
A109 259 NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA F/6 5/1
DESIGN ACHIEVEMENTS OF THE COMMAND CENTER INFORMATION SUBSYSTEM-ETC(U)
AUG 80 D L SMALL- D 0 CHRISTY

UNCLASSIFIED OSC/TR-581/L

-i'll..--//lnE lllEn,

mimmm
DTIC

i i, _ 1 2.8_ 2.5

32-1111112.2

- I-l36

IIIJI 25I I -6

MICROCOPY RESOLUTION TEST CHART

0

. nn 0+

Technical Report 581

DESIGN ACHIEVEMENTS OF THE COMMAND.
CENTER INFORMATION SUBSYSTEM (CCIS)

A dynamic and extensible computing system
for natural language understanding of

Navy command center information
qJ4 DL Small and DO Christy

0 30 August 1980

Prepared for
Naval Electronic Systems Command

C Approved for public release; distribution unlimited

LI"

i "J NAVAL OCEAN SYSTEMS CENTER/ ~ SAN DIEGO, CALIFORNIA 92152

81 I
* .

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

SL GUILLE, CAPT, USN HL BLOOD
Commander Technical Director

ADMINISTRATIVE INFORMATION

Work was done under program element 62721N, subproject
XF21241100, by the Communications Support System Branch (Code 8121).

Released by Under authority of
HF Wong, Head HD Smith, Head
Ship and Shore Communications Communications Systems and

Systems Division Technology Department

tJNCLASSIFI 213
1%9Cu~tIt CLASSIFICATION OF THIS PAGE (IWhen Date Entered)__________________

REPORT DOCUMENTATION PAGE BEFORE__COMPLETINGFORM

T ... 7 - . GOVT ACCESSION NO, S. RECIPIENVS CATALOG RUIADE14

NOSCI'Technical epet ~1 (TR 581 D ~

4 T171a I-d5. TYPE OF REPORT a P9

I IGN 49JIIEVEMENTS OF THE ,g9MI4AND fyanER FORHA-
'.....TI § UBSYSTEM (gU A namic and' xtensible

,omputi ng stem for R iatual Janguage ynder- 6.

*tandi ng of' Navy omAn ner informaotion.
~I.~mai~~hrityI. CONTRACT OR GRANT NUMBER(&)

9. PERFORMING ORGANIZATION NAME AND N~PR 1 1. PROGRAW ajWT, P OET. TASK

Naval Ocean Systems Center621NXF241 I

IL. CONTROLLING OFFICE NAME AND ADDRESS

1.MONITORING AGENCY NAME A ADDRIESSQIf different from, Ccntroling Office) IS. SECURITY CLASS. (of Ole. roeff)

Unclassified

Ise. It- ASSI FICATION/ DOWN GRAING
SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of thea bstract entred in Stock "0, it di1tffrm Roeot

III. SUPPLEMENTARY NOTES

19. KEY WORDS (Contiue an reverse side If necessary and fah"H&* air block number)

Command Center Tniformation Subsystem (CCIO)
Information systems
Management information systems

AfA@? PACT (Cantih. -n reverse side I iiaeg..eYand identjib, 6F eek umb"r)
CCIS is a revolutionary new hardware and software system for Navy data manage-
ment, giving a command center the capability for providing high quality infor-
mation to its commander as an aid in his iecision making. It allows process-
ing of natural language queries to proceed at the same time as dynamic data
updite. It provides extensibility so that the computer can "unde rstand" the
commander's individualized description of data received in the command center
from standard static and dynamic source.-. It also allows those dynamic source
to be customized uniformly to the DarticALJAr N & f" aonn ano. --

DID I F'N? 1473 EDITiom Opp 1Nov Is oSSOLSTE NLSSF
S/% 0102LF41d4-661 UCAQI

SeCUP11T CLASSIICATION of, Tells FARI 096en 7"W

L93ASL ~k

DESIGN ACHIEVEMENTS OF THE
COMMAND CENTER INFORMATION SUBSYSTEM (CCIS)

A Dynamic and Extensible Computing System for Natural Language Understanding
of Navy Command Center Information.

I. INTRODUCTION

The Command Center Information Subsystem (CCIS) is a Navy exploratory develop-
ment project, begun in FY76 and completed in June 1980. It is a revolutionary new hardware
and software system for Navy data management, giving a command center the capability for
providing high quality information to its commander as an aid in his decision making. The
system allows processing of natural language queries to proceed at the same time as dynamic
data update. It provides extensibility so that the computer can "understand" the commander's
individualized description of data received in the command center from standard static and
dynamic sources. It also allows those dynamic sources to be customized uniformly to the
particular command center. Such alterations can facilitate using a data base for, among other
things, analyzing the state of enemy forces, assessing the readiness condition of own forces,
determining the status of communications possibilities for a task force and planning of possible
engagement with the enemy. CCIS' approach to dynamic data update provides current
"real time" information to the data base to support those functions.

The stated objective of CCIS has been and is today to improve the quality of information
available for use in the command center. Responsible command center commanders are
presently inundated with massive quantities of data and often cannot readily access the data
they need to aid in making the decisions they face.

The questions hardest to deal with and understand are

1. which of that data IS relevant in aiding the commander's decision making,
2. how does he describe that data,

3. how can the computer understand his description, and

4. how can timeliness of retrieval and integration of relevant data be assured.

It is NOT the intent of CCIS to help the commander decide which data IS relevant.
Rather it provides EXTENSIBILITY so that the commander, for ease of understanding, can
individualize the description of data received in the command center from standard sources
and so that those sources can be customized uniformly to the particular command center
(sources may vary between ships depending on the degree of automation available or the
function of the command center; i.e., carrier task force command center, amphibious
command center). For any given CCIS installation, the standard database description; i.e.,
all static database elements and the vocabulary which describes both static and dynamic data
base structure, is stored permanently on CCIS's bulk storage unit. Those descriptions can be
altered only in the commander's working copy of the standard database description.

Such alterations can facilitate using the database for planning and threat analysis. For
instance, the commander could pose the hypothetical question of what would be the shortest
time required for the most ready of the Task Force's units to intercept a disabled vessel which
had been picked up on Task Force radar, where positions are dynamically updated in real
time for all platforms involved and the most ready units are defined to be those with the most
fuel. Or the commander could ask what would be the Task Force's radius of detection,
where radius of detection was the greatest range of the Task Force carrier's aircraft. Or, the
commander could ask what would be the weapon range of hostiles, where hostiles

are Russian boats whose distance is less than 100 miles from the track of the Task Force
carrier. Such alterations do not modify the standard database definition, allowing a new
commander to use the system without having to learn the specialized vocabulary of the previous
commander and without being constrained by it.

These alterations are all explicit extensions to the CCIS system by the operational
commander and his staff to facilitate its use in command center problem solving. The compu-
ter's understanding of his intent thus is limited to the processing of those functions and
vocabulary he defines plus processing of a basic set of database management utilities for data
update, retrieval and analysis. There is no attempt by the computer to "guess" his intent
through construction of semantic models of his reasoning or through inferring meaning from
informal English text which he or others might draft. Rather attention is paid to high per-
formance understanding by the computer of those problems which the commander himself
can explicitly, yet naturally, describe and understand. Such performance is accomplished
through a functional separation of translation, performed by the Query Processor (QP) of
natural language queries into data analysis and update commands from the execution of
those commands in a back end Data Processor (DP). A third processor, the Interface Proces-
sor (IP), is used for interface to non-CCIS automated data sources (see Figure 1).

The objective of this report is to summarize the CCIS system capabilities and outline
design issues uncovered in the process of its development. The following describes in detail
the CCIS static and dynamic data models, extensibility capabilities provided, types of queries
possible and the system architecture developed to support this processing.

II. THE DATA MODEL

The data model in which the standard database is described and which the user
can manipulate is a primitive relational one. The primitive unary relations are termed "CLASS",
and are used to designate groups of data with one characteristic in common; i.e., "SHIP" is
a CLASS which contains elements such as the CLASS(es) CVN and CGN or the NAME(s)
EISENHOWER and NIMITZ. The primitive relation term "RELATION" is used to link two
alphanumeric data items, such as two "NAMES", two "CLASSES", or a "NAME" and a
"CLASS". The primitive relation term NUMBER RELATION is used to link a number and a
"NAME", or a number and a "CLASS". In the examples which follow, relations will be rep-
resented as tables with each row representing one n-tuple (relational statement). where n
represents the tuple-size of the relation; i.e., n is the number of columns in the table. For all
primitive relations (be it CLASS, RELATION or NUMBER RELATION) the system main-
tains a begin and end time and a quantity field. For data entered by the user through the
Query Processor, begin time is 0 and end time is day 3770Q0O0Q (+ infinity) in Julian time
and the quantity of an item is 1. Other values for these fields can be entered through the
Interface Processor. However, there is no syntax to support this second method of data
entry in the Query Processor. Thus, for a CLASS. from the Query Processor view of data
entry n = I and for the other structures described n = 2. Internally, the tuple-size for CLASS
is 5 and for the other structures it is 7. In special cases of query, the time fields can appear;
i.e., begin time is greater than 0 and end time is less than 377009000; and the quantity field
can appear; i.e., it is greater than I. A quantity of 0 will cause the tuple not to be printed.

As can be seen from the example primitive relations described in the next section,
there is no way for the system to distinguish between different words, other than as the
primitive relation designation "NAME", "CLASS", RELATION", or "NUMBER
RELATION". Words have no other intrinsic meaning until grouped in classes or related by

2.d

CCIS SYSTEM

KEYBOARD ENTRY
AND

ALPHANUMERIC OMRON
DISPLAY

HARDCOPY UNIT

ENGLISH QUERY T
AND PROCESSOR

DATA ENTRY POER

SELECTED US AND

RELATIONAL DATA BULK UUM SHIP DATA
DATA PROCESSOR - s AND INCOMING

MANAGEMENT TRACK DATA

INTERFACE TO INTERFACE TESTER SIMULATED

OTHER DATA PROCESSOR BOX

SYSTEMS

SIMULATED ARPANET
INTEL TRACK SIMULATION

DATA

Figure 1. CCIS SYSTEM. c $o -

I
ion/

0'.c os

v

3%

relations to other words or numbers. These meanings are supplied to the CCIS system by
declarative sentences via the Query Processor or by special Data Processor semantic command
structures sent via the Interface Processor.

Conceptually, the simplest operations to be performed by the user to build and extend
his data model are the creation of names, classes and binary relations. Creation of a NAME,
i.e., "'NIMITZ" or '11S", can be done by typing 'NIMITZ: = NAME" or "US: - NAME".
Creation of a CLASS; i.e.. the class of* "CVN", can he done by typing -CVN: = CLASS".
Creation of a binary RELATION is done in a similar manner: i.e., by typing "WEAPON:
= RELATION" or "TOP SP|.ID: = NUMBER RELATION".

After creating the RE.LATION or ('LASS, the user may add information to it; i.e.,
add a new tuple, by typing the new data in a sentence format- i.e., "US IS NATIONALITY OF
NIMITZ.". "35 IS TOP SPEED OF THE NIMITZ.", or "NIMITZ IS CVN." To do such data
entry, the words "'NIMITZ" and "US" must already have been identified to the system by
defining them as NAMES. Relations and clasies can be added to, but they cannot be updated;
i.e., a tuple changed: nor can tuples be deleted.

Data can also be entered in an automatic manner, with the same syntax as above, by
using the Interface Processor as a means of sending it to the Query Processor, or by sending
it to the Data Processor using Data Processor semantic program commands directly.

Ill. EXTENSIBILITY

There are several types of extensions. or definitional facilities, which will be available
for the commander to easily individualize his data description. The first of these, creation of
NAMES, CLASSES and RELATIONS and insertion of data values into CLASSES and
RELATIONS has been discussed. The creation of primitive relations allows data to be grouped
into meaningful relationships. For instance, by creating a CLASS consisting of the ship classes
of a specific type: i.e.,

CVN: = CLASS

CGN: = CLASS

VIRGINIA: = NAME

NIMITZ: = NAME

VIRGINIA IS CGN.

NIMITZ IS CVN.

the user can record the concept of "ships of a type" permanently. In a command center, this
power to abstract concepts in the data can be particularly useful for dynamic formulation of
flights by missions, categorization of potential threat, etc.

The second type of extensibility provided is the ability to uniformly add new data
sources for dynamically updating the CCIS data base. The CCIS Interface Processor (IP)
provides specialized hardware interfaces and matching software for translation of data from one
or more non-CCIS sources into a CCIS compatible format. It then passes data it has translated
to the Data Processor. which is responsible for all data maintenance, including addition of
dynamically changing data to its database.

4

The executive of the IP accepts real time data as the processor is interrupted and when
not busy with real time processing requests "batch data" for reading. The format of that
dynamic input data is sent to the IP from external sources before input records are sent (in
the CCIS hardware model constructed the sources are either the ARPANET or the CCIS
Tester Box which send data over standard RS232 serial ASCII lines). The Format record
defines whether input fields are alphanumeric or numeric and the relations to which the data
is to be added. The resultant external input records then are reformatted by the IP for con-
sumption by the DP. The IP also sends the current time as declared in intervals specified by
the Time Report record.

All names used in format descriptions and in data entry to the IP must be predefined
in the static data base structure of the CCIS Data Processor database and in the Query Pro-
cessor lexicon using the CREATE commands of the data model. Dead Reckon software is
provided in the Data Processor to project current position to current time using the most
recent data known about any dynamic track. Use of this technique combined with the IP
policy of only sending "significant changes" to the database for simulated real time NTDS
tracks minimizes the amount of storage required to maintain current dynamic data ("signifi-
cant changes" for the simulation are changes in COURSE, SPEED or track TYPE).

The third type of extensibility envisioned, but not yet implemented, is that of
query extension. These extensions include the user being able to define synonyms and functions
(with variables) which are then added to the language by the Query Processor. Addition of
synonyms is straightforward. For instance, it might be more convenient in many cases to use
the identifier EISENHOWER than it is the entire name. DWIGHT D. EISENHOWER. The
system will support defining EISENHOWER to mean the same as DWIGHT D. EISENHOWER.
The user simply types:

DEF: EISENHOWER: DWIGHT D. EISENHOWER

where DWIGHT D. EISENHOWER has already been created as a NAME.

Function definition (with variables) is very similar to the capability provided in the
Rapidly Extensible Language System (REL) 171. A function has variables, as does a mathe-
inatical function. A concept can be defined using input variables (enclosed in " " marks)
which can take the value of any noun phrase(s) known to the system. Consider the following
definition:

DEF: RUSSIAN "SHIP": "SHIP" WHlCH HAS USSR NATIONALITY

Then one may ask, "WHAT ARE RUSSIAN BOATS?" where BOATS becomes the value of
"SHIP". In order to use such a definition, all vocabulary items must have been previously
defined; i.e., here SHIP was already defined as a CLASS, USSR defined as a NAME, and
NATIONALITY defined as a RELATION. The system then links the given noun, BOAT,
with the definition RUSSIAN, even though BOAT has not actually been used in the definition;
i.e., BOAT has only been used as follows: SSBN IS BOAT. DELTA Ill IS BOAT. USSR IS
NATIONALITY OF DELTA Ill.

IV. QUERY TYPES

The primary method of querying the data base is through a limited form of English.
The queries must pertain to data of which the system has knowledge. Only first order pre-
dicate sentences are permitted with the exception of "What are classes?" and "What are
relations?" These last two questions are trapped with a string recognition. The system uses a
limited set of quantifiers and relative subordinate clauses. It does not include queries involving

"where", "when" (except in the limited context of "current position" and the printing of
current time or report time when meaningful), "how many", conjunctives (except in the
limited use for distance and intercept time functions) and pronouns. Also, it cannot answer
questions where a hidden relation is implied but not explicitly stated; such as, "WHAT IS
LIERMAN'S SHIP?" where Lierman is the commander of Kennedy which is a ship. In order
to ask this question the system would have to have the relation commander explicit in the
query; i.e., "WHAT IS THE SHIP WHOSE COMMANDER IS LIERMAN?".

