUM RECEIVER STRUCTURE
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| The optirum receiver structure for the threshold detection of binary

S f coherent signals in an additive, white-noise environment is well known.' 3
i The derivation of this structure is summarized here.

i bty rawndbihoon ia TR 4B
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Consider a discrete time, memoryless commmication channel in which one
of two known signals, $; = [S11 ,Si2, - Sinl’ or S» = [S21, S22, ---, Sal's
- is transmittedevery T seconds by success:.vely transmitting the s1gna1 co-po-
nents, S;i, (i =1, 2, ---, N), every At seconds. Each digit, 2j, in the
received sequence of digits z, is the stvm of one of two known signals and a
white-noise couponent nj. The receiver, then, must decide between the two
hypotheses, Hj: z = S3 + 1 and Hp: z = S + n, in such a manner that some
criterion is optml‘.ed For example, one aay wish to minimize the expected
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risk (Bayes Test) if costs have been assigned to all joint outcomes of - i
correctly or incorrectly choosing a particular hypothesis. Alternatively,
lacking such a cost structure, one may minimize the probability of an in-
correct choice (Ideal Observer Scheme).

Because the noise is white and the signal components are known com-

pletely, the conditional probability density function of the received vector, "’
3 z, can be expressed in terms of the density functions of the individual noise %
: components, pn(ai); i.e., i
. N 3
PE_('Z-/HJ-) = P_z—(zls 22; e ZNI J-) = i]=11 Pn(zi - Sji) G=12). %

P
g

The receiver decides between H; and H, by comparing p,(z/Hi) with
pz(z/H2) relative to some constant threshold, A, determined by the a priori
probabilities of Hy and Hy and the optimality criterion. This is to say that
the receiver forms the following likelihood ratio as ils test statistic:

,,”
NPT AN A

<1 ke

syiy o -

N
p,(zi) O P75 = Sg5) *:1 \
R €7, < A ;
257 W Pz - Sy B

Since the logarithm function is monotonic, an equivaiznt test is

soyphlplienss cvs 1epi

=it

& N H

= - - np {z. - S.. . E

InA=% 1 P! S;5) 2 Imp e 2 2 Im2 :

1"1 i=1 .

H “

2 3

Considering the cas+ of threshold detectioa, 1¢t the signal components, ,

j=1,2,i=12 ..., N), be sufficiently s=all so that each term in the o

agove expression can be expanded in a first order Taylor series about z_ .

The log likelihood ratio test then becomes 1 ¢

In A zlnp(z) dlnp(z) 4

idz 3 =z

i=1 §

N Hy

z[ln P, () - Sy dz In p_(z, ).|> In),

i=1 HZ 2
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i o B, 3
“, = Equation (1) implies the block diagram of figure 1 for the optimal ;'
4 =3 receiver structure. Note that it is just a correlation receiver in which 3
~ a zero memory function, - d/dz; (1n p,(z;)), operates on the received signal %
= prior to the correlation. Note also that the receiver is canonical; i.e., 3
its general form and decision logic is not based ca any particular model of

\
Ry

the noise envircnment. However, the receiver must "know" {or estimate) the
noise aensity function in order to implement the - d/dz; (In p,(z;) operation

Iyt

™
Pl pdeany ek
?

»

z 3
# < . - - - . . 2
A =3 in the block diagram. If the noise environment is changing slowly in time, )
3 & the optimal receiver must be adaptive. L%
e o - ]
2 = When the noise is Gaussian, the-d/dz; (In pp(z;)) function is linear in v
3 = zj and, as such, may be incorporated as a gain factor (weight) within the o
g signal component, S;j;, SO that the optimum receiver structure is exactly
E 5 that of a correlator: i
3 s i
?‘ . <
g 25 -z‘?/Zcr2 z, H
3 _":', d d 1 3 E
B Gaussian noise =p———1Inp (2.) = = =— In{-— ¢ == . £

k- dz n i dz_ Z z

= 270 J g 3

‘ For a non-Gaussian noise density, however, the derivative of the log density é
function is not a linear function of the received waveforms. Thus, the

== optimum receiver structure is a correlator preceded by a zero memory circuit i
whose input-output characteristics depend caly on the noise probability :

. dersity function. 3

: As an example, it has been proposed that naturally cccurring electro-

N magietic noise below 100 MHz is Gaussian distributed with occasional large

3 anplitude noise bursts, which occur often enough to affect the tails of the
noise densitv. Several authors*~® have guggested that the density function
describing t -ese tails folloas an e-alzl (0 <k <1) law. The smaller the ,
k, the more impulsive the noise (see figure 2a). For this noise density, ‘
the input-osutput characteristic of the optimal nonlinearity is shown in
figure 2b. As the noise becoaes more impulsive, the nonlinear device
suppresses the larger noise excursions to a greater degree.
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= PERFORMANCE MEASURE

j
i After the optimal receiver structure has been derived, a natural question ¥
to ask is how much performance improvement can be expected using this receiver g*

compared with one in which the nonlinearity prior to the correlator is sub-
optinmal or absent? Usually the performance of a receiver is measured by the

probability of error for a2 given signal energy. This requires that the
probability density function of the test statistic be known or, alternatively,
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that the probability of error can be bounded in some manner. Under the
assumption of threshold-type signals, the correlator must sum many received
symbols to increase the SNR for satisfactory performance. As was seen
previously, the nonlinear device tends to suppress large amplitude vari-
ations; thus, each received digit is bounded. (From a practical point of
view, the received symbols are always bounded owing to the finite responses
of amplifiers, filters, etc., even when the receiver is linear.) The test
statistic, therefore, is the sum of independent, finite variance random

variables and, by the Central Limit Theirem, is asymptotically Gaussian -
distributed. Since the density function of a normal random variable is

completely specified by its mean and variance, the SNR at the output of the

correlator may be used to express the receiver performance. Hence, define

the improvement factor, I, as the ratio of the SNR's at the output of the

receivers with and without a nonlinear noise processor:

AN I

el avosin b e e saotolie ver will 4B mal Aaniad i ds

s

1= SNRNL _ SNR at output of receiver with noalinearity present
T SNR,  SNR at output of receiver with nonlinearity removed

L

ERIFTRTTIe

Assuming threshold binary equal-energy signals, the improvement factor ‘
for the optimal receiver is (see appendix A) i

ERPINE ;
Iopt = 02[: [" }% In Pn(z)]2 p,(2) dz = o? L w_[dz z::z)] dz , (2a)

where 02 is the variance of a received symbol (i.e,, the power of the noise :
component). When the noise is Gaussian, the improvement factor equzls one. \
Although the optimal receiver structure is canonical in foim, it may be
difficult to implement. This leads one to investigate simpler, suboptimal
nonlinear processors using the improvement factor to compare the performance
of various processors. Appendix A derives the improvement factor for three é
common nonlinear devices: the hard limiter, the clipper, and the hole ;
The results are listed here for convenience: ;

. kol [
3
Lot A gt FWTH

3 puncher.
2 2 :
Iy =% pn(O) (2b) ;
€

I~ = p202 2.1222 pn(z) dz + c2(1 - p) {(2c) :

-~
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Jf:pn(z) dz = Probability of being in linear range of nonlinearity
c

¢ = Linear range of nonlinearity (see figure 3).

