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PERFORMANCE OF THE OPTIMUM AND SEVERAL SUBOPTIMUM
RECEIVERS FOR THRESHOLD DETECTION OF KNOWN SIGNALS

IN ADDITIVE, %HITE, NON-GAUSSIAN NOISE

INTRODUCTION

The additive noise encountered at a receiver input is often non-Gaussian.
If the non-Gaussian nature of the noise is Tot taken into account in the
design of the receiver, significant performance degradation of the receiver
can be expected. The purpose of this technical report is to describe the per-
formance that can be expected from the optimum and several suboptimum receivers
used for detecting known threshold signals in an additive, white (i.e.,
statistically independent noise samples), non-Gaussian noise environment.

The optimum receiver structure for detecting known threshold signals

in additive, white, non-Gaussian noise is the same as that which should be
used if the noise were Gaussian, except that a zero memory nonlinearity is
placed between the receiver input and the Gaussian detector. The input-
output characteristic of the nonlinearity is given by -d/dx (In pn(x)), where
pn(x) is the density function of the noise alone. The measure of performance
improvement obtained by including the nonlinear device is given by the ratio

of the signal to noise ratio (SNR) at the receiver output with the nonlinear-
ity in the circuit to the SNR at the receiver output without the nonline-
arity. The magnitude of this improvement is evaluated here using Middieton's
Class B Noise Model. The performance of several more easily implemented
suboptium nonlinearities, i.e., clipper, hole runcher, and hard limiter,
are also evaluated using Middleton's model; and typical performances
relative to the optimum are presented. Finally, the amplitude probability
distributions (APD's) of high level extremely low frequency (ELF) noise are
given and compared with the APD's resulting from Middleton's model. From
these APD's and the parametric results presented, the expected performance
of the optimum and suboptiium nonlinearities is derived.

S..OPTIMUM RECEIVER STRUCTURE

The optimum receiver structure for the threshold detection of binary
coherent signals in an additive, white-noise environment is well known. •
The derivation of this structure is summarized here.

Consider a discrete time, memoryless commmication channel in which one
of two known signals, = [SIS12, "' SN]' or_ = [S 2 1 , S22, - S2N]',
is transmitted every T seconds by successively transmitting the signal compo-

nents, Sji, (i = 1, 2, ---, N), every At seconds. Each digit, zi, in the
received sequence of digits z, is the sum of one of two known signals and a
white-noise component, hi. The receiver, then, mast decide between the two
hypotheses, Hl: z = S 1 + n and H2 : z = _2 + n, in such a manner that some

I criterion is optimized. For example, one may wish to minimize the expected

A-
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risk (Bayes Test) if costs have been assigned to all joint outcomes of
correctly or incorrectly choosing a particular hypothesis. Alternatively,
lacking such a cost structure, one may minimize the probability of an in-
correct choice (Ideal Observer Scheme).

Because the noise is white and the signal components are known con-
pletely, the conditional probability density function of the received vector,
z, can be expressed in terms of the density functions of the individual noise
components, Pn (ai); i.e.,

N
p(z/H) = pz(z ,_ z .. z/d) A l p ( - Si) Ci = 1,2)

The receiver decides between Hl and H2 by comparing pz(z/H1) with
pz(z/H2) relative to some constant threshold, A, determinea b--y the a priori
piobabilities of Hl and H2 and the optimality criterion. This is to say that
the receiver forms the following likelihood ratio as its test statistic:

-; N
S pn(Zi - Sli) H,

A pz(z/H1) i=l > i A

P 2
1  NPn(Zi - S2i) H2

Since the logarithm function is ronoton-ic, an equivalent test is

N N HIn A = Ir. p r:._Si • I p(i-Si In X
inA -WS.i d IniLl P'n~li -'2i)~ ' A.i=l 1" z "1

Considering the case of threshold detectioa, lit the signal components,
S -i(j = 1,2, i = 1,2 ... , N), be sufficiently s€-a3l so that each term in the
at-ove expression can be expanded in a first order Taylor series about z.
The log likelihood ratio test then becomes1