USE OF ARTICLES, PLURALS, AND THE VERBS "HAS" AND "IS":

I. THE - Can be used at any time, where appropriate.
2. Plurals are made by adding "S". Adding "ES" is not allowed.

3. IS and ARE are interchangeable, depending on the grammar:

WHAT ARE WEAPONS?
WHAT IS THE KNOX?

4. HAS and HAVE are interchangeable, depending on the grammar:

WHAT ARE WEAPONS OF SHIPS WHICH HAVE USSR NATIONALITY?
WHAT ARE WEAPONS OF EACH SHIP WHICH HAS USSR NATIONALITY?

5. HAVE without ARE and WHICH:
WHAT SHIPS HAVE USSR NATIONALITY?

PREDEFINED QUERIES:

I. WHAT ARE CLASSES?

2. WHAT ARE RELATIONS?
These two queries must be typed as shown.

SIMPLE QUERIES:

I. WHAT ARE "CLASS name"?: i.e., WHAT ARE AIRCRAFT?, will give all entries
in the CLASS "AIRCRAFT".

2. WHAT ARE "RELATION name"?: i.e., WHAT ARE SONAR?, will give both
columns of all entries in the relation "SONAR".

3. WHAT IS "NAME"?: i.e.. WHAT IS KNOX?, will give the CLASSES and
RELATIONS in which "KNOX" is an actual entry.

BASIC QUERY TYPES -- ARE... OF

ARE ... OF confines the answer to one column of the relation, as the second column
is given by the "OF" phrase, "WHAT ARE THE WEAPONS OF THE KNOX?" yields only the
weapon NAMES: i.e. SH-2 SEASPRITE and MK25 BPDMS for the KNOX.

I1. WHAT ARE "RELATION" OF "NAME"? (WHAT ARE WEAPONS OF KNOX?).

2. WHAT ARE "RELATION" OF "CLASS"? (WHAT ARE WEAPONS OF FFS?)
This type of query utilizes the system's ability to join information from different
relations and classes in order to satisfy a query. This can also be seen in the
examples which follow.

USE OF "EACH":

"EACH" can be used as a quantifier preceding the name of a CLASS or RELATION
to cause the information for that CLASS or RELATION to be printed in tabular format.

6

1. WHAT ARE "RELATION" OF EACH "CLASS"? (WHAT ARE WEAPONS OF
EACH FF?)
This type of query will expand the CLASS (FF) down to the shipclass NAMES and
will print both the weapon NAME and the shipclass NAME; i.e., "SH-2 SEASPRITE"
and "GARCIA-C": for each of the shipclass NAMEs. EACH can also be used as
a multiple quantifier to force extra columns to be printed.

2. WHAT IS THE "RELATION" OF EACH "RELATION" OF EACH "CLASS"?
(WHAT IS TIlE RANGE OF EACH WEAPON OF EACH FF?)
The answer to this query will print out the range, weapon NAME, and shipclass
NAME. The user can continue to add RELATIONS as long as the relations
have elements in common. For instance, WHAT IS RANGE OF EACH WEAPON
OF EACH RADAR ... makes no sense, but WHAT IS RANGE OF EACH
WEAPON OF EACH WEAPON... does, as SPARROW is a WEAPON of F-14
TOMCAT which is a WEAPON of the NIMITZ-C.

CLASS AND NAME USED AS LIMITERS TO RESTRICT A RELATION:

I. WHAT ARE "CLASS" "RELATION"? (WHAT ARE AIRCRAFT WEAPONS?)
In this example, AIRCRAFT limits the RELATION "WEAPON" to those
WEAPONS that belong to the CLASS "AIRCRAFT". Both the aircraft NAME
and the shipclass NAME it belongs to are printed.

2. WHAT ARE "NAME" "RELATION"? (WHAT ARE USSR NATIONALITY?)
This query would give all items in the given RELATION which have USSR as an
entry. Both columns of the RELATION are printed.

USE OF "WHOSE". "WHICH". "THAT":

The subordinate relative clause constructions "ARE... WHOSE", "'ARE... WHICH
HAVE", and "ARE ... THAT HAVE". act to restrict the relation as a whole to the conditions
in the "WHOSE", "WHICH", and "THAT" parts. The result is that both columns of the
target relation are printed.

I. "WHOSE" links the condition phrase to the CLASS or RELATION immediately
preceding it. There is no other way for the system to interpret the query. For
example, "WHAT ARE WEAPONS OF SHIPS WHOSE RANGES EXCEED 60?"
asks for "SHIPS with RANGE greater than 60; WEAPONS OF".

2. "WHICH HAVE" and "THAT HAVE*" are interpreted in the same way as
"WHOSE", UNLESS A COMMA IS INCLUDED. Inclusion of a comma causes
the system to process and give answers to ALL POSSIBLE interpretations. For
example:

A WHAT ARE WEAPONS OF SHIPS WHICH HAVE RANGE GREATER THAN
60? is interpreted as in I) above. (Note that "IS" is omitted from the com-
parative when used with "WHICH HAVE").

B WHAT ARE WEAPONS OF SHIPS. WHICH HAVE RANGE GREATER
THAN 60? will have answers for both interpretations, below:

I SHIPS which have RANGE greater than 60: WEAPONS of.

2 WEAPONS which have RANGE greater than 60, which are carried on
SHIPS.

7

USE OF COMPARATIVES (USING "WHOSE"):

The comparatives are:

1. (IS) GREATER THAN

2. (IS) LESS THAN

3. (IS) EQUAL TO

4. (IS) GREATER THAN OR EQUAL TO

5. (IS) LESS THAN OR EQUAL TO

6. (IS) AS GREAT AS (BIG, LARGE, etc.)

7. (IS) AS LITTLE AS (SMALL, etc.)

8. IS (To mean EQUAL TO)

9. EXCEED (Note: "EXCEEDS" is not allowed)

10. (IS) >

it. (IS) <

The word "IS" must be used when using "WHOSE", unless using the comparative EXCEED.

I. WHAT ARE "RELATION" WHOSE "NUMBER RELATION" "COMPARATIVE"
"NUMBER"? (WHAT ARE WEAPONS WHOSE RANGE IS GREATER THAN
60?)

The user can also use "CLASS" or "CLASS" "RELATION" in place of
"RELATION".

2. WHAT ARE ("RELATION", "CLASS", or "CLASS" "RELATION") WHOSE
"NUMBER RELATION 1" ".COMPARATIVE" "NUMBER RELATION I" OF
"NAME"? (WHAT ARE WEAPONS WHOSE RANGES EXCEED THE RANGE
OF THE PHOENIX?)

PUTTING IT ALL TOGETHER:

WHAT IS THE RANGE OF EACH WEAPON OF EACH AIRCRAFT WEAPON WHOSE
TOP SPEED IS GREATER THAN THE TOP SPEED OF THE FORGER?

NON-STANDARD QUERY TYPES:

There are four non-standard query types. Three of them involve the functions CURRENT
POSITION, DISTANCE. and INTERCEPT TIME. The functions use only dynamic data sent
from the IP (NTDS and INTEL Track data) as explained in the section on Extensibility. The
other one is a constraint on the use of relations where the quantity field is filled. WEAPON
STRENGTH is an example of a special-purpose RELATION which has the quantity field filled
for the number of weapons on each platform in the data base. There is no syntax or semantics
for manipulating this quantity field other than asking "WHAT IS WEAPON STRENGTH OF
'CLASS' or 'NAME'?" All data for filling the relation is entered via the IP using DP semantic
language.

The Current Position function is used to find the geographical location of a given
Track at the current time (current time is determined by the system's clock located in the IP).
The function takes the latitude, longitude, course, speed and the time of the last report for a
given Track, and extrapolates using dead reckoning to find the estimated current position of
the track. The system will accept only the following syntax:

8

WHAT IS (THE) CURRENT POSITIGN OF NTDSTN I?

where "NTD;TN I" is the name of the desired track. Words in parentheses are optional.

or

WHAT IS (THE) CURRENT POSITION OF (EACH) NTDS/TRACK?

where NTDS/TRACK is a CLASS containing the NAMES of dynamic data Tracks (NTDSTN 1,
etc.).

The Distance function accepts the names of two tracks as its arguments in a limited
conjunctive form. It first computes the present position of each given track, and then finds
the distance (using great circle distance computations), in nautical miles, between the two
positions. The query syntax for this function is:

WHAT IS (THE) DISTANCE BETWEEN INTELTN I AND NTDSTN 4?

where "INTELTN 1" is one desired track and "NTDSTN 4" is the other desired track.

or

WHAT IS (THE) DISTANCE BETWEEN (EACH) INTEL/TRACK AND NTDSTN 4?

The INTERCEPT function accepts two track NAMES, as does DISTANCE. The first
Track is the one doing the intercepting, and the second Track is the target.

The system replies with the time (in minutes to the tenth) needed for the pursuing
Track (first Track) to reach the intercept point, and the coordinates for the interception point
in degrees, minutes, and seconds (to the tenth second). Longitude is reported first, then
latitude.

WHAT IS (THE) INTERCEPT TIME BETWEEN NTDSTN I AND NTDSTN 5?

or

WHtAT IS (THE) INTERCEPT TIME BETWEEN (EACH) NTDS/TRACK AND
NTDSTN I?

In all of these special functions current time will be reported out as the "begin time"
of tile resultant tuple.

V. USER AIDS

CCIS is designed to be a friendly system. There are a number of editing features
available for correcting or editing queries which correspond closely to the ARPANET XED
text editing functions. Certain commands can be utilized during the normal (input) mode.
These include minor editing commands and parsing and print related commands. To invoke
more extensive editing commands, the user must enter the edit mode by typing a control E
("F. The system then positions the cursor at the beginning of the current query. The
available subcommands are as follows:

9

User types Result

EDIT MODE COMMANDS

? If typed following ^E, prints out edit instructions.

n SPACE Spaces n characters forward copying line as is.

B Break Line - Inserts a carriage return into new line. Edit subcommands may be
continued with rest of the old line. Note: the rest of the old line is not shown
on the screen.

n D Deletes n characters FORWARD from the old copy.

E Moves cursor to end of line copying line as is.

I Insert mode - all input is inserted until next CR or LF.

n K x Deletes FORWARD from present cursor position until the nth occurrence of -x".
If "x" is a CR, it means the end of the line.

P Prints the rest of the old line and the current new line.

n R Deletes next n characters forward from cursor and enters insert mode.

n S x Spaces forward to before the nth occurrence of "x". If -x" is a CR, it means
the end of the line.

CR Move to end of query, tenninate Edit and enter Input mode.

LF Deletes remainder of line after the cursor and enters Input mode.

U Same as CR but cannot be used to terminate insertion commands such as I or nR.

ESCAPE Copies rest of old line to new, updates current line to new. and re-enters edit mode
on the updated current line, Abort all changes so far, and start edit over.

INPUT MODE COMMANDS

0 Temporarily suspends output. Restart by typing any character.

D Resets the system to start over on all queries of the d atabase the user is in.

U Delays parsing (processing) until after editing. Keeps system from parsing an
erroneous expression before editing.

B Forces the beginning of parsing.

-" N Does not allow system to begin parsing until B is typed.

P Causes the output to also be printed on the TI 700 terminal.

S Turns off the effect of"P (stops printout).

EI!itER MODE

A Back spaces over one character (acts as a I)elete to the LEFT)

if Sane as ^A.

W Backs over (deletes) the last word that the user typed, or the word to the LEFT
of the cursor's current position.

X Deletes to the beginning of the current line. In INPUT mode, the system then
re-enters INPUT. In EDIT mode. it waits for the user to type another EDIT mode
command.

10

rI
R Causes the print of the new expression (reprints the current query, including all

changes).

Q Reset system to start over on input, killing any old output.

LEXICAL ASSISTANCE

Lexical assistance is provided in the INPUT MODE using the ESC (escape) command
as a means of causing the lexicon to be searched for the longest match between the lexicon
and the last characters of the query. This assistance, together with the aforementioned editing
features, is provided as an efficient (from a computational point of view) alternative to auto-
mated spelling correction.

VI. RESPONSE FORM

When ambiguous situations arise, all alternatives are considered. If one survives to
form a non-trivial output it is output as the result. When there is more than one such output,
each is displayed. The user can obtain more information about these answers by asking simpler
queries.

All outputs will be alphanumeric with the capability of receiving the output on a CRT
screen or as a printout.

The normal procedure followed for printing out information is for the system to output
the information in columnar form. If one of the spellings of a word in a row exceeds the size
for the column that column is readjusted to have a larger size. The output form is principally
that of row column matrix. If the row exceeds the width of the screen it wraps around. An
extra carriage return is added to keep rows of data distinguished from wrap arounds. The end
of the answer is signified by printing a series of dots below the last line of the answer; i.e.,

.. .. However, there are other responses which the system gives when confronted with
non-standard situations:

I. In the case where there is no information of the type requested, the system will
simply output the end of response indicator ",

2. In the case of ambiguous queries such as those using the , WHICH HAVE"
phrasing, there will be MORE THAN ONE REPLY. If all replies have answers,
the information for each answer will be terminated by the ". " message.
If any (or all) of the answers are null (no information in the database), EACH
null answer will be signified by the ". " message.

3. If the Query Processor encounters words in the query which have not been defined
in the QP lexicon, it will terminate processing of the query, and output the
message "WHAT?" to the user. The user may then retype the query, using cor-
rectly spelled words which are known to the lexicon, or type in another query.

4. Occasionally, all the words contained in a query will be contained in the QP
lexicon, but the phrasing of the query is not interpretable by the QP. In this
case, the QP simply ignores the query, as it considers it to be invalid, and will
wait for the user to type a valid query. However, there is no message to inform
the user that this is the case. Therefore, if a considerable delay in response time
is encountered, the user may assume that his query was ignored, and retype the
question, using a different phraseology. If. in fact, the delay was due to extended
processing time, the user should obtain the system's response before he finishes
retyping the query. If the system is still parsing his previous query, any new
input typed by the user will not be echoed on the CRT screen,

1i

VII. SYSTEM ARCHITECTURE

The CCIS system consists of a Query Processor (QP), a Data Processor (DP), a buffer
memory, bulk storage and an Interface Processor (IP). All data flow between processors is low
speed (1200 baud in the CCIS demonstration system), ASCII coded, serial interface. Data-flow
control between the Query Processor, Interface Processor and buffer memory is exercised by
the Data Processor, the principal function of which is data manipulation. The buffer memory
provides buffering between bulk storage (currently a disk memory) and the Data Processor.

The processing organization is developed as follows: principal processing of the input
user statements, which are in a form of extensible English, is performed by the Query Proces-
sor which provides the dialog with the user and parses the English statements. The Query
Processor translates the parsed statements into an action sequence which, in turn, drives the
Data Processor in its manipulation of relations and updates the dictionary of vocabulary
words and relations stored in the Query Processor's and Data Processor's lexicons.

The Data Processor has control over the disk data management. stores and retrieves
data as needed by the Query Processor, controls the loading of data from the Interface
Processor and loads the programs and data structures for both the Query and Interface Proces-
sors. Functions are available for relational data management such as ad hoc creation of
relations, addition of data tuples to them, joins, class intersections and restricts. Special func-
tions which provide the computational features for printing current position and calculating
distance and intercept time are provided for dynamic data as are those routines necessary for
adding to those relations.