The input-output characteristics of the above devices are shown in
figure 3. Note that the hard limiter is the optimum nonlinearity when the
noise has a density function of the form p,(z) = pe-lzl, Comparing figure 2b
with figure 3, one sees that the clipper is optimal and that the hole puncker
is near optimal when the noise is Gaussian with tails distributed as e-iz!
for k = 1 and 0, respectively. It should also be pointed out that although
the noise power, 0“ , appears in each of the above expressions, it does not
affect the comparison of one nonlinear device with another, though it cer-
tainly is important when comparing a nonlinear receiver with a linear one.

CANONICAL NOISE MODEL

As is evident in the above discussion, the optimal receiver structure
is highly dependent on the probability density function of the noise.
Although various noise models have been proposed for particular environments,
the only general model available to date is that suggested by Middleton.’ -8
His model, the Class B Noise Model, which is analytically tractable and is in
excellent agreement with measured data for a variety of cases, is canonical
in nature. That is to say the roise density function, which is characterized
by various parameters, does not change form.

Based on the bandwidth of the interference relative to the receiver
bandwidth, Middleton defines two major classes of noise. Of interest here
is the Class B Noise Model in which the interference is highly impulsive,
resulting in a2 noise bandwidth much greater than the receiver's front end
bandwidth. For this case, the model for the amplitude noise probability
density is expressable as two distinct functions: one valid for |z| <z B
and the other for |z]| > 245 . The second function approaches zero much
more rapidly than the first as z -+« . It was already pointed out that a
nonlinear device operating on threshold signals in this type of noise envi-
ronment will suppress large voltage excursions in the received waveform.
Thus, the noise power at the output of the nonlinear device is primarily
determined by the noise density function, p,(z), for |z| less than z. ,
i.e., the value at which significant suppression occurs. The more impul-
sive the noise environment, the more likely z. is much smaller than 2,3 .
For this reason, only the first function in Middleton's model is used here.

Thus,

o (D®A" \
_ ~1 a fma + 1 mxy +1 _ 1 L2
p,(2) = p;(2) = Trmz::e m! ) 151 2 2" "}
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where
0<a<2.,A >0
a
g T(¢) = Gamma Function

F,(a;b;x) = Confluent Hypergeometric Function.

. %3 Three values, A, , a , and 208 » define the noise model. Omne can

3 normalize the probability density function defined by these three values to
, =5 unit variance, for |z| < Z4p » Dy introducing a fourth parameter, 2 . This

ff‘ is done by changing the variable of integration from z to Z as follows:
E - oB
N : 2 é,l. 2 %
\ ?f o] (zoB) = J z pn(z) dz i
t 3 oB 8
P
' 3 ZoB 2 i‘a
P =>1-[ #p@ma, )

3 - n . . !
i =3 “20B B
l ~' where f

= 5= SN %
: 2 z=12J0 Zop = Ip VO 3
;3 2 = 1/ (z)p) ]
= (-1)
§- a mo + 1) me +1 1 -z
P =qrads —ar T ( B\-z sz w) - O

Typical density functions normalized for unit power with 25 = 1()4 are
plotted on a log-log scale in figures 4 and 5. Note that for constant A,
(figure 4), the more impulsive densities, :.e., those whose tails approach
2ero more slowly, are characterized by smaller a values. In fact, one can
see in figure 5 that the slope of the tails is determined by the a parameter.
Although the role of A; is not as readily apparent as that of a, it is
related to the siope of the density functioa during the transition from the
Gaussian portion of the distributior to the non-Gaussian tails and to the
range over which the density function is Gaussian-like. The “bendover" point,
Zog> is that point beyond which equation (3) no longer adequately describes

the true density.
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COMPARISON OF NONLINEAR DEVICES IN CLASS B NOISE ENVIRONMENT

The improvement factor of a nonlinear receiver is a function of the total
noise power, the shape of the noise density function that yields that power,
and the input-output characteristics of the nonlinear device. Equation (4)
indicates that the noise power depends on zyg, the bendover point in
Middleton's Class B Noise Model. Intuitively, the more z,p exceeds the
suppression range of a nonlinear device, the greater the improvement factor
for that device. An example of this can be seen in figure 6. Note that the
increase in the improvement factor is entirely due to the increase in the
variance once zog exceeds a particular value.

Figures-7, 8, 9, and 10 show the improvement factor for the optimal non-
linear receiver versus ioB for various noise statistics. (These results
were obtained using equations (2a) and (4) and normalizing as in equation (5))
For these calculations p,(z) for z > z,g was assumed to be zero. As Ag
approaches zero (figure 7), the density function is Gaussian over a greater
range of values and, therefore, the improvement factor depends strongly on
the shape of the tails. If the tails are decaying rapidly (larger a), only
modest improvements are to be expected. On the other hund, if the tails
approach zero very siowly (small a), significant processing gains may be
achieved using the optimum nonlinear receiver over a linear one. As Ay
increases (figures 8,9, and 10), the noise is Gaussian over a smal:er range
of values; and improvements will occur at smaller values of ioB- Here, also,
the shape of the tails greatly affect the processing gain. In general, for
a given z,g, the improvement factors increase as A, increases and as a
decreases.

One of the primary goals of this report is to rate the performance of
simpler suboptimal nonlinear receivers. The improvement factor for the hard
limiter, the clipper, and the hole puncher were evaluated under a variety of
noise conditions using Middleton's model and equations (2b)-(2d). Typical
results are shown in figures 11-14. The performance of the clipper and the
hole puncher are furctions of the "clip level," i.e., the percentage of time
the input is in the nonlinear portion of the device's operating characteris-
tics. The hard limiter is a special case of the clipper in which the clip
level is set at 100 percent.

Figures 11, 12, and 13 present the ratio of the clipper improvement
factor to optimum improvement factor versus clip percentage for various A.u
and . While the optimum clip level, i.e., the clip level that results in
the best pezformance, depends on the noise parameters defining the density
function, the performance of the clipper relative to the optimum nonlinearity
is not a strong function of the percentage of time that the input is in the

nonlinear portion of the transfer function. In fact, by setting the clip
level to obtain 90 percent clipping, the clipper performance will remain
within about 4.5 dB of the optimum over a large range of noise parameters.
When figures 7-10 are used as an absolute measure, the optimal improvement
factor is large for just those values of a for which the clippers' perform-
ance decreases. As the optimal performance drops in value due to an in-
creasing a, the clipper's performance increases so that, relatively speak-
ing, the clipper is always close to the optimal.
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Even simpler than the clipper is the hard limiter, which approaches the
perfcrmance of the clipper without the requirement cf adaptive control of -
the clip level. The more impulsive the noise, the closer the hard limiter's
performance approaches that of the optimum clipper.