S~~~In A n(i Sli In pn(zi) •_i~l •i

dz1

n [ in - In Pn(Z> nX
-inPn(zi) S 2i~ d lpzzi 1- <

i3l 1
H4

~--------- -- ~- 2
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or
N N

lnA "= -n pn lnp( i Pn(zi) "InA (1)1=1 Aidz. n iJ 21i7 dz. in<
S• H2

Equation (1) implies the block diagram of figure 1 for the optir"al
ireceiver structure. Note that it is just a correlation receiver in which
a zero memory function, - d/dzi (in pn(zi)), operates on the received signal
prior to the correlation. Note also that the receiver is canonical; i.e.,
its general form and decision logic is not based on any particular model of
the noise environment. However, the receiver must "knoW" (or estimate) the
noise density function in order to implement the - d/dzi (ln pn(zi) operation
in the block diagram. If the noise environment is changing slowly in time, A
the optimal receiver must be adaptive.

When the noise is Gaussian, the - d/dzi (In pn(Zi)) function is linear in
zi and, as such, may be incorporated as a gain factor (weight) within the
signal component, Si,, so that the optimum receiver structure is exactly
that of a correlator:

d d z1 /2 2 -
Gaussian noise d In pn(zi) = -

~d .i z . . n 2iia

For a non-Gaussian noise density, however, the derivative of the log density
function is not a linear function of the received waveforms. Thus, the
"optimum receiver structure is a correlator preceded by a zero memory circuit
whose input-output characteristics depend cnly on the noise probability
der.sity function.

As an example, it has been proposed that naturally occurring electro-
mag-ictic noise below 100 MHz is Gaussian distributed with occasional large
amplitude noise bursts, which occur often enough to affect the tails of the
noise densil ". Several authors"- 6 have suggested that the density function
describing t -ese tails folloiws an e-aIzil (0 < k < 1) law. The smaller the
k, the more impulsive the noise (see figure 2a). For this noise density,
the input-autput characteristic of the optimal nonlinearity is shown in 7
figure 2b. As the noise becomes more impulsive, the nonlinear device
suppresses the larger noise excursions to a greater degree.pI

t PERFORMANCE MEASURE

After the optimal receiver structure has been derived, a natural question
to ask is how much performance improvement can be expected using this receiver
compared with one in which the nonlinearity prior to the correlator is sub-
optimal or absent? Usually the performance of a receiver is measurcd by the
probability of error for a given signal energy. This requires that the
probability density function of the test statistic be known or, alternatively,

3
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that the probability of error can be bounded in some manner. Under the
assumption of threshold-type signals, the correlator must sum many received
symbols to increase the SNR for satisfactory performance. As was seen
previously, the nonlinear device tends to suppress large amplitude vari-

ations; thus, each received digit is bounded. (From a practical point of
view, the received symbols are always bounded owing to the finite responses
of amplifiers, filters, etc., even when the receiver is linear.) The test
statistic, therefore, is the sum of independent, finite variance random
variables and, by the Central Limit The~rei, is asymptotically Gaussian
distributed. Since the density function of a normal random variable is
completely specified by its mean and variance, the SNR at the output of the
correlator may be used to express the receiver performance. P!ence, define
the improvement factor, I, as the ratio of the SNR's at the output of the
receivers with and without a nonlinear noise processor:

SNRNL SNR at output of receiver with nonlinearity present
NIR = S -§,W -at output of receiver with nonlinearity removed

Assuming threshold binary equal-energy signals, the improvement factor
for the optimal receiver is (see appendix A)

[ad 1

CF~J [ d l ]2 2~ d - ( pn(- Iopt - In p pn) dz =o p(z) dz , (2a)

where a- is the variance of a received symbol (i.e,, the power of the noise
component). When the noise is Gaussian, the improvement factor equals one.

Although the optimal receiver structure is canonical in form, it may be
difficult to implement. This leads one to investigate simpler, suboptimal
nonlinear processors using the improvement factor to compare the performance
of various processors. Appendix A derives the improvement factor for three
common nonlinear devices: the hard limiter, the clipper, and the hole
puncher. The results are listed here for convenience:

1HL 4 2 2 (0) (2b)

n
I'= 2 pn(z) dz +i c2(1 - p)(2c)

IH= l2 p - 2c Pn'(c) 2 J' z pn(z) dz , (2d)

4
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where

p Pn(z) dz = Probability of being in linear range of nonlinearity

-C

c = Linear range of nonlinearity (see figure 3).