In operation, the principal function of the Query Processor is to interface with the

user of the data base. This is accomplished by providing a language to the user that is nearly
English and by providing editing features. The Query Processor takes a statement given it by
the user, converts it to Data Processor control language, and sends it to the Data Processor.
A sequence of action statements is transmitted to the Data Processor where their execution
provides a final result, such as one or more formatted relations. The resulting record is trans-
mitted to the Query Processor for display. In this manner, query translation and command
execation are carried out by separate processors in a manner conceptually similar to the Bell
Telephone Laboratories' front-end back-end processor data management system [11. The
Interface Processor operates like a data transfonnation unit. Only a simple syntax is pro-
cessed by this processor and its principal functions are to recognize data structures of the
retrieval system and to relate the incoming data with the appropriate records in the retrieval
system. Finally it sends the data to the Data Processor for final disposition.

12

The functional or logical structure of the system is shown in Table 1.

TABLE I. CCIS Functions.

Common Modules

I. Linkage Table
2. Executive Module
3. Activity Tree
4. Buffer Control Module
5. Buffer Control Blocks
6. Communication and I/O Module
7. Processor Instructions

Query Processor (QP) Modules

I. Protocol Module
2. Lexicon Module
3. The Lexicon
4. Utility Module
5. English Parsing Module
6. The Parsing Dictionary
7. CND Functions Module
8. Semantic Processing Module
9. MisceUaneous Pieces

Data Processor (DP) Modules

I. Compiler Handler
2. Relational System Module
3. Output Module
4. Logical File Management System
5. Bulk Memory Page Management
6. Buffer and Local Memory Management
7. Auxiliary Memory System

Interface Processor (IP) Modules

I. NTDS and INTEL Data Formatting
2. IP Executive
3. Current Time Generation

Processor-Processor Communications

VII. I Common Modules

Each of the various modules functionally works together to provide the overall
functions of the Query Processor and Data Processor. The linkage table provides a way for one
module to call functions of another module. The executive module provides the passage of
program control from one module to another. It uses the activity tree to keep track of how
the modules are to be executed. When data must be passed from one module to another the
buffer control module provides a means of symbolically sending data from one module to
another. The buffer control blocks characterize the channels between the modules as well as
keep track of where the data is located. Some modules use the same mechanisms internally
also. The communication module provides mechanisms for sending and receiving data to and
from other processors, terminals, and communication lines. These modules described so far
are general system modules that are not specifically unique to one processor of the CCIS
system.

13

The software of the Query and Data Processors is composed of a number of modules
which interact at several levels. In compiling, some modules tell other modules how to con-
vert expressions to code. Others tell how to link the programs of one module into another.
Each module has a set of parameters which keep track of the progress of the module as well as
tell where data is from other modules. Each module can have a series of programs called activi-
ties which interact with the executive module. The programsare free of interaction otherwise
except by the three methods: compiler macros, linkage table, and parameter table of each
module. Some of the modules are data modules which are not programs but data structures
used within the system. Nonnally these will not be called modules in the table of contents or
parts headings. The interaction with these is still through the parameter tables. The exception
to this is the buffer control blocks wherein locations of programs from the modules defining
and using them are required.

VIl. .I Linkage Table

The linkage table is designed primarily to allow one module to call programs in another
module without prior knowledge of the location of the called programs Ihere are two aspects
of the linkage table. First, in the last stage of assembling a module a file is read that tells where
in the QP or DP each link reservation of each program is located. Then. when a new module
is loaded into the QP or DP the addresses of programs called by other modules have to be
entered into the copy of the linkage table that is to be loaded into the QP or DP.

QP Linkage Table FunctionS (including common modules)

FUN(TION NAME HEX FILE

EXIT 0Q40 EXEC

QUIT 0041 EXEC

THEN 0042 EXEC

ELSE 0043 EXEC

BOTH 0044 EXEC

THEN/QUIT 0045 EXEC

ELSE/QUIT 0046 EXEC

BOTH/QUIT 0047 EXLC

ACTIVATE 0048 EXEC

SETIQUIT/FLG 0049 EXEC
SET/TO/DEPTH/SCAN 004A EXEC

LAST/ACT 004B EXE(

CURRENT/ACT 004C EXEC
NEXT/ACT 0041) EXEC
CONNECT/BRANCH 004E EXEC

GET/NUMBER 004F Not Used

DISTANCE 0050 Not Used
COMPARELINK 0051 Not Used

14

ACTI VITY VALUES 0052 EXEC

ACT/CONS 0053 EXEC

GET /FAST/TAIL 0054 EXEC

GET/SLOW/TAIL 0055 EXEC

GET/SLOW/OF/CONSTRUCTION 0056 EXEC

G;ET/TAI L/OF/CUR RENT 0057 EXIEC

LOCKSTACK 0058 EXEC

RETURN/FROM/SUSPEND 0059 EXEC

SETACTI VITY VALULES 005A EXEC

SET/CONSTRUCTION 005B EXEC

SUSPENDF 005C EXEC

SET/TO/WIDTII/S(*AN 005D EXEC

SLTSCANTOLNL) 005E BUFF

SCANBACKWARI) 005F BUFF

ADVTOSCAN 0060 BUFF

BACKUPSrORE 0D061 BUFF

F UL LP W02 BUFF

LMPTYP 0063 BUFF

BACKUPREAJ) 0064 BUFF

RFSTORI.S(ANPTFR 0065 BUFF

iI-TSCANPTR 0066 BUFF

S(ANTI~sToF 0067 BUFF

SCANNEXT 0068 BUFF

SCAN 0069 BUFF

srS(SANOF 006A BUFF

Ri-Ai)sToRt) 096B BUFF

RIAI)NEXT 006C BUFF

RIAI)LASr 006D) BUFF

RFADFROM 006E. BUFF

W RIT Fi I' 006F BUFF

(.L[.ARBUF:I+R 0070 BUFF

STLJFFBYTECODE 0071 BUFF

(.IiTBYTE('ODI 0072 BUFF

(LI-AR(GRAPtII('S 0073
S'A NTFs r UN 1) 0074 BUFF

SC AN'TtE STBN(0075 BUFF

15

TELL/BUFFERCODE 0076 BUFF

CONS 0077 UTIL

DIFFLIST 0078 UTIL
GETASCNU 0079 UTIL

GETNEWCELL 007A UTIL
GIVEUPCELL 007B UTIL
GIVEUPTREE 007C UTIL
INTERSECTION 2 007D UTI L

LDIFF 007E UTIL
LENGTH 007F LJTIL

MAKENUMBER 0080 UTIL
NCONC2 0081 UTI L
TCONC 0082 UTI L

TCONCER 0083 UTIL

UNION2 0084 UTIL
SENDLEXWORD 0085 LEX

GETINTRPBYTE 0086. BUFF
GETFFATBITS 0087 RULE
ENTER '/A/WORD 0088 LEX

SEARCHPOS 0089 SEM
RESETLEXICON 008A LEX

LINKGARBAGE 008B UTIL
SAVECHKBITS 008C RULE
PARSEIT 008D RULE

SAVETREE 008F SEM

COPYTR 008F SEM
INSTALLTREL 0090 SEM

Abbreviations (All file names abbreviated herein are accessible under the account name
SMALL on 15W on the ARPANET.

EXEC QPE XEC.: 5 7
BUFF BUFFERHANDLER.. 60
Comm COMM UN [CATION MODULF.: 55
PROT USERPROTOCOL.: 202

LEX USERLEXICON.: 149)
UTIL QPSMUTIL.; 26
RULE SMRULEHANDLER.: 42
C'ND QPSMCNDFUNCTIONS.. 48
SEM QPSMSEMANTICS.-: 153

16

DP Linkage Table Functions (including common modules)

EXIT ow4 EXEC

QUIT 0041 EXEC

THEN W042 EXEC

ELSE 0043 EXEC

BOT H 0044 EXEC

THEN/QUIT 0045 EXEC

ELSE/QUIT 0046 EXEC

BOTH/QUIT W07 EXEC

ABORT 0048 EXEC

ACTIVATE 0049 EXEC

SET/QUIT/FLG 004A EXEC

SET/TO/DEPTH/SCAN 004B EXEC

LAST/ACT 004C EXEC

CURRENT/ACT f004D EXEC

NEXT/ACT 004E EXEC

CONNECT/BRANCH 004F EXEC

CRELATE /N EW/PAGE/DI RECTORY!
ENTRY/FOR/LOGICAL/RECORD 0050 PAGM

CREATE/Fl RST/PAGE/DI RECTORY!'
PAGE 0051 PAGM

FETC1I/EMPTY/DISK/1LOCATION 0052 Not Used

LOCK/A/PAGE 0053 PNIGT

UNLOCKIA/PAGE 0054 PMGT

GErT/PAGE 0055 PMGT

CRErATE/N1EW/NAME 0056 CATM

CREATE/NEW '/LO(;ICAL/RECORI) 0057 CATM

F1ND/CATALOW;ENTRY 0D058 CATM

INSERT/PA;E'POINTE R 0)059 Not Used

UNPACK/BUFFER 005A Not Used

('RE ATE/I ND/C LASS 005B Not Used

RESET/BUFFER 005C Not Used

OUTPUT/PARAM 005D Not Used

LEXICON/SFARCH 005F Not Used

FIND/DI RE-CTORY/LOC/OF/
ELFMENT/POINTER 005F DIRF

FIND/NEXT/PAGE/POINTER 0060 DIRF

17

COPY/HDR 00!DIRF

FIND,'AREA/TYP- 0062 DIRF

IHND/ROOI/PAGL/ID 0003 DIRF

LJPDATE'A'RECORI) 0064 PAGM

GET/NFW 'PAGF 0005 PMGT

LEXICON W0oo LEXI

COPY!IN PUr'B U E ER 00b 7 Not Used

C RFE 008 Not Used

LJPDTE 'RIC D0tog Not Used

(GH/NF%-DISK PA(;I- 000A PMGT

TESTT'AGE IN:(ORL 006B PMGT

('HANG! 'A(;E 006C PMGT

GETINEW (ORE 'AGE 0061) PMGT

NAMEf ORE PA(GE No F PMGI

DELI VE PM&E 00~F PMGT

(OPY'PAGF (00O PMGT

\O'OE AVAIL'(ORE. PAGES 0071 PMGT

(LEAR I\NPL~i 'BLUE I.R 0072 Not Used

JOIN 0073 Not Used

VISCONNlClT 0)074 F XEC

PROJECT 0)075 Not Used

REISTRI(1 007o Not Uscd

GH ,'NUMBLR 0077, Not Used

DISTANCE J)0'78 COMH
('OMPARFLINK ()07 Not Used

ACTIVITYVALUELS ()07A I-XE:C

A(T!(ONS t007B EXEC

GET'FASTITAIL 007(' EXEC

GET,'SLOW'rFAIL 0)071) EXEC
GEFT*,TA! L/OE'(ON STRULCTION' (071- F XEC

G 1.TIT A IL OFi'U R R FNT 00717 EXEC

LOCKSTA(K 0080 EXEC

RETURN'EFRONI SU'SPEND 0D081 E XEC
SI TA(TI Vii YVALUFS 008 XEC
SHT!(ONSTRU(lION 008 3 EXEC

SUSPENDF 0084 EXEC

SET/TO/WIDTH-/SCAN 0085 EXEC

TEST/PAGE/IN/CHANGE/MODE 0086 PMGT

NO/OF/AVAIL/DISK/PAGES 0087 PMGT

MAX/NO/OF/AVAI L/CONT/CORE/PAGES 0088 PMGT

GET/N/NEW/CONT/('ORE/PAGES 0089 PMGT

REL/N/CONT/CORE/PAGES 008A PMGT

UNPACKLEXICONI 008B LEXI

MAKENUMBER 008C Not Used

UNPACKNUMBERI 008D COMH

DELETE/LOGIC AL/RECORI) 008E CATM

DELETE/CAT/PAGEI- 008F DIRF

DW RITETO 0090 Not Used

D RE ADF ROM 0091 Not Used

CREATE/CHANNEL 0092 Not Used

FINIS 0093 Not Used

SCANTESTBNG 0094 BUFF

SCANTESTEND 0095 BUFF

SETSCANTOEND 0096 BUFF

SCANBACKWARD 0097 BUFF

ADVTOSCAN 0098 BUFF

BACKUPSIORE 0099 BUFF

FULLP 009A BUFF
EMPTYP 009B BUFF
BACKUPREAD 009C BUFF

RESTORESCANPTR 009D BUFF

GETSCANPTR 009E BUFF

SCANTESTOF 009F BUFF

SCANNEXT P0A() BUFF

SCAN OOAI BUFF

SETSCANOF 00A2 BUFF

READSTORED O0A3 BUFF

READNEXT O0A4 BUFF

READ LAST OOA5 BUFF

READFROM OOA6 BUFF

W RITETO O0A7 BUFF

19

CLEARBUFFER 00A8 BUFF

GETBYTECODE 00A9 BUFF

STUFFBYTECODE OOAA BUFF

DEMPTYP OOAB Not Usedj

READ OOAC Not Used

WRITE OOAD Not Used

NOT/USED OOAE Not Used

TELL/BUFFERCODE OOAF BUFF

CONTROLCHA R ~0013 Not Used

CAT/GARBAGE/COLLECT 0013I CATM

FIND/ LAST/PAG E/OF/ RECORD OOB 2 DIRF

FIND/LENGTH/PAGES 0013 DIRF

CREATE/RELATION ~0014 RELM

ADD/PAGE/TO/RELATION ~0015 RELM

F IN D/S PAC E/UTI LI ZE D/ON /PAG E ~ 0B16 RELM

FIND/NEXT/PAGE/FROM/HDR ~ 00B7 RELM

FIND/PSEUDO/RECORD/NAME 018 RELM

FIND/TUPLE/SIZE ~0019 RELM

A DD/TO/SPACE /UT I LI Z ED OOBA RELM

FIND/PREVIOUS/PAGE/FROM/HDR OI0BB RELM

FIND/START/OF/USER/PAGE/STRING 0BC RELM

FIND/INITIAL/LOCATION/!OF/LRN 001B1 RELM

GET/CURRENT/TIME OOBE Not Used

OPEN/LRN OOBF LGFL

CLOSE/LRN N0CO LGFL

R EAD/TUPLE ~00C LGFL

WRITE/TUPLE 00C2 LGFL

MULTIPLY 00C3 ART]

DIVIDE (00C4 ART!

CIRCLEDISTANCE ~0C5 ART2

DEADRECKON 00C6 ART!

NEGCONV ~0C7 ART!

CONVERT I ~0C8 ART]

SINECOMP ~0C9 ARTI

ICONVE RT POCA ART!

DE LTAT OOCB ART!

INTERCEPT 00CC ART3

CLEAR/PAGE OOCD CLPG

RENDEZVOUS OOCE Not Used

20

Table of Abbreviations (All file names whose abbreviations are
expanded below are found under the account

SMALL on ISIC on the ARPANET)

CLPG DANACLEARPAGE. :2

CATM CATMANAGE7.-)7

PAGM PAGEMAN I.: 121

DIRF BRDNFUN.: 113

LEXI DPLEXICONNOPAGED. :4

RELM CREATEN-COL.: 47

EXEC COPYEXEC.: 67

COMM DPCOMM UN[CATIONMODULE.: 22

BUFF BUFFER HANDLER., 60

COMH COMPILERHANDLER.: 167

ARTI BETt.NEWPOSITION: I

ART2 BETH.DISTANCE: 6

ART3 BETH.NEWINTERCEPT: I I

LGFL GOK.LOGICALFILE: PAPERNOTES

PMGT GOK/PAGI-MAN.CR: I

VII.1.2 Executive module

The executive module is a collection of programs which allow for the control of
machine code execution to proceed in a manner that avoids excessive entanglement of the
logically formulated modules of the system. Thus by calling the function EXIT one leaves
the current modules and the executive determines the next module to be called. The current
module does not need to know what that next module is. Further when a module calls
SUSPEND the action of the current module is interrupted until the condition specified by the
suspend is met at which time the action of the module is continued where it left off. Thus a
single module may have several programs, or activities, that can interact with the executive.
Each activity has a block on the activity tree with an activating location.