The relative performance of the hole puncher (figure 14) is very sensi-
tive to both the clip level and the parameters of the noise density; but,
when adjusted properly, it essentially can achieve optimal performance. Thus,
while the transfer characteristic is easily implemented, logic is required
to estimate the noise parameters, and adzptive control is needed to maintain
the proper clip level.

LA o o3

The four ncnlinear devices discussed in the report form a hierarchy of
receivers based on complexity and performance. Although each application
determines the exact tradeoffs, there are many cases in which the simpler
suboptimal devices are more cost effective than the optimal.

RSN AT RNOS IS W) EAa

ELF RECEIVER PERFORMANCE

In this section the general results obtained in the previous sections

are applied to the ELF range cf electromagnetic communications. Several digi-
tal tape recordings of tvpical high level ELF noise from the Saipan area were
anaiyzed to yield amplitude probability distributions. These measured distri- H
butions are compared with distributions computed from Middleton's Class B :
Ncise Model; equaticn (S), and the parameters A,, a, and ZoB are determined.
From these parameter values and figures 7, 8, and S the expected performance
for the optimum and suboptimum nGnlinearities can be determined.
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Figures 15-17 are plots of the amplitude probability distributions of :
typical high level ELF noise from Saipan. The noise was bandpass filtered B
to 20-150 Hz and each distribution was measured over 400 s. The ordinate i
of these figures is the percentage of time that the magnitude of the noise H
exceeds the abscissa level; the reference level of the abscissa is the ras o
level of the noise. The individual squares on the plots are points from i 5
Middleton's model. From these plots it is clear that the amplitude proba-
bility distributions and density functions of actual ELF noise can be
described accurately by the amplitude distributions and densities resulting
from Middleton's model. For these higk levels of ELF noise, the parameter
values range over A, = 1.0 - 1.5, a = 1.2 - 1.4, and 2,5 approaching 40 dB.
An cptimally designed nonlinear receiver could be expected to perform 10-20dB
better than a linear receiver for these parameter ranges; however, the c~tual
perfornance will depend on the particular combination of parameter values.

If a clipper were utilized and set to clip between 20-80 percent of the time,
its performance would be within about 1 dB of the optimum nonlinearity.

A BA R L

The current Propagation Validation System (PVS) ELF receiver utilizes
a clipper that adjusts itself so that the received signal and noise is clipped
40 percent of the time. This rather simple device, which does not necessitate
any complex noise parameter estimation, provides performance that is
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comparable to that provided with the optimum nonlinearity. A detailed

analysis of the nonlinear noise processing, including the aspects leading .
4 E: to the design and measured performance utilized in the Navy's ELF i
receivers, is contained in references 1 and 10.
3 CONCLUSTONS
The optimum receiver for detecting known threshold signals in additive, -

white, non-Gaussian noise has been described and its performance is defined
as a function of the noise amplitude probability density function. The

=T cptimum receiver's performance has been calculated and plotted versus various
ranges of the parameters defining Middleton's Class B Noise Model. From
J these plots it is apparent that the optimum nonlinear receiver car yield very
- = significant performance improvements relative to the receiver that is optimm
;,, in Gaussizn noise. Implementation of the optimum nonlinearity, however, can B
3 E be rather complex, requiring real-time estimation of the noise parameters.

su.l}“ (R Ll LA L)

: s The performances of several suboptimum nonlinearities were calculated

= > and their performance relative to the optimum was plotted. A properly

= . adjusted hole puncher yields performance within 1 dB of the optimum; however,
3 : its' relative performance is very sensitive to the percentage of time the
input is suppressed. Proper adjustment requires estimating the noise param-
eters, as is also required for the optimum nonlinearity. The performances of
the clipper depend on the noise parameter values and the percentage of clip,
as does the hele puncher; however, it is less sensitive to these values than
is the hole puncher. A simple clipper adjusted to clip 90 percent of the time
yields performance within 4.5 dB of the optimum over a wide range of noise
parameters; the relative performance improves as thc noise becomes less
impulsive. The nard limiter, requiring no adjustment, yields performance within :
2 B of the optimum clipper; the performance relative to the optimum clipper
izproves as the noise becozes more impulsive.

The instantaneous amplitude probability density function resulting from :
Middleton's model fits measured high level ELF noise quite closely with :
Ag = 1.0 - 1.5, @ = 1.2 - 1.4, and 2,3 =40 dB. For this range of parameters, ;
%, a clipper adjusted to clip 40 percent of the time, as does the PVS ELF
receiver, provides performance within 0.5 dB of the optimum.

Recoamendations for future work include

. 1. Determine optimunm receiver's performance sensitivity to inaccuracies
in parameter estimation. :

2. Extend results to determine performance of these threshold
receivers for nonthreshold signals.

3. Compare predicted performance of the optimum receiver, as defined
here, at very low frequency (VLF) with measured perforaance of existing VLF
receivers.

D - oo "l —comm o , S T T e

D R N e e I A T A, e Sz



faviia XL AT YT TS0 | il SR NLEL LY ,.n:.a_ﬂé%i)ﬁ.n&S-ﬁ,Za.{:.5.4}._:5..;.Jq..,&wum‘:_hn.::g.,w..,.:J.un:.xtuf..\s} o Soeeoanin g e a” ST Te o ur et -etail
S YL b - . s

e = 4 Naas men et iercass atuddiraindiri-lady § PRI F RN IN S VPP VPN
v ’
: . L}
{
O
t
i
"
‘
R ¢
i
g
ki
..
o o -m -’.
-
% (2
m “t v - N 5..
N w e - M
-
-
[ nom - n
{ -
I’ C K]
- M 0"
) o
¢ s T d_....
s L] L}
4 V] f
, .

LY
oyt =
INEAR TRANSFER HRAXTIOS

%]
=
(=]
=1
P
g
e
[~}
<
K g § @
A :V.. - m
H Q
1 B ¥}
Ri O
o [ on
+
‘ . 3
\ . m ™ - [
N - ' n .m
; , a
"
f o
! & &
AN [T9) ~y
» ] %
0
m - e i @
- ’
H - S-. ”b ™
r, w owd ord
J 2N W e m
qh 4 =
. L o 0
! @ U4

-
F3

‘q
Figure 1.
3%

ATLITIOE TROAABILITY DEXNSITY
Typical No

Htx...

~ o

Al g b

. &
(L)
29

TR 6339
e

10

Kbl

T AN

SRR s SR M e AR T




{\w: o =T
+< +c
-<
> 4:0 = .
X - < % < N
‘ol +-C

tay HAZC LIMITER th1  C1IFPER <l HBXE fWgQEx

Figure 3. Simple Suboptimal Nonlinearities

! 22 .2 ler 85~ 107 4
xs-% soe o 1.2 105
\“. 1.0 8o = 3.1 - 1070
s \ e l.lf e nS . 100
AN

ARSI

nd

st

10 log ||"(z)
¥

et .