The input-output characteristics of the above devices are shown in
figure 3. Note that the hard limiter is the optimum nonlinearity when the
noise has a density function of the form pn(z) = Ae-lz[K Comparing figure 2b
with figure 3, one sees that the clipper is optimal and that the hole punJcer
is near optimal when the noise is Gaussian with tails distributed as e-!zl
for k = 1 and 0, respectively. It should also be pointed out that although
the noise power, a 2 , appears in each of the above expressions, it does not
affect the comparison of one nonlinear device with another, though it cer-
tainly is important when comparing a nonlinear receiver with a linear one.

CANONICAL NOISE MODEL

As is evident in the above discussion, the optimal receiver structure
is highly dependent on the probability density function of the noise.
Although various noise models have been proposed for particular environments,
the only general model available to date is that suggested by Middleton.- 9

His model, the Class B Noise Model, which is analytically tractable and is in
excellent agreement with measured data for a variety of cases, is canonical
in nature. That is to say the noise density function, which is characterized
by various parameters, does not change form.

Based on the bandwidth of the interference relative to the receiver
bandwidth, Middleton defines two major classes of noise. Of interest here
is the Class B Noise Model in which the interference is highly impulsive,
resulting in a noise bandwidth much greater than the receiver's front end
bandwidth. For this case, the model for the amplitude noise probability
density is expressable as two distinct functions: one valid for izi : zoI•B
and the other for JzJ > ZoB . The second function approaches zero much
more rapidly than the first as z ÷ . It was already pointed out that a
nonlinear device operat-ng on threshold signals in this type of noise envi-
ronment will suppress large voltage excursions in the received waveform.
Thus, the noise power at the output of the nonlinear device is pA-imarily
determined by the noise density function, pn(z), for Izi less than zc ,
i.e., the value at which significant suppression occurs. The more impul-4• sive the noise environment, the more likely zc is much smaller than zoB
For this reason, only the first function in Middleton's model is used here.
Thus,

CI A
-( p(z) t- ( E -l Fl (!+ 1 1
Pnm. " 2 2z P M'S~M=O

I sz . B (3)

S
.. . .
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where

0<ca<2., A >0

r(-) = Garma Function

F (a;b;x) = Confluent Hypergeometric Function.

Three values, A. , , and ZoB , define the noise model. One can
normalize the probability density function defined by these three values to
unit variance, for I z < zo8 , by introducing a fourth parameter, 1 . This
is done by changing the variable of integration from z to z as follows:

a2(z z 2po(z) dz
oB n

oBiit pn(1 d- 4
=> 1 o= .pC2 d•_ * 4)1

OZB

where

z 4b ZB ro h

-Z oB

R 1/0 (z ____ ___ ___

m m

1 (-I) A (ml+l:F(nt 
+1 !; 2J 5pMz a! -2 Jl 2 2

:=m 0

Z4
Typical density functions normalized for unit power with zoB 10 are

plotted on a log-log scale in figures 4 and S. Note that for constant A.
(figure 4), the more impulsive densities, i.e., those whose tails approach
zero more slowly, are characterized by smaller a values. In fact, one can
see in figure 5 that the slope of the tails is determined by the a parameter.

* Although the role of A. is not as readily apperent as that of a, it is
related to the slope of the density function during the transition from the
Gaussian portion of the distribution to the non-Gaussian tails and to the
range over which the density function is Gaussian-like. The "bendover"1 point,
ZoB, is that point beyond which equation (3) no longer adequately describes
the true density.

4-6
= .A



TR 6339

COMPARISON OF NONLINEAR DEVICES IN CLASS B NOISE ENVIRONQENT

The improvement factor of a nonlinear receiver is a function of the total
noise power, the shape of the noise density function that yields that power,
and the input-output characteristics of the nonlinear device. Equation (4)
indicates that the noise power depends on ZoB, the bendover point in
Middleton's Class B Noise Model. Intuitively, the more ZoB exceeds the
suppression range of a nonlinear device, the greater the improvement factor
for that device. An example of this can be seen in figure 6. Note that the
increase in the improvement factor is entirely due to the increase in the
variance once zoB exceeds a particular value.