Location of Executive Functions in Linkage Table

QP LOCATIONS

EXIT 0040 EXEC

QUIT 0041 EXEC

THEN 0042 EXEC

ELSE 0043 EXEC

BOTI 0044 EXEC

THEN/QUIT 0045 EXEC

R2

LI.

ELSE/QUIT 0046 EXEC

BOTH/QUIT 0047 EXEC

ACTIVATE 0048 EXEC

SET/QUIT/FLG 0049 EXEC

SET/TO/DEPTH/SCAN 9004A EXEC

LAST/ACT 004B EXEC
CURRENT/ACT 004C EXEC

NEXT/ACT 004D EXEC

CONNECT/BRANCH 004E EXEC

ACTIVITYVALUES 0052 EXEC

ACT/CONS 10053 EXEC
GET/FAST/TAIL 0054 EXEC

GET/SLOW/TAIL 0055 EXEC
GET/TAI L/OF/CONST R UCTION 0056 EXEC

GET/TAIL/OF/CURRENT 0057 EXEC

LOCKSTACK 0058 EXEC

RETURN/FROM,/SUSPEND 0059 EXEC

SETACTIVITYVALUES 005A EXEC

SET/CONSTRUCTION-. 005B EXEC
SUSPENDF 005C EXEC
SET/TO/WIDTH/SCAN 005D EXEC

DP LOCATIONS

EXIT 0040 EXEC

QUIT 0041 EXEC
THEN 90042 EXEC

ELSE 0043 EXEC

BOTH 0044 EXEC

THEN/QUIT 0045 EXEC
ELSE/QUIT 0046 EXEC

BOTH/QUIT 0047 EXEC
ABORT 0048 EXEC

ACTIVATE 0049 EXEC
SET/QUIT/FLG 004A EXEC
SET/TO/DEPTH/SCAN 004B EXEC
LAST/ACT 004C EXEC

CURRENT/ACT 0041) EXEC

22

NEXT/ACT 004E EXEC

CONNECT/BRANCH 04F EXEC

DISCONNECT 0074 EXEC

ACTIVITYVALUES 07A EXEC

ACT/CONS)07B EXEC

GET/FAST/TAIL 07C EXEC

GET/SLOW/TAIL 007D EXEC

GET/TAIL/OF/CONSTRUCTION 007E EXEC

GET/TAI L/OF/CUR RENT 007F EXEC

LOCKSTACK 0080 EXEC

RETURN/FROM/SUSPEND 0081 EXEC

SETACTIVITYVALUES 0082 EXEC

SET/CONSTRUCTION 083 EXEC

SUSPENDF 084 EXEC

SET/TO/WIDTH/SCAN 0085 EXEC

Activity Functions

FUNCTIONS FILE NAME

EXIT EXEC

VII.l.3 Activity Tree

The activity tree is a data structure that contains a block of eight words for each
activity. In this block are pointers to other blocks on the tree. The tree has essentially three
roots: the fast tree. the slow tree, and the construction tree. Each block has two subsidiary
blocks which may be executed depending on the conditions of how the current block returns
to the executive. In addition it points to one additional block where the normal continuation
of the tree is found. Between the execution of each accessible block of the slow activity tree
the executive scans through every accessible block of the fast activity tree. Each block also
points to a location containing the address of the code to be executed by this activity. This
address table points to the addresses of the executive programs of each module. Lastly. each
block contains four words that can be used by the activity program to pass data from one
activation to the next of the same activity.

Activity Functions

FUNCTIONS

MOVEBUFFIRII: (OMM test semantic interlock

PRINTLEXGROUPS LEX

SEMANTICI)RIVER SEM

23

LEXITDRIVER PROT

QUERYDRIVER PROT

READDATA COMM

PARSEDRIVER PROT in protocol

MOVEBUFFER COMM

PARSEDRIVER RULE in parsing

WRITEDATA COMM

READINBUFFERS COMM

EXIT EXEC

WRITEOUTPUTBUF COMM

MOVEBUFFER and MOVEBUFFERIF are essentially the same program. The
difference is not found in the program but in the activity block associated with each. The
activity block contains the address of the buffer control block associated with the source and
one associated with the sink of the move. It moves data from the source, until empty, or to
the sink until full, which ever occurs first. MOVEBUFFERIF has a preamble which tests an
interlock parameter of the system and if it is set does not do the move.

VII.1.4 Buffer Control Module

The buffer control module provides a service that allows for sending data to and
receiving data from a buffer. One module can send data to a buffer and another receive data
from a buffer. The collection of programs in the buffer control module provides different
types of control over how the data is sent or received from the buffer. It also contains a number
of utility programs that are commonly used to describe the different buffers. The data about
each buffer is contained in a table called the buffer control block for the buffer.

Location of Buffer Control Functions in Linkage Table

QP LOCATIONS

SETSCANTOEND 005E BUFF

SCANBACKWARD 005F BUFF

ADVTOSCAN 0060 BUFF

BACKUPSTORE 0061 BUFF

FULLP 0062 BUFF

EM PTYP 0063 BUFF

BACK UPREAD 0064 BUFF

RESTORESCANPTR 0065 BUFF

GETSCANPTR 0060 BUFF

SCANTESTOF 0067 BUFF

SCANNEXT 0068 BUFF

SCAN 0069 BUFF

SETSCANOF 006A BUFF

RFADSTORED 006B BUFF

24

READNE XT 006C BUFF

READLAST 006D BUFF

READFROM 006E BUFF

WRITETO 006F BUFF

CLEARBUFFER 0079 BUFF

STUFFBYTECODF; 0071 BUFF

GETBYTECODE 0072 BUFF

SCANTESTEND 0074 BUFF

SCANTESTBNG 0075 BUFF

TELL/BUFFERCODE 0076 BUFF

GETINTRPBYTE 0086 BUFF

DP LOCATIONS

SCANTESTBNG 0094 BUFF

SCANTESTEND 0095 BUFF

SETSCANTOEND 0096 BUFF

SCANBACKWARD 0097 BUFF

ADVIOSCAN 0098 BUFF

BACKUPSTORE 0099 BUFF

FULLP 009A BUFF

EMPTYP 009B BUFF

BACK UPREAD 009C BUFF

RESTORESCANPTR 009D BUFF

GETSCANPTR 009E BUFF

SCANTESTOF 009F BUFF

SCANNEXT OOAO BUFF

SCAN 00Al BUFF

SETSCANOF 00A2 BUFF

READSTORED 0OA3 BUFF

READNEXT 0OA4 BUFF

READ LAST 00A5 BUFF

READFROM 0OA6 BUFF

WRITETO 00A7 BUFF

CLEARBUFFER 0OA8 BUFF

Gf-ITBYTECODE P0A9 BUFF

STUFFBYTECODE OOAA BUFF

TELL/BUFFERCOI)E OOAF BUFF

25

VII.l.5 Buffer Control Blocks

The buffer control block for each buffer contains information on how to write or
read from the buffer, how to advance in the buffer and how to backup. It contains links to
programs (which may be suspend programs) that are to be executed if one reads from an empty
buffer or writes into a full one. In addition to allowing one to read and write to a buffer,
there is a mechanism to allow scan of the buffer. Also contained in the block are parameters
that give the limits of the buffer, where data is read from, where data is written to, and where
data is scanned from. Flags are available to tell whether the buffer is empty or full and whether
the scan is at the end or beginning of the buffer.

VII.1.6 Communication and 1/O module

The communication and 1/O module has the programs for handling the interrupts of
the system and multiplexing data on several channels between the QP and DP. This includes
ip to 16 channels between QP and DP of which only two are used. In addition it includes 16
transmit and receive token channels between QP and DP. For the QP, input and output to
an Omron terminal, input and output to a Texas Instruments (TI) terminal, input and output
to a graphics terminal (not used) and input and output to the ARPANET are handled by this
module. For the DP, these special input and output functions include the input and output
for IP and DP. for the Omron terminal and for the ARPANET.

Activity Functions

FUNCTIONS

MOVEBUFFERIF COMM test semantic interlock

READATA COMM

MOVEBUFFER COMM

WRITEDATA COMM

READINBUFFERS COMM

WRITEOUTPUTBUF COMM

VII.I.7 Processor Instructions

All of the CCIS processors are specially built using micro electronic technology based
on the AMD 291I microprocessor. The instruction repertoire was designed to have certain
properties that would facilitate the generation and maintenance of code. The limitation of the
technology dictated limitations on the code. This section will discuss some of the tradeoffs
encountered in generating this machine.

The principal architecture of the processor is that of the so called Van Neuman machine.
It has a processor that loads its instructions from a memory in the same way it loads data
and can only do one instruction at a time. The principal constraining limitation of this archi-
tecture is that the memory has to be serially accessed to read or write data. No effort was made
to make the instruction repertoire more flexible than the serial memory limitation would
dictate. However. certain serial loops do not require instruction fetch when using the multiple
registers available to the AMD 2901 micro architecture. Effort was made to utilize this feature
in some instances.

26

Another design criterion was that the bulk memory was expected to be that of a disk.
The access to disk for programs not in processor main memory or in buffer memory would run
30to I 0 milliseconds. Instructions that could compress strings of instructions to a single in-
struction were examined and a few were implemented. However, as the criterion was not an
overriding consideration, it played only a minor part in the design.

A far more important consideration was that the programs had to be modular with
minimization of side effects of one program on another. The complexity of the system also
dictated that non procedural techniques would be used. To facilitate this a stacking archi-
tecture was desired and implemented. Some of the instructions would be stack oriented,
especially the subroutine calling sequence. With the stack, the storage and retrieval of data
local to a module could be placed on the stack in a well controlled way. Also the desire to be
able to pass functions as arguments dictated that calls from the contents of a register were
required.

Because of the desired modularity of the system, the instruction repertoire contained
data loading and storing functions that allowed for easy implementation of absolutely re-
locatable code. About 99.9 percent of the programs are absolutely relocatable in blocks. Jumps,
branches, calls, data loading, were primarily relative. We tried to be pure in this endeavor
but it was found that on occasion absolute reference was needed: i.e.. to reference global
system parameters. A few such instructions were added at a later time.

Of course, the standard arithmetic and logical functions were needed and implemented.
These followed closely the architecture of the AMD 2901 ALU capability.

Some instructions were provided for I/O and display control.

The system was planned to have interrupt capability. Therefore the usual interrupt
synchronization was required. Some of the instructions did not allow interrupts immediately
following them. Release interrupt lockout would execute a return before the system was
interrupted again and hence keep the stack clean.

A number of special instructional capabilities were designed for the CCIS processor(s)
to improve performance for large complex data structurcs. As described below, appropriate
testing of these features never came about because the need for overall functioning of the
system overshadowed constructing large enough data bases to test thoroughly high performance
features. Descriptions of these capabilities follow.

The AMD 2901 is not optimal for shifting. A special card that could do a number of
complicated data rearrangement operations normally was required for extensive packing and
unpacking of data. A card was designed to accomplish this, but was late in being implemented
and proved to be more complicated in access than desired. By the time it was ready the pro-
grains had been written, paying the time delay price, and instructions for the byte and bit ro-
tations had been implemented.

The half word data access and storage were added at a later time. They were placed on
the desired list at the very first but other pressing needs delayed their implementation. They
were not necessary.

A set of special instructions were designed to allow a nesting of local variables in the
subroutines. These were required because the query processing design model had such a
structure, used in particular for the design of parsing rules.

The access instruction was designed to trap access to data not in memory. Thus a
technique of loading data before restarting the process (such as might be useful in checking
data access authorization) could be programmed. It was never used because the system had
not evolved to use this sophistication.

27

The repeat instructions were part of the original design. They were designed with the
interrupt in mind. In some architectures: i.e., that of the Univac CP-642B, repeat instructions
had been designed and implemented but they could not be used in an interrupt environment.
In this system care was taken to insure that the repeat instructions were interruptible and
that return from the interrupt would allow the continued repeat to proceed.

The move instructions proved to be valuable in many ways; i.e., clearing areas, and
bulk moves. The search for match also was useful in multiway branches. The other search in-
structions were not used much, not because of any problem with the instruction, but because
the development time did not allow for the improvements in the data comparing needed for
fast joins of records. file search within limits was very useful in the string garbage collector.

The repeat instructions that had self termination because of internal conditions were
originally designed to have the B register the terminating value. But the instruction as imple-
mented cleared the B register. This should be corrected eventually.

The binary search was a good idea, but the situation has to be correet to use it That
situation did not occur. Some improvements are needed to handle more cases to make it more
useful. The same can be said for the bubble sort.

The special feature of generation of a break point is desired and usable, but development
time did not allow for its proper utilization. The principal value of its use is in the delimiting
of a growing table. Only after experimentation in deployment would its value be seen. Such
testing never carne about.

In summary, the instructions were designed to provide the general service of any
nomial processor plus special instructions and hardware to accommodate the critical proces-
sing situations of a data base processor. Some of these latter critical processing situations
were never tested, the principal reason being that the overall functioning of the system over-
shadowed the detailed polish form needed to use the features. When the overall function of
the system was working, no time was left for development of those techniques to make the
system fast, robust, and more flexihle.

A detailed description of the instructions available is in the ARPANET file (located
on ISIC) accessible by the name <SMALL>CCIS. INSTRUCTIONS: 17.

VII.2 Query Processor Modules

The following modules are specific to the Query Processor. The protocol module
provides editing and special interactions specifically with OMRON and Texas Instruments
(TI) terminals. The lexicon module stores information about words that are used in the
editing feature of the protocol module and in the English parsing module. The lexicon
itself is the data structure that remembers the spelling and parameters associated with each
word. The utility module provides programs and macros to handle the manipulation of data
in the knotted memory used in the parsing process. The English parsing module, patterned
after the Rapidly Extensible Language (REL) use of the Martin Kay parsing algorithm extended
with feature checking on grammar rules 121 [31, takes data from the protocol module and
parses to form a semantic tree that is passed to the semantic processing module. The pars-
ing dictionary is a data structure that describes the total control of the parser. The parser
itself is general purpose: the parsing dictionary is that part that makes the parser work as an
English parser. In the process of parsing, the parsing dictionary tells the parser to make certain
tests. These tests are the programs collected in the condition (CND) functions module. The

28

dictionary also tells the parser what semantic functions to mention in the semantic tree.
There is a correspondence table that relates the information in the parsing dictionary and the
functions of the CND module and another table that relates the information of the parsing
dictionary with the semantic functions in the semantic module. The semantic module also
contains functions that interpret the semantic tree to generate the language to be passed to the
communication module for sending control to the Data Processor. Miscellaneous pieces con-
tain some debugging tools, programs to transfer programs to the Data Processor, and some
initialization programs.

Query Processor Buffer Blocks
Location

Name of # of of control Location Byte
Buffer Bytes block of buffer address

Newspell 112 3470 DC0Q 3700

Parsebuffer 320 3280 DC70 371Cf0

Parzebuffer 320 3290 DCCO 37309

Neweditbuffer 320 3 2A0 DDI 37440

Oldeditbuffer 320 32B0 DD60 37580

Userbuffer 320 32C0 DDB0 376C0

Outputbuffer 320 32D0 DEOU 37800

Datain 256 32E0 DE50 37940

Data out 256 32FO DE90 37A40

Destination 64 330) DEDO 37B40

Source 64 3310 DEE0 37B80
From grafics 64 3320 DEFO 37BC0

To grafics 64 3330 DF0Q 37CO

Omron inbuf 64 3340 DFI0 37C40

Omron outbuf 64 3350 DF20 37C80

ARPA receive 64 3360 DF30 37CC0

ARPA transmit 64 3370 DF40 37D0O

TI inbuf 64 3380 DF50 37D410

TI outbuf 64 3390 DF60 37D80

Graf inbuf 64 33A0 DF70 37DC0

Graf outbuf 64 33B0 DF80 37E0O

Input intP 64 33CO DF90 37E40

Output intO 32 33D0 DFAO 37E80

Input intl 32 33E0 DFBO 37EC0

Output intl 32 33F0 DFB8 37EE0

29

Vii.2.I Protocol module

The protocol module provides editing features to the user as well as screen handling
for the Omron and TI terminals. A mechanism is provided by this module to recognize when
a statement is completed and is ready to be processed by the parser. The module does some
preprocessing to remove leading spaces, convert carriage returns to spaces, reduce multiple
spaces to a single space and fill out words found in the lexicon (using the lexicon module ser-
vices) when requested by the use of the terminal ESC key.