1w

2 N l
.t ! T e a:
. el

.10
B ] ¥ + + 4 4 -3 + -+ —4
- -33 ey .38 -3 -1 ° 13 32 3 -3 $a

Figure 4. Middleton®*s Class B Noise Probability Density Function,
wWhere .-‘\a = 1.0 and Various «

PP A

N DA AT 40 SRS St O 1 (BN LML

=1

SR A 01

A2 B AR hakerd 20 B O b SITAR BEERE




FEEHTNE g s e xpen pirT L AEre - 2 - ..
R+ = e e e L BITL IR XS G TR MR B, LR NYRIUTEL £ e48 heid L0 F eRie oxr
m B L _‘.‘ s ,[i JAEE TR e e IUTRTILL RO ATES T YETRY MR p 2R LeR NYIXTRE U By 6467 gt AL F etie s v

B ook P
- . TR O T B T N Ll Lt T L - ’

.WA 1Y ' . ‘H\
i o
m_ %
.»» %m
"l
N
4
Mr »
& 8
: :
N [
f g
q §
) 'Y F
e &
ww% -n
[
@
N ° a
‘. . )
Ny - . e
.. yq
3 2 3
3 3.9
3 8
B . &S
: 35
. kN vd
'
(=]
| 7z O
; L]
0 -
M_ «w [[]
(. Qo
6 S
i [~
A..,mu 3 m
: L]
) 3
~
~

[}
-
N N [T VUR VU SO YN ' w
resmei ey T e —— T ey ————T : .
s & ° =2 A & § % % & 3 :
L S . ' .

.:._._ LT

igure 5.

F

e, ;
T B Y B k=)

Y R




BIRERS RO TRANIR FI3 IR ST SRR MIVASITIL @i Iph 8 LI HIE Be g £ LI T AT S
Sy h ‘ [ [ .

F

A 2 e e e A N O S PR H L

PN

Foua W7

¥

AR

"TR 6339

S,

3

:
L4
.
A
s
£
f
.
"
i
¥

i
i

|

“03
e
Kith Dynamic Range

| 4 48
1
AL 3
13 * L
; K 48 Zot
“ T s B
g b} 4
1 o 8 2 - _
t m :w I ..w m-‘ ‘m
Z: ' T »u. ..ﬂ
1 t »
g & “
, 48 - ’
| i 8
| o
w - O n '
| :
M 42 .m
M -
L E ' t t + { } { t + } A
M R R = ° 2 5 2 % 3 3 ? o
: w NOLLINA Ho1 0 g
[}
! .ma
i t

ATy

.

BV O Uy SUURPE S . (G WO VIO T ar SaprT et



- .
A

.

el

g

ey

s

E=3FYeN

e i S

SN €5l RTA 0 BT I 91 I m btV g e 7, W e oo mr ) on

AN L AT RLE T S ¢ AR Tive 2 atarer T

e

i
i
¥
f
I
i
i

mu

:

>

¢

¥

!

; T’

FEaT 4 3T

{

RN

B L e B,

TR 6339

A tauni et e

s v .0l

A

. T e ey e 4 s s iy

4 L4

T,

i.
= 0.01

[»

& o S

Wnere A

S

ineari

0 log ‘:‘m

Inprovement Factor for Optimum XNonl

w4

wlo

| Yoy ot

A

10 =+

e 7.

igur

B

14




T AT O T T T BU K O R BRI R DT N A LBV UT U TR M TERTAN LT 2 A AL B SHL £ 0L TSINMI Tt tern o ns e

* . 0 PrU St e e e M Y T T AR T R T S

15

TR 6339
-
0.1

: . 2 B
! " !

s

.

' :

%

i “_

"

; 3
B :

;

r4

'

: &

!

]

g i <

‘ s "
B ° s

,m, <"

I m

€

o

:—-vvf“":n- >
s 0.2

P
oy

o
ie

Figure 8. Improvement Factor for Optimum Nonlinearity, Where Aa

[ n 'y 3 1 1 s
Lol v v L v v
e a
) 3 K 8 L ] ]
fo
w t Yot ot
' |
|
' v
!
ﬂ '
)
T . L]
L ' |
K
r




AN P » S
M; " (4 Py Aﬂv.ﬂ‘..*.wmqﬂ.wﬁ...ﬁvﬂ. TR R T R St e s s N
; i g IR

R S R T A LR U R Y hem e a1 g cne e e o L

TR 633¢

L 7

82
A s 1o
]
w3
[\ XN
a.3
t.o
.2
/ 1.
+ 3 + " M
L L L] =3
30 10 S0 0
B} <>
1ot Soa

Improvement Factor for Optiaum Nonlinearity, Where

42
[ | L L '} 1
14 T A L] v T
3 ] 3 3 A 2 e
ulo
1 %oy 0y

5 Ry

= 1.0

A
«

Figure 9.

16

LA o, e o
R S P, VR

o

W
o 2" v

e e LN

-,

Ry e

ety

- s

et e




VRQ 0™ B FI0 00 BTN [T S ST B

I R AN A A FERER

¥R ariae o avr e s+
s 4 o

TIRIORATY WATWHE D R ATRER £1 100 3E 70 € 01 4 VS AT £ 1% T Ga R pe i pae

A
e e R T

6339

V L
..l ’ 1
B T __u
. -,
‘ ©
u et
&
" o’
- 2 -«
L]
~
)
" o
- R
“ + & 8
!1 .m
i " : S
- )
L J 8 N
"
”. .:a m
1y '
~ ta” &
: ;
L
(1]
: $ut
L Q
. L m (o
g &
. . B
-
(]
Le m
5
o
)
“ + ' + J ! ° 8
3 3 9 2 A 2 ?
L]
; .._a_ top o1 m
b0 4
10
i v ma
4 i
28 s
i .
g1
2
L]
YN s b N TR .)NA Sniat i s g bind L g
Sl A TER Tt A D R Dl Lt B L ! 3 F e b

[ ST T
2 38 >

GEA LAY

g

AT

Vogp b e i rh
3 ) SR TINN T 4
ALOME & ik

- b faxg 3 ¥



RIS

4 IR

J..wmm«. Hﬁﬂﬂﬁnﬁ,s:wndu.w:w, ARRAIT A AT O T TR YT A A

3
- &

2, o

g

b

Lea R A T

ica

1

TERONTUE CLIr

T RN SSINLTY SSURANES fITARL I U YBIIITI KUY €0 IR ST 1 TR B AT I €T R e e

AV TESET S o2 Tl ) U Y LS TTIRE Lk Y AT T RN

0.01

Where A

a

e

N T S e TP

Proary

e —

A

p T,
&

Clipper Performance Relative to Optimum Performance,

,
X [
'+ 4 -
- 1
, } - t + + + s
o - e " - A
B h ? 4 ? .
e 0 -
( 171 ot ot v
[
. 5
on
Ll
e
. ) s
et eperir el . ! 1y T g e
St Lol A bt B0 W E{ikEtEA > /s