Figures-7, 8, 9, and 10 show the improvement factor Zor the optimal non-
linear receiver versus ioB for various noise statistics. (These results

were obtained using equations (2a) and (4) and normalizing as in equation (5).)
For these calculations pn(z) for z > ZoB was assumed to be zero. As Aa
approaches zero (figure 7), the density function is Gaussian over a greater
range of values and, therefore, the improvement factor depends strongly on
the shape of the tails. If the tails are decaying rapidly (larger a), only
modest improvements are to be expected. On the other hand, if the tails IA,

Sapproach zero very slowly (small a), significant processing gains may be
achieved using the optimum nonlinear receiver over a linear one. As A.
increases (figures 8,9, and 10), the noise is Gaussian over a smalier range
of values; and improvements will occur at smaller values of ZoB. Here, also,
the shape of the tails greatly affect the processing gain. In general, for
a given zoB, the improvement factors increase as Aa increases and as a
decreases.

One of the primary goals of this report is to rate the performance of
simpler suboptimal nonlinear receivers. The improvement factor for the hard
limiter, the clipper, and the hole puncher were evaluated under a variety of
noise conditions using Middleton's model and equations (2b)-(2d). Typical
results are shown in figures 11-14. The performance of the clipper and the

D: hole puncher are functions of the "clip level," i.e., the percentage of time
the input is in the nonlinear portion of the device's operating characteris-

tics. The hard limiter is a special case of the clipper in which the clip
level is set at 100 percent.

Figures 11, 12, and 13 present the ratio of the clipper improvement
factor to optimum improvement factor versus clip percentage for various A
and a. While the optimum clip level, i.e., the clip level that results in
the best performance, depends on the noise parameters defining the density
function, the performance of the clipper relative to the optimum nonlinearity4 •is not a strong function of the percentage of time that the input is in the
nonlinear portion of the transfer function. In fact, by setting the clip
level to obtain 90 percent clipping, the clipper performance will remain
within about 4.5 dB of the optimum over a large range of noise parameters.
When figures 7-10 are used as an absolute measure, the optimal improvement
factor is large ior just those values of a for which the clippers' perform-
ance decreases. As the optimal performance drops in value due to an in-

creasing a, the clipper's performance increases so that, relatively speak-
ing, the clipper is always close to the optimal.

-"- , ,- 7
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Even simpler than the clipper is the hard limiter, which approaches the
performance of the clipper without the requirement cf adaptive control of I
"the clip level. The more impulsive the noise, the closer the hard liiiter's

performance approaches that of the optimum clipper.

The relative performance of the hole puncher (figure 14) is very sensi- T
tive to both the clip level and the parameters of the noise density; but,
when adjusted properly, it essentially can achieve optimal performance. Thus,
while the transfer characteristic is easily implemented, logic is required
to estimate the noise parameters, and adaptive control is needed to maintain
the proper clip level.

The four nonlinear devices discussed in the report form a hierarchy of
receivers based on ct.mplexity and performance. Although each application
determines the exact tradeoffs, there are many cases in which the simpler
suboptimal devices are more cost effective than the optimal.

ELF RECEIVER PERFORMANCE

In this section the general results obtained in the previous sections
are applied to the ELF range of electromagnetic comimunications. Several digi-
tal tape recordings of t1-pical high level ELF noise from the Saipan area were
analyzed to yield amplitude probability distributions. These measured distri-
butions are compared with distributions computed from Middleton's Class B
Noise Model , equation (5), and the parameters A., a, and ZOB are determined.
From these parameter values and figures 7, 8, and 9 the expected performance
"for the optimum and suboptimum nonlinearities can be determined.