Activity Functions

FUNCTIONS

LEXITDRIVER PROT

QUERYDRIVER PROT

PARSEDRIVER PROT in protocol

VJ!.2.2 Lexicon Module

The lexicon module is a collection of programs that allows the creation of new words
in the lexicon, the reading of the contents of the lexicon, and the matching of words with
the words of the lexicon. It provides a matching service to both the editor in the protocol
module and the parser in the English parser module. It provides a listing service to the seman-
tic module. It also provides a spelling service to the semantic module. At the present time it
does not coordinate with the DP lexicon. There are a few other services available but not
being used: such as, delete word, delete all words after a given word, and find closest spelling
in the matching process.

Functions in Linkage Table

QP LOCATIONS

SENDLEXWORD 0085 LEX

ENTER/A/WORD 0088 LEX

RESETLEXICON 008A LEX

Activity Functions

FUNCTIONS

PRINTLEXGROUPS LEX

VI1.2.3 The Lexicon

The lexicon is a data structure consisting of four parts: A spelling table, an index table,
a fast access table, and a collection of four control blocks. The information parameters (48
bits) associated with each word are found in the index table with 8 additional bits in the
spelling table.

30

V1I.2.4 Utility Module

The utility module is a collection of macros and programs to manipulate trees and
charts. These are used principally in the English parsing module, CND functions module, and
the semantic processing module.

Functions in Linkage Table

QP LOCATIONS

CONS 0077 UTIL

DIFFLIST 0078 UTIL

GETASCNU 0079 UTIL
GETNEWCELL 007A UTIL
GIVEUPCELL 007B UTIL

GIVEUPTREE 007C UTIL

INTERSECTION2 007D UTIL
LDIFF 007E UTIL

LENGTH 007F UTIL

MAKENUMBER 0080 UTIL

NCONC2 0081 UTIL

TCONC 0082 UTIL
TCONCER 0083 UTIL

UNION2 0084 UTIL

LINKGARBAGE 008B UTIL

VII.2.5 English Parsing Module

The English parsing module is an interconnected system of programs that performs
the number parsing and the lexicon parsing, as well as the English parsing. The end product
of the parsing is a chart which is passed to the semantic module.

Functions in Linkage Table

QP LOCATIONS

GETFEATBITS 0087 RULE

SAVECHKBITS 008C RULE
PARSEIT 008D RULE

31

Activity Functions

FUNCTIONS

PARSEDRIVER RULE in parsing

VII.2.6 The Parsing Dictionary

The parsing dictionary is a data structure wiich describes the English language, including

grammar rules used for (CIS and features (e.g.. should one of the noun phrases in the rule be

a number) which apply. It is highly compressed to save space. For each rule in English, it not

only describes the structure to be recognized but also the (N) function (if any) to be called

and the semantic function to be placed in the semantic tree, a part of the parsing chart. The

grammar transformation (TNF) required for a given grammar rule is also encoded in a compres-

sed program which is interpreted upon activation of the rule.

VII.2.7 CND Functions Module

The parsing of an English sentence occasionally encounters a rule that is so complex

that the feature mechanism cannot determine whether the rule should be applied. In these

cases a CNIJ function is called to determine whether the rule applies. In other cases, although

the rule does apply, the manipulation of the chart is more complex than can be described by

the TNF functions and the (NI) can be tLsed to do these manipulations The parsing diction-

ary tells which CND function to call when the rule is being tested for selection.

VII.2.8 Semantic Processing Module

The semantic module is a collct1ion of programs which will cause the DP to do

various proce, scs; e.g.. create, add to a relation, join relations. It also has a program which

interprets the parsing chart to find and accomplish the programming structure represented

by the semantic trees

Functions in Linkage 1 able

QP LOCATIONS

SEARCIIPOS 0099 SUM

SAVETREF 0081- SEM

COPYTR 0081: SUM

INSTALLTR EE 0090 SFM

Activity :tlnction s

FUNCTIONS

SEMANTICI)RIVE.R SI-M

32

VII.2.9 Miscellaneous pieces

Special Memory Monitor
QPXmnt
MOVEBUFFERIF
Call Unpack Lexicon
Clear Special Memory

and Create Dictionary Tree.

There are a few pieces which have not been incorporated in any of the above modules.
These are a collection of programs to interpret the knotted memory, a program to transmit
programs from the QP to the DP. a calling sequence that calls programs from the lexicon to
convert a compact lexicon to the standard lexicon, a calling sequence that calls programs from
the English parsing module and a calling sequence which initializes the knotted memory area.
The last two are short programs of not more than 20 instructions each.

The cleargraphics routine is a dummy routine consisting of a simple return, since
the graphics module was not built into the system.

There is a small hand coded test on the semantic interlock before going to
MOVFBUFFI-R. This is indicated by the function MOVEBUFFER IF.

Functions in Linkage Table

FI:N(TION NAMt HEX

(I-FARGRAPIlI(S 0073 Dummy Routine

Activity Functions

FUNCTIONS

MOVIBUF[f. RIF CO.MM test semantic interlock

VII.3 Data Processor ()PI Modules

The Data Processor provides semantic command compilation (by the compiler) and
interpretation (cxecution of commands as received from the compiler handler). fetching. up-
dating and analysis of data (i.e.. the relational system and storage-management processes.
The latter consists of logical file and record maintenance, disk-page management and local-
and buffer-memory management. -lhe common modules described above (in Section VII. I)
are. of course, a part of the Data Processor.

33

Data Processor Buffer Blocks

Location
Name of # of of control Location Byte
Buffer Bytes block of Buffer address

Omron outbuf 64 320C 3280 CAOO

Omron inbuf 16 3 IFC 32C0 CBOO

Composite 128 3 17C 32DO CB40

IP HI rec o4 3 DC 3350 CD40

From QP 64 3 1QC 3310 CE4b

To QP 64 31AC 33D0 CF40

Graf inbuf 16 3IBC 3410 DP04

Graf outbuf 16 31 CC 3420 D080

IP inhuf 16 321 C 3430 DOCO

IP outbuf l 32"C 3440 l11

Input intO 16 323C 3450 D140

Output intO 8 3 _24C 3460 D)180

Input intl 16 325C 3470 DICO

Output int l 4 3 2C 3480 D200

VII.3.1 Compiler Handler

The compiler handler is a collection of functions which controls the allocation,
compilation, execution. and canup of the part, of the I)P semantic command sequence used
to generate relational and output modul, effects desired. It also contains a library of pro-
grams that are called by the generated co(c Some of the simpler processes are contained in
the library directly, but the more substaotial programs are set up and then called elsewhere.

The tuple compiler itself is a reverse polish driven code generator. This architecture
was chosen because of simplicity of design. the speed of compiling, the flexibility of genera-
tion and control of flow, rapidity of implementation, and compression of notation. It is
totally table driven with no searches. It compiles long expressions in less than 50 milliseconds.
This is a shorter time than loading a coniparable program from disk. The compiled code gen-
erally takes about 4 to 5 times as much memory as that of the string which was compiled.
The table used for generating structured calls is found in the compiler handler.

[he compiler handler module consists of about a half dozen compiler loading, allocation.
and ecmcution routines and uses the sequence compiler to generate code to effect the command
sequence presented to it. About 100 routines are used to match the compiler handler with
other routines in the system and simple utilities. It also contains two tables, one of which is
used by the tuple compiler and the other of which is linked to the compiler by one of its
registers so that the user does not have to call them by absolute address. It contains programs
that read the data and generate strings for the input. It garbage collects the input string
area when required.

lhe operations of the tuplC compiler are given in Figure 2. 1 he instruction
repertoire contains operations for data loads and noves, reading and writing files, branching.

34

I I) 1 (A1N!, RN [ID, I I XX I~~(' VAtII SI1N 4 VAI. I S Of1T

I Wk~ L" Ill IN I fI

TOS- =,,-g tIN!) -474811

JOS~ SMCVWATI OS AMO SIT Of V ALI I S IROM I [(i N I OS 1() LOK F0S2 '1(

I ON. , TOS I 10I %D Al 1 10 R1-SLT FLAT, TISI I SBFa

I [ONI NIOS SlURI II '111'NI)lIO(IIIFs I 10(ff A

UY. \IA.
I -I I 11551 PR tK 1 I]U

S O IIi 105a I 15 S
1'

XI IR /%L s5 I

TOI"..1 11-% O ,N T .]I II I I I 1 ISI IOII TO IS.o

I,,.' -IS PARS') IRS_ TO5511I111

\TOT,,-. 0(I',, FOS'-1(153 Sp P R N I 'I I N I A, 1115 1I 1-,

IM1T 10III; NIOR KOISI 1(15 %,1 [I I N (I I NPI l

N XI 11- NIMSTK - OI LOA I(IROM MI 51K 11 (52 SlS) SA.

I I 1 . IllS- N 1, S IR I TO N ISIK IS IS (A SI 1111 IISo I I

I~j , All %S IlI

e %% RI I I N I I I\ N 11 IT IH I1(11 SPll III, SPTI INI 5] ON. Islk N i 1 IR I T Sit 55 1 K IS' I 1' 5-5, ISI0 - ,PIP111 T

I B I- -IN II I- RINII II fNI T

IRIS %P51 'f H)l I I5 INOMINIK s a

I FARII T-lI-l RS
V5 I:S *'IlS (I TON -'AU IP Il lIS-N

by~R N11 I I. RIK NII -% I I',\ 015 t OR SIRI To,- I O\
I115 ITS111 RII SIR V 51 1 7o 111 11111155511~ Y IRO ! xIC) SPIIIIH"p-R %I FO O'lOINS(S

l- N I I P I ISI Ii 11XI 11' RI Ni!SII I 5 N Ia/ IlS iRSRP~ IRS

GS ___ V I)

I ~ ~ ~ I .lS 111 S~ISl (it PIR MJ RI

1'N/~~k SIi tI I'Il- S1.5 I I Ot IT I P1 IT

I I AT III 1I %I II NIII RIS 1011Il41R Tl

I OR N',l RI)I I NIIN l I, -(5-

- ORpI~ S ISl TI\014 IHISI It" R I kP IN IRIINI NI VINI, 21511 I' Pl11.P15IININTA.

110'~1 .11/ .11 hPal,, N A I's4oIp

I,)N NI:I S 1 0 5 1 1 1111 N. 1 II jo E " It R NP I N IIS A4, Il0 A % I% Q 11

D1 I DI Jos. ll S.11 lII IN 1) I !I 1 ,IiIII

-~~,;I
%I I~' \1 I~ NI ll

l II I Killl 1 % %SI Ii NI

K ~ ~ ~ ~ ~ ~ ~ ~ ~ N ,NI "lS'0IS.l". N' INRSI I

k~~~~~ lIIT.-NOS Il

NoR~ ~~~ IllR IIII (IN I N~ II NI IT ',lIII I

I- I51 MllS NII Ill1S .

*~~~~~~~~~~~~~~~1l (11 IlS NI., Ill 5115 ,1 11.-a .II I, P"SS', \P, II , RS P15 lI 11

X1 IINST ,TIN.'1

. .NI RIIlI I IIINIIIII, I11 Ml

N I H IIN AI, II I IN fi- I I I SI NI i((ISIS %Ail5.N lI I\ 1 0\N INSII .

PkA Ill II .,lI lIFlS p 111 X II III \111 -

II ~ ~ ~ l NISS NI' I(-XI H(I 111(

IT I III (I TPI IN

Figure 2. Symbol dcinition.

35

loops, stack manipulation, constrained jumps, compares, logical and arithmetical functions,
subroutine calls, macro expansion, block moves, 1/0, compile with suspend and compile with-
out suspend, and calls to system functions. Beside the file handling, create relation, and use

of the lexicon are provided. A double branch notation is provided to facilitate construction
of Boolean lattices. All branching and jumps are forward. Only loops have control paths
going backwards. Loops are self contained with no branches in or out. Also, each loop has
an abort test which will causv the loop to terminate in addition to the normal loop termin-
ation test.

In addition to instructions there is a collection of single letter names used to identify
arrays of memory locations to store temporary values. These are called vectors. They are
jabeled with the letters: A C F i I j J o 0 P R. Each of these has associated with it a
normal usage, which is usually arbitrary and assigned by the environment in the system. The
exceptions to this are the F vector, which has meaning to the string garbage collector, and
the C vector, which contains a preset table pointing to locations of where compiler handler
routines are located. Also each vector has a size, which is the number of cells set aside for
that array. These are summarized in the following table (Table 2):

Table 2

Name Size Normal uSe

A 64 Dynamic variables which are assigned to different functions or modules.

C 256 The more constant quantities. tables of functions and pointers to permanent
strings.

F 256 The table of string functions and macros. The garbage collector uses this
table to determine where changing strings are located. Changing strings
are located in just this one area of memory. Other string pointers are
left alone.

i 64 General purpose vectoi, normally used to select and specify records used in
the data processing.

1 64 General purpose vector, normally used to select and specify records used in
the data processing.

i 64 General purpose vector normally used to load tuples for processing.

J 64 General purpose vector normally used to load tuples for processing.

o 64 General purpose vector normally used to compose tuples in the processing.

O 64 General purpose vector normally used to fetch tuples for outputting.

P 64 General purpose vector normally used to save old results that will be used in

future processing.

R 64 General purpose vector normally used to control the outputting of data
from the system.

36

In the compiling process numbers found in the string are composed in a register for

that purpose. Normally non digits clear that register. As each new digit is read the old result
in the register is multiplied by 10 and the new digit is added. flowever, when a vector letter
is read a table position is found which holds a number which is then added to the contents of
the number register. This becomes the address of the vector. Code can be generated to do
w::irious things to the cell or address so indicated. For example, I 2345:321S is compiled to

generate code to load the number 12345 and then to store that value into the position 32 of
vector 1. In another example 2 IJ L421S will cause code to be generated that will take the con-
tents of the 21 position of the vector J and store it into the 42 position of the vector 1. Another

example: A:60iS will gcner:ite code to take the address of the 0 position of
vector A and store that address into the 60 position of i. If there is a space in front of A, the
number register is cleared, thus making it the 0 position of A. The : after the A causes code
to be generated to load the value of the number register at the time it was compiled. In this
case the number register would contain the address of the vector A. In the case above it
would have contained the number 12345. It is also possible to load and store any cell in
niemory.

V1.3.2 Relational System Module

The logical file management system modules (VII.3.4) are used to support the imple-
mentation of the relational data-management operations. These operations include creation
of new data structures, adding data to those structures by the hunan user of the system and
also dynamically adding data to them using the Interface Processor. performing the classical
relational operations of join, restrict and project, stringing those primitive operations together.
and performing arithmetical operations such as finding the distance between dynamic data
elements, finding the current position of one or more such data elements, or finding the in-

tercept time between two dynamic data elements.

All primitive relational system operations are accessed by using various pointers to
strings found in the "I'" array (sec VII.3.1 on the compiler handler). -ach of these pointers is
a reference to the memory location of the first byte of a string programmed in the language
described in VII.3.1 and Figure 2 of that section. Following is a description of the function
of each of the strings which corresponds to a primitive relational operation. The programs
for these strings can be round in the ARPANET file on ISi" named -KSM.ALL>DPQUANSEM : 73.