.
- O Lidre o
i ?.f— i ..:.\

4

Wornl e 2




R N S MR T ST BRI B T B N LA SV LA RAS L T
N i~ (%o TITTTTTTTIT RIS T aea R UELY AR OTA, L EVT O AT A e ST R

S ¥ "

e t
.
N

:

b

# M o]

5 N i

MO N

¥ ¢ A

L o

o &

. \

i 1

e e
1.0
Performance,

ey 4,‘3’-»" e N g
A
a
0.8
(L0 )
0.2
w 70 s % 100
ive to Optimum

s0
PERCINTAGE CLIP
at
1.0

R e TAR bl S T it TR B e
1.

where A
(V]

LR
2:0
Clipper Performance Rel

!
i
\ m
£ le !
N - 4
- u
ow t + + + + + o 4,
.W.m 0T - w-. .-} u- u) A
4 O e _L

Figure 12.

1

N +
; i
i
$ |
i |
o !

|- L S |

m N
il
m
H

a5 hmesisapig Bpptraimgrt by oty S
" > . h)




s s e b d et &L § TUIRINEOT,

BT IsEht A A g CA SRt R I I R T R ST AR R L " A TR O R LR BT et fragteghmt LUl S Ue \Sy AD Y et nm«u..x.a.:c. e :?Mﬁa_.. R RFARTEY LS gl nb TR, )
{
R v ’ b r
~ .
8
;
¢« K
A3
&
N . &
§
.
5
D
¥
'
5
:
.
4
|3 .
7
i
.
M
1
4
B .
.
- , )
b3 \ e
=
B3
5 &
I &
., *
e
3 +8
o
+2

1.5

TLRCENTRACE CLIP

St e S SR =L

B

Where A

r -

o T NG g, T

3

[ - s b ry L I3
- v T T Y 4
- - ) " - v

, L] . L]

Clipper Performance Relative to Optimm Performance,

00y op ot

Figurs 13.

TR 6339

LRI

i

§ et e Faong

. g , Pl
31 1 ~ g & - L gy oty Y . 6
b . HE Y UAY, PN 7 Fi, gt 313
.U.:F .,J., QAVSS ey i fiaeliiz RVATGLEGAD L A X peihchit R } ey i i £l B DRGR
N «
O Y N T VTR :,..LWN.:.F.L.E: acan b A s i LR D g g T 40 Ly TTRARLN T AV HORN



rriv

]

YA TORY gy b g ey 0 <jery o -
! ..m. it . N!dqﬂsﬂ RBeH AL LTy _.ﬂ...;:i?.?d...‘.:;uq,f_.v.’zi..‘wﬁ.ﬂﬁﬁ,au. 1 TS AT YR UMY M 3 P ATTEEL % E € TR L pee BT

T SRR AT ST B, 4 a WL, ek I

-
RN

"

TR 6339

T e F Ra ST A

100

<
e e s BN v g e b, T v
1.0
o so 90

s

0

S0
PERCENTACE CLIF

Hole Puncher Performance Relative to Optimum Receiver

”
_w R s
i b4
o ¥
b + } + + —+ e
o - re " ] [%]
' e ! ' '
t 17" 21 0t
*
4
(]
V]
..m.._.o
"
(1%
L * ’

BIAHR PR A s b
RIS RN .,.«N..‘ (4

s !

" H
A ! (t. Y

diicssisidiMosbbons< "2t 2SS S it A Ldon gl e e



? n,.« - ;, w.mw 3 n1c&,q&&w.&ﬂﬁ&m&aﬂaﬁwﬁdﬁ}ﬁm«mﬂwn:z:.?ﬁ..:

- (R e MR gy ree oo
- L i

T—— At At rlae it et b e on) FRRIERS ; .
R g T .:3?:.2::2:.:.«33:.:): s
: i TR TR SO Ry gimar
. . g HYE 1
) v o DR A
e
|

|
| |

R vy

- o ",
-
o

e
o
‘g&
)

.
- 1
=6
L T, e
P
)
~ A

; N
‘B e
' b 3 .,,,LL [

e

1.5and a = 1.4

i
-

»

) L4
N T ot 0y

R e

b 3

3¢
a
L

=335, a=~1.3
~ -

wWhere 4

oy

SiwPah - TAZE NO. AN3-147, RECRDS §-100
000 APD FROM MIDOLETON®S NOISE MOGEL

0 o & J
\ «" 1= 8 P
i ﬁ » Y |
‘ * O _.xi.
"0 T .“ %.2
) e oy
m = h v
o .
178 2 ﬁ;
N.n.
s .m B |
. d
43
. %
[la)
=
[
17 Yt
[+]
[~}
A ..”. w.

Il NS W T | d i corde 1 i

-

J..
T R3INR 8 &8 & 28 -

CARRIXN VKDY RIS 10 TWLSITIN

1
$0
.5
s
L]

3=
2.

o1 &
0.9 §-

0.001
0.0031 .
v.coNat
-70
Figure 15.

TR 6339




B I T o B L e R i e g DO Y £,
. & EEN e RS 1)
Lt

1

\

o S sty

ot

o f T

3
H
§
!
!
\
!
!

TR 6332

» .
S s

The R L

1.0and a=1.2

»

3T

- ]

2 - ~48 o

3 " L4
- I .

; o

‘, = 17 &

LA " o )
g " “

k%

i

AL e

SIAPAX - TAPE XD. AX3-031. RECLSDS 1-160
o000 AT FROM MUOLETON'S MISE MIREL

-

¥ /1 =3
T,

-

1
-10
LECEL

e R

1
-20
APD of High Level ELF Noise,

H
-70
Figure 16.

| S VNN SR O T
g M 223438 8 8 & 2 » = =

QNN VARIDRUY RIS A0 VIR

9
g0~
ST
32 54
0.0l
¢S50l -

C.o0i

3.2

|
.w

BT et

oS L

-

o .

(TSN 1 i < A
¥ 2 AL YN
(N PR LRt 1 gl W

gttt ad e WAy pod g hex bt kst it Ay g ot 40 23 it I




.V“La R ..531 _ﬂﬂﬂwﬂm.ﬁm“wﬂm}m. uw,u.«wm‘&ftmw«m.‘,?,&xx?ﬂmr :ﬁ(rwvwx,. «,«.. R R O R UL D URUS A W EIP IO arey

TEESPNN AR Mok 8 WU AL FEC DGR BILPIET SN ARELEE ot NDi g, RRY BPRE PR 8% Ve BAAciar il Re

> e L I R T N R LT Y |

] ’ ) v

L

o e 3
=3
7c

ZRNEER RS
1
(2]

=

i
30
= 1.0 and

.
25
52

IR T
«). AX3-051, SECORDS 700-800
000 AD FROM MIIOLETORS XOISE W0IL

« 1.0, 3= 1.2
000 A7D FRR! NIDDIETOR'S XDISE WL
=10 2=1.2

¥here A

SQUPAS - T
LS

[

=z

A

T e

ise.