Figures 15-17 are plots of the amplitude probability distributions of
typical high level ELF noise from Saipan. The noise was bandpass filtered
to 20-150 Hz and each distribution was measured over 400 s. The ordinate
of these figures is the percentage of tine that the magnitude of the noise
exceeds the abscissa level; the reference level of the abscissa is the rms
level of the noise. The individual squares on the plots are points from

- ��Middleton's model. From these plots it is clear that the amplitude proba-
bility distributions and density functions of actual ELF noise can be
described accurately by the amplitude distributions and densities resulting
from Middleton's model. For these high levels of ELF noise, the parameter
values range over A. = 1.0 - 1.5, a = 1.2 - 1.4, and ZoB approaching 40 dB.
An optimally designed nonlinear receiver could be expected to perform I0-20 dB
better than a linear receiver for these parameter ranges; however, the c--tual
performance will depend on the particular combination of parameter values.
If a clipper were utilized and set to clip between 20-80 percent of the time,

A its performance would be within about 1 dB of the optimum nonlinearity.

The current Propagation Validation System (PVS) ELF receiver utilizes
a clipper that adjusts itself so that the received signal and noise is clipped
40 percent of the time. This rather simple device, which does not necessitate
any complex noise parameter estimation, provides performnance that is

8
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comparable to that provided with the optimm nonlinearity. A detailed
analysis of the nonlinear noise processing, including the aspects leading
to the design and measured performance utilized in the Navy's ELF
receivers, is contained in references 1 and 10.

"CONCLUSIONS

The optimm receiver for detecting known threshold signals in additive,
white, non-Gaussian noise has been descriled and its performance is defined
as a function of the noise amplitude probability density function. The
optimum receiver's performance has been calculated and plotted versus various
ranges of the parameters defining Middleton's Class B Noise Model. Prom
these plots it is apparent that the optimum nonlinear receiver can yield very
significant performance improvements relative to the receiver that is optim
in Gaussian noise. Implementation of the optima nonlinearity, however, can
be rather complex, requiring real-time estimation of the noise parameters.

"The performances of several suboptimum nonlinearities were calculated
and their performance relative to the optimum was plotted. A properly
adjusted hole puncher yields performance within 1 dS of the optimau; however,
its' relative performance is very sensitive to the percentage of time the
input is suppressed. Proper adjustment requires estimating the noise param-
eters, as is also required for the optimum nonlinearity. The performances of
the clipper depend on the noise parameter values and the percentage of clip,
as does the hole puncher; however, it is less sensitive to these values than
is the hole puncher. A simple clipper adjusted to clip 90 percent of the time
yields performance within 4.5 dB of the optimum over a wide range of noise
parameters; the relative performance improves as the noise becomes less
impulsive. The hard limiter, requiring no adjustment, yields performance within
2 dB of the optimum clipper; the performance relative to the optimu clipper
iaproves as the noise becomes more impulsive.

The instantaneous amplitude probability density function resulting from
Middleton's model fits measured high level ELF noise quite closely with
A• = 1.0 - l.S, a =.2 - 1.4, and ;oB 2 40 dB. For this range of parameters,
a clipper adjusted to clip 40 percent of the time, as does the PVS ELF
receiver, provides performance within 0.5 dB of the optimm.

Reco3mendations for future work include

=i• I. Determine optimua receiver's performance sensitivity to inaccuracies
in parameter estimation.

2. Extend results to determine performance of these threshold
receivers for nonthreshold signals.

3. Compare predicted performance of the optimum receiver, as defined
here, at very low frequency (VLF) with measured performance of existing VLF
receivers.

4 9
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Figure 1. Block Diagram of Optimum~ Receiver
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Appendix A

DERIVATION OF THE IMPROVEMMT FACTORS
FOR SEVERAL NONLINEARITIES

In this appendix the improvement factors for the optimum nonlinearity,
the hard limiter, the clipper, and the hole puncher are derived. The i2prove-
ument factor is defined as the signal to noise ratio (SIM) at the correlator
outputwith the appropriate nonlinearity in the signal pathdiviaed by the
SNR with the nonlinearity removed. The improvement factor is an indication
of the performance improvement or degradation that is expected owing to
inclusion of the nonlinear device in the signal path. The test statistic at
the correlator output is the sum of independent, finite variance random
variables; and by the Central Limit Theorem it is asymptotically Gaussian
distributed- Hence, the output SMR is sufficient for describing receiver
performance for large N.