64F Create a Name
651F Create a (lass
601 (reate a N1umbler Relation
67t: (reate a Relation
681: Add to a (lass
69F Add to a Relation

70F Add to a Numbe Relation
781: Add to a)ynamic Relation
The strings 771. 79F and 99F are utility strings supporting 781:.
80F Set the current time cel! (34A)
82F: The primitive string which is used in various corn himato is to cause joins, restricts,

class intersections, and projects. Ilhese conibinations are arrived at by setting where
the key (in the vcLtor locatiurn 41 or 4i is for any relation used and by setting what
information is to be Larried rom one operation to another (using the vector location

21 or 2i): i.e.. dati preeding tIi kc. the kc itshl,. or data following the key. The

3.-

variable string 5F is used in this program to determnine the type of compare to be used
in its processing: i.e., key equality or inequality, numerical restriction or special function
computations such as distance or current position.

The strings 75F, 76F, 6F, 7F. 8F, 9F, WEF. I IF, I 2F, 13F, l4F. 15F, 16F, Il7F, 18F, 84F
85F, 86F, 88F, 89F, 87F and 83F are utility strings supporting 82F. 81IF is a string used to
facilitate debu~gging.
92F - Used (o invoke the computation of current position
93F - Used to invoke the computation of distance
98F - Used to invoke the computation of time to intercept
The strings 90F. 91 F. 94F, 95F, 96F, 97F. I OOF and I101 F are utilities supporting 92F, 93F and
98F.

L inkagec Table Functions

DP LOCATIONS

MULTIPLY 0OC3 ARTI

DIVIDE 00C4 ARTI

('IRCLEDISTANCL 00C5 A RT2

DEADRECKON 0OC6 ARTI

N EGCON V 00C7 ARTI

CONVERT I 00C8 ART]

SINECOMP 00C9 ART]

ICON VERT O0CA ART I

)E LTAT OOCB ART]

INTERCEPT 00CC ART3

LEXICON 0066 LEXI

UNPACKLLXICON I 008B LEXI

DISTANCE 0078 COMH

RFN DE ZVOIJS 00CE NOT USED

V11.3.3 Output Module

IHie Outpult module takes the resulting record from the relational system module
and steps through it one Small11 itemn at a time forming- the appropriate character sequence and
sending it to channel I fuor comminunicatIion from the D)ata Processor to the Query Processor.
The module is suspended if the channel is full. The data passes through channel I to the out-
put bufler of the Query Processor. D~ata is taken from there and passed to the OMRON screen
andlor the 11 terminal. [hle programs for these strings can be found in the ARPANET file
onl ISIC named] <SMIA LI>I)P)PRINTQUANTITY'S.lMS I RIN(S.3.

Linkage Table Func tionis

DP LOCATIONS

UNPACKNUMBER 1 0081) COMH

38

V11.3.4 Logical File Management System

The data structure for the relational records is essentially that of storing and reading
data from pages as if the data were organized in a table. The table is read one row at a time.
The new table is constructed one row at a time. In the processing of data each table is
scanned one row at a time and the field manipulated and processed to obtain a row of a new
table. The rows of the table are called tuples. In many of the processes the same record could
be accessed by different parts of the process or different processes altogether. The steps of
scanning down the rows of the tables is a common process. There is no arbitrary access to the
middle of a table. The principal access was to start at the beginning of the table and scan
forward until the end, or when putting new data into a table to place the data at the end of
the table and assign new pages if necessary. A set of programs was generated to facilitate
these operations. The open record would cause the creation of a logical file name which would
then be used to keep track of the parameters to control the scan. With this one could also
get values of headers and parameters to point to pseudo records if needed. Also the tuple size
could be obtained. When the processing was finished the close record could be used to clean
up the control parameters as well as make sure the last data was written if necessary. The read
tuple allowed for reading a tuple from the beginning or end and advancing and backing up
as need be. The write tuple allowed for the placement of data into the record. One could
write at the end or cause the data to be moved and write it at the beginning.

Linkage Table Functions

DP LOCATIONS

CREATE/RELATION 00B4 RELM

ADD/PAGE/TO/RELATION 00B5 RELM

FIND/SPACE/UTILIZED/ON/PAGE 00B6 RELM

FIND/NEXT/PAGE/FROM/HDR 00B7 RELM

FIND/PSEUDO/RECORD/NAME 00B8 RELM

FI ND/TUPLE/SI ZE 00B9 RELM

ADD/TO/SPACE/UTI LIZED OOBA RELM

FIND/PREVIOUS/PAGE/FRONI/HDR OOBB RELM
FINI)/START/OF/USER/PAGE/STRING O0BC RELM

FIND/INITIAL/LOCATION/OF/LRN 00BD RELM

OPEN/LRN 0OBF LGFL

CLOSE/LRN 00CO LGFL

READ/TUPLE 0)0CI LGFL

WRITE/TUPLE 0OC2 LGFL

VII.3.5 Bulk Memory Page Management

The bulk memory (currently disk) is organized into pages of fixed length (Figure 3
shows a typical data page stnicture) with pages grouped into logical records. A pointer to the
head of each logical record is maintained as an index to bulk storage by use of the logical
record catalog (Figure 4 shows a typical catalog entry).

. . 3 "

HEADER PHYSICAL PAGE ID

COMMON PREVIOUS PAGE
TO ALL _ _ _ _ _ _ _ _ _ _ _ _ _ _

USER,
CATALOG NEXT PAGE

AND
DIRECTORY SPACE UTILIZED

PAGES__ _ _ _ _ _ _ _ _ _ _ _ _ _ _

USER INITIAL LOCATION
PAGE J

EXTRA PSEUDO RECORD NAME
HEADER

INFO I UPLE SIZE

TUPLE
SIZE 1640(FOR\ 32-BIT
USER JWORDS

(PAGE! _ _ _ _ _ _ _

TUPLE
SIZE

FOR I _ _ _ _ _ _ _ _ _ _ _ _ _ _

PAGE/ __________________ _

Figure 3. Page structure.

40

LOGICAL RECORD NAME (LRN)

AREA TYPE (RELATION NUMBER
RELATION. CLASS, NAME)

ROOT PAGE ID (FIRST PAGE OF RECORD)

PAGE DIRECTORY POINTER

LENGTH IN NUMBER OF PAGES

Figure 4. Typical catalog entry.

The next layer of indices into bulk storage is maintained in the page directory, where
the connectivity of each page to other than itself is maintained. Pages in use are kept in this
directory (Figure 5 shows a typical directory entry).

PHYSICAL ID OF PAGE ENTRY

LOGICAL RECORD TO WHICH IT BELONGS

LAST PAGE (ID) FOR RECORD

FIRST ELEMENT VALUE FOR
THIS PAGE IN RECORD

PAGE DIRECTORY POINTER OF
NEXT PAGE OF RECORD

ADDRESS OF FIRST WORD OF
DIRECTORY ENTRY

Figure 5. Typical page directory entry.

41

The handlers and utilities are designed to provide redundancy in the pointer structure
and to provide additional means for finding those pages belonging to a relation or logical record
without loading all pages of the record. Additionally, all records are named (other than just
through their physical address) using a double hashing scheme. This promotes independence
of the record from its location on disk or in memory. The next-page-pointer redundancy for
each page of the record also is maintained in order to avoid loss of record structure if the page
directory and/cr catalog becomes lost.

Linkage Table Functions

DP LOCATIONS
CREATE/NEW/NAME 0056 CATM

CREATE/NEW/LOGI('AL/RECORD 0057 CATM

FIN D/CATA LOG/ENTRY 0058 CATM

DELETE/LOGICAL/RECORD 008E CATM

CAT/GARBAGE/COLLECT 0)B I CATM

CLEAR/PAGE 00CD CLPG

CREATE/NEW/PAGE/DI RECTORY/ENTRY
FOR/LOGICAL,'RECORD 0050 PAGM

CREATE/FIRST/PAGEIDIRECTORY,'PAGE 0051 PAGM

UPDATE/A/RECORD 0064 PAGM

FIND/DI RECTORY/LOC/O1:/E LEMENT/
POINTER 005F DIRF

FIND/NEXT/PAGE/POINF-R 0060 DIRF

COPY/ItDR 0061 DIRF

FIND/AREA:TYPE 0062 DIRF

FIND/ROOT/PAGE/ID 0063 DIRF

DELETE/CAT/PAGE 008F DIRF

FIND/LAST/PAGE/OF/RECORD 00B2 DIRF

FIND/LENGTHt/PAGES 00B3 DIRF

V 11.3.6 Buffer and Local-Memory Management

These functions are designed for maintaining memory status with respect to space
available for pages. Bits are kept for each page location in buffer and in local memory to show
if the page is locked into memory and cannot be written to disk. if the page is protected against
writing, has been written on, and so forth. One of the functions copies pages from disk to
buffer and/or local memory as space is available.

42 . .

Linkage Table Functions

LOCK/A/PAGE 0053 PMGT

UNLOCK/A/PAGE 0054 PMGT

GET/PAGE 0055 PMGT

GET/NEW/PAGE 0065 PMGT

GET/NEW/DISK/PAGE 006A PMGT

TEST/PAGE/IN/CORE 006B PMGT

ClHANGE/PAGE 006C PMGT

GET/NEW/CORE/PAGE 006D PMGT

NAME/CORE/PAGE 006E PMGT

DELETE/PAGE 006F PMGT

COPY/PAGE 0070 PMGT

NO/OF/AVAI L/CORE/PAGES 0071 PMGT

TEST/PAGE/IN/CHANGE/MODE 0086 PMGT

NO/OF/AVAIL/DISK/PAGES 0087 PMGT

MAX/NO/OF/AVAIL/CONT/CORE/PAGES 0088 PMGT

GET/N/NEW/CONT/CORE/PAGES 0089 PMGT

REL/N/CONT/CORE/PAGES 008A PMGT

VII.3.7 Auxiliary Memory System

Most requirements for Navy information storage and retrieval demand random-access
auxiliary storage. An initial choice for such a storage device was the Model 44 Diablo disk
drive with a nominal disk capacity of 6250009 sixteen-bit words and an access time of about
50 milliseconds. This drive is reasonably typical of the lower-cost disk drives which are
available.

The functions of the disk controller and the i/O channel interface were performed by a
combination controller and buffer-memory (12000 thirty-two bit words) designed and con-
structed at the Naval Electronics Laboratory Center (NELC) (now NOSC).

There are a number of advantages in having a buffer-memory interface between a
computer and a disk drive. These include a reduction in the total disk-drive access time and
the provision of a temporary storage area between disk and main memory and are discussed
in the following two paragraphs. Development time did not allow for their full exploitation.

When using a disk drive, head positioning and latency of the disk drive (waiting for the
disk drive to reach the proper track and the sector within the track) present a delay problem.
Without the buffer-memory (a direct interface between the computer and the disk drive), the
computer would have to wait the length of this disk-access time which is about 50 milliseconds
for the Diahlo disk drive. With the buffer-memory interface. the computer instructs the main
controller to input a certain page into the buffer. The 50-millisecond access time of the Diablo
disk drive is very significant and will slow the processing time of the computer if the disk is
interfaced directly.

---~ -- . . -. . . . , . . .

The buffer can be used to store intermediate data of an incomplete operation (temporary
scratchpad memory). The buffer will allow small changes to be made in a page from the disk
without having to bring a whole page of memory into main memory. The page is first brought
from disk to the buffer and then the changes are sent from the computer to the desired loca-
tion in the buffer. As few computer words as one may be rewritten from the buffer back to the
disk. This saves computer I/O time and main-memory space. Page thrashing can be reduced
with the use of the buffer as a temporary storage when generating and recognizing item names
(especially on a small-memory computer).

VIi.4 Interface Processor (IP) Modules

The CCIS Interface Processor (IP) provides specialized hardware interfaces and matching
software for translation of data from one or more non-CCIS sources into a CCIS compatible
format. It then passes data it has translated to the Data Processor, which is responsible for
all data maintenance, including addition of dynamically changing data to its database.

VII.4.1 NTDS and INTEL Data Formatting

The format of dynamic input data (for demonstration purposes simulated Intel and
NTDS data is used) must be sent to the IP from either the ARPANET or the CCIS Tester
Box over a standard RS232 serial ASCII line before input records can be understood by the
IP's executive. The format record is described below by use of Example I (See ** note).

EXAMPLE I.

(FN/ *A "TYPE"/ N .LAT"/N "LONG"/ N -COURSE"I N "SPEED"/No)

WHERE:

(= Begin Record Boundary

FN = Format Definition of an NTDS Report (an NTDS report format triggers the
mechanism which sends only data whose course. speed or type fields has
changed)

or

F1 = Format Definition of an INTEL. Report

/ Delimiter Between Fields
* Track ID Field (i.e.,: predefined CLASS name of track)

A Alpha-numeric field is being defined

- - Predefined RELATION name for Alpha-numeric field

N Field is numeric.

= Predefined NUMBER RELATION name for numeric field

= No Definition Following this Field (i.e.. field has a fixed numeric field
definition)

= End Record Boundary

44

Any change in the input record input or output field definition format must be
preceded by a format definition. (** All predefined names used in the format record must
be defined in the static data base prior to dynamic data loading. There is a current limitation
of 5 data fields per format definition due to CCIS Data Processor semantic software limits.)

A sample data input for an NTDS track, NTDSTN 1, follows:

EXAMPLE 2.

IP INTERFACE RECORD FOR NTDSTN I

(N/NTDSTN I/SURFACE/00005396/07955066/0400/000150/087134000)

WHERE:
= Begin Record Boundary

N = Data Type Indicator (i.e., N - NTDS, I - INTEL)

= Delimiter Between Fields

NTDSTN I = Name previously defined in the static database designating
NTDS Track Number I.

SURFACE = Name previously defined in the static database designating the
type of track (i.e.. SURFACE for Surface Track. SUBSURFACE
for subsurface track. AIR for Air Track).

00005396 = Latitude of the track. Given in degrees, minutes, seconds and
tenths of seconds. expressed as an integer number, signed or
unsigned

07955066 = Longitude of the track. Data is in the same format as latitude,
except all inputs are positive.

0400 = Course of track. Given in degrees and tenths of a degree, ex-
pressed as an integer.

000150 = Speed of track. Given in knots and tenth knots, expressed as
an integer (i.e. 15.0 knots).

087134900 = Time of sighting. Given in Julian format of Julian day, hours,

minutes, seconds (i.e., 87th day, 13th hour, 40th minute, 0th
second).

= End Record Boundary.

V11.4.2 IP Executive

The IP executive monitors the input buffer flag (checking for the presence of simulated
NTDS data input) and the clock flag. If neither flag is set. it will request a simulated Intel
(batch input) record from the ARPA net. Data from the ARPA net is loaded into the output
working buffer and then reformatted for sending to the Data Processor.

Simulated NTDS data interrupts the IP executive and is stored in the input buffer, a
ring buffer which can hold up to 16K characters. When a complete record has been received,
the input buffer flag is incremented. The IPEXEC will then read the entire record from the
input buffer into the working buffer. Only NTDS records which have changed significantly;

45

i.e., type, course, or speed for that track have changed. are sent, reformatted, to the Data
Processor from the working buffer. If the working buffer overflows, the most recent data
is sent to the DP in preference to older data. The program for the IP Executive can be found
on the ARPANET file on ISIC named <SMALL>IPEXEC.CR: S.

VI1.4.3 Current Time Generation

The interval timer interrupts the IP executive every 10 ms to update the internal clock.
The clock may be initialized by sending a time report from the ARPA net or the Tester Box, as
shown in the following examplc.

EXAMPLE 3.

(T/127134500j1201

WHERE:

= legin Record Boundary

T = Identifies this as a Time Report Record to the IP

/ = Delimiter between Fields

127 = Example for J ulian Day Start T ime

13 = Example for Hour of Day Start Time
45 = Example for Minute of Hour Start 'ime

00 = Example for Second of Minute Start Time

120 = Interval in seconds between current time reports to be sent to the
Data Processor. 1 120 = 2 minutes between time reports sent)

= End Record Boundary

The clock flag is set whenever the seconds count is equal to the time-report interval.
which is set by a time report. The IP executive will output the current time to the Data
Processor when it sees the clock flag set.