.. -

i.2-1.4

-10

(<3
LEVEL &3//1 r=s IXIT

e
o
|

-, -

X
30

o mrerb &

» =
1 1
-20 -2
APD of HIgh Level ELF No
a

1
-39

- |
-2
Figure 17.

| | I N W e | i i { i 1
R R33n8 § 8 B & 4 - =
WIRHDXT VERIIRAY TIHTL 4O IDVIRIDHIN

91 ¢
b o
i3
2.5 |-
50 =
[}

0.01 §~
c.ot L

©.C0001
-70

o.co! L

TR 6339

B . : " » b
L ¢ . ¥ R N v
R Ty R AR L WA L . + e
.aA.c 1 T -n..,...q.o. oL PR R ik Y W ¥ ¥ fENS
.
: N ro o . . . [ RV N 7. . -
st te v 1esd 0 .c.:s..rprr s el bbbl oo L oo WA, %4 e SR A AL A Bt v e b i S A Rt b s s
? A ax LS . H
T T T e B e N Ty S e L D T A S L R YOI LR TR Y > SRR L A T AR Y ey SR PN




1AL A, by

DA AL s it
' v

St S e B g e by
b ey kg v 2 e

glahizia

R o Ry i i B S o S R R > [ L mad N - P N

— : T kALt L mosmmmriell o o -‘ue-‘m‘-'f’*u(—yn T N I oS S S ST T Ry N el e eem e S ¢~ P Y vy ,..,,&
AT o A M- W ¥ g Vo s M e N W WINPT A, - . e - e v — e _— ;"
;
E
R
TR 6339 ;
2
g
-
¢
!
REFERENCES

10.

form dse

J. E. Evans and A. S. CGriffiths, "Design of a Sanguine Noise Processor
Eased on World-Wide Extremely Low Frequency (ELF) Recordings," IEEE
Transactions on Comsunications, vol. COM-2Z, April 1974, pp. 528-539.

aneznigbad ramnk

S. S. Rappaport and L. Kurz, “An Optimal Nonlinear Detector for Digital
Data Transaission Through Non-Gaussian Channels,™ IEEE Transactions in
Communications Technology, vol. COM-14, June 1966, pp. 266-274.

0. Antonov, "Optimal Detection of Signals in Non-Gaussian ho:lse " Radio
Engineering and Eiectronic Physics (USSR), vol. 12, 1967, pp. 541-548.

SR L Ly

A. D. Watt and E. L. Maxwell, "Measured Statisticai Characteristics of
VLF Atmospheric Radio Noise," Proceedings of the Institute of Radio
Engineers, Inc.. vol. 45, no. 1, January 1957, pp. 55-62.

K. Q. Crichlow, C. J. Roubique, A. D. Spaulding, and W. M. Berry,
"Determination of the Amplitude Probability Distribution of Atmospheric
Radio Noise from Statistical Moments," Journal of Research of the
National Bureau of Standards, vol. 64 B, no. 1, January 1960, pp. 49-56.

H. Yuhada, T. Ishida, and M. Higashimara, "Measurement of the Amplitude
Probability Distributicn of Atmospheric Noise," Journal of thke Radio =
Research Laboratory, Japan, vol. 3, no. 11, January 1956, pp. 101-109.

D. Middleton, Statistical-Physical Models of Man-Made Radio-Noise,

Part I: First-Order Probability Models of the Instantaneous Amplitude,
Office of Telecommunications, Technical Report OT-74-36, U.S. Government
Printing Office, Washington, DC 20402, April 1974.

D. Middleton, Statistical Physical Models of Man-Made and Natural Radio
Noise, Part II: First-Order Probability Models of the Envelope and
Phase, Office of Telecommunications Technical Report OT-76-86, U.S.
Governaent Printing Office, Washington, DC 20402, April 1976.

D. Middleton, Statistical-Physical Models of Man-Made and Natural Radio
Noise, Part III: First-Order Probability Models of the Instantaneous
Amplitude of Class B Interference, Office of Telecommunications Technical
Report NIIA-CR-78-1, U.S. Government Printing Office, Washington, DC
20402, June 1978.

A. Griffiths, ELF Noise Processing, Lincoln Laboratory Technical Report
490, Massachusetts Institute of Technology, Lexington, January 1972
(DDC AD-739907). ’

25726
Reverse Blank




» RO ———, T i B A L, ST

D T e i e P
. ey

S it e S A P N o 3

o - - L s 1 ra P
e e e e e T e T T T ek o

G S A = )

e

TR 6339

Dbt Bt a it Co el F 4GS IhA% ATF 2aat s o A

Appendix A

PRI

3 " DERIVATION OF THE IMPROVEMENT FACTORS
B FOR SEVERAL NONLINEARITIES ;

2 3 In this appendix the improvement factors for the optimum nonlinearity,
. the hard limiter, the clipper, and the hole puncher are derived. The iaprove-
5 rent factor is defined as the signal to noise ratio (SNR) at the correlator
- output, with the appropriate nonlinearity in the signal path, divided by the
B SNR with the nonlinearity removed. The improvement factor is am indication
of the performance improvement or degradation that is expected owing to
inclusion of the nonlinear device in the signal path. The test statistic at
E the correlator output is the sum of independent, finite variance random
N variables; and by the Central Limit Theorem it is asymptotically Gaussian
-5 distributed. Hence, the output SNR is sufficient for describing receiver
performance for large N.
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¥ - The receiver structure of interest is shown in figure A-1. Each inpui

B ; sample, xj, is the sum of a completely known signal sample, S;, and an inde-
pendent noise sample, nj. The signal sampies are considered to have come

s from one of two binary equal-energy signals; the noise samples are identically
kS

v

g distributed zero mean with variance of and have a symmetric first order
amplitude probavility density function. The y; are the outputs of a zero
menory nonlinearity, f£(x;). The test statistic, 6, is the sum over i of N

).?i

& products of the form Sjy;  The SNR at the correlator output is defined as
R - the ratio of the square of the expected value of § and the variance of 3.