The receiver structure of interest is shown in figure A-1. Each input
sample, xi, is the sum of a completely known signal sample, Si, and an inde-
pendent noise sample, ni. The signal samples are considered to have come
from one of two binary equal-energy signals; the noise samples are identically
distributed zero mean with variance 04 and have a symetric first order
amplitude probability density function. The yi are the outputs of a zero
memory nonlinearity, f(xj). The test statistic, 6, is the sum over i of N
products of the form Sliy The SNR at the correlator output is defined as
the ratio of the square of the expected value of 6 and the variance of 6.
Remembering that the Si are completely known, the SNR at the correlator output
with the nonlinearity in the circuit is easily found to be given by(N2

•i• S•:L= S2Saiy 1

i=1 lAl

SNR%'

S Vat(y i)

* IFigure Aol. Optimum Receiver Structure for Threshold Detection

With the nonlinearity removed•, the SNR at the correlator output is given by

Si

NL= i= .. (A-2)

X

0
n

S..

EAl
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resulting in an improvement factor, I, of 
J

SNL n(iil
1\i___ Ll ~(A-3)

In order to evaluate the improvement factor for the various nonlinear-
ities of interest, the mean and variarce of the samples at the nonlinear out-
put are nbeded.

For threshold signals in independent, identically distributed noise, the
* optium nonlinearity takes the form

yi = f(xi) = - In PhC(x) ( A-4)

where pn (xi) is the amplitude probability density function of the noise-only
i samples. The expected value of yi is given by

r
= i In Pn (xi) Pn(xi - dx (A-S)

It is possible to expand pn(xi -Si) in a Taylor series about xi, and the
terms in Si of order two and greater can be dropped for threshold signals.
Then, using the fact that pn(xi) is symmetrical, yi is found to be

S~Iyi SAL (A-6)

Using a similar approach, we find the variance of the nonline-Ar output to be

Var(yi) = L(l - S(A-7)

The improvement factor for the optimum nonlinearity is, then, given by

2
n]) n 1

A-2
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2
with equality as S. L approaches zero. a

1

The hard limiter is defined by a transfer function such that y-. +
x- > 0 and Y-. -1 for x. < 0. The expected value of y- is given b

2 pn(x- S,) dxi] 1 (A-9)

where the expression within the brackets is sinply the probability of y= +1.
Since we are interested in comparing the various nonlinearities under similar
signal conditions, i.e., threshold signals, Si can be assumed small. For
small S- and a symmetrical noise density function,

y.=2S. pO (A-10)Yi i Pn(0)

and

2 2
Var1- ( Pn(0) . (A-11)

Substituting equations (A-10) and (A-Il) into (A-3) yields the improvement
for the hard limiter,

4L (0) (A-12)

2 2
with equality as 4S, p (0) approaches zero.

The clipper is described by a transfer function such that

II

-c x- <- c, (A-13)
] i

where c is a constant pre-ater than zero. The expected value of yi is found
from

•|•iil Yi=I xi Pn(xi _Si)dx +' ni 4-S~x f[- (- n pxi -$,d

(A-34)

A-



TR 6339

"Again, letting S. beccue small,
1

y= Sip--,

where c

p = 21 pn(x) dxi (A-15)
0

In a similar manner, the variance of the clipper output can be found:

Var(yi)= 2 xi Pn(xi) dxi c2(I - p) (A-16)
•ii

0

Substituting the above expressions into (A-3) yields the improvement factor
for the clipper:

2

* = 0 (A-17)

2 .. i Pn(Xi) dx1 + l - p)

The hole puncher is sinilar to the clipper except that the output is set
to zero if the input exceeds the threshold c. The mean and variance at the
output of the hole puncher are found by following the procedure utilized with
the clipper. The mean is given by

• -= p[ - 2c pn(c)] (A-18)

where p was defined in equation (A-15) and pn(c) is the noise density function
P \ evaluated at c. The variance is given by

j2

Var(yi2) = p (x-) dxi (A-19)
f ni

0

and the improvement factor by

n
I -c] (A-20)

2 x pn(x.i) dx

0

AA-4
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It is interesting to note that while the SNR's at the correlator output
depend on the signal structure,the improvement factors for the four nonlin-
earities of interest are independent o-7 the values of the signal samples.
This is a result of the small SNR assumption.