As mentioned above, all names used in format descriptions and in data entry to the IP
must be predefined in the CCIS Data Processor database and in the Query Processor lexicon
using the CREATE commands of the data model. Dead Reckon software is provided in the
Data Processor to project current position from the most recent data known about any dynamic
track data and current time. Use of this technique combined with the IP policy of only send-
ing "'significant changes" to the database for NTI)S tracks minimizes the amount of storage
required to maintain current dynamic data.

VII.5 Procesor-Processor Communications

In the description of the communication modules the techniques of handling the data
were considered in a general way. Here a more logical description of the processor-processor
communications will be discussed.

To review the techniques, consider that in each processor except the IP the buffer
handler provides tools to form character buffers. This set of programs provides methods of
putting character streams into and removing character streams from the buffers. There are

46 ""

.. . . ., • ,. '---vi I- - - . .

three basic interfaces to tile btiffers. First there arc the interrupt routines. During the
interrupt processing data is placed into and removed from the buffers, with special care to
ensure the data is not lost or extra characters added. Second there are activities whose respon-
sibility is the novement of data from one buffer to another. Third. the major processing
modules either take data from a buffer and in the process do the testing for empty: are
structured to suspend if there is no data or to put data into the buffer with three options: i.e..
data can be placed in the buffer until the buffer is full and the remainder dropped out of the
data stream: the buffer can be tested and appropriate action taken it full: or data can be placed
in the buffer.but the activity suspended if it won't go into tie buffer, with the structure that
reentry from the activity is appropriately controlled.

As can be understood by the tools data can flow from one processing module to
another in a controlled fashion without loss of characters even though the processing modules
are on different machines.

The data flow between the Qucr) Processoi and the Data Processor is of special
interest. In this particular communication module a service is provided to allow for the move-
ment of data back and forth in such a way that up to twenty independent streams of data
can be handled. At the present time only two are used. Handshaking is provided in such a
manner that when data is not removed at the receive end no new data is placed in the transmit
end of a channel. Thus data flow and generation can be delayed until the receiving module
can properly use it. In addition to the data flow. sixteen special flags allow one processor to
set the flag of the other. Special data hold flags which will stop the flow of data through a
channel are also provided.

In the design of the system the IP was treated separately and does not have a uniform
design of common modules as is found between the Query Processor and the Data Processor.
The communication between the Data Processor and the [P is constrained in the following
way. The principal design of the interface with the IP is that data flows mostly from the IP.
In early considerations of the development of CCIS it was thought that the Data Processor
would be interfaced to the IP in such a manner that it would trap all data from the IP with-
out flow control from the IP. Upon further consideration it was decided that allowing IP
data flow without control was dangerous. The present design uses a flow control to the IP.
It works as follows: The IP waits until it receives the null character. at which time if it has
data it will send not more than twenty characters to the Data Processor and will wait to re-
ceive another null character before it will be allowed to send the next twenty characters. The
IP does not remember nor count the null characters. It is not critical when the IP discovers
that a null character has been sent after the sending of data to the Data Processor. For in-
stance, the I/O channel allows two characters to be placed into the out channel and the proces-
sor will believe the characters have been sent. If the IP then receives a null character it will
not cause any problems. No special consideration that two characters are in the channel is
needed.

In the Data Processor the data from the IP is double buffered. The only time the null
is sent is when the interrupt buffer is empty. Data is moved from the interrupt buffer to the
IP data buffer when there is room in the IP data buffer.

The above discussion reviews the tools for communication. In the following para-
graphs the multiplexing and processing of data will be discussed.

47

In the initial setup of' the Data Processor, the data from (ti IP is sent to the user buffer
of the Query Processor via .hannel 2 from the)ata Processor to the Query Processor. The
user buffer is tile b uffer where data typed onil the Query Processor keyboard is generally sent.
From there it is parsed and processed. lowever. when dynamic data is entering the system
the IP is switched to flow into the Data Processor mnultlplexor.

When a person queries the system the characters typed pass fron the OMRON interrupt
buffer to the user buffer. I)ata is taken from the user biuftter and control protocol is extracted.
The edited data is passed to the parsehuffei, From here it is reformatted slightly and passed to
the parsebuffer. The parser takes the characters oul of the parsebuffer and generates a chart
which is stored in the special , \tended Query Processor memory. he semantic module ex-
tracts the data from the special memorx and generates connand sequences which it sends to
channel I in the Data Processor.

The data arriving from the Query Prce sor via channel I :ind tile data arriving from
the IP in dynamic data mode via the 1) data channel are of the same format.

The format to the l)ata Processor mlltiplexer i, coniposed of a left bracket, a sequence
of command messages, and finally an unescaped right bracket Percent sign Is the escaping
mechanism.

The Multiplexer continuall1 ,cans tle I P data channel and clannel I Irom the Quer%
Processor. It drops all characters until it sees the first left biacket, at which time it locks onto
that channel. It continually reads that ,ected channel. copy ig the data ilnto the command
buffer until an unescaped right brAcket is ec1ounlered. It copies thc bracketS also It then
goes back into the scanning process. Al way slarling wit the other channel. It continually fills
the command buffer using this proces,,.

It is important that the IP or Query Processor not open a command sequence pre-
maturely. If it does so it locks the data processor so that transactions from the other processor
cannot come in.

The relational system module and the output module are data and program structures
controlled by the compiler handler of the data processor. It takes the command message

sequence and calls the sequence compiler to generate code to do the commands indicated.

The sequence will call appropriate sulbrou tines to do the steps.

The relational system module executes the program to accomplish the indicated
task. If the task requests a report to be generated then tile data record indicated is passed
to the output module and the data processing module resumes processing the data from the
command buffer without waiting for the report to be generated.

[here are three groupings of comindnand sequences in the system. those that report the
results, those that process the data, and those that control tile flow of processing. Besides
the data passed from the Query Processor to the l)ata Processor are control programs which
represent the different actions that the)ata Processor can fake on the data. In the actual
communication path only a selection token is sent. fhat token is expanded into the sequence
that is compiled. Then it is executed and the results or partial results are saved for the next
step. Each query may have anywhere from two to twenty compiles, depending on the number
of steps needed to get the result.

To give an example, consider the following:

The selection token 38C& would he expanded to S3('& 4iLX2:4iS 7:21SI :2iS 56C&

82F:'";a :iSliS

48

III this case 53C& will he expanded to get a previOus result and place it in small i
registers. I'he previous result does not mean the result that was calculated immediately before
the last calculation, but means the one stored on the control stack to be the previous result.
[he next phrase, 4iLX2:+4iS. will generate code to select the range part of the relation instead
of the domain part for the small i registers. This is followed by 7: 21S I 2iS. which generates
code to copy the entiret. of each tuple when taken from the last result and only tile extra
field of the next previous result. The 56C& is expanded to exchange tile contents of regs i and I.
The main join is Comnpiled and executed when the code for 82F:((a is executed. This essen-
tially generates the new result. [he code: iS I iS cleans up after the operation. The small i regs
are marked as scratch. In effect this entire expression foinis a restriction of the last result by
having elements eq ual to the range of tile previous result.

VIII. ISSUES

Vill. i System Response Time

When entering a qucr. the estimated time for the parsing and lexicon is 1 I to 40 seconds.
I he comm unication lime is ab)OLt seconds. [-he data processing time is about I to 10 seconds
per join. This Time is determined by the site of the records and the number of expands re-
iluired. A relation of about 100 entries without expands takes about 3 seconds to process. Each
expand takes 300 to 500 milliseconds to process. .,\ expand rich relation can take much long-
er. 1-ach quer, averages about 3 to 4 joins,. The response from the Data Processor can be be-
tween I and 30 seconds. lhe total time to respond can be from 15 to 130 seconds. The time
to write and elit a qL ti,. depends on the person asking tile query, but estimates of performance
noted place the average time at about 5 to 40 seconds. The time to write and edit a query is
not rememberel by the user because he h is doing something. However. when he gives the final
carriage return, he becomes aware of how long it takes the system to respond. The time it takes
for the results to be printed out is about I to 180 seconds. This time is also not noted by the
user because he is activel analy/ing the response. Ilowever. if the response is quite long he
gets bored and does note the tinC.

I lie total ltme of a quer is about I5 to 180 seconds of which 10 to 80 seconds is
idle time for the user.

When loading a -ata base through the Query Processor. pipelining Leccurs and the entry
tile of a Ie'w s titelelt IS about " to 13 seconds.

Fhe time that it takes to enter a eww statement directly into the Data Processor from
the I uterftac:e Processor i, :iboutt 2 to 3 sconds.

VIII.2 Data Storage C'apability

Vill.2.1 Number of user generated words

I lie number of words that can be added to the new ,system is about 50 . This infor-
mation is describcd inI more detail in the (('IS ()perations Manual 141. Fo make the system
accept more \%ords wold require inoving the exhc.on I1I the Query Processor to a different
area with more space a rid rewriting the letxicon module of tihe I)ata Processor to be paged.

49q

VIII.2.2 Size of storable data

'The demonstration system uses 250 page-. It started with 2346 pages immediately
accessible. After loading the demonstration data 209o pages are still free to use. The selection
of pages in the demonstration systen uses only pages of the removable disk of disk unit 1. 2448
pages are available on the fixed disk of disk unit 1. This area at the moment is used to store
permanent data so that the demonstration can be refreshed if need be without re-loading the
data base. Without doing reorganization of the disk unit 0. an additional 2106 pages could
be added. At the present time this area is used for program development. The addressing
structure is designed to includC two more disk units. If these units are added, an additional
9792 pages can be added.

The amount of data page space is not a limiting factor in the present system demon-
stration.

VII1.3 Utility to Navy

VI11.3.1 Utility of Disciplined English Query Language

One of the principal values of the CCIS function is the improvement in efficiency of
personnel. The latter is accomplished by providing a forgiving English interface to the staff
personnel so that special training is not required and in organizing the information in a manner
that facilitates rapid development of complex questions without an overburden of extraneous
records and files to be examined.

VIII.3.2 Utility of Dynamic Update Techniques in CCIS

To improve the quality of information in the Command ('enter. data must be readily
available. timely And accurate. To improve the timeliness of that data for analysis and plan-
ning, the CCIS architecture provides thte Interface Processor for the function of receiving
formatted data which can be provided from autonlated real time or batch sources and re-
formatting it for dynamic update of CCIS. primitive relation data base in the Data Processor.

The Data Processor is in the position of always being ready to accept formnatted data
from the Interface Processor when it is not huss processing a user query from the Query
Processor. To minimize the amoLInt of data which the I)ata Processor must hold in its data
base. the Interface Processor '-ovides a screening function so that extraneous and/or dupli-
cative information is not sent to the DP. In the demonstration ('('IS system, this function
is demonstrated for NTI)S position data. Here, only changes to course or speed are sent to the
DP) along with an initial position on a track. Fhe lP, o;, request, then dead reckons position
from last reported position. So the screening function performed results in sending only
"significant" changes to the data base. Thus. a technique is provided which minimizes storage
requirements for dynamic data and yet provides currency. or timeliness, of that data.

VIII.3.3 Utility of primitive knowledge

The structure of data bases has been the subject of co;.siderable investigation for some
time. Three basic types are discussed in the literature. the tree structure, the chain structure.
and the relational (table) structure. Another structure not commonly discussed in the liter-
ature as a data base structure, but nonetheless used in many systels, is the arc link repre-
sentation. Many of the ARPA English systems use this technique to represent their semantic
structure.

5a OS

One of the techniques 1 speeding up access to data in a data base has been to form
inversion tables. Fhis method can work on the tree' structured data bases effectively. However.
the inversion table creates a redundancy in the data, Alo. the :'nalysis of relational data bases
results in primitive relations representing inversions on the big elations which are built. Tile
arc link systems have the d:ta arc floating around in virtual r"eniory with little structure, hence
not being well suited for structured storage of data. Recently, some have begun to note a
basic similaritv between each of these types of data bases. In the tree structured data bases The
total inversion creates a complete redundancy ill the data stored in the data base, progressing
from no inversion at all with little or no redundancy, to a total invers (n with complete re-
dundancy. If one removes the original tree from the data base the inversion codifies the data.
But the total inversion results in a number of primitive relations. When the chain structured
data bases are analyzed and the address structure is symbolized out of hardware considerations
the result is also in terms of primitive relations When the arc linked data base structure, such
as found in [ISP 15 1 based systems, is restructured to collect arcs of the same type. this also
results in the primitive relational structure.

I.ach onIe of the data .bases discussed is a structure of sufficient complexity to represent

collections of triplets. Tie primitive relational form is simply to group the tiiplets such that
each group has one of its three fields identical. The common field is used to label tile group.

[ie inefficiency of most data base systems can be traced to the data being stored in
such a way that when retrieving data about aiv refcren,, u., ! inore data has to be re-
trieved than will be used. Ill tile arc link systems an ar, repre,,ents knowledge. When an
aspect of an arc is accessed, the virtual tnenirv brin, ii the arc and the page on which the
arc is found. Because of the accidcnt o f gene ration the t ther arcs on the same page have little
or no relationship to the arc of interest. (onsequcntly a lot of overhead is required. In the
tree structured data bases a similar process happens. Ilie retrieval is accomplished bringing in
a tree or subtree of which only one suh branch is of interest. The overhead in this retrieval is
againl high. In the classical lion-pi mitiye relational data base system each relation consists of
many fields. Fo retrieve data req tired, lhe loading of entire rows of each relation is required.
again resulting in intuch more dala thai necessary to answer the query. Lastly, the chained
data bases sometimes required more dat a to he loaded than necessary. But this depended
largely on the system designed and how carefully the designer removed redundancy: i.e..
how much lie made it a primitive relational data base unbeknownst to the user of the data base.

The primitive relational data base requires time least overhead in the retrieval of data
in an unstructured query environment. [llis organization, together with special treatment of
"belongs to". is very effective for retrieval of data and is closely matched to the structure
of the English language. I lowever. the primitive relational data base with all fields grouped
for fast retrieval is triply redundant. Also. some relations are so pervasive that it is expedient
to buil them into the design of the system. The most common of this type is "'belongs to".
We do this by designating some names to be "classes- whereby the mechanism of belonging
to can be implemented. -Fhe data retrieval Is sensitized to also know about "belongs to" and
ranges are expanded to include the domain when encountered in another class or relation. Tile
designation of names of relations and individuals tells the Fnglish how the knowledge is
structured about that namne. The designation of a number relation indicates that only storage
about the relation and one name is needed. In tile English systcm the entities called number

are not considered important enough to store data around the number for direct number
recognition. This restricts the syslem so hat the question "What is known about 7''" does not
have a meaningful answer.

51

V!11.3.4 Utility of Microelectronic Technology

One of tile questions to he answered by the development of CCIS was whether an
English query system could he designed and implemented which had adequate response time,
yet was not excessive in hardware costs. Microelectronic technology has developed in the last
7 years to provide design options that allow for the inexpensive high perforniance implemen-
tation of hardware support functions to which a CCIS like system could be matched. That
system was ini'lemented and demonstrated with the microelectronic circuit, thc AMD 2901
bit slice processor. and used 4k ram ineinory chips. Its cost was that of a small system and
response times were very tolerable, although no attempt was made to optimize performance.
The demonstration clearly showed that all English query system could be implemented in
inexpensive microelectronic hardware. j
Vili.3.5 Utility of multiprocessor design

In the classical design of computer systems a trend was to design for a single processor
with the functions swapped in and out. I-his centrali/ed approach was questioned at the
beginning of tile project on the basis of whliether one processor (constructed from micro- i
electronic circuitry) could handle tle computation load. As a consequence of tile possibility
that a single processor would not be fast enough, a triple processor approach was taken. It
then became possible to evaluate the performance of a three processor system versus the shar-
ing pf a single processor for three functions. The three processors were descriptively called the
Query Processor, whose tunction was to interface with tile human user, the Data Processor.
whose funclion was to interface with mass storage units. and tile Interface Processor, whose
function was to interface with tile rest of tile aiitlomatcd world.