2 Remembering that the S; are completely known, the SNR at the correlator cutput
with the nonlinearity in the circuit is easily found to be given by

SNRyy, = v . (a-1)

X. 2S5 o= ¥, X
3 H M} [ 1
pt “‘i) ] z Si_‘l‘i p———— DEC]SION

Figure A-1l. Optimum Receiver Structure for Threshold Detection

i With the nonlinearity removed, the SNR at the correlator output is given by

(A-2)
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resulting in an improvement factor, I, of

 (B27)
S. ¥.
SRRNL _ ST (A-3) .
SR, X /X, -
(}: si)(}: S5 Var(yi))

i=1 i=1

I=

In order to evaluate the iaprovement factor for the various nonlinear-
ities of interest, the mean and variarce of the samples at the nonlinear out-

put are needed.

For threshold signals in independent, identically distributed noise, the
optinum nonlinearity takes the form

d
y; = f(x;) = - &: Inp(x), (A-4)

where 18 (x3) is the amplitude probabll:l.ty density function of the noise-only
sanples. 'l'he expected value of Ys is given by

= I - —d_ In pn(xi)] pn(xi - si) dxi ) (A-52
- i

It is possﬂﬂe to expand p,(x; - S;) in a Taylor series about xj, and the
teras in S; of order two and greater can be dropped for threshold signals.

Then, using the fact that Pn(x;) is symmetrical, y; is found to be

y; = SiL {A-6)

@ 2
RSy

Using a similar approach, we find the variance of the nonlinear output to be
2
Var(yi) = LA - s; L . (A-7)

The improvement factor for the optimum nonlinearity is, then, given by
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with equality as Si L approaches zero.

+]

2 The hard limiter is defined by a transfer function such that y.

. x> 6 and y; = -1 for x. < 0. The expected value of Y is given by

PINTICEITTRIEY Tt ety tvgrs:

4
L]
.
Ty
k¥4 ¥ AN

=2 Io plx; -5)dx -1, (A-9)

where the expression within the brackets is simply the probability of y. = +1.
Since we are interested in comparing the various nonlinearities under similar
signal conditions, i.e., threshold signals, S; can be assumed smzil. For
small Si and a symmetrical noise density function,

anraed dn en Sl R FUUATLIRANE 20b tia 22034 A2 £ 55308 b 18 a8 Bl it L4

y; = 25; p,(0) (A-10)
and :
Var(y.) = 1 - 452 p2(0) (A-11) f
Y32 T 1o PRt - '

Substituting equations (A-10) and (A-11) into (A-3) yields the improvement
for the hard liwmiter,

2 2 2
Ly >4 p (@ , (a-12)
. i 2 2
with equality as s pn(O) approaches zero. )
The clipper is described by a transfer function such that
x. -c<x. <c ’
i ik e
y; = 1% x; > ¢
-C xi <-C, {A'l3)
where ¢ is 2 constant greiter than zero. The expected value of ¥Y; is found |
) from
3
- c o I-C
= - -8 - -
i Ic xs pn(xi Si) dxi + L c pn(xi vi) dxi + ) (-c) pn(xi Si) dxi.
(A-14)
A-3
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Again, letting S, beccme small, )
Y; = S;F » B
where c
p=2 ] p(x;) dx; . (A-15) ;
(] /
in a sirilar manner, the variance of the clipper output can be found:
Yar(y) fo-p(x)dx--l-c(l-p) - (A-16)
Substituting the above expressions into (A-3) yields the improvement factor
for the clipper:
o p2
L ] (A-17)
I p(X)dx-+cg1-p)
o
The hole puncher is sinmilar to the clipper except that the output is set
to zero if the input exceeds the threshold c. The mean and variance at the
output of the hole puncher are found by following the procedure utilized with
the clipper. The mean is given by
Y; =S5 [p - 2c pn(c)] ’ (A-18)
where p was defined in equation (A-15) and p,(c) is the noise density function
evaluated at c. The variance is given by
= 6 . ¢,
= 9 var(y,) = 2 fo x; p(x;) dx; (A-19)
3 ) ’ and the improvement factor by ’
E 3
j‘ - oi [p - 2c pn(c)]2 ‘ .
i ; 1~ IHP = c 2 . (:\-20)
3 ZL X; Pp{x;) dx;

L
AR .
2 4t
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It is interesting to note that while the SNR's at the correlator output
depend on the signal structure,the improvement factors for the four nonlin-
earities of interest are independent o the values of the signal samples.
This is a result of the small SNR assumption.
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3 Appendix B 3
' NUMERICAL COMPUTATION OF THE
3 HYPERGEOMETRIC AND GAMMA FUNCTIONS

E Inherent within the results of this report is the need to evaluate the

= density function , pp(z), for Middleton's Class B Noise Model and its deriv-
=3 ative, PI; (z). These functions are expressed in equations (B-1) and (B-2);

Py (2) is derived from p,(z) with the aid of the following identities:

2
&y
B

Jayhts

TR

e
iy Bk ¥4 1

3 d ey L3
-d—z lFl(a,b,Z) = b (a + 1 b + 1 Z)

N 4 i N
el Non oot e Feniata ey O

e

FPRYAE.

: ar(a) = r(a + 1)

PPV e

o (- 1) A
-~ 1 ) 1 2 :
pn(z) = pI(Z) =7 2 (ma - )1 l(mu — 5 —; = z) izl < ZoB
. m=0 .
(3-1)
_d -4z = (-1) ma + 3 mx+3_ 3 2
(8-2) :
where
0<a<? A >0
a

r(a) = Gamma Function

Sardity Aok aavt LaaimL

lFl (a; b; c) =Confluent Hypergeometric Function.

[FNTR LETN

Thus, both p_(z) and its derivative require computating the Hypergeometric
Functmn an(a, b; -z), and the Gamma Function, T'(a). For all values of a
and the index of sunation, m, indicated in equations {B-1) and (B-2), the

ATy

i parameters a, b, and z satisfy a > b > 0. and z > 0. This appendix outlines
' the algonthns used in this report to compute the Hypergeometric and Gamma *
: Functions for these ranges of arguments. :

The Confluent Hypergeometric Function, ,F_(a; b; ~2), is defined in
equaticn (B-3). This equation, however, is suitable for the mumerical com-
putation of jF;(a; b; -z) only for small arguments of a and z. Thus, equa-
tions (B8-4) through {B-6) are needed to evaluate the Hypergeometric Function
for a broader range of arguments, in particular large z:




P > 2

e . —=
TR 6339 .
= (), (-n* 2 .
1F1 (a; b; -2) =Z (B-3)
i=o (b). it B
1 ]
1Fl(a;b; —z) = e ¢ 1Fl(b - a; b; 2) (B-4)