I-
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Appendix B

NUMERICAL COPUTA..TION OF THE
HYPERGEOMETRIC AND GAMMA FRNCTIONS I1

Inherent within the results of this report is the need to evaluate the
density function , pn(z), for Middleton's Class B Noise Model and its deriv-
ative, P. (z). These functions are expressed in equations (B-l) and (B-2);
p' (z) is derived from pn(z) with the aid of the following identities:

dadz iFl(a;b; z) = iFl(a + 1; b 1; z)ýff1 1] 1b1-

ar(a) r(a + 1)

ii•, (_l)m Am

a__i .= = - r + A a +l 1 2) Iz < Z

p'(z) dIz M4 (1z 1 ~ 2 ~ ;jj<B

.... r- 2 /1 1F l(_ 2 Y •- Il< oB
S-0

-n -1) le~a (3M +X _ma2) I
'Pn = nz d9 E4 R.C-)! 1 1 )ll 2 ;2 ; ow"

3=0

(B-2)
where

"0 o< a<2 A >0

r(a) =Gamma Function

1F, (a; b; c)= Confluent Hypergeometric Function.

Thus, both p (z) and its derivative require computating the Hypergeometric
Function, lF1(a; b; -z), and the Gamma Function, rCa). For all values of a
and the index of summation, a, indicated in equations (B-l) and (B-2), the
parameters a, b, and z satisfy a > b > 0. and z > 0. This appendix outlines
the algorithms used in this report to compute the Hypergeometric and Gamma
Functions for these ranges of arguments.

The Confluent Hypergeometric Function, 1 F (a; b; -z), is defined in
equaticn (B-3). This equation, however, is suitable for the numerical corn-
putation of iFl(a; b; -z) only for small arguments of a and z. Thus, equa-
tions (B-4) through (B-6) are needed to evaluate the Hypergeometric Function
for a broader range of arguments, in particular large z;

B-1
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°iii

( Ca)( z
F (a; b; -z) =• (B-3)

i• i•-1=0 (b) i!

1 (a; b; -z) e- Cb- a; b; z) (B-4)

(b - a) 1 F (a - 1b; -z) + (2a - b - z) 1Fl(a;b; -z) - a 1 Fl(a + 1: b; -z) = 0

(B-5)

1F 1 (a;b; -z) 1 - a r(b) Nia (.Z > 0), (B-6)
r b-a i=0 i! z

where

(a). = a(a + 1) (a + 2)-.-(a + i - 1) = , (a + j); (a) = 11J=o

N = index of the smallestterm in equation (B-6).

Whereas equations (B-3) through (B-5) are identities, equation (B-6)
is an asymptotic series approximation to the Hypergeometric Function valid
only for large z with respect to a and b. Note, however, that this as)mptotic
series is divergent for any given z since

((a)n (a + 1 - b)n

n.- n n
(li n n li (n 1 + 1)! z /

n-- -, it n-' ,(a (n n ) n )n

I lin (a +n) (a + I -b + n) _O

n-- (n + 1) z

- •. Hence, the point of truncation of the series, N, is important when using
equation (B-6) to approximate the Hypergeometric Function.

To understand the behavior of the terms of this asymptotic expansion,
* consider the following:

(a)n+ (a + I b)n÷ (a)n (a + I -b)n
:~ tn+l tn n +I. n+l -n' n

•i(a)n (a + I b)n

(nn! ((a + n) (a + 1 - b + n) -(n . l)z]

B-2
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n~lSince (a)n(a + 1 b) /(n + W z is positive, the sign of tn+ - t is
i*. determined by the quaZIratic equation

[(a + n) (a + 1- b + n) - (n + 1) z]

2 2
=.[n + (2a + 1- b -z)n + (a + a -ab +z)],

which has roots at

nln 2 = (z + b - 2a - 1 4 + 2z(1 + b 2a) + (1 b )/2

Figure (B-i) is a graphical representation of this quadratic function.
SI.