One of the aspects noted in the exercise of the CCIS processors was that the Query
Processor and the Data Processor were not simultaneously busy. [his would suggest that the
total function of both tile Query Processor and the l)ata Processor could be squeezed into one
processor. The problems notCd with this were that there \vas not enough memory to accom-
inodatc both the programs and needed data area for the query processing and the data pro-
cessing. and that there was not enough time to swap programs. Possibly large auxiliary read
only program memory coul alleviate the first of these problems. but this would require a
very new architecture. for the address space would 'lave to le increased and as a consequence
the prograns would have to increase in size also. ile idea of using virtual memory would
work only if all the programs were locked in. Swapping even when hidden by virtual menory
would be intolerable, as it would cause tile time to respond to a query to increase 5 or 6 times:
i.e.. the 40 seconds needed to answer a query would be increased to 4 or 5 minutes. all im-
possibly long tinle.

Another consideration ill trying to combine the Query Processor functions and the
Data Processor functions is the effect on tlhe executive. At the present time the executive is
mostly idle on each of the processors. When a query is asked, first the Query Processor ex-
ecutive becomes very huSV and a little later the Data Processor becomes quite busy. If tile two
processors were combincd, and tile executive had to handle both. the time necessary to get
back to an activit, would he more than doubled, this in turn slowing the data retriev:tl from
the disk by a factor of two. It will also make the editing of queries very sluggish. The total
throughput would likely drop by a factor of two. where the throughlput is measured as the
nlumber of qtuestion1s answered in an hour. To avoid this drop in the throughput would
require a radical redesign of fihe executive.

.... ...

To combine the Interface Processor with the Query Processor or the Data Processor
would present a modularity design problem. The programs in the Interface Processor change
radically from application to application, from implementation to implementation, and from
time to time. To integrate the Interface Processor functions with those of either the Query
Processor or the Data Processor would cause a redesign of the unit whenever there was the
slightest change.

Because of the multiprocessor design and concerns with modularity, a considerable
effort was spent in the CCIS development to ensure independence of the query processing
function (with the exception of commonality of lexicon English vocabulary) from the data
base management function. A secondary concern was high performance for the data base
search, the latter being of more concern as experiments were conducted with very large data
bases. These concerns led us to consider different strategies for expressing formally the de-
scription of the communications between the Query Processor and the Data Processor. The
ideal situation would have been to utilize a non-procedural notation which did not allow
implicit decisions to be made by the Query Processor as to when to retrieve relations from
bulk storage. An experiment was conducted in that regard using a formalized machine read-
able notation for Query-by-Example [61 for the communications between the QP, DP and IP.
The notation forced use of another parsing scheme in the DP to extract relational data manage-
ment commands to be executed and of heuristics to determine the order in which they were
to be executed (if different than the order received by the DP). The software complexity
involved would have required developing a strategy for paging large programs in the Data
Processor as well as a strategy for breaking up the programs into pieces of length of one page
or less (640 words or less). Because of these complexities, the decision was made to utilize
the formal procedural notation described in VII.3.1 to ensure independence of the data base
management function and to utilize the buffer memory, page directory and special processor
instructions to attain high performance in data base search (a situation not tested in the
course of the CCIS development).

VIii.4 Possible Capabilities

VIII.4.1 How to Design an English Query System

The key to designing an effective English query system is to have a well developed
English grammar with a concept of the structure of a data base that matches the structure of
English. Fred Thompson's Rapidly Extensible Language (REL) system 171 is by far the most
developed of the natural language systems available. The REL system 171 is modularly de-
signed with well defined data structure for the grammar, the parser, and the semantics. it has
a very fast parser, in its original setting parsing in 100milliseconds compared to a minute for
the LISP 151 based systems. Wood's transition network system at BBN [81 is also well
developed but its architecture is embedded in the LISP 151 language and system. Since its data
base was not structured to be stored as separate from LISP 15 1, the data base size is limited to
that of the address space of LISP [51 . The LADDER system at SRI [91 was considered but is
also a LISP 151 embedded system. However, it does have the ability to access external data
structures, for example, the l)ata Computer data base system 1101 . It uses a parse by ex-
ception process, which is slow. It also has to go through several layers to retrieve the data.

It is unreasonable to design an English data base system in hardware only. In hardware
only, it would run a thousand times faster than in a programmed machine. But such speed
was shown not to be necessary. Programmable machines are mudh less expensive to design

53

and implement. Even multiple microprogrammable machines are better than hardware only.
If a commercial machine is to be used, it should have a virtual machine architecture, writable
control memory, and 576K bytes of lockable in core memory. If two machines are to be used
each should have about 320K bytes of lockable in core memory. In both instances, the
machine(s) should have instructions or writable control store. One also should have accessible
a compiler/assembler facility and an easy way to load the machine(s) from the output of the
cross compiler/assembler.

VIII.4.2 What Features are Important

Experience with CCIS demonstrations hals shown an English interface for users of
computerized data bases to be a very important concept. People who are not experts in
machine languages or special languages for data bases have had no trouble learning how to
use an English language query. Also, it was observed that in order to avoid excessive over-
head in finding a solution or in finding critical data, the use of chained limiters and of clauses:
i.e., use of' the multiple depth F nglish query: was of significant importance.

One of the most important subsidiry features has turned out to be the editing feature
provided for the user when typing in a query. Without this. countless hours would have been
wasted just in testing the system, let alone the hours wasted by the user of such a system. It
is highly recommended that powerflul editing features be part of any English query system.

VIII.4.3 What Features are not Important

The spelling correction process has turned out to be nearly unusable. It is not clear
that in this limited arena it is useful. When typing a query or statement it cannot be evoked
automatically and the only reason one would want it is to extend words. It is unclear what
need a word extension capability would have for a speller. In the practical observations a
word extender has worked out well without spelling correction. In the parsing. automatic
spelling correction could b usel ifi thC p:lrse is not completed properly without spelling
correction. However, there are two stikes against it. First. the complexity of the system
would have to be increased to know when and when not to use the spelling corrector: and
secondly, the parse explodes when all variations are permitted in the spelling. The time to
do the parse would increase by an order ot magnitude. The size of the parse chart would
increas' the same way. The size of the area set aside for containing the chart was designed
to accommodate lengthy and complicated parses. Spelling is generally needed more on the
lengthy and complicated statement just when the parse is likely to take the most space. It is
not clear v hether the benefits gained would outweigh the cost in response time, the need for
more chart space and the added complexity to determine when and when not to use spelling
correction. Normally when one asks a complex query he carefully reviews the statement
anyway to ensure hc asked the right question. In this situation most people find spelling
errors. [he line editing features allow for quickly correcting noted spelling errors without
having the machine do it. Also a spelling corrector must he interactive because many correc-
tions are not intended. 'his is another layer of complexity. Until other considerations and
data arc available spelling correction is an unnecessary function.

It does not appear that the yes and no questions are of much value. In all the demon-
strations and scenarios only once did someone attempt to ask a yes or no question. A con-
jectured reason for this is that one has to have extreme confidence in the analytical capability

54

of the machine to ask a yes or no question. The information content of the answer is so low
that one has to have other means of checking the accuracy of the answer. When asking ques-
tions that have data output the data itself generally provides a check on the correctness of
the answer. Although the yes and no questions should be completed for completeness of the
system, they should not be considered important.

VIII.4.4 What Organizational Changes Should Be Made

In the present system only one active data base is permitted in the system. To
accommodate multiply developed data bases would require changes to the page directory
system and the create function to allow for data that is labeled by the virtue of user access.
But this in itself will not get very far in adding multiply developed data bases. The module
that sends data to the user would have to be more sophisticated to screen out data that was
added by other users. The lexicons of both the Data Processor and the Query Processor
would have to be able to label the words so that it is known what users can use each word.
The same spelled word of one user may have a different interpretation. One user uses a word
as a class, another as a relation. In the Data Processor lexicon one user has the word associ-
ated with one logical record whereas another user has the same word associated with another
logical record. It is clear that a new architecture is needed to support this feature.

A similar situation exists for developing the system to simultaneously accommodate
several users of the same data base. Having different users of the same data base might re-
quire saving in the Query Processor the definitions of each separate user. Also it is possible
that the lexicon structure may have to be developed to be layered. the base layers being com-
mon and the top layer added when a user desired to use the data base.

V11.4.5 What Changes Should Be Made to the Modules

Changes to the page loading module can be made by improving loading of data from
disk to load only what is needed and by pipelining page loads using buffering provided by the
buffer memory. In addition, the page directory could be used todecide whether a page
should be loaded according to a sort key or its context.

Clearly the Query Processor lexicon must be redesigned to avoid unnecessary code. It
was noted that the principal search cycle involved calling routines that are general purpose
and would take much more time to execute than direct machine code.

Also the spelling correcter in the Query Processor lexicon is shown not to be useful
and should be removed to speed ip the lexical process. At the present time the Query Pro-
cessor critical processing load is in the lexicon module, not in the parser. A similar module in
the l)ata Processor runs 100 times faster than the one in the Query Processor.

The lexicon in the Data Processor should be redesigned to be paged. At the moment
it is totally contained in memory, which for largtL lexicons is not tolerable.

An intervening relation module should be added to the semantic processing section. At
the present time the English is limping along without the powerful intervening relation process.

Pronoun processing should be added. This is not a large task. It consists of activating
the functions that parsing uses to pull up prestored nouns and to systematically save each
noun in a structured replacement list.

55

!.,k j-ig....

A module that creates a correspondence between the modules of the Query Processor
and the Data Processor should be created. Many of the tools for this are already in place.
What is still needed is a redesign of the lexicon for the Query Processor and the Data Processor.

Scratch pages should be used for temporary processing; i.e., when output results are
obtained. Care should be taken to retain enough memory of temporary results, however, to
handle pronoun processing and ellipses.

VIII.4.6 What Instructions Should Be Added to the Repertoire

An indirect call from register should be added ignoring the Y field. Thus if the D
register is named it would have the effect of an indirect call to the Y field.

Correction to repeat instructions should be made not to clear the B register and to
decrement B in a normal manner when terminating on a match.

A single instruction to fetch a byte from a byte address should be added as should
a single instruction to store a byte to a byte address leaving other bytes alone. A special
hardware card that could do a number of complicated data rearrangement operations required
for extensive packing and unpacking of data could be used in support of these instructions
and other such data rearrangements (see Section VII. 1.7).

IX. Conclusions

IX.I Utility of English

For the last fifteen years there has been concern as to whether the English language
could be used to control and query automated Navy Systems. Research in utilizing English
language had indicated a complexity that made the question very germane. Demonstration
systems, such as the LADDER system at Stanford Research Institute (SRI) [91, have been
developed that work slowly and require some of the fastest machines available. Could the
Navy afford the machines and slowness that was indicated by the techniques developed'?
Meanwhile relatively unpublicized work the Rapidly Extensible Language System (REL) 171.
was being done at California Institute of Technology by Dr. Fred Thompson and his students
in developing an English language data base system that was fast and highly structured. In
contrast, other systems developed were based on a process of exception and consequently were
not structured and slow in response to queries. However, the system developed by Fred
Thompson could only be executed on large expensive commercial machines. The question
still remained as to whether the REL system could be of utility to the Navy.

What was demonstrated in this project was not only that the Thompson English system
was real and not a figment of a canned demonstration, but also that it could be developed into
a system that could be useful for shipboard placement in a task force and in some selected
single ship systems.

IX.2 General Utility

In general the utility of a system to the Navy is difficult to measure. The principal
mission of each platform generates the potential utility of a system for that platform. The
('('IS system is no different than any other system in this respect. For instance, the CCIS
system is too slow to be of much use in tactical systems. Improvements to the presently
demonstrated speed could place the CCIS close to the threshold of utility in tactical systems

56

but the psychological interface was not designed with this in mind. On the other hand, the
CCIS system could be used for inventory and purser functions, but it has much more power
than is generally required for these functions. In between these two extremes, a number of
command functions are adequately matched in both time and complexity to justify an English
query system such as the CCIS system.

CCIS is more of an analytical tool than a planning and construction tool. Its principal
forte is in analysis of the state of enemy forces (as in intelligence gathering), of the state of
one's own forces, of the readiness condition of one's own ship or force, of the status of com-
munication possibilities of the task force, and of possible engagements with an enemy. Hence,
CCIS would have more potential in a task force command situation than in a shipboard com-
mand situation, because the essential information retained is of broader scope than that re-
quired by one ship. However, in such subsystems as communication on a ship a CCIS like
system could be used effectively.

It was shown in a variety of demonstrations of CCIS over a period of time that the
principal value of a CCIS function was in the improvement of timeliness of information, accur-
acy of the relationships of the data, and efficiency of the personnel. This is accomplished
by collecting infornation directly into the system via the Interface Processor without it hav-
ing to be loaded by manual and interfering techniques, by providing a forgiving English in-
terface using the Query Processor to the staff personnel so that special training is not required
and in organizing the information in the system in a manner that facilitates rapid development
of complex questions without an overburden of extraneous records and files to be examined.

The general utility of CCIS can be assessed thoroughly only by a series of meaningful
experiments conducted in both a simulated environment such as the Advanced Architectural
Testbed at NOSC [I I] can provide and in live operational use of the system. The next phase
of CCIS development should see this type of assessment.

X. Acknowledgements

The authors wish to thank Mr. Robert Ebert. Mr. Henry Gok. Ms. Lois Sczepaniak
and Ms. Flizabeth Trottier. all of the Naval Ocean Systems Center. for their many technical
contributions towards ensuring the completion of the CCIS experimental system. Addition-
ally, the authors express their appreciation to Drs. Bozena and Fred Thompson of California
Institute of Technology for sharing their insights into the REL development with members
of the CCIS project.

57

X1. References

[1 I Canady, R.H. et al, "A Back End Computer for Data Base Management." ('ommunications
of the Association for Computing Machinery (CACM), October, 1974

[21 Dostert. B.H. and Thompson, F.B., "How Features Resolve Syntactic Ambiguity,"
Symposium on Information Storage and Retrieval, University of Maryland. April, 1971

[31 Kay, M., "Experiments with a Powerful Parser," Deuxieme Conference Internationale
sur le Traitement Automatique des Languages. Grenoble. France, 1967

[41 Christy, D.O., Small, D.L., and Trottier. E., "Command Center Information Subsystem
(CCIS) Operations Manual," NOSC TN 899, September, 1980

[5] Teitelmen, W., "INTERLISP Reference Manual." December. 1975

[6] Zloof, M.M., "Query by Example: A Data Base Language," IBM Systems Journal.
December, 1977

[71 Dostert. B.H., REL - An Information System for a Dynamic Environment." California
Institute of Technology REL Report 3, December. 1971

[8] Woods, W.A., "Transition Network Grammars for Natural Language Analysis."
Communications of the ACM. Vol. 13, pp 591-606. 1971

[9] Sacerdoti. E.D., "Language Access to Distributed Data with Error Recovery (LADDER)."
Stanford Research Institute (SRI) Artificial Intelligence Center Technical Note TN 140.
Menlo Park, California, February, 1977

[101 Rothnie, J.B. and Goodman, N., "An Overview of the Preliminary Design of SDD- I: A
System for Distributed Databases," Computer Corporation of America (CAA) Technical
Report CAA-77-04. March, 1977

[1iI "Advanced Command and Control Architectural Testbed Concept of Operations Plan,"
NOSC Code 8321 Internal Informal Report, July, 1977

58