(b - a) 1Fl(a ~1;b;-2) + (2a-b - 2) 1I’l(a;'b; -z) - a 1Fl(a + 1: b;-2) =0

= 3 (8-5)
e 3 Pb) ey @5 @3- e
,% lFl(a;b; -z) = T - 3 z Z 3 (z >> 0),
g e i=o i! z A
;o f
E. where
= A i-1 A
- 3 (@;=a@+1) (@a+2)-:-(@a+i-1= n(a+j) @ =1
- y=o
‘ : N = index of the smallestterm in equation (B-6).
-‘. i ’« Whereas equations (B-3) through (B-5) are ideatities, equation (B-6)
. LI is an asymptotic series approximation to the Hypergeometric Function valid
only for large z with respect to a and b. Note, however, that this asymptotic
2 & series is divergent for any given z since
; ((a) n+l (@a+1- b)n+1)
Lim \ ‘ne1, _ lim ‘ned _ lim @+ 1
E 3 G A T ( @, la+1- b)n)
= 3 vooom S
P
= _ 1lim 3(a‘vn) (a+1-b+n)_w
S T e m+1)z T
33 A
; . Hence, the point of truncation of the series, N, is important when using
" equation (B-6) to approximate the Hypergeometric Function.
i:’ K To understand the behavior of the teras of this asymptctic expansion, ’
b 3] consider the following:
e g - @, @+1-9) i (@, (@+1 'b_)n
n+l n M+ 1! zn+1 at oM

(a.)nl {(a+1-~ b)n

i ( 1 n+l [(a+n)(a+1-b+n)-(n+1)2].
n + 12 .




P T

!
. [}

¥
O 333 v

o
i

TR 6339

She ot .
JETNERATE 3

3

3
vedl/h phricnd

Since (a)p(a + 1 - b)_/(n + 1)! zn+1 is positive, the sign of t ; - tn is
deterained by the quadratic equation

[@+n) {a+1-D+n)~(n+1)z]
=ml+ Qa+1-b-2n+(a+a-abs+2)],

which has roots at

»n, = (z+b-22-1% QZZ +2z(1 +b - 23a) + (1 - b)z)/Z .

n

" E A . » v 5 + " i - V,
st o o A 0 st e e DS A Sk st it Bia

, = 1
i R Figure (B-1) is a graphical representation of this quadratic function.
‘ I::)n(;.: ; - Mg Goer ” =n)
. - M : L ./A_._._
ks > ) =2
15 =
I3 H Figure B-1. Graphical Representation of the Quadratic
= WEHM @) @+ 1-D5) ‘msl " 'n
i If n; and ny are both less than zero, equation (B-6) diverges immediately g

and should not be used to approximate the Hypergeometric Function for the

¥ given values of a, b, and z. If, however, nj and n, are of the opposite sign,
L the terms of the series initially decrease in value until n = ny and, then,

4 grow indefinitely. When both n; and n; are positive, the terms initially

3 increase in value, then decrease, and finally grow indefinitely again. In

2N ) these latter two cases, cone can find the smallest term of the series (i.e., the

% stopping point) by comparing the (n + 1)th term with th= nth term only after

= 3 the inde. exceeds nj. Thus, if n > ny, tp,3 > tp and ty < ty = 1 are all

= T 3 satisfied, the stopping index N equals n. If this last condition, t; < t_, is

9 = C the only one not satisfied, the first term of the expansion, t,, must be he i

E - 3 smallest and N is set egual to O. :

o <t bt e 2
(i gl Lt il 1
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e . The computation of pn(z) or ph(z) for a particular z requires evaluating
f; f; the Hypergeometric Function via a series in which the "a" argument [(ma/2)
E ;f + b)] is a linear function of the index of summation and is, therefore,
S increasing as more teras are included in the series. For large z, one hopes
‘ ' that the asymptotic expression (equation {B-6)) can be used, and that the
2 7'(+)/m! factor in equations (B-1) and (B-2) decreases rapidly enough so
that only a few terms in the summation need be evaluated to satisfactorily
approximate p,(z) or p '(z). By choosing to use equation (B-6) only when z > 10,
) one can guarantee that the asymptotic expression will be valid to approximate
1Fj(as;b; -2), for m = 0,1,2, a = (mx/2) + b, b= 1/2 or 372, and 0 < @ < 2.
If, however, the AR T'(+)/m! factor is not decreasing rapidly encugh to limit
. the number of terms required in equation (B-1) or (B-2), so that a = [(ma/2) + D]
becomes too large to use equation (B-o) to approximate the Hypergeometric
Function for the given z, then equztion {6-6) may beused ona - lora - 2 ---,
ard then equation (B-5) cam be utilized to iterate on "a" back to its original

value.
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- This iteration technique was also used to evaluate the Gamma Function, 2
T'(z), which appears with positive arguments in equations {B-1) and (B-2) and A
F e negative arguments in equation (B-6). A polynomial approximation to I'(z) Z
T (equation (B-7)) was used on the fractional part of the argument, thereby ks
! By requiring one to use the recursion relationship in equatiorn (B-8) to step the
: = argument up or down to its desired value: A
3
%
. 8 i =]
i I‘(z+1)‘§1+§ c.z 0<z <3 (B8-7)
3 i=1 7
3
H z2T(z) = T(z + 1) (B-8) :
q - 1 %
i T(z) Te? z(z’i) N2% e(l/lZz) 30 <z <55, (B-9) }
: where E

¢y = -0.577191652 cg = -0.75670 4078

c, = 0.588205891 Cg = 0.482199C7 .

¢y = ~0.897056937 c, = -0.193527818

Cg = 0.918206857 cg = 0.0358638343

Figures B-2 and B-3 are flow diagrams of the algorithms used in this
report to evaluate the Hypergeometric and the Gamma Functions, rzspectively.
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LET

a' =¥RACTIONAL PART]
ofF |b - al

a™ s3® - 1.

USE EQUATICN 2-3
TO EVALUATE

F(a* b2}
Fla=:bizd.

1

USE EQRIATION B8-5
T0 ITERATE THE "a™
ARANENT [ONN T0
17TS ORICINAL VALUE
OF (b - 3).

USE BQIATION B-3
10 EVAURIE
F otazh;-2) RN

F‘(':-a;:::l -

(=)

Figure B-2.

Flow Diagranm for Ev

Pl s KT v
P e - T

bioy = 1
lF‘(a 1]

RETURN
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USE EQUATION B-8
) = l ez ¢+ 1)

AND EQUATION 8-7
TO COMBUTE

r(z + 1)

USE EQUATION B-7 ON
'.] =z - INF(z)y + 1,
ITERAT): USING LQUATION
B8, 1.E.,
g i
2y - 1+F c.llzl—l)
iz}
”:l'“ = :lr(zl)

Ptz) = tz-lirgz-1.

RETURN

Figure B-3.

Beb6

r(z) = MAX VALUE

RETURN

i

LI L INT(-2) + !
ITERATE ON z USING
| EQUATION B-8, 1.E.,

8

1
[l + I ci“l'”

i=]

)

1
T2) = T T TN T T

USE F.QUATIONSB- 7

T(z) §1 « zci(z-l)i.
izl

RETURN

!

USE EQUATION B-9
‘r(z) ¥ 2,1/ »/Z_u el/12E

T(zy = MAX VALUE

ERROR
RETURN

RETURN

I

Flow Diagram for Evaluating the Gamma Function
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