Figure B-1. Graphical Representation of the Quadratic
n+1

Function (n + ) t)(a) (a + I - b) n+l n

If nI and n2 are both less than zero, equation (B-6) diverges immediately
and should not be used to approximate the Hypergeometric Function for the
given values of a, b, and z. If, however, nI and n 2 are of the opposite sign,
the terms of the series initially decrease in value until n = P2 and, then,
grow indefinitely. When both n, and n 2 are positive, the terms initially
increase in value, then decrease, and finally grow indefinitely again. In
these latter two cases, one can find the smallest term of the series (i.e., the
stopping point) by comparing the (n + 1)th term with th- nth term only after
the inde- exceeds nI. Thus, if n > nl, tn+l > tn and tn < to = 1 are all
satisfied, the stopping index N equals n. If this last condition, tn < t is
the only one not satisfied, the first term of the expansion, to, must be •he
smallest and N is set equal to 0.

The computation of pn(z) or pA(z) for a particular z requires evaluating
the Hypergeometric Function via a series in which the "a" argument [ (mra/2)
"+ b)] is a linear function of the index of summation and is, therefore,
increasing as more terms are included in the series. For large z, one hopes
that the asymptotic expression (equation (B-6)) can be used, and that the
tfr(-)/m! factor in equations (B-1) and (B-2) decreases rapidly enough so
that only a few terms in the summation need be evaluated to satisfactorily
approximate pn(z) or p n(z). By choosing to use equation (B-6) only when z > 10,
one can guarantee that the asymptotic expression will be valid to approximate

0Fi(a;b; -z), for m = 0,1,2, a = ima/2) + b, b = 1/2 or 312, and 0 < a < 2.
Ifhowever, the AI r(*)i!= factor is not decreasing rapidly enough to limit
the number of terms required in equation (B-I) or (B-2), so that a = [(m2.12) +b]
becomes too large to use equation (B-6) to approximate the Hypergeometric
Function for the given z, then equation (9-6) may be used on a - I or a - 2 --- ,

- and then equation (B-S) can be utilized to iterate on "a" back to its original
value.

B-3
...............-..-
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This iteration technique was also used to evaluate the Gamma Function,

r(z), which appears with positive arguments in equations (B-1) and (B-2) and
negative arguments in equation (B-6). A polynomial approximation to r(z)
(equation (B-7)) was used on the fractional part of the argument, thereby
requiring one to use the recursion relationship in equation (B-8) to step the
argument up or down to its desired value:

8 
*1

r (z + 1) 'T 1 ÷+ ci zi 0 <_ z < I (B-7)

zr(z) = r(z + 1) (B-8)

i |i ~-Z (1/12z_)
r(z) = e (z-½5 ee 30 < z < 55 ( CB-9)

where

cl = -0.577191652 c 5  -0.756704078

c= 0.988205891 c6 = 0.48219 9-"

c= -0.897056937 c 7  -0.19352 7818

c = 0.918206857 C 0.03586 8343

Figures B-2 and B-3 are flow diagrams of the algorithms used in this
report to evaluate the Hypergeometric and the Gala Functions, respectively.

-B-4
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USE EQUAriON 8-7 ON

., z . INT(-z) - 1.

ITERATE ON z USING
?z INTEGER? NO EQUATION B-8 I.[.,

r i z ) z I I i I .1 I

I1'I EUTONB8NO 
r(z} - MAX VAILUE T-.r - -IT( -

|lISI I!QIIAT|ON B-aI
:IZ) - r( z Y

VNI) EQuATION B1-7 0 < a I? RTR

ITO (:ONIBUIrICýi

USNE IiQLAI ION 8-7 ON
' = - - I 1I )! ) - I,

I TIRAl II USING; EQUATION
Il-- , I.>,

8

12I)i z(r(z- I

• I USE EQUATION B-9
30 z R55EYSU-R2-/2

It •r(z) C V/ (±! 2W Ie/12z

RETURN

Figure B-3. Flow Diagram for Evaluating the Gamma Function
